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 
Abstract—This paper investigates an energy management 
problem in the microgrid by scheduling heating ventilation air 
conditioning (HVAC) and battery energy storage system 
(BESS) with a distributed algorithm. A multi-layer energy 
management architecture is presented at a system-level to co-
optimize the HVAC-BESS by taking into account solar energy 
forecasts. A surplus-based consensus algorithm is proposed to 
solve the optimization problem, where the local power 
mismatch is introduced as a surplus term, and the HVAC-BESS 
can thus be co-scheduled to maximize renewable energy 
efficiency at the peak generation time. A set of the convex cost 
functions are formulated to minimize the HVAC’s user 
dissatisfaction degree and alleviate power loss during the BESS 
operation. The goal is to collectively minimize the total energy 
cost in a distributed manner, subject to individual load 
constraints and power balance constraints. It is theoretically 
proved that a global convergence of the proposed algorithm is 
achieved provided that the directed network is strongly 
connected. The results from a number of case studies are 
promising, demonstrating the effectiveness and robustness of 
the algorithm under practical scenarios.  
 

Index Terms—Energy management system, HVAC, BESS, 
multi-layer energy management, surplus-based consensus 
algorithm, directed network.  
 

I. INTRODUCTION 

ITH the growth of renewable energy sources, microgrids 
have employed energy management scheme to flatten 

power fluctuations and alleviate power imbalance resulted from 
weather uncertainties. Hence, according to the solar power 
forecasts, dynamic controlling of the load demand through an 
intelligent management solution can promote the prosperity of 
green energy technology. The battery energy storage system 
(BESS) has become an unequivocal choice to shift the load 
from the off-peak to peak generation time and reduce the energy 
cost [1]. It is reported that heating, ventilation and air 
conditioning (HVAC) systems consume approximately half of 
the energy used by buildings [2]. The thermal mass in a building 
can be regarded as a virtual energy storage system to store 
thermal energy by preheating/precooling the rooms at peak 
generation times and reduce power consumption at peak load 
times [1]. This creative idea can be extended to other thermal 
appliances, such as the electrical and water heaters. Therefore, 

 
 

BESS and HVAC can work as the energy buffer to enhance 
stability and robustness of the microgrids.  
    Challenges faced within the control and optimization of 
BESS or HVACs have been addressed widely in [3]–[8]. The 
authors in [3] improved the energy efficiency of the HVAC by 
using a learning-based model predictive control (MPC) to 
maintain the room temperature within a comfortable level. The 
experimental result showed that energy consumption was 
reduced by 30%–70%. In [4], the authors utilized the MPC to 
control HVACs to save energy bills and improve power 
balance. Likewise, the authors in [5] and [6] proposed 
centralized energy management solutions to regulate demand 
response and develop pricing strategy for consumers by 
controlling HVAC systems. However, these approaches are 
essentially centralized schemes, which require high 
computation capacity and wider communication bandwidth. In 
order to overcome these technical barriers, the authors in [9] 
investigated a distributed consensus algorithm to address the 
active power imbalance issue in the microgrid by regulating 
compressor frequency for the distributed HVACs. In the 
meantime, centralized and distributed approaches have also 
been widely used in aggregated BESSs to provide an ancillary 
service for the utility, as demonstrated in [10]–[12]. The authors 
in [10] focused on a power-sharing algorithm to optimize the 
energy efficiency for multiple BESSs, by taking into account 
power boundary constraints. In [11], the authors considered 
different characteristics of BESSs and incorporated a consensus 
control strategy into the heterogeneous BESSs. Furthermore, 
the author in [13] proposed a novel cooperative distributed 
algorithm for charging the electrical vehicles, where the system 
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gain robustness against node failures. However, it is worth 
noting that, although effective, the above approaches have 
considered either HVAC or BESS alone and the combined 
HVAC-BESS effects were not yet studied.  

Combined HVAC and battery have also been scheduled to 
develop an efficient building energy management system [1], 
[14], [15]. In [1], batteries and HVACs were co-optimized with 
MPC to reduce the total energy cost and maintain the user’s 
comfort level. The authors in [15] proposed a system-level 
approach to co-schedule the control of BESS and HVAC and 
developed a battery management system tailored to the building 
testbed. However, these approaches were developed from 
perspective of the individual users to achieve their financial and 
comfort benefits by means of independent management, whilst 
neglecting contributions to the utility. In [14], the authors 
proposed a two-stage strategy to study the usage of BESS and 
HVAC for frequency regulation and energy cost minimization. 
This centralized approach, however, was too challenging to 
accommodate a large-scale power grid or a distributed power 
network. In this paper, we will address the problem from both 
the individual level to maximize user comfortability in terms of 
energy use and improve charging efficiency for HVAC and 
BESS respectively by developing an energy dispatch scheme at 
the system level to alleviate the power imbalance at peak 
load/generation times by employing a distributed control 
scheme.  

This paper proposes a distributed energy management 
approach for the microgrid by considering hybrid HVAC-BESS 
units and incorporating solar power forecasts. It is noted here 
that to ensure consistency of the load units, only the charging 
mode of BESS is taken into account in the paper, i.e., the BESS 
is considered as a load and operates in the charging mode. Fig 
1 shows a hierarchical architecture of the proposed framework. 
The external layer forecasts the local renewable power 
generation (solar power forecasting in our study). The control 
layer performs a surplus-based distributed algorithm under a 
multi-agent system (MAS) framework and provides the power 
reference to HVACs and BESSs based on the forecasting 
results. The physical layer is responsible for monitoring and 
regulating the lower controller at HVAC and BESS units to 
track the desired power reference. The block functionality and 
information flows in Fig. 1 will be explained in the Section III. 
A surplus-based consensus algorithm is designed to solve the 
resource allocation problem by computing optimal power 
references for HVACs and BESSs, in response to the local 
power mismatch and power sharing information with their 
neighbours. It is proved that if the directed communication 
network among the units is strongly connected, the behaviour 
of the system converges to the global optimum. This would 
minimize the power loss of battery charging, maximize the 
satisfaction degree of HVAC users and alleviate the power 
imbalance caused by the intermittent renewable energy.  

The main contributions of the paper are summarized in 
threefold aspects.  
1) BESS and HVAC are jointly studied through a distributed 

approach to enhance the active power balance in the 
microgrid, which expands the application in [16]. It helps 

improve energy storage capacity, avoid installation of 
additional storage devices and save energy storage costs.  

2) The designed surplus-based consensus algorithm enables 
to solve distributed control problem under directed 
communication network, whereas the most literatures have 
focused on distributed problem under undirected graph. 
Our consensus algorithm helps to relax topology 
conditions in [17]. A number of case studies are conducted 
to demonstrate its dynamics, robustness, and scalability.  

3) A short-term solar power forecast by means of real data is 
performed to estimate the energy uncertainties, in order to 
develop appropriate demand response programs. The 
existing researches, e.g., [18], [19], have not considered 
renewable energy forecast and its intermittency effects.  

The remainder of this paper is organized as follows. Section 
II presents preliminaries and problem formulations. Section III 
introduces the surplus-based consensus algorithm for problem 
optimization and provides algorithm implementation in detail. 
The main results are examined through extensive case studies 
in Section IV, followed by the conclusion in Section V. 

II. PRELIMINARIES AND PROBLEM FORMULATION 

A. Graph theory 

A microgrid is usually regarded as a MAS, where the HVAC 
and BESS act as agents. The agents and communication 
between agents are considered as nodes and edges respectively 
to construct a directed graph. Let define a directed graph 𝒢 =
(𝒱, ℰ), which is composed of a nonempty finite set of nodes 
𝒱 = {1,2, . . , 𝑛} and a finite set of edges ℰ = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝒱} ⊂
𝒱 × 𝒱 . The information transmitted from nodes 𝑖  to 𝑗  is 
denoted as an edge (𝑗, 𝑖). If any node in a directed graph can 
find a communication path to any other nodes, this digraph is 
said to be strongly connected.  

For any node 𝑖 in 𝒱, its in-neighbour set and out-neighbour 
set are denoted by 𝒩௜

ା = {𝑗|(𝑗, 𝑖) ∈ ℰ} and 𝒩௜
ି = {𝑗|(𝑖, 𝑗) ∈

ℰ}, respectively. Correspondingly, its in-degree and out-degree 
of node 𝑖  are denoted by 𝑑௜

ା = ห𝒩௜
ାห  and 𝑑௜

ି = |𝒩௜
ି| , 

respectively, where |∙| represents the cardinality of a set. For a 
strongly connected digraph, assume that there are no self-loop 
edges and repeated edges, the communication network can be 
defined mathematically by matrices 𝑃 and 𝑄  with 𝑝௜௝  and 𝑞௜௝  
as the 𝑖𝑗th element, such that:  

It can be seen that 𝑃  and 𝑄  are nonnegative matrix for a 
strongly connected graph, where in 𝑃 every row sums up to one 
and in 𝑄 each column sumps up to one [18].  

B. Problem formulations 

Each HVAC or BESS aims to maximize its benefits when 
playing a role in maintaining the network power balance. 
Therefore, the objective functions for HVAC and BESS are 

 𝑝௜௝ =

⎩
⎪
⎨

⎪
⎧

1

1 + 𝑑௜
ା     𝑗 ∈ 𝒩௜

ା

 1 −
1

1 + 𝑑௜
ା  𝑖 = 𝑗

  0          𝑗 ∉ 𝒩௜
ା

    𝑞௜௝ =

⎩
⎪
⎨

⎪
⎧   

1

1 + 𝑑௜
ି    𝑗 ∈ 𝒩௜

ି

1 −
1

1 + 𝑑௜
ି   𝑖 = 𝑗

    0             𝑗 ∉ 𝒩௜
ି

 (1)
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given, respectively, as follows.  
1) Comfort maximization for HVAC users 

The first objective of the proposed strategy is to maximize 
the comfort level for HVAC users. A utility function (𝑈஺஼,௜) is 
used to indicate the satisfaction level in comfortability for 
HVAC users. Generally, 𝑈஺஼,௜ represents a function of power 
consumption 𝑃஺஼,௜  for the 𝑖 th HVAC. A general form of the 
utility function can be expressed as [20]:  

 𝑈஺஼,௜൫𝑃஺஼,௜൯ =

⎩
⎨

⎧𝜔௜𝑃஺஼,௜ − 𝛼௜𝑃஺஼,௜
ଶ, 𝑃஺஼,௜ <

𝜔௜

2𝛼௜

𝜔௜
ଶ

4𝛼௜

, 𝑃஺஼,௜ ≥
𝜔௜

2𝛼௜

 (2)

where 𝜔௜  and 𝛼௜  are coefficients indicating the comfort 
sensitivity of different users. 𝑈஺஼,௜  is chosen as a concave 
function with a value of zero at 𝑃஺஼,௜ = 0. The utility function 
(2) has the following features: 
a) It is a non-decreasing function, i.e., the first-order 

differential of 𝑈஺஼,௜  with respect to 𝑃஺஼,௜ is non-negative. 
b) The satisfaction degree becomes saturated with excessive 

power consumption, i.e., the second-order differential of 
𝑈஺஼,௜  with respect to 𝑃஺஼,௜ is also non-positive. 

It is noted that 𝑈஺஼,௜ in the HVAC model in this paper represents 
essentially a comfortability cost measuring the user 
comfortability in terms of power consumption and thus energy 
cost from the HVACs, rather than temperature.  
2) Charging power maximization of BESS 

The second objective is to minimize the charging power loss 
of BESS due to its internal resistance. The change in energy 
level of the 𝑖th BESS can be expressed as [21]:  
 ∆𝐸(𝑡) = 𝑃஻,௜𝜂௜൫𝑃஻,௜൯  (3)
where charging power 𝑃஻,௜ > 0, as we assumed that the BESSs 
only operate in charging mode. 𝜂௜  is charging efficiency which 
reflects how much energy is fully stored and can be modelled 
with  consideration of power loss of battery [16], [21]:  
 𝜂௜ = 𝑎௜ − 𝑏௜𝑃஻,௜  (4)
where 𝑎௜  and 𝑏௜  are charging parameters related to battery 𝑖. By 
substituting (4) into (3), a quadratic relationship between 𝑃஻,௜  
and ∆𝐸(𝑡) is derived.  
 𝐶஻,௜൫𝑃஻,௜൯ = ∆𝐸 = ൫𝑎௜ − 𝑏௜𝑃஻,௜൯𝑃஻,௜  (5)
where the 𝐶஻,௜ denotes the objective function of BESS. In order 
to operate the microgrid in an economical way, eq (5) should 
aim to maximally increase the energy level of battery by 
adjusting 𝑃஻,௜ . 

C. Problem optimization  

By combing (2) and (5), the objective of multiple HVACs 
and BESSs is to maximize the following function.  

 max ෍ 𝑈஺஼,௜൫𝑃஺஼,௜൯

௜∈ௌಲ಴

+ ෍ 𝐶஻,௜൫𝑃஻,௜൯

௜∈ௌಳ

 (6)

 s.t. ෍ 𝑃஺஼,௜

௜∈ௌಲ಴

+ ෍ 𝑃஻,௜

௜∈ௌಳ

= 𝑃ௗ  (7)

 𝑃஺஼,௜ ≤ 𝑃஺஼,௜ ≤ 𝑃஺஼,௜  𝑃஻,௜ ≤ 𝑃஻,௜ ≤ 𝑃஻,௜ (8)

where 𝑃஺஼,௜ , 𝑃஺஼,௜ , 𝑃஻,௜  and 𝑃஻,௜  are lower and upper power 
limit for the HVAC and BESS, respectively. 𝑃ௗ represents the 

total power mismatch. 𝑆஺஼  and 𝑆஻ represent sets of the HVAC 
and BESS units, respectively. The objective function (6) is 
proposed to jointly solve the optimization goal of both HVAC 
and BESS. Once (6) is achieved, the sub-optimization problems 
for HVAC and BESS can be achieved, respectively.  

For convenience, 𝑃௜  represents power consumption of 
HVACs and BESSs at node 𝑖, as denoted by 𝑃௜ = ൛𝑃஺஼,௜ , 𝑃஻,௜ൟ. 
The problems (6)-(8) can be rewritten as: 

 min ෍ 𝐹௜(𝑃௜)

௜∈ௌಲ಴∪ௌಳ

 (9)

 s.t. ෍ 𝑃௜

௜∈ௌಲ಴∪ௌಳ

= 𝑃ௗ (10)

 𝑃௜ ≤ 𝑃௜ ≤ 𝑃௜, for ∀  𝑖 ∈ 𝑆஺஼ ∪ 𝑆஻ (11)

where 𝐹௜(𝑃௜) = −𝑈஺஼,௜൫𝑃஺஼,௜൯ − 𝐶஻,௜൫𝑃஻,௜൯ , 𝑃௜  and 𝑃௜  indicate 
the power boundaries of overall HVAC and BESS, as denoted 

by  𝑃௜ = ൛𝑃஺஼,௜ , 𝑃஻,௜ൟ and  𝑃௜ = ൛𝑃஺஼,௜ , 𝑃஻,௜ൟ.  𝐹௜(𝑃௜) is a convex 
function for the 𝑖th node, satisfying the following conditions: 

Assumption 1: 𝐹௜(𝑃௜) is second-order differentiable in ℝ and 
its second derivative value is bounded with respect to ൣ𝑃௜ , 𝑃௜൧. 

 
𝜕ଶ𝐹௜(𝑃௜)

𝜕𝑃௜
ଶ ≥ ℓ௜ ≥ 0 , ∀ 𝑃௜ ≤ 𝑃௜ ≤ 𝑃௜ (12)

where ℓ௜  is a constant coefficient regarding node 𝑖. 
Remark: Due to the local power limit of HVACs and BESSs, 

the global power mismatch should be within the maximum 
power range, such that:  

 ෍ 𝑃௜

௜∈ௌಲ಴∪ௌಳ

≤ 𝑃ௗ ≤ ෍ 𝑃௜

௜∈ௌಲ಴∪ௌಳ

 (13)

With regards to the objective function (9), we define an 
incremental cost function as below: 

 𝐽௜(𝑃௜) =
𝑑𝐹௜(𝑃௜)

𝑑𝑃௜

 (14)

Since the optimization problem (9)-(11) is a convex 
optimization problem with affine constraints, therefore, the 
Lagrange function 𝐿 with respect to optimization problem (9)-
(11) is formulated as:  

 𝐿(𝑃௜ , 𝜆) = ෍ 𝐹௜(𝑃௜)

௡

௜ୀଵ

+ 𝜆 ൭𝑃ௗ − ෍ 𝑃௜

௡

௜ୀଵ

൱ (15)

where 𝜆 is Lagrange multiplier for equality constraint and 𝑛 =
card(𝑆஺஼ ∪ 𝑆஻). Now, we present the optimality condition for 
problem (9)-(11), which is obtained by Lagrange equivalence.  

By [22], 𝑃௜
∗ is the optimal solution to the problem (9)-(11) 

with 𝜆∗  being the optimal Lagrange multiplier of (15) if and 
only if 

 ൞

𝐽௜(𝑃௜
∗) = 𝜆∗,   𝑃௜ ≤ 𝑃௜

∗ ≤ 𝑃௜

𝐽௜(𝑃௜
∗) ≤ 𝜆∗,   𝑃௜

∗ = 𝑃௜

𝐽௜(𝑃௜
∗) ≥ 𝜆∗,   𝑃௜ = 𝑃௜

∗

 (16)

This indicates the multiplier can be denoted by the incremental 
cost. The equations (16) can be rewritten as the following form:  

 𝑃௜
∗ = Φ௜(𝜆∗) = ൞

𝐽௜
ିଵ(𝜆∗),   𝑖𝑓 𝐽௜൫ 𝑃௜൯ ≤ 𝜆∗≤𝐽௜൫𝑃௜൯

𝑃௜ ,        if  𝜆∗>𝐽௜൫𝑃௜൯

𝑃௜ ,         if  𝜆∗<𝐽௜൫𝑃௜൯

 (17)

where Φ௜(𝜆) is a nonlinear projection map of power 
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consumption 𝑃௜  regarding the Lagrange multiplier 𝜆.  𝐽௜
ିଵ(𝜆∗) 

is the inverse function of 𝐽௜(𝑃௜
∗). The (17) implies that if the 

optimal Lagrange multiplier 𝜆∗  is obtained, then the global 
optimal power point 𝑃௜

∗ can be achieved in a distributed manner.  
Considering the power constraints on loads, let define Γ௉೔

 as 
a subset of HVACs and BESSs where the power outputs are 
saturated. By summing (17) to satisfy (10) while considering 
(2) and (5), the optimal multiplier 𝜆∗ is calculated as:  

 𝜆∗ =
𝑃ௗ − ∑ 𝑃௜௜∈୻ು೔

− ∑
𝛾௜

2𝛽௜
௜∉୻ು೔

∑
1

2𝛽௜
௜∉୻ು೔

 (18)

where 𝛽௜  is a mathematical set of parameters {𝛼௜, 𝑎௜} and 𝛾௜ is a 
mathematical set of parameters {𝜔௜ , 𝑏௜}, as derived from (2) and 
(5).  

III. DISTRIBUTED ALGORITHM UNDER SOLAR POWER 

FORECASTS 

In this section, a surplus-based consensus algorithm is 
presented, allowing each agent to have their own Lagrange 
multiplier 𝜆௜ ∈ ℝ௡  and update 𝜆௜  such that all 𝜆௜  from the 
consensus algorithm converge to 𝜆∗ , by exchanging 
information with its neighbours. Moreover, each agent 
calculates its estimate 𝑃௜  about the optimal power consumption 
𝑃௜

∗  based on the projection map (17), which confines the 

estimate 𝑃௜  in the range of ൣ𝑃௜ , 𝑃௜ ൧. In order to achieve these, a 
surplus state 𝜉௜ ∈ ℝ௡  is introduced to store the local bias 
between demand and power generation at local bus 𝑖 at each 
iteration 𝑘 . 𝜉௜  is averaged with its neighbours and 
asymptotically converges to zero.  

A. Surplus-based consensus algorithm  

The algorithm is shown in Algorithm 1.  

Initialization:  
Set 𝜆௜(0), 𝑃௜(0), 𝜉௜(0) ∀  𝑖 = 1,2, … , 𝑛 as below: 
  𝜆௜(0) = 𝐽௜൫𝑃௜(0)൯ 

  𝑃௜(0) ∈ ൣ𝑃௜ , 𝑃௜ ൧  
  𝜉௜(0) = 0 
Give that a small feedback gain 𝜖௜  satisfies 𝜚௘ ≤ 𝜖௜ ≤ 2𝛽௜  

(𝜚௘  is defined later in the context).  
Iteration:  

1. Update 𝜆௜ according to 

 
𝜆௜(𝑘 + 1) = 𝜆௜(𝑘) + 𝑐௜(𝑘) ෍ 𝑝௜௝

௝∈𝒩೔
శ

ቀ𝜆௝(𝑘) − 𝜆௜(𝑘)ቁ

+ 𝜖௜𝜉௜(𝑘) 

(19)

2. Update 𝑃௜ , according to  
 𝑃௜(𝑘 + 1) = Φ௜(𝜆௜(𝑘 + 1)) (20)

3. Update 𝜉௜ , according to 

 
𝜉௜(𝑘 + 1) = 𝑞௜𝜉௜(𝑘) + ෍ 𝑞௝௜𝜉௝(𝑘)

௝∈𝒩೔
శ

− ൫𝑃௜(𝑘 + 1) − 𝑃௜(𝑘)൯ 

(21)

Output: 𝜆௜(𝑘), 𝑃௜(𝑘), 𝜉௜(𝑘) for ∀   𝑖 = 1,2, … n        

The (20) is a general form of (17). The parameters 𝑝௜௝ , 𝑞௜ , 𝑞௜௝ , 
𝜖௜ , and 𝑐௜(𝑘)  satisfy the following properties, for all 𝑖, 𝑗 =
1,2, … , 𝑛 and every iteration 𝑘.  
(P1) The connectivity weight updates 𝑞௜௝ , 𝑝௜௝ , 𝑞௜ are obtained 
by (1), where 𝑞௜ = 𝑞௜௜ . Note that 𝜚௤ ≤ 𝑞௜ ≤ 1 , where 𝜚௤ =

min
௜ୀଵ,ଶ,…,௡

{𝑞௜} is a positive constant.  

(P2) The feedback gain 𝜖௜  specifies the amount of power 
surplus used for incremental cost update and 𝜖௜ = 𝑞௜𝜃௜, where 
𝜃௜ ∈ (0, 2𝛽௜) . 𝜖௜  is bounded with [𝜚௘ , 2𝛽௜] , where 𝜚௘ =

min
௜ୀଵ,ଶ,…,௡

{𝜖௜}  and 𝜚௘ > 0 . 𝜖௜  has a great effect on the model 

stability and convergence speed, and more details are 
demonstrated in the case studies.  
(P3) 𝑐௜(𝑘)  is a switching coefficient. Each agent (node) is 
allowed to make a positive power surplus based on neighbour’s 

state, such that if ∑ 𝑝௜௝௝∈ே೔
ቀ𝜆௝(𝑘) − 𝜆௜(𝑘)ቁ ≤ 0 , 𝑐௜(𝑘) = 1 , 

otherwise 𝑐௜(𝑘) = 0.  
Theorem 1: The algorithms (19)-(21) converge to the optimal 

solution to resource allocation problem (9)-(11) if the directed 
graph is strongly connected.  

The complete proof is made based on Lyapunov stability 
theory, where the non-negative properties of 𝜉௜  and non-
decreasing property of minimal 𝜆௜ are proved, respectively. The 
proof details can be seen in Appendix.  

Remark: The distributed control scheme is designed based on 
the consensus algorithm to estimate the global power mismatch 
via information exchange with neighbours. Thus, this scheme 
has advantages in reducing communication cost and 
accelerating control efficiency, as compared with the 
centralized counterpart.  

B. Solar power forecast 

 As shown in Fig.1, the external layer is to provide short-term 
24-h solar power forecasts. Generally, the forecasting time 
horizon can be classified into the short-term (half an hour to 6 
hours), medium-term (6 hours - 1 day), long-term (1 day - 1 
week). Short-term forecasting is used for scheduling and 
controlling energy flow among power sources, loads and 
storage devices. Medium-term and long-term forecasting are 
responsible for price settlement, load dispatch and maintenance 
scheduling, respectively. The widely used forecasting methods 

 
Fig 2. Solar irradiance forecast performance under different models.  

TABLE I 
THE COMPARISON OF FORECASTING PERFORMANCE 

 MLR     ARIMA         MAPA-PCA 
MAE (𝑊/𝑚ଶ) 67.02 66.69 64.01 
RMSE( 𝑊/𝑚ଶ) 98.831 98.193 89.79 
NRMSE 0.40 0.41 0.38 
R2 0.83 0.8325 0.85 
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Algorithm 1: Surplus-based consensus algorithm  
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include machine learning algorithms or statistical techniques 
[23]–[25]. Here, we used three forecasting techniques, namely, 
the multiple linear regression (MLR), autoregressive integrated 
moving average (ARIMA), and a hybrid method of multiple 
aggregation prediction algorithm (MAPA) and principal 
components analysis (PCA). The solar irradiance is predicted 
from a local region in the UK, where datasets are available from 
two sources. Firstly, a set of weather forecasting indexes are 
provided by UK Met office via its weather forecast website, 
where dataset is updated every 3 hours for the next 5 days. 
Therefore, the dataset at the local weather forecast site is 
collected. It is known from [26] that the highly related 
meteorological components selected to predict solar irradiance 
are ultraviolet index, air temperature and weather type. 
Secondly, solar irradiance data acquired at the local weather 
station are also used. The seasonality and lag effect of the time-
series data are characterized by dummy variables and lag 
variables, which are employed to strengthen the accuracy of the 
forecast model.  These two datasets are 3 month long, spanning 
from April to July 2017, where the first two and half months’ 
data are employed for model training while the last half-month 
data are used for model evaluation. The forecasting results from 
these three techniques are shown in Fig 2, as compared with the 
measured values. The mean absolute error (MAE), root mean 
squared error (RMSE), normalized root mean squared error 
(NRMSE) [23] and the coefficient of determination (R2) are 
introduced to assess the forecasting performance and how well 
the model fits the real data. Table I summarizes the forecasting 
performance of these methods. It can be seen that MAPA-PCA 
model is overall superior to other statistical models, such as 
MLR and ARIMA, in terms of NRMSE and R2. Then, the solar 
irradiance forecasting results obtained by MAPA-PCA model 
are provided to estimate the solar power output of a solar PV 
array under arbitrary solar radiances by using the output 
characteristic calculation model of PV cell given in [27].  

C. Algorithm implementation on BESS-HVAC  

 As shown in Fig. 1, the physical layer integrates i) the lower 
controllers of HVAC and BESS that generate the control signal 
to track desired power references, and ii) power converters, i.e., 
DC/AC converter or AC/AC converter, which is an interface 
between loads and the grid. The control strategy and electrical 
diagram of HVAC can be referred to [9]. Here, we briefly 
describe the lower controller for BESS, as shown in Fig 3. The 
BESS control strategy is a closed-loop system to generate the 
corresponding control signal for voltage source converter 
(VSC), in order to track the power reference provided by the 
surplus-based consensus algorithm. It is cascaded by a power 
controller, a current controller and a pulse generator. The power 
controller is utilized to implement active power 𝑃௜

∗  control. 
Specifically, 𝑃௜

∗  is controlled by adjusting d-axis current 𝐼ௗ , 
while the reactive power is controlled by adjusting q-axis 
current, which is not included for the clarity of the figure here. 
The deviation between 𝑃௜  and measured power 𝑃௜

∗ generates an 
error signal which is controlled by a proportional-integral (PI) 
controller to produce the current reference 𝐼ௗ

∗ . The current 
controller is then utilized to mitigate the deviation between the 

𝐼ௗ
∗ and measured current 𝐼ௗ, where the voltage reference 𝑉ௗ

∗ is 
produced by using a PI controller. The pulse generation module 
(PWM) is to transform the voltage reference in the d-q axis into 
the ABC-axis  𝑉௔௕௖

∗  and a set of switch control signals 
(𝑆ଵ, 𝑆ଶ, … ) are generated by PWM technique to control VSC. 
The phase-lock loop (PLL) is to synchronize an output 
oscillator signal with the reference voltage 𝑉௔௕௖ . The phase 
angle signal 𝜔𝑡  can be extracted for axis transformation. 
Meanwhile, each local node is required to send the local power 
information to control layer for state updates, as modelled in 
(21). 

 The control layer of MAS framework conducts the surplus-
based consensus algorithm, including state estimation, 
observation, and information exchange. The system 
identification block updates the agent’s 𝜆௜(𝑘)  and 𝜉௜(𝑘) , 
described as beliefs in the Fig. 1. This block is the key to 
developing an energy management system based on the 
neighbours’ negotiation and network power information, as 
stated in (19) and (21). The agent’s desires indicate the 

objective function and local constraints (𝑃௜, 𝑃௜ ). The agent’s 
intension is to provide power reference 𝑃௜(𝑘)  for the lower 
controller of the HVAC or BESS. This upper controller 
calculates power reference following (20), by taking into 
account the state information, local constraints and global 
objectives from system identification block and neighbour 
negotiation block.   

IV. CASE STUDIES AND RESULTS  

 An IEEE 14-bus system is utilized to carry out the studies, with 
5 BESSs and 9 HVACs being distributed on local buses, as 
shown in Fig 4. The case studies are conducted under a globally 
coupled communication network, which is a strongly connected 
digraph. The parameters of HVACs and BESSs and their initial 
condition of each agent are given in Table II and Table III, 
respectively, from experiments presented in [28], and real 
weather data from UK Met office and a local weather station 
are used to establish solar power forecast as presented in 
Section III (B). These would make the theoretical model closer 
to the actual situation in the case studies. The initial value of 
power mismatch 𝜉௜  on each local bus is set to zero. In most 
cases, we set the feedback gain to 0.07, if not specified 
otherwise.  

A. Case study 1. Feasibility  

1) Convergence effect 
Convergence performance is shown in Fig 5 to illustrate the 

 
Fig 3. Control strategy of BESS. 
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effectiveness of the proposed algorithm. The total power 
mismatch 𝑃ௗ is set to 965 kW. Fig 5(a) shows the incremental 
cost curve, implying that all agents are able to achieve a 
common point at 𝜆∗ = 5.6734 , which is equivalent to an 
optimal point calculated by (18). Fig 5(b) shows the power 
dispatch curve of the agents, where the HVACs and BESSs are 
operating at different power ratings within their own power 
boundaries. All local power mismatch 𝜉௜ , ∀ 𝑖 = 1,2, . . 𝑛 
approach eventually to zero, as evidenced by Fig 5 (c). We omit 
the legend of agent in Fig 5(a) and (c) for simplification of the 
plots, if not specified otherwise. 

We also compare the result with the algorithm in [19], as 
shown in Fig 5(d) as an example of a dynamic test. Assume that 
the total power generation changes from 965 kW to 985 kW at 
the 40th iteration and other settings remain the same. The 
algorithm in [19] shows a poor dynamic behaviour with the 
offset being 10 kW. This demonstrates that the proposed 
surplus-based distributed algorithm is superior in handling 
power changes with a quicker response and without steady-state 
error.  
2) Performance of feedback gain 𝜖  

 The initial 𝜖 is set to be 𝜖 = 0.0001 and ∆𝜖 = 1 × 10ିସ. As 
can be observed from Fig 6(a), with an increase of 𝜖 , the 
iterations for convergence decrease at the beginning and then 
increase. If 𝜖 is too large, the algorithm will go divergence and 
therefore there exists an optimal feedback gain, which is 𝜖∗ =

0.07. Further study is made on the relationship between 𝜖 and 

power mismatch in terms of the steady-state error, as shown in 
Fig 6(b). There are also optimal values of 𝜖 ranging from 0.6 to 
1.0, during which steady state error of the system becomes 
minimal. Furthermore, we compare the result with the 
performance produced from a random strongly connected 
topology. By comparing Fig 6 and Fig 7, the directed network 
with more edges allows a wider range of 𝜖 to ensure the system 
stability while presenting less convergence time.  

 
          (a)           (b) 

Fig 6. The effect of feedback gain 𝜖 on convergence under a global-coupled 
topology: (a) convergence time vs 𝜖 and (b) global power mismatch vs 𝜖 

 
       (a)            (b) 

Fig 7. The effect of feedback gain 𝜖 on convergence under a randomly topology: 
(a) convergence time vs 𝜖 and (b) global power mismatch vs 𝜖 

B. Case study 2. Performance on communication networks 

Studies are also conducted to evaluate the algorithm 
convergence under different directed communication 

P
ow

er
(k

W
)

  
(a) (b) 

 
(c) (d) 

 Fig 5. Convergence of (a) the incremental cost 𝜆 , (b) the power 
consumption 𝑃, (c) the local power mismatch 𝜉  under the surplus-based 
consensus algorithm, and (d) comparison of the proposed algorithm with 
method in [19]. 

 
Fig 4. IEEE 14-bus system with 9 HVACs, 5 BESSs, 1 solar PV, 1 wind 
turbine and 1 unshiftable load.  

TABLE II. COEFFICIENTS OF HVAC 

No. 𝛼௜        𝜔𝑖    𝑃௜(𝑘𝑊) 
  𝑃௜(𝑘𝑊)         𝑃௜(0)       𝜆௜(0) 

1 0.1041 10.03 30 123.98 70  4.54 
2 0.087 8.45 80 109.55 85 6.34 
3 0.1564 19.16 80 137.93 85 7.43 
4 0.095 15.63 50 120.19 100 3.37 
5 0.097 14.97 103   176.19 120  8.31 
6 0.1026 15.83 67 147.26 90 2.638 
7 0.1345 19.45 20 110.43 80 2.207 
8 0.0984 15.38 40 159.13 90 2.337 
9 0.0924 18.05 43 123.98 120 4.126 

 

 

TABLE III. COEFFICIENTS OF BESS 

No. 𝑎௜  𝑏𝑖
 𝑃௜(𝑘𝑊) 

𝑃௜(𝑘𝑊) 𝑃௜(0) 𝜆௜(0)  
1 0.2037 1.046 0 60 20 7.102 
2 0.2815 1.2309 0 65 30 15.692 
3 0.1987 1.0292 0 68 20 6.92 
4 0.2092 1.1245 0 62 25 9.34 
5 0.2247 1.0996 0 70 30 12.382 
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topologies. Three topology configurations are investigated, as 
shown in Fig 8, including globally coupled, nearest-neighbour 
coupled (NN-coupled) and ring networks. It can be observed in 
Fig 9 that these topologies have ability to achieve a consensus 
point with different convergence time. The globally coupled 
network, due to the best connectivity, only requires 30 iterations 
to converge and endures a large 𝜖 = 0.1, while NN-coupled 
network requires 90 iterations to stabilize. In contrary, the ring 
network, due to poor connectivity, requires 200 iterations to 
converge and a relatively small 𝜖 = 0.07. Consequently, the 
topology with a high density achieves the consensus with a fast 
speed whilst accommodating a larger upper bound of the 
feedback gain 𝜖. 

C. Case study 3. Energy dispatch on time-varying 
generation/demand 

As depicted in Fig 4, a wind turbine, a solar PV and a 
unshiftable load are included, which are connected at bus 5, bus 

10 and bus 6, respectively. The power profiles of the wind 
turbine, the solar PV and the load are given in Fig 10(a). The 
curves are given here based on the assumption that solar power 
is at a peak, wind power is at a valley and loads presents 
stochastic changes. The unshiftable load and distributed 
generators are integrated into system at 10 s and their power 
information is updated every 20s, where (𝑇ௗ = 20 s) in this 
case. During each 𝑇ௗ, each agent calculates and then updates 
new state following (19)-(21), by receiving local power 
information from neighbouring agents.   

Fig 10(b) shows that the incremental costs of all agents 
achieve a consensus promptly within 𝑇ௗ, thus ensuring HVAC 
and BESS performance is maximized. Fig 10(c) and Fig 10(d) 
present power references provided to each agent and power 
mismatch at the local buses, respectively. The local power 
mismatches all converge to zero during each 𝑇ௗ. Therefore, the 
total power consumption of BESSs and HVACs can 
compensate the global power mismatch.  

Fig 8. Three directed topology structures: (a) global coupled (b) NN 
coupled and (c) ring.  

 
Fig 9.  Convergence performance under different directed topologies.  

  
(a) (b) 

  
(c) (d) 

Fig 10. Energy dispatch scheme for HVAC-BESS under dynamic 
generation/demand: (a) The power profile of renewable generators and load 
demand; (b) Incremental cost; (c) Power reference provided to the HVACs 
and BESSs, and (d) Local power mismatch.  
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D. Case study 4. Energy dispatch under solar power forecasts 

This case focuses on developing a pre-scheduled energy 
dispatch scheme for the HVAC-BESS system under 24-h solar 
power forecasts in both summer and winter days, as shown in 
Fig 11(a)(b) and (c)(d), respectively. Take the summer day as 
an example, the blue line in Fig 11(a) represents a total power 
imbalance, consisting of initial power deviation 𝑃ௗ = 965 𝑘𝑊 
and 24-hour solar power generation, while the red line indicates 
that the HVAC-BESS can function to compensate the power 
imbalance. The pre-scheduled power references provided to 
HVACs and BESSs for energy dispatch are shown in Fig 11(b). 
Practically, power references will be broadcasted to the lower 
controller of HVACs and BESSs as a control signal to adjust 
their power consumption in order to follow the desired power 
output, as can be seen in Fig 3 as the example. The summer day 
represents there is more solar power generated while the winter 
day represents there is less solar power generated. The results 
demonstrated that the power balance can be met by combined 
operation of HVACs and BESSs for these days for different 
possible purposes, e.g., cooling in the summer days and heating 
in the winter days.  

E. Case study 5. Plug-and-play functionality 

One of the most significant features for a microgrid is its 
plug-and-play ability. In this case, we considered the network 
with 13 HVACs or BESSs that have already operated at optimal 
states before plugging the 1st HVAC at the 40th iteration. The 
initial conditions of units are the same as in Case study 1. The 
demand for HVAC 1 is set to 𝑃ଵ = 76𝑘𝑊 ,  𝜉ଵ = −76𝑘𝑊 . 
From results in Fig 12(a) and (b), we can observe that the local 
power mismatch goes to zero after a short oscillation. The other 
units reduce their consumption for the sake of accommodating 
demand from the 1st HVAC. The incremental cost drops due to 
the lower average consumption; however, it eventually 
converges to an optimal value.  

F.  Case study 6. Scalability test 

Scalability test is also performed for a large-scale power 
system to demonstrate robustness of the proposed approach. 
The key point is to render the algorithm to converge in a timely 
manner. This case is conducted under IEEE 57-bus system 
shown in [29], with 41 HVACs and 16 BESSs connected to 
buses, respectively. The case parameters refers to [28] and total 
power supply is set to 3845 kW. The communication network 
used is a strongly connected directed graph. Thus, the 
associated stochastic matrix can be determined by (1). The 
result in Fig 13 shows that output power of each HVAC and 
BESS converges to an optimal value and power balance can be 
maintained.  

V. CONCLUSIONS 

The growing capacity of renewable generators with uncertain 
generation patterns results in the need for increased system 
flexibility. The HVAC with a “slack” characteristic in nature in 
terms of running time and power output is a promising solution 
to engage the grid service. This paper proposed energy 
management framework with a surplus-based distributed 
algorithm for HVAC and BESS, to manage the variability of 

renewable resources and address active power balance problem 
in the microgrid. The proposed distributed algorithm can solve 
the consensus problem under directed network, which relaxes 
the topology conditions. A 24-h energy dispatch scheme for 
HVAC and BESS is developed by incorporating predictions of 
solar power generation. The proposed framework is 
demonstrated to be feasible, scalable and therefore robust by the 
case studies. The work has not yet considered the voltage 
deviation and frequency response of the electrical network, and 
full physical dynamics of HVAC such as environmental 
temperature conditions and BESS such as both charging and 
discharging modes and capacity limitations. These will be 
investigated in future work. 

APPENDIX 

In this appendix, we demonstrate the proof of Theorem 1. We 

  
(a) (b) 

(c) (d) 
Fig 11. Energy dispatch scheme for HVAC-BESS under 24-hour solar power 
forecasts in summer and winter day: (a) (b) Power balance and Power 
references to HVACs and BESSs in a summer day; (c) (d) Power balance and 
power references to HVACs and BESSs in a winter day. 

  
(a) (b) 

Fig 12. Response of HVAC-BESS under plug-and-play test: (a) Power 
references of HVACs and BESSs and (b) Local power mismatch.  

 
Fig 13. Power reference of HVACs and BESSs under IEEE 57-bus system.  
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firstly present relevant technical Lemmas and then the 
convergence analysis based on Lyapunov stability argument.  

Lemma 1: The summation of 𝑃௜(𝑘) + 𝜉௜(𝑘)  for all agents 
following (19)-(21) is time-invariant at each 𝑘 ≥ 0, such that  

 ෍ 𝜉௜(𝑘)

௡

௜ୀଵ

+ ෍ 𝑃௜(𝑘)

௡

௜ୀଵ

= 𝑃ௗ (22)

Proof of Lemma 1: By summing all nodes in (21) and 
referring to the properties of matrix 𝐷, we obtain 

෍൫𝜉௜(𝑘 + 1) + 𝑃௜(𝑘 + 1)൯

௡

௜ୀଵ

= ෍ ൮ ෍ 𝑞௝௜𝜉௝(𝑘)

௝∈𝒩೔
శ

+ 𝑃௜(𝑘)൲

௡

௜ୀଵ

 

⟹ ෍ 𝜉௜(𝑘)

௡

௜ୀଵ

+ ෍ 𝑃௜(𝑘)

௡

௜ୀଵ

= ⋯ = ෍ 𝜉௜(0)

௡

௜ୀଵ

+ ෍ 𝑃௜(0)

௡

௜ୀଵ

 

Suppose that 𝜉௜(0) = 0, for 𝑖 = 1,2, … , 𝑛, based on (10), we 
have:  

෍ 𝜉௜(𝑘)

௡

௜ୀଵ

+ ෍ 𝑃௜(𝑘)

௡

௜ୀଵ

= 𝑃ௗ 

Let us define the minimum and maximum state of 𝜆௜  at 
iteration 𝑘 as below. 

 𝜆(𝑘) = min
௜ୀଵ,ଶ..,௡

{𝜆௜(𝑘)}  and 𝜆(𝑘) = max
௜ୀଵ,ଶ,…,௡

{𝜆௜(𝑘)} (23)

The second lemma shows that the surplus vector of each 
agent 𝜉௜  is upper bounded.  

Lemma 2: Under the Algorithm 1, the following properties 
with respect to 𝜉௜(𝑘) hold. 

1) If 𝜉௜(0) ≥ 0, the power surplus 𝜉௜(𝑘) is non-negative 
for 𝑖 = 1,2, … , 𝑛 and 𝑘 ≥ 1. 

2) If the time-invariant communication network 𝒢  is 
strongly connected, the power surplus 𝜉௜(𝑘)  satisfies 
the following inequality  

𝜉௜(𝑘) ≤
𝜆(𝑘 + 2) − 𝜆(𝑘 + 1)

𝜚௘𝜚௤

 

Proof of Lemma 2 (1).   By considering (19), we have  
𝜆௜(𝑘 + 1) ≤ 𝜆௜(𝑘) + 𝜖௜𝜉௜(𝑘) 

Here, we distinguish two cases [22]. 
Case 1:  𝜆௜(𝑘 + 1) ≥ 𝜆௜(𝑘) ⇒ 𝑃௜(𝑘 + 1) ≥ 𝑃௜(𝑘) 
Since 𝐽௜(𝑃௜) is a linear increasing function, so is 𝐽௜

ିଵ(𝜆௜). It is 

obtained that 
ௗ௃೔(௉೔)

ௗ௉೔
∗

ௗ௃೔
షభ(ఒ೔)

ௗఒ೔
= 1 . From Error! Reference 

source not found. and (14), it can be derived 
ௗ௃೔(௉೔)

ௗ௉೔
≥ ℓ௜ . 

Therefore, we have 

𝑃௜(𝑘 + 1) − 𝑃௜(𝑘) ≤
𝑑𝐽௜

ିଵ(𝜆௜)

𝑑𝜆௜

൫𝜆௜(𝑘 + 1) − 𝜆௜(𝑘)൯ 

≤
1

ℓ௜

൫𝜆௜(𝑘 + 1) − 𝜆௜(𝑘)൯ ≤
𝜖௜𝜉௜(𝑘)

ℓ௜

 

Then, by considering (19)-(21), it follows 

𝜉௜(𝑘 + 1) ≥ 𝑞௜𝜉௜(𝑘) + ෍ 𝑞௝௜𝜉௝(𝑘)

௝∈𝒩೔
శ,௝ஷ௜

−
𝜖௜𝜉௜(𝑘)

ℓ௜

 

𝜉௜(𝑘 + 1) ≥ ൬𝑞௜ −
𝜖௜

ℓ௜

൰ 𝜉௜(𝑘) + ෍ 𝑞௝௜𝜉௝(𝑘)

௝∈𝒩೔
శ,௝ஷ௜

 

Case 2: 𝜆௜(𝑘 + 1) < 𝜆௜(𝑘) ⇒ 𝑃௜(𝑘 + 1) < 𝑃௜(𝑘) 

From (19), it can be straightforward to obtain 

 𝜉௜(𝑘 + 1) ≥ 𝑞௜𝜉௜(𝑘) + ෍ 𝑞௝௜𝜉௝(𝑘)

௝∈𝒩೔
శ,௝ஷ௜

 (24)

To summarize from above two cases, both ቀ𝑞௜ −
ఢ೔

ℓ೔
ቁ  and 

∑ 𝑞௝௜௝∈𝒩೔
శ,௝ஷ௜  are positive by (P1) and (P2). Suppose that 

𝜉௜(0) > 0, for 𝑖 = 1,2, … , 𝑛, then, 𝜉௜(𝑘) ≥ 0 for 𝑘 ∈ ℤା 
Proof of Lemma 2 (2). Firstly, we define a column vector 𝜉 =

[𝜉ଵ, 𝜉ଶ, … , 𝜉௡]் . An indicator matrix of 𝑄 = ൛𝑞௜௝ൟ  can be 

defined by 𝑆 = ൛𝑠௜௝ൟ , where 𝑠௜௝ = 1, if 𝑞௜௝ ≠ 0 while 𝑠௜௝ = 0 
if 𝑑௜௝ = 0. It is straightforward to obtain by (24)   

𝜉(𝑘 + 1) ≽ 𝜚௤(𝐼 + 𝑆)𝜉(𝑘) 
where 𝐼 is an identity matrix. By using the iterative product, for 
any 𝑘 ≥ 0, we obtain 

𝜉(𝑘 + 1) ≽ 𝜚௤
௞ାଵ(𝐼 + 𝑆)௞ାଵ𝜉(0) 

The Corollary 6.2.19 in [30] proves that if and only if 𝒢 is 
strongly connected, the following inequality is true.  

(𝐼 + 𝑆)௞ାଵ = 𝐼 + (𝑘 + 1)𝑆 + ⋯ + 𝑆௞ାଵ ≻ 0 
Therefore, 

𝜉(𝑘 + 1) ≽ 𝜚௤
௞ାଵ𝜉(0) 

For the entry in vector 𝜉, it can be derived 
 𝜉௜(𝑘 + 1) ≥ 𝜚௤𝜉௜(𝑘)    for 𝑖 = 1,2. . , 𝑛 (25)
Suppose that 𝜆௠(𝑘 + 1) = 𝜆(𝑘 + 1) when 𝑖 = 𝑚. In (19), note 
that the first two term is a convex combination of 𝜆௜(𝑘) and 
𝜆௝(𝑘), where 𝑗 ∈ 𝑁௜  and 𝑐௜(𝑘) = 1. We therefore have [22] 

𝜆௜(𝑘) + ෍ 𝑝௜௝

௝∈ே೔

ቀ𝜆௝(𝑘) − 𝜆௜(𝑘)ቁ ≥ min
௝∈{௜}∪ே೔

൛𝜆௝(𝑘)ൟ =  𝜆(𝑘) 

Substituting the above into (19), the following equality holds. 
𝜆௜(𝑘 + 1) ≥ 𝜆(𝑘) + 𝜖௜𝜉௜(𝑘) ≥ 𝜆(𝑘) + 𝜚௘𝜉௜(𝑘) 

Replacing 𝑖 with 𝑚, 𝑘 with 𝑘 + 1, we obtain 

 𝜉௜(𝑘 + 1) ≤
𝜆(𝑘 + 2) − 𝜆(𝑘 + 1)

𝜚௘

 (26)

Plugging (26) into (25), 

𝜉௜(𝑘) ≤
𝜆(𝑘 + 2) − 𝜆(𝑘 + 1)

𝜚௘𝜚௤

 

The third lemma presents the properties with respect to 𝜆(𝑘) 
and equilibrium point of the algorithm.  

Lemma 3: Under the Algorithm 1, the following holds. 
1) The minimum state 𝜆(𝑘) is non-decreasing for every 𝑘, 

that is 𝜆(𝑘ଵ) ≤ 𝜆(𝑘ଶ), if 𝑘ଵ < 𝑘ଶ. 
2) There is a scalar 𝜆଴ that satisfies 𝜆(𝑘) ≤ 𝜆଴ for 𝑘 ∈ ℤା. 

If 𝜆(𝑘) = 𝜆(𝑘)= 𝜆଴ , then 𝜆௜(𝑘) = 𝜆଴  and 𝜉௜(𝑘) = 0 , 
for 𝑖 = 1,2, … , 𝑛. The consensus is thus achieved. 

Proof of Lemma 3 (1). From Lemma 2, we obtain that  
𝜆(𝑘 + 1) ≥ 𝜆(𝑘) 

where 𝜆(𝑘) is non-decreasing for all 𝑘 ∈ ℤା.  
Proof of Lemma 3 (2). Suppose on the contrary that 𝜆(𝑘) > 𝜆଴ 
for 𝑘 ∈ ℤା. Under the non-decreasing properties of 𝜆(𝑘), if we 

define 𝐽௜൫𝑃௜൯ = 𝜆(𝑘), there exists a 𝑘ᇱ (𝑘ᇱ > 𝑘), satisfying,  
𝜆(𝑘ᇱ) > 𝜆଴ > 𝜆(𝑘) 

Correspondingly, 𝑃௜(𝑘ᇱ) > 𝑃௜  for all 𝑖 = 1,2, . . , 𝑛. Therefore: 
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෍ 𝑃௜(𝑘ᇱ)

௡

௜ୀଵ

> 𝑃ௗ 

If (22) is held for 𝑘 = 𝑘ᇱ , the only possible case is 
∑ 𝜉௜(𝑘ᇱ) < 0௡

௜ୀଵ . However, this conflicts with Lemma 2. Thus, 
the minimum state of 𝜆௜ holds 𝜆(𝑘) ≤ 𝜆଴.  

Provided that 𝜆(𝑘) = 𝜆଴ , the same argument holds that 

𝜆(𝑘) = 𝜆଴. Thus, 𝜆௜(𝑘) = 𝜆଴ and 𝜉௜(𝑘) = 0, for all 𝑖 and 𝑘 →
∞, the consensus of Algorithm 1 is achieved. 

Given an initial condition (𝜆௜(0), 𝜉௜(0) = 0) , let Ω  be a 
finite-dimensional Euclidean space with respect to the 
equilibrium solution (𝜆଴, 0) of the discrete-time system (19)-
(21). The equality constraint in Lemma 1 holds. 

 
Ω(𝜆଴, 0) = ቊ(𝜆, 𝜉) ∈ ℝଶ௡ , 𝜆଴ = Φିଵ ቆ

1௡Φ൫𝜆(0)൯

𝑛
ቇ , 𝜉

≽ 0ቋ ⊂ ℝଶ௡ 

(27)

where 𝜆, 𝜉 , Φ(𝜆)  denote the column vector of 𝜆௜ , 𝜉௜ , Φ௜(𝜆௜) 
respectively, and 1௡ is a column vector with all entries being 
one. Therefore, the space Ω(𝜆଴, 0)  specifies a trajectory of 
(𝜆, 𝜉) converging to an equilibrium point (𝜆଴1௡, 0௡): (𝜆, 𝜉) ∈
Ω(𝜆଴, 0), whilst (𝜆, 𝜉) is updated with a discrete time system 
(19)-(21).  

Lemma 4: (Theorem 3 in [31]) Consider a discrete map 
defined by the algorithm (19)-(21) satisfying (𝜆, 𝜉) ∈ Ω, with 
the unique equilibrium point being (𝜆଴1௡, 0௡) . Consider a 
continuous set-valued function 𝑉ᇱ൫𝜆௜(𝑘), 𝜉௜(𝑘)൯  and a 
continuous function 𝛿, satisfying:  

1) 𝑉ᇱ  is bounded on the bounded set of Ω(𝜆଴, 0) .𝑉ᇱ  is 
positive definite with respect to an equilibrium point 
(𝜆଴, 0), that is 𝑉ᇱ൫Ω(𝜆଴, 0)൯ = 0  and 𝜇൫𝑉ᇱ(𝜆, 𝜉)൯ > 0 
for (𝜆, 𝜉) ∈ Ω(𝜆଴, 0) − (𝜆଴1௡, 0௡). 

2) 𝛿  is a positive definite function with respect to 
(𝜆଴1௡, 0௡)  such that 𝛿(𝜆଴, 0) = 0  at the equilibrium 
point and 𝛿(𝜆, 𝜉) > 0  for (𝜆, 𝜉) ∈ Ω(𝜆଴, 0) −
(𝜆଴1௡, 0௡). 

3) 𝑉ᇱ൫𝜆(𝑘 + 1), 𝜉(𝑘 + 1)൯ − 𝑉ᇱ൫𝜆(𝑘), 𝜉(𝑘)൯ ≤

−𝛿൫𝜆(𝑘), 𝜉(𝑘)൯ for ∀ (𝜆, 𝜉) ∈ Ω(𝜆଴, 0) 
If the 𝑉ᇱ(𝜆, 𝜉)  is bounded for all (𝜆, 𝜉) ∈ Ω(𝜆଴, 0)  and the 
incremental of 𝑉ᇱ  satisfies condition 3), then the algorithm 
(19)-(21) is asymptotically stable with respect to (𝜆଴1௡, 0௡). 

The function 𝛿  characterizes the decrease of 𝜇(𝑉ᇱ)  for 
(𝜆, 𝜉) ∈ Ω(𝜆଴, 0). The set-valued function 𝑉ᇱ plays the role of 
a Lyapunov function, which is a non-increasing bounded 
function. The proof of Lemma 4 is demonstrated in [31].   

Proof of Theorem 1: We now proceed to the proof of 
Theorem 1, based on Lyapunov stability theorem. Consider a 
Lyapunov function 𝑉(𝜆, 𝜉), (𝜆, 𝜉) ∈ Ω(𝜆଴, 0), defined as: 

 𝑉(𝜆, 𝜉) = Φିଵ ቆ
1௡൫𝜉 + Φ(𝜆)൯

𝑛
ቇ − 𝜆 (28)

Clearly, the function 𝑉 is continuous on (𝜆, 𝜉). According to 
the properties of 𝜆 in Lemma 3, we obtain that 𝑉 is bounded on 
the subset of Ω(𝜆଴, 0)  and non-increasing for 𝑘 ≥ 0 . 
Furthermore, 𝑉(𝜆, 𝜉) > 0  if (𝜆, 𝜉) ∈ Ω(𝜆଴, 0) − (𝜆଴1௡ , 0௡) 

and 𝑉(𝜆, 𝜉) = 0 if (𝜆, 𝜉) → (𝜆଴1௡ , 0௡).  
Then, an ancillary positive function 𝛿 is given by:  

 𝛿(𝜆, 𝜉) = inf  𝑉൫𝜆(𝑘), 𝜉(𝑘)൯ − 𝑉൫𝜆(𝑘 + 1), 𝜉(𝑘 + 1)൯ (29)
Since 𝑉(𝜆, 𝜉) is a non-increasing function, 𝛿(𝜆, 𝜉) is positive 
definite when (𝜆, 𝜉) ∈ Ω(𝜆଴, 0) − (𝜆଴1௡, 0௡) . 𝛿(𝜆, 𝜉) = 0  at 
the equilibrium point (𝜆଴1௡ , 0௡) . inf  denotes infimum. The 
function 𝑉  and 𝛿  defined in (28) and (29) satisfies the 
conditions in Lemma 4, which implies that the dynamic system 
becomes asymptotically consensus stable at the point 
(𝜆଴1௡, 0௡). 
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