Biogenic and anthropogenic sources of isoprene and monoterpenes and their secondary organic aerosol in Delhi, India

Bryant, Daniel and Nelson, Beth S. and Swift, Stefan J. and Budisulistiorini, Sri Hapsari and Drysdale, Will S. and Vaughan, Adam and Newland, Mike J. and Hopkins, James R. and Cash, James and Langford, Ben and Nemitz, Eiko and Acton, Joe and Hewitt, C N and Mandal, Tuhin K. and Gurjar, Bhola R. and Shivani and Gadi, Ranu and Lee, James D. and Rickard, Andrew R. and Hamilton, Jacqueline F. (2023) Biogenic and anthropogenic sources of isoprene and monoterpenes and their secondary organic aerosol in Delhi, India. Atmospheric Chemistry and Physics, 23 (1). pp. 61-83. ISSN 1680-7316

Full text not available from this repository.

Abstract

Isoprene and monoterpenes emissions to the atmosphere are generally dominated by biogenic sources. The oxidation of these compounds can lead to the production of secondary organic aerosol, however the impact of this chemistry in polluted urban settings has been poorly studied. Isoprene and monoterpenes can form SOA heterogeneously via anthropogenic-biogenic interactions resulting in the formation of organosulfates (OS) and nitrooxy-organosulfates (NOS). Delhi, India is one of the most polluted cities in the world, but little is known about the emissions of biogenic VOCs or the sources of SOA. As part of the DELHI-FLUX project, gas phase mixing ratios of isoprene and speciated monoterpenes were measured during pre- and post-monsoon measurement campaigns in central Delhi. Nocturnal mixing ratios of the VOCs were substantially higher during the post-monsoon (isoprene: (0.65 ± 0.43) ppbv, limonene: (0.59 ± 0.11) ppbv, α-pinene: (0.13 ± 0.12) ppbv) than the pre-monsoon (isoprene: (0.13 ± 0.18) ppbv, limonene: 0.011 ± 0.025 (ppbv), α-pinene: 0.033 ± 0.009) period. At night, isoprene and monoterpene concentrations correlated strongly with CO across during the post-monsoon period. This is one of the first observations in Asia, suggesting monoterpene emissions are dominated by anthropogenic sources. Filter samples of particulate matter less than 2.5 microns in diameter (PM2.5) were collected and the OS and NOS content analysed using ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC-MS2). Inorganic sulfate was shown to facilitate the formation of isoprene OS species across both campaigns. Sulfate contained within OS and NOS species were shown to contribute significantly to the sulfate signal measured via AMS. Strong nocturnal enhancements of NOS species were observed across both campaigns. The total concentration of OS/NOS species contributed an average of (2.0 ± 0.9) % and (1.8 ± 1.4) % to the total oxidised organic aerosol, and up to a maximum of 4.2 % and 6.6 % across the pre- and post-monsoon periods, respectively. Overall, this study provides the first molecular level measurements of SOA derived from isoprene and monoterpene in Delhi and demonstrates that both biogenic and anthropogenic sources of these compounds can be important in urban areas.

Item Type:
Journal Article
Journal or Publication Title:
Atmospheric Chemistry and Physics
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/1900/1902
Subjects:
?? ATMOSPHERIC SCIENCE ??
ID Code:
187385
Deposited By:
Deposited On:
23 Feb 2023 13:15
Refereed?:
Yes
Published?:
Published
Last Modified:
15 Sep 2023 01:28