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Abstract—This paper introduces a novel shallow 3D self-
supervised tensor neural network in quantum formalism for vol-
umetric segmentation of medical images with merits of obviating
training and supervision. The proposed network is referred to as
the 3D Quantum-inspired Self-supervised Tensor Neural Network
(3D-QNet). The underlying architecture of 3D-QNet is composed
of a trinity of volumetric layers viz. input, intermediate, and
output layers inter-connected using a S-connected third-order
neighborhood-based topology for voxel-wise processing of 3D
medical image data, suitable for semantic segmentation. Each of
the volumetric layers contains quantum neurons designated by
qubits or quantum bits. The incorporation of tensor decomposi-
tion in quantum formalism leads to faster convergence of network
operations to preclude the inherent slow convergence problems
faced by the classical supervised and self-supervised networks.
The segmented volumes are obtained once the network converges.
The suggested 3D-QNet is tailored and tested on the BRATS
2019 Brain MR image data set and Liver Tumor Segmentation
Challenge (LiTS17) data set extensively in our experiments. 3D-
QNet has achieved promising dice similarity as compared to
the time intensive supervised convolutional neural network-based
models like 3D-UNet, Vox-ResNet, DRINet, and 3D-ESPNet,
thereby showing a potential advantage of our self-supervised
shallow network on facilitating semantic segmentation.

Index Terms—Quantum Computing, Volumetric Medical Im-
age Segmentation, QIS-Net, Tensor Network

I. INTRODUCTION

Automatic volumetric medical image segmentation as-
sisted by contextual information yields Volumes of In-

terest (VOIs), which are critical to cancer patients. Deeply su-
pervised Convolutional Neural Networks (CNN) have achieved
respectable accuracy in 2D medical image segmentation [1]–
[4]. However, in automatic 3D medical image data segmen-
tation, deeply supervised 3D-CNNs suffer from manually
affected challenges viz. acquiring sufficient 3D annotated data
for suitable training, high heterogeneity and dimensionality of
3D medical images, complex anatomical environments, and
the need for optimizing the 3D neural networks [5]–[7]. Hence,
3D medical imaging research calls for self-supervised learning
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for accurate and fast segmentation of volumetric medical
images with different modalities.
The unified concept of quantum-inspired neural networks
(QINN) enhances the approximation and generalization ca-
pabilities of classical neural networks and has emerged to
process information faster in the field of computer science [8],
[9]. Of late, quantum-inspired neural networks are becoming
popular in solving problems in the domain of pattern recog-
nition and classification [10]–[13], employing the inherent
characteristics of quantum computation. However, the complex
and time-intensive quantum back-propagation algorithm in the
aforementioned QINN models suffers from slow convergence
problems. In addition, the fixed activation schemes adopted in
the QINN models restrict their application to gray-scale image
segmentation.
Given 3D medical image data, the primary aim of our proposed
3D-QNet architecture is to perform volumetric organ and
lesion segmentation with expert-level accuracy for tumor iden-
tification, alleviating supervision or training. Our proposed 3D-
QNet architecture centres on the self-supervised bi-directional
counter propagation of the quantum states, obviating the
time-intensive quantum back-propagation algorithm for faster
convergence. The network hyper-parameters associated with
the gray-level thresholding process are adaptive, and voxel-
wise context-sensitive information is exhibited in quantum
formalism, as reported in this article.
Translational medicine (TM) is an emerging concept and
practice that facilitates the rapid transfer of medical break-
throughs from scientists to clinicians. Recently, there have
been a number of instructive instances in which the trans-
lation of research has resulted in undesirable effects need-
ing prompt intervention [14], [15]. A greater emphasis on
three-dimensional (3D) simulation, biomarkers, and artificial
intelligence may enable orthopaedic surgeons to forecast the
optimal surgical techniques prior to surgery. Utilizing the most
advanced imaging methods may enhance the precision and
accuracy of tumor resections. This article is aimed at young
surgeon scientists, specifically orthopaedic residents, to help
them better understand how 3D quantum-inspired models can
be used to process high mega pixel volumetric medical images
in a faster, self-supervised manner, with merits of obviating
training or very limited training. Heuristically, the suggested
3D-QNet has the ability to investigate the inherent features
of quantum parallelism in order to concurrently compute
high-resolution image voxels. This expedites the transfer of
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information from the laboratory to the patient’s bedside.
The current voxel-wise segmentation work has significant
contributions over 2D medical image segmentation [1]–[3],
[12] as given below.

1) We propose a novel quantum-inspired self-supervised
shallow voxel-wise neural network referred to as 3D-
QNet, which has relevance to volumetric medical image
segmentation.

2) In this work, an S-connected quantum fuzzy context-
sensitive voxel information is processed to integrate
the appearance of low-level and high-level local image
features with wide intensity variations and implicit shape
of the VOIs, thereby enabling accurate volumetric seg-
mentation of 3D medical images.

3) A novel generalized quantum-inspired self-supervised
learning is proposed using a tensor representation of the
weight vectors for high dimensional data employed in
our suggested 3D-QNet for 3D medical image segmen-
tation. The non-tensorized implementation of 3D-QNet,
referred to as 3D-QNet-NonTensor, is also demonstrated
in our experiments.

4) The convergence analysis of the proposed 3D-QNet is
also demonstrated with super-linearity. The primary aim
of incorporating quantum computing in our proposed 3D
network architecture is to exploit the features of quantum
correlation and accelerate the speed of convergence of
the network operation, thereby simultaneously improv-
ing the discrimination ability to yield fast and accurate
segmentation.

The organization of the remaining sections of the
manuscript is as follows: a comprehensive literature review
about various deep learning-based volumetric segmentation of
medical images and the challenges are presented in Section II.
Section III illustrates the fundamental concepts of quantum
computing. The novel self-supervised 3D-QNet architecture
with a quantum-inspired tensor network model is introduced
in Section IV. Section V elucidates voxel-wise segmentation of
3D medical images using the proposed 3D-QNet architecture.
The experimental datasets, experimental setup, and outcome
are provided in Section VI. The advantages and limitations
of the proposed work have been discussed in Section VII.
Section VIII states the concluding remarks of the proposed
work and sheds light on the future directions of research.

II. RELATED WORKS

Recent years have witnessed a surge in the application of
deep learning networks in various tumor segmentation [16]–
[20] tasks with respectable accuracy in 2D medical image
segmentation [2], [21]. However, in contrast to automated
volumetric segmentation of medical images, 2D convolutional
neural network architectures (CNNs) [16], [18], [19] process
the medical images in a 2D independent slice-wise fashion
which leads to non-optimal use of the 3D contextual feature
information of volumetric medical image data (3D Computed
Tomography (CT) and Magnetic Resonance Imaging (MRI)).
In turn, 3D CNN based architectures extract rich spatial and
contextual features and perform voxel-wise segmentation of

volumetric medical images [22]–[24]. Kamnitas et al. [22]
suggested a dual path 3D CNN incorporating local and larger
contextual feature information to obviate the computationally
complex 3D medical image processing and exhibit dense
inference on medical image segmentation. A flexible network,
3D-UNet architecture [24] achieved remarkable success on
brain MR image semantic segmentation. Of late, to exploit
the 3D contextual information, Brebisson et al. [25] employed
2D CNNs on three orthogonal 2D patches and formed 3D
patches in combination to reduce the memory requirements.
However, 3D CNN networks suffer from slow convergence
problems owing to computationally exhaustive 3D convolution
operations and extensive training procedures. Despite popu-
larity among the medical and computer vision researchers,
U-Net architectures [24] fall short in scalability and cannot
distinguish the distinctive features (shape, size, intensity, lo-
cation, etc.) learned at the convolutional layers. Moreover, they
suffer from the "vanishing gradient" problem when the number
of feature layers is increased to better represent the features.
Various deeper network architectures obviating the vanishing
gradient problem have been proposed concurrently for voxel-
wise medical image segmentation including VoxResNet [26],
DRINet [27], and 3D-ESPNet [28].
However, these deeply supervised network architectures suffer
from computational complexity and slow convergence with an
increase in the number of feature layers in the network archi-
tecture. Currently, self-supervised/semi-supervised/weakly su-
pervised networks have gained significant attention among the
computer vision and medical imaging research communities
due to a lack of annotated images for deep supervision [29]–
[32]. Nevertheless, these self-supervised networks [29]–[32]
for volumetric medical image segmentation rely on pre-trained
3D CNN models, and hence these are not fully self-supervised
networks. Moreover, these networks are characterized by sig-
nificant memory footprints, which often pose a serious obstacle
in employing them in various medical imaging application
settings. It inspires us to develop 3D self-supervised neural
network architectures for volumetric medical image segmen-
tation.
The main problem with the classical self-supervised neural
network models lies in the fact that they do not converge
fast, and hence the segmented outcome is distorted due
to the slower convergence problems [33], [34]. Numerous
quantum neural networks have been evolved in the last few
decades replicating classical neural networks and offering
faster processing while compared with the classical counter-
parts [9], [35]–[38]. The quantum versions of the classical
self-supervised neural network architectures [10], [11], [39],
[40] offer a potential candidate for faster and efficient image
segmentation and surpass their classical counterparts. Konar et
al. recently developed quantum-inspired neural network mod-
els referred to as QIS-Net [12], QFS-Net [13], and QIBDS-
Net [41] suitable for brain MR image segmentation. These
networks have been found to attain a promising outcome in
complete brain tumor segmentation and serve as the motivation
behind the assimilation of quantum-inspired computing in the
current 3D-QNet architecture.
This manuscript presents a novel fully 3D self-supervised
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quantum-inspired shallow neural network architecture for vol-
umetric medical image segmentation to obviate the compre-
hensive challenges faced by deep supervision of complex 3D
CNN.

III. FUNDAMENTALS OF QUANTUM COMPUTING

The basic concept of quantum computing deals with the
principles of quantum mechanics and offers to demonstrate
the quantum computing algorithms that rely on quantum bits
having quantum operations on qubits [42].

A. Quantum Bits and Tensor Products

The basic element equivalent to classical bits in quantum
computing is known as quantum bit or qubit and is represented
using Dirac notations |0⟩ and |1⟩. However, unlike classical
computing, quantum bits are expressed as a linear combination
of probability amplitudes, often known as "superposition," as
follows [9]:

|ϕ⟩ = cos
α

2
|0⟩+ ei

θ
2 sin

α

2
|1⟩, (1)

where, 0 ≤ α ≤ π and 0 ≤ θ ≤ 2π.
Hence, qubits reside in the Hilbert space parametrized by
the continuous variables θ and α. In quantum formalism, the
tensor products of the subspace form the full Hilbert space,
H as

H = ⊗n
t=1Ht . (2)

A set of n basis states (designated as |ϕj⟩) comprising 0− 1
can form a qubit system, |ψ⟩, of size log n in the Hilbert space,
H as follows.

|ψ⟩ =
n∑
j

pj |ϕj⟩, (3)

where, pj is the probability amplitude and |ϕj⟩ = |ϕ1⟩ ⊗
|ϕ2⟩ ⊗ . . . |ϕn⟩. For example, using two qubits, four distinct
tensor sub-spaces can be created as basis |0⟩ ⊗ |0⟩, |0⟩ ⊗ |1⟩,
|1⟩ ⊗ |0⟩ and |1⟩ ⊗ |1⟩ often represented as |00⟩, |01⟩, |10⟩,
and |11⟩, respectively.

B. Input Data Encoding and Tensor Decomposition

A tensor product basis relies on the local input feature map
{|ϕdj (αj)⟩} in the Hilbert space of functions over αj ∈ [0, 1]
as [38]

|Φd1,d2,...dN (α)⟩ = |ϕd1(α1)⟩ ⊗ |ϕd2(α2)⟩ ⊗ . . .⊗ |ϕdN (αN )⟩,
(4)

where, dj varies from 1 . . . N (N -dimensional vector). A
function, f l(α) can be realized using the inner product of
the input local feature map |Φ(α)⟩ and the network weight
decomposition Ψ, as follows.

f l(α) = ⟨Ψ|Φ(α)⟩
= ⟨Ψd1d2...dN

|ϕd1(α1)⟩ ⊗ |ϕd2(α2)⟩ ⊗ . . .⊗ |ϕdN (αN )⟩ .
(5)

Hence, the local feature map ϕdj (αj) forms a basis for a
Hilbert space of functions defined over αj ∈ [0, 1] and the
tensor product basis Φd1,d2,...dN (α) forms a Hilbert space of

functions defined over α ∈ [0, 1]N . Considering the dimen-
sions of the input feature vector restricted to N = 2, ϕ(α) is
defined as

ϕ(0) = [0, 1],

ϕ(1) = [1, 0] .
(6)

To enhance and extract the contextual information from high
dimensional data, Tucker tensor decomposition is suitable for
neural network layer decomposition [43]. The inner product
of the two equal sized tensors V,Ψ ∈ Rm×n×p is defined as
follows.

|ξ⟩ = ⟨V|Ψ⟩ =
∑
l

⟨V(l),Ψ(l)⟩ =
M∑
i=1

θi|i⟩ ·
N∑
j=1

ϕj |j⟩

=


θ1
θ2
...
θM

 ·


ϕ1
ϕ2
...
ϕN

 , θi ∈ V, ϕj ∈ Ψ .

(7)

IV. 3D QUANTUM-INSPIRED SELF-SUPERVISED TENSOR
NEURAL NETWORK (3D-QNET) ARCHITECTURE

In this article, a 3D Quantum-inspired Self-supervised
Tensor Network (3D-QNet) architecture with self-supervised
tensor learning is proposed for automatic voxel-wise segmen-
tation of medical images. The 3D-QNet architecture comprises
a trinity of volumetric layers of quantum neurons arranged as
input, intermediate, and output layers. A schematic outline of
the proposed 3D-QNet architecture is shown in Figure 1. The
input volume (M×N×P ) is normalized and propagated from
the 3D input layer to the successive 3D hidden and output
layers of the 3D-QNet architecture for processing through S-
connected voxels. Each of the three volumetric layers of the
3D-QNet architecture is fully intra-linked with qubits using
a 3D-matrix representation. Each 3D layer of the proposed
architecture is intra-connected through quantum neurons with
intra-connection strengths set to π

2 (quantum 1 logic). The
basic processing unit of each volumetric layer of the 3D-QNet
architecture is the S-connected neighborhood-based voxel-
wise orientation of each candidate neuron as illustrated in
Figure 2. The inter-layer connection between the 3D input to
3D intermediate and the 3D intermediate to 3D output layer
is formed using the S-connected voxel-wise neighborhood
orientation. The contribution of the S number of neighborhood
quantum neurons (pixels) of a candidate neuron at one 3D
layer is propagated in the forward direction and accumulated
at the corresponding candidate neuron of the subsequent 3D
layer. Consequently, the voxel-wise information from the 3D
output layer to the 3D intermediate layer is counter-propagated
for further processing. The voxel-wise processing of each 3D
layer is performed along with the depth of the 3D layer for
semantic segmentation. The inter-linked connections between
two successive 3D layers are represented using 3D weight
matrices of qubits and each inter-connection weight is updated
using a rotation gate for faster processing. The relevant details
about the principle of operation of the proposed 3D-QNet
architecture for volumetric segmentation are provided in the
following subsections using a self-supervised tensor learning
model in quantum formalism.
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Fig. 1: 3D Quantum-inspired Self-supervised Tensor Neural Network (3D-QNet) architecture. For every candidate neuron
as marked in red color, it forms a S-connected neighborhood oriented Inter-layer connections and here only three Inter-
layer connection is illustrated for better visibility. A classical information, α is mapped to quantum bits or qubits as, ϕ(α) =[
cos(π2α) sin(π2α)

]
. The inter-connection weights between the input and hidden layers of the 3D-QNet architecture are denoted

by |φl,d
k,j⟩, for the hidden layers to the output layers are indicated by |φl,d

j,i⟩ and for the output to the hidden layers are |φl,d
i,j⟩

at a layer l with depth d. The classical interconnection weight [0, 1] is transformed in quantum formalism as |φ(ω)⟩ =[
cos(π2ω) sin(π2ω)

]
, where the angle of rotation (ω) is measured using the relative difference of fuzzy intensities of the

candidate pixel and the neighborhood pixels in S-connected (here, S = 26) neighborhood oriented quantum neurons in a
3 × 3 × 3 voxel (v) as ωi,j = 1 − (αi − αi,j); j ∈ {1, 2, 3, . . .S}. 3D-volumes of dimensions 3 × 3 × 3 are processed along
the depth of the 3D-layers as shown in the Figure.

Fig. 2: S-connected neighborhood oriented quantum neurons
form a voxel (The red pixel is the candidate neuron and
the black pixels represent the corresponding neighborhood
neurons).

A. 3D-Quantum-Inspired Self-supervised Tensor Network
Model

In the suggested 3D-QNet architecture, the high dimensional
weight vector Ψ is represented using a tensor to optimize the
network operations and to facilitate the extraction of significant
semantic feature information in the quantum-inspired self-
supervised model. The internal kernels associated with the
network operate in parallel, thereby accelerating the conver-
gence of the 3D-QNet architecture. The input quantum neurons
containing the pixel intensity are expressed as qubits and
the inter-connection weights are represented using quantum
rotation gates. The classical intensity of any ith normalized
gray-scale image pixel of MR or CT volume (denoted as
αi ∈ [0, 1]) is transformed into quantum state using a mapping

function ϕ(αi) as follows.

ϕ(αi) =
[
cos(

π

2
αi) sin(

π

2
αi)

]
∀i = 1, . . .M, j = 1, . . . N .

(8)
The classical interconnection weight [0, 1] is transformed into
quantum formalism as

|φ(ωi,j)⟩ =
[
cos(

π

2
ωi,j) sin(

π

2
ωi,j)

]
, (9)

Hence, the strength of inter-connection between neuron j
(neighborhood of the candidate neuron i) of a layer to the cor-
responding candidate neuron of the adjacent layer is mapped
using φ. Also, ωi,j is designated as the angle of rotation
and measured as the relative intensity difference between the
candidate pixel (αi) and one of its neighboring pixels αi,j as
follows.

ωi,j = 1− (αi − αi,j); j ∈ {1, 2, 3, . . .S} . (10)

The angle of rotation is measured using the relative difference
of fuzzy intensities of the candidate pixel and the neighbor-
hood pixels in quantum formalism. This relative measure en-
coding scheme [12], [13], [39] helps to segment the foreground
and background regions of an image. However, there are other
encoding schemes like variational and amplitude encoding,
which are often used for variational quantum circuits.
In this proposed tensor network model, the 3D-QNet layer
is decomposed as voxels (core tensor) using Tucker Tensor
decomposition [43] to reduce the input dimensions and the
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interconnection weights as factor matrices. Let us consider
tensor V,Ψ ∈ Rm×n×p, where V is the voxel-wise input of
3D medical images and the corresponding inter-connection 3D
weight matrix, which are evaluated in Eq. 8 and Eq. 9, respec-
tively (m,n, p denote the row, column, and slice number. V,Ψ
are third-order tensors (1 ≤ m ≤ M, 1 ≤ n ≤ N, 1 ≤ p ≤
P )). According to Tucker Tensor decomposition [43]

X = V ×1 Ψ
1 ×2 Ψ

2 ×3 Ψ
3, (11)

where, X ∈ Rm×n×p is the tensor outcome, Ψn is the weight
matrix in terms of n factor matrix and ×n is the mod − n
product of a tensor with a matrix. Each layer of the proposed
3D-QNet architecture is transformed into lower-dimensional
tensors. Such types of M×N×P tensors in voxels form each
layer in the underlying network architecture. Each volumetric
layer of the 3D-QNet architecture forms M×N×P volumetric
patches (voxels) of size S corresponding to the candidate
pixels as

v = vox(V), (12)

Here, V comprises all the 3D-patches (voxels), v ∈ Rm×n×p

for a network layer in the proposed 3D-QNet architecture.
The spatial features in terms of the neighborhood pixels
of every seed pixel at the network layer, are extracted and
propagated to the next subsequent layers as inputs guided by
a Quantum-inspired Voxel-wise multi-level Sigmoidal (Vox-
QSig) activation function, σ3D−QNet as follows.

yl = σ3D−QNet(v
l−1 ·Ψl(ω)), (13)

where, vl−1 ∈ RM×N×P , Ψl(ω) ∈ RM×N×P×S at the
network layer l = 2, 3, yl ∈ RS , and “·” is the inner product
operator. The Vox-QSig activation function, σ3D−QNet with
slope λ and activation ϑ, is defined as

σ3D−QNet(x) =
1

βτ + e−λ(x−ϑ)
, 0 ≤ βτ ≤ π

2
, (14)

where, βτ describes the multi-level class responses exhibited
by the S-connected third-order neighborhood pixels expressed
as

βτ =
χS

ρτ − ρτ−1
, (15)

where, ρτ and ρτ are the τ th and (τ − 1)th class outcome,
respectively and the contribution of the S-connected neighbor-
hood gray-level pixels is χS .
The fuzzy context-sensitive activation (designated as χi) for
semantic segmentation in quantum formalism is defined as
follows.

|χi⟩ =
[

cosϑi
sinϑi

]
, (16)

where, the angle of rotation, ϑi is evaluated using the sum-
mation of the intensities of the third-order S-connected neigh-
borhood pixels (denoted as αi,j , j = 1, 2, . . .S) of a candidate
pixel i (neuron) in quantum formalism using the following
equation.

ϑi = 2π × (

S∑
j=1

αi,j) . (17)

TABLE I: Variational parameters used in the counter-
propagation algorithm of the proposed 3D-QNet

Symbol Description
αl,d
i The intermediate output at pixel i at layer l and depth

d

ωl,d The rotation angle for inter-connection weight at layer
l with depth d

χS It corresponds the contribution of S-connected third-
order neighborhood pixels

ϑl
i The fuzzy context sensitive activation in quantum for-

malism at layer l

δl,di The phase transformation parameters at layer l−1 with
depth d

Quantum fuzzy context-sensitive thresholding determines the
bi-directional propagation of quantum information between
the layers of the 3D-QNet architecture by means of self-
organization of the inter-linked weight matrices. The reduction
of feature dimensions using tensor decomposition followed by
voxel-wise information processing of the proposed 3D-QNet
architecture is inspired by the basic quantum neural network
input-output model [12] as follows.

|ϕl(αd
i )⟩ = σ3D−QNet(

m×n×p∑
j

f l−1(αd
i )⟨φl

j |χ
l,d
i ⟩), (18)

where, |ϕl(αd
i )⟩ denotes the intermediate output of the ith seed

quantum neuron at the 3D network layer in the lth sample
with depth (slice#) d = 1, 2, . . . P . σ3D−QNet is the Vox-
QSig function with activation as |χl,d

i ⟩. The output |ϕl(αd
i )⟩

can be written as

|ϕl(αd
i )⟩ =

f(
π

2
δl,di − arg{

m×n×p∑
j

f l(ωd
j,i)f

l−1(αd
i )− f l(χd

i )})

= σ3D−QNet(

m×n×p∑
j

f l−1(αd
i )(cos(ω

l,d
j,i − ϑli)+

γ sin(ωl,d
j,i − ϑli))),

(19)

Here, the designated rotation angles associated with the inter-
connection weights between input neuron j to output neuron i
are represented by ωl,d

j,i and δl,di is the phase transfer parameter.
The variational parameters used in the counter-propagation
algorithm are provided in Table I. The true classical output
state (|1⟩) from the ith quantum neuron is obtained by consid-
ering the imaginary part (sin) of the above expression where,
γ is an imaginary unit. Assume that the inter-connection
weights between the input and hidden layers of the 3D-QNet
architecture are denoted by |φl,d

k,j⟩ and for the hidden layer to
the output layer, are indicated by |φl,d

j,i⟩ in the lth sample sets.
The activation at the hidden and output layers are designated
using |χl,d

j ⟩ and |χl,d
i ⟩, respectively. Considering any quantum

seed neuron k from the sample of input neurons at the input
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layer, the corresponding seed neuron at the hidden layer be j
and the output seed neuron be i, the response at the ith neuron
with depth d in the lth sample sets is expressed as

|ϕl(αd
i )⟩ = σ3D−QNet(

m×n×p∑
j

f(
π

2
yl,dj )⟨φl,d

ji |ϑ
l,d
j ⟩)

= σ3D−QNet(

m×n×p∑
j

f(
π

2
× σ3D−QNet(

m×n×p∑
k

f(
π

2
yl,dj )

⟨φl,d
kj |ϑ

l,d
k ⟩)⟨φl,d

ji |ϑ
l,d
j ⟩)

(20)

i.e.,

|ϕl(αd
i )⟩ = σ3D−QNet(

m×n×p∑
j

f(
π

2
× σ3D−QNet(

m×n×p∑
k

f(
π

2
yl,dj ) cos(ωl,d

k,j − ϑl,dj )

cos(ωl,d
j,i − ϑl,di ) + γ sin(ωl,d

k,j − ϑl,dj ) sin(ωl,d
j,i − ϑl,di )))),

(21)

where, γ is an imaginary number.

B. Quantum-inspired Voxel-wise multi-level Sigmoidal (Vox-
QSig) activation function

In this 3D-QNet architecture, the Vox-QSig activation func-
tion is proposed for voxel-wise processing of S-connected
spatially oriented neighborhood-based pixels. The generalized
form of the Vox-QSig activation function is obtained by
leveraging the activation function hyper-parameters employed
in Equation 14 as

σV ox−QSig(x;βτ , ρτ ) =

L∑
τ=1

1

βτ + e−λ(x−(τ−1)ρτ−1−ϑ)
,

(22)
where L corresponds to the number of class levels. The multi-
class responses for various hyper-parameters employed in the
Vox-QSig activation functions are provided in Figure 3.

C. Adjustment of Inter-connection Weights of 3D-QNet and
Loss Function

Each inter-connection link for each candidate pixel of the
S-connected medical image volume and its corresponding
activation are updated using quantum rotation gates, thereby
enabling faster convergence of the proposed 3D-QNet archi-
tecture. The inter-connection weight, φι,d and its activation,
χι,d are updated as follows.

|φι+1,d⟩ =
(

cos△ωι+1,d − sin△ωι+1,d

sin△ωι+1,d cos△ωι+1,d

)
|φι,d⟩, (23)

|χι+1,d⟩ =
(

cos△ϑι+1,d − sin△ϑι+1,d

sin△ϑι+1,d cos△ϑι+1,d

)
|χι,d⟩, (24)

where,
ωι+1,d = ωι,d +△ωι,d, (25)

and
ϑι+1,d = ϑι,d +△ϑι,d, (26)

(a) L = 3 (b) L = 5

(c) L = 6 (d) L = 8

Fig. 3: Multi-level class response of Vox-QSig activation
function for λ = 15, 20, 25.

Equations 25 and 26 refer to updating the angles of rota-
tion and activation, respectively. The error or loss function,
ζ(ωι,d, ϑι,d) in the suggested 3D-QNet architecture is eval-
uated in terms of Root Mean Square Error (RMSE) of the
3D-weight matrices at depth d (or the slice #d) in the lth

epoch and is defined on the phase angles ωι,d, ϑι,d as

ζ(ωι,d, ϑι,d) =

1

N

N∑
i=1

S∑
j=1

[
φij(ω

ι+1,d
ij , ϑι+1,d

i )− φij(ω
ι,d
ij , ϑ

ι,d
i )

]2
.

(27)

V. VOLUMETRIC MEDICAL IMAGE SEGMENTATION USING
3D-QNET

Minimum pre-processing is performed before the medical
image slices are fed as inputs to 3D-QNet. The input medical
image volume is normalized as a fuzziness measure ([0, 1])
before transforming it to qubits as follows.

αd
i,j =

αd
i,j −min(αd

i,j)

max(αd
i,j)−min(αd

i,j)
. (28)

Medical image volumes exhibit heterogeneous responses over
the local intensities in the S-connected neighborhood regions,
owing to the wide variations of gray-levels. Inspired by
the authors’ previous works [12], [34], [44], the proposed
Vox-QSig activation function employs four different adaptive
thresholding schemes suitable for efficient gray-scale segmen-
tation in the 3D-QNet architecture.
(1) Activation guided by β-distribution of the intensity of S-
connected neighborhood voxels (υβ).
(2) Activation guided by S-connected voxels based on Skew-
ness (υχ).
(3) Activation guided by S-connected heterogeneous voxel
intensities (υξ).
(4) Activation guided by S-connected fuzzy voxel cardinality
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estimates (υκ).
In addition, to investigate a number of optimal thresh-
olds {T1, T2, · · · , TCl−1} in multi-class settings, Otsu’s
method [45] is explored. The optimal thresholds maximize
the class variance as follows [45].

O = hn{T1, T2, · · · , TCl−1}θi(µi − ω), (29)

where, Cl represents the number of defined classes in C
={C1, C2, . . . , CCl

} and

θi =
∑
i∈Cl

pi , µi =
∑
i∈Cl

ipi/θl, (30)

where, the ith pixel is defined as pi. The probability of class
Ci is represented as µi and its mean value is given by µi. ω
is known to be the mean of class C.
To refine the segmentation accuracy and dice score for false-
positive reduction in brain tumor detection, 3D-QNet seg-
mented highly representative volumetric intensity features are
post processed using the k-Means algorithm [46] for initial
label segmentation and segmented into pre-defined number of
clusters.

VI. RESULTS

A. Data Set

The proposed 3D-QNet and its non-tensorized implementa-
tion (3D-QNet-NonTensor) are validated extensively using the
BRATS 2019 data set [47] and the Liver Tumor Segmentation
Benchmark (LiTS17) data set [48]. The BRATS 2019 data
set is composed of 315 (239 HGG and 76 LGG) 3D MRI
volumes. Each MRI volume comprises 155 slices of resolution
240×240 with the ground truth segmented labels and includes
four different modalities of 3D MR images viz. T1, T1
with Contrast-Enhanced (T1 − CE), T2, and FLAIR. The
segmented labels are annotated with three distinct tumor sub-
regions, viz. tumor core (TC), tumor enhancing (TE), necrosis
and non-enhancing core region. These three annotations form
a complete tumor (WT). The BRATS 2019 data set is divided
into 8 : 2 ratio for training (252) and testing (63) due to
GPU limitations. The Liver Tumor Segmentation Benchmark
(LiTS17) data set [48] consists of 131 CT scans with various
types of tumors. The LiTS17 data set is also divided into 8 : 2
ratio for training and testing in the study. Each CT volume
consists of variable number of slices of resolution 512× 512.

B. Experimental Setup

Experiments have been carried out using 3D-QNet and 3D-
QNet-NonTensor on 3D brain MR volumes collected from the
BRATS 2019 dataset of size 240×240 and on the LiTS17 data
set of size 512×512 with MATLAB 2020a. The proposed 3D-
QNet and 3D-QNet-NonTensor architectures are implemented
with the multi-level gray-scale images using distinct multi-
class levels L = 4, 6, and 8 characterized by the Vox-QSig
activation function. The steepness λ is varied in the range
0.23 to 0.24 with step size of 0.001. For FLAIR and T2, it has
been observed that in majority of cases, λ = 0.232 and S = 26
(3 × 3 × 3 volume) yield optimal performance. For the other

two modalities T1 and T1-CE, λ = 0.238 and S = 26 (3×3×3
volume) yield optimal performance. On contrary, the LiTS17
CT volume data has performed optimally for λ = 0.239 and
S = 26 (3×3×3 volume). Moreover, the Vox-QSig is guided
by four distinct activation schemes (υβ , υξ, υζ , υκ) [12], [34],
[44]. Experiments have also been performed using the 3D-
UNet [24] architecture, Deep Voxel-wise Residual Network
(VoxResNet) [26], Dense-Res-Inception Net (DRINet) [27],
and 3D-ESPNet [28] on the BRATS 2019 data set [47] and
on the LiTS17 data set [48]. We have trained 3D-UNet [24]
and VoxResNet [26] rigorously with the Stochastic Gradient
Descent (SGD) algorithm on Caffe library1 using an Nvidia
Tesla V 100 − SXM2 GPU Cluster with 32 GB of memory
and 640 Tensor cores with 8 cores of Intel(R) Xeon(R) CPU
E5-2683 v4@2.1GHz. The 3D-ESPNet is implemented using
Pytorch from the code available in Github2 with 100 epochs
using adam optimizer with an initial learning rate of 0.01.
The DRINet is also implemented using adam optimizer with
an initial learning rate of 0.01 and kernel size of 3 × 3. In
order to detect a complete tumor, the segmented output images
are resized to match the binary mask’s dimensions, with the
result 1 representing the tumor region and 0 representing the
backdrop. The dice similarity (DS) [18], which is regarded as
a standard assessment technique in automatic medical image
segmentation, can be evaluated by pixel to pixel comparison
with manually segmented regions of interest or lesion mask.
The ground truth for the evaluation is a manually segmented
lesion mask, and each 2D pixel is predicted as True Positive
(TRP ) or True Negative (TRN ) or False Positive (TRN )
or False Negative (FLN ). The empirical goodness measures
[Positive Predictive Value (PV ), Sensitivity (SS), Accuracy
(AC) and Dice Similarity (DS) [18]] are assessed to evaluate
the results.

C. Experimental Results

Experiments have been carried out in the current setup, and
the results have been reported together with numerical and
statistical analysis using the proposed 3D-QNet, 3D-QNet-
NonTensor, 3D-UNet [24], VoxResNet [26], DRINet [27], and
3D-ESPNet [28] on BRATS 2019 data set [47] and LiTS17
data set [48]. Table II presents the complete tumor (WT)
segmentation on BraTS19-CBICA-AAG-1-flair-slice#69. It
is evident from the experimental data reported in Table II
that the proposed 3D-QNet performs optimally for com-
plete brain tumor segmentation of four different modalities
of MR volumes (viz. T1, T1 − CE, FLAIR, and T2)
using the activation guided by 26-connected heterogeneous
voxel intensities (υξ) with L = 8 in comparison with other
thresholding schemes under the four evaluation parameters
(AC,DS, PV, SS) [18]. The 3D-QNet segmented brain MR
slices collected from two different volumes BRATS19-CBICA-
AAG and BRATS19-CBICA-AAB using class level L = 8 with
activation scheme υξ, are shown in Figures 4 and 5, respec-
tively. The human expert annotated ground truth slices for all

1https://doi.org/10.1145/2647868.2654889
2https://github.com/sacmehta/3D-ESPNet
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the four different modalities are illustrated in Figure 6. 3D-
UNet [24], VoxResNet [26], DRINet [27], 3D-ESPNet [28],
and 3D-QNet-NonTensor segmented brain MR volumes from
BRATS19-CBICA-AAG are demonstrated in the Supplementary
Materials. It has been observed from the segmented MR
slices that the proposed 3D-QNet is suitable in segmenting
the correct position and size of the complete tumor while
compared with the ground truth segmentation. However, it is
not efficient in mapping the sharp contour of the core and
enhanced tumor sub-regions outlined in the annotated slices.
Table III presents the quantitative results reported using
the proposed 3D-QNet, 3D-QNet-NonTensor, 3D-UNet [24],
VoxResNet [26], DRINet [27], and 3D-ESPNet [28] on evalu-
ating the average accuracy (AC), dice similarity score (DS),
positive prediction value (PV ), and sensitivity (SS) [18].
It has been observed from the 3D-QNet segmented brain
MR slices and the results reported in Table III, that optimal
segmentation is achieved for FLAIR reported with an average
of 0.821 dice score (DS). The proposed 3D-QNet marginally
outperforms the convolutional architectures (3D-UNet [24],
VoxResNet [26], DRINet [27], 3D-ESPNet [28]), and 3D-
QNet-NonTensor in predicting complete brain tumor detection.
However, it may be noted that the proposed 3D-QNet does not
intend to predict the core, enhanced tumor and necrosis sub
regions owing to lack of optimization of the parameters in
the suggested 3D-QNet architecture. The box plots are also
demonstrated in the Supplementary Materials citing the out-
come reported in Table III. Moreover, to show the effectiveness
of the proposed 3D-QNet architecture over 3D-UNet [24],
VoxResNet [26], DRINet [27], and 3D-ESPNet [28], we have
also conducted experiments on the Liver Tumor Segmentation
Benchmark (LiTS17) data set [48]. Table IV presents the
results reported using the proposed 3D-QNet, 3D-UNet [24],
VoxResNet [26], 3D-QNet-NonTensor, DRINet [27], and 3D-
ESPNet [28] on LiTS17 data set [48] in detecting complete
Liver tumor regions. A sample of segmented Liver tumor using
3D-QNet with manually segmented tumors is shown in Fig-
ure 7. It is observed from Table IV that 3D-QNet has reported
with an average Dice Score (DS) of 0.958. Furthermore, a
one-sided two-sample Kolmogorov-Smirnov (KS) [49] test is
performed with a significance level of α = 0.05, and the
experimental data given in Table III and Table IV show that
3D-QNet is capable of segmenting 3D medical image data.
Despite being characterized by fully self-supervised quantum-
inspired learning, the 3D-QNet has demonstrated compara-
ble accuracy (AC) and dice similarity (DS) in comparison
to 3D-UNet [24], VoxResNet [26], DRINet [27], and 3D-
ESPNet [28]. Hence, the performance of the 3D-QNet model
on the BRATS 2019 and LiTS17 data sets are statistically
significant and offers a promising alternative to self-supervised
deep learning for 3D-medical image segmentation. Further-
more, in case of brain MR image segmentation, the num-
ber of parameters required in the 3D-UNet [24] architecture
is 19, 069, 955, whereas the proposed 3D-QNet architecture
employs maximum 2, 995, 200 parameters (considering each
voxel as a candidate in a 240 × 240 dimensional slice, there
are total 240 × 240 × 26 × 2 connections) in bi-directional
propagation.

The convergence analysis of the proposed 3D-QNet architec-
ture is discussed in the Appendix and experimentally demon-
strated with the non-tensorized implementation of the network
(3D-QNet-NonTensor). The convergence analysis of the pro-
posed 3D-QNet and 3D-QNet-NonTensor architectures for all
types of brain tumor images (T1, T1− CE, Flair, and T2)
from the BRATS 2019 datasets [47] and for LiTS17 liver
volumes [48] are provided in the Supplementary Materials.
Table V reports the average number of iterations required
to converge the proposed 3D-QNet architecture and its non-
tensorized implementation, 3D-QNet-NonTensor. It is evident
from Table V that an optimal convergence of the proposed
3D-QNet architecture is observed for Flair with υξ. Hence,
the non-tensorized implementation (3D-QNet without tensor
decomposition) underperforms in terms of average iterations
in comparison to 3D-QNet. It serves as the inspiration behind
the incorporation of tensor-decomposition in 3D-QNet imple-
mentation.

VII. DISCUSSIONS

The proposed 3D-QNet is computed and tested on a clas-
sical system. Hence, the proposed model architecture is not
quantum in the real sense. Instead, it is quantum-inspired.
The pixel intensities and interconnection weight matrices
are expressed in quantum formalism in classical simulations
using real vectors. Here, each pixel information and weight
term are presented as a vector with better expressibility and
non-linearity than classical neurons. The 3D-QNet network
architecture and the use of a unitary matrix representation in
network weights ensure the authenticity of quantum analogies
without sacrificing efficacy or efficiency, as shown by a full
comparison with state-of-the-art models on two benchmark
datasets. The incorporation of quantum-inspired computing
and tensor-based learning in the suggested network model aims
to provide faster convergence of the 3D-QNet architecture over
its non-tensorized implementation, thereby enabling accurate
segmentation results.
However, the proposed 3D-QNet architecture may be im-
plemented utilizing a quantum-classical hybrid paradigm for
NISQ devices on the real quantum processor. In this hybrid
quantum classical framework, the N -connected third-order
neighborhood-based interconnection needed N (here N = 26)
input qubits, Hadamard gates, and 2N Rotation gates, as
well as N (N − 1) numbers of CNOT gates [13], which
resulted in quantum superposition and entanglement of the
input states. This quantum-classical model lays the way for
the implementation of quantum machine learning on near-term
NISQ devices using variational quantum circuits (VQCs) — a
kind of Quantum circuits with improved gate settings.
It is worth noting that 3D-QNet has the potential to be
significantly more computationally efficient than the models
presented in the experiments, especially in multi-level seg-
mentation of BRATS 2019 MR images. The performance
of many quantum-inspired algorithms derives directly from
quantum parallelism, which is a fundamental characteristic of
many quantum systems. Heuristically, the proposed 3D-QNet
architecture has the potential to explore the intrinsic properties
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TABLE II: Results obtained using proposed 3D-QNet for complete tumor (WT) segmentation on BraTS19-CBICA-AAG-1-
flair-slice#69

Level Modality AC =
TRP +TRN

TRP +FLP +TRN+FLN

DS =
2TRP

2TRP +FLP +FLN

PV =
TRP

TRP +FLP

SS =
TRP

TRP +FLN
υβ υχ υξ υκ υβ υχ υξ υκ υβ υχ υξ υκ υβ υχ υξ υκ

L = 4

T1 0.99 0.99 0.99 0.99 0.62 0.80 0.80 0.79 0.44 0.66 0.65 0.65 0.99 0.99 0.99 0.99
T1 − CE 0.99 0.99 0.99 0.99 0.79 0.80 0.79 0.80 0.66 0.66 0.66 0.66 0.99 0.99 0.99 0.99
FLAIR 0.99 0.99 0.99 0.99 0.62 0.80 0.80 0.79 0.44 0.66 0.66 0.65 0.99 0.99 0.99 0.99
T2 0.99 0.99 0.99 0.99 0.62 0.80 0.80 0.79 0.44 0.66 0.66 0.65 0.99 0.99 0.99 0.99

L = 6

T1 0.99 0.99 0.99 0.99 0.62 0.80 0.80 0.79 0.44 0.66 0.66 0.65 0.99 0.99 0.99 0.99
T1 − CE 0.99 0.99 0.99 0.99 0.62 0.80 0.80 0.79 0.44 0.66 0.66 0.65 0.99 0.99 0.99 0.99
FLAIR 0.99 0.99 0.99 0.99 0.62 0.80 0.80 0.79 0.44 0.66 0.66 0.65 0.99 0.99 0.99 0.99
T2 0.99 0.99 0.99 0.99 0.62 0.80 0.80 0.79 0.44 0.66 0.66 0.65 0.99 0.99 0.99 0.99

L = 8

T1 0.99 0.99 0.99 0.99 0.82 0.82 0.82 0.81 0.70 0.69 0.69 0.68 0.99 0.99 0.99 0.99
T1 − CE 0.99 0.99 0.99 0.99 0.81 0.81 0.81 0.81 0.68 0.68 0.68 0.68 0.99 0.99 0.99 0.99
FLAIR 0.99 0.99 0.99 0.99 0.84 0.84 0.84 0.84 0.73 0.73 0.73 0.72 0.99 0.99 0.98 0.98
T2 0.99 0.99 0.99 0.99 0.82 0.82 0.82 0.82 0.69 0.69 0.70 0.70 0.99 0.99 0.99 0.99

TABLE III: Comparative analysis of proposed 3D-QNet
with 3D-QNet-NonTensor, 3D-UNet [24], VoxResNet [26],
DRINet [27], and 3D-ESPNet [28] [The bold numbers rep-
resent evaluation metrics completed with a one-sided two-
sample KS test with a significance threshold of α = 0.05 [49]]

Methods Modality AC DS PV SS

3D-UNet [24]

T1 0.990 0.811 0.736 0.941
T1 − CE 0.990 0.807 0.732 0.938
FLAIR 0.992 0.823 0.737 0.943
T2 0.989 0.812 0.735 0.944

VoxResNet [26]

T1 0.990 0.810 0.737 0.937
T1 − CE 0.989 0.813 0.732 0.943
FLAIR 0.991 0.822 0.751 0.942
T2 0.990 0.807 0.729 0.944

DRINet [27]

T1 0.989 0.793 0.701 0.958
T1 − CE 0.988 0.800 0.711 0.959
FLAIR 0.989 0.805 0.708 0.969
T2 0.987 0.789 0.700 0.958

3D-ESPNet [28]

T1 0.989 0.801 0.709 0.961
T1 − CE 0.989 0.813 0.721 0.966
FLAIR 0.989 0.800 0.715 0.959
T2 0.988 0.802 0.714 0.957

3D-QNet

T1 0.989 0.801 0.736 0.965
T1 − CE 0.989 0.811 0.740 0.957
FLAIR 0.991 0.821 0.751 0.957
T2 0.990 0.814 0.736 0.960

3D-QNet-NonTensor

T1 0.987 0.776 0.678 0.959
T1 − CE 0.987 0.772 0.678 0.958
FLAIR 0.989 0.786 0.697 0.956
T2 0.988 0.788 0.696 0.957

of quantum parallelism to simultaneously compute the image
pixels. However, 3D-QNet is computed and experimented on
a classical system, and hence the quantum parallelism has
not been fully explored in the proposed quantum-inspired
framework. Despite the fact that quantum simulation requires
a great deal of resources in general, the proposed quantum-
inspired model, 3D-QNet, requires a lesser number of param-
eters compared to the 3D classical CNN models.

VIII. CONCLUSION

A 3D Quantum-inspired Self-supervised Tensor Network
(3D-QNet) architecture characterized by S-connected voxel-
wise processing for fully automated semantic segmentation of
Brain MR volumes and 3D Liver CT scans, is presented in this
work. Intensive validation using the BRATS 2019 and LiTS17
data sets shows the efficacy of the proposed self-supervised

TABLE IV: Comparative Results on Liver Segmentation using
proposed 3D-QNet, 3D-UNet [24], VoxResNet [26], 3D-QNet-
NonTensor, DRINet [27], and 3D-ESPNet [28] [The bold
numbers represent evaluation metrics completed with a one-
sided two-sample KS test with a significance threshold of
α = 0.05 [49]]

Methods AC DS PV SS
VoxResNet [26] 0.991 0.961 0.798 0.973
3D-QNet 0.989 0.958 0.801 0.965
3D-UNet [24] 0.991 0.959 0.830 0.964
3D-QNet-NonTensor 0.982 0.953 0.799 0.879
DRINet [27] 0.980 0.951 0.802 0.988
3D-ESPNet [28] 0.987 0.943 0.798 0.961

TABLE V: Average number of iterations required for conver-
gence of the proposed 3D-QNet and 3D-QNet-NonTensor

Methods Modality Number of iterations
υβ υχ υξ υκ

3D-QNet

T1 30.89 30.64 30.38 30.91
T1−CE 31.60 31.46 31.43 31.68
Flair 30.78 30.23 30.18 30.57
T2 32.25 32.66 32.14 32.73
Liver 27.11 27.89 26.99 27.08

3D-QNet-NonTensor

T1 31.46 31.59 31.43 31.69
T1−CE 32.98 32.33 32.39 32.56
Flair 31.69 31.12 31.19 31.26
T2 32.88 32.34 32.51 32.79
Liver 28.52 28.16 28.12 28.17

3D-QNet architecture to promote automatic semantic segmen-
tation of 3D medical images in real-time with minimum human
intervention, still being considered as an uphill task in the field
of volumetric medical image segmentation.
Despite being a 3D self-supervised network model, 3D-QNet
achieved similar dice similarity score on complete tumor
detection as deeply supervised 3D-UNet, Vox-ResNet, DRINet
and ESPNet, thus promoting self-supervised network learning
for volumetric segmentation of medical images. In principle,
the proposed 3D-QNet is a general self-supervised network
architecture which can be extended to many other 3D medical
image segmentation avenues, where the segmented annotations
are limited. Furthermore, the proposed 3D self-supervised
model can be used immediately in any application (e.g.,
medical IoT devices) where 3D deep learning models face
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(a) Slice#44 (b) Slice#59 (c) Slice#64 (d) Slice#69

(e) Slice#44 (f) Slice#59 (g) Slice#64 (h) Slice#69

(i) Slice#44 (j) Slice#59 (k) Slice#64 (l) Slice#69

(m) Slice#44 (n) Slice#59 (o) Slice#64 (p) Slice#69

Fig. 4: 3D-QNet segmented Brain MR volume (a − d)
BraTS19-CBICA-AAG-1-flair, (e−h) BraTS19-CBICA-AAG-
1-t2, (i− l) BraTS19-CBICA-AAG-1-t1ce, (m− p) BraTS19-
CBICA-AAG-1-t1 from the BRATS 2019 data set [47] (Union
of overlapped brown/yellow and green corresponds to a com-
plete tumor (WT) region).

(a) Slice#52 (b) Slice#60 (c) Slice#71 (d) Slice#95

(e) Slice#52 (f) Slice#60 (g) Slice#71 (h) Slice#95

(i) Slice#52 (j) Slice#60 (k) Slice#71 (l) Slice#95

(m) Slice#52 (n) Slice#60 (o) Slice#71 (p) Slice#95

Fig. 5: 3D-QNet segmented Brain MR volume (a − d)
BraTS19-CBICA-AAB-1-flair, (e−h) BraTS19-CBICA-AAB-
1-t2, (i− l) BraTS19-CBICA-AAB-1-t1ce, (m− p) BraTS19-
CBICA-AAB-1-t1 from the BRATS 2019 data set [47] (Union
of overlapped brown/yellow and green corresponds to a com-
plete tumor (WT) region).

(a) Slice#44 (b) Slice#59 (c) Slice#64 (d) Slice#69

(e) Slice#52 (f) Slice#60 (g) Slice#71 (h) Slice#95

Fig. 6: Annotated Brain MR volume (a−d) BraTS19-CBICA-
AAG-1-seg, (e − h) BraTS19-CBICA-AAB-1-seg from the
BRATS 2019 data set [47] (Complete tumor (WT) region
comprises a union of brown, light green and green yellow,
core tumor (TC) is the union of light green and green yellow,
and green yellow corresponds to the tumor enhancing (TE)).

(a) Slice#172 (b) Slice#181 (c) Slice#198 (d) Slice#206

(e) Slice#172 (f) Slice#181 (g) Slice#198 (h) Slice#206

Fig. 7: (a − d) 3D-QNet segmented volumetric Liver image
slices (scan#64), (e − h) manually segmented image slices
(scan#64) from data set [48] (Union of overlapped brown
and red corresponds to a complete tumor (WT) region).

significant challenges. However, the 3D-QNet fails to yield
optimal outcome for multi-level segmentation on the BRATS
2019 data set. The authors are currently engaged in extend-
ing the 3D-QNet architecture by up-scaling the intermediate
volumetric features in the network and optimizing its hyper-
parameters to yield optimal segmentation outcome.

APPENDIX

A. Convergence Analysis of 3D-QNet
Le us assume the optimal phase angles at depth d for the weighted matrix and the

activation are denoted as ωd and ϑd, respectively. Now, consider

Wι,d
= ω

ι,d − ωd, (31)

Vι,d
= ϑ

ι,d − ϑd, (32)

and

Dι,d
= ω

ι+1,d − ω
ι,d

= Wι+1,d − Wι,d
, (33)

Pι,d
= ϑ

ι+1,d − ϑ
ι,d

= Vι+1,d − Vι,d
. (34)
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The loss function ζ(ωι,d, ϑι,d) is differentiable with respect to ωι,d and ϑι,d as

∂ζ(ωι,d, ϑι,d)

∂ωι,d
ij

=
2

N

N∑
i=1

S∑
j=1

△φ
ι,d
ij (ω

ι,d
ij , ϑ

ι,d
j )

[
∂φι+1,d

ij (ωι+1,d
ij , ϑι+1,d

j )

∂ωι+1,d
ij

−
∂φι,d

ij (ωι,d
ij , ϑι,d

j )

∂ωι,d
ij

]
,

(35)

∂ζ(ωι,d, ϑι,d)

∂ϑι,d
j

=
2

N

N∑
i=1

S∑
j=1

△φ
ι,d
ij (ω

ι,d
ij , ϑ

ι,d
j )

[
∂φι+1,d

ij (ωι+1,d
ij , ϑι+1,d

j )

∂ϑι+1,d
j

−
∂φι,d

ij (ωι,d
ij , ϑι,d

j )

∂ϑι,d
j

]
,

(36)

where,

△φ
ι,d
ij (ω

ι,d
ij ϑj) = |φι+1,d

ij (ω
ι+1,d
ij , ϑ

ι+1,d
j ) − φ

ι,d
ij (ω

ι,d
ij , ϑ

ι,d
j )| . (37)

The following equations evaluate the change in phase or angles (△ω and △α) of the
rotation gates as

△ω
ι,d
ij = −ρ

ι,d
ij {

∂φ(ωι,d, ϑι,d)

∂ωι,d
ij

φ(ω
ι,d

, ϑ
ι,d

)}
1
τ , (38)

△ϑ
ι,d
j = −κ

ι,d
j {

∂φ(ωι,d, ϑι,d)

∂ϑι,d
i

φ(ω
ι,d

, ϑ
ι,d

))}
1
τ , (39)

where, ρij and κj refer to the learning rates for the adjustments of weights and
activation, respectively and are evaluated as

ρ
ι,d
ij = X ι,d

i − X ι,d
ij ∀j = 1, 2 . . . 8,

κ
ι,d
j = (

∑
j

X ι,d
i,j )∀j = 1, 2 . . . 8 . (40)

The sequences of {ωι,d} and {ϑι,d} converge super-linearly subject to the following
conditions [13].

lim
ι→∞

||ωι+1,d − ωd||
||ωι,d − ωd||

≤ 1, (41)

and
||Wι+1,d|| = O||Dι,d|| (42)

, Also,

lim
ι→∞

||ϑι+1,d − ϑ
d||

||ϑι − ϑ
d||

≤ 1, (43)

and
||Vι+1,d|| = O||Pι,d||, (44)

The convergence of the sequence {ωι,d} according to L-Lipschitz continuity is
illustrated as [50]

ζ(ω
ι+1,d

) ≤ ζ(ω
ι,d

) + ⟨∇ωζ(ω
ι,d

), ω
ι+1,d − ω

ι,d⟩ +
ι

2
||ωι+1,d − ω

ι,d||2

= ζ(ω
ι,d

) + ⟨∇ωζ(ω
ι,d

) − ρ∇ωζ(ω
ι,d

)⟩ +
L

2
|| − ρ∇ωζ(ω

ι,d
)||2

= ζ(ω
ι,d

) − ρ||∇ωζ(ω
ι,d

)||2 + ρ
2 L

2
||∇ωζ(ω

ι,d
)||2

= ζ(ω
ι,d

) − ρ(1 − ρ
L

2
)||∇ωζ(ω

ι,d
)||2

≤ ζ(ω
ι,d

) −
ρ

2
||∇ωζ(ω

ι,d
)||2 (Assuming, ρ ∈ (0,

1

L
])

≤ ζ(ωd) + ⟨∇ωζ(ω
ι,d

), ω
ι,d − ωd⟩ −

ρ

2
||∇ωζ(ω

ι,d
)||2, (ζ is convex)

= ζ(ωd) + ⟨∇ωζ(ω
ι,d

), ω
ι,d − ωd⟩ −

ρ

2
||∇ωζ(ω

ι,d
)||2+

1

2ρ
(||ωι,d − ωd||2 − ||ωι,d − ωd||2)

= ζ(ωd) +
1

2ρ
(||ωι,d − ωd||2 − (||ωι,d||2 − 2⟨ωι,d

, ωd⟩+

||ωd||2 − 2ρ⟨∇ωζ(ω
ι,d

), ω
ι,d − ωd⟩ + ρ

2||∇ωζ(ω
ι,d
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= ζ(ωd) +
1

2ρ
(||ωι,d|| − ωd||2 − (||ωι,d − ρ∇ωζ(ω

ι,d
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2⟨ωι,d − ∇ωζ(ω
ι,d

), ωd⟩ + ||ωd||2))

= ζ(ωd) +
1

2ρ
(||ωι,d − ωd||2 − ||ωι+1,d − ωd||2)

, ∴, ζ(ω
ι+1,d

) − ζ(ωd) ≤
1

2ρ
(||ωι,d − ωd||2 − ||ωι+1,d − ωd||2),

Similarly, it can also be shown that

ζ(ϑ
ι+1,d

) − ζ(ϑι,d) ≤
1

2ρ
(||ϑι+1,d − ϑd||2 − ||ϑι+1,d − ϑd||2), (45)

Now, according to Thaler formula

ζ(ω
ι+1,d

, ϑ
ι+1,d

) − ζ(ω
ι,d

, ϑ
ι,d

) = (46)

[
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ij
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+ {−κ
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j

∂ζ(ωι,d, ϑι,d)

∂ϑl,d
j

}2

]
{ζ(ωι,d

, ϑ
ι,d
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1
ι ,

(47)

It is obvious that (ζ(ωι+1,d, αι+1,d) − ζ(ωι,d, ϑι,d)) ≤ 0 and the sequences of
{ωι,d} and {ϑι,d} are monotonically decreasing as

lim
ι→∞

ζ(ω
ι,d

, ϑ
ι,d

) = (ω
d
, ϑ

d
), (48)

and

lim
ι→∞

||ζ(ωι+1,d, ϑι+1,d) − (ωd, ϑ
d
)||

||ζ(ωι,d, ϑι,d) − (ωd, ϑ
d
)||

≤ 1, (49)

B. Code Availability
3D-QNet implementation is made available in GitHub: https://github.com/konar1987/

3D-QNet for brain volume image segmentation with few samples, tailored and tested for
FLAIR and T2 from the BRATS 2019 data set [47].

C. Acknowledgements
This work was partially supported by the Center of Advanced Systems Understanding

(CASUS) [Project# 3046129001 CASUS (15.04.2019-31.03.2022)], financed by Ger-
many’s Federal Ministry of Education and Research (BMBF) and by the Saxon state
government out of the state budget approved by the Saxon State Parliament and in part by
the Engineering and Physical Sciences Research Council (EPSRC) Grant EP/P009727/2.

REFERENCES

[1] G. Litjens et al., “A survey on deep learning in medical image analysis,”
Medical Image Analysis, vol. 42, pp. 60—88, 2017. doi: https://doi.org/
10.1016/j.media.2017.07.005.

[2] M. Huang, W. Yang, Y. Wu, J. Jiang, W. Chen, and Q. Feng, “Brain Tumor
Segmentation Based on Local Independent Projection-Based Classifica-
tion," IEEE Transactions on Biomedical Engineering, vol. 61, no. 10, pp.
2633–2645, 2014, doi: 10.1109/TBME.2014.2325410.

[3] Z. Wu, K. D. Paulsen, and J. M. Sullivan, “Adaptive model initialization
and deformation for automatic segmentation of T1-weighted brain MRI
data", IEEE Transactions on Biomedical Engineering, vol. 52, no. 6, pp.
1128–1131, 2005, doi: 10.1109/TBME.2005.846709.

[4] M. Chung, J. Lee, M. Lee, J. Lee, Y-G. Shin, “Deeply self-supervised
contour embedded neural network applied to liver segmentation," Com-
puter Methods and Programs in Biomedicine, vol. 192, pp. 105447, 2020,
https://doi.org/10.1016/j.cmpb.2020.105447.

[5] F. Milletari, N. Navab, and S. A. Ahmadi, “V-Net: Fully Convolutional
Neural Networks for Volumetric Medical Image Segmentation" 2016
Fourth International Conference on 3D Vision (3DV), pp. 565-–571, 2016
doi:10.1109/3DV.2016.79.

[6] O. Ronneberger, P. Fischer, T. Brox, “U-Net: convolutional networks
for biomedical image segmentation. International Conference on Med-
ical Image Computing and Computer-Assisted Intervention (MICCAI
2015), vol. 9351, pp. 234-–241. 2016. doi: https://doi.org/10.1007/
978-3-319-46723-8_4.

[7] Q. Doua, L. Yua, H. Chena, Y.Jina, X. Yanga, J. Q. Pheng, and A. Heng,
“3D deeply supervised network for automated segmentation of volumetric
medical images," Medical Image Analysis, vol. 41, pp. 40–54, 2017, doi:
https://doi.org/10.1016/j.media.2017.05.001.

[8] V. Gandhi, G. Prasad, D. Coyle, L. Behera, and T. M. McGinnity,
“Quantum neural network-based EEG filtering for a brain-computer
interface,” IEEE Transaction on Neural Network and Learning Systems,
vol. 25, no. 2, pp. 278-–288, 2014, doi: 10.1109/TNNLS.2013.2274436.

[9] P. Li, H. Xiao, F. Shang, X. Tong, X. Li, and M. Cao, “A hybrid quantum-
inspired neural networks with sequence inputs,” Neurocomputing, vol.
117, pp. 81-–90, 2013, doi: https://doi.org/10.1016/j.neucom.2013.01.029.



IEEE TRANSACTION ON NEURAL NETWORKS AND LEARNING SYSTEMS 12

[10] N. Masuyama, C. K. Loo, M. Seera, and N. Kubota, “Quantum-
Inspired Multidirectional Associative Memory With a Self-Convergent
Iterative Learning,” IEEE Transaction on Neural Network and Learning
Systems, vol. 29, no. 4, pp. 1058—1068, 2018, doi: 10.1109/TNNLS.
2017.2653114.

[11] S. Bhattacharyya, P. Pal and S. Bhowmick, “Binary Image Denoising
Using a Quantum Multilayer Self Organizing Neural Network," Applied
Soft Computing, vol. 24, pp. 717–729, 2014, doi: https://doi.org/10.1016/
j.asoc.2014.08.027.

[12] D. Konar, S. Bhattacharyya, T. K. Gandhi and B. K. Panigrahi, “A
quantum-inspired self-supervised Network model for automatic segmen-
tation of brain MR images," Applied Soft Computing, vol. 93, 2020, doi:
https://doi.org/10.1016/j.asoc.2020.106348.

[13] D. Konar, S. Bhattacharyya, B. K. Panigrahi and E. C. Behrman, “Qutrit-
Inspired Fully Self-Supervised Shallow Quantum Learning Network for
Brain Tumor Segmentation," IEEE Transactions on Neural Networks and
Learning Systems, vol. 33, no. 11, pp. 6331–6345, Nov. 2022, doi: 10.
1109/TNNLS.2021.3077188.

[14] M. Mediouni, D. R. Schlatterer, H. Madry, M. Cucchiarini and B. Rai,
“A review of translational medicine. The future paradigm: how can we
connect the orthopedic dots better?," Current Medical Research and
Opinion, vol. 34, no. 7, pp. 1217–1229, 2018, doi: 10.1080/03007995.
2017.1385450.

[15] M. Mediouni, R. Madiouni, M. Gardner, N. Vaughan, Neil, “Trans-
lational medicine: Challenges and new orthopaedic vision (Mediouni-
Model)," Current Orthopaedic Practice, vol. 31. no. 2, pp. 196-200, 2020,
doi: 10.1097/BCO.0000000000000846.

[16] M. Havaei et al., “Brain tumor segmentation with deep neural networks,”
Medical Image Analysis, vol. 35, pp. 18–31, 2017, doi: https://doi.org/10.
1016/j.media.2016.

[17] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 39, no. 4, pp. 640–651, 2017, doi: 10.1109/
TPAMI.2016.2572683.

[18] S. Pereira, A. Pinto, V. Alves, and C. A. Silva, “Brain Tumor Seg-
mentation Using Convolutional Neural Networks in MRI Images,” IEEE
Transactions on Medical Imaging, vol.35, no. 5, 2016, doi: 10.1109/TMI.
2016.2538465.

[19] P. Moeskops, M. A. Viergever, A. M. Mendrik, L. S. Vries,
M. J. N. L. Benders and I. Išgum, “Automatic Segmentation of MR
Brain Images With a Convolutional Neural Network,”IEEE Transactions
on Medical Imaging, vol.35, no.5, 2016, doi: 10.1109/TMI.2016.2548501.

[20] G. Wang et al., “DeepIGeoS: A Deep Interactive Geodesic Framework
for Medical Image Segmentation," IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 41, no. 7, pp. 1559–1572, 2019, doi: 10.
1109/TPAMI.2018.2840695.

[21] S. Banerjee, L. Magee, D. Wang et al., “Semantic segmentation of
microscopic neuroanatomical data by combining topological priors with
encoder–decoder deep networks," Nature Machine Intelligence, vol. 2,
pp. 585—594, 2020, doi: https://doi.org/10.1038/s42256-020-0227-9.

[22] K. Kamnitsas, “Efficient multi-scale 3D CNN with fully connected CRF
for accurate brain lesion segmentation,” Medical Image Analysis, vol. 36,
pp. 61–78, 2017, doi: https://doi.org/10.1016/j.media.2016.10.004.

[23] Q. Dou, H. Chen, L. Yu, L. Zhao, J. Qin, D. Wang, V. C. Mok, L. Shi,
and P. A. Heng. “Automatic Detection of Cerebral Microbleeds From
MR Images via 3D Convolutional Neural Networks, IEEE Transactions
on Medical Imaging, vol. 35, no. 5, pp. 1182-–1195, 2016, doi: 10.1109/
TMI.2016.2528129.

[24] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger,
“3D U-Net: Learning Dense Volumetric Segmentation from Sparse An-
notation,” International Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI 2016), pp. 424-–432, 2016, doi:
https://doi.org/10.1007/978-3-319-46723-8_49.

[25] A. Brebisson, and G. Montana, “Deep Neural Networks for Anatomical
Brain Segmentation,” In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops, pp. 20-–28, 2015, doi:
10.1109/CVPRW.2015.7301312.

[26] H. Chen, Q. Dou, L. Yu, J. Qin, and P. A. Heng, 2017. “VoxResNet:
Deep voxelwise residual networks for brain segmentation from 3D MR
images,” NeuroImage, vol. 170, pp. 446-455, 2017, doi: https://doi.org/
10.1016/j.neuroimage.2017.04.041.

[27] L.Chen , P. Bentley, K. Mori, K. Misawa, M. Fujiwara, and D. Rueckert,
“DRINet for Medical Image Segmentation,” IEEE Transaction on Medical
Imaging, vol. 37, no. 11, 2018, doi: 10.1109/TMI.2018.2835303.

[28] N. Nuechterlein and S. Mehta, “3D-ESPNet with Pyramidal Refinement
for Volumetric Brain Tumor Image Segmentation,” International MICCAI

Brainlesion Workshop (BrainLes 2018), pp. 245–253, 2018, doi: https:
//doi.org/10.1007/978-3-030-11726-9_22.

[29] G. Wang et al., “Interactive Medical Image Segmentation Using Deep
Learning With Image-Specific Fine Tuning,” IEEE Transactions on Med-
ical Imaging, vol. 37, no. 7, 2018, doi: 10.1109/TMI.2018.2791721.

[30] N. Tajbakhsh et al., “Convolutional Neural Networks for Medical Image
Analysis: Full Training or Fine Tuning?,” IEEE Transactions on Medical
Imaging, vol. 35, no. 5, pp. 1299–1312, 2016, doi: 10.1109/TMI.2016.
2535302.

[31] X. Zhuang, Y. Li, Y. Hu, K. Ma, Y. Yang, and Y. Zheng, “Self-supervised
Feature Learning for 3D Medical Images by Playing a Rubik’s Cube,”
International Conference on Medical Image Computing and Computer-
Assisted Intervention (MICCAI 2019), pp. 420–428, https://doi.org/10.
1007/978-3-030-32251-9_46.

[32] M. Blendowski, H. Nickisch, M. P. Heinrich, “How to Learn from Unla-
beled Volume Data: Self-supervised 3D Context Feature Learning," Proc.
Medical Image Computing and Computer Assisted Intervention – MIC-
CAI 2019, vol 11769, 2019, https://doi.org/10.1007/978-3-030-32226-7_
72.

[33] A. Ghosh, N. R. Pal, and S. K. Pal, “Self organization for object
extraction using a multilayer neural network and fuzziness measures,"
IEEE Transactions on Fuzzy Systems, vol. 1, no.1, pp. 54–68, 1993, doi:
10.1109/TFUZZ.1993.390285.

[34] S. Bhattacharyya, P. Dutta and U. Maulik, “A parallel bi-directional
self-organizing neural network (PBDSONN) architecture for color image
extraction and segmentation," Neurocomputing, vol. 86, pp. 1–23, 2012,
doi: https://doi.org/10.1016/j.neucom.2011.11.025.

[35] G. Purushothaman, N. B. Karayiannis, “Quantum neural networks
(QNNs): inherently fuzzy feedforward neural networks,” IEEE Transac-
tions on Neural Networks, vol. 8 , no. 3, 1997, doi: 10.1109/72.572106.

[36] T. C. Lu, G. R. Yu, and J. C. Juang, “Quantum-based algorithm
for optimizing artificial neural networks,” IEEE Transaction on Neural
Network and Learning Systems, vol. 24, no. 8, pp. 1266—1278, 2013,
doi: 10.1109/TNNLS.2013.2249089.

[37] Nam-H. Nguyen ; E. C. Behrman, A. Moustafa, J. E. Steck, “Bench-
marking Neural Networks For Quantum Computations,” IEEE Trans-
actions on Neural Networks and Learning Systems, pp. 1-10, 2019,
doi:10.1109/TNNLS.2019.2933394.

[38] E. M. Stoudenmire, and D. J. Schwab, “Supervised Learning
with Quantum-Inspired Tensor Networks,” https://www.arxiv-vanity.com/
papers/1605.05775/ , 2020.

[39] D. Konar, S. Bhattacharya, B. K. Panigrahi, K. Nakamatsu “A quantum
bi-directional self-organizing neural network (QBDSONN) architecture
for binary object extraction from a noisy perspective,” Applied Soft
Computing, vol.46, pp. 731–752, 2016, doi: https://doi.org/10.1016/j.asoc.
2015.12.040.

[40] D. Konar, S. Bhattacharya, U. Chakraborty, T. K.Gandhi, B. K. Pani-
grahi, “A quantum parallel bi-directional self-organizing neural network
(QPBDSONN) architecture for extraction of pure color objects from
noisy background,” Proc. IEEE International Conference on Advances in
Computing, Communications and Informatics (ICACCI), 2016, pp. 1912–
1918, 2016, doi: 10.1109/ICACCI.2016.7732330.

[41] D. Konar, S. Bhattacharyya and B. K. Panigrahi, “QIBDS Net: A
Quantum-Inspired Bi-Directional Self-supervised Neural Network Archi-
tecture for Automatic Brain MR Image Segmentation,” Proc. 8th Inter-
national Conference on Pattern Recognition and Machine Intelligence
(PReMI 2019), vol. 11942, pp. 87–95, 2019, doi:https://doi.org/10.1007/
978-3-030-34872-4_64.

[42] M. A. Nielson and I. L. Chung, Quantum computation and quantum
information, Cambridge University press, 2002.

[43] T. G. Kolda, B. W. Bader, “Tensor Decompositions and Applications,”
SIAM Review, vol. 51, no. 3, pp. 455-–500, 2009, doi: https://doi.org/10.
1137/07070111X.

[44] S. Bhattacharyya, P. Dutta and U. Maulik, “Multilevel image segmen-
tation with adaptive image context based thresholding,” Applied Soft
Computing, vol. 11, no.1, pp. 946–962, 2011, doi: https://doi.org/10.1016/
j.asoc.2010.01.015.

[45] N. Otsu, “A threshold selection method from gray level histograms,"
IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp.
62–66, 1979, doi: 10.1109/TSMC.1979.4310076.

[46] H. P. Ng, S. H. Ong, K. W. C. Foong, P. S. Goh, and W. L. Nowinski,
“Medical Image Segmentation Using K-Means Clustering and Improved
Watershed Algorithm," 2006 IEEE Southwest Symposium on Image
Analysis and Interpretation, 2006, doi: 10.1109/SSIAI.2006.1633722.

[47] B. H. Menze et al., “The multimodal brain tumor image segmentation
benchmark (BRATS)," IEEE Transactions on Medical Imaging, vol. 34,
no. 10, pp. 1993-–2024, 2015, doi: 10.1109/TMI.2014.2377694.



IEEE TRANSACTION ON NEURAL NETWORKS AND LEARNING SYSTEMS 13

[48] P. Bilic et al., “The Liver Tumor Segmentation Benchmark (LiTS),"
arXiv, 2019, arXiv:1901.04056.

[49] M. H. Gail and S. B. Green, “Critical values for the one-sided two-
sample Kolmogorov–Smirnov statistic," J. Am. Stat. Assoc., vol. 71, pp.
757–760, 1976.

[50] H. Kim, J. Kang, W. Park, S. Ko, Y. Cho, D. Yu, Y. Song, and J. Choi,
“Convergence Analysis of Optimization Algorithms," 2017, arXiv:1707.
01647.

Debanjan Konar (M’16-SM’21) earned his PhD
from Indian Institute of Technology Delhi, New
Delhi, India in 2021. He is now employed as a Post-
doctoral Researcher at the Center for Advanced Sys-
tems Understanding (CASUS), Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Germany. He is re-
cently appointed as a Lead Quantum Research Sci-
entist at BosonQ Psi, Bangalore, India. Dr Konar
was Helmholtz Visiting fellow [Nov’22-Jan’23] at
the Steinbuch Center for Computing (SCC), Karl-
sruhe Institute of Technology, Karlsruhe, Germany.

His research interests include quantum machine learning, hybrid classical-
quantum algorithms, quantum-inspired neural networks, deep learning, and
analyzing medical images. Dr. Konar has published several publications in
prestigious computer science journals such as IEEE TNNLs, IEEE Access,
Applied Soft Computing, Springer as well as conference proceedings. He is
a Senior Member of IEEE, member of ACM, and EuroScience. He has been
awarded various prestigious award in his credit including Fulbright-Nehru
Postdoctoral Research Fellowships 2022-2023, Helmholtz Visiting Fellowship,
Wilhelm und Else Heraeus-Stiftung Travel Grant award, GATE Postgraduate
Fellowship, National Scholarship (India) etc.

Siddhartha Bhattacharyya (M’10-SM’13) earned
a bachelor’s degree in Physics, as well as bachelor’s
and master’s degrees in optics and optoelectronics,
from the University of Calcutta, Kolkata, India, in
1995, 1998, and 2000, respectively, and a Ph.D. in
Computer Science and engineering from Jadavpur
University, Kolkata in 2008. He is currently serving
as the Principal of Rajnagar Mahavidyalaya, Birb-
hum, India. Prior to this, he was a Professor with the
Department of Computer Science and Engineering,
Christ University, Bengaluru, India. He also served

as the Principal of the RCC Institute of Information Technology, Kolkata.
He served as a Senior Research Scientist with the Faculty of Electrical
Engineering and Computer Science, VSB Technical University of Ostrava,
Ostrava, Czech Republic. He is a full foreign member of the Russian
Academy of Natural Sciences and the Russian Academy of Engineering.
He has co-authored six books, co-edited 94 books, and has authored or co-
authored more than 400 research publications in international journals and
conference proceedings. He has got two PCTs and 19 patents to his credit. His
research interests include soft computing, pattern recognition, multimedia data
processing, hybrid intelligence, social networks, and quantum computing. He
also serves as an Associate editor of Applied Soft Computing, Soft Computing
Letters etc.

Tapan K. Gandhi is currently working as Associate
Professor in the Dept. of Electrical Engineering, IIT
Delhi and adjunct faculty in the school of AI and
data science, IIT Jodhpur. Presently he is the Ca-
dence Chair Professor of Artificial Intelligence at IIT
Delhi. He is also research affiliate to MIT, USA. He
received his Ph.D. fellowship from (MIT, USA) and
obtained his Ph.D. in Biomedical Engineering from
IIT Delhi. Following his Ph.D., he has spent couple
of years as postdoctoral research scientist at MIT,
USA. Dr Gandhi was also awarded an INSPIRE

Faculty in the Engineering & Technology category of the Department of
Science & Technology, Govt. of India. During this 5 years’ tenure, he is
awarded as the excellent INSPIRE Faculty by DST, Govt. of India. His
research expertise spans from Computational Neuroscience, Brain imaging,
Assistive Technology, Bio-medical Instrumentation, machine learning, Cog-
nitive Computing to Artificial intelligence. He has published papers in top
ranking journals like Nature, PNAS, Current Biology, PloS Biology, IEEE
Transactions. He has more than 150 publications in International journals and
conference proceedings. He is PI & Co-PI of many funded projects from
Industry, International Organizations as well as Govt. of India organizations.
He is also a Fellow of the Indian National Academy of Engineering (INAE).

Bijaya K. Panigrahi is working as Institute Chair
Professor of Artificial Intelligence in the Department
of Electrical Engineering, Indian Institute of Tech-
nology (IIT), Delhi, India. In addition, he is cur-
rently heading the Centre for Automotive Research
and Tribology (CART), IIT Delhi. The research
interest of Dr. Panigrahi is Biomedical imaging,
Machine Intelligence and Evolutionary Computing.
His research interest also includes digital signal
processing techniques and its application for power
quality monitoring and power system protection.He

has served as the editorial board member/Associate Editor/Special Issue Guest
Editor of different international journals. He is also associated with various
international conferences in various capacities. He has published more than
250 research papers in various international and national journals including
IEEE Transactions (TPAMI, TNNLs etc.), Elsevier, Springer and conferences
of international repute. He is also Fellow of Indian National Academy of
Engineering (INAE) and Indian National Academy of Science.

Richard Jiang is a Senior Lecturer (Associate
Professor) in the School of Computing & Com-
munications at Lancaster University, UK. He is a
Fellow of HEA, a Leverhulme Research Fellow, an
EPSRC RISE Connector scientist, and an Associate
Member of EPSRC College. Dr Jiang’s research
interest mainly resides in the fields of Artificial In-
telligence, AI Ethics, Privacy and Security, Quantum
AI, Neuronal Computation and Biomedical Image
Analysis. His recent research has been supported
by grants from EPSRC (EP/P009727/1), Leverhulme

Trust (RF-2019-492), Qatar Science Foundation (NPRP No.8–140-2–065) and
other industry/international funders. He has supervised and co-supervised 12
PhD students. He authored over 80 publications including IEEE Transactions
and was the lead editor of three Springer books. He served as a PC/Editorial
member and a reviewer for various international conferences and journals.


