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ABSTRACT 
In this paper, we design an efficient large-scale oblique image matching method. First, to reduce the 
number of redundant transmissions of match data, we propose a novel three-level buffer data 
scheduling (TLBDS) algorithm that considers the adjacency between images for match data 
scheduling from disk to graphics memory. Second, we adopt the epipolar constraint to filter the 
initial candidate points of cascade hashing matching, thereby significantly increasing the robustness 
of matching feature points. Comprehensive experiments are conducted on three oblique image 
datasets to test the efficiency and effectiveness of the proposed method. The experimental results 
show that our method can complete a match pair within 2.50∼2.64 ms, which not only is much 
faster than two open benchmark pipelines (i.e., OpenMVG and COLMAP) by 20.4∼97.0 times but 
also have higher efficiency than two state-of-the-art commercial software (i.e., Agisoft Metashape 
and Pix4Dmapper) by 10.4∼50.0 times. 
 
Keywords: Oblique image matching; Feature point matching; SIFT; Cascade hashing; Match data 
scheduling; Structure from motion. 

1. Introduction 

With the continuous development of unmanned aerial vehicles (UAVs) and oblique 
imaging technology, oblique images have been employed for surface 3D reconstruction 
of large-scale scenes such as cities (Xu et al., 2016). Precise camera poses are mandatory 
to utilize oblique images in 3D reconstruction, which can be obtained by the airborne 
GNSS/IMU (Global Navigation Satellite System/Inertial Measurement Unit) system. 
However, limited by measurement accuracy, the image POS (position and orientation 
system) data obtained through the airborne GNSS/IMU, and installation angle cannot 
meet the requirement of direct image positioning and orientation accuracy. In the 
computer vision community, Structure from Motion (SfM) is able to solve camera poses 
and 3D points automatically from overlapped images with high accuracy (Snavely et al., 
2008; Westoby et al., 2012; Rupnik et al., 2013; Schönberger et al., 2014). In SfM technology, 
a key step is image matching, which occupies approximately half of the computational 
cost (Cheng et al., 2014). 

Image matching aims to find corresponding points automatically between overlapping 
images based on a specific similarity measure, which is an important research topic in 
the field of photogrammetry and computer vision (Gruen et al., 2012). According to 
matching primitives, image matching technologies can be divided into three categories：



point matching, line matching, and region matching (Cheng et al., 2014). Since the 
invention of scale-invariant feature transform (SIFT) (Lowe, 2004), point matching 
methods have become the mainstream for oblique image pipelines thanks to their 
robustness to changes in scale, illumination, and viewpoint (Jiang et al., 2017b). 
Nevertheless, the time complexity of point matching is high. There are two directions 
to increse the efficiency of point matching, including the improvement of the algorithm 
and the utilization of GPU computing. The former is related to design lightweight 
algorithms such as speeded-up robust features (SURF) (Herbert et al., 2008), oriented fast 
and rotated brief (ORB) (Rublee et al., 2012), while the latter aims to utilize the parallel 
computing capability of GPUs (Wu, 2007; Xu et al., 2017; Li et al, 2019). 

Within the field of oblique image matching, several open-source libraries and 
commercial software have been developed and released over the past decade, such as 
OpenMVG (Open Multiple View Geometry) (Moulon et al., 2016), MicMac (MicMac, 2018), 
Agisoft Metashape (Agisoft, 2020) and Pix4Dmapper (Pix4Dmapper, 2020). The state-of-art 
matching pipeline such as Pix4Dmapper (Pix4Dmapper, 2020), however, still requires 1.75 
hours to match the oblique image with 14,255 images. As a consequence, a solution to 
increase the matching efficiency of oblique images is urgently needed for 3D 
reconstruction over large-scale scenes.  

Oblique images are characterized by a large amount of data and a high degree of 
spatial overlap between images, resulting in huge complexity in the combination of 
match pairs (Jiang et al., 2020). When GPU card is used to accelerate the matching process 
of oblique images, this will create a significant amount of redundant transmission of 
match data between the disk and the graphic memory, leading to high time cost and 
insufficient use of computational resources. Alternatively, the cascade hashing 
algorithm has high efficiency for feature point matching, but the matching accuracy and 
reliability are low compared with multi-random k-d trees algorithm (Silpa-Anan and Hartley, 
2008). Given these gaps in either accuracy or efficiency, this paper proposed a novel efficient large-
scale oblique image matching method that can achieve a competitive accuracy compared with state-
of-the-art methods but with much high efficiency. Specifically, our method involves reducing 
the redundant transmission of match data and increasing the accuracy of cascade 
hashing matching to feature points. Our major contribution can be summarized as: 

(1) We proposed a three-level buffer data scheduling (TLBDS) algorithm to achieve efficient 
scheduling of match data from disk to graphic memory. The application of the TLBDS 
algorithm enables the matching of large-volume oblique images on a mid-level computer, 
and the matching efficiency will not be affected by the changes in the number of images. 

(2) The epipolar constraint is introduced in the cascade hashing to filter the initial candidate 
points, which increases the accuracy of the cascade hashing algorithm for matching feature 
points. 

(3) By fusing TLBDS and cascade hashing with epipolar constraint, we design a highly efficient 
matching method for large-scale oblique images, where the accuracy and efficiency are tested 
across different scales, platforms, and environments. 

The remainder of this paper is structured as follows. Section 2 reviews the related work. The 
proposed oblique image matching method is described in Section 3, and experiment results and 



analyses are provided in Section 4. Some discussions about our method can be seen in Section 5, 
and Section 6 draws the conclusion together with our further work.  

2. Related work 

Image matching is a key step in SfM 3D reconstruction. Compared with other matching methods, 
the point feature-based matching technique has become a golden standard for aerial images, thanks 
to its invariance to translation, rotation, and scale, and tolerance to large deformations caused by 
changes in illumination and viewpoints (Jiang et al., 2020). So far, the mainstream matching 
methods used in oblique image matching pipelines are based on feature points (e.g. Moulon et al., 
2016; MicMac, 2018; Agisoft, 2020; Pix4Dmapper, 2020). Oblique image matching based on point 
feature involves two steps: 1) feature point extraction and 2) feature point matching. The time 
complexity of feature extraction has a linear relationship with the number of images. Feature point 
matching refers to searching of the corresponding feature points on two overlapping images. 
Specifically, the cost of time in feature matching relates to the number of match pairs, the number 
of feature points on images, and the time complexity of the feature point search algorithm. To reduce 
the time cost of feature point extraction in SfM, Wu (2007) harnessed GPU-aided hardware 
acceleration to increase the efficiency of SIFT feature point extraction algorithm. Herbert et al. 
(2008) proposed a speeded-up robust feature (SURF) extraction algorithm. Rublee et al. (2012) 
changed the feature descriptor to binary code and reduced the dimension of the descriptor. He et al. 
(2018) enhanced the method of scale-space pyramids as well as descriptors, and utilized GPU 
acceleration to speed up the feature extraction procedure. Similarly, Li et al. (2019) employed a 
different optimization and parallel computing to implement a high-performance SIFT as HartSift. 

Compared with traditional aerial images, the oblique image has a high degree of overlap, and the 
number of oblique images collected by the drone at a test site is significantly high (Jiang et al., 2020). 
Feature point matching of the oblique image could involve huge computational complexity when 
simple exhaustive matching strategy is adopted. The selection of match pairs is the default strategy 
to accelerate image matching (Jiang and Jiang, 2017a). To remove invalid match pairs, Barazzetti 
et al. (2010) implemented match pair selection using spatial overlap based on the intersection of 
footprints derived from rough POS. Jiang and Jiang (2017a) use the maximum spanning tree 
(MST) algorithm after selecting the match pair to simplify the topological connection network (TCN) 
graph, so as to remove the redundant match pairs. Inspired by text retrieval, Agarwal et al. (2009) 
used a vocabulary tree-based image retrieval method to select match pairs from unordered images 
(images without geographical labels and definite time series). In Wu (2013), the visual similarity 
of the image is quantified by the number of feature points matching. After a small number of feature 
points are extracted from the down-sampled image, match pairs are selected according to the 
matching rate of the feature points. Similarly, Wang et al. (2019) quantified the visual similarity 
of images based on the number of feature matches. The difference is that the multi-random k-d trees 
algorithm is used to accelerate the approximate nearest neighbor (ANN) search of feature points.  

Apart from match pair selection, the feature point matching, as the subsequent procedure after 
feature point extraction, received wide attention over the past two decades. The feature point 
matching takes the Euclidean distance or Hamming distance between the descriptor vectors as the 
similarity measurement and leverages the ANN algorithm to find the corresponding feature points. 
The k-d trees (Cover and Hart, 1967) are one of the most famous ANN algorithms. Although it is 
very effective in low dimensionality, its performance will decline rapidly for high-dimensional 



space. Silpa-Anan and Hartley (2008) proposed a novel multi-random k-d trees algorithm based on 
the traditional k-d trees algorithm to accelerate the matching of SIFT descriptors. Since the well-
perfomed nearest neighbor search on high-dimensional data, it has been widely used in the field of 
SfM 3D reconstruction (Moulon et al., 2016; MicMac, 2018). Muja and Lowe, (2009) performed 
a wide range of comparison amongst k-d trees, PCA-tree (Sproull, 1991) and RP-tree (Dasgupta et 
al., 2008), showing that the multi-random k-d trees are one of the most effective methods for 
matching high dimensional SIFT descriptors. Muja and Lowe (2014) proposed a new algorithm 
named the priority search k-means tree and released as an open-source library called fast library for 
approximate nearest neighbors (FLANN), which has been integrated into many open-source 
projects. Inspired by linear discriminant analysis hash (LDAHash) (Strecha et al., 2011), Cheng et 
al., (2014) proposed a cascade hashing structure to speed up SIFT feature point matching. 
Specifically, the cascade hashing is designed as a three-layer structure: hashing lookup, remapping, 
and ranking. Each layer leverages different similarity measurements and filtering strategies to 
reduce the sensitivity to noise. Further, Xu et al., (2017) implemented the cascade hashing algorithm 
on the GPU and optimized the implementation details, resulting in 20-times faster approach 
compared with original SIFT-GPU (Wu 2007). However, the accuracy of cascade hashing for 
feature point matching is affected by hash mapping, which is low compared with the multi-random 
k-d trees method as illustrated in Fig. 1. 

 
(a) Cascade hashing matching, 910 matches 

 

(b) Multi-random k-d trees matching, 2289 matches 
Fig. 1 Comparison of the matching results of (a) cascade hashing, (b) multi-random k-d trees 

3. Methods 

A large-scale oblique image matching method is proposed by adopting efficient match data 
scheduling and feature point matching with low time complexity. The overall workflow of the 
method is illustrated in Fig. 2. Specifically, the cascade hashing algorithm is used to perform 
clustering and matching considering its low time complexity (Cheng et al., 2014). We further 



introduce the epipolar constraint to increase the accuracy of cascade hashing matching. 
Subsequently, three-level buffer data scheduling algorithm (TLBDS) is proposed to reduce the 
redundant match data transmission and enhance the efficiency of oblique image matching. In doing 
so, the matching efficiency is increased and the trade-off between the size of the match data and the 
available storage of the computer is balanced effectively.  

 
Fig. 2. The overall workflow of the proposed oblique image matching method 

3.1 Feature point clustering and matching  

We first use SIFT-GPU (Wu, 2007) to extract the feature points of the image and calculate the 
128-dimensional descriptor of each feature point (Lowe, 2004). Thereafter, the locality sensitive 
hashing (LSH) algorithm (Charikar, 2002) is employed to calculate the bucket code of each feature 
point to cluster the feature points. Feature point matching is achieved by the cascade hashing 
algorithm with epipolar constraint that executes on the GPU card. The process of cascade hashing 
can be divided into three steps, i.e., feature point clustering, initial candidate point selection, and 
fine matching.  

First, according to the 𝐿𝐿 bucket indexes (IDs), the feature point clustering is mapping all feature 
points onto the hashing table of the corresponding image. The hashing table comprises 𝐿𝐿 groups of 
buckets and each group contains 2𝑚𝑚 buckets, where 𝑚𝑚 is the bits of the bucket code. The initial 
candidate points selection is to index the 𝐿𝐿 candidate buckets in the hashing table of the search 
image 𝐽𝐽 based on the 𝐿𝐿 bucket IDs of the query point 𝑞𝑞. The Hamming distance between 𝑞𝑞 and 
feature points in each candidate bucket is then calculated. For each candidate bucket, the 𝑘𝑘 feature 
points with the smallest Hamming distance are retained as initial candidate points (i.e., the coarse 
matching result). Finally, based on the Euclidean distance as the similarity measure and the Lowe 
ratio test (Lowe, 2004), accurate matching points are selected from the initial candidate points. The 
cascade hashing algorithm including clustering and initial selection is illustrated in Fig. 3. 



 
Fig. 3. The flowchart of the cascade hashing algorithm.  

In feature point clustering, the cascade hashing employs the LSH algorithm (Charikar, 2002) to 
generate the hashing function, which is then utilized to calculate the hashing code and bucket ID of 
each feature point. Here, we use 1-dimensional Gaussian distribution 𝑁𝑁(0, 1)  as the hashing 
function to generate 𝑁𝑁  random vectors 𝑟𝑟𝑖𝑖  with the length of 128, forming a random matrix 
𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎ℎ  with the size of 𝑛𝑛 × 128. The 𝑛𝑛-bit hashing code can be obtained by multiplying 𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎ℎ 
with 128-dimensional descriptor vector 𝑞𝑞. Taking the product of the element 𝑟𝑟𝑖𝑖 of the 𝑖𝑖-th row of 
𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎ℎ and the descriptor vector 𝑞𝑞, the hashing code is calculated as follows: 
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   Similarly, when calculating 𝐿𝐿 𝑚𝑚-bit bucket codes, random matrices 𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 with 𝑚𝑚 rows and 
128 columns are first generated by 1-dimensional Gaussian distribution 𝑁𝑁(0, 1) and 𝐿𝐿 𝑚𝑚-bit bucket 
codes of the descriptor are obtained by the dot product between 𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and descriptor vector 𝑞𝑞 
thereafter. Finally, 𝐿𝐿 bucket IDs can be generated by converting the bucket codes from binary to 
decimal.  

To increase the accuracy of feature point matching based on cascade hashing, we introduce the 
rough POS data and initial camera intrinsic parameters to calculate the epipolar between the 
corresponding points in stereo images. The initial candidate points of the cascade hashing matching 
are then filtered to leverage the epipolar constraint, and finally, the Euclidean distance is used as the 
similarity measurement to match the feature points accurately.  

3.2 Efficient three-level buffer data scheduling: from disk to graphics memory 

To avoid the redundant transmission of match data and increase the utilization rate of 
computional resources, we proposed a three-level buffer data scheduling (TLBDS) algorithm 
composed of two parts, i.e., scheduling sequence generation and match data scheduling from disk 
to graphics memory. To be specific, the scheduling sequence generation is to generate an optimal 
match data reading order 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 and match data clearing order 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜  based on the match pair 
information available memory and graphics memory sizes. The match data scheduling transfer the 
match data from the disk to the graphics memory based on the generated match data scheduling 
sequence and clear the matched data in the graphics memory. For more details on TLBDS, a few 
relevant terms are defined as: 



Definition 1: Supposing that the set 𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 containing 𝑁𝑁 images, the match data of 𝑀𝑀 images 
stored in the graphics memory are called the inner sets 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 while the match data of 𝑁𝑁 −𝑀𝑀 
images stored in the disk or memory are called the outer sets 𝑆𝑆𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜. Before scheduling, all match 
data are stored on the disk. 

Definition 2: Assuming that there are 𝑀𝑀 match data in 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  and 𝑁𝑁 match data in 𝑆𝑆𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 
whose corresponding images exist matching relationships with the image 𝐼𝐼, the total match pairs 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎, the inner set match pairs 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, and the number of outer set match pairs 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 of 
the image 𝐼𝐼 are 𝑀𝑀 +  𝑁𝑁, 𝑀𝑀, and 𝑁𝑁, respectively. In the scheduling sequence generation procedure, 
the criterion for selecting the match data of the image 𝐼𝐼 is 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜔𝜔 ∗ 𝑀𝑀 −𝑁𝑁, where ω is the 
weighting factor and is set as 2.3 in this paper. 

Definition 3: Memory indicates the Random Access Memory (RAM) of the computer, while the 
graphics memory denotes the memory of the graphics card. Based on the above definitions, the read-
in sequence 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖  represent the sequence of match data that is waiting to be transferred from 
memory to graphics memory, while the read-out sequence 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 signifies the sequence of matched 
data that is waiting to be cleared in graphics memory. 

Three situations exist during the scheduling sequence generation: no match data in the graphics 
memory, part of the match data in the graphics memory but the available graphics memory has not 
been used up, and no available graphics memory. For the first case, the 𝑖𝑖𝑖𝑖 of the image with the 
largest 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎  in 𝑆𝑆𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 will be pushed into the read-in sequence 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖. For the second case, 
the 𝑖𝑖𝑖𝑖 of the image with the largest 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 in 𝑆𝑆𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 will be pushed into the read-in sequence 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖. For the third case, the 𝑖𝑖𝑖𝑖 of the image with the smallest 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 in the graphics memory 
will be pushed to the read-out sequence 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 . Repeat the above process, the optimal data 
scheduling sequence 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 and 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 can be gradually obtained. The details of the scheduling 
sequence generated by the TLBDS algorithm are summarized in Algorithm 1. 

Algorithm 1. Scheduling sequence generation 
 Input:  

Image name list: 
 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 = {(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1, 0), … , (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁,𝑁𝑁 − 1)}1𝑁𝑁 

Match pairs list:  
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = {(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1, 𝑖𝑖𝑖𝑖𝑖𝑖𝐼𝐼𝑑𝑑2), … , (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁−1)}1𝑀𝑀 

 Output:  
Read-in sequence: 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖, read-out sequence: 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 

1 Initialize: inner sets  𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≔ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒() , outer sets 
𝑆𝑆𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ≔ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔 = 0.7 

2 Gets the size of the available memory and available graphics 
memory, 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑖𝑖𝑖𝑖 

3 Gets the size of a single match file 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 
5   𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖 ≔ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔 ∗ 𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑖𝑖𝑖𝑖  / 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 
6 procedure UPDATEIMAGEMATCHESNUMBER 
7   Calculate 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 of each image 
8 end procedure 
9 while true do 

10 if 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 . 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠() ≥ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖 then 

11 Search an image 𝑖𝑖𝑖𝑖𝑖𝑖  with the minimum  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  in 
𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

12       𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜.𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖𝑖𝑖𝑖𝑖) 
 13       procedure UPDATEIMAGEMATCHES 



14         Update 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  of images related to the 
image  𝑖𝑖𝑖𝑖𝑖𝑖 

15       end procedure 
16     else if  𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠() 𝑖𝑖𝑖𝑖 0 then 
17       Search an image 𝑖𝑖𝑖𝑖𝑖𝑖 with the largest 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 in 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 
18       𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖.𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖𝑖𝑖𝑖𝑖) 
19       Mark image 𝑖𝑖𝑖𝑖𝑖𝑖 
20       procedure UPDATEIMAGEMATCHES 

21         Update 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  of images related to the 
image 𝑖𝑖𝑖𝑖𝑖𝑖 

22       end procedure 
23     else  
24       Search an image 𝑖𝑖𝑖𝑖𝑖𝑖 with the largest 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 in 𝑆𝑆𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 
25       𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖.𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖𝑖𝑖𝑖𝑖) 
26       Mark image 𝑖𝑖𝑖𝑖𝑖𝑖 
27       procedure UPDATEIMAGEMATCHES 

28       Update 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 of images related to the 
image 𝑖𝑖𝑖𝑖𝑖𝑖 

29       end procedure 
30   end if 
31 if all images have been marked then 
32       break 
33     end if 
34 end while 
35 return 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 

 

Fig. 4 Match data scheduling schematic diagram. Note that the read-in sequence determines the 
transferred order of match data both from disk to memory in batch and from memory to graphics 
memory one by one. The read-out sequence determines the cleared order of matched data in graphics 
memory. 

After acquiring the scheduling sequence of match data transmission, the match data of each 
oblique image needs to be loaded into the graphics memory according to the read-in sequence 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 
and remove the matched data according to the read-out sequence 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 (Fig. 4), thereby avoiding 
the underutilization of GPU card computing resources and reducing the redundant match data 
transmission. When there is free space in the graphics memory, the corresponding match data of the 
first 𝑖𝑖𝑖𝑖  in 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖  is transmitted from the memory to the graphics memory. When the available 
graphics memory is insufficient, we reclaim the storage space occupied by the match data according 



to 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜. Finally, the cascade hashing algorithm with epipolar constraint is implemented on the 
GPU card, and the TLBDS algorithm is used to perform match data scheduling, which can 
efficiently achieve the matching of oblique images. The details of oblique image matching based on 
match data scheduling and cascade hashing with epipolar constraint are summarized in Algorithm 
2. 

Algorithm 2. Oblique image matching based on match data scheduling and cascade hashing with 
epipolar constraint 

 Input:  
Match data 𝐷𝐷 ≔ {𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓1,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓2, … ,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑁𝑁} 
Read-in sequence 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖, read-out sequence 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜, 
Maximum number of files loaded in memory and graphics 

memory 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖 
Match file byte size 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 

 Output:  
Match result 𝑅𝑅 ≔ {𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜1,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜2, … , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑁𝑁} 

1 

Initialize: 
 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 ≔ 0,  𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 ≔ 0, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 ≔ 0, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 ≔ 0,  
  𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖 ∗ 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹, 

      𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 

2 Allocate byte size 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 in memory 
3 Allocate byte size 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 in graphics memory 
4 procedure LOADMATCHDATA 

5   Import 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 match data files into memory, 
according to 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 

6 end procedure 
7 while true do 
8   if  𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 is 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠()  − 1 then 
9     break 

10   end if 
11 if 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖  ≥ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖 then 

 12       procedure READOUT 
13         𝑖𝑖𝑖𝑖 ≔ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜[𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜] 
14         Free 𝐷𝐷[𝑖𝑖𝑖𝑖] and take back byte size 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 
15       end procedure 
16       𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 − 1 
17       𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 ≔ 𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 + 1 
18     else  
19       if  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚  ≥ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 then 
20 procedure LOADMATCHDATA 

21 Import 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 match data files into 
memory, according to 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 

22         end procedure 
23         𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 ∶= 0 
24       end if 
25       procedure READIN 
26       𝑖𝑖𝑖𝑖 ≔ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖[𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖] 
27       Load 𝐷𝐷[𝑖𝑖𝑖𝑖] into graphics memory  
28       end procedure 
29       procedure FEATUREPOINTMATCHING 

30         Performing feature point matching on GPU according to 
cascade hashing with epipolar constraint. 

31       end procedure 
32               𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 ≔ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 +  1   



33               𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 ≔ 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 + 1 
34       𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 ∶= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 + 1 
35 return 𝑅𝑅 

To avoid memory fragmentation and extra time consumption caused by memory application-
release, we stipulate that the match data file of each image has the same size. Therefore, the storage 
space is allocated in memory and graphics memory all at once in the initialization phase. Meanwhile, 
in the process of match data scheduling, the new match data fed into the graphics memory directly 
cover the storage space occupied by cleared data. Hence, the accelerated computing power of the 
GPU card can be fully exploited to perform oblique image matching. To be specific, the multi-
thread and CUDA Stream (Nvidia, 2010) technology are adopted to concurrent execution of match 
data transmission and feature point matching, improving the efficiency of oblique image matching 
significantly. 

4. Experiment and results 

In the experiments, we use three datasets captured in different sites and scales to evaluate the 
performance of the proposed method. First, we test the effectiveness of the proposed TLBDS 
algorithm by conducting match data scheduling experiments. Then, the adjacency matrix is obtained 
from the match pair information to further validate the correctness of the scheduling sequence 
generated by our TLBDS algorithm. For assessing the impact on the matching performance of 
cascade hashing caused by the group number of buckets 𝐿𝐿, the number of bits of hash code 𝑛𝑛, the 
number of bits of bucket code 𝑚𝑚, and the number of candidates 𝑘𝑘 in each candidate bucket, we 
perform comparative feature point matching experiments using cascade hashing algorithm under 
different parameter settings. Finally, we compare the performance of our method with four 
frequently-used pipelines, including OpenMVG-ANNL2 (Moulon et al., 2016), OpenMVG-
CasHash (Moulon et al., 2016), Agisoft Metashape (Agisoft, 2020), and Pix4Dmapper 
(Pix4Dmapper, 2020). We evaluate the merits of each method from three aspects including 
efficiency, accuracy, and completeness. The proposed method is implemented using the C++ 
programming language and all experiments are executed on the Windows 10 platform with an Intel 
Core i7-7820X CPU (3.60 GHz) and a TITAN Xp graphics card (12GB). 

4.1 Test sites and datasets 

Dataset-1: The ground covers of the first test site are presented in Fig. 5a. Dataset-1 is obtained 
in the first test site by the oblique photography system with five SONY ILCE-5100 cameras. There 
are 1, 914 oblique images in Dataset-1 with the size of 7592 × 5304 pixels. The camera mounting 
angles in nadir and oblique directions are 0 °, 45°/- 45°, respectively. The altitude of this flight is 
230m, the overlap degrees of images in the forward and side directions are 85% and 75%, and the 
average GSD is 2.85 cm/pixel. 

Dataset-2: The ground covers of the second test site are demonstrated in Fig. 5b. Dataset-2 is 
acquired in the second test site by the conventional five-camera oblique photogrammetric system 
equipped with SONY ILCE-5100 cameras. The overlap degree of 3, 490 oblique images in Dataset-
2 in the forward and side directions are 75% and 55%, respectively. The altitude of this flight is 
140m, and the average GSD of Dataset-3 is 1.8 cm/pixel.  

Dataset-3: The details of the third test site are illustrated in Fig. 5c. As a large-volume oblique 
image dataset, Dataset-3 is gathered in the third test site by a conventional five-camera oblique 



photogrammetric system with SONY ILCE-7R cameras. This photogrammetric system is equipped 
with one nadir camera and four oblique cameras, with the four oblique cameras rotated by 45 ° with 
the inspection to the nadir camera. There are 14, 225 oblique images in the size of 7360 × 4921 
pixels, and the altitude of UAV flight is 300m. 

 

Fig. 5. The orthoimage of the three study sites to show the ground details 
 

The detailed information for the flight configuration of the three datasets is presented in Table 1. 
During the data collection process, rough POS data of three datasets are measured using the 
GNSS/IMU device where the nominal accuracies in the horizontal and vertical directions are 4~5 
cm. 
Table 1 
Detailed information for flight configuration of the three datasets. 

Item name Dataset-1 Dataset-2 Dataset-3 
Flight height (m) 230 140 300 

Forward / side 
overlap (%) 85 / 75 75 / 55 75 / 55 

Camera mode SONY 
ILCE-5100 

SONY 
ILCE-5100 

SONY 
ILCE-7R 

Number of cameras 5 5 5 
Sensor size 
(mm×mm) 23.4×15.6 23.4×15.6 35.9×23.9 



Focal length (mm) nadir: 20 
oblique: 35 

nadir: 20 
oblique: 35 

nadir: 35 
oblique: 50 

Camera mount angle 
nadir: 0 

oblique: 45 / 
-45 

nadir: 0 
oblique: 45 / 

-45 

nadir: 0 
oblique: 45 

/ -45 
Number of images 1, 914 3, 490 14, 225 

Image size 
(pixel×pixel) 6000×4000 6000×4000 7360×4921 

GSD(cm/pixel) 2.85 1.8 3.1 

4.2 Analysis of key parameters of cascade hashing 

The impact of the hash code bits 𝑛𝑛, the bucket bits 𝑚𝑚, the bucket groups 𝐿𝐿 and the number of 
candidate points 𝑘𝑘 is analyzed by the performance of the cascade hashing using the controlled 
variable method. To be specific, we calculate and report the recall of the last two candidate points 
that meet the Lowes ratio test in Dataset-1. From Fig.6a, we can see that when hashing bits 𝑛𝑛 =  8, 
cascade hashing has the highest recall for feature point matching, and when 𝑛𝑛 =  128, the recall 
will also be close to 0.8. Considering the coupling between cascade hashing and SIFT, we set 𝑛𝑛 as 
128 in this paper. According to Fig. 6b, we set 𝑚𝑚 =  10 in the subsequent experiments as the recall 
of cascade hashing matching feature points will obtain the largest figure. Similarly, we set 𝐿𝐿 = 2 and 
𝑘𝑘 =  1 based on the experimental results shown in Fig. 6c and Fig. 6d. 

  
(a) Hash bits 𝑛𝑛 and recall               (b) Bucket bits 𝑚𝑚 and recall 

  
          (c) Bucket group 𝐿𝐿 and recall          (d) Top 𝑘𝑘 nearest neighbors and recall   
Fig. 6. The recall change, when hashing bits 𝑛𝑛, bucket bits 𝑚𝑚, bucket groups 𝐿𝐿, and 𝑘𝑘 change, the 
nearest neighbor's two points are searched by cascade hashing to satisfy the Lowes ratio test. 

4.3 Verification of correctness and effectiveness of TLBDS algorithm 

In this section, we investigated the correctness and effectiveness of the TLBDS algorithm. Firstly, 
the proposed TLBDS algorithm is employed to generate the data scheduling sequence, and then the 

javascript:;


match data scheduling and matching are performed. The correctness of the TLBDS algorithm is 
verified by checking whether there are missing match pairs after match data scheduling. Finally, by 
comparing the number of match data transmissions before and after match data scheduling, the 
effectiveness of the TLBDS algorithm is tested. 
4.3.1 Correctness 

To verify the correctness of the scheduling sequence generated by the TLBDS algorithm, we 
perform match pair selection based on the pipeline proposed by (Barazzetti et al., 2010) and 
generate the adjacency matrix, as shown in Fig. 7. In the adjacency matrix graph, if the position (𝑖𝑖, 
𝑗𝑗) is blue, the image 𝐼𝐼𝑎𝑎 with id 𝑖𝑖 and image 𝐼𝐼𝑏𝑏 with id 𝑗𝑗 are a match pair. During the verification 
process, the value of position (𝑖𝑖, 𝑗𝑗) in the adjacency matrix will be set as white after the match data 
of match pairs (𝑖𝑖, 𝑗𝑗) is read into the graphics memory. If the scheduling sequence is correct, all the 
elements in the adjacency matrix will be white after match data scheduling according to the 
scheduling sequence. From Fig. 7, we can see that the adjacency matrices of the three datasets are 
all completely cleared after scheduling matching, demonstrating the reliability of the proposed 
TLBDS algorithm strongly. 

  
(a) Adjacent matrix of Dataset-1       (b) Adjacency matrix after match data scheduling 

  
(c) Adjacent matrix of Dataset-2     (d) Adjacency matrix after match data scheduling 



  
(e) Adjacent matrix of Dataset-3     (f) Adjacency matrix after match data scheduling                    

Fig. 7. The adjacency matrix of match pairs of three datasets.  
4.3.2 Effectiveness 

For the TLBDS algorithm, the first step is to calculate an optimal match data scheduling sequence 
according to match pairs information, memory size, and graphics memory size. The second step is 
to load match data from disk to memory and then to graphics memory according to the data 
scheduling sequence. In this section, we compare the number of match data transmissions before 
and after the data schedule to verify the effectiveness of our TLBDS algorithm.  
Table 2 
The number of match data transmissions from the disk to memory and then to graphics memory. 

Dataset 
Before 

data 
scheduling 

After data scheduling (TLBDS) 

Storage size 1 Storage size 2 

Dataset-1 95,872 5,168 2,895 
Dataset-2 173,552 9,238 5,487 
Dataset-3 709,370 39,820 24,189 

We set two storage conditions: 1) the available memory size 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1Gb, available graphics 
memory size 𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑖𝑖𝑖𝑖 = 4Gb; 2) 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  2Gb, 𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑖𝑖𝑖𝑖 = 8Gb, and count the number of match 
data transmissions from the disk to memory and then to graphics memory. Without data scheduling, 
the match data will be loaded by the order of the match pair which does not consider the reusability 
of the match data stored in graphics memory, leading the redundant data transmissions. As shown 
in Table 2, before data scheduling, there will be 95872, 173552, and 709370 transmissions in three 
datasets. In contrast, the proposed TLBDS first generates an optimal data scheduling sequence that 
rearranges the read-in and read-out order of match data. Specifically, if a match data 𝐴𝐴 has a match 
relationship with the match data 𝐵𝐵 and 𝐵𝐵 will be read into the graphics memory later, then 𝐴𝐴 will 
be scheduled at the relatively back position in the read-out sequence. The more matching 
relationships 𝐴𝐴 has with the subsequent match data to be read, the later position in the read-out 
sequence 𝐴𝐴 is. On the contrary, the match data with fewer match relationships with the subsequent 
match data to be read will be scheduled at the front of the read-out sequence that will be released 
early. As shown in Table 2, our TLBDS will save 10× to 20× transmissions and the advantages are 
more obvious under larger storage conditions. 



4.4 Comparison of efficiency, accuracy, and completeness with state-of-the-art 
methods 

We comprehensively evaluate our proposed method in efficiency, accuracy, and completeness 
with state-of-the-art methods. Three software packages, including OpenMVG, Agisoft Metashape, 
and Pix4Dmapper, are taken as comparative approaches. As a library for computer vision scientists 
and the multi-view geometry community, OpenMVG is designed to provide an SfM solution from 
feature extraction to sparse reconstruction. In the image feature point extraction stage, OpenMVG 
integrates two algorithms: SIFT and AKAZE (Alcantarilla, 2013). Besides, OpenMVG provides 
seven feature point matching methods, including the most commonly used multi-random k-d trees 
and cascade hashing algorithm. The Agisoft Metashape combines the most advanced image feature 
point matching algorithm and employs multi-core processing and GPU card parallel computing 
technology, providing a robust and efficient oblique image matching function. As the world's 
leading professional photogrammetric data processing software, Pix4Dmapper delivers a complete 
solution from image matching to orthoimage generation. Similarly, Pix4Dmapper also uses multi-
core processing and GPU acceleration technology to improve the efficiency of digital image 
matching. In the pipelines of Agisoft Metashape and Pix4Dmapper, brute force pair-wise matching 
is replaced by rough POS data for match pair selection to reduce the time consumption. 

For a fair comparison, we adopt the identical match pair selection results based on the method 
proposed by (Barazzetti et al., 2010) as the input of the pipelines of OpenMVG-ANNL2 
OpenMVG-CasHash and ours. Besides, as mature professional software does not provide the 
application programming interface of intermediate processes, we fed the same rough POS data into 
Agisoft Metashape and Pix4Dmapper for match pair selection. The detailed information of the five 
pipelines for oblique image matching is shown in Table 3. 
Table 3 
The configure information of five oblique image matching pipelines 

Pipeline 
Match pairs  

selection 
method 

Feature points  
matching 
algorithm 

Match 
data 

schedu
ling 

GPU 
card 

acceler
ation 

OpenMVG-
ANNL2 

External 
input 

Multi-random k-
d trees no no 

OpenMVG-
CasHash 

External 
input Cascade hashing no no 

Agisoft 
Metashape 

Rough POS 
calculate / yes yes 

Pix4Dmapper Rough POS 
calculate / yes yes 

Ours Rough POS 
calculate 

Improved 
Cascade hashing yes yes 

Note: due to the confidentiality of commercial software, unknown information in the table is 
indicated by ‘/’. 

4.4.1 Efficiency 

We compare the number of match pairs matched per second to evaluate the matching efficiency. 
To achieve the impartial comparison tests, we set all pipelines in Table 3 to use the same SIFT 



algorithm with default parameters for extracting feature points. The match pairs generated by 
Agisoft Metashape and Pix4Dmapper are based on the rough POS of oblique images. In our pipeline, 
we employ the method proposed by Barazzetti et al., (2010) to select match pairs, while the 
selected pairs are then fed into the OpenMVG-ANNL2 and OpenMVG-CasHash pipelines. 

 
(a) Comparison of the number of match pairs 

 

(b) Comparison of the time elapsed in the matching 

 
(c) Comparison of matching efficiency. 

Fig. 8. Comparison of (a) match pairs, (b) matching time, and (c) matching efficiency between 
different pipelines.  



Figure 8a shows the number of match pairs in the five pipelines. Since OpenMVG-ANNL2, 
OpenMVG-CasHash, and our pipeline use the same match pairs, the number of match pairs in the 
above three pipelines is the same. Meanwhile, the Agisoft Metashape and Pix4Dmapper pipelines 
employ a more effective match pair selection method that reduces the number of redundant match 
pairs. Therefore, the number of match pairs is smaller than that of our pipeline. Figure 8b shows the 
time consumed by five pipelines matching three datasets, which can be seen that our pipeline 
consumes the least time.  

The matching efficiency of each pipeline is reported in three datasets in Fig. 8c. The efficiency 
of the OpenMVG-ANNL2 pipeline and OpenMVG-CasHash pipeline is relatively low as they only 
utilize the multi-core CPU for matching. Specifically, the matching efficiency of OpenMVG-
ANNL2 is 9.5 pairs/s for Dataset-1 and is 4.2 pairs/s for Dataset-2, while the figures for OpenMVG-
CasHash are 20 pairs/s and 13.8 pairs/s, respectively. Besides, without match data scheduling, the 
efficiency (3.9 pairs/s for OpenMVG-ANNL2 and 7.9 pairs/s for OpenMVG-CasHash) becomes 
lower for the larger Dataset-3. Please note that the only difference is that the OpenMVG-ANNL2 
pipeline uses the multiple-random k-d trees algorithm to matching feature points, while the 
OpenMVG-CasHash pipeline uses a cascade hashing algorithm. Through the above comparison, we 
can find that the efficiency of the cascade hashing algorithm is about 2~3 times faster than the 
multiple-random k-d trees algorithm. 

We further compare the efficiency of the most advanced commercial software Agisoft Metashape 
and Pix4Dmapper. The matching efficiency of Agisoft Metashape for the three datasets is 37.69 
pairs/s, 37.5 pairs/s, and 9.8 pairs/s, while the figures for the Pix4Dmapper pipeline are 35.5 pairs/s, 
39.1 pairs/s, and 7.7 pairs/s, respectively. As the Agisoft Metashape and Pix4Dmapper pipelines 
generate fewer redundant match pairs, the match data of the search image corresponding to each 
query image requires less memory and graphics memory. Considering the size of memory and 
graphics memory, the match data can be transmitted into the memory and graphics memory within 
finite times, leading to a relatively stable matching efficiency. However, the number of data 
transmissions will increase with the growth of the match data volume, resulting in the 
underutilization of computing resources and the reduction of matching efficiency. It can be found 
that when matching Dataset-3, although accelerated by the GPU card, the efficiency of the Agisoft 
Metashape pipeline and Pix4Dmapper pipeline is only equivalent to the cascade hashing performing 
on a multi-core CPU. 

By contrast, the efficiency of our pipeline is unacted on the match data volume since the optimal 
match data scheduling sequence with minimum redundant data transmission is obtained by the 
proposed TLBDS algorithm. Specifically, the efficiency of our pipeline on three datasets is 366.5 
pairs/s, 400.3 pairs/s, and 397.1 pairs/s, respectively. In other words, it only takes approximately 
2.50 ~ 2.64ms for our pipeline to matching a match pair. Compared with the state-of-the-art Agisoft 
Metashape and Pix4Dmapper pipelines, the efficiency of oblique image matching has been 
significantly improved by 10 to 50 times. More importantly, the efficiency of our method is hardly 
affected by the change in the number of oblique images. As be seen from Fig. 8c, the efficiency gap 
between our pipeline and the Agisoft Metashape as well as Pix4Dmapper pipelines is observably 
widened for the large-volume Dataset-3. 

4.4.2 Accuracy 



For accuracy analysis, we adopt inliers proportion and the reprojection error after bundle 
adjustment (BA) as the assessment criteria. By the positively correlated relationship, the inliers 
proportion can directly measure the matching accuracy of the feature points in the oblique image. 
The reprojection error can be used to comprehensively measure the accuracy of oblique image 
matching. First, considering that the intermediate results cannot be obtained from the two 
commercial pipelines (Agisoft Metashape and Pix4Dmapper), here we only compare the inliers 
proportion with the OpenMVG-ANNL2 and OpenMVG-CasHash pipelines. Specially, we use the 
RANSAC (Fischler et al., 1981) algorithm to estimate the fundamental matrix, then do geometric 
verification and to removing the outliers. In each dataset, we count the inliers proportions of 1, 000 
match pairs. As shown in Fig. 9, we can see: (1) The inliers proportion of OpenMVG-ANNL2 
pipeline is higher than that of OpenMVG-CasHash pipeline, demonstrating the multiple-random k-
d trees algorithm has higher matching accuracy than the cascade hashing; (2) The inliers proportion 
of our pipeline is significantly higher than that of the OpenMVG-CasHash pipeline but is similar to 
the OpenMVG-ANNL2 pipeline, illustrating that the accuracy of proposed cascade hashing with 
epipolar constraint can obtain a competitive performance with the multiple-random k-d trees. 

Second, for evaluating the accuracy between our pipeline and the Agisoft Metashape as well as 
Pix4Dmapper, we perform SfM reconstruction on the three datasets to obtain the accurate intrinsic 
and camera pose of each image and 3D points. Thereafter, each 3D point is reprojected onto its 
corresponding views image to calculate the average residual error of the image point. As shown in 
Fig. 10, our pipeline achieves competitive performance in three datasets.  

Comprehensive analysis of efficiency and accuracy, we can find that the proposed oblique image 
matching method not only robustly delivers reliable accuracy but also significantly improves the 
efficiency of large-scale oblique image matching.  

 
(a) Dataset-1 inliers proportion. The average inliers proportion of OpenMVG-ANNL2, 

OpenMVG-CasHash, and our pipeline was 0.76, 0.73, 0.75. 



 

(b) Dataset-2 inliers proportion. The average inliers proportion of OpenMVG-ANNL2, 
OpenMVG-CasHash, and our pipeline was 0.78, 0.68, 0.74. 

 
(c) Dataset-3 inliers proportion. The average inliers proportion of OpenMVG-ANNL2, 

OpenMVG-CasHash, and our pipeline was 0.79, 0.69, 0.76. 
Fig. 9. Comparison of the inliers proportion of the three pipelines matching. It can be seen that 
the matching accuracy of our pipeline is better than that of cascade hashing and close to that of 
the multiple-random k-d trees algorithm. 



 

Fig. 10. Average reprojection error comparison. The reprojection error can indirectly prove the 
accuracy of oblique image matching, we can find that the accuracy of our method is the highest on 
Dataset-2 and Dataset-3. 

4.4.3 Completeness 

For the completeness comparison, the BA experiment is employed to perform SfM reconstruction. 
Specifically, the incremental SfM strategy is adopted in the Agisoft Metashape, Pix4Dmapper, and 
our pipelines. In the BA stage, two images with a large enough intersection angle and a sufficient 
number of well-distributed features are chosen as the seed to operate the scene recovery. Thereafter, 
camera poses and 3D points are obtained by continuously adding a well-conditioned image to the 
reconstructed scene. In the process of image registration and triangulation, local BA is executed to 
reduce accumulated errors along newly added images. Thereafter, global BA is used to accurately 
calculate all camera poses and 3D points (Snavely. 2008). To evaluate the completeness, the number 
of connected images and 3D tie points is counted. Table 4 shows the information of the connected 
images and the generated 3D points, while the 3D point cloud generated by our pipeline and 
corresponding enlarged details are shown in Fig. 11. We can see that (1) the performance of our 
pipeline is similar to the Agisoft Metashape and Pix4Dmapper pipelines in terms of the number of 
connected images; (2) our reconstruction pipeline can obtain 3D point clouds with sufficient 
completeness and detailed information. 
Table 4 
The numbers of connected images and 3D points for completeness comparison 

Da
tas
et 

Agisoft Metashape Pix4Dmapper Ours 
Images Poin

ts 
Images Poin

ts 
Images Poin

ts 
1 1,914/1

,914 
293,
490 

1,914/1
,914 

102,
310 

1,914/1
,914 

259,
614 

2 3,489/3
,490 

473,
759 

3,490/3
,490 

423,
158 

3,490/3
,490 

693,
083 

3 14,212/
14,225 

4,63
1,65
0 

14,214/
14,225 

1,90
4,06
3 

14,216/
14,225 

3,07
3,28
4 

 



 
(a) Dataset-1 

 
(b) Dataset-2 

 
(c) Dataset-3 

Fig. 11. SfM re reconstruction result by our pipeline. The right image is the detail of the red 
rectangle in the left image. 

5. Discussion 

In this paper, we propose an efficient large-scale oblique image matching method with two major 
contributions. First, to improve the accuracy of the cascade hashing algorithm, the rough POS of 
the oblique image is leveraged to calculate the epipolar between the corresponding points. The 
epipolar is applied to the filter of the initial candidate points of the cascade hashing matching (as 
shown in Section 3.1). Second, an algorithm called TLBDS is designed and employed for the 
scheduling of match data from disk to graphics memory (as shown in Section 3.2), thereby reducing 
the redundant transmission of data. Combining the cascade hashing with epipolar constraint and the 
TLBDS algorithm, we have obtained an efficient method for oblique image matching, and the 
efficiency of our method is 10 ~ 50 times that of the state-of-the-art. 



From the analysis of the inliers proportion (as shown in Section 4.4.2), the accuracy of our method 
is higher than the cascade hashing but slightly lower than the multiple-random k-d trees algorithm. 
Compared with cascade hashing, the reason why our method has higher accuracy is that we use 
epipolar constraints to filter the initial candidate points, thereby reducing the impact of hash 
mapping and similar textures on fine matching. Specifically, the hash mapping error will cause more 
noise in the candidate points obtained by using the Hamming distance as the similarity measure. 
Meanwhile, the descriptor similarity of the feature points in the texture-similar region is relatively 
high, during fine matching with the Euclidean distance between descriptors as the similarity 
measure which will cause false matches. Besides, compared with the most correct corresponding 
points, the influence of a small number of wrong points on the relative orientation results can be 
eliminated in the subsequent BA optimization. Therefore, the difference in accuracy between our 
method and the multiple-random k-d trees algorithm is negligible to the oblique image matching 
employed in SfM. This is also confirmed in Figure 10.  

In terms of the efficiency of oblique image matching, there are two reasons for our method's 
remarkable efficiency. First, our method uses the cascade hashing with epipolar constraint to 
matching the feature points. From Section 4.4.1, it can be found that the time complexity of this 
algorithm is lower than that of the multiple-random k-d trees algorithm. Second, and the most 
important is, we designed an efficient TLBDS algorithm, which can significantly reduce the 
redundant transmission of match data(as shown in Section 4.3.2), and make full use of computing 
resources of the GPU card. Specifically, redundant match data transmission has a high time cost and 
will cause insufficient data supply, making computing resources in a state of waiting for match data. 

6. Conclusions 

In this paper, we propose an efficient large-scale oblique image matching method. Our 
contributions are two-fold: fast feature points matching based on cascade hashing with epipolar 
constraint and efficient three-level buffer match data scheduling. The extensive comparisons with 
state-of-art pipelines on oblique image matching and SfM reconstructions on three datasets prove 
the efficiency as well as the accuracy of our pipeline for large-scale oblique image matching. 
Importantly, the application of the TLBDS algorithm allows to matching large-volume oblique 
images on a mid-level computer, and the matching efficiency of our method will not be affected by 
changes in the number of images. However, the accuracy of rough POS data will affect the matching 
accuracy of our method. Therefore, reducing the dependence of our method on external conditions 
is the direction that needs to be explored in our further research. 
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