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Abstract—Deep neural networks (DNNs) have been widely 

used for intelligent fault diagnosis under the closed world 

assumption that any testing data is within classes of the training 

data. However, in reality, out-of-distribution (OOD) cases such as 

new fault conditions can happen after the original trained model 

is deployed. Most of the current DNNs are deterministic which 

can misclassify with high confidence in the open-world scenario. 

This overconfident behavior would not guarantee the reliability 

and robustness of fault diagnosis results in practice. Therefore, 

trustworthy intelligent fault diagnosis with uncertainty 

estimation is crucial for real applications. In this paper, we 

develop a novel convolutional neural network integrating 

evidence theory to achieve fault classifications with prediction 

uncertainty estimation. The estimated prediction uncertainty can 

identify potential OOD samples. This approach allows a minimal 

modification of the state-of-the-art DNN model by using a risk-

calibrated evidential loss function and Dirichlet distribution that 

replaces the classification probabilities. The experimental results 

show that the proposed approach can not only achieve accurate 

classification of known classes but also detect unknown classes 

effectively. The proposed method shows significant potential in 

detecting OOD patterns and provides trustworthy fault diagnosis 

in open and non-stationary environments. 

Index Terms— Trustworthy AI, Fault diagnosis, Open set 

recognition (OSR), Evidential convolutional neural networks, 

Uncertainty estimation. 

I. INTRODUCTION 

ith the development of smart and digital manufacturing, 

condition monitoring of industrial machines has become 

increasingly important in guaranteeing production 

efficiency and safety. With more access to sensory data, data-

driven approaches for fault diagnosis have gained extensive 

interest due to the outstanding performance of machine 

learning (ML), especially deep learning (DL). Most of the 

existing development is under the closed-world assumption 

that the testing data are drawn from the same distribution as 

the training data, known as the in-distribution (ID). However, 

the practical scenario can be open-world where the testing 

samples may be out-of-distribution (OOD) compared with 

training samples [1]. The existing fault diagnosis methods can 

misclassify the OOD samples with high confidence which 

means that they are incapable of detecting the unseen fault 

classes. This limitation prevents its application in real-time 

monitoring and control of safety-critical industrial systems, 

including nuclear plants, chemical processes, transportation, 

etc [2]. Dealing with OOD inputs is essential for practical 

applications of ML [3].  

An important subtopic of OOD is open-set recognition 

(OSR) which aims to detect multiclass unknown samples and 

avoid overconfident behavior [4]. OSR requires that the 

multiclass classifier not only classify known classes accurately 

but also detect unknown classes in the test samples. Fig. 1 

provides a visual comparison of traditional classification and 

OSR. The methods used in OSR scenarios are mainly 

classification-based methods since ID data comprises multiple 

classes during the training processing. In addition, distance-

based methods, reconstruction-error-based methods, and 

density-based methods are developed [5]. In classification-

based methods, redistributing the logits that are the unscaled 

output of the penultimate layer in a neural network can reduce 

the probability of overconfidence. Extreme value theory (EVT) 

has been widely applied in OSR tasks [6]. It can analyze the 

data distribution of abnormally high or low values and rely on 

the probabilistic model such as the Weibull distribution. 

However, selecting a proper probabilistic model is challenging. 

Accurate uncertainty predictions can help interpret the 

confidence levels and capture semantic shifts in OSR samples 

that are drawn from multiple classes [7]. 

 
Fig 1. Difference between traditional classification and open-set recognition. 

Traditional uncertainty estimation approaches mainly rely 

on sampling methods, such as Monte Carlo (MC) sampling [8]. 

MC is an effective method to approximate an exact posterior 

inference, which has been a popular method for uncertainty 

estimation. However, it is a slow and computationally 

expensive method when integrated into a deep architecture [9]. 

To combat this problem, the MC dropout method is introduced 

by using the dropouts as a regularization term to compute the 

uncertainty. Dropouts is an effective technique that has been 

widely used to solve the overfitting problem in deep neural 

networks (DNNs) [10]. The dropout methods, including MC 

dropout, Bernoulli dropout, and Gaussian dropout, can be 

accurate in quantifying the prediction uncertainty by sampling 

weights. However, dropout-based methods require many 

repeated feed-forward calculations with high computational 

costs [11]. Bayesian deep learning can provide a theoretical 

framework for uncertainty estimation by modeling the 

distributions for the parameters. It is robust to overfitting 

problems. However, it requires expensive MC sampling [9]. 

Other uncertainty estimation methods using deep ensembles 

have been used to detect misclassification and out-of-

distribution inputs, warning of the potential untrustworthy 

diagnosis [12]. The probabilistic ensemble approach and 

Bayesian nonparametric ensemble approach can robustly 

estimate the uncertainty from different sources [13].  

However, dropouts and deep ensemble approaches can be 

computationally expensive due to the high demand for 

memory, and hyperparameters are hard to determine. Also, it 

is difficult to directly infer the posterior distribution of the 

weights and to choose a weight prior [14].  
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Recently, prior networks that parameterize a Dirichlet prior 

over output distributions have been proven to have better 

uncertainty estimation performance than MC dropout [14]. 

Furthermore, the Dirichlet prior distribution is not overly 

dependent on the training samples and can adapt to the data 

changes in the multiclass OSR scenarios [15]. It has been used 

to estimate data uncertainties in DNNs by directly estimating 

parameters of the predictive posterior as their output [16]. 

However, the available Dirichlet prior distribution relies on 

auxiliary losses in DNNs to achieve good classification 

performance and uncertainty estimation [17]. Enhanced 

uncertainty estimation can be achieved by deriving the 

properties of the new loss function. The most important loss 

functions, such as the maximum likelihood loss, the cross-

entropy loss, and the sum of squares loss, can be applied for 

uncertainty estimation in DNNs [16]. Dirichlet networks with 

appropriate loss functions require no sampling and minimal 

changes to the standard neural network structures, which can 

effectively reduce the risk of underestimation of uncertainty 

[8]. This approach is promising for predictive uncertainty 

estimation in practical settings, which can provide robust and 

trustworthy prediction results. It has been investigated in 

image recognition tasks and achieved good performance.  

This paper develops a new framework for trustworthy fault 

diagnosis in open set fault diagnosis (OSFD) tasks. Inspired by 

the implicit density models, the proposed method links the 

Dirichlet distribution parameter to the evidence assigned over 

classes, obtaining the Dirichlet distribution instead of the point 

estimation of the probabilities. To build the classifier, the VGG 

network (developed by the Visual Geometry Group [18]), has 

been chosen as the basic structure. Then, an improved 

evidential VGG-architecture network (EVGG) has been 

developed which can provide categorical probabilities and 

pignistic probabilities, respectively. The proposed approach 

assigns more evidence to the correct labels and decreases the 

misleading evidence from misclassified samples by applying 

the risk-calibrated evidential loss function. Two benchmark 

datasets are used to test the performance. Experimental results 

show that the proposed method can accurately diagnose known 

classes and detect unknown classes. The main contributions of 

the paper are: 

1) A new trustworthy fault diagnosis framework in OSFD 

tasks is proposed. It only requires minimal changes of DL 

approaches for general neural network structures and can 

capture uncertainty in prediction. By integrating evidence 

theory, the proposed method can achieve good diagnosis 

performance for known classes and detect unknown classes 

through effective estimation of prediction uncertainty. 

2) The EVGG model treats the predictions of the classifier 

as evidence and replaces the point estimation of the 

probabilities over classes from softmax with the Dirichlet 

distribution. In addition, the weights of the standard 

backpropagation neural network are optimized through the 

risk-calibrated evidential loss function by assigning more 

evidence to correct classification.  

3) By developing an improved EVGG model with evidence 

theory, the present work achieves end-to-end trustworthy 

intelligent fault diagnosis. The proposed method achieves 

effective uncertainty estimation and high diagnostic 

performance with known and unknown classes. The 

uncertainty estimation provides support to trustworthy 

predictions with the capability of detecting OOD samples.  

The remainder of the present paper is organized as follows. 

Section II introduces the theoretical background. Section III 

presents the details of the proposed method. The experimental 

study is presented in Section IV. Section V gives the 

conclusion and possible future work. 

II.  BACKGROUND 

A. Problem description  

In the practical task of fault diagnosis with possible new 

faults, it is critical to not only classify the known faults 

contained in the training process but also detect the new faults 

in testing. The goal of the proposed method is to classify 

known classes accurately and recognize unknown classes that 

could happen after the deployment of the trained models.  

Suppose  1 1( , ),..., ( , )n nI x y x y=  is the training dataset. 
nx  

is the nth sample and [1,2,..., ]ny M  is the label of the M 

known classes in the training dataset. Correspondingly,

 1 1,..., , ,...,n n mI x x x x+
  = is the testing dataset, which includes 

the samples of known classes and samples of new classes. The 

task is to achieve an accurate diagnosis of known class samples 

 1,..., nx x  and identify samples  1,...,n mx x+ that are from 

new classes. 

B. Evidence theory 

Dempster-Shafer evidence theory (DST) is a generalization 

of Bayesian theory to include subjective probabilities [19]. On 

assigning belief mass to subsets of the discriminative 

framework, the belief truth can be any of the possible states. 

Then, subjective logic (SL) formalizes DST's notion of belief 

distribution over a discernment framework as a Dirichlet 

distribution. The theoretical framework to quantify belief mass 

and uncertainty based on the principles of evidence theory can 

be found [16]. For each sample, SL provides a belief mass
ma

and uncertainty w , satisfying the following equation: 
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mv  means the 

evidence of the thm  class.  1,..,v Mv v=  is the evidence 

vector. It is evident that there is an inverse relationship 

between belief mass and uncertainty. Typically, a sample will 

have a low level of uncertainty when it obtains sufficient 

evidence supporting or belief mass. In contrast, a diagnosis 

result accompanied by a high uncertainty value is a lack of 

evidence supporting the classification as a known class. Then, 

the sample is identified as an unknown class. 

C. The Dirichlet distribution integrated into evidence theory  

In the classification task, the thi data sample has the 

observation 
ix  and the class label 

iy . This label corresponds 



 

 

3 

to a latent class distribution 
1[ ,..., ]p = Mp p , representing the 

probability over M categories. Neural network classifiers can 

estimate the probability by using the softmax function. 

However, softmax provides a point estimate for the class 

probability of a sample without associated uncertainty, which 

introduces the risk of an overconfident diagnosis. Dirichlet 

distribution is used as a distribution of all possible softmax 

outputs for the classification of any given samples. The 

Dirichlet distribution is a probability density function for 

categorical distributions and can be characterized by parameter 

1[ ,..., ]β M = [20], given by 
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where 
MV  is the K-dimensional unit simplex, given by 
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The Dirichlet distribution parameter can be viewed as real-

valued pseudocounts or evidence, where the higher 

pseudocounts indicate more evidence over classes [8, 21]. If 

there is no evidence for the assignment of the sample to 

classes, Dirichlet distribution can be seen as a uniform prior

( |1,...,1)pD  (i.e. 
0 [1,...,1]β = ). As a result, its belief mass 

value is zero and the uncertainty value is one. When the 

evidence 
mv  exists over classes, the relevant parameter 

would be updated ( 1m mv = + ), generating the new Dirichlet 

distribution 
0( | ) ( | )p β p v+βD D = .  

The mean and the variance of a Dirichlet distribution for the 

class probability 
mp  are computed as follows: 

     2

( )
ˆ ,

( 1)

m m m

m m m

V
p p p

V V V

  −
= = =
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where 
1

M

mm
V 

=
=  refers to the Dirichlet strength (or the 

total evidence of the sample). ˆ
mp  means the expected 

probability of the thm  class.  

III. THE PROPOSED METHOD  

A. The evidential deep classifier  

In this paper, the evidence theory has been integrated to 

develop the evidential VGG networks, which can provide 

reliable diagnosis results by assigning more evidence to the 

correct labels and decreasing the misleading evidence from 

misclassified samples. The logic of the evidential deep 

classifier is presented in Fig. 2. The procedure is summarized 

in Algorithms 1.  

The deep classifier first estimates evidence v  over each 

class. Then, the belief mass a  is obtained which can be used 

to calculate the uncertainty w  of a sample. With the prior 

parameter 
0β , the uniform Dirichlet distribution is generated. 

With the new evidence, the Dirichlet distribution will be 

updated which generates class probabilities p . The predicted 

label y with uncertainty value provides a trustworthy 

prediction. The VGG-architecture network, an improved 

convolutional neural network (CNN), has been modified and 

used as the basic classifier [18].  

  
Fig. 2. The logic of the evidential deep classifier. 

 

Algorithm 1: Evidential deep classifier for open-set recognition 

Input: dataset x , prior Dirichlet distribution parameter 
0β  

1: Obtain evidence v  on each class by a deep classifier. 

2. Compute the belief mass / ( 1)1
Ma v vm m mi= + = and uncertainty 

1 1
Mw amm= −  = . 

3: Update Dirichlet distribution ( | )p βD  by the updated Dirichlet 

distribution parameter 
0

v+ββ= . 

4. Compute the class probability ˆ / 1
Mp mmm m

 = = . 

Return: predicted label y , uncertainty estimation value w  

B. The evidential loss function  

For ith sample, 
ix is the observation and 

iy  is the class 

label that is one hot encoding. This paper defines the evidential 

loss function using the maximum likelihood loss (MLL), the 

cross-entropy loss (CEL), and the sum-of-squares loss (SSL). 

In this paper, the selection of the optimal evidential loss 

function is incorporated into the hyperparameter optimization 

process. The maximum likelihood results in 
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where   represents the network parameters. ( )βiB  is the 

K-dimensional multinomial beta function. The loss function is 

minimized by searching parameters βi
. For the cross-entropy 

loss, similarly, the Bayes risk concerning the class predictor 

is: 
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where ( )   is the digamma function. The same approach can 

be applied to compute the sum-of-squares 
2

2
y pi i−  using 



 

 

4 

 

2 1

2
1

2 2

1

2 2

1

2 2

1

2

2
1

2

1

1
( )

( )

[ 2 ]

( 2 [ ] [ ])

( [ ]) var[ ])

( )
( )

( 1)

垐 (1
ˆ( )

y p p
β

im

err
m

M

i i i im i

ii

M

im im im im

m

M

im im im im

m

M

im im im

m

M
im i im

im im i

m i i

M
im i

im im

m

p d
B

y y p p

y y p p

y p p

V
y V

V V

p p
y p



 


−

=

=

=

=

=

=

 = −

= − +

= − +

= − +

−
= − +

+

−
= − +












L

L

E

E E

E

var

)

1

im

m

iV +

L

 (7) 

 err

imL  is the fitting error in the data prediction, and var

imL  is 

the variance of the Dirichlet distribution generated by the 

EVGG model. The SSL used in the paper is to minimize the 

sum of error and variance.  

To reduce the evidence assigning for misclassification 

classes, KL divergence is introduced to the loss function as a 

penalty term, reducing the evidence for misclassification 

classes. It measures the difference between the target Dirichlet 

distribution and the prior Dirichlet distribution, calculated as 

follows: 

 0[ ( | ) ( | )], (1 )p β p β β y y βi i i i i i iKL D D = + −  (8) 

where  represents the element-wise product, ( )   is the 

gamma function, and βi
 represents the updated Dirichlet 

parameter. Then evidential loss can then be calculated as  
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where min(1, /10) [0,1]t t =   represents the annealing 

coefficient, t is an index for the current training epoch.  

C. The risk-calibrated evidential loss function  

  To measure the uncertainty and risk in assigning the 

evidence over classes, pignistic probability (q) has been 

introduced to calculate the risk of misclassification [22]. The 

pignistic probabilities over classes can be set as a Dirichlet 

distribution[20] using: 

 ( | ) ( | ) ( | ( ) ( ))q x q β q v x φ xg D D  = = +  (10) 

where ( )v x  means evidence over classes. ( )φ x  is the 

prior count for the sample, computed by: 

 ( ) ( ( ) ), ( )φ x W x b xji
M f f M   =   + =  (11) 

in which ( )f   is the output of the logits layer, W and b are 

the weight and bias variables, respectively. ( )f   is the 

activation function e.g., softmax function. The average risk of 

misclassified samples is given by 
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yi ii
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where 
yiR  represents the risk of misclassifying sample x from 

class y to class i. [0, )R
M M   is the M-dimensional non-

negative square matrix based on subjective criteria. When the 

sample is correctly classified, the risk 
yyR  decreases to zero. 

Relying on the definition of the Dirichlet distribution 

parameter ( ) ( )x xi i iv  = +  in pignistic probabilities, the 

expected risk over classes can be computed by 
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This paper integrates misclassification risk into the loss 

function to form a risk-calibrated evidential loss function, 

minimizing the risk of misclassification. The loss function is 
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 The L2 regularization has been introduced to regularize the 

weights of the fully connected layer, thereby reducing model 

complexity and preventing overfitting. 

D. EVGG with uncertainty estimation in OSFD 

The framework of the proposed trustworthy intelligent fault 

diagnosis approach with uncertainty estimation, called EVGG, 

is shown in Fig. 3. The proposed method outputs the 

classification result together with a prediction uncertainty. The 

EVGG model as the multiclass classifier achieves accurate 

classification with test samples from known classes and 

effective detection of unknown classes with high uncertainty 

values. Quantifying uncertainty can avoid overconfident risk 

and make reliable fault diagnosis decisions in practical systems. 

The procedure is summarized as follows: 

Step 1: Measure and collect vibration data of the monitored 

machine with different fault conditions. Preprocess the data 

and construct the two-dimensional feature maps of the samples 

to form the dataset. 

Step 2: Construct EVGG by integrating evidence theory and 

an improved VGG-architecture network. Use the risk-

calibrated evidential loss function as the loss function. To 

reduce the complexity of models, L2 regularization is applied 

to the weights of full-connected layers. Category probabilities 

and pignistic probabilities can be obtained. 

Step 3: Train the EVGG model with the training samples of 

the known classes. Test the proposed method with samples 

from known classes and unknown classes. The EVGG model 

can achieve good diagnostic accuracy for known classes and 

detect unknown samples with higher uncertainty values. 

Step 4: The trained EVGG is deployed to achieve fault 

diagnosis. With unknown faults detected, further operational 

warnings and maintenance decisions for the machine will be 

triggered. 

Step 5: With the cumulated unknown samples detected, the 

model parameters can then be adaptively optimized by 

maximizing the successful detection of collected samples of 

unknown classes. The EVGG model can be continuously 

optimized for online fault diagnosis.  
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Fig. 3.  The framework of the proposed EVGG method for open set fault diagnosis. 

IV. EXPERIMENTAL VALIDATION 

CASE 1 Fault diagnosis of CWRU Data 

A. CWRU Fault Dataset Description 

In this experiment, the roller bearing dataset collected from 

a motor drive system by Case Western Reserve University 

(CWRU) is used. The test stand is shown in Fig. 4. Vibration 

signals of the drive-side (6205-2RS JEM SKF) bearing were 

acquired at a sampling frequency of 12 kHz under a 1-hp load 

(1772 rpm). The monitored conditions of the bearings include 

one normal condition and nine faulty conditions. Three types 

of faults are inner race fault (IRF), ball fault (BF), and outer 

race fault (ORF). Each failure type has three severity levels 

including 0.007, 0.014, and 0.021 inches that correspond to 

slight, moderate, and severe faults respectively.  

 
Fig. 4. Tested rolling-element bearing of CWRU. 

In the data pre-processing, an image transformation method 

is adopted to convert the vibration signal to two-dimensional 

feature maps as the input of the EVGG model [23]. A vibration 

signal with a length of 784 data points is converted to a 28*28 

two-dimensional feature map, details given in Fig. 5.  

 
Fig. 5. Schematic diagram of data conversion. 

To expand the number of training and testing samples, the 

overlap sliding segmentation method [24] is used. Each 

segmentation signal includes 784 sample points and the length 

of sample overlap for two neighbor segments is 684 sample 

points. For each class, 1000 samples are obtained. Then dataset 

is split randomly into subsets of training data (70%) and testing 

data (30%), as given in TABLE I.  
TABLE I 

DESCRIPTION OF CWRU DATASETS  

Fault level Fault type 
Number of the 

training/testing samples 
Class Label 

normal / 700/300 C1 

slight fault 

(0.007") 

IRF 700/300 C2 

BF 700/300 C3 

ORF 700/300 C4 

medium fault 

(0.014") 

IRF 700/300 C5 

BF 700/300 C6 

ORF 700/300 C7 

severe fault 
(0.021") 

IRF 700/300 C8 

BF 700/300 C9 

ORF 700/300 C10 

To test the performance of the proposed approach in OSFD 

tasks, three settings are designed as shown in TABLE II. For 

example, in task T1, the training dataset contains normal class 

(C1), BF classes (C3, C6, and C9), and ORF classes (C4, C7, 

and C10). The testing dataset includes all the known classes 

and the unknown classes, IRF classes (C2, C5, and C8).  
TABLE II 

THE SETTING OF OSFD TASKS IN CASE1 

Scenarios 
setting 

Tasks Training dataset Testing dataset 

unknown 

IRF 
T1 

C1,C3,C4,C6,C7,

C9,C10 

unknown：C2,C5,C8 

plus all known classes 

unknown 

BF 
T2 

C1,C2,C4,C5,C7,

C8,C10 

unknown：C3,C6,C9 

plus all known classes 

unknown 

ORF 
T3 

C1,C2,C3,C5,C6,

C8,C9 

unknown：C4,C7,C10 

plus all known classes 
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B. Evaluation Metrics for OSFD tasks 

To evaluate the classification results, several measures are 

chosen for known classes: accuracy, precision, recall, and F1 

score which are widely used in the literature [25]. 

 ( ) / ( )Accuracy TP TN TP FP FN TN= + + + +  (15) 

 / ( )Precision TP TP FP= +  (16) 

 / ( )Recall TP TP FN= +  (17) 

 1 2* * / ( )F Precision Recall Precision Recall= +  (18) 

where TP, FP, FN, and TN represent the number of true 

positive, false positive, false negative, and true negative 

outcomes, respectively.  

For the unknown classes, some quantities [4, 6] are defined: 

TK : The number of correctly classified known classes; 

FU : The number of misclassified known classes; 

TK : The number of successfully detected unknown samples; 

FU : The number of fairly detect unknown samples. 

TU and FU rely on the uncertainty threshold u
 that needs 

to be determined first. Given sample i, its uncertainty 
iu  can 

be calculated by Eq.(4). If 
iu u , a sample will be identified 

as a known class and otherwise an unknown class. In this 

paper, we define u
 to be the mean value plus one standard 

deviation of the uncertainty estimations from all samples of 

known classes in the training process which is more effective 

than a fixed threshold [26]. Then, several evaluation metrics 

are employed. The accuracy of known classes AKS can be 

computed by: 

 / ( )AKS TK TK FK= +  (19) 

The accuracy of unknown classes AUS is given by: 

 ( )AUS TU TU FU= +  (20) 

In addition, the accuracy of all testing samples ALL, 

including known classes and unknown samples, is given by: 

 ( ) / ( )ALL TK TU TK FK TU FU= + + + +  (21) 

Another comprehensive metric H-score is defined as: 

 2* * / ( )H score AKS AUS AKS AUS− = +  (22) 

C. Trustworthy diagnosis results of the CWRU dataset 

The hyperparameters of the EVGG model are determined 

through grid search using a training dataset. Theoretically, all 

the hyperparameters can be optimized which could be 

computationally expensive. Here, we first determine the main 

model structure based on VGG which is shown in TABLE III. 

Then, batch size and loss function type are selected as the 

hyperparameters to be searched to obtain the best prediction 

results including accuracy and uncertainty for known classes. 

The diagnostic performance using different batch sizes is 

displayed in TABLE IV. A batch size of 32 achieves the best 

accuracy and uncertainty prediction. The performance of 

different loss functions is shown in the lower section of 

TABLE IV where SSL achieves the best results.  

In the experiments, the Adam optimizer is used as the 

default setting for training. All experiments are carried out on 

a computer with an Intel Core i7 CPU, 16 GB RAM, and 

GeForce RTX 3050Ti GPU. The training process converges 

rapidly during 50 epochs with high training accuracy for the 

known classes, as shown in Fig 6. The total evidence of correct 

classification gradually increases, while the misclassification 

gets low evidence supporting as shown in subplots (a) and (c) 

of Fig.6. For the uncertainty estimation results in subplots (b) 

and (d) of Fig.6, the uncertainty value of misclassifications is 

significantly higher than the correct classification samples.   
TABLE III 

HYPERPARAMETERS OF THE MAIN MODEL STRUCTURE  

Description Value 

input 28*28*1 

convolution layers 1 Kernel 3*3*1*20, stride [1 1] 
activation layers 2 ReLU 

convolution layers 3 Kernel 3*3*1*20, stride [1 1] 
activation layers 4 ReLU 

pooling layers 5 Maximum pooling [2 2] 

batch_normalization 6 Batch_normalization 
convolution layers 7 Kernel 3*3*20*40, stride [1 1] 

activation layers 8 ReLU 

convolution layers 9 Kernel 3*3*20*40, stride [1 1] 
activation layers 10 ReLU 

pooling layers 11 Maximum pooling [2 2] 

batch_normalization  12 Batch_normalization 

convolution layers 13 Kernel 3*3*40*60, stride [1 1] 

activation layers 14 ReLU 

pooling layers 15 Maximum pooling [2 2] 
batch_normalization 16 Batch_normalization 

full-connected layers 17 500 fully connected layer 

full-connected layers 18 100 fully connected layer 
activation layers 19 Exponential 

dropout 20 50% dropout 

output 10 classes 

TABLE IV 
DIAGNOSTIC PERFORMANCE WITH DIFFERENT PARAMETERS FOR TASK T1 (%) 

Parameters 
Training performance Testing performance 

Accuracy U Accuracy U 

batch size 
(MLL) 

16 99.87 5.25 99.40 8.37 

32 100.00 2.62 99.51 5.15 

64 100.00 2.48 99.55 5.37 

128 100.00 2.98 99.13 7.14 

loss 
function 

(batch 

size 32) 

MLL 100.00 2.62 99.51 5.15 
CEL 99.95 4.06 99.40 6.02 

SSL 100.00 3.09 99.74 5.32 

   

  
a) Estimated total evidence result of 
training data 

b) Accuracy and uncertainty 
estimation results of training data 

  
c) Estimated total evidence result of 

testing data 
d) Uncertainty estimation result of 

testing data 

Fig. 6. Training and testing process of task T1. 

The diagnostic performance of the model for known classes 

is compared and analyzed for three scenarios. Fault diagnosis 

performance is quantified using metrics of accuracy, recall, 

precision, F1 score, uncertainty(U), and F1 score [25], shown 

in TABLE V. The testing accuracy of the known classes in the 

three different tasks reaches 99.65%, 99.96%, and 99.47%, 

respectively. The average uncertainty values of known classes 
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are 6.70%, 4.47%, and 7.14%, respectively. Overall, the 

average diagnostic accuracy is 99.69% with a low average 

uncertainty of 6.10%. The recall indicator achieves 98.76%, 

99.86%, and 98.41%, respectively, which shows a good 

diagnosis performance. The results show that the proposed 

method can provide a reliable diagnostic result for known 

classes with high accuracy and low uncertainty. 
TABLE V 

FAULT DIAGNOSIS RESULTS ON KNOWN CLASSES (%) 

Task Accuracy Recall Precision F1 score U 

T2 

C1 100.00  100.00  100.00  100.00  3.30  

C2 100.00  100.00  100.00  100.00  3.73  

C4 100.00  100.00  100.00  100.00  3.27  
C5 99.86  99.00  100.00  99.50  7.77  

C7 100.00  100.00  100.00  100.00  4.86  

C8 99.90  100.00  99.34  99.67  2.93  
C10 99.95  100.00  99.67  99.83  5.42  

T1 average 99.65  98.76  98.78  98.75  6.70  

T2 average 99.96  99.86  99.86  99.86  4.47  

T3 average 99.47  98.14  98.18  98.13  7.14  

All average 99.69  98.92  98.94  98.91  6.10  

  The detection results of unknown class samples and 

comprehensive evaluation results of all testing samples that 

contain known classes and unknown samples are presented in 

TABLE VI. First, the proposed EVGG model has a strong 

detection capability of unknown classes with higher estimated 

uncertainty than the known classes. The average uncertainty of 

different tasks is 52.58%, 49.25%, and 52.61%, respectively. 

The average detection accuracy is 90.22%, 79.78%, and 86.78% 

for unknown IRF, unknown BF, and unknown ORF scenarios, 

respectively. The positive correlation observed here between 

uncertainty and the detection accuracy of unknown samples 

verifies the proper setting of the uncertainty threshold u .  

TABLE VI 
UNKNOWN CLASS DETECTION AND EVALUATION RESULTS (%) 

Task 
Unknown samples Total testing samples 

AUS U All H_score 

T1 90.22  52.58  96.20  94.30  
T2 79.78  49.25  93.83  88.70  

T3 86.78  52.61  94.73  92.11  

Overall, the accuracy of all testing samples in the three tasks 

is 96.20%, 93.83%, and 94.73% respectively. The H_score is 

94.30%, 88.70%, and 92.11% respectively. Comparing the 

metrics in the three tasks, it is clear that the reliability and 

robustness of the diagnostic results are all at a high level. To 

our limited knowledge, this is the first time that uncertainty 

estimation has been introduced into an OSFD task and 

achieved good diagnosis performance. 

 
Fig. 7 Diagnostic probability assignment and uncertainty estimation of task T1. 

For task T1, 5 samples from known classes (samples 1 to 5) 

and 5 samples from unknown classes (samples 6 to 10) are 

randomly selected and displayed. The classification 

probabilities and uncertainty estimates are shown in Fig. 7. 

Results of the known classes show that high classification 

probabilities are obtained for a specific class with low 

uncertainty. For the unknown classes, similar probabilities are 

assigned for each class with higher uncertainty than known 

classes. The results show that the proposed method can 

accurately classify known classes and identify unknown 

samples with uncertainty estimation.  

After initial training, the EVGG model can detect samples 

of unknown classes with high uncertainty values. With 

cumulated samples of unknown classes being detected, the 

evaluation metrics listed in TABLE IV are used to adaptively 

optimize the hyperparameters of the EVGG models. To 

illustrate how the process works, we also select optimal batch 

size and loss function type as the parameters to be searched. 

The experimental results indicate a batch size of 32 and the 

loss function of SSL are still the optimal choices. This adaptive 

process can be continued with increasing identified unknown 

samples to continuously improve the model performance. 

D. Comparison with state-of-the-art methods 

To verify the diagnostic performance of the EVGG 

approach, other state-of-the-art methods are compared first 

under the condition that all classes are known. TABLE VII 

presents the comparative results. The proposed method 

achieves 99.89% diagnostic accuracy, which is better than 

other deep-learning methods. While the proposed trustworthy 

fault diagnosis framework has competitive diagnostic 

performance, VGG architecture needs more computational 

cost than other CNN-based methods, which should be 

circumvented by using more compact structures in the real-

time application. In addition, the proposed method estimates a 

predictive uncertainty of 8.92%, which is close to the 

uncertainty of the known classes listed in TABLE V and 

significantly lower than the uncertainty value of the unknown 

classes shown in TABLE VI. Overall, the proposed method 

achieves good predictive accuracy and overcomes the 

overconfident diagnostic behavior by providing uncertainty 

indicators in OSFD tasks.  

TABLE VII 
DIAGNOSTIC PERFORMANCE COMPARISON ON KNOWN CLASSES 

Method Accuracy (%) Uncertainty (%) 

Proposed method 99.89 8.92 

Deep Transfer Learning [27] 97.95 / 

CWT- CNN-gcForest [28] 99.19 / 
Improved-DCGAN [29] 99.80 / 

MCNN-LSTM [25] 98.46 / 

RNGPT-RBF [30]  99.39 / 

SDANN [31] 93.84 / 

KPCA-SAE-GPC [32] 94.29 / 

Second, the effectiveness of the proposed method in OSFD 

tasks is validated compared with other advanced OSFD 

methods. The diagnostic tasks as shown in TABLE VIII. The 

results are presented in TABLE IX, in which the proposed 

method can provide additional uncertainty estimation values of 

the testing classes and unknown samples. 
TABLE VIII 

THE SETTING OF OSFD TASKS IN LITERATURE [6]  

Task  Load Training label Testing label 

K0 0hp C1,C2,C3,C5,C6,C8,C9 C1,C2,C3,C4,C6,C7,C9,C10 

K1 1hp C1,C2,C3,C5,C6,C9 C1,C2,C3,C4,C6,C7,C9 

K2 2hp C1,C2,C3,C5,C6,C9 C1,C3,C4,C8 
K3 3hp C1,C3,C4,C5,C9,C10 C1,C2,C3,C5,C6,C9 



 

 

8 

According to the average H_score values, the proposed 

approach is superior to other OSFD methods. The compared 

results validate the effectiveness and robustness of the 

proposed method in different tasks. Moreover, it can realize 

trustworthy fault diagnosis in open set conditions through the 

correct classification of known classes and detection of 

unknown classes with high uncertainty values. 
TABLE IX 

DIAGNOSTIC PERFORMANCE COMPARISON ON UNKNOWN CLASSES (%) 

Task 

1DCNN
+KNN 

1DCNN
+SVDD 

1DCNN
+EVT 

Proposed method 

H_score H_score H_score H_score Uknown Uunknown 

K0 68.1 84.7 94.0 91.2  6.9  48.6  
K1 77.4 90.1 97.8 92.4  7.9  50.0  

K2 51.6 77.0 80.7 93.8  3.0  44.3  

K3 67.9 76.5 85.8 91.9  5.7  26.0  
Ave. 66.2 82.1 89.6 92.3  5.9  42.2  

CASE 2 Fault diagnosis of XJTU-SY Data 

A. XJTU-SY Fault Data Description 

  In this case study, the publicly available roller bearing 

dataset collected from a motor drive system (shown in Fig. 8) 

by Xi’an Jiaotong University and the Changxing Sumyoung 

Technology Co. (XJTU-SY) is used [33]. The type of tested 

bearings was LDK UER204. Vibration data were acquired at a 

sampling frequency of 25.6 kHz. There were three different 

operating conditions: condition 1, 2100 rpm; condition 2, 2250 

rpm; condition 3, 2400 rpm. The horizontal vibration signals 

were selected which contain more bearing health information. 

Fault types include inner race fault (IRF), cage fault (CF), 

outer race fault (ORF), inner race and outer race fault (IORF), 

and mix fault (MF, including inner race, ball, cage, and outer 

race fault) as listed in TABLE X. The data contains one 

normal condition and six faulty conditions are selected from 

the dataset where each condition contains 1000 samples. Then, 

70% of the data is used for training and 30% for testing. 

 
Fig. 8. Tested rolling-element bearing of XJTU-SY. 

TABLE X 
DESCRIPTION OF XJTU-SY DATASETS  

Fault type Bearing Operating Files number Class Label 

normal Bearing 2_3 Condtion 2 10-13 C1 

ORF Bearing 2_5 Condtion 2 174-177 C2 

IRF Bearing 2_1 Condtion 2 464-467 C3 

CF Bearing 2_3 Condtion 2 494-497 C4 

IORF Bearing 1_5 Condtion 1 35-38 C5 

MF Bearing 3_2 Condtion 3 2268-2271 C6 

TABLE XI 
THE SETTING OF OSTFD TASKS OF CASE2 

Scenarios setting Task Training dataset Testing dataset 

unknown IORF X1 C1,C2,C3,C4 
unknown: C5 

plus all known classes 

unknown MF X2 C1,C2,C3,C4 
unknown: C6 
plus all known classes 

unknown 

IORF+MF 
X3 C1,C2,C3,C4 

unknown:C5,C6  

plus all known classes 

The description of scenario settings for OSFD tasks is 

illustrated in TABLE XI. The training dataset includes known 

classes (C1, C2, C3, and C4) and the testing dataset includes 

known classes and unknown classes.  

B. Trustworthy diagnosis results of the XJTU-SY dataset 

Fig. 9 presents the effectiveness of trustworthy diagnosis in 

the training and testing process for task X3 using the proposed 

method. The differences in evidence support and uncertainty 

value between correct classification and misclassification are 

evident. 

  
a) Estimated total evidence result 
of training data 

b) Accuracy and uncertainty 
estimation result of training data 

  
c) Estimated total evidence result 

of testing data 
d) Uncertainty estimation result of 

testing data 

Fig. 9. Training and testing process of task X3. 

The diagnostic performance on known classes is presented 

in TABLE XII. The average accuracy on all tasks using the 

proposed EVGG method is 99.56% and the average 

uncertainty is 5.73%. Recall on diagnosis tasks of X1, X2, and 

X3, is 99.75%, 99.33%, and 98.25%, respectively. Experiment 

results validate that the proposed method can correctly classify 

known classes and provide reliable evidence support. 
TABLE XII 

FAULT DIAGNOSIS RESULTS ON KNOWN CLASSES (%) 

Task Accuracy Recall Precision F1 score U 

X1 

C1 99.75  99.33  99.67  99.50  6.29  

C2 100  100  100  100 3.90  
C3 99.92  99.67  100 99.83  7.82  

C4 99.83  100 99.34  99.67  5.67  

X1 average 99.88  99.75  99.75  99.75  5.92  

X2 average 99.67  99.33  99.34  99.33  5.02  

X3 average 99.13  98.25  98.26  98.25  6.25  

All average  99.56  99.11  99.12  99.11  5.73  

TABLE XIII 
UNKNOWN CLASS DETECTION AND EVALUATION RESULTS (%) 

Task 
Unknown samples Total testing samples 

AUS U All H_score 

X1 86.00  41.38  97.00  92.37  

X2 85.33  25.82  96.53  91.80  

X3 78.17  35.74  91.56  87.07  
average 83.17  34.31  95.03  90.41  

TABLE XIII presents the detection capability of unknown 

classes, with the comprehensive evaluation results of all testing 

samples. AUS on the three tasks is 86%, 85.33%, and 78.17%, 

respectively, which demonstrates the detection capability of an 

unknown class of the proposed. The uncertainty of unknown 

classes (34.31%) is significantly higher than that of known 

classes (5.73% in TABLE XII). For all test samples, the 

proposed method achieves good diagnosis in known classes 
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and can detect unknown classes with 95.03% All and 90.41% 

H_score.  

For task X1, 5 samples from known classes (samples 1 to 

5) and 5 samples from unknown classes (samples 6 to 10) 

are randomly selected and displayed. The classification 

probabilities and uncertainty estimates are shown in Fig. 10. 

For known classes, a high probability is obtained for a 

specific class with low uncertainty. For the unknown classes, 

the classification probability assigned to the four known 

classes is similar. Therefore, higher uncertainty estimation 

values are obtained. The proposed method can effectively 

distinguish known and unknown samples with uncertainty 

estimation.  

 
Fig.10. Diagnostic probability assignment and uncertainty estimation of task 
X1. 

  To test model robustness, ten trials are run with all testing 

samples and the obtained uncertainty estimations are shown in 

Fig. 11. The average uncertainty estimation of known classes 

for normal, ORF, IRF, and CF is 6.06%, 2.65%, 4.75%, and 

6.05%, respectively. The average uncertainty of the unknown 

class is nearly 40%, significantly higher than that of the known 

classes. The experiment results demonstrate a reliable 

uncertainty estimation. 

 
Fig. 11. The repeated results for uncertainty estimation in task X1. 

C. Comparison with state-of-the-art methods 

The diagnosis performance on known classes is compared 

with state-of-the-art methods as shown in TABLE XIV. The 

proposed method achieves a better accuracy of fault diagnosis. 

Also, the predictive uncertainty has been quantified as an 

important guarantee for trustworthy diagnosis by using the 

EVGG model. 

TABLE XIV 

DIAGNOSTIC PERFORMANCE COMPARISON ON KNOWN CLASSES 

Method Accuracy (%) Uncertainty (%) 

Proposed method 99.93 5.95 

SDANN [34] 93.84 / 

MDAAN[35] 95.45 / 

CWT- CNN-gcForest [28]  99.80 / 
improved DCGAN [29] 98.99 / 

SDANN [31] 98.97 / 

V. CONCLUSIONS 

In this paper, an improved evidential VGG (EVGG) method 

based on evidence theory was developed for trustworthy fault 

diagnosis, overcoming the overconfident prediction of existing 

approaches in open set fault diagnosis tasks. The risk-

calibrated evidential loss function that can assign more 

evidence to the correct classification and decrease the 

misleading evidence from misclassified samples was 

developed. The EVGG model can predict not only the 

classification probability but also can estimate the prediction 

uncertainty, which avoids overconfident and undesirable 

misclassification results. Experimental studies on two rolling 

bearing fault diagnosis datasets verified the fault diagnosis 

performance of the proposed approach. It achieved accurate 

predictions of the known classes and detected unknown classes 

with high uncertainty values. The comparison between the 

proposed method and the state-of-the-art methods showed that 

the improved EVGG model could achieve higher performance 

and more reliable diagnosis results with effective uncertainty 

estimation. It showed high potential in detecting the out-of-

distribution samples and provides trustworthy prediction 

results in open set fault diagnosis. 

The limitations of this study should be addressed in future 

studies. Given the accuracy and robustness, the VGG-

architecture was chosen as the basic classifier. However, VGG 

is comparatively complex with more computational resources 

needed. So, more compact structures should be developed to 

achieve faster training and online testing. In addition, the 

setting of misclassifying risk matrix still relies on expert 

knowledge, which can be improved. Furthermore, the 

application of the proposed approach in real industrial 

equipment or production system needs to be verified. 

Furthermore, the application of the proposed approach in real 

industrial equipment or production system needs to be verified 

where strong noise inference should be considered. 
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