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Figure 1: We present Vergence Matching, an interaction technique which uses the principle of motion correlation for selection 
of small targets in 3D environments. To select a target, smooth depth changes are induced perpendicular to the user: (a) 
when the target moves closer, the eyes move inwards increasing the vergence angle (convergence), (b) vice versa the vergence 
angle decreases (divergence) when the target moves away from the user. The relative vergence movement of the eyes are then 
correlated with the depth changes of the object to determine which target the user is attending to. 

ABSTRACT 
Gaze pointing is the de facto standard to infer attention and interact 
in 3D environments but is limited by motor and sensor limitations. 
To circumvent these limitations, we propose a vergence-based mo-

tion correlation method to detect visual attention toward very small 
targets. Smooth depth movements relative to the user are induced 
on 3D objects, which cause slow vergence eye movements when 
looked upon. Using the principle of motion correlation, the depth 
movements of the object and vergence eye movements are matched 
to determine which object the user is focussing on. In two user 
studies, we demonstrate how the technique can reliably infer gaze 
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attention on very small targets, systematically explore how difer-
ent stimulus motions afect attention detection, and show how the 
technique can be extended to multi-target selection. Finally, we pro-
vide example applications using the concept and design guidelines 
for small target and accuracy-independent attention detection in 
3D environments. 
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1 INTRODUCTION 
When we know whether an object is in the focus of the user’s 
attention then we can support the interaction in compelling ways, 
including implicit adaptation of the interface to the user’s focus [9], 
object selection by gaze [21] and gaze-assisted manipulation and 
input [40, 41]. The conventional mechanism for detecting attention 
on objects in eye-tracked interfaces is to detect gaze fxations and 
match these spatially against the area an object covers in the visual 
feld. However, this has inherent precision limitations as the eyes 
are not still during fxation and as fxations are detected as a spatial 
dispersion of gaze points [45]. The gaze points sampled in the pro-
cess represent estimates prone to inaccuracy due to limitations in 
tracking, calibration and mapping of gaze to coordinates in display 
space. Therefore, inference of gaze attention to objects is usually 
limited to objects that are larger in size and spaced well apart. 

We propose Vergence Matching as a novel technique for detect-
ing attention to objects in 3D environments. Vergence Matching is 
independent of target size and we propose it to assist with selec-
tion of small objects that are difcult to attain by raycasting from 
hand, head, or eyes due to jitter or imprecise tracking. The core 
mechanism, inspired by Ahn et al.’s Verge-It, is to present stimuli 
that, when looked at, induce a vergence response of the eyes [2]. 
In our technique, we do this by moving any object of interest back 
and forth in the user’s line of sight, and infer attention when we 
observe vergence movement of the eyes that corresponds with the 
motion of an object. When a user’s focus of attention is on an object 
that is moving closer, the eyes will respond with converging move-

ments to maintain binocular vision, and vice versa with diverging 
movements when the distance of the object from the eyes increases 
(see Figure 1). We scale objects in the process to remain constant in 
apparent size, to provide the user with a stable view of the relative 
position and spacing of objects. Users may notice that their eyes 
move but they do not need to pay any specifc attention to the 
process as the eyes naturally adapt to changes in focal depth. 

From the user’s perspective, a system response is invoked when 
they maintain their gaze focus on an object until a vergence match 
is detected. This is not instantaneous, as the eyes need time to react 
and adapt to the object’s motion, and the system needs to observe 
the eyes’ response over time to evaluate its correspondence with 
object motion. The correspondence is determined by motion corre-
lation [55], matching changes in vergence angle against changes 
in object distance from the eyes (Figure 1). Motion correlation is 
independent of object size as it is based on the correspondence of 
relative movements, as opposed to intersection of an input vector 
with an area in display space. The technique requires binocular 
tracking of eye movement but calibration is not required as the 
vergence angle is derived from movement of the eyes relative to 
each other. While an eye tracker might estimate gaze to be on an 
adjacent object, Vergence Matching will still match the object the 
user is gazing at, by its movement toward and away from the eyes. 

In this work we present a study into the fundamentals of Ver-
gence Matching, and the design and evaluation of two gaze-assisted 
selection techniques in which we use Vergence Matching to dis-
ambiguate pointing input for precise selection. Our frst study was 
designed to test the feasibility of our concept and to establish that 

attention can be robustly inferred from vergence. As we use continu-
ous motion to modulate the focal distance of objects, we specifcally 
induce slow vergence for detection of attention, and we show that 
this is robust against false activation by fast vergence which is ob-
served when users shift their attention between objects at diferent 
depths in the scene [10]. We further show that Vergence Matching 
can diferentiate between up to four motions presented simulta-

neously with shifts in phase, which demonstrates feasibility of 
vergence-based selection from among multiple options. Our study 
also gives insight into design parameters, for example observing 
better performance of Vergence Matching with harmonic motion 
of objects back and forth than with linear motion. 

We designed two techniques in which Vergence Matching is com-

bined with raycasting to tackle the problem of selection ambiguity 
for small and closely spaced targets. In both techniques, raycast-
ing is used for pre-selection of candidate targets, complemented by 
Vergence Matching to complete the selection. In threshold-based Ver-
gence Matching, input is triggered as soon as a match of vergence 
with one of the candidates is detected, based on a pre-set motion 
correlation threshold. In trigger-assisted Vergence Matching users 
instead receive continuous feedback on the best-matching candidate 
and use a trigger to confrm the match. We evaluated the techniques 
using head cone casting as the modality for pre-selection of candi-
dates, and comparing threshold- versus trigger-assisted selection 
from 2 or 4 candidates closest to the head ray. The results demon-

strate the techniques’ ability to select targets as small as 0.25◦ 
in 

width, and showcase Vergence Matching as a valid complement 
to conventional gaze-based interaction, with a trade-of in time 
for robust selection (3-4 seconds). In comparison, threshold-based 
Vergence Matching afords hands-free selection with only head and 
eye movement while trigger-assisted Vergence Matching afords 
the user with more control for faster and more accurate selection. 

Vergence Matching provides a unique approach to infer visual 
attendance to objects of very small size in 3D environments, re-
lying only on subtle manipulation of targets in the scene and the 
relative movement of the pupil positions. The technique provides 
new opportunities for gaze-assisted interaction that we illustrate 
with three applications in augmented and virtual reality (AR/VR). 
The applications, a wrist watch, context menu and notifcations, 
highlight the beneft of being able to select small targets to reduce 
required display real estate and demonstrate the versatile combi-

nation of Vergence Matching with hand, head or gaze pointing to 
initiate selection. In sum, we provide the following contributions: 

(1) Vergence Matching – a calibration- and size-independent 
technique for detecting visual attention on objects in XR 
environments. Vergence Matching leverages vergence eye 
movements and motion correlation by inducing motion on 
objects while maintaining their observed visual angle, thus 
minimising changes to the scene. 

(2) Two selection techniques that use Vergence Matching for 
very small target selection, and three applications that show 
how Vergence Matching can provide unique advantages, 
allowing subtle and discreet gaze-based interfaces. 

(3) The results of two user studies exploring the fundamentals of 
Vergence Matching and its use as a selection technique. The 
results show that Vergence Matching is viable for attention 
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detection without the risk of accidental detections of natural 
vergence eye movements, and Vergence Matching selection 
techniques can be used to select targets signifcantly smaller 
than the accuracy of the eye tracker. 

2 RELATED WORK 
For the design of Vergence Matching, we build on insights from 
pointing in 3D environments, stimuli-response eye movements, and 
prior work on vergence-based interaction. 

2.1 Attention Detection and Selection in 3D 
Environments 

Vergence Matching is designed to detect visual attention towards 
objects at any distance from the user in 3D environments. Typically, 
visual attention is derived from the user’s gaze direction from which 
the system can react to [3, 4]. However, detecting attention on small 
targets or targets at a distance is limited by the natural jitter in eye 
fxations [66] and the accuracy and precision of eye trackers [15]. 
These limitations are present in fxation detection algorithms com-

monly used to infer visual attention on objects. For example, inher-
ent noise in eye tracking leads to fxation detection algorithms with 
dispersion-based designs that have predefned large fxation areas 
(usually 1◦ 

in radius) [8, 45], or velocity-based algorithms where 
fxation areas can vary signifcantly in size [20, 37, 45]. 

In 3D interaction, the most commonly used metaphor for selec-
tion is Ray-casting where the user controls a ray via a controller [5, 
35], or other body parts, such as gaze and head [1, 41, 43, 48, 51]. 
However, selecting small targets or targets at a large distance is 
also limited by users’ motor skills [15, 36, 66]. HCI researchers 
have explored several approaches to improve interaction accuracy 
with multimodal techniques that enhance the pointing with a sec-
ond user input [25, 49, 50, 52, 66], volume selection techniques 
where the pointing area is enlarged and multiple targets are disam-

biguated [7, 47, 65], or techniques that use heuristics or contextual 
information for selection [11, 17, 46, 53]. We use eye movements 
that respond to moving stimuli to select small and distant targets. 

2.2 Stimuli-Response Eye Movements 
Research has investigated interaction with eye movements that 
respond to external factors and can be performed as long as objects 
are visible. For example, smooth pursuit eye movements occur natu-
rally when following moving stimuli. Contrasting saccades, smooth 
pursuits are characterised by the continuous and smooth motion of 
the eyes and has been exploited for interaction by inducing motion 
to targets and correlating the target and eye movement to identify 
which target the user is following [55, 59]. This technique enables 
the selection of small targets, for example, on a smartwatch [14], and 
has proven useful for general and occluded selection in VR [24, 47]. 
Similarly to Vergence Matching, smooth pursuit can be used for 
explicit interaction by a user [59] or implicitly by the system [42]. 

Furthermore, EyeGrip [23] uses optokinetic nystagmus eye move-

ment, i.e., the sudden shift of attention when a moving object leaves 
the user’s feld of view (FOV). In their study, a sequence of scrolling 
images is shown, and EyeGrip detected the image of interest accu-
rately through reactive movements. Additionally, vestibulo-ocular 
refex (VOR) that occurs when the eyes fxate on an object but the 

head moves, leading to a refex of eye movements to ensure stable 
vision, has been used for input [32] and has proven viable for target 
disambiguation with monocular eye trackers [31, 33]. The common 
main advantage of these methods is that they are not dependent on 
gaze calibration, can detect attention implicitly, and thus improve 
gaze interaction quality [42]. However, the necessity to make tar-
gets or the user move to induce these movements can be a challenge 
as most digital content is stationary. In VR and AR, proximity of 
multiple targets and small targets are key challenges for 3D interac-
tion due to the varying relative positions of users and objects [13]. 
Using pursuit-based motion correlation (e.g. VRPursuits by Khamis 
et al. [24]) is difcult when multiple targets are near due to the 
risk of occlusion and target collision in 3D environments. In addi-
tion, pursuits have been used to select occluded targets in VR by 
Sidenmark et al. [47] in Outline Pursuits by inducing motions on 
target outlines. Target motions become too small for selection if the 
circumference of the target (i.e. size) is too small. Through Vergence 
Matching, we can detect the attention towards small objects while 
avoiding target collisions and minimising scene changes by moving 
objects relative to the user’s perspective. 

2.3 Vergence-based Interaction 
Vergence eye movements are when the eyes move in opposite 
directions and naturally occur when users shift their visual focus 
between depths to maintain binocular vision [19]. Vision research 
usually classifes vergence movement into “fast” vergence that 
occurs in conjunction with saccades when switching focus between 
objects at diferent depths and “slow” vergence that is performed 
independently from saccades, usually when following a moving 
target which we leverage for interaction [10]. A key insight for our 
work is that these vergence movements are performed as long as 
users are able to focus on the target, meaning that targets can be 
smaller than the accuracy of pointing sensors. 

Several works have investigated vergence-based interaction in 
binocular 3D environments to decide whether the user is looking 
at the world or an interface [28, 38, 59], or as X-ray vision to see 
occluded objects [18]. Yet, a limitation of these works is that with-
out explicit 3D calibration, these systems can only distinguish 2 
depths (i.e. near and far). We avoid this limitation by using relative 
vergence movements and can thus diferentiate between multiple 
simultaneous objects. A closely related paper is Ahn et al.’s Verge-
it [2], which provided a frst feasibility assessment of modulated 
vergence movement by overlaying visual stimuli that moved hori-
zontally to control objects in the scene, pointing to its potential for 
interaction. We build on and diferentiate from this work by induc-
ing back-and-forth movements on objects within the environment 
and using multiple concurrent motions to allow for a greater variety 
of applications and techniques. Further, we take a deeper look at 
vergence parameters and usability through two experiments. 

3 VERGENCE MATCHING 
Vergence Matching is defned by the following steps: 

(1) A trigger from the user or system pre-selects a subset of can-
didate objects within the scene to minimise user distraction 
and maximise accurate detection; 
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Figure 2: A: A user with interpupillary distance (� ) focusing on a point (� ) at a distance (�) from the centre of the head (� ), with 
the two gaze vectors (��®� � and ��®� � ) from the left eye and right eye respectively. B: The object is scaled when moving to retain 
the same angular width. C: Estimated vergence angle at distances from users based on Equation 1, showing how the vergence 
angle exponentially increases as the distance from the object decreases. 

(2) Unique depth movements perpendicular to the user are in-
duced on candidate objects; 

(3) The user signals their intent by focussing on a candidate 
object with their gaze, and as a result, will intuitively perform 
vergence eye movements based on the depth movement 
induced on the objects. The system detects that the user is 
focussing on an object based on the correlation of the object’s 
depth movement and the user’s vergence movements. 

These distinct steps can be broadly categorised into two distinct 
stages: (1) candidate selection where a subset of objects is selected 
and depth motions are induced, and (2) inferring user attention 
which involves correlating the object and user movements. 

3.1 Candidate Selection 
The frst step of Vergence Matching is deciding candidate objects 
in the environment to induce movements that the user is likely 
to attend to. We incorporate this to minimise the likelihood that 
depth movements distract the user. In addition, we only consider 
movement in the depth axis for Vergence Matching, unlike smooth 
pursuit-based interaction techniques, which use movement in 2D 
space. This reduces the maximum number of unique trajectories and 
places greater importance on specifying potential objects of interest. 
Candidate selection can be performed by the system implicitly 
or explicitly by the user. System triggers can be started through 
models based on user context (e.g. location or proxemics). User 
triggers can be performed via pointing techniques (e.g. ray casting). 
A specifc research question that we address in this work is how 
many candidate objects can be simultaneously displayed. 

3.2 Motion Generation 
For each candidate object, we induce a smooth motion on the depth 
axis perpendicular to the user. Each object exhibits a unique motion 
so the system can diferentiate which object the user is focused 
on. Selecting appropriate values for these characteristics requires 
a deeper understanding of how slow vergence eye movements 
follow a moving object and has large implications for the success of 
Vergence Matching. Therefore, in Study 1 we systematically explore 

diferent values with a data-driven approach to understand the 
motion parameters that are best suited for vergence-based motion 
correlation. As vergence movements are one-dimensional, they are 
defned by the following characteristics: 

Amplitude. The amplitude of vergence eye movements is not 
linearly correlated with the distance of the object from the user [60, 
61]. As such, an object further away from the user must have a 
larger motion amplitude than a closer object to induce the same 
amount of vergence movement. In some scenarios, a designer may 
be able to control where the object movement starts and thus select 
the optimal distance, while in other scenarios movement may be 
induced on an object that is at a certain depth in the scene. To 
account for the nonlinearity and help downstream matching of 
movements, we translate object distances relative to the user into 
the expected vergence angle using Equation 1. 

Where ���® � and ���® � are the directional gaze vectors of the left and 
right eye, respectively, towards a point � at a distance � (Figure 2a). 
To defne the positions of the left and right eye, we assume an 
interpupillary distance of � = 6.5�� based on [12]. The relationship 
defned by Equation 1 can be seen in Figure 2c. 

Cycle Time. The object speed must be nonlinear to maintain a 
constant rate of change of vergence angle. As such, we defne the 
speed of motion based on cycle time, i.e. the time it takes for an 
object to leave and return to its starting position. The duration 
of the cycle time should ensure that a full motion cycle can be 
performed in a reasonable amount of time for accurate detection 
while being robust against natural vergence behaviour. Also, the 
speed of the objects can be employed to distinguish object motions. 

Phase. As the matching of object and eye movement is performed 
temporally, the phase in which the candidate objects move on the 
depth axis can be varied to induce unique movements. This has been 
leveraged in smooth pursuit eye movement interaction techniques 
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to distinguish between multiple concurrent motions and allow for 
the selection of one object among many [14, 47, 59]. The key to this 
is maximising the phase diference between the candidate object 
movements. The number of concurrent objects is then dependent 
on how well the eye movements can track the movement of the 
object for the system to be able to distinguish diferent trajectories. 

Type of Movement. The type of depth movement induced on the 
candidate objects is also an important factor for both how well a 
user’s eye movement tracks the movement of the candidate object 
and how well the system can match the two movements. Ideally, 
maximising the similarity of the object trajectory with the vergence 
movement of the eyes provides additional confdence and would 
allow the system to reject false positives and accidental activations. 

Object Scaling. The required depth changes induced on the can-
didate objects must elicit enough change in the vergence angle 
for successful Vergence Matching. Changing the depth of objects, 
especially those in close proximity, can be problematic because 
occlusion may occur, and the changes in object size may afect the 
user’s focal point. As a result, we chose to modify the size of the 
objects during the depth movement so that the object appears to 
be the same size (in visual degrees) to the user (Figure 2b). 

3.3 Inferring User Attention 
To infer user attention, the object movement for each candidate 
is correlated with the user’s vergence eye movement. Similar to 
previous eye-based motion correlation techniques using smooth 
pursuits (e.g., [14, 42, 47, 59]), we use the Pearson correlation coef-
fcient for the matching process. In our implementation, we use the 
pupil positions reported by the eye tracker for gaze input which, 
unlike the gaze position, does not require calibration. To translate 
the two pupil positions into a single value, ����� , we calculate pupil 
distance based on the horizontal pupil positions (Equation 2). 

����� = ((1 + �� ) − ��) × 0.5 (2) 

Where �� and �� are the pupil positions of the left and right eyes 
respectively. Note that the pupil distance will decrease with in-
creased vergence angle resulting in a negative correlation (i.e., bet-
ter matches are indicated by a negative correlation coefcient). 
For ease of understanding and for consistency with similar mo-

tion correlation work, we invert this relationship so that a positive 
correlation indicates a better match. 

Vergence is a reactive process that we perform intuitively in 
reaction to an object moving in the depth axis. As a result, there is 
an inherent lag between the object and the user’s vergence move-

ments [63]. This lag must be taken into account to maximise the 
correlation and accuracy of Vergence Matching. Technical factors 
of the sensing and display equipment, such as discrepancies be-
tween the sampling of the HMD’s display and the eye tracker, may 
also introduce additional lag in dynamic ways. To compensate, we 
select the best Pearson correlation coefcient based on a range of 
object delays between ���� and ���� . To ensure robust detection 
of attention, we use a sliding window of �� frames to calculate 
the correlation and add the result to a sliding post-hoc bufer of 
length ��ℎ�� as described by Velloso et al. [56]. Whether a detec-
tion is made depends on the criteria and the way in which Vergence 
Matching is implemented (e.g. correlation threshold or trigger). 

Figure 3: True positive task target. The target remains the 
visual angle size (A and B Front) but moves back and forth 
and scales to retain the visual angle size (A and B Side). 

4 STUDYING VERGENCE MATCHING AND 
IDENTIFYING PARAMETERS 

To validate that Vergence Matching can efectively and robustly 
detect attention, we frst conducted a VR study to collect data on 
vergence eye movements while following moving targets. To direct 
our analysis, we defne two main research questions of interest: 

RQ1: Can we robustly detect vergence eye movements directed 
at single targets? 

RQ2: Can we display multiple simultaneous targets without 
false detection? 

We were also interested in understanding how motion generation 
parameters (i.e. motion speed and amplitude), and other Vergence 
Matching factors such as target scaling afect detection performance. 
To answer these questions and gain a deeper understanding of 
Vergence Matching, we collected data from two tasks. The frst task 
studies how well users can perform slow vergence eye movements 
in an abstract task in which we vary the motion parameters of a 3D 
target (Figure 3). The resultant dataset provides insight into how 
well slow vergence eye movements can follow moving targets in VR 
using diferent motion parameters and, in turn, the optimal types of 
induced target movement to maximise correlation for interaction. 
We complement this with the second task, which collects data 
about vergence eye movements in a naturalistic environment, with 
which we can demonstrate the robustness of Vergence Matching to 
accidental activation due to “normal“ gaze behaviour. 

4.1 True Positive Task – Slow Vergence 
For data collection of slow vergence eye movements, we presented 
participants with targets to focus on that oscillated back and forth 
while maintaining the same visual angle (Figure 3). We varied the 
motion parameters of the induced target movement to understand 
how well the user’s eyes matched the target. We systematically 
explore all permutations of the following motion parameters: 

Start distance from user (m): 1, 5, 10 
Amplitude (◦): 0.5, 1, 2 
Cycle time (�): 1, 2, 4 
Type of movement: Linear, Simple Harmonic 

The targets appeared at the specifed depth distance and were 
attached to the centre of the user’s head direction. This ensures 
that we collect data where vergence occurs in the centre of the 
participant’s FOV. The targets were then made to oscillate back and 
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forth relative to the participant at the specifed amplitude, speed and 
type of movement. All targets started at the specifed distance from 
the user and oscillated toward the user (i.e., the starting distance 
is the maximum distance of the target). All targets had a size that 
corresponds to 4◦ 

and were scaled as described in Section 3.1. The 
participants performed two blocks of data collection, one for each 
type of movement. Each target was shown for 5 seconds, with a 
2-second pause between them. In total, each participant would gaze 
on 2 types of movement × 3 start distances × 3 amplitudes × 3 cycle 
times × 2 repetitions = 108 targets. 

4.2 False Positive Task – Naturalistic Vergence 
To gain naturalistic vergence eye movement data, participants were 
placed in a VR ofce environment (Figure 3b). We used the “Unity-
JapanOfce” environment from the Unity Asset Store 1. Participants 
were placed so that objects were at distances of 1 to 10 metres from 
the participants. The participants were then asked to perform search 
and comparative tasks (e.g., “Count the number of chairs.” and “Are 
there more red or blue pillows?”) to make the participants move 
their gaze between objects at diferent depths. Eye tracking data 
was recorded throughout the session. 

4.3 Apparatus & Participants 
We developed the study environment in Unity version 2017.4.3f1 
and used an HTC Vive with an integrated Tobii Pro Eye Tracker 
(120Hz) to record eye movement in both tasks. The HTC Vive has 
a FOV of 100◦ 

in the horizontal plane, 110◦ 
in the vertical plane 

and a frame rate of 90Hz (correlation was therefore performed 
at 90Hz). We recruited 12 participants to take part in the data 
collection (6M/6F, 31.3±6.2). Three participants had normal vision, 
and nine wore glasses or corrective lenses. Ten participants had VR 
experience. Six participants have used an eye tracker previously. 

4.4 Procedure 
Upon arrival, participants completed a consent form and a short de-
mographic questionnaire. They put on the HMD for a short testing 
session, where the researcher introduced the task and checked for 
any calibration issues. In the frst part of the study, participants per-
formed the true positive task in two sessions, one for each motion 
type (counterbalanced). After each condition, participants answered 
three 7-point Likert scales about their experience (ease, concen-
tration, and strain) of focussing on the target. The questionnaire 
also included a feld to enter comments freely. In the second part, 
participants performed the false positive task. Participants were 
calibrated to the HMD’s eye tracking before beginning each task. 
Participants were allowed to take a break at any point during the 
study and were encouraged to take a break between each condition. 
The study took approximately 30–45 minutes. 

4.5 Results 
Our analysis explores the best target motion (motion type, ampli-

tude, cycle time) and optimal parameters (target delay, threshold, 
window size) for attention detection while ensuring the system is 
robust to false positives. In addition, we explore how many unique 

1
https://assetstore.unity.com/packages/3d/environments/unityjapanofce-152800 

Figure 4: Target delay that resulted in the highest correlation 
for all window sizes. Red vertical lines represent ���� = 15 
and ���� = 30 i.e. the range of delay accounted for. 

Figure 5: ROC curves for all linear and harmonic motions 
across diferent window sizes. 

targets could be displayed simultaneously to the user and distin-
guishable by the system. We frst investigated whether we could 
accurately detect the user’s vergence eye movements in response to 
the moving targets. Therefore, we systematically explore diferent 
target delays (0 to 500ms), correlation thresholds (�� = 0.1 to 0.9 in 
0.1 increments) and window sizes (�� = 15, 30, 45, 90, 180 frames). 

4.5.1 Target Delay. Since vergence movements are reactive, there 
is an inherent delay from when the target changes depth and the 
eyes converge or diverge to refocus. To understand this delay in 
the context of Vergence Matching, we counted the number of times 
each target delay between 0 to 45 frames (equivalent to 0 to 500ms) 
led to the highest correlation for each rolling window in all window 
sizes and trials. Figure 4 shows how the delay follows a normal 
distribution, with the peak occurring at around 23-24 frames (250-
260ms). Existing literature reports that vergence movement usually 
starts with a latency of 160-180ms [63]. Taking into account the 
additional delay caused by eye tracking, we can see how our results 
align with this. As the delay is variable, we use a dynamic target 
delay for the remainder of the analysis, where ���� = 15 and 
���� = 30 to calculate correlations. 

4.5.2 Comparing Thresholds and Window Sizes. Next, we system-

atically investigate the true and false positive rates for each combi-

nation of threshold, window size, and motion parameters using the 
dynamic target delay range. We calculated the number of correct 
detections from the abstract task to fnd the true positive rate. We 
used a threshold-based approach to defne successful detections. 

https://1https://assetstore.unity.com/packages/3d/environments/unityjapanoffice-152800
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Figure 6: Example trials of a linear and harmonic trial of 
amplitude = 2◦, cycle time = 1s and target start distance = 5m 
performed by the same participant. The phase of the target 
motion is adjusted to match the eye motion. 

That is, a successful detection is reached when the post hoc moving 
window with ��ℎ�� = 45 frames has reached a specifed correlation 
threshold (�� ) for ������ = 30 frames [47]. For the false-positive 
rate, we calculate the number of successful detections that are made 
using the false-positive task data and the same defnition for detec-
tion. Since there are varying amounts of trials between true (� = 54) 
and false positive (� = 1) trials, we split the false positive task data 
into 54 overlapping 5-second sections. The corresponding target 
motion was simulated for each section. This is the equivalent of 
showing the target motion to the user during the false activation 
task to see if their eye movement would result in detection. We 
include target motions with all possible phase diferences to ensure 
that any potential false positives are captured. A trial is classifed 
as a false positive if a detection occurs. On average, we collected 
122 seconds of false positive data per participant. 

Figure 5 shows ROC curves for every window size for linear 
and harmonic motions separately. The results showed high true 
positive rates and low false positive rates. In addition, we found 
that harmonic motions lead to better performance than linear mo-

tions. Figure 6 illustrates why harmonic eye movement led to better 
performance. While participants appear to be able to follow linear 
and harmonic motions equally well, the change from convergence 
to divergence and vice versa appears to be more harmonic in nature. 
As a result, this leads to higher correlations for harmonic motions. 
Therefore, we focus the rest of our analysis on harmonic motions, 
and use a window size of 90 (�� ) which provided a good trade-of 
between true positive rate, false positive rate, and detection time. 

4.5.3 Comparing Motion Characteristics. Next, we investigated 
which motion parameters are best suited for selecting with Ver-
gence Matching. We performed the same analysis as in the previ-
ous section for each cycle time and motion amplitude combination. 
From our analysis, we saw that the target start distance did not 
show a diference and, as such, grouped motions with diferent start 
distances together. Figure 7 shows that faster motions with large 
amplitudes ofer better performance. Presumably, this is because 
larger amplitudes are more likely to lead to more distinguishable 
vergence movements, in turn leading to higher true positive rates. 
Meanwhile, shorter cycle times caused more frequent shifts in the 
vergence direction, which may be less likely to occur in a natural 
environment, leading to lower false positive rates. These results 
show that motions with an amplitude of 2◦ 

and cycle time of 1s are 
most appropriate for target detection. Furthermore, we found that a 

Figure 7: ROC curves for all linear and harmonic motions 
across diferent window sizes. 

Figure 8: A: Detection performance based on number con-
current motions. B-D: Subjective responses and Wilcoxon 
signed-rank test results. 

threshold (�� ) of 0.8 leads to a high true positive rate (1.0) and a low 
false positive rate (0.0). These results are signifcant because we 
can detect attention using Vergence Matching, yet do not trigger 
accidental detections caused by natural vergence movements (RQ1). 

4.5.4 Number of Simultaneous Motions. Next, we were interested 
in how many concurrent motions we could display without lead-
ing to incorrect activations (RQ2). Based on our previous fndings, 
we only considered motions with a cycle time of 1s and motion 
amplitude of 2◦. We set �� = 90 and �� = 0.8 and used the same 
defnition of detection as in previous sections. We incrementally 
increased the number of targets by generating motions of the same 
time and amplitude and setting them to the most distant phase rela-
tive to the followed target. We only consider the frst detection. The 
trial is successful if a correct target is selected frst and is labelled 
incorrect if the wrong target is selected frst. 

The results in Figure 8a imply that Vergence Matching can suc-
cessfully diferentiate the correct target from two or four simultane-

ous targets without signifcantly impacting detection performance. 
However, further targets result in deteriorating performance. These 
results are likely due to the 1-dimensional aspect of vergence move-

ments where phase alone can only be used to distinguish motions 
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to a certain point before motions become too similar for accurate 
disambiguation. We also investigated if varying cycle times would 
positively afect performance but found that it had a detrimental 
impact on performance as it led to periods with signifcant motion 
overlap. We can surmise that Vergence Matching interaction should 
be limited to 4 concurrent motions (RQ2). 

4.5.5 Subjective Responses. Finally, we analysed the questionnaire 
responses (Figure 8b-d) using Wilcoxon signed-rank tests to under-
stand if users felt diferently about the diferent target motions. We 
found no signifcant diferences. Participants’ comments showed 
that four participants found harmonic motions easier to follow (P1, 
P2, P4, P6), while only one preferred linear motions (P10). These 
results imply that there is little diference between motion functions 
perceptually, giving us the confdence to choose motion parame-

ters based on correlation data. On the user experience of following 
moving targets, participants mentioned that they “did not do much, 
just looking at moving targets” (P4) and “sleepiness” (P8 and P11) 
due to the simplicity of the task. Participants also mentioned that 
following moving targets felt like a “refex” and that if “I relax, my 
eyes follow the target automatically” (P1). Participants also men-

tioned that “faster movements were easier to focus on” (P4) but 
more “straining” (P5). Only one participant mentioned the target 
scaling and said that targets “appeared to create an optical illusion 
where the target appeared to be getting smaller or larger. This was 
more apparent when the animation speed was increased”, but it 
was “still overall easy to focus on targets” (P2). 

4.6 Summary 
These results provide an understanding of slow vergence move-

ments and demonstrate Vergence Matching as a viable attention de-
tection technique. We demonstrate how Vergence Matching is very 
robust to accidental detection caused by natural gaze behaviour. Fi-
nally, we show that harmonic motions with high amplitude and low 
cycle are optimal for correlation and that subsequent explorations of 
concurrent motions should be limited to four simultaneous targets. 

5 VERGENCE MATCHING SELECTION 
TECHNIQUES 

Based on the results of study 1, we have shown that Vergence 
Matching can accurately detect the attention of users on targets 
through vergence movements (RQ1). We also found through post-
hoc testing that multiple targets can be presented with high accu-
racy (RQ2). Based on these results, two Vergence Matching tech-
niques, a threshold-based Vergence Matching technique which 
allows users to make hands-free selections, and a trigger-assisted 
Vergence Matching technique which uses a controller to provide 
the user with more control over the selection process. 

5.1 Candidate Selection 
Inspired by the OutlinePursuits interaction technique proposed by 
Sidenmark et al. [47], both techniques use cone-casting to decide 
which targets to select as candidates. This involves casting a ray into 
the scene and selecting the nearest �� targets to the ray direction 
within a given radius of visual angle, �� . The ray-casting can be 
performed by any type of pointing modality, including the head, a 

controller, or the gaze ray itself. The selection of pointing modality 
may be application-dependent or based on the inherent tracking 
accuracy and precision of the ray-casting. We show variants of 
Vergence Matching that use all these modalities. 

5.2 Target Selection 
5.2.1 Threshold-based Vergence Matching. The frst technique vari-
ant is a threshold-based version of the Vergence Matching tech-
nique. From a user’s perspective, this is comparable to a typical 
gaze fxation dwell technique in which the user must only focus on 
the target for selection. Users can select targets beyond their reach 
and their hands are free to perform other interactions. However, 
in contrast to gaze dwell, the proposed threshold-based Vergence 
Matching variant is able to select targets much smaller than the 
accuracy of an eye tracker. As such, the technique works as an 
alternative when targets are too small or when the eye tracker is 
too inaccurate for efcient selection. 

For cone-casting, we use the head direction to ensure stable pre-
selection and to make sure that small targets can be pre-selected, 
which may be difcult if relying on an inaccurate gaze pointer. 
For selection, if a given number of correlation values, ������ , in 
the post-hoc bufer are above a given correlation threshold, �� , we 
assume the motions are matched, and the corresponding target is 
automatically selected without further user input. The key to this 
technique is to ensure that the parameters selected for ������ and �� 
allow selection in a timely manner while being robust against false 
activations that may occur due to natural vergence eye movement. 
Therefore, we collect data to optimise these parameters in Study 1. 

5.2.2 Trigger-assisted Vergence Matching. Inspired by Controller-
based Outline Pursuits [47], we developed a second version of 
Vergence Matching to demonstrate how a trigger can be used to pro-
vide selection. Unlike threshold-based Vergence Matching, trigger-
assisted Vergence Matching provides the user with greater control 
over the selection process. We use head-pointing for cone-casting 
again based on its stability and to provide a fair comparison across 
the techniques for Study 2. The candidate target with the highest 
mean correlation value within the post-hoc window is highlighted 
as the current selection candidate, and selection is confrmed when 
the user activates a simple trigger (in our case, we use a button press 
on a controller). This design avoids issues caused by users having 
to reach a specifc threshold for selection which may result in no 
targets being selected, and also helps to reduce the Midas touch 
problem [21] as the user needs to confrm the selection explicitly. 

6 SELECTION TECHNIQUE EVALUATION 
In study 2, we investigate the user performance and perception 
of the proposed Vergence Matching techniques. In particular, we 
focus on Vergence Matching’s ability to select very small targets 
(Figure 9). Due to the uniqueness of Vergence Matching that induces 
object movements relative to the user to minimise changes in the 
scene, we focus on a deeper exploration of how the technique works 
and factors such as the number of concurrent targets, target depth 
from the user, and target size. As a result, our study compares the 
threshold-based and trigger-assisted technique variants. 
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Figure 9: Top: Study 2 example trial showing the target layout. 
A and B show two candidate targets in motion. Bottom: Target 
widths in relation to the horizontal FOV. 

6.1 Task 
The task was based on other work that explored the selection of 
one target from many in VR [30, 39, 54]. Ten spherical targets were 
presented in random positions within a cone-based layout of 50 
degrees (Figure 9) within a specifed depth range. The targets were 
placed to ensure that no occlusion occurred from the participant’s 
perspective. Participants were tasked with selecting a specifc tar-
get (highlighted in red) as quickly and accurately as possible. The 
specifed target had a specifc target width, while distractor targets 
varied in widths (1-10◦ 

in diameter). Distractor targets were placed, 
so at least 3 targets were within 2◦ 

of the main target. Participants 
could not proceed to the next trial until the correct object had 
been selected or 10 seconds had elapsed. For each trial, the target 
width and target depth range were randomised. The independent 
variables of the study were: 

Technique: Threshold-based with 2 candidates (Th2), Threshold-
based with 4 candidates (Th4), Trigger-assisted with 2 can-
didates (Tr2) and Trigger-assisted with 4 candidates (Tr4). 

Target width: 0.25, 0.5, 1, 2, 4◦ 
in diameter (Figure 9). 

Target depth: Near (0.2-1m), Middle (1-5m), Far (10-30m). 

6.2 Apparatus & Participants 
We used the same equipment as in study 1. We were able to record 
the data at a mean gaze accuracy of 1.09 ± 0.26◦ 

and a mean gaze 
precision of 0.37 ± 0.16◦. Based on the results of study 1 and inter-
nal pilot testing, we selected the following correlation parameters: 
�� = 10◦, �� = 90, ��ℎ�� = 45, ������ = 30, �� = 0.8. All target 
motions were harmonic, had an amplitude of 2◦, and a cycle time of 
1 second based on Study 1 results. We used the HTC Vive controller 
touchpad for the trigger-assisted technique. We recruited 12 partic-
ipants for the study (7M/5F, 27.3±4.1). Six participants had normal 
vision, and six wore glasses or corrective lenses. Nine participants 
had VR experience. Six participants reported previous eye tracker 
experience. None participated in the frst study. 

6.3 Procedure 
Participants were seated, signed a consent form, and answered a 
demographic questionnaire. The participants were then instructed 
to put on the HMD and perform an eye tracking calibration. Par-
ticipants then performed a second calibration procedure to record 
eye tracking accuracy and precision using the GazeMetrics toolkit 
[6] by fxating on 9 calibration points in a square arrangement. 
Afterwards, the participants performed a training session with 
the designated technique (counterbalanced) before the test session. 
Participants performed 5 repetitions of each trial condition. After 
completing the task, the participants removed the HMD and com-

pleted a questionnaire consisting of 12 7-point Likert items based 
on usability factors from previous work [47] before moving on to 
the next technique. A semi-structured interview was conducted 
to extract technique rankings and opinions. In total, each partici-
pant performed 4 techniques × 5 target widths × 3 target depths × 3 
repetitions = 180 selections. The study took 60 minutes to complete. 

6.4 Results 
The dependent variables of interest were trial completion time, pre-
selection time, selection time, error rate, and perceived usability. 
Unless otherwise stated, the analysis was performed with a three-
way repeated measures ANOVA (�=.05) with Technique, Target 
width, and Target depth as independent variables. When the as-
sumption of sphericity was violated, as tested with the Mauchly 
test, Greenhouse-Geisser corrected values were used in the anal-
ysis. QQ-plots were used to validate the assumption of normality. 
Bonferroni corrected post-hoc tests were used when applicable. 
Efect sizes are reported as partial eta squared (�� 

2 
). Likert scale data 

and rankings were analysed using Friedman tests and Bonferroni 
corrected Wilcoxon signed-rank tests for post-hoc analysis. 

6.4.1 Completion Time. We defne the completion time as the time 
from trial start until correct selection (Figure 10a). We found no sig-
nifcant interactions. We found signifcant main efects for all inde-
pendent variables. Tests on technique (�3,33=4.79, �=.007, �� 

2
=.304) 

showed that Th4 was signifcantly slower than Tr2 (�<.001). For 
target depth (�2,22=6.12, �=.008, �� 

2
=.358), we found that completion 

times were signifcantly longer for the Near condition compared to 
Middle (�=.013). Finally, for target width (�1.91,21.00=12.42, �<.001, 
�� 
2
=.530), we found that participants were slower to complete trials 

with target widths of 0.25◦ 
and 0.5◦ 

than 2◦ 
and 4◦ 

(all � ≤.037). 

6.4.2 Pre-selection Time. To investigate the impact of search and 
pre-selection on performance, we investigated the time taken from 
trial start until the correct target was pre-selected (Figure 10b). 
We found no interactions, but again found signifcant main ef-
fects for all independent variables. Post-hoc tests on techniques 
(�3,33=37.35, �<.001, �� 

2
=.773) showed that Tr2 and Th2 were sig-

nifcantly slower than Tr4 and Th4 (all �<.001), implying that 
pre-selection takes longer with fewer concurrent candidates. This 
efect is expected as less accuracy is required when more concur-
rent candidates can be pre-selected. For target depth (�2,22=6.12, 
�=.002, �� 

2
=.443), targets at near and middle conditions led to longer 

pre-selection times than far (�≤.034). Finally, the width of the tar-
get also had a signifcant efect (�2.03,22.32=9.98, �<.001, �� 

2
=.476). 

Unsurprisingly, larger targets led to shorter pre-selection times. We 

https://��2.03,22.32=9.98
https://��2,22=6.12
https://��3,33=37.35
https://��1.91,21.00=12.42
https://��2,22=6.12
https://��3,33=4.79
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Figure 10: Completion, pre-selection, and selection times. 
Error bars represent the mean 95% confdence interval. 

Figure 11: Error Rate. Error bars represent the mean 95% 
confdence interval. 

found that 0.25◦ 
and 0.5◦ 

had higher pre-selection times than 1◦, 
2
◦
, and 4◦ 

target widths (all �≤.025). 

6.4.3 Selection Time. We defne the selection time as the time from 
the target was chosen as a candidate to successful selection (Fig-
ure 10c). We found no interactions but found main efects for tech-
nique (�1.58,17.41=12.89, �<.001, �� 

2
=.539), target depth (�2,22=13.70, 

�<.001, �� 
2
=.555) and target width (�2.36,25.95=4.17, �=.022, �� 

2
=.530). 

Post-hoc tests showed that vergence-based selection with Th4 was 
signifcantly slower than Tr2 (�<.001). The results also showed 
that participants were slower in selecting targets the near distance 
compared to middle (�=.013). Although far targets were also se-
lected faster, no signifcance was found. Finally, post-hoc results of 
target width found no signifcant diferences. These results imply 
that the target selection time is independent of target size. 

6.4.4 Error Rate. We defne an erroneous trial as when another 
target is selected before the correct selection or if a trial is timed 
out. The number of errors violated the assumption of normality 
of repeated measures ANOVA after usual transformations, and 
the Align Rank Transform technique [62] showed that the aligned 
responses did not sum up to ≈ 0. Using the number of errors as 
count data, we ft a Poisson regression model [34]. We report the 
number of errors as the error rate, i.e. the number of trials resulting 
in an error divided by the total number of trials. 

We included all main efects and all interactions that involved 
technique in the regression and found that the overall model was sig-
nifcant, �2 (23, � =720)=281.67, �<.001. Investigation revealed sig-
nifcant two-way interactions for technique × target width (�2 (6)= 
9.56, �=.014), and technique × target depth (�2 (6)=15.89, �=.023). 

Figure 12: Median scores on the usability Likert scales with 
error bars representing interquartile ranges. 

Figure 13: Technique rankings. 

Post-hoc analysis showed no diferences for the technique × target 
width interaction. For technique × target depth (Figure 11a), fur-
ther analysis showed that participants performed more errors with 
Th2 at the near distance compared to the middle and far distances 
(all � ≤.034). No other techniques showed signifcant diferences at 
diferent depths. Regarding technique diferences, Tr2 had fewer 
errors at all depths than all other techniques (all �≤.004), except 
for Th2 in middle and far. Th2 showed signifcantly less errors 
than Tr4 and Th4 under all conditions (all �≤.07) except for the 
near depth. These results imply that it was difcult for users to 
follow the moving target at close distances. Th4 had signifcantly 
more errors at all depths compared to Tr4. Meanwhile, Th2 had 
signifcantly fewer errors than both Th4 and Tr4 (both �≤.002). 
Finally, Tr4 had signifcantly fewer errors than Th4 (�<.001). 

6.4.5 Subjective Preferences. Friedman tests on usability ratings 
(Figure 12) showed signifcant diferences in Precision, Ease, Fun, 
Satisfaction, Confdence, Confrmation ease, Frustration and Motion 
Distraction. Post-hoc tests showed that the participants preferred 
Tr2 over Th4 in all scores (all �≤.004). There were also signifcant 
diferences for Satisfaction between Tr2 and Th2 (�=.046) and 
Tr4 and Th4 (� = .046). Figure 13 shows participants’ technique 
rankings, in which Tr2 received the highest overall ranking. A 
Friedman test (�2 (3)=15.3, �=0.00158), and following post-hoc tests 
found signifcant diferences between Tr2 and Tr4 (�=.009), Tr2 
and Th4 (�=.036) and Th2 and Th4 (�=.033). 

Interview results showed that the trigger-based technique gave 
them control over the selection, and selection could be performed 
as soon as the correct targets were highlighted, delaying triggering 
the selection until they were certain that the right target was regis-
tered. This was especially useful in situations where it was difcult 
to highlight the correct target. Participants also mentioned that 

https://6)=15.89
https://720)=281.67
https://��2.36,25.95=4.17
https://��2,22=13.70
https://��1.58,17.41=12.89
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Figure 14: Application examples. (a) The virtual smart-watch UI presents users with two buttons, each involving modulated 
depth motion. (b) In the event of a call, the user can accept by focusing on the left button, refected in the interface by hiding 
the accept button. (c) Contextual menus are used to interact with the virtual environment. (d) The user can pre-select an object 
to present actions performed by Vergence Matching, e.g. toggle the light. (e) Small notifcations appear in the user’s HUD. (f) 
Focusing on the target will activate the notifcation to get more information. 

the extra control allowed faster selections, unlike threshold-based 
techniques, where they had to wait for the selection to be regis-
tered. Finally, the participants felt less pressure and more relaxed 
as the technique would not trigger a wrong selection, and it also 
required less concentration. Participants who preferred threshold-
based techniques mentioned that they liked that they did not have 
to use their hands and that they felt accurate with the technique. 

We further analysed the data based on the target characteristics. 
As expected, participants reported that either technique was easier 
to use with fewer targets. Additionally, having more targets was 
generally distracting, and participants indicated that they had to 
pay more attention to the correct target to avoid false activation. 
In general, participants mentioned that focussing on targets felt 
“natural” (P8) and “straight-forward” (P2). However, on target depth 
and width, most of the participants indicated that it was more 
straining when the targets were very close or small. In the former, 
a third of participants explicitly reported double vision when the 
target appeared close and therefore had issues focussing on the 
target. On the latter, participants reported that smaller targets were 
slightly more difcult to select than larger targets due to visibility 
or difculty focussing in the presence of large distractors. 

7 VERGENCE MATCHING APPLICATIONS 
In Study 2, we showcased the capability of Vergence Matching 
techniques to select small targets. We further developed three ap-
plications that show the versatility and fexibility of the Vergence 
Matching techniques enabled by our approach of inducing move-

ments on targets in the virtual environment (Figure 14). Specifcally, 
the applications highlight the benefts of being able to select small 

targets be reducing the required screen real estate. Across the ap-
plications, we vary the modality used for candidate selection and 
placements of Vergence Matching targets (Table 1). 

Our frst application demonstrates Vergence Matching as an 
AR/VR smartwatch where participants interact with small widgets 
on the watch. Prior work on gaze-based smartwatch interaction 
used motion correlation to accurately select targets via smooth 
pursuit [14] but requires visual movement in a 2D plane, requiring 
more screen real estate. In contrast, we designed a virtual smart-

watch using Vergence Matching that can display stationary targets 
from the user’s perspective. The watch appears on the user’s left 
forearm, providing two buttons (1.5cm width) that can be selected 
by Vergence Matching. Candidate selection is controlled by the 
hand by simply moving the watch into an orientation facing the 
user, highlighting how candidate selection can be performed by 
inverse the pointing the mechanism (pointing at the user). Once the 
watch is aligned, motion is induced on the buttons for interaction. 

In the second example, we show how Vergence Matching can 
be leveraged for contextual menus for interaction with objects 
placed in the scene while minimising visual clutter (Figure 14c-
d). Previous work has highlighted visual clutter as an issue and 
proposed models based on gaze behaviour or mental workload [16, 
27]. In our application, head-based pointing presents interactable 
contextual menus only for objects close to the user’s visual attention. 
The contextual menus include a small set of buttons for functions 
such as “turn on”, or “close”. The buttons are presented as icons and 
made small in size (1◦) to further reduce visual clutter and induce 
motion for interaction with Vergence Matching. 

Our fnal application shows Vergence Matching for head-up dis-
play (HUD) icons Figure 14e-f. Recent work has shown the utility 
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Table 1: Overview of Vergence Matching applications. The 
applications highlight how Vergence Matching techniques 
enable diferences in how users choose candidates for selec-
tion and the position of targets relative to the user. 

Smartwatch Hand Towards user Hand-referenced 
Contextual Menu Head Towards target World-referenced 
Head-up Display Gaze Towards target Head-referenced 

Candidate 
Selection Modality 

Candidate

Pointing Direction 
Application 

Target Reference 

of notifcations that dynamically appear to the user in 3D environ-
ments [28, 29]. Furthermore, HUD notifcations have been proven 
to be benefcial in noticeability and avoiding users from missing 
important information [44]. However, they are equally disturbing 
and intrusive [44]. We consider a more subtle design that leverages 
Vergence Matching’s ability to select tiny targets. The notifcations 
are transparent so that users can see through, but sufciently small 
to be avoidable and not distract (1◦). Gaze pointing on the notif-
cation direction triggers the icon’s visibility and induces motion 
that can be selected via Vergence Matching for further interaction. 
Gaze pointing allows a more implicit candidate selection where 
pre-selection and selection are linked (i.e., look and dwell). 

8 DISCUSSION 
Vergence Matching is a novel method of detecting user attention on 
very small objects that leverages the principle of motion correlation 
combined with the ability of the eyes to automatically converge or 
diverge based on an object’s distance. Our results demonstrate how 
Vergence Matching can be used to accurately infer when a user 
attends to very small targets, signifcantly smaller than the recorded 
eye tracking accuracy and precision. Vergence Matching exploits 
the diference between fast and slow vergence movements [10], 
utilising object movement that induces controlled slow vergence 
movements which can be distinguished from naturally occurring 
vergence movements, such as when visually searching for objects. 
Due to the rarity of motions that cause slow vergence in natural en-
vironments we would expect our fndings to hold true across a wide 
range of contexts and environments. Vergence Matching enables 
unique capabilities that are not possible with dwell-only techniques 
and contrasts smooth pursuit-based detection by requiring minimal 
screen real-estate for displaying objects. 

Inferring when a user is attending to very small targets with 
minimal changes to the environment is a key challenge for gaze 
interaction, and Vergence Matching presents a signifcant contri-
bution in extending the capabilities of gaze-based interactions in 
VR. We demonstrate how Vergence Matching can be used as a se-
lection technique in virtual environments using only the relative 
movements of the pupil positions and the object, without the need 
for accurate gaze calibration. Evaluation of threshold and trigger-
based selection techniques confrm how very small targets can be 
attended to and selected using Vergence Matching. For context, 
the smallest target width of 0.25◦ 

is only 4.4mm wide at a distance 
of 1m. This presents new opportunities for gaze interaction that 
are not currently available due to current eye tracking limitations, 
including more subtle and discreet gaze-based interfaces that mini-

mally afect the interface in comparison to artifcially increasing 

target width, zooming in on the view, or having large movement 
trajectories. Our applications provide a glimpse into what is possi-
ble when the necessity to compensate for gaze-sensing inaccuracies 
is removed without the need to use additional screen real estate. 

One of the trade-ofs with the ability to select such small targets 
is the completion time. For our implementation, there is a lower 
bound for a completion time of 1.33s due to the requirement to 
fll the moving windows (�� = 90, ������ = 30), however we ob-
served mean completion times ranging from 3.24� in the two target 
trigger condition to 3.89� in the four target threshold condition. In 
addition, the mean selection times alone have implications for de-
tecting attention in non-interactive contexts, suggesting users need 
to pay extended attention to objects of interest for reliable detection. 
Although Vergence Matching is slower for selection compared to 
techniques such as dwell, other motion correlation techniques sufer 
from similarly high completion times. Smooth pursuit-based selec-
tion on a 2D display takes approximately 1.88–3.99� (application-
dependent median times) [59], increasing to 3.2–4.6� for selection 
with wearable eye trackers in a real-world environment [58]. The 
completion times for Vergence Matching are more comparable to 
Outline Pursuits [47], which also employs a candidate selection 
phase, resulting in 2.81� for trigger-based selection and 4.03� for 
threshold-based selection. Despite the relatively large completion 
times, Vergence Matching enables unique capabilities that are not 
possible with dwell-only or smooth pursuit-based techniques. 

Study 2 also revealed large error rates in some conditions and 
these issues afect the scalability of Vergence Matching in compari-

son to other smooth pursuit-based motion correlation techniques 
which use 2D motions. In Vergence Matching, unique motions can 
only be diferentiated in one dimension, meaning that movements 
must be more precise and correlated. If an accurate interaction is 
needed, fewer motions can be deployed. Here lies an interesting 
trade-of – fewer candidates in the candidate selection phase means 
the user has to be more precise with their pre-selection. As such, the 
modality choice should depend on the interaction needs and usage 
context. Our applications showed that the pre-selection modality 
can be diverse and extends to any generic pointing technique. 

It is also possible that other technical and physiological factors 
may have contributed towards both the magnitude and observed 
variability of errors. Some participants reported that they experi-
enced double vision when selecting small targets at a close distance, 
which may have contributed to the longer selection times and er-
ror rates for near targets, especially in threshold-based conditions. 
These factors could relate to ocular issues such as convergence 
insufciency, which is one of the most common causes of mus-

cular discomfort [26], and previous research has also shown that 
some people exhibit weakness in performing vergence eye move-

ments [22]. Alternatively, or in addition, there are current limita-

tions with modern head-mounted displays due to fxed focal planes, 
which have been shown to afect vergence movements [64] and 
could have exacerbated these issues. A potential way to address the 
issue of double vision and focus difculties is by using slower move-

ments with less amplitude. We picked a motion for our techniques 
with a high amplitude and low cycle time based on study 1 results. 
However, the results in Figure 7 found similar performance for other 
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motions with smaller amplitudes or slower cycle times. It is possi-
ble that it would be easier for users to follow smaller and slower 
motions without a noticeable efect on correlation performance. 

Upon refection, we also identifed several areas that could result 
in improvements to both selection time and error rates by adapting 
the vergence movements and algorithms to the user. Firstly, we 
relied on a fxed IPD of 6.5cm to decide motion amplitude. Any 
diference between the participant’s actual IPD and the fxed IPD 
would change the actual vergence movement the eyes perform 
and this may have made it more difcult to detect and correlate. 
Calibrating the system to an individual’s IPD may help to avoid 
this. Similarly, we also used the same thresholds across all partici-
pants, which are used for highlighting (trigger-based) and selection 
(threshold-based). Individually tailoring thresholds to participants 
could further alleviate some issues, and Vergence Matching may be 
more sensitive to these parameters due to the exponential change 
in vergence angle as distance increases. These personalised optimi-

sations and further improvements to the detection algorithm un-
derpinning Vergence Matching (e.g., probabilistic frameworks [57]) 
could further reduce the selection times and error rates, making it 
a more viable alternative to select one among many targets. 

Despite the large error rates in its current form, Vergence Match-

ing provides unique advantages for gaze-based attention inference 
and object selection. Even when selection is limited to one or two 
candidate targets, there are unique opportunities to synergistically 
combine Vergence Matching with other gaze-based techniques to 
use its unique ability to select very small targets. For example, a 
system could account for the inherent accuracy and precision limi-

tations of the eye tracker by automatically detecting the required 
gaze accuracy for selection of an object. In such a case, dwell-based 
(or similar) techniques can be used for basic, unoccluded selections, 
while Vergence Matching-based selection can be utilised for selec-
tion of objects beyond the accuracy of the gaze tracker, or when 
disambiguation is required due to close proximity with other tar-
gets. There are also other use cases in which the unique capabilities 
of Vergence Matching can be leveraged without the complexities of 
candidate selection. For example, the attention-sensing capability 
of Vergence Matching alone can be utilised for subtle and discreet 
prompt-based interactions, such as a confrmation pop-up, where 
selection from a limited number of options is common. 

Although we have systematically investigated how slow ver-
gence movements can be used to infer user attention and to under-
pin interaction, we note that the proposed techniques were studied 
in a lab-based context with abstract environments. More natural 
settings, such as the applications we propose, were not formally 
studied but may provide rich insights into the usage of Vergence 
Matching. In addition, it may be more challenging to perform slow 
vergence movements in more visually salient environments, and the 
vergence movements in our studies were all performed in the centre 
area of the user’s feld of view. Performance of Vergence Match-

ing at signifcant eye-in-head angles, such as in the notifcation 
application, remains open for evaluation. 

9 CONCLUSION 
Vergence Matching is novel in addressing the challenge of attention 
detection and selection of targets much smaller than the accuracy of 

an eye tracker. We further demonstrated Vergence Matching as two 
selection techniques, a threshold-based approach for hands-free 
interaction and a trigger-based confrmation for more control of 
selection timing with the hands. In contrast to established AR/VR 
gaze techniques, we show that our techniques are size-independent, 
and users can interact with small targets as long as they can be 
focussed upon. This capability allows a novel way of tackling the 
challenge of interaction with small targets in 3D environments. 
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