
Efficient large-scale oblique image matching based on cascade hashing

and match data scheduling
Qiyuan Zhang a, Shunyi Zheng a, Ce Zhang b,c, Rui Li a, Xiqi Wang a

aSchool of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079,
China.
bLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
cUK Centre for Ecology & Hydrology, Library Avenue, Lancaster LA1 4AP, UK.

ABSTRACT
In this paper, we design an efficient large-scale oblique image matching method. First, to reduce the
number of redundant transmissions of match data, we propose a novel three-level buffer data
scheduling (TLBDS) algorithm that considers the adjacency between images for match data
scheduling from disk to graphics memory. Second, we adopt the epipolar constraint to filter the
initial candidate points of cascade hashing matching, thereby significantly increasing the robustness
of matching feature points. Comprehensive experiments are conducted on three oblique image
datasets to test the efficiency and effectiveness of the proposed method. The experimental results
show that our method can complete a match pair within 2.50∼2.64 ms, which not only is much
faster than two open benchmark pipelines (i.e., OpenMVG and COLMAP) by 20.4∼97.0 times but
also have higher efficiency than two state-of-the-art commercial software (i.e., Agisoft Metashape
and Pix4Dmapper) by 10.4∼50.0 times.

Keywords: Oblique image matching; Feature point matching; SIFT; Cascade hashing; Match data
scheduling; Structure from motion.

1. Introduction

With the continuous development of unmanned aerial vehicles (UAVs) and oblique
imaging technology, oblique images have been employed for surface 3D reconstruction
of large-scale scenes such as cities (Xu et al., 2016). Precise camera poses are mandatory
to utilize oblique images in 3D reconstruction, which can be obtained by the airborne
GNSS/IMU (Global Navigation Satellite System/Inertial Measurement Unit) system.
However, limited by measurement accuracy, the image POS (position and orientation
system) data obtained through the airborne GNSS/IMU, and installation angle cannot
meet the requirement of direct image positioning and orientation accuracy. In the
computer vision community, Structure from Motion (SfM) is able to solve camera poses
and 3D points automatically from overlapped images with high accuracy (Snavely et al.,
2008; Westoby et al., 2012; Rupnik et al., 2013; Schönberger et al., 2014). In SfM technology,
a key step is image matching, which occupies approximately half of the computational
cost (Cheng et al., 2014).

Image matching aims to find corresponding points automatically between overlapping
images based on a specific similarity measure, which is an important research topic in
the field of photogrammetry and computer vision (Gruen et al., 2012). According to
matching primitives, image matching technologies can be divided into three categories：

point matching, line matching, and region matching (Cheng et al., 2014). Since the
invention of scale-invariant feature transform (SIFT) (Lowe, 2004), point matching
methods have become the mainstream for oblique image pipelines thanks to their
robustness to changes in scale, illumination, and viewpoint (Jiang et al., 2017b).
Nevertheless, the time complexity of point matching is high. There are two directions
to increse the efficiency of point matching, including the improvement of the algorithm
and the utilization of GPU computing. The former is related to design lightweight
algorithms such as speeded-up robust features (SURF) (Herbert et al., 2008), oriented fast
and rotated brief (ORB) (Rublee et al., 2012), while the latter aims to utilize the parallel
computing capability of GPUs (Wu, 2007; Xu et al., 2017; Li et al, 2019).

Within the field of oblique image matching, several open-source libraries and
commercial software have been developed and released over the past decade, such as
OpenMVG (Open Multiple View Geometry) (Moulon et al., 2016), MicMac (MicMac, 2018),
Agisoft Metashape (Agisoft, 2020) and Pix4Dmapper (Pix4Dmapper, 2020). The state-of-art
matching pipeline such as Pix4Dmapper (Pix4Dmapper, 2020), however, still requires 1.75
hours to match the oblique image with 14,255 images. As a consequence, a solution to
increase the matching efficiency of oblique images is urgently needed for 3D
reconstruction over large-scale scenes.

Oblique images are characterized by a large amount of data and a high degree of
spatial overlap between images, resulting in huge complexity in the combination of
match pairs (Jiang et al., 2020). When GPU card is used to accelerate the matching process
of oblique images, this will create a significant amount of redundant transmission of
match data between the disk and the graphic memory, leading to high time cost and
insufficient use of computational resources. Alternatively, the cascade hashing
algorithm has high efficiency for feature point matching, but the matching accuracy and
reliability are low compared with multi-random k-d trees algorithm (Silpa-Anan and Hartley,
2008). Given these gaps in either accuracy or efficiency, this paper proposed a novel efficient large-
scale oblique image matching method that can achieve a competitive accuracy compared with state-
of-the-art methods but with much high efficiency. Specifically, our method involves reducing
the redundant transmission of match data and increasing the accuracy of cascade
hashing matching to feature points. Our major contribution can be summarized as:

(1) We proposed a three-level buffer data scheduling (TLBDS) algorithm to achieve efficient
scheduling of match data from disk to graphic memory. The application of the TLBDS
algorithm enables the matching of large-volume oblique images on a mid-level computer,
and the matching efficiency will not be affected by the changes in the number of images.

(2) The epipolar constraint is introduced in the cascade hashing to filter the initial candidate
points, which increases the accuracy of the cascade hashing algorithm for matching feature
points.

(3) By fusing TLBDS and cascade hashing with epipolar constraint, we design a highly efficient
matching method for large-scale oblique images, where the accuracy and efficiency are tested
across different scales, platforms, and environments.

The remainder of this paper is structured as follows. Section 2 reviews the related work. The
proposed oblique image matching method is described in Section 3, and experiment results and

analyses are provided in Section 4. Some discussions about our method can be seen in Section 5,
and Section 6 draws the conclusion together with our further work.

2. Related work

Image matching is a key step in SfM 3D reconstruction. Compared with other matching methods,
the point feature-based matching technique has become a golden standard for aerial images, thanks
to its invariance to translation, rotation, and scale, and tolerance to large deformations caused by
changes in illumination and viewpoints (Jiang et al., 2020). So far, the mainstream matching
methods used in oblique image matching pipelines are based on feature points (e.g. Moulon et al.,
2016; MicMac, 2018; Agisoft, 2020; Pix4Dmapper, 2020). Oblique image matching based on point
feature involves two steps: 1) feature point extraction and 2) feature point matching. The time
complexity of feature extraction has a linear relationship with the number of images. Feature point
matching refers to searching of the corresponding feature points on two overlapping images.
Specifically, the cost of time in feature matching relates to the number of match pairs, the number
of feature points on images, and the time complexity of the feature point search algorithm. To reduce
the time cost of feature point extraction in SfM, Wu (2007) harnessed GPU-aided hardware
acceleration to increase the efficiency of SIFT feature point extraction algorithm. Herbert et al.
(2008) proposed a speeded-up robust feature (SURF) extraction algorithm. Rublee et al. (2012)
changed the feature descriptor to binary code and reduced the dimension of the descriptor. He et al.
(2018) enhanced the method of scale-space pyramids as well as descriptors, and utilized GPU
acceleration to speed up the feature extraction procedure. Similarly, Li et al. (2019) employed a
different optimization and parallel computing to implement a high-performance SIFT as HartSift.

Compared with traditional aerial images, the oblique image has a high degree of overlap, and the
number of oblique images collected by the drone at a test site is significantly high (Jiang et al., 2020).
Feature point matching of the oblique image could involve huge computational complexity when
simple exhaustive matching strategy is adopted. The selection of match pairs is the default strategy
to accelerate image matching (Jiang and Jiang, 2017a). To remove invalid match pairs, Barazzetti
et al. (2010) implemented match pair selection using spatial overlap based on the intersection of
footprints derived from rough POS. Jiang and Jiang (2017a) use the maximum spanning tree
(MST) algorithm after selecting the match pair to simplify the topological connection network (TCN)
graph, so as to remove the redundant match pairs. Inspired by text retrieval, Agarwal et al. (2009)
used a vocabulary tree-based image retrieval method to select match pairs from unordered images
(images without geographical labels and definite time series). In Wu (2013), the visual similarity
of the image is quantified by the number of feature points matching. After a small number of feature
points are extracted from the down-sampled image, match pairs are selected according to the
matching rate of the feature points. Similarly, Wang et al. (2019) quantified the visual similarity
of images based on the number of feature matches. The difference is that the multi-random k-d trees
algorithm is used to accelerate the approximate nearest neighbor (ANN) search of feature points.

Apart from match pair selection, the feature point matching, as the subsequent procedure after
feature point extraction, received wide attention over the past two decades. The feature point
matching takes the Euclidean distance or Hamming distance between the descriptor vectors as the
similarity measurement and leverages the ANN algorithm to find the corresponding feature points.
The k-d trees (Cover and Hart, 1967) are one of the most famous ANN algorithms. Although it is
very effective in low dimensionality, its performance will decline rapidly for high-dimensional

space. Silpa-Anan and Hartley (2008) proposed a novel multi-random k-d trees algorithm based on
the traditional k-d trees algorithm to accelerate the matching of SIFT descriptors. Since the well-
perfomed nearest neighbor search on high-dimensional data, it has been widely used in the field of
SfM 3D reconstruction (Moulon et al., 2016; MicMac, 2018). Muja and Lowe, (2009) performed
a wide range of comparison amongst k-d trees, PCA-tree (Sproull, 1991) and RP-tree (Dasgupta et
al., 2008), showing that the multi-random k-d trees are one of the most effective methods for
matching high dimensional SIFT descriptors. Muja and Lowe (2014) proposed a new algorithm
named the priority search k-means tree and released as an open-source library called fast library for
approximate nearest neighbors (FLANN), which has been integrated into many open-source
projects. Inspired by linear discriminant analysis hash (LDAHash) (Strecha et al., 2011), Cheng et
al., (2014) proposed a cascade hashing structure to speed up SIFT feature point matching.
Specifically, the cascade hashing is designed as a three-layer structure: hashing lookup, remapping,
and ranking. Each layer leverages different similarity measurements and filtering strategies to
reduce the sensitivity to noise. Further, Xu et al., (2017) implemented the cascade hashing algorithm
on the GPU and optimized the implementation details, resulting in 20-times faster approach
compared with original SIFT-GPU (Wu 2007). However, the accuracy of cascade hashing for
feature point matching is affected by hash mapping, which is low compared with the multi-random
k-d trees method as illustrated in Fig. 1.

(a) Cascade hashing matching, 910 matches

(b) Multi-random k-d trees matching, 2289 matches
Fig. 1 Comparison of the matching results of (a) cascade hashing, (b) multi-random k-d trees

3. Methods

A large-scale oblique image matching method is proposed by adopting efficient match data
scheduling and feature point matching with low time complexity. The overall workflow of the
method is illustrated in Fig. 2. Specifically, the cascade hashing algorithm is used to perform
clustering and matching considering its low time complexity (Cheng et al., 2014). We further

introduce the epipolar constraint to increase the accuracy of cascade hashing matching.
Subsequently, three-level buffer data scheduling algorithm (TLBDS) is proposed to reduce the
redundant match data transmission and enhance the efficiency of oblique image matching. In doing
so, the matching efficiency is increased and the trade-off between the size of the match data and the
available storage of the computer is balanced effectively.

Fig. 2. The overall workflow of the proposed oblique image matching method

3.1 Feature point clustering and matching

We first use SIFT-GPU (Wu, 2007) to extract the feature points of the image and calculate the
128-dimensional descriptor of each feature point (Lowe, 2004). Thereafter, the locality sensitive
hashing (LSH) algorithm (Charikar, 2002) is employed to calculate the bucket code of each feature
point to cluster the feature points. Feature point matching is achieved by the cascade hashing
algorithm with epipolar constraint that executes on the GPU card. The process of cascade hashing
can be divided into three steps, i.e., feature point clustering, initial candidate point selection, and
fine matching.

First, according to the 𝐿𝐿 bucket indexes (IDs), the feature point clustering is mapping all feature
points onto the hashing table of the corresponding image. The hashing table comprises 𝐿𝐿 groups of
buckets and each group contains 2𝑚𝑚 buckets, where 𝑚𝑚 is the bits of the bucket code. The initial
candidate points selection is to index the 𝐿𝐿 candidate buckets in the hashing table of the search
image 𝐽𝐽 based on the 𝐿𝐿 bucket IDs of the query point 𝑞𝑞. The Hamming distance between 𝑞𝑞 and
feature points in each candidate bucket is then calculated. For each candidate bucket, the 𝑘𝑘 feature
points with the smallest Hamming distance are retained as initial candidate points (i.e., the coarse
matching result). Finally, based on the Euclidean distance as the similarity measure and the Lowe
ratio test (Lowe, 2004), accurate matching points are selected from the initial candidate points. The
cascade hashing algorithm including clustering and initial selection is illustrated in Fig. 3.

Fig. 3. The flowchart of the cascade hashing algorithm.

In feature point clustering, the cascade hashing employs the LSH algorithm (Charikar, 2002) to
generate the hashing function, which is then utilized to calculate the hashing code and bucket ID of
each feature point. Here, we use 1-dimensional Gaussian distribution 𝑁𝑁(0, 1) as the hashing
function to generate 𝑁𝑁 random vectors 𝑟𝑟𝑖𝑖 with the length of 128, forming a random matrix
𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎ℎ with the size of 𝑛𝑛 × 128. The 𝑛𝑛-bit hashing code can be obtained by multiplying 𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎ℎ
with 128-dimensional descriptor vector 𝑞𝑞. Taking the product of the element 𝑟𝑟𝑖𝑖 of the 𝑖𝑖-th row of
𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎ℎ and the descriptor vector 𝑞𝑞, the hashing code is calculated as follows:

1, 0
()

0, 0i

i
r

i

if r q
h q

if r q
⋅ >

=  ⋅ ≤
 (1)

 Similarly, when calculating 𝐿𝐿 𝑚𝑚-bit bucket codes, random matrices 𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 with 𝑚𝑚 rows and
128 columns are first generated by 1-dimensional Gaussian distribution 𝑁𝑁(0, 1) and 𝐿𝐿 𝑚𝑚-bit bucket
codes of the descriptor are obtained by the dot product between 𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and descriptor vector 𝑞𝑞
thereafter. Finally, 𝐿𝐿 bucket IDs can be generated by converting the bucket codes from binary to
decimal.

To increase the accuracy of feature point matching based on cascade hashing, we introduce the
rough POS data and initial camera intrinsic parameters to calculate the epipolar between the
corresponding points in stereo images. The initial candidate points of the cascade hashing matching
are then filtered to leverage the epipolar constraint, and finally, the Euclidean distance is used as the
similarity measurement to match the feature points accurately.

3.2 Efficient three-level buffer data scheduling: from disk to graphics memory

To avoid the redundant transmission of match data and increase the utilization rate of
computional resources, we proposed a three-level buffer data scheduling (TLBDS) algorithm
composed of two parts, i.e., scheduling sequence generation and match data scheduling from disk
to graphics memory. To be specific, the scheduling sequence generation is to generate an optimal
match data reading order 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 and match data clearing order 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 based on the match pair
information available memory and graphics memory sizes. The match data scheduling transfer the
match data from the disk to the graphics memory based on the generated match data scheduling
sequence and clear the matched data in the graphics memory. For more details on TLBDS, a few
relevant terms are defined as:

Definition 1: Supposing that the set 𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 containing 𝑁𝑁 images, the match data of 𝑀𝑀 images
stored in the graphics memory are called the inner sets 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 while the match data of 𝑁𝑁 −𝑀𝑀
images stored in the disk or memory are called the outer sets 𝑆𝑆𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜. Before scheduling, all match
data are stored on the disk.

Definition 2: Assuming that there are 𝑀𝑀 match data in 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑁𝑁 match data in 𝑆𝑆𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
whose corresponding images exist matching relationships with the image 𝐼𝐼, the total match pairs
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎, the inner set match pairs 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, and the number of outer set match pairs 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 of
the image 𝐼𝐼 are 𝑀𝑀 + 𝑁𝑁, 𝑀𝑀, and 𝑁𝑁, respectively. In the scheduling sequence generation procedure,
the criterion for selecting the match data of the image 𝐼𝐼 is 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜔𝜔 ∗ 𝑀𝑀 −𝑁𝑁, where ω is the
weighting factor and is set as 2.3 in this paper.

Definition 3: Memory indicates the Random Access Memory (RAM) of the computer, while the
graphics memory denotes the memory of the graphics card. Based on the above definitions, the read-
in sequence 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 represent the sequence of match data that is waiting to be transferred from
memory to graphics memory, while the read-out sequence 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 signifies the sequence of matched
data that is waiting to be cleared in graphics memory.

Three situations exist during the scheduling sequence generation: no match data in the graphics
memory, part of the match data in the graphics memory but the available graphics memory has not
been used up, and no available graphics memory. For the first case, the 𝑖𝑖𝑖𝑖 of the image with the
largest 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 in 𝑆𝑆𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 will be pushed into the read-in sequence 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖. For the second case,
the 𝑖𝑖𝑖𝑖 of the image with the largest 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 in 𝑆𝑆𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 will be pushed into the read-in sequence
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖. For the third case, the 𝑖𝑖𝑖𝑖 of the image with the smallest 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 in the graphics memory
will be pushed to the read-out sequence 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 . Repeat the above process, the optimal data
scheduling sequence 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 and 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 can be gradually obtained. The details of the scheduling
sequence generated by the TLBDS algorithm are summarized in Algorithm 1.

Algorithm 1. Scheduling sequence generation
 Input:

Image name list:
 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 = {(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1, 0), … , (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁,𝑁𝑁 − 1)}1𝑁𝑁

Match pairs list:
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1, 𝑖𝑖𝑖𝑖𝑖𝑖𝐼𝐼𝑑𝑑2), … , (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁−1)}1𝑀𝑀

 Output:
Read-in sequence: 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖, read-out sequence: 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜

1 Initialize: inner sets 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≔ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒() , outer sets
𝑆𝑆𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ≔ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔 = 0.7

2 Gets the size of the available memory and available graphics
memory, 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑖𝑖𝑖𝑖

3 Gets the size of a single match file 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
5 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖 ≔ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔 ∗ 𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑖𝑖𝑖𝑖 / 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
6 procedure UPDATEIMAGEMATCHESNUMBER
7 Calculate 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 of each image
8 end procedure
9 while true do

10 if 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 . 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠() ≥ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖 then

11 Search an image 𝑖𝑖𝑖𝑖𝑖𝑖 with the minimum 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 in
𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

12 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜.𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖𝑖𝑖𝑖𝑖)
 13 procedure UPDATEIMAGEMATCHES

14 Update 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 of images related to the
image 𝑖𝑖𝑖𝑖𝑖𝑖

15 end procedure
16 else if 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠() 𝑖𝑖𝑖𝑖 0 then
17 Search an image 𝑖𝑖𝑖𝑖𝑖𝑖 with the largest 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 in 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖
18 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖.𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖𝑖𝑖𝑖𝑖)
19 Mark image 𝑖𝑖𝑖𝑖𝑖𝑖
20 procedure UPDATEIMAGEMATCHES

21 Update 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 of images related to the
image 𝑖𝑖𝑖𝑖𝑖𝑖

22 end procedure
23 else
24 Search an image 𝑖𝑖𝑖𝑖𝑖𝑖 with the largest 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 in 𝑆𝑆𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
25 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖.𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖𝑖𝑖𝑖𝑖)
26 Mark image 𝑖𝑖𝑖𝑖𝑖𝑖
27 procedure UPDATEIMAGEMATCHES

28 Update 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 of images related to the
image 𝑖𝑖𝑖𝑖𝑖𝑖

29 end procedure
30 end if
31 if all images have been marked then
32 break
33 end if
34 end while
35 return 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜

Fig. 4 Match data scheduling schematic diagram. Note that the read-in sequence determines the
transferred order of match data both from disk to memory in batch and from memory to graphics
memory one by one. The read-out sequence determines the cleared order of matched data in graphics
memory.

After acquiring the scheduling sequence of match data transmission, the match data of each
oblique image needs to be loaded into the graphics memory according to the read-in sequence 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖
and remove the matched data according to the read-out sequence 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 (Fig. 4), thereby avoiding
the underutilization of GPU card computing resources and reducing the redundant match data
transmission. When there is free space in the graphics memory, the corresponding match data of the
first 𝑖𝑖𝑖𝑖 in 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 is transmitted from the memory to the graphics memory. When the available
graphics memory is insufficient, we reclaim the storage space occupied by the match data according

to 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜. Finally, the cascade hashing algorithm with epipolar constraint is implemented on the
GPU card, and the TLBDS algorithm is used to perform match data scheduling, which can
efficiently achieve the matching of oblique images. The details of oblique image matching based on
match data scheduling and cascade hashing with epipolar constraint are summarized in Algorithm
2.

Algorithm 2. Oblique image matching based on match data scheduling and cascade hashing with
epipolar constraint

 Input:
Match data 𝐷𝐷 ≔ {𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓1,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓2, … ,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑁𝑁}
Read-in sequence 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖, read-out sequence 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜,
Maximum number of files loaded in memory and graphics

memory 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖
Match file byte size 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

 Output:
Match result 𝑅𝑅 ≔ {𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜1,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜2, … , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑁𝑁}

1

Initialize:
 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 ≔ 0, 𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 ≔ 0, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 ≔ 0, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 ≔ 0,
 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖 ∗ 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,

 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

2 Allocate byte size 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 in memory
3 Allocate byte size 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 in graphics memory
4 procedure LOADMATCHDATA

5 Import 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 match data files into memory,
according to 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖

6 end procedure
7 while true do
8 if 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 is 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠() − 1 then
9 break

10 end if
11 if 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 ≥ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖 then

 12 procedure READOUT
13 𝑖𝑖𝑖𝑖 ≔ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜[𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜]
14 Free 𝐷𝐷[𝑖𝑖𝑖𝑖] and take back byte size 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
15 end procedure
16 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 − 1
17 𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 ≔ 𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 + 1
18 else
19 if 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 then
20 procedure LOADMATCHDATA

21 Import 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 match data files into
memory, according to 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖

22 end procedure
23 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 ∶= 0
24 end if
25 procedure READIN
26 𝑖𝑖𝑖𝑖 ≔ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖[𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖]
27 Load 𝐷𝐷[𝑖𝑖𝑖𝑖] into graphics memory
28 end procedure
29 procedure FEATUREPOINTMATCHING

30 Performing feature point matching on GPU according to
cascade hashing with epipolar constraint.

31 end procedure
32 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 + 1

33 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 ≔ 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 + 1
34 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 ∶= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 + 1
35 return 𝑅𝑅

To avoid memory fragmentation and extra time consumption caused by memory application-
release, we stipulate that the match data file of each image has the same size. Therefore, the storage
space is allocated in memory and graphics memory all at once in the initialization phase. Meanwhile,
in the process of match data scheduling, the new match data fed into the graphics memory directly
cover the storage space occupied by cleared data. Hence, the accelerated computing power of the
GPU card can be fully exploited to perform oblique image matching. To be specific, the multi-
thread and CUDA Stream (Nvidia, 2010) technology are adopted to concurrent execution of match
data transmission and feature point matching, improving the efficiency of oblique image matching
significantly.

4. Experiment and results

In the experiments, we use three datasets captured in different sites and scales to evaluate the
performance of the proposed method. First, we test the effectiveness of the proposed TLBDS
algorithm by conducting match data scheduling experiments. Then, the adjacency matrix is obtained
from the match pair information to further validate the correctness of the scheduling sequence
generated by our TLBDS algorithm. For assessing the impact on the matching performance of
cascade hashing caused by the group number of buckets 𝐿𝐿, the number of bits of hash code 𝑛𝑛, the
number of bits of bucket code 𝑚𝑚, and the number of candidates 𝑘𝑘 in each candidate bucket, we
perform comparative feature point matching experiments using cascade hashing algorithm under
different parameter settings. Finally, we compare the performance of our method with four
frequently-used pipelines, including OpenMVG-ANNL2 (Moulon et al., 2016), OpenMVG-
CasHash (Moulon et al., 2016), Agisoft Metashape (Agisoft, 2020), and Pix4Dmapper
(Pix4Dmapper, 2020). We evaluate the merits of each method from three aspects including
efficiency, accuracy, and completeness. The proposed method is implemented using the C++
programming language and all experiments are executed on the Windows 10 platform with an Intel
Core i7-7820X CPU (3.60 GHz) and a TITAN Xp graphics card (12GB).

4.1 Test sites and datasets

Dataset-1: The ground covers of the first test site are presented in Fig. 5a. Dataset-1 is obtained
in the first test site by the oblique photography system with five SONY ILCE-5100 cameras. There
are 1, 914 oblique images in Dataset-1 with the size of 7592 × 5304 pixels. The camera mounting
angles in nadir and oblique directions are 0 °, 45°/- 45°, respectively. The altitude of this flight is
230m, the overlap degrees of images in the forward and side directions are 85% and 75%, and the
average GSD is 2.85 cm/pixel.

Dataset-2: The ground covers of the second test site are demonstrated in Fig. 5b. Dataset-2 is
acquired in the second test site by the conventional five-camera oblique photogrammetric system
equipped with SONY ILCE-5100 cameras. The overlap degree of 3, 490 oblique images in Dataset-
2 in the forward and side directions are 75% and 55%, respectively. The altitude of this flight is
140m, and the average GSD of Dataset-3 is 1.8 cm/pixel.

Dataset-3: The details of the third test site are illustrated in Fig. 5c. As a large-volume oblique
image dataset, Dataset-3 is gathered in the third test site by a conventional five-camera oblique

photogrammetric system with SONY ILCE-7R cameras. This photogrammetric system is equipped
with one nadir camera and four oblique cameras, with the four oblique cameras rotated by 45 ° with
the inspection to the nadir camera. There are 14, 225 oblique images in the size of 7360 × 4921
pixels, and the altitude of UAV flight is 300m.

Fig. 5. The orthoimage of the three study sites to show the ground details

The detailed information for the flight configuration of the three datasets is presented in Table 1.
During the data collection process, rough POS data of three datasets are measured using the
GNSS/IMU device where the nominal accuracies in the horizontal and vertical directions are 4~5
cm.
Table 1
Detailed information for flight configuration of the three datasets.

Item name Dataset-1 Dataset-2 Dataset-3
Flight height (m) 230 140 300

Forward / side
overlap (%) 85 / 75 75 / 55 75 / 55

Camera mode SONY
ILCE-5100

SONY
ILCE-5100

SONY
ILCE-7R

Number of cameras 5 5 5
Sensor size
(mm×mm) 23.4×15.6 23.4×15.6 35.9×23.9

Focal length (mm) nadir: 20
oblique: 35

nadir: 20
oblique: 35

nadir: 35
oblique: 50

Camera mount angle
nadir: 0

oblique: 45 /
-45

nadir: 0
oblique: 45 /

-45

nadir: 0
oblique: 45

/ -45
Number of images 1, 914 3, 490 14, 225

Image size
(pixel×pixel) 6000×4000 6000×4000 7360×4921

GSD(cm/pixel) 2.85 1.8 3.1

4.2 Analysis of key parameters of cascade hashing

The impact of the hash code bits 𝑛𝑛, the bucket bits 𝑚𝑚, the bucket groups 𝐿𝐿 and the number of
candidate points 𝑘𝑘 is analyzed by the performance of the cascade hashing using the controlled
variable method. To be specific, we calculate and report the recall of the last two candidate points
that meet the Lowes ratio test in Dataset-1. From Fig.6a, we can see that when hashing bits 𝑛𝑛 = 8,
cascade hashing has the highest recall for feature point matching, and when 𝑛𝑛 = 128, the recall
will also be close to 0.8. Considering the coupling between cascade hashing and SIFT, we set 𝑛𝑛 as
128 in this paper. According to Fig. 6b, we set 𝑚𝑚 = 10 in the subsequent experiments as the recall
of cascade hashing matching feature points will obtain the largest figure. Similarly, we set 𝐿𝐿 = 2 and
𝑘𝑘 = 1 based on the experimental results shown in Fig. 6c and Fig. 6d.

(a) Hash bits 𝑛𝑛 and recall (b) Bucket bits 𝑚𝑚 and recall

 (c) Bucket group 𝐿𝐿 and recall (d) Top 𝑘𝑘 nearest neighbors and recall
Fig. 6. The recall change, when hashing bits 𝑛𝑛, bucket bits 𝑚𝑚, bucket groups 𝐿𝐿, and 𝑘𝑘 change, the
nearest neighbor's two points are searched by cascade hashing to satisfy the Lowes ratio test.

4.3 Verification of correctness and effectiveness of TLBDS algorithm

In this section, we investigated the correctness and effectiveness of the TLBDS algorithm. Firstly,
the proposed TLBDS algorithm is employed to generate the data scheduling sequence, and then the

javascript:;

match data scheduling and matching are performed. The correctness of the TLBDS algorithm is
verified by checking whether there are missing match pairs after match data scheduling. Finally, by
comparing the number of match data transmissions before and after match data scheduling, the
effectiveness of the TLBDS algorithm is tested.
4.3.1 Correctness

To verify the correctness of the scheduling sequence generated by the TLBDS algorithm, we
perform match pair selection based on the pipeline proposed by (Barazzetti et al., 2010) and
generate the adjacency matrix, as shown in Fig. 7. In the adjacency matrix graph, if the position (𝑖𝑖,
𝑗𝑗) is blue, the image 𝐼𝐼𝑎𝑎 with id 𝑖𝑖 and image 𝐼𝐼𝑏𝑏 with id 𝑗𝑗 are a match pair. During the verification
process, the value of position (𝑖𝑖, 𝑗𝑗) in the adjacency matrix will be set as white after the match data
of match pairs (𝑖𝑖, 𝑗𝑗) is read into the graphics memory. If the scheduling sequence is correct, all the
elements in the adjacency matrix will be white after match data scheduling according to the
scheduling sequence. From Fig. 7, we can see that the adjacency matrices of the three datasets are
all completely cleared after scheduling matching, demonstrating the reliability of the proposed
TLBDS algorithm strongly.

(a) Adjacent matrix of Dataset-1 (b) Adjacency matrix after match data scheduling

(c) Adjacent matrix of Dataset-2 (d) Adjacency matrix after match data scheduling

(e) Adjacent matrix of Dataset-3 (f) Adjacency matrix after match data scheduling

Fig. 7. The adjacency matrix of match pairs of three datasets.
4.3.2 Effectiveness

For the TLBDS algorithm, the first step is to calculate an optimal match data scheduling sequence
according to match pairs information, memory size, and graphics memory size. The second step is
to load match data from disk to memory and then to graphics memory according to the data
scheduling sequence. In this section, we compare the number of match data transmissions before
and after the data schedule to verify the effectiveness of our TLBDS algorithm.
Table 2
The number of match data transmissions from the disk to memory and then to graphics memory.

Dataset
Before

data
scheduling

After data scheduling (TLBDS)

Storage size 1 Storage size 2

Dataset-1 95,872 5,168 2,895
Dataset-2 173,552 9,238 5,487
Dataset-3 709,370 39,820 24,189

We set two storage conditions: 1) the available memory size 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1Gb, available graphics
memory size 𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑖𝑖𝑖𝑖 = 4Gb; 2) 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 2Gb, 𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑖𝑖𝑖𝑖 = 8Gb, and count the number of match
data transmissions from the disk to memory and then to graphics memory. Without data scheduling,
the match data will be loaded by the order of the match pair which does not consider the reusability
of the match data stored in graphics memory, leading the redundant data transmissions. As shown
in Table 2, before data scheduling, there will be 95872, 173552, and 709370 transmissions in three
datasets. In contrast, the proposed TLBDS first generates an optimal data scheduling sequence that
rearranges the read-in and read-out order of match data. Specifically, if a match data 𝐴𝐴 has a match
relationship with the match data 𝐵𝐵 and 𝐵𝐵 will be read into the graphics memory later, then 𝐴𝐴 will
be scheduled at the relatively back position in the read-out sequence. The more matching
relationships 𝐴𝐴 has with the subsequent match data to be read, the later position in the read-out
sequence 𝐴𝐴 is. On the contrary, the match data with fewer match relationships with the subsequent
match data to be read will be scheduled at the front of the read-out sequence that will be released
early. As shown in Table 2, our TLBDS will save 10× to 20× transmissions and the advantages are
more obvious under larger storage conditions.

4.4 Comparison of efficiency, accuracy, and completeness with state-of-the-art
methods

We comprehensively evaluate our proposed method in efficiency, accuracy, and completeness
with state-of-the-art methods. Three software packages, including OpenMVG, Agisoft Metashape,
and Pix4Dmapper, are taken as comparative approaches. As a library for computer vision scientists
and the multi-view geometry community, OpenMVG is designed to provide an SfM solution from
feature extraction to sparse reconstruction. In the image feature point extraction stage, OpenMVG
integrates two algorithms: SIFT and AKAZE (Alcantarilla, 2013). Besides, OpenMVG provides
seven feature point matching methods, including the most commonly used multi-random k-d trees
and cascade hashing algorithm. The Agisoft Metashape combines the most advanced image feature
point matching algorithm and employs multi-core processing and GPU card parallel computing
technology, providing a robust and efficient oblique image matching function. As the world's
leading professional photogrammetric data processing software, Pix4Dmapper delivers a complete
solution from image matching to orthoimage generation. Similarly, Pix4Dmapper also uses multi-
core processing and GPU acceleration technology to improve the efficiency of digital image
matching. In the pipelines of Agisoft Metashape and Pix4Dmapper, brute force pair-wise matching
is replaced by rough POS data for match pair selection to reduce the time consumption.

For a fair comparison, we adopt the identical match pair selection results based on the method
proposed by (Barazzetti et al., 2010) as the input of the pipelines of OpenMVG-ANNL2
OpenMVG-CasHash and ours. Besides, as mature professional software does not provide the
application programming interface of intermediate processes, we fed the same rough POS data into
Agisoft Metashape and Pix4Dmapper for match pair selection. The detailed information of the five
pipelines for oblique image matching is shown in Table 3.
Table 3
The configure information of five oblique image matching pipelines

Pipeline
Match pairs

selection
method

Feature points
matching
algorithm

Match
data

schedu
ling

GPU
card

acceler
ation

OpenMVG-
ANNL2

External
input

Multi-random k-
d trees no no

OpenMVG-
CasHash

External
input Cascade hashing no no

Agisoft
Metashape

Rough POS
calculate / yes yes

Pix4Dmapper Rough POS
calculate / yes yes

Ours Rough POS
calculate

Improved
Cascade hashing yes yes

Note: due to the confidentiality of commercial software, unknown information in the table is
indicated by ‘/’.

4.4.1 Efficiency

We compare the number of match pairs matched per second to evaluate the matching efficiency.
To achieve the impartial comparison tests, we set all pipelines in Table 3 to use the same SIFT

algorithm with default parameters for extracting feature points. The match pairs generated by
Agisoft Metashape and Pix4Dmapper are based on the rough POS of oblique images. In our pipeline,
we employ the method proposed by Barazzetti et al., (2010) to select match pairs, while the
selected pairs are then fed into the OpenMVG-ANNL2 and OpenMVG-CasHash pipelines.

(a) Comparison of the number of match pairs

(b) Comparison of the time elapsed in the matching

(c) Comparison of matching efficiency.

Fig. 8. Comparison of (a) match pairs, (b) matching time, and (c) matching efficiency between
different pipelines.

Figure 8a shows the number of match pairs in the five pipelines. Since OpenMVG-ANNL2,
OpenMVG-CasHash, and our pipeline use the same match pairs, the number of match pairs in the
above three pipelines is the same. Meanwhile, the Agisoft Metashape and Pix4Dmapper pipelines
employ a more effective match pair selection method that reduces the number of redundant match
pairs. Therefore, the number of match pairs is smaller than that of our pipeline. Figure 8b shows the
time consumed by five pipelines matching three datasets, which can be seen that our pipeline
consumes the least time.

The matching efficiency of each pipeline is reported in three datasets in Fig. 8c. The efficiency
of the OpenMVG-ANNL2 pipeline and OpenMVG-CasHash pipeline is relatively low as they only
utilize the multi-core CPU for matching. Specifically, the matching efficiency of OpenMVG-
ANNL2 is 9.5 pairs/s for Dataset-1 and is 4.2 pairs/s for Dataset-2, while the figures for OpenMVG-
CasHash are 20 pairs/s and 13.8 pairs/s, respectively. Besides, without match data scheduling, the
efficiency (3.9 pairs/s for OpenMVG-ANNL2 and 7.9 pairs/s for OpenMVG-CasHash) becomes
lower for the larger Dataset-3. Please note that the only difference is that the OpenMVG-ANNL2
pipeline uses the multiple-random k-d trees algorithm to matching feature points, while the
OpenMVG-CasHash pipeline uses a cascade hashing algorithm. Through the above comparison, we
can find that the efficiency of the cascade hashing algorithm is about 2~3 times faster than the
multiple-random k-d trees algorithm.

We further compare the efficiency of the most advanced commercial software Agisoft Metashape
and Pix4Dmapper. The matching efficiency of Agisoft Metashape for the three datasets is 37.69
pairs/s, 37.5 pairs/s, and 9.8 pairs/s, while the figures for the Pix4Dmapper pipeline are 35.5 pairs/s,
39.1 pairs/s, and 7.7 pairs/s, respectively. As the Agisoft Metashape and Pix4Dmapper pipelines
generate fewer redundant match pairs, the match data of the search image corresponding to each
query image requires less memory and graphics memory. Considering the size of memory and
graphics memory, the match data can be transmitted into the memory and graphics memory within
finite times, leading to a relatively stable matching efficiency. However, the number of data
transmissions will increase with the growth of the match data volume, resulting in the
underutilization of computing resources and the reduction of matching efficiency. It can be found
that when matching Dataset-3, although accelerated by the GPU card, the efficiency of the Agisoft
Metashape pipeline and Pix4Dmapper pipeline is only equivalent to the cascade hashing performing
on a multi-core CPU.

By contrast, the efficiency of our pipeline is unacted on the match data volume since the optimal
match data scheduling sequence with minimum redundant data transmission is obtained by the
proposed TLBDS algorithm. Specifically, the efficiency of our pipeline on three datasets is 366.5
pairs/s, 400.3 pairs/s, and 397.1 pairs/s, respectively. In other words, it only takes approximately
2.50 ~ 2.64ms for our pipeline to matching a match pair. Compared with the state-of-the-art Agisoft
Metashape and Pix4Dmapper pipelines, the efficiency of oblique image matching has been
significantly improved by 10 to 50 times. More importantly, the efficiency of our method is hardly
affected by the change in the number of oblique images. As be seen from Fig. 8c, the efficiency gap
between our pipeline and the Agisoft Metashape as well as Pix4Dmapper pipelines is observably
widened for the large-volume Dataset-3.

4.4.2 Accuracy

For accuracy analysis, we adopt inliers proportion and the reprojection error after bundle
adjustment (BA) as the assessment criteria. By the positively correlated relationship, the inliers
proportion can directly measure the matching accuracy of the feature points in the oblique image.
The reprojection error can be used to comprehensively measure the accuracy of oblique image
matching. First, considering that the intermediate results cannot be obtained from the two
commercial pipelines (Agisoft Metashape and Pix4Dmapper), here we only compare the inliers
proportion with the OpenMVG-ANNL2 and OpenMVG-CasHash pipelines. Specially, we use the
RANSAC (Fischler et al., 1981) algorithm to estimate the fundamental matrix, then do geometric
verification and to removing the outliers. In each dataset, we count the inliers proportions of 1, 000
match pairs. As shown in Fig. 9, we can see: (1) The inliers proportion of OpenMVG-ANNL2
pipeline is higher than that of OpenMVG-CasHash pipeline, demonstrating the multiple-random k-
d trees algorithm has higher matching accuracy than the cascade hashing; (2) The inliers proportion
of our pipeline is significantly higher than that of the OpenMVG-CasHash pipeline but is similar to
the OpenMVG-ANNL2 pipeline, illustrating that the accuracy of proposed cascade hashing with
epipolar constraint can obtain a competitive performance with the multiple-random k-d trees.

Second, for evaluating the accuracy between our pipeline and the Agisoft Metashape as well as
Pix4Dmapper, we perform SfM reconstruction on the three datasets to obtain the accurate intrinsic
and camera pose of each image and 3D points. Thereafter, each 3D point is reprojected onto its
corresponding views image to calculate the average residual error of the image point. As shown in
Fig. 10, our pipeline achieves competitive performance in three datasets.

Comprehensive analysis of efficiency and accuracy, we can find that the proposed oblique image
matching method not only robustly delivers reliable accuracy but also significantly improves the
efficiency of large-scale oblique image matching.

(a) Dataset-1 inliers proportion. The average inliers proportion of OpenMVG-ANNL2,

OpenMVG-CasHash, and our pipeline was 0.76, 0.73, 0.75.

(b) Dataset-2 inliers proportion. The average inliers proportion of OpenMVG-ANNL2,
OpenMVG-CasHash, and our pipeline was 0.78, 0.68, 0.74.

(c) Dataset-3 inliers proportion. The average inliers proportion of OpenMVG-ANNL2,

OpenMVG-CasHash, and our pipeline was 0.79, 0.69, 0.76.
Fig. 9. Comparison of the inliers proportion of the three pipelines matching. It can be seen that
the matching accuracy of our pipeline is better than that of cascade hashing and close to that of
the multiple-random k-d trees algorithm.

Fig. 10. Average reprojection error comparison. The reprojection error can indirectly prove the
accuracy of oblique image matching, we can find that the accuracy of our method is the highest on
Dataset-2 and Dataset-3.

4.4.3 Completeness

For the completeness comparison, the BA experiment is employed to perform SfM reconstruction.
Specifically, the incremental SfM strategy is adopted in the Agisoft Metashape, Pix4Dmapper, and
our pipelines. In the BA stage, two images with a large enough intersection angle and a sufficient
number of well-distributed features are chosen as the seed to operate the scene recovery. Thereafter,
camera poses and 3D points are obtained by continuously adding a well-conditioned image to the
reconstructed scene. In the process of image registration and triangulation, local BA is executed to
reduce accumulated errors along newly added images. Thereafter, global BA is used to accurately
calculate all camera poses and 3D points (Snavely. 2008). To evaluate the completeness, the number
of connected images and 3D tie points is counted. Table 4 shows the information of the connected
images and the generated 3D points, while the 3D point cloud generated by our pipeline and
corresponding enlarged details are shown in Fig. 11. We can see that (1) the performance of our
pipeline is similar to the Agisoft Metashape and Pix4Dmapper pipelines in terms of the number of
connected images; (2) our reconstruction pipeline can obtain 3D point clouds with sufficient
completeness and detailed information.
Table 4
The numbers of connected images and 3D points for completeness comparison

Da
tas
et

Agisoft Metashape Pix4Dmapper Ours
Images Poin

ts
Images Poin

ts
Images Poin

ts
1 1,914/1

,914
293,
490

1,914/1
,914

102,
310

1,914/1
,914

259,
614

2 3,489/3
,490

473,
759

3,490/3
,490

423,
158

3,490/3
,490

693,
083

3 14,212/
14,225

4,63
1,65
0

14,214/
14,225

1,90
4,06
3

14,216/
14,225

3,07
3,28
4

(a) Dataset-1

(b) Dataset-2

(c) Dataset-3

Fig. 11. SfM re reconstruction result by our pipeline. The right image is the detail of the red
rectangle in the left image.

5. Discussion

In this paper, we propose an efficient large-scale oblique image matching method with two major
contributions. First, to improve the accuracy of the cascade hashing algorithm, the rough POS of
the oblique image is leveraged to calculate the epipolar between the corresponding points. The
epipolar is applied to the filter of the initial candidate points of the cascade hashing matching (as
shown in Section 3.1). Second, an algorithm called TLBDS is designed and employed for the
scheduling of match data from disk to graphics memory (as shown in Section 3.2), thereby reducing
the redundant transmission of data. Combining the cascade hashing with epipolar constraint and the
TLBDS algorithm, we have obtained an efficient method for oblique image matching, and the
efficiency of our method is 10 ~ 50 times that of the state-of-the-art.

From the analysis of the inliers proportion (as shown in Section 4.4.2), the accuracy of our method
is higher than the cascade hashing but slightly lower than the multiple-random k-d trees algorithm.
Compared with cascade hashing, the reason why our method has higher accuracy is that we use
epipolar constraints to filter the initial candidate points, thereby reducing the impact of hash
mapping and similar textures on fine matching. Specifically, the hash mapping error will cause more
noise in the candidate points obtained by using the Hamming distance as the similarity measure.
Meanwhile, the descriptor similarity of the feature points in the texture-similar region is relatively
high, during fine matching with the Euclidean distance between descriptors as the similarity
measure which will cause false matches. Besides, compared with the most correct corresponding
points, the influence of a small number of wrong points on the relative orientation results can be
eliminated in the subsequent BA optimization. Therefore, the difference in accuracy between our
method and the multiple-random k-d trees algorithm is negligible to the oblique image matching
employed in SfM. This is also confirmed in Figure 10.

In terms of the efficiency of oblique image matching, there are two reasons for our method's
remarkable efficiency. First, our method uses the cascade hashing with epipolar constraint to
matching the feature points. From Section 4.4.1, it can be found that the time complexity of this
algorithm is lower than that of the multiple-random k-d trees algorithm. Second, and the most
important is, we designed an efficient TLBDS algorithm, which can significantly reduce the
redundant transmission of match data(as shown in Section 4.3.2), and make full use of computing
resources of the GPU card. Specifically, redundant match data transmission has a high time cost and
will cause insufficient data supply, making computing resources in a state of waiting for match data.

6. Conclusions

In this paper, we propose an efficient large-scale oblique image matching method. Our
contributions are two-fold: fast feature points matching based on cascade hashing with epipolar
constraint and efficient three-level buffer match data scheduling. The extensive comparisons with
state-of-art pipelines on oblique image matching and SfM reconstructions on three datasets prove
the efficiency as well as the accuracy of our pipeline for large-scale oblique image matching.
Importantly, the application of the TLBDS algorithm allows to matching large-volume oblique
images on a mid-level computer, and the matching efficiency of our method will not be affected by
changes in the number of images. However, the accuracy of rough POS data will affect the matching
accuracy of our method. Therefore, reducing the dependence of our method on external conditions
is the direction that needs to be explored in our further research.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors would like to thank Jian Cheng who has made their algorithms of Cascade hashing
free and open-source, which is helpful to the research in this paper. Meanwhile, heartfelt thanks to
the anonymous reviewers and the editors, whose comments and advice improved the quality of the
work. This work was supported by the National Natural Science Foundation of China (41671452).

References
Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R., 2009. Building rome in a day. In: 2009

IEEE 12th international conference on computer vision. IEEE, pp. 72–79.
Agisoft, 2020. Agisoft metashape homepage. http://www.agisoft.com, accessed: 2020-2-24.
Alcantarilla, P.F, 2013. Fast explicit diffusion for accelerated features in nonlinear scale spaces, in

British Machine Vision Conference, Bristol, British Machine Vision Conference (BMVC).
Barazzetti, L., Remondino, F., Scaioni, M., Brumana, R., 2010. Fully automatic UAV image-based

sensor orientation. International Archives of Photogrammetry. Remote Sensing and Spatial
Information Sciences XXXVIII-1/C22, 25–31.

Charikar, M.S., 2002. Similarity estimation techniques from rounding algorithms. In Proceedings
of the thiry-fourth annual ACM symposium on Theory of computing (pp. 380-388).

Cheng, J., Leng, C., Wu, J., Cui, H., Lu, H.: Fast and accurate image matching with cascade hashing
for 3D reconstruction. In: Proceedings of IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pp. 1–8. IEEE, June 2014

Cover, T., Hart, P., 1967. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13 (1),
21–27.

Dasgupta., Sanjoy., Freund., Yoav., 2008. Random projection trees and low dimensional
manifolds. Proceedings of the Annual Acm Symposium on Theory of Computing, 124(4S),
537-546.

Fischler, M.A., Bolles, R.C., 1981. Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography. Commun. ACM 24 (6), 381–395.

Gruen, A., 2012. Development and status of image matching in photogrammetry. The Photogramm.
Record 27 (137), 36–57.

Herbert, Bay., Andreas, Ess., et al., 2008. Speeded-up robust features (surf). Computer Vision &
Image Understanding.

Jiang, S., Jiang, W., 2017a. Efficient structure from motion for oblique uav images based on
maximal spanning tree expansion. ISPRS J. Photogramm. Remote Sens. 132, 140–161.

Jiang, S., Jiang, W., 2017b. On-board GNSS/IMU assisted feature extraction and matching for
oblique UAV images. Remote Sensing, 9(8), 813.

Jiang, S., Jiang, C., Jiang, W., 2020. Efficient structure from motion for large-scale UAV images:
A review and a comparison of SfM tools. ISPRS Journal of Photogrammetry and Remote
Sensing, 167, 230-251.

Li, Z., Jia, H., Zhang, Y., Liu, S., Li, S., Wang, X., et al. 2019. Efficient parallel optimizations of a
high-performance sift on gpus. Journal of Parallel and Distributed Computing, 124(FEB.), 78-
91.

Lowe, D.G., 2004. Distinctive Image Features from Scale-Invariant Keypoints. International
Journal of Computer Vision. 60(2):91-110.

MicMac. Available online: http://www.tapenade.gamsau.archi.fr/TAPEnADe/Tools.html accessed
on 19 March 2018).

Moulon, P., Monasse, P., Perrot, R., Marlet, R., 2016. OpenMVG: Open multiple view geometry.
In International Workshop on Reproducible Research in Pattern Recognition (pp. 60-74).
Springer, Cham.

Muja, M., Lowe, D.G., 2009. Fast Approximate Nearest Neighbors with Automatic Algorithm
Configuration. International Conference on Computer Vision Theory & Application Vissapp.

Muja, M., Lowe, D.G., 2014. Scalable nearest neighbor algorithms for high dimensional
data. Pattern Analysis & Machine Intelligence IEEE Transactions on, 36(11), 2227-2240.

Nvidia, C.: Programming Guide (2010).
Pix4Dmapper, 2020. Pix4dmapper homepage. https://www.pix4d.com, accessed: 2020- 2-24.
Rublee, E., Rabaud, V., Konolige, K., Bradski, G., 2012. ORB: An efficient alternative to SIFT or

SURF. International Conference on Computer Vision. IEEE.
Rupnik, E., Nex, F., Remondino, F., 2013. Automatic orientation of large blocks of oblique images.

Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XL-1/W1, 299–304.
Schönberger, J.L., Fraundorfer, F., Frahm, J.-M., 2014. Structure-from-motion for UAV image

sequence analysis with photogrammetric applications. Int. Arch. Photogramm. Remote Sens.
Spatial Inf. Sci. XL-3 (3), 305–312.

Silpa-Anan, C., Hartley, R., 2008. Optimised K-d treess for fast image descriptor matching. IEEE
Conference on Computer Vision & Pattern Recognition, pp. 1-8.

Snavely, N., Seitz, S. M., Szeliski, R., 2008. Skeletal graphs for efficient structure from motion.
In 2008 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1-8). IEEE.

Sproull, R.F., 1991. Refinements to nearest-neighbor searching in k-dimensional
trees. Algorithmica, 6(1-6), 579-589.

Strecha, C., Bronstein, A.M., Bronstein, M.M., Fua, P., 2011. Ldahash: improved matching with
smaller descriptors. IEEE Transactions on Pattern Analysis & Machine Intelligence, 34(1).

Wang, X., Rottensteiner, F., Heipke, C., 2019. Structure from motion for ordered and unordered
image sets based on random kd forests and global pose estimation. ISPRS J. Photogramm.
Remote Sens. 147, 19–41.

Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., Reynolds, J.M., 2012. ‘Structure-
from-Motion’photogrammetry: a low-cost, effective tool for geoscience applications.
Geomorphology 179, 300–314.

Wu, C., 2007. SiftGPU: A GPU Implementation of David Lowe’s Scale Invariant Feature
Transform (SIFT). <https://github.com/pitzer/SiftGPU> (accessed: 2017- 06-19).
Wu, C., 2013. Towards Linear-Time Incremental Structure from Motion. In: International

Conference on 3d Vision, pp. 127–134.
Xu, T., Sun, K., Tao, W., 2017. GPU Accelerated Image Matching with Cascade hashing. CCF

Chinese Conference on Computer Vision. Springer, Singapore.
Xu, Z., Wu, L., Gerke, M., Wang, R., Yang, H., 2016. Skeletal camera network embedded structure-

from-motion for 3D scene reconstruction from UAV images. ISPRS J. Photogramm. Remote
Sens. 121, 113–127.

Yang, H.C., Zhang, S.B., Wang, Y.B., 2012. Robust and precise registration of oblique images
based on scale-invariant feature transformation algorithm. IEEE Geosci. Remote Sens. Lett. 9
(4), 783–787.

	1. Introduction
	2. Related work
	3. Methods
	3.1 Feature point clustering and matching
	3.2 Efficient three-level buffer data scheduling: from disk to graphics memory

	4. Experiment and results
	4.1 Test sites and datasets
	4.2 Analysis of key parameters of cascade hashing
	4.3 Verification of correctness and effectiveness of TLBDS algorithm
	4.3.1 Correctness
	4.3.2 Effectiveness

	4.4 Comparison of efficiency, accuracy, and completeness with state-of-the-art methods
	4.4.1 Efficiency
	4.4.2 Accuracy
	4.4.3 Completeness

	5. Discussion
	6. Conclusions
	References

