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Abstract—This paper presents a multimodal biometric ap-
proach applied to all fingernails and knuckle creases of the five
human fingers for identifying persons. In this paper, the proposed
biometric technique consists of several phases. The method starts
with the detection and localisation of the main components of the
hand, defining the region of interest (ROI), segmentation, feature
extraction by retraining the DenseNet201 model, measuring the
similarity using different metrics, and lastly, improving the
person identification performance by implementing score-level
fusion. This approach presents different methods for person
identification, which combine fingernails, knuckles based on the
modality type, and whole hands based on different similarity
metrics. This paper uses various similarity metrics to distinguish
between individuals. These include the Bray-Curtis, Cosine,
and Euclidean metrics. Two main score-level fusion techniques
are employed: the majority voting (MV) and weighted average
(WA). The experimental results are evaluated with well-known
databases, the ’11k Hands’ and the Hong Kong Polytechnic
University Contactless Hand Dorsal Images ’PolyU’, show the
proposed algorithm’s efficiency. Using the MV on the Bray-Curtis
similarity measure, the fingernail-based and the base-knuckle-
based fusion obtained 100% in the identification estimation. In
addition, the identification rate gained 100% in regions of hands
and whole hands from the two popular datasets exceeded the
performance of the state-of-the-art approaches.

I. INTRODUCTION

Typically, using personal traits such as name, position,
identity card, date of birth, password, and so on to verify an
individual’s identity is not a suitable choice for authentication.
These conventional systems have the disadvantage of being
unsecure and inappropriate for personal identification in the
current environment [1]. It is thus important to acquire more
reliable and accurate techniques for person authentication in
order to control the rising crime and fraud in diverse social
and commercial activities such as e-commerce, e-passport, on-
line financial transaction systems, cross-border security, crime
scene analysis, controlling access to restricted sites, and so on.
Biometric authentication is the process of recognising a human
based on their unique traits, which include physiological and
behavioural qualities or both [2].

Over the past 30 years, various behavioural or physiological
biometric features, such as iris, signature, hand geometry,

voice, palm print, face, and so on, have been utilised to
differentiate persons in various security applications [1].

The dorsal of both right and left hands consist of several
features, such as knuckle creases (including the metacarpopha-
langeal (MCP) joint referred as the base knuckle, the proxi-
mal interphalageal (PIP) joint referred as the major knuckle,
the distal interphalangeal (DIP) joint referred as the minor
knuckle, and the interphalangeal (IP) joint referred as the
major knuckle of the thumb). The hands also contain features
like fingernails, unique hand shape, fingerprints, hand veins
and palm creases [3].

Unimodal biometrics examples include fingerprints, DNA,
finger knuckles, fingernails, hand geometry, and so on. Never-
theless, in today’s digital society, there is no one biometric
feature that can meet the security and performance needs
of many applications [4]. Furthermore, the majority of them
frequently exhibit some widely known problems such as non-
uniqueness, noise in collected data, interclass similarities,
non-universality, spoofing, intra-class differences, and poor
discrimination capabilities. To address these issues, a multi-
modal biometric system, which integrates two or more physi-
ological or behavioural feature modalities to raise the chance
of success or, more specifically, to improve the accuracy of
any identification or verification application, may be a viable
alternative method [1], [5].

A basic biometric system can comprise a sensor module,
a feature extraction module, and a matching module. The
sensor’s dependability and the degrees of freedom provided by
the characteristics retrieved from the detected signal heavily
influence the performance of the system. For example, if the
biometric feature being detected is noisy, such as a scarred
knuckle, the matching score may be unreliable because a noisy
input produces a high variation in the matching score. This
issue can be solved by collecting various biometric features.
Multimodal biometric systems are examples of such systems
[6].

In this paper, a multimodal biometric approach is proposed.
The approach collects various features from different sub-
images of human hands. These sub-images were acquired by
employing the detection and segmentation method in the study



[3]. The sub-images include fingernails, and minor, major, and
base knuckles, which are fused using two major fusion rules:
the MV and WA). The remainder of this paper is structured as
follows: a literature review of the multi-biometric systems is
in section II, the novel multimodal biometric approach from
fingernail and knuckle patterns is in section III, the result and
discussion are in section IV, and finally, the conclusion and
recommendations for further work are in section V.

II. MULTIMODAL BIOMETRIC SYSTEMS IN THE
LITERATURE

Multibiometric systems have been developed to alleviate
some of the drawbacks of unimodal authentication systems by
merging data from many modalities. These systems improve
the accuracy and efficiency of any identification or verification
task [1]. This work [7] investigated a local textural descriptor
as a binarized statistical image feature (BSIF). This feature
descriptor essentially employs a series of fixed-size filters to
represent the neighbourhood layout of the core pixel. Another
powerful tool employed in this work was the Gabor wavelet,
which has optimum localization capabilities in both the spatial
and frequency domains. Furthermore, a Deep Rule-Based
(DRB) classification technique was employed. The Deep Rule-
Based Classifier was a process with four major phases that
describe its global system mechanism [8], which included
initialization, preparation, updating, and fuzzy rules genera-
tion. The authors also investigated the supply of information
from different sources. The fingers’ left-index-finger (LIF),
left-middle-finger (LMF), right-index-finger (RIF), and right-
middle-finger (RMF) modalities were merged. The studies
were carried out using score-level fusion, in which the in-
formation was fused using the min-rule and the sum rule.
Three experimental studies were conducted by fusing just two
types of fingers, fusing three types of fingers, and fusing
all sorts of fingers. The fusion was carried out with three
distances (Euclidean, Cosine, and Correlation), and features
were obtained using Gabor-DRB and BSIF-DRB [7].

In this study [9], using independent component analysis
(ICA), a group of convolution filters were learned from
the source pictures using binarized statistical image features
(BSIF) (independent component analysis). A histogram of the
binary codes for each pixel represents the outcomes of BSIF
features. These histograms may well describe the textural
elements of the photographs of the Finger Dorsal Patterns.
One significant feature vector is created by combining the
histograms obtained from the minor, major, and finger dor-
sal pattern pictures that have been encoded using the BSIF
descriptor. Before the matching stage, dimensionality reduc-
tion is applied to these significant, high-dimensional vectors
using a common and straightforward method called principal
component analysis (PCA). The closest neighbor classifier,
which employed the cosine Mahalanobis distance, was used
in the matching step of the proposed system. Minimizing
the distance (score) between the input query characteristic
and the stored template was the standard for determining if
two things were similar or dissimilar. Feature-level fusion-

extracting BSIF histograms for each of the three modalities—
major, minor, and finger dorsal patterns were combined [9].

In this work [10], cascading feature extraction was ap-
plied using LBP as the beginning. The features from the
relaxed local ternary pattern (RLTP) were then extracted,
and a histogram of those features was created. To solve the
issue of low-frequency, a uniform pattern was used to refine
feature vectors. Then, dominant features were obtained using
an efficient three-layered model. The investigation was carried
out through the fusion of the extracted texture features from
two, three, and four fingers, which were applied to the PolyU
FKP database. In this work [11], an end-to-end deep learning
strategy for personal identification based on minor, major, and
base knuckle regions was developed. The faster region-based
CNN model was used to detect the three knuckle areas, which
were subsequently subjected to an automated quality check
procedure. Following that, the deep distinguishing features
were retrieved with the pretrained DenseNet201 model. Fi-
nally, the cosine distance was used during the matching stage.
The three types of knuckles were calculated holistically using
score-level fusion, and averaging rule. The offered approach
was evaluated using the ’11k Hands’, and ’PolyU’ databases
[11].

Using palm-print and finger knuckle pattern finger knuckle-
print (FKP) modalities at matching score-level fusion, a quick
and easy hand-based recognition multimodal biometric system
was developed [12]. In this study [12], the PCANet deep
learning method was employed to extract the features, and
a multiclass support vector machine (SVM) was applied to
calculate a matching score. Also, the multiplication, sum, max,
and min rules for matching score fusion were used [12].

The suggested approach in this study [13] began by separat-
ing two components: light and reflectance. First, the adaptive
single-scale retinex (ASSR) technique was used to compute
these components from the major or minor ROI image. Then,
using Independent Component Analysis (ICA), binarized sta-
tistical image features descriptor (BSIF) trained an ensemble
of convolution filters from the original images. Also, the
major and minor pixels taken from dorsal finger images and
reflectance and illumination images were coded using these
learnt filters [13]. Finally, the fusion technique was based on
the minor and major dorsal finger scores level fusion [13].
However, there is a lack of studies investigating the fusion
of the dorsal hands from red-green-blue (RGB) images of
all fingernails, knuckle creases, and whole hands. Also, to
our knowledge, no current work studies fusion with different
similarity metrics and fusion rules.

A. Contributions and outline of this paper

The following are summaries of the paper’s contributions:

1) To the best of our knowledge, this is the first study for
person identification of the entire hand, using a holistic
matching technique applied in sub-images of different
knuckles and fingernails from all five fingers of both
hands, resulting in an improved identification.



2) The fusion of Bray-Curtis, Cosine, and Euclidean differ-
ent similarity metrics has been investigated, which has
not been explored in the literature.

3) Applying different score-level fusion techniques, such
as the MV and WA, show more robust and accurate
identification.

III. THE NOVEL MULTIMODAL BIOMETRIC APPROACH

This paper presents a multi-biometrics system that is effi-
cient, based on the score-level fusion of the fingernails, minor,
major and base of the dorsal finger knuckles from five fingers
of the left and right hands. Figure 1 depicts an overview
architecture of the suggested approach.
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Fig. 1: A schematic illustration of the proposed fusion-based
approach for identifying people using dorsal fingernails and
knuckle patterns

This approach was divided into four major phases: lo-
calisation, detection, defining the region and segmentation;
retraining of deep learning for feature extraction; employing
similarity metrics to discover the best matching; and multi-
modality score-level-based fusion.

A. Pre-processing of the hand images

The first stage of this work was to detect, localise, segment,
normalise the base, minor, and major knuckle joints, and
fingernails using the well-known multi-view bootstrapping
[14] for hand posture estimation from the RGB hand image.
Also, in this work, we followed the same method as explained
in [3]. The output of this phase was sub-images of hand
joints. The original image of the hand was scaled to 224 x
224 to achieve the best localisation performance. The detected
joints were then scaled to the original high-definition image to
create a larger-sized segmented image. We followed the same
segmentation method offered in [3]. Following segmentation,
the sub-image data was transferred to a standard scale as part
of data preparation, referred to as normalisation.

B. Retraining deep learning for extracting features

The proposed approach’s second phase was to extract high-
level features by retraining the DenseNet201 deep learning
algorithm. The choice of this model resulted from many
evaluations applied to various deep learning models and
showed outstanding performance. Therefore, we retrained the

DenseNet201 and utilised the same structure suggested in
this study [15]. The very first 700 layers of DenseNet201’s
initial model were frozen. Then we included 2D global average
pooling, batch normalisation at 0.90 momentum, dropouts at
0.5, dense layer containing 4096 vectors, a Relu activation
function, 0.6 dropouts, batch normalisation with 0.9 momen-
tum, and a 170-dimensional classifier and softmax activation
function. This model was trained across a period of 150
epochs. The learning strategy was stochastic gradient descent,
with a learning rate of 0.001, a Nesterov momentum of 0.9,
and a loss function of categorical cross-entropy. Finally, after
100 epochs, the model was trained with all its layers and
parameters [15].

C. Similarity metrics

The third stage was to distinguish between individuals based
on similarity metrics, as displayed in figure 1. These metrics
can be implemented using the extracted features from the
segmented joints and are quite valuable in identifying indi-
viduals in multi-biometric systems. This paper presents three
metrics: the Bray-Curtis, Cosine, and Euclidean distances. The
similarity metric is the inverse of the distance metric. Assume
we have two segments, x and y. Their vectors are denoted by
x = (x1, x2, ..., xp) and y = (y1, y2, ..., yp), respectively. The
following section provides a brief description of the similarity
metrics used in this work:

Bray-Curtis metric (BC) [16] is a statistical measure used
to assess the distance between pairs of feature vectors. It can
be described as the following equation:

dBC(x, y) =

∑P
i=1 |xi − yi|∑P
i=1 |xi + yi|

(1)

Cosine metric (Cos) is another metric, which can be em-
ployed to measure the distance between two feature vectors,
and uses the following function [17]:

Cos(x, y) =
x.y

∥x∥∥y∥
, (2)

where x and y x and y denote vectors for which a distance
is to be computed. The scalar (dot) product is also used in the
numerator.

Euclidean metric (E) is the most popular distance measure,
which can measure the dissimilarity between two feature
vectors of any pair of sub-images [17]. The Euclidean
equation can be identified as follows (3):

E(x, y) =

√
(x1 − y1)

2
+ (x2 − y2)

2
+ ...+ (yn − xn)

2

(3)
The inverse of the distance or dissimilarity between two

feature vectors is the degree of similarity. The greater the
degree of similarity (Sim), the shorter the distance (Dis)
between two vectors, and vice versa, as indicated by:

Sim(x, y) = 1−Dis(x, y) (4)



D. The score-level fusion
”Ensemble” algorithms are widely used to optimise an

overall performance in the multimodal paradigm [17], [18].
In this work, two ensemble rules were utilised: the MV and
WV. These algorithms optimise the overall performance of
several sub-models of DenseNet201 trained in various sub-
images from different hand joints. The ensemble mechanism
was applied in the similarity prediction of the sub-models. In
the MV, the number of modalities from hand joints from each
similarity metric should be odd to avoid a tie between the
estimated subject [18], otherwise the first vote has a major
factor. In this paper, 19 separate hand components and three
similarity matches were used in the ensemble mechanism.

1) Majority voting (MV): The MV was applied on various
hand components and similarity metrics. The voting system
was based on the models’ estimated probability. The compo-
nents representing the number of voters should be odd to avoid
a tie between projected class labels [18]. As a result, an odd
number of models (five) were employed. For example, five
fingernails, five major knuckles or five base knuckles, except
the minor knuckles, are four. In the latter case, when the votes
are equal between voters, the first vote wins.

2) Weighted average (WA): The WA [19] of matching data
(m1,m2, ...,mn) with corresponding non-negative weights
(w1, w2, ..., wn), where n indicates the total number of sub-
jects, is formalised as:

WA =

∑n
p=1 wimi∑n
p=1 wi

(5)

which includes:

WA =
w1m1 + w2m2 + ...+ wnmn

w1 + w2 + ...+ wn
(6)

As a result, high-weighted samples contribute more to the
WA than low-weighted data samples. Negative weights are not
permitted.

When the weights are normalised, they add up to one∑n
n=1 wi = 1 [18]. The weight values were pre-defined based

on the results of rank-1 for each component.

IV. EXPERIMENTAL RESULTS AND EVALUATION
This section presents the results of the proposed approach’s

evaluation on the datasets ’11k Hands’ and ’PolyU’.

A. Datasets description
First, we utilised the ’11k Hands’ dataset [20], which

contains RGB images with a dimension of 1600×1200 pixels
of the dorsal and palm surface of 190 subjects’ right and left
hands. In this paper, we studied the dorsal hand only. The
Hong Kong Polytechnic University Contactless Hand Dorsal
Images Database [21], which contains 4650 of right-hand
dorsal images in a flat posture from 501 subjects, was also
considered. Mobile and handheld cameras were used to capture
images with the same resolution 1600 × 1200 pixels. Both
datasets have a slight rotated hand images. The ’11k Hands’
dataset has blurred images, polished fingernails, and rings on
some fingers.

B. Experimental results

This study involved the identifiability of each finger in a
holistic manner that integrates the performance of all fin-
gernails and knuckles belonging to a particular finger. The
fusion approaches were conducted in various regions and
similarity metrics. This comprehensive computation is accom-
plished by score-level fusion, including the MV and WV.
The proposed multimodal biometric approach was evaluated
using both datasets, the ’11k Hands’, which was divided
into ’11k-Left’ and ’11k-Right’, for the left and right hands,
respectively, and the ’PolyU’. The performance metric was
assessed using the rank-1 recognition rate as presented in the
table I (individual modalities), II (multimodal biometrics based
on modality type), III (fusion of the whole hand based on
the similarity metrics), and the CMC chart in the figure 2,
respectively. The preprocessing was conducted on the human
hands, including resizing to 224x224, localisation of the ROI
keypoints, mapping the keypoints to the image’s original size,
segmentation, and scaling as explained in subsection III-A. In
the second stage, the features were extracted by retraining the
CNN model of DenseNet201, as explained in the subsection
III-B. Then, we divided the dataset into training, validation,
and testing. The training, validation, and testing percentages
were 70%, 20%, and 10%, respectively. We ensured that the
subject ID sub-image was included in all ROIs; therefore, we
cleaned the data and discarded the subjects with missing data.
The last FC layer with 4096 dimensions is then employed to
extract abstract high-level features from 19 different modali-
ties. We used the Leave-One-Out Cross-Validation (LOOCV)
evaluation method in this study because the number of images
was small. Each fold in the LOOCV has only one sample,
and there is no random data partitioning into training and
testing. Furthermore, because the samples are independent,
each prediction in the identification problem is independent
of the other [22]. We consider a single subject in the query at
a time (and vary this, averaging the results at the end). The
remaining individuals were in the library set (also replaced one
at a time). Furthermore, we have individual images of both the
left and right hand and 19 ROI per image. The LOOCV was
employed with three different metrics: Bray-Curtis, Cosine,
and Euclidean.

The proposed approach achieved excellent results in the
identification rate for individual modalities as shown in the
table I, multimodal biometrics in table II, and fusion of the
whole hands based on various similarity metrics as shown
in table III. In general, single modalities achieved excellent
results, and there are no significant differences in the perfor-
mance between various metrics, as demonstrated in table I.

We evaluated also the proposed approach using the fusion of
different multi-modalities. Two fusion rules were utilised: the
MV and WA, which employed with the metrics and improved
the results as displayed in the table II. We estimated the weight
for each component of the hand based on the rank-1 accuracy
in table I. The MV performed better than the WA. For example,
the fingernails-based fusion and the base-knuckle-based fusion



achieved 100% in all datasets using the MV that applied on the
Bray-Curtis similarity metric. Also, the cumulative matching
characteristic (CMC) chart in figure 2 shows a sample result
from the fingernails using the cosine metric and the MV
applied in all datasets, including the holistic and individual
performance of each hand’s component. It is evident from the
chart that the holistic technique outperforms the performance
of individual modalities.

In addition, table III displays the recognition rate for the
whole hand fusion that conducted with different metrics: Bray-
Curtis, Cosine, and Euclidean. We can observe from the
table that the MV using all distances achieved 100% in all
datasets using the Bray-Curtis metric, and the fusion results
significantly improved in the left hands of the ‘11kHands’
dataset.
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Fig. 2: The CMC diagram of the proposed fusion technique
applied in the fingernails of : a) the ’11k Hands left’; b) ’11k
Hands right’; c) ’PolyU right’

In the next section, a comparison against the state-of-the-art
approaches will be presented, and this proposed multimodal
biometric outperformed them.

C. Comparison between the proposed approach and the state-
of-the-art

There is a minimal number of available studies that inves-
tigate the identification of persons using sub-images of their
dorsal hands and the fusion of sub-images from the fingernails,
knuckle creases, and whole hands using different similarity
metrics and fusion rules. We compared our approach with the
recent study in [11]. However, this paper [11] assessed the
Rank-1 identification accuracy using a fusion based on the
entire finger. In our proposed approach, the fusions were based
on regions, e.g., the fusion of the base knuckles of fingers.
In [11], the whole hand fusion techniques achieved 100%,
99.62%, and 99.33% in ’11k-Left’, ’11k-Right’, and ’PolyU’,
respectively. In comparison, in our study, the MV method with
all metrics gained 100% using all datasets as shown in table
III.

V. CONCLUSION

To the author’s knowledge, this is the first approach for per-
son identification that uses all fingernails and knuckle creases
from human fingers. Evaluating different similarity metrics
for fusion allows for solid whole-hand identification with
outstanding results. Through retraining a pretrained model of

TABLE I: The rank-1 recognition rate (shown in %) for
individual modalities in the ’11k Hands’ and ’PolyU’ datasets.

Region Finger similarity metric 11k-Left 11k-Right PolyU-R
Fingernail Thumb Bray-Curtis 100 94.74 100

Cosine 100 95 100
Euclidean 100 95 100

Index Bray-Curtis 100 100 95
Cosine 100 100 95

Euclidean 100 100 95
Middle Bray-Curtis 100 100 90

Cosine 100 100 90
Euclidean 100 100 92.50

Ring Bray-Curtis 100 100 95
Cosine 100 100 95

Euclidean 100 100 95
Little Bray-Curtis 100 100 97.50

Cosine 100 100 97.50
Euclidean 100 100 97.50

Minor Knuckle Index Bray-Curtis 100 94.74 95
Cosine 100 95 95

Euclidean 100 94.74 97.50
DIP Middle Bray-Curtis 100 94.74 87.50

Cosine 100 95 87.50
Euclidean 100 94.74 87.50

Ring Bray-Curtis 100 100 95
Cosine 100 95 95

Euclidean 100 100 95
Little Bray-Curtis 100 94.74 92.50

Cosine 100 95 92.50
Euclidean 100 94.74 92.50

Major Knuckle Thumb Bray-Curtis 94.74 94.74 92.50
Cosine 94.74 94.74 92.50

Euclidean 100 94.74 92.50
PIP Index Bray-Curtis 100 94.74 97.50

Cosine 100 94.74 97.50
Euclidean 100 94.74 97.50

Middle Bray-Curtis 100 94.74 95
Cosine 100 94.74 95

Euclidean 100 94.74 97.50
Ring Bray-Curtis 94.74 94.74 92.50

Cosine 94.74 94.74 92.50
Euclidean 100 100 95

Little Bray-Curtis 100 100 97.50
Cosine 100 100 97.50

Euclidean 100 100 97.50
Base Knuckle Thumb Bray-Curtis 100 100 82.50

Cosine 100 100 82.50
Euclidean 100 100 82.50

MCP Index Bray-Curtis 100 94.74 97.50
Cosine 100 94.74 97.50

Euclidean 100 84.21 97.50
Middle Bray-Curtis 100 94.74 100

Cosine 100 89.47 100
Euclidean 100 94.74 100

Ring Bray-Curtis 100 84.21 100
Cosine 100 89.47 100

Euclidean 100 89.47 95
Little Bray-Curtis 100 100 97.50

Cosine 100 100 97.50
Euclidean 100 100 97.50

TABLE II: The rank-1 recognition rate (shown in %) for mul-
timodal biometrics in the ’11k Hands’ and ’PolyU’ datasets.

Fusion type Fusion rule-similarity metric 11k-Left 11k-Right PolyU-R
Fingernails-based fusion MV- Bray-Curtis 100 100 100

WA- Bray-Curtis 100 99.47 96.80
MV- Cosine 100 100 100
WA- Cosine 100 99.40 95.48

MV- Euclidean 100 100 100
WA- Euclidean 100 99.37 97.30

Minor-knuckle-based fusion MV- Bray-Curtis 100 95 93.25
WA- Bray-Curtis 100 95 93.25

MV- Cosine 100 95 100
WA- Cosine 100 95 94.91

MV- Euclidean 100 94.74 100
WA- Euclidean 100 96.37 95.55

Major-knuckle-based fusion MV- Bray-Curtis 95 95 97.50
WA- Bray-Curtis 96.4 96.2 95.40

MV- Cosine 100 94.74 97.62
WA- Cosine 97.90 95.90 97.05

MV- Euclidean 100 94.74 97.50
WA- Euclidean 100 94.04 97.18

Base-knuckle-based fusion MV- Bray-Curtis 100 100 100
WA- Bray-Curtis 100 94.45 96.70

MV- Cosine 100 100 100
WA- Cosine 100 96.32 99

MV- Euclidean 100 100 100
WA- Euclidean 100 94.79 97.68



TABLE III: The rank-1 recognition rate (shown in %) for
fusion of the whole hands based on various similarity metrics
in the ’11k Hands’ and ’PolyU’ datasets.

Similarity metric Fusion rule 11k-Left 11k-Right PolyU-R
Bray-Curtis MV 100 100 100

WA 99.64 96.67 97.73
Cosine MV 100 100 100

WA 99.2 96.86 97.49
Euclidean MV 100 100 100

WA 100 97.60 97.29

DenseNet201, the proposed approach extracts the distinctive
properties of different fingernails and knuckles from the five
fingers of both the right and left hands. These extracted traits
are then employed with varying similarity metrics to determine
the identity of all fingernails and knuckles from the five
fingers and the hand as a whole. In our future work, we plan
to utilise various fusion levels, including feature, score, and
decision level fusion, and different rules (e.g., sum, minimum,
maximum, etc.).
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