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Abstract

We propose a minimax regret empirical prior for inefficiencies in a stochastic frontier

model and for its other parameters. The class of priors over which we consider minimax

regret is given by DEA interval scores and, for the parameters, the class of priors

induced by maximum likelihood estimates. The new techniques are shown to perform

well in a Monte Carlo study as well as in real data for large U.S. data banks.

Key Words: Productivity and Competitiveness; Stochastic Frontier Models; Min-

imax Regret Prior; Data Envelopment Analysis.

∗Montpellier Business School & Lancaster University Management School, LA1 4YX, U.K.,
m.tsionas@montpellier-bs.com

1



1 Introduction

The problem of specifying a distribution for inefficiency in stochastic frontier models (SFMs)

is long-standing and well-known. Typical choices are the half-normal, the exponential, and

the truncated-normal. A partial list includes Chen and Lin (2009), Kao et al., (2019),

Kumbhakar and Tsionas (2020), Tabak et al. (2010), Tran et al. (2022), Tsionas (2021,

2022), Papadopoulos and Parmeter (2021), Jradi et al. (2021). Tsionas (2003) proposed

using DEA scores for crafting a prior for SFMs, an approach that was refined in Tsionas

(2023).

In this paper we propose the use of a minimax regret empirical prior relative to the

sample distribution of efficiency scores from Data Envelopment Analysis (DEA). Despite

the fact that DEA does not account for noisy data, it is likely that interval estimators of

efficiency (a quantity naturally defined in (0, 1]) will be more robust and thus they offer a

natural candidate for crafting or benchmarking an (in)efficiency prior. These interval priors

are closer to the idea of “thick frontiers” (Berger and Humphrey, 1992; Tsionas, 2019) in

which classes rather than point inferences are used. The minimax prior is taken with respect

to all distributions that are consistent with DEA interval estimators of inefficiency and they

can be used to mitigate concerns about use of a single prior (be it, for example, a half-

normal or DEA itself). For related work that uses DEA in SFA with non-standard efficiency

distributions, see Campbell, Rogers and Rezek (2008), Rezek, Campbell and Rogers (2011),

Macedo and Scotto (2014), Macedo, Silva and Scotto (2014).

The term “prior” in conjunction with inefficiency is used as the latter represent missing

data. We consider the minimax regret prior as an empirical prior for inefficiencies as well
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as other SFM parameters and we use DEA and maximum likelihood estimation to craft this

empirical (Bayes) prior. Given that inefficiencies are not observed and they are coarse, any

given interval is compatible with different “data” on inefficiency, making the construction of

a single prior problematic. When observations are coarse and may overlap, it is not clear how

to define the likelihood function: several options exist, according to whether we take into

account the measurement process governing the incompleteness or not. In this paper, we

focus on optimizing the likelihood function that we should have observed, had observations

been precise. Due to incomplete observations, this likelihood function is imprecise, since there

are several possible precise datasets compatible with the coarse observations. Two approaches

have been proposed: one considers an optimistic point of view aiming to disambiguate the

data, by maximizing the maximum likelihood value across candidate datasets. Another

more cautious one tries to maximize the minimum likelihood value across candidate datasets

thus adopting a robust optimization approach. Both approaches have their weaknesses and

can be criticized as being extreme ones, yielding either too deterministic or too dispersed

distribution functions. In this paper we propose an alternative criterion that tries to define

a trade-off between the two previous approaches, and can be seen as minimizing a maximal

regret criterion.Finally, we apply the new techniques to a dataset of large U.S. banks to

showcase the applicability of minimax regret priors.
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2 Model

2.1 Formulation

We consider a stochastic frontier model (SFM)1

yi = x′
iβ + vi + Ui, i = 1, ..., n, (1)

where the regressors xi ∈ Rp explain the dependent variable yi, β ∈ Rp is a parameter

vector, vi|xi, ui ∼ N (0, σ2
v) represents measurement error (noise), and ui stands for technical

inefficiency. We denote efficiency by ri = e−ui ∈ (0, 1] (i = 1, ..., n). More specifically, we

consider the class of input distance functions (IDFs). Suppose the inputs are denoted Xi =

(Xi1, ..., XiI) ∈ RI
+ not to be confused with xis, and outputs are denoted Yi = (Yi1, ..., YiJ) ∈

RJ
+. When there is no risk of confusion we omit the observation index i (i = 1, ..., n). Let

the set of feasible production plans be

T = {(X,Y ) : X can produce Y ). (2)

The IDF is defined as

D(X, Y ) = max{λ|(X/λ, Y ) ∈ T }, (3)

and it has several properties: It is homogeneous of degree one in inputs, increasing in inputs,

decreasing in outputs and concave in inputs. It can be shown that a translog approximation
1Although we have panel data we omit the time index in the interest of simplicity.
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to an IDF takes the following form (see also O’Donnell, 2018, p. 284):2

logXi1 = α0 +
∑I

k=2 αk log X̃ik +
∑J

m=1 βm log Yim

+1
2

∑I
k=2

∑I
k′=2 αkk′ log X̃ik log X̃ik′ +

1
2

∑J
m=1

∑J
m′=1 βkk′ log Yim log Yim′

+
∑I

k=2

∑J
m=1 γkm log X̃ik log Yim +

∑I
k=2

∑L
l=1 δklwil log X̃ik′

+
∑M

m=1

∑L
l=1 ζmlwil log Yim + vi + ui, ∀i = 1, ..., n,

(4)

where X̃ik = Xik

Xi1
, α0, (αk, αkk′ , βmm′ , γkm, δkl, ζml) are unknown parameters, wi = (wil, l =

1, ..., L) (∀i = 1, ..., n) is an L × 1 vector of exogenous variables that includes firm-specific

time effects, a time trend and possibly quasi-fixed inputs. A full translog functional form is

used to incorporate this vector into the analysis. Notice that (4) is in the form of (1). To

benchmark a prior, we use DEA with the given sets of inputs and outputs. DEA provides a

set of inefficiency scores or estimates uDEA
i for ui (Ri = e−ui and, therefore, RDEA

i = e−uDEA
i )

which ignore the presence of noise or any simplifications arising from knowing approximately,

at least, the functional form. For example, the translog is known to be second-order accurate

for an arbitrary IDF. Our purpose is to use the efficiency estimates (RDEA
i ) for benchmarking

a prior pR(Ri) from which a prior pu(u) on inefficiency ui = − log ri can be computed using

change of variables. Although DEA delivers numerical estimates we prefer to use the concept

of “thick frontiers” to mitigate the problem of noise in DEA. Specifically, we assume that

efficiency scores can be in r distinct groups, defined by (0, ā1), [ā1, ā2), ..., [ār−2, ār−1), (ār, 1].

Despite the influence of noise, the thick frontier is less affected by it so intervals estimators

of efficiency should be closer to reality. As we are dealing with crafting a prior, we need not

worry about true inefficiency falling in the correct interval all the time. The efficiency groups
2No risk of confusion should arise between index k used here and those in the next section.
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can be transformed to inefficiency intervals and we have (−∞, a1), [a1, a2), ..., [ar−2, ar−1),

(ar, 1], where aj = − log āj. The intervals are fixed but their number 1 + r can vary so,

we can choose r. In selecting r, we must keep in mind that finer intervals are less robust

to noise while coarser intervals are more robust but less informative in terms of locating

inefficiency. Our purpose is to adopt a prior which has minimax regret with respect to all

priors compatible with the DEA estimates.

2.2 The minimax regret empirical prior

To summarize, for a random variable u representing inefficiency we consider an experiment

where u is unobserved but there is an estimator û which provides incomplete observations

for inefficiency:3

u : Ω → U , is the outcome of a random experiment. Suppose U = {−∞, a1, ..., aM}.

û : Ω → Û ⊆ s(U), where s(U) is the set of all subsets of U , and û represents the

estimator. We assume Û = {A1, ..., Ar}, Ai ⊆ U albeit in our problem r = M . Our question

is what is the best choice for the distribution P (u) given the estimates. This choice concerns

the selection of a prior probability distribution to be used subsequently in more elaborate

analysis. In other words, the estimator û is considered as a rough guide. We will write our

choice as P (u|θ) conditional on a parameter θ ∈ Θ ⊆ Rd. Let û = {G1, .., Gn} be a sample

of observations and Gj ∈ Û representing estimating inefficiency to be in group or interval j;

Û = Gj ⇔ uj ∈ Gj, where uj is the jth unobserved outcome of u = (u1, ..., un), generated

through the random process u. Notice that Gj merely provides a group or interval to which

inefficiency belongs. This is broadly consistent with the idea of “thick frontiers”. Let also
3Similarly, we can consider the problem in terms of efficiencies.
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U(û) be the set of samples of u consistent with the estimates û.

As usual in cases involving latent data we have three likelihood functions, namely:

1. The observed sample in Û : P (û|θ) =
∏n

i=1 p(ûi|θ), where p(ûi|θ) is a density.

2. The latent sample in U : P (u|θ) =
∏n

i=1 p(ui|θ).

3. The complete sample of zi = (ui, Gi): Lz(θ) =
∏n

i=1 p(zi|θ), z = ((u1, G1), ..., (un, Gn)),

uj ∈ Gj, ∀j = 1, ..., n.

In this discussion we are interested in the second option viz., the latent sample in U .

The desired distribution is a member of {P (u|θ) : u ∈ U(û)}. Based on the set of estimates

û = (û1, ..., ûn) ∈ Ûn we have two options:

(i) maximax strategy: find (u∗, θ∗) that maximizes Λ(θ) = max
u∈U(û)

P (u|θ).

(ii) maximin strategy: find θ∗ ∈ Θ that maximizes Λ(θ) = min
u∈U(û)

P (u|θ).

We will not consider these problems in detail and we will only refer to Guillaume &

Dubois (2019) where the problems are analyzed albeit not in the context of efficiency estima-

tion. It suffices to say that both approaches are extreme, yielding either “too deterministic”

or “too dispersed” distribution functions. Suppose nk is the number of appearances of ak in

u, qj is the number of observations of Aj in û, and nik is the number of times that (ai, Ak)

is in the complete sample z. It follows that u ∈ U(û) if an only if the following conditions

are satisfied (Guillaume & Dubois, 2019):

∑r
k=1 nk =

∑r
j=1 qj = n,

nk =
∑r

j=1 nkj ∀k = 1, ...,M,

qj =
∑M

k=1 nkj ∀j = 1, ..., r,

nkj = 0 if ak /∈ Aj ∀k, j.

(5)
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Using log-likelihoods and letting pθk = Pr(U = ak|θ) the two problems can be written as :

max
p

max
n

∑M
k=1 nk log pk,

max
p

min
n

∑M
k=1 nk log pk,

subject to constraints (5) and∑M
k=1 pk = 1,

nk, nkj ∈ N, pk > 0 ∀k = 1, ...,m.

(6)

If we let θ = (p1, ...., pM) be a probability mass function, we have the probability mass as-

signment pmf(Aj) =
qj
n

(j = 1, ..., r), the optimal solution to the maximin likelihood problem

subject to the first three constraints of (5) and nk ∈ R+, is the distribution with maximal

entropy, namely the solution to max
n

−
∑M

k=1
nk

n
log nk

n
. The solution to the second problem

in (6) is the solution with minimal entropy, namely the solution to min
n

−
∑M

k=1
nk

n
log nk

n

subject to the first three constraints of (5). The maximax approach tends to resolve uncer-

tainty very strongly yielding Dirac distributions consistent with the estimates. The maximin

approach yields distributions with high variances interpreting incomplete information as the

result of extreme randomness: the less information the larger the variance, which is not

fully satisfactory either. Suppose θ̂u is the maximum likelihood estimator of θ provided u is

observed. The minimax relative regret problem is

max
θ∈Θ

min
u∈U(û)

P (u|θ)
P (u|θ̂u)

. (7)

The interpretation is that we try to find the value of θ that reaches the best compromise

between the various ideal values θ̂u for all u in agreement with the estimates in û. The
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problem of minimizing maximal regret is

min
θ∈Θ

max
u∈U(û)

L(u|θ̂u)− L(u|θ), (8)

which is equivalent to the following mathematical programming model:

min α
p

subject to:

(i)
∑M

k=1 nk log nk −
∑M

k=1 nk log pk ≤ α, ∀u ∈ V (U(y))

(ii)
∑M

k=1 pk = 1,

(iii) pk ≥ 0, ∀k = 1, ...,M,

, (9)

where V (·) signifies the vertices of a set. The problem can be solved only numerically using

standard solvers.4 In our application we set r = 10. This is the value that maximizes the

log marginal likelihood in our estimated model. The model is estimated using Bayesian

techniques organized around Markov Chain Monte Carlo (MCMC) using 15,000 iterations

the first 5,000 of which are omitted in the interest of mitigating possible start up effects.

Flat priors are used on the translog parameters and the two-sided error standard deviation,

σv.5

4We use conmax.f from the netlib distribution.
5If β denotes all translog parameters then this prior is p(β, σv) ∝ σ−1

v e−q/(2σ2
v) where q is set to machine

precision. For a general minimax regret prior, MCMC is a random-walk Metropolis algorithm (Tierney, 1994)
fine tuned so that approximately 20–25% of all candidates are accepted. Marginal likelihood for different
values of r (ranging from 3 to 20) is computed using the Laplace approximation (DiCiccio et al., 1997).
Convergence and numerical performance is monitored using Geweke’s (1992) diagnostics.
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3 The minimax regret prior for all other parameters

In the SFM given by (1), parameters β and σv can be assigned a minimax regret prior con-

ditional on inefficiencies U = (u1, ..., un). With the exception of the intercept, we know that

least squares (LS) estimates of β are consistent. Suppose the vector b contains LS parameter

estimates ignoring technical inefficiency and S is the vector of LS standard errors. Them we

know that the intervals b ± 2S contain the true parameters with sampling probability 95%

(element-wise). We assume that for the intercept, a consistent estimator and its standard

error are available in the first elements of b and S, viz., b1 and S1. Such a consistent esti-

mator is provided by b1 := b1 + min
i=1,...,n

ei where ei = yi − x′
ib are LS residuals. An alternative

is to estimate (1) by maximum likelihood using any conventional distributional assumption

e.g., half-normality, which provides consistent standard errors, S, as well. Using the 95%

confidence intervals bj ± 2Sj (j = 1, ..., d) it is possible to place r points in them (the two

extremes being the endpoints of the intervals). In turn, using the methodology of Section

2.2 it is possible to compute the minimax regret empirical prior of βj conditional on all other

βs denoted β−j as well as σv and U , viz., we obtain the prior

p(βj|β−j, σv, U). (10)

The prior of σv can be constructed in the same way. In connection to (4) we can use the same

methodology or argue that, in this instance, the βs do not have a structural interpretation

and therefore it is better to place priors in terms of functions of interest like returns-to-scale

(RTS), technical change (TC), and efficiency change (EC). These functions are linear in β
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and provide a set of linear functions that we denote Aβ where A has dimensionality F × d

where F is the number of functions of interest (F=4 in this case) and β is d× 1. A class of

possible priors is

Aβ ∼ NF (r, h
2IF ), (11)

where r is an F × 1 vector and IF denotes the F ×F identity matrix. As the properties of a

prior like (11) are well understood we will proceed with the former option. We assume that

r(β,σv) is the common value of r corresponding to all conditional priors of β and σv in (10).

We assume a common value merely for convenience and in the empirical application this has

been found to be 8 when we maximize the log marginal likelihood of the model. With a full

minimax regret empirical prior on β, σv, and U we proceed to showcase the new techniques

in actual data from large U.S. banks.

4 Monte Carlo study

To examine the properties of the minimax regret empirical prior we consider a Monte Carlo

study using model (4) retaining only the first-order terms. Therefore, we have a Cobb-

Douglas approximation to an IDF (O’Donnell, 2018, p. 284 on this point, where it is argued

that if there is more than one output and output sets are bounded, then IDFs cannot be exact

Cobb-Douglas functions). We have five inputs and five outputs as in our empirical application

in the next Section. The regressors are generated by bootstrapping with replacement the

data set in the next Section so that we have a more realistic scenario. Coefficients αk are

set to 1
4

and coefficients βj to 1
5

and we consider values of σv ∈ {0.01, 0.05.0.1, 0.3}. The

sample size is n ∈ {100, 250, 500, 1000, 2500, 5000}. Inefficiency is generated from a gamma
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distribution, G(a, c) whose mean is a
c

with a = 2
3

and c = 1, which has mean 2
3
. The density

of efficiency is reported in Figure 1.

Figure 1: Density of G(2
3
, 1)
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We use r=10 supported points for both inefficiencies as well as the parameters of the

SFM as this value turned out quite reasonable in the empirical application. We consider 5,000

Monte Carlo replications. For each replication we use 15,000 MCMC passes omitting the first

5,000 and starting values are obtained from maximum likelihood (ML) with half-normally

distributed inefficiencies. For ML estimates of inefficiency we know that the estimates are

generally consistent unless we have time-invariant fixed effects (Greene, 2005). For DEA

we know that efficiency scores converge very slowly at a rate O(n
− 1
I+J ). This information

is enough to compare our own estimates. Before proceeding, however, it is interesting to

examine how the minimax regret priors look like. In Figure 2 we present the joint density of

regression parameters α1 and α2 (panels (a) and (b)), and their marginals in panels (c) and

(d). Clearly, the two parameters presented here are positively correlated as they are based

on the data. Moreover, the marginals and the joint density show that the empirical prior

is not symmetric and, therefore, cannot be close to a bivariate normal. More evidence on
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non-normality is provided by the marginal prior of σv reported in panel (e) which is, clearly,

multimodal. Multimodality is the result of the compromising role of the minimax regret

prior which balances the maximax and maximin priors defined in the previous Section. As

the minimax regret empirical prior balances two extremes (uniformity on the one hand and

Dirac masses on the other) multimodality is not overly surprising, and it is also evident in

densities of α3 and α4 presented in panels (f), (g), (h), and (i).
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Figure 2: Minimax regret empirical priors of selected parameters
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Our Monte Carlo results are reported in Table 1 where shown are mean squared errors

of inefficiency estimates. The surprising feature of these results is that the mean squared

error of inefficiency estimates, for a given value of σv, is that it goes down at the rate n

instead of the usual
√
n –a fact that can be justified if we recall that the prior is empirical,

that is it is base on the same data as the posterior.
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Table 1: Monte Carlo results I

σv

0.01 0.05 0.10 0.30
n 100 0.017 0.025 0.032 0.044

250 0.0068 0.010 0.0128 0.018
500 0.0034 0.005 0.0065 0.090
1000 0.0017 0.0025 0.0031 0.0043
2500 0.0007 0.0010 0.0015 0.0018
5000 0.0003 0.0005 0.0007 0.0008

As σU =
√
b
c

' 1.22 one may argue that the results in Table 1 are too optimistic. To

show that this is not the case, we report additional results in Table 2 with values of σv

closer to σU . Although mean-squared errors are higher, the general tendency of decreasing

at rate n rather than
√
n continues to apply. From the Monte Carlo study, we may conclude

the efficiency estimates converge rather quickly (as opposed to DEA which converges very

slowly relative to the total number of inputs and outputs, I + J) and they are essentially

unbiased and consistent. This important property means that minimax regret priors inherit

the advantages of DEA being a nonparametric estimator and the advantages of SFA in terms

of handling noise. Additionally, the efficiency estimators converge as a function of the sample

size rather than I+J . This shows that the minimax regret prior can combine effectively the

virtues of both DEA and SFA in providing accurate estimates of technical inefficiency.

5 Data

To illustrate the new techniques we use U.S. banking data previously used by Malikov,

Kumbhakar and Tsionas (2015). As in their paper, we focus on a selected subsample of

relatively homogeneous large banks, i.e. those with total assets in excess of $1 billion dollars
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Table 2: Monte Carlo results II

σv

1.0 2.0 3.0 5.0
n 100 0.057 0.062 0.079 0.092

250 0.0069 0.0250 0.032 0.037
500 0.0033 0.126 0.016 0.019
1000 0.0018 0.0064 0.0080 0.0092
2500 0.0009 0.0025 0.0032 0.0038
5000 0.0004 0.0012 0.0016 0.0020

(in 2005 US dollars) in the first three years of observation. The data on commercial banks

come from Call Reports available from the Federal Reserve Bank of Chicago and include

all FDIC-insured commercial banks with reported data for 2001:Q1–2019:Q4. We have an

unbalanced panel with 3,897 bank–year observations for 285 banks. We deflate all nominal

stock variables to 2005 US dollars using the consumer price index for all urban consumers.

We have the following outputs: consumer loans (y1), real estate loans (y2), commercial

and industrial loans (y3), securities (y4), and off-balance-sheet income (y5) . See Berger

and Mester (1997, 2003) and Hughes and Mester (1998, 2013). The inputs are labor, i.e.

the number of full-time equivalent employees (x1), physical capital (x2), purchased funds

(x3), interest-bearing transaction accounts (x4) and non-transaction accounts (x5). For

comparison purposes we estimate also a translog output distance function (ODF) using the

same inputs and outputs. To account for technical change we include a time trend.

In panel (a) of Figure 3 reported are sample distributions of posterior-mean estimated

technical efficiencies. DEA corresponds to input-oriented Data Envelopment Analysis. We

also consider SFMs with exponentially, half-normally, and truncated-normally distributed

inefficiencies (for the priors of β and σv in this case, see Footnote 5; for the shape parame-
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ters of the distributions we assume flat priors). In panel (b) reported are sample distributions

of posterior-mean estimated returns to scale (RTS). In panel (c) reported are sample distri-

butions of posterior-mean estimated technical change (TC). In panel (d) we present sample

distributions of posterior-mean estimated of efficiency change (EC). Finally, in panel (e) we

present the actual minimax regret prior (using linear interpolation)6 compared to the DEA

sample distribution of efficiency scores. Clearly, there are important differences when a min-

imax regret prior is placed on the inefficiencies. RTS, TC, and EC are different and from

panel (f) the minimax regret prior is strikingly different compared to DEA despite the fact

that the former is based on the latter. In turn, the choice of a minimax regret prior affects

materially all measures of interest like RTS, TC, etc.

In terms of policy implications, the new model is likely to be useful as we do not

rely on a parametric distribution for inefficiency but rather we anchor on DEA (a popular

approach in most policy discussions and empirical applications) and a minimax regret ap-

proach to construct the (prior) model. Therefore, inefficiency estimates share some of the

good properties of DEA (nonparametric specification) but avoiding some of its drawbacks

like slow convergence in the total number of inputs and outputs. In this example, as DEA

overestimates efficiency, we find that the minimax regret prior for incomplete data provides

lower efficiency and brings results closer to what is known from previous studies. Specifically,

bank efficiencies are in the neighborhood of 80–85%. Additionally, we provide a perspective

with respect to the following idea. Although DEA may be biased, it is nevertheless biased

in the right direction as it underestimates inefficiencies, at least in this example; therefore,

policy recommendations to reduce inefficiency will not surprise the decision maker in the
6The true prior is a stepwise function.
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Figure 3: Distributions of interest
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Notes: In panel (a) reported are sample distributions of posterior-mean estimated technical efficiencies. DEA corresponds to
input-oriented Data Envelopment Analysis. In panel (b) reported are sample distributions of posterior-mean estimated returns
to scale. In panel (c) reported are sample distributions of posterior-mean estimated technical change (TC). In panel (d) we
present sample distributions of posterior-mean estimated of efficiency change (EC). In panel (e) we present the actual minimax
regret prior (using linear interpolation) compared to the DEA sample distribution of efficiency scores.
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wrong direction. In other words, if according to DEA inefficiency is 30% and in fact it is

20%, if policy measures are taken to reduce inefficiency by the true amount (20%) then the

decision maker will not be disappointed. In this sense DEA is a useful benchmark for policy

analysis. However, SFA often performs much better due to better statistical properties so,

a combination of both SFA and DEA is to be recommended in practice. One way to accom-

plish this task is to draft a prior based on the minimax regret criterion for incomplete data

and use this prior specification as a distribution for use in SFA. To conclude this discussion,

having access to the most reliable information (e.g., from this new unbiased and consistent

estimator) allows the use of adequate and proportional policy measures to reduce the true

amount of inefficiency.

6 Concluding remarks

In this paper we construct a minimax regret prior for inefficiencies in SFMs (i) to avoid

specific distributional assumptions which are made invariably in the literature, and (ii) to

avoid the use of a single prior on unobserved or “missing data” inefficiencies. The minimax

regret prior is taken with respect to all priors consistent with interval estimates of inefficien-

cies from DEA. Interval estimation is used as it makes DEA more robust to the presence

of noise. The minimax regret inefficiency prior is extended to include the parameters of the

SFM. MCMC methods are developed and the new techniques are applied successfully to a

dataset on large U.S. banks.
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