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There is a long-standing question as to whether and to what extent it is possible to describe
nonequilibrium systems in stationary states in terms of global thermodynamic functions. The pos-
itive answers have been obtained only for isothermal systems or systems with small temperature
differences. We formulate thermodynamics of the stationary states of the ideal gas subjected to heat
flow in the form of the zeroth, first, and second law. Surprisingly, the formal structure of steady
state thermodynamics is the same as in equilibrium thermodynamics. We rigorously show that U
satisfies the following equation dU = T ∗dS∗ − pdV for a constant number of particles, irrespective
of the shape of the container, boundary conditions, size of the system, or mode of heat transfer into
the system. We calculate S∗ and T ∗ explicitly. The theory selects stable nonequilibrium steady
states in a multistable system of ideal gas subjected to volumetric heating. It reduces to equilibrium
thermodynamics when heat flux goes to zero.

I. INTRODUCTION

Thermodynamics simplifies the description of equilib-
rium systems. It reduces the number of equations of state
of material by expressing them with one formula in terms
of a thermodynamic potential [1]. This simplification also
significantly reduces the number of measurements needed
to determine any material’s equilibrium properties [2]. It
also determines the equilibrium state of the system by
optimization rules.

For similar reasons, there has been an enormous re-
search effort to introduce global thermodynamics with
optimization rules and potential-like formulation for
steady states [3–29]. The progress in this direction is
limited either to the isothermal situations or to the small
temperature differences [22–29]. Here we break this lim-
itation and show that the steady state thermodynamic
description also exists for a system that is far from equi-
librium (with large temperature gradients).

For a paradigmatic system such as an ideal gas, only
three parameters (entropy S, volume V , and the num-
ber of particles N) are sufficient to determine its state at
thermal equilibrium. At a nonequilibrium state, one has
to consider spatially dependent parameters, such as tem-
perature T (r), pressure p (r), and density n (r). A de-
scription of such fields appears in De Groot and Mazur’s
monograph on irreversible thermodynamics [30]. This
description is based on local conservation laws of mass,
momentum and energy. With the assumption of local
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equilibrium and constitutive relations, irreversible ther-
modynamics determines the state of the system.

In this paper, we show that within irreversible ther-
modynamics, there exists a global description of a steady
state of an ideal gas in heat flow. Within this description
the total system’s energy is represented as a function of
S∗, volume V , and the number of particles N . We for-
mulate thermodynamics of steady state in the form of
the zeroth, first and second law and determine S∗ explic-
itly. Our scheme for thermodynamics of nonequilibrium
steady states is rigorous and valid for large heat flux.

We illustrate the scheme using a monoatomic ideal gas
confined between two parallel walls with different tem-
peratures T1 and T2. Furthermore, we introduce to this
system a constraint in the form of a thin wall separating
the gas into two parts, as shown in Fig. 1. We assume
that this internal wall is diathermic and impenetrable.
Considering the system with internal constraints puts our

Figure 1. Schematic illustration of an ideal gas in a box with
an internal wall.
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problem in the perspective of equilibrium thermodynam-
ics as described by Callen ‘The single, all-encompassing
problem of thermodynamics is the determination of the
equilibrium state that eventually results after the removal
of internal constraints in a closed, composite system’ [1].
We show the minimum principle that determines the sta-
ble position of the internal wall.

This description also applies to different shapes of the
system, boundary conditions, and different modes of heat
transfer (heat flows through the system or heat is gener-
ated inside the system) and is valid beyond the regime
of linear irreversible thermodynamics, thus taking into
account the temperature-dependent heat conductivity.

II. IDEAL GAS IN HEAT FLOW

We consider a fluid described by irreversible thermody-
namics [30]. Therefore, the gas is described by five equa-
tions: two local equations of state and three conservation
laws (continuity equation, Navier-Stokes equation, and
the energy balance equation) supplemented by proper
boundary conditions. We assume that the equation of
state corresponds to the monoatomic ideal gas. The gas
is confined between two parallel walls at positions 0 and
L. We assume that the system is translationally invari-
ant in x, y directions. Moreover, the gas satisfies local
equilibrium and is described by the following equations
of state [1]

p (z) = n (z) kBT (z) , (1)

with Boltzmann constant kB , pressure p (z), particle
number density n (z), and the temperature T (z) at posi-
tion z. It is worth mentioning that the local equilibrium
is sometimes questioned. But as we discuss in the con-
clusions section, for an ideal gas the local equilibrium is
valid up to extreme temperature gradients of the order
of 107K/cm. The energy equation of state is given by

ε (z) =
3

2
n (z) kBT (z) . (2)

Here ε (z) is the internal energy volumetric density. We
also assume that in the whole volume V = AL, where A
is an area (along x, y) direction, there are N particles.
The boundary condition follows from the assumption of
a given temperature on the walls

T (0) = T1,

T (L) = T2. (3)

In the stationary state, the system is described by
T1, T2, A, L,N , which we call the control parameters. We
assume that there is no mass flow for the confined gas
in a stationary state. That simplifies the thermohydro-
dynamic equations [30]. The Navier-Stokes equation is
reduced to a condition of vanishing pressure gradient,
∇p (z) = 0. The two equations of state follow that the en-
ergy density is also constant in space and ε = 3p/2. The

total energy U is thus given by U = A
∫ L
0
dz ε = 3ALp/2.

We rewrite this expression in terms of the volume of the
system, V , obtaining the relation between pressure and
volume,

p =
2

3

U

V
. (4)

The energy balance equation with the Fourier law for
the heat flux,

Jq = −κ∇T (z) , (5)

gives 0 = κ d2

dz2T (z) . With the boundary conditions
(3), it yields a linear temperature profile, T (z) = T1 +
(T2 − T1) z/L. With the constant pressure and the equa-
tion of state, it determines density profile, n (z) =
p/kBT (z), and with a given number of particles, N =

A
∫ L
0
dz n (z), they determine pressure,

p =
N

V
kB

T2 − T1
log T2

T1

. (6)

Suppose that the system is in the stationary state de-
scribed by parameters T1, T2, A, L,N . Then we start
changing the temperature T2 to T2 + dT2. After a while
the system reaches another stationary state, this time
described by parameters T1, T2 + dT2, A, L,N . We could
similarly move one of the system’s walls and change its
length L → L + dL. The disturbance of the system in-
duces time-dependent thermo-hydrodynamic flows. They
may be complex (with sound waves, turbulent motion or
heat front [31]) if the change of the temperature or posi-
tion of the wall is sudden. Nevertheless, the possibility of
solving thermohydrodynamic equations would allow one
to monitor the change of the internal energy dU , the net
heat d̄Q entering the system during the transition, and
the work done d̄W . Independently of the rate of change
of the control parameters, the energy balance within ir-
reversible thermodynamics must have the following con-
sequences in the context of passing from one to another
stationary state,

dU = d̄W + d̄Q. (7)

The energy change is determined by the control parame-
ters through equations (4) and (6). As in similar consid-
erations within equilibrium thermodynamics, the work
and heat of the transitions between steady states depend
on the transition rate. However, there is an essential sim-
plification for the case of slow processes [4]. We expect,
that the slow change of the boundary condition does not
disturb the homogeneity of the pressure in the system. In
the limit of slow changes, the work done in the transition
is given by

d̄W = −pdV, (8)

where dV denotes the differential of the volume of the
system. Therefore the net heat differential is determined
from (7) and (8) by

d̄Q = dU + pdV. (9)
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We prove it below using thermo-hydrodynamic equa-
tions. The above equation represents the energy balance
in the system. It may be called the first law because it
has a form of and it reduces to the first law of equilibrium
thermodynamics when the heat does not flow through the
gas.

III. THE FIRST LAW FOR STATIONARY
STATES IN THE CASE OF

THERMOHYDRODYNAMICS

The total internal energy of the gas at given time in-
stant, Ui (t), in volume V (t) is given by the following
integration of its density,

Ui (t) =

∫
V (t)

d3r ρ (r, t)u (r, t) , (10)

where ρ (r, t) is the density and u (r, t) is the internal en-
ergy density per unit mass at position r and time t. To
facilitate our considerations, but without loss of gener-
ality, we assume the translational invariance of the sys-
tem in x, y directions. Before time ti the system is in a
stationary state. Then, due to a change of volume V ,
temperatures T1, T2, or other external factors, the sys-
tem is taken to another nearby stationary state, which is
achieved after tf . For example, between times ti and tf
we slowly change the position of the right wall by manip-
ulating its position, L (t), such that initially L (ti) = L
changes to L (tf ) = L + dL. That gives the time de-
pendent volume, V (t) = AL (t), with the total change
dV = AdL when passing from the stationary state at ti
to the stationary state at tf . Differential of the energy
(i.e. small change of the energy when passing to neigh-
boring stationary state) is given by,

dU = Ui (tf )− Ui (ti) ,

which we equivalently express as,

dU =

∫ tf

ti

dt
dUi (t)

dt
. (11)

With the use of Eq. (10) we get dUi/dt =
d
dt

∫
V (t)

d3r ρ (r, t)u (r, t). In this expression, the integral
is simplified with the use of x, y translational symmetry
and keeping in mind, that V (t) = AL (t) as follows,∫

V (t)

d3r ρ (r, t)u (r, t) = A

∫ L(t)

0

dz ρ (z, t)u (z, t) ,

so the time derivative of internal energy reduces to

dUi
dt

= A
d

dt

∫ L(t)

0

dz ρ (z, t)u (z, t)

= Aρ (L (t) , t)u (L (t) , t)
dL (t)

dt

+A

∫ L(t)

0

dz
∂

∂t
[ρ (z, t)u (z, t)] . (12)

In the latter integral there appears the left-hand side of
the balance energy equation (cf. p. 18 in [30])

∂

∂t
[ρ (z, t)u (z, t)] = −div (ρ (z, t)u (z, t) v (z, t) + Jq) ,

−P : gradv (z, t) (13)

with velocity field v (z, t), heat flow Jq and pressure ten-
sor P = p (z, t) I+Π, where I is the unit 3-dimensional
matrix and Π is proportional to velocity gradients. Due
to the fact, that there is no velocity field in the sys-
tem in stationary state, and the change of the param-
eters is slow, we keep only the leading terms in velocity
field in the above expression, neglecting the quadratic
term, Π : gradv (z, t) ≈ 0. Therefore P : gradv (z, t) ≈
p (z, t) divv (z, t) and the energy balance equation sim-
plifies to

∂

∂t
[ρ (z, t)u (z, t)] =

− div (ρ (z, t)u (z, t) v (z, t) + Jq)− p (z, t) divv (z, t) .

Using the above in expression (12) we obtain

dUi
dt

= Aρ (L (t) , t)u (L (t) , t)
dL(t)

dt

−A
∫ L(t)

0

dz div (ρ (z, t)u (z, t) v (z, t)) +

−A
∫ L(t)

0

dz divJq −A
∫ L(t)

0

dz p (z, t) divv (z, t) .

The first two terms on the right-hand side give zero, be-
cause∫ L(t)

0

dz div (ρ (z, t)u (z, t) v (z, t)) =

ρ (L (t) , t)u (L (t) , t) vz (L (t) , t)− ρ (0, t)u (0, t) vz (0, t)

and because z-component of the velocity above vanishes
for z = 0 and is equal to dL (t) /dt for z = L. The
third term, A

∫ L(t)
0

dz divJq =
∫
V (t)

d3r divJq is the to-
tal heat rate that flows to the system which is evident
after application of Gauss theorem,

∫
V (t)

d3r divJq =∫
∂V (t)

d2r n · Jq. Here, n is the normal vector pointing
outside the surface. We denote the heat rate flowing into
the system by

q (t) ≡ −
∫
∂V (t)

d2r n · Jq. (14)

To simplify the fourth term we use the fact, that
pressure in the system during slow change of param-
eters is still homogeneous, p (z, t) = p (t), therefore∫ L(t)
0

dz p (z, t) divv (z, t) = Ap (t)
∫ L(t)
0

dz divv (z, t).
This integral is the volume change rate, dV (t) /dt =∫
V (t)

d3r divv (z, t) and finally for the fourth term we get,
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A
∫ L(t)
0

dz p (z, t) divv (z, t) = p (t) dV (t) /dt. Therefore
the change of the energy (12) simplifies to

dUi
dt

= q (t)− p (t)
dV (t)

dt
.

Utilizing the above in expression (11) we obtain,

dU =

∫ tf

ti

dt q (t)−
∫ tf

ti

dt p (t)
dV (t)

dt
. (15)

We use the dominant term for small changes of parame-
ters (neighboring stationary state) in

∫ tf
ti
dt p (t) dV (t)

dt ≈
p
∫ tf
ti
dt dV (t)

dt = pdV. The above energy differential may
be written in the form of (7) where

d̄Q =

∫ tf

ti

dt q (t)

is the total heat transfer to the system and d̄W = −pdV
is the work performed on the system during the transition
between stationary states.

It is worth noting that in the above derivation, we did
not specify temperature changes. Therefore the energy
balance (7) is valid for transitions in the space of V, T1, T2.
Eq. (7) derived above is valid under the assumption of
slow changes of external parameters (including homoge-
neous pressure condition). In this limit it is a rigorous
expression. Therefore, if q (t) = 0 in a stationary state
(before ti and after tf ) and both dU , d̄W are finite and
well defined (which is exactly the case considered here),
then the net heat, d̄Q, transferred to the system during
the transition is finite and well defined as well.

IV. NONEQUILIBRIUM ENTROPY AS A
POTENTIAL OF THE NET HEAT

DIFFERENTIAL

It is worth noting that the net heat introduced above
would be the excess heat considered by Oono and Pan-
iconi [4]. In what follows, we are going to find the in-
tegrating factor and the related potential. As we will
see, they define the nonequilibrium temperature and S∗,
which may be called a nonequilibrium thermodynamic
entropy.

Before proceeding further, it is worth giving several
comments. First, for constant N, four parameters deter-
mine the state of the system, T1, T2, A, L. So the Pfaff
form for the heat (9) may be written in the space of
these parameters in terms of dT1, dT2 , dA, and dL.
Second, because the pressure in the system is homoge-
neous, we can write the expression for elementary work,
d̄W = −pAdL − pLdA, which we shortly write in terms
of the volume of the system, d̄W = −pdV . Third, once
the integrating factor and the corresponding potential are
found, it is straightforward to represent them in another
set of variables of states. It is easy to check, that the

integrating factor in variables X, denoted by λx (X), af-
ter changing the variables of states to Y given by Y (X),
transforms to λy (Y ) = λx (X (Y )). Similar holds for
the potential corresponding to the integrating factor. We
work in variables U, V, T2/T1. In these variables, the heat
differential (9) is given by,

d̄Q = dU +
2

3

U

V
dV + 0 · dT2

T1
, (16)

where we explicitly wrote the vanishing third term to
remind that the form is in three-dimensional space,
U, V, T2/T1 and used expression (4) for pressure.

We observe that the heat differential (16) in variables
U, V, T2/T1 is identical to the heat differential for an ideal
gas in equilibrium thermodynamics [1]. This is a con-
sequence of the fact that both in equilibrium thermody-
namics and in the nonequilibrium stationary state consid-
ered here, the energy is exchanged in two same ways (heat
and mechanical work) and that the relationship between
pressure and internal energy for equilibrium ideal gas,
p = 2U/3V , is identical to formula (4). Therefore, the
heat differential has an integrating factor T ∗ (U, V, T2/T1)
and the corresponding potential, S∗ (U, V, T2/T1),

d̄Q = T ∗dS∗. (17)

The integrating factor and the potential are not unique.
To find the integrating factor we observe that formula
(16) is the thermodynamics first law for a monoatomic
ideal gas in equilibrium thermodynamics. In this case,
the integrating factor is the temperature of the sys-
tem, which for an ideal gas is given by the formula
T = 2U/3NkB . For the nonequilibrium case considered
here, we introduce a similar expression, so the integrating
factor is given by

T ∗ =
2U

3NkB
. (18)

The potential corresponding to the above integrating fac-
tor is S∗. As follows from (16), (17) and (18), the differ-
ential of S∗ is given by,

dS∗ =
3NkB

2U
dU +

NkB
V

dV.

S∗ is thus given by the following formula,
S∗ (U,A,L, T2/T1) = NkB log

(
U3/2V

)
+ S0, where

S0 is a numeric constant. However, it may depend on
parameters of the system which are not treated as the
variables of state, including the number of particles N ,
which we set to be constant in the above reasoning.
We determine S0 constant by the condition that S∗ for
T2 = T1 gives the equilibrium expression [1]. Therefore
we get,

S∗ (U, V, T2/T1) = NkB

{
5

2
+

3

2
log

[
2

3

ϕ0U

N

(
V

N

)2/3
]}

,

(19)
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where ϕ0 is a constant that does not depend on any
control parameter. The above fundamental relation has
proper partial derivatives,(

∂S∗

∂U

)
V,N

=
1

T ∗
, (20)(

∂S∗

∂V

)
U,N

=
p

T ∗
.

As a potential of the heat differential, the above S∗
determines stationary-state adiabats [4]. They are dif-
ferent from adiabats defined in equilibrium. Because S∗
does not depend on the temperature ratio, we see that
the change of T2/T1 (keeping U,A,L, and N constant)
changes the temperature profile in the system. It also
changes the heat flowing through the system. But it
does not trigger the exchange of the net heat. As we
show below, T2/T1 is a parameter that controls the en-
tropy production in the system.

There is a natural question about the relation be-
tween S∗ and the total entropy of the system, Stot =
A
∫
dz s (z), where s (z) is the volumetric entropy den-

sity

s (z) = n (z) kB

{
5

2
+

3

2
log
[
ϕ0kBT (z) [n (z)]

−2/3
]}

,

(21)
as given by local equilibrium assumption within irre-
versible thermodynamics [1, 30]. With the use of the
linear temperature profile and density determined above,
we obtain,

Stot

(
U, V,

T2
T1

)
= S∗ (U, V ) + ∆S

(
U, V,

T2
T1

)
, (22)

∆S (U, V, T2/T1) = NkB log

(T2
T1

)5/4
(

log T2

T1

T2

T1
− 1

)5/2
 .

The above expression is symmetric with respect to the
interchange of T1 and T2. Only S∗ contains informa-
tion about heat absorbed/released in the system (see
Eqs (9,17)) on top of the dissipative background (tem-
perature profile). ∆S, on the other hand, controls the
dissipative background since it depends on the entropy
production given by [30] σ = −A

∫ L
0
dz κ∇T (z)·∇ 1

T (z) =

Aκ
L

(
T2

T1
+ T1

T2
− 2
)
. The difference between the total en-

tropy and S∗ vanishes, ∆S (U,A,L, T2/T1) → 0, when
the system approaches the equilibrium state, T2/T1 → 1.
Therefore, the S∗ becomes in this limit the equilibrium
entropy.

The relation between the equilibrium entropy and S∗
also sheds light on the role of T2/T1 parameter. For an
“adiabatically” insulated system determined by condition
S∗ = const, the parameter T2/T1 changes the total en-
tropy of the system. The change of the total entropy of
the system is associated with the local heat transfer and
work between different subparts of the nonequilibrium
system, even if no work is performed on the system and
no net heat enters it.

V. ZEROTH AND SECOND LAW FOR
NONEQUILIBRIUM STATIONARY STATES

In the above, we showed that a net heat potential,
nonequilibrium entropy S∗, exists for the system without
a separating wall. Here we consider the existence of the
potential in the context of the system from Fig. 1 with an
internal wall. It is a diathermic wall that separates the
gas. We assume that the wall is at position lw and there
are N1 particles to the left and N2 = N −N1 particles to
the right of the wall. An external force, Fw, can move the
wall, and some work is related when the wall moves. As
before, the system is described by thermohydrodynamic
equations, this time with additional boundary conditions
on the surface of the separating wall. At the stationary
state, the pressure is homogeneous in each subsystem,
but they may be different due to the action of the force
on the wall. In the stationary state Fw = −A (p2 − p1).
We assume that the wall is diathermic, so the temper-
ature profile is the same as for the system without the
wall. The temperature profile does not depend on the
action of the force on the wall. We notice that each sub-
system looks like the system without the wall, although
with different parameters, so we can use formulas for the
system without the wall to describe the system with the
wall.

We describe the system’s energy with the
wall using the state variables for each subsys-
tem, U (S∗1 , V1, N1, S

∗
2 , V2, N2) = U1 (S∗1 , V1, N1) +

U2 (S∗2 , V2, N2). The additivity of the energy is
inscribed in the used thermohydrodynamic equa-
tions. But the additivity of entropy is a postulate
of equilibrium thermodynamics. The nonequilib-
rium entropy S∗ is not additive for a nonequilibrium
system with heat flow. If the entropy was addi-
tive, then expression Γ (U1, U2, V1, V2, N1, N2) ≡
S∗ (U1 + U2, V1 + V2, N1 +N2) − S∗ (U1, V1, N1) −
S∗ (U2, V2, N2) would identically be zero. Here

S∗ (U, V,N) ≡ NkB

{
5

2
+

3

2
log

[
2

3

ϕ0U

N

(
V

N

)2/3
]}
(23)

in agreement with Eq. (19). It is cumbersome to show
by explicit calculations that Γ does not vanish. Instead,
we calculate the following expression,

∂

∂U2

[
(U1 + U2)U1

(
∂Γ

∂U1

)]
= −3

2
N1kB ,

which proves, that Γ cannot vanish identically. Therefore
S∗ 6= S∗1 + S∗2 for most states, and the nonequilibrium
entropy is not additive.

One can wonder why the nonequilibrium entropy is not
additive. Yet the nonequilibrium entropy of each subsys-
tem is given by the same formula for the equilibrium
situation, i.e. Eq. (23). In equilibrium, the zeroth law of
thermodynamics would allow us to introduce the additive
entropy of the whole system when the entropy of two sub-
systems is known. The total heat differential is given by,



6

d̄Q = d̄Q1 +d̄Q2 = T1dS1 + T2dS2. This heat differential
in the space of parameters U1, V1, N1, U2, V2, N2 has no
integrating factor. But the zeroth law imposes the condi-
tion of equal temperatures, T1 = T2 ≡ T , simplifying the
heat differential to, d̄Q = T (dS1 + dS2). We see that the
function S defined by S ≡ S1 + S2 is a potential of heat
with the temperature T as the integrating factor. That
is how the equilibrium zeroth law leads to the additivity
of entropy.

For a nonequilibrium system, there is no equality of
subsystems’ temperatures. The equilibrium zeroth law
of thermodynamics is broken. However, let’s introduce
the following condition called the "zeroth law of global
stationary thermodynamics" for the ideal gas with a heat
flow in the following form,

T ∗2 = rT ∗1 . (24)

with a constant parameter r. With the above zeroth
law condition, the net heat differential is given by d̄Q =
T ∗1 dS

∗
1 + rT ∗1 dS

∗
2 . It appears that it has an integrating

factor that is easy to guess. Defining a function

S∗12 ≡ S∗1 + rS∗2 (25)

allows us to represent the above heat differential by

d̄Q = T ∗1 dS
∗
12.

For every given nonequilibrium temperature ratio r,
which appears in the zeroth law condition (24), the above
nonequilibrium entropy S∗12 splits the space of thermody-
namic parameters U1, V1, N1, U2, V2, N2 on adiabatically
insulated subspaces parametrized by S∗12.

We are now in a position to verify whether the nonequi-
librium entropy S∗12 can be used to generalize the equi-
librium minimum energy principle to the case with the
heat flow. We check whether the minimization of the
energy for constant nonequilibrium entropy S∗12 leads to
the proper position of a movable wall. The verification
requires assuming a constant number of particles, N1, N2,
total volume, V = V1 + V2, and nonequilibrium entropy
S∗12 given by (25) and calculate the minimum of the total
energy,

Utot (S∗1 , V1) ≡

U1 (S∗1 , V1, N1) + U2

(
1

r
(S∗12 − S∗1 ) , V − V1, N2

)
, (26)

where

U1 (S∗1 , V1, N1) =
3

2ϕ0
N1

(
V1
N1

)− 2
3

exp

[
S∗1

N1kB
− 5

3

]
(27)

and is obtained from Eq. (23). U2 is given by a similar
formula. The total energy in Eq. (26) have two indepen-
dent parameters, S∗1 and V1. The minimum of the above

energy requires the vanishing of the derivatives over the
two independent parameters, which gives

T ∗1 −
1

r
T ∗2 = 0,

p1 − p2 = 0. (28)

The above two equations determine the two independent
parameters. From thermohydrodynamics, we know that
the equality of pressures is the proper condition for the
position of the movable wall. Equivalently, the vanishing
of the derivatives of Utot (S∗1 , V1) leads to,

V1 =
V

N2

(
r
N1

+ 1
N2

) ,
S∗1 =

N1

N1 + rN2
S∗12 −

5

2
kB

rN1N2

N1 + rN2
log r. (29)

It follows that for positive r, arbitrary entropy S∗12, and
fixed N1, N2 and V , there is at most one point in space
S∗1 ,V1 with vanishing derivatives. Because of the simple
form of Utot, it is easy to show that S∗1 and V1 given by
Eqs. (29) are at the global minimum. It proves that the
equilibrium minimum energy principle generalizes to the
case with heat flow.

The above application of the “second law” requires con-
stant N1, N2, V = V1 + V2, the nonequilibrium temper-
ature ratio r and the nonequilibrium entropy S∗12. To
realize it experimentally, one has to know the boundary
temperatures T1 and T2 as a function of S∗12, r, V1, V,N1

and N2. Utilizing Eqs. (4), (6) and (18) leads to the
following nonequilibrium temperatures for both subsys-
tems,

T ∗1 =
V1

V (T2 − T1)

log

(
T1+

V1
V (T2−T1)

T1

) ,
T ∗2 =

(
1− V1

V

)
(T2 − T1)

log

[
T2

T1+
V1
V (T2−T1)

] .
Using the above expressions in zeroth law condition (24),
we obtain(

1− V1
V

)
log

[
1 +

V1
V

(τ − 1)

]
= r

V1
V

log

[
τ

1 + V1

V (τ − 1)

]
,

with the boundary temperatures ratio τ = T2/T1. The
above relation implicitly determines the boundary tem-
perature ratio as a function of V1/V , i.e. τ = τ (V1/V ) .
Because this relation is implicit, it is impossible to de-
termine T1 (S∗12, r, V1, V,N1, N2) explicitly. But having
τ (V1/V ), we may use expressions (23), (24), (25) and
(20) to determine T1 (S∗12, r, V1, V,N1, N2).

It is straightforward to generalize the above conclu-
sions for any system shape and temperature profile. The
reason for that is the fact that a particular form of the
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temperature profile does not play a role in the above cal-
culations - the existence of the global steady state ther-
modynamics follows in the considered case from the fact
that pressure is constant and it is a function of energy
and volume, here p = 2U/3V . The ideal gas in the box
volumetrically heated and separated by a movable wall
considered by Zhang et al. [17] also has these proper-
ties. Therefore, the steady state global thermodynamics
formulated here also holds for Zhang et al. [17] system,
describing the continuous phase transition they consider.
We describe Zhang et al. case in the next section.

VI. IDEAL GAS UNDER VOLUMETRIC HEAT
SUPPLY

For the volumetrically heated gas the heat rate in
Eq. (14) does not vanish in stationary state, q (t) 6= 0.
Zhang et al. [17] consider ideal gas with uniform vol-
umetric heating λ. In this case, in the energy bal-
ance (13) there appears the source term λ on the right-
hand side. As a consequence, Eq. (15) is modified in
the following way, dU =

∫ tf
ti
dt q (t) −

∫ tf
ti
dt p (t) dV (t)

dt +

λ
∫ tf
ti
dt V (t) , where, as before, we take the dominant

term in,
∫ tf
ti
dt p (t) dV (t)

dt ≈ pdV , and obtain,

dU =

∫ tf

ti

dt q (t)− pdV + λ

∫ tf

ti

dt V (t) .

Using the above and defining

d̄Q =

∫ tf

ti

dt q (t) + λ

∫ tf

ti

dt V (t) (30)

we obtain Eq. (7). It is worth commenting on the fact
that for λ 6= 0, both the net heat

∫ tf
ti
dt q (t) and the

second term in the right-hand side of the above expres-
sion are infinite in the limit of long transition between
two neighboring stationary states. However, their sum
is finite. In this system, the heat constantly flows out
of the system, q (t) 6= 0. The outflow is balanced by the
generation of heat within the system as given by the heat
generation rate, λV (t). In Oono and Paniconi [4] termi-
nology, d̄Q is the excess heat, and λV (t) is the house-
keeping heat rate. The above equation is interpreted as
the “renormalization” of the heat rate to obtain the excess
heat [4].

Zhang et al. [17] considered an ideal gas between two
parallel walls of area A located at z = −L and z = L.
The system is translationally invariant in the x and y
directions. The walls are kept at a fixed temperature T0
and the energy is supplied into the system’s volume in
the form of heat with the flux J ; the supplied energy per
unit time and unit volume V = 2AL is λ = J/V . The
steady state temperature profile can be obtained from
the local continuity equation of energy

− κ ∂
2

∂z2
T (z) = λ (31)

with the boundary conditions T (0) = T (L) = T0, giving

T (z) = − λ

2κ
z2 +

λ

2κ
L2 + T0. (32)

At the steady state the pressure p and hence also the en-
ergy density ε are constant. With the use of the equation
of state, this determines the density profile

n (z) =
p

kBT (z)
=

2

3

ε

kBT (z)
. (33)

Using

N = A

∫ L

−L
dz n (z) , (34)

for a given number of particles N , the energy U = εV is
obtained as

U =
3

2
NkBT0f(λ · L

2

κT0
), (35)

where a dimensionless function f is given by

f(x) ≡
√
x(x+ 2)/(2 tanh−1

√
x/(x+ 2)). (36)

Using the volumetric entropy density of an ideal gas given
by Eq. (21), we obtain

Stot (U,A,L,N, λ) = S∗ (U, V,N) + ∆S (U,A,L,N, λ) ,

where S∗ (U, V,N) has a form given by the RHS of
Eq. (19) and

∆S (U,A,L,N, λ) = −(5/2)NkB log

[
f(λ · L

2

κT0
)

]
+ (5/3)εA

∫ L

0

dz
log [T (z) /T0]

T (z)
.

(37)

In the above formula, T0 (U,A,L,N, λ) is implicitly given
by Eq. (35). The temperature profile is a quadratic
function of the distance z, therefore the integral in the
above equation cannot be expressed in terms of elemen-
tary functions. Nevertheless, as for the case discussed in
the previous section, the nonequilibrium entropy differs
from the total entropy in the system.

Now we introduce a movable adiabatic wall parallel to
the bounding walls at z = zw. At equilibrium, the wall
is located precisely in the middle of the system zw = 0.
As shown in Ref. [17], for small heat fluxes, the position
of the wall at zw = 0 is stable. Above a critical flux, the
wall moves towards one of the bounding surfaces. Let
us consider the second law of nonequilibrium thermody-
namics discussed above for this system. Integration of
the equation of state for the ideal gas (Eq. (33)) in each
subsystem 1 and 2 leads to

p1,2 =
2

3

U1,2

V1,2
, (38)
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and for each subsystem Eq. (16) is satisfied (with the
replacement T2/T1 → λ). This implies the existence of
nonequilibrium entropy and nonequilibrium temperature
given by formulas (18) and (19).

Consequently, the reasoning leading to the minimum
principle is the same. The only difference is that instead
of two temperatures T1, T2, we have here a single temper-
ature T0 of the confining walls and the volumetric heating
rate λ. The nonequilibrium temperatures in this case are
given by:

T ∗1 = T0f

(
λL2

1

κT0

)
T ∗2 = T0f

(
λL2

2

κT0

)
, (39)

where L1 = L + zw and L2 = L − zw and the function
f given by (36). In this case, the minimization of energy
(26) also leads to the equality of pressures. It proves that
ideal gas with volumetric heating can also be described
with three laws of global stationary thermodynamics in-
troduced in the previous section.

The minimization principle introduced in the previous
section also leads to a single global minimum with the
zero law condition and equality of pressures given by (28).
Interestingly, as discussed by Zhang et al., this system
exhibits a continuous phase transition from a one stable
steady state with the wall in the middle of the system
to the two stable stationary states with the mirror sym-
metry. On the other hand, the minimization procedure
leads to only one stable state. However, the zeroth law
condition, r = T ∗2 /T

∗
1 , breaks the symmetry. Application

of formulas (39) in the zeroth law condition, r = T ∗2 /T
∗
1 ,

leads to the conclusion that for V1 < V2, the parameter
r takes only values r > 1. Whereas for V1 > V2, the
temperature ratio satisfies 0 < r < 1. Therefore, setting
r limits the motion of the wall to half of the system. The
second stable minimum is obtained by replacing r with
1/r.

VII. CONCLUSIONS

It is straightforward to generalize the above conclu-
sions for the situation with the temperature-dependent
heat conductivity, κ (T ) , which is beyond the scope of
linear irreversible thermodynamics. The temperature-
dependent heat conductivity modifies the Fourier law (5)

and the temperature profile. However, it does not af-
fect the relation, p = 2U/3V . Therefore, the relation
(16) holds and it is possible to repeat the reasoning pre-
sented above without any changes and obtain S∗ given
by Eq. (19) and the nonequilibrium temperature (18). It
is worth noting that the assumption of local equilibrium
for the ideal gas is valid as long as the temperature gra-
dient is sufficiently small, lfp |∇T | /T � 1, for the mean
free path of the molecules, lfp [32]. At the pressure of
1 bar at room temperature, the mean free path is of the
order of lfp ≈ 100nm. The local equilibrium is satisfied
as long as the temperature gradient is lower than ten
million Kelvins per centimeter.

We draw several conclusions from the rigorous calcula-
tions performed above within irreversible thermodynam-
ics. Even for the system with heat flow, which is far from
equilibrium (significant temperature difference), global
steady state thermodynamics exist. This is for ideal gas
closed in a vessel of any shape and does not depend on the
mode of the heat transfer (heat flows through the system
or the system is heated volumetrically). The considered
examples also show that S∗ that governs the net heat
is independent of the entropy production, in agreement
with Eq. (22).

At least since the works of Prigogine, scientists have
tried to formulate a thermodynamic-like description of
nonequilibrium systems. Here we show that it exists for
a stationary ideal gas with heat flow. The question re-
mains open for interacting systems and systems with ki-
netic energy. From the perspective of future efforts, the
case of ideal gas considered here shows that the local
entropy integrated over volume is not a quantity that de-
termines the heat in the system - a possibility discussed
recently [27]. Moreover, the considered case shows that
nonequilibrium entropy, defined as heat potential, is not
additive.

ACKNOWLEDGEMENTS

P.J.Z. would like to acknowledge the support of a
project that has received funding from the European
Union’s Horizon 2020 research and innovation program
under the Marie Skłodowska-Curie Grant Agreement No.
847413 and was a part of an international cofinanced
project founded from the program of the Minister of
Science and Higher Education entitled “PMW” in the
years 2020–2024; Agreement No. 5005/H2020-MSCA-
COFUND/2019/2.

[1] Herbert B Callen. Thermodynamics and an Introduction
to Thermostatistics. John Wiley & Sons, 2006.

[2] Ingo Müller. A history of thermodynamics: the doctrine
of energy and entropy. Springer Science & Business Me-
dia, 2007.

[3] Ilya Prigogine. Introduction to thermodynamics of irre-
versible processes. 1967.

[4] Yoshitsugu Oono and Marco Paniconi. Steady state ther-
modynamics. Progress of Theoretical Physics Supple-
ment, 130:29–44, 1998.



9

[5] Ken Sekimoto. Langevin equation and thermodynamics.
Progress of Theoretical Physics Supplement, 130:17–27,
1998.

[6] Takahiro Hatano and Shin-ichi Sasa. Steady-state ther-
modynamics of langevin systems. Physical review letters,
86(16):3463, 2001.

[7] Shin-ichi Sasa and Hal Tasaki. Steady state thermody-
namics. Journal of statistical physics, 125(1):125–224,
2006.

[8] Giacomo Guarnieri, Daniele Morrone, Barış Çak-
mak, Francesco Plastina, and Steve Campbell. Non-
equilibrium steady-states of memoryless quantum colli-
sion models. Physics Letters A, 384(24):126576, 2020.

[9] Eliran Boksenbojm, Christian Maes, K Netočnỳ, and
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