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Abstract

Determining the efficacy of a novel intervention is vital before making it available

to the public. The standard equal fixed randomisation procedure in the design of

(static) experiments leads to an unbiased Maximum Likelihood Estimator (MLE)

for each intervention. However, this approach results in a heavily suboptimal cu-

mulative reward. On the other hand, it imposes limitations in some situations,

especially for rare diseases, when it is desirable to design a clinical trial on a

small number of subjects while treating them as well as possible. This motivates

the use of response-adaptive procedures where the allocation ratios to each arm

can be skewed toward the better-performing intervention as subject responses be-

come available. Hence, we consider the Bayesian Beta-Bernoulli finite-horizon two-

armed bandit problem with binary responses and the objective function of max-

imising the Bayes-expected total number of subject successes in the trial, which

we call the subject benefit.

Using a memory-efficient implementation, dynamic programming is utilised

as the solution method for the proposed model to derive the randomised designs.

Despite the type of randomisation procedure, the MLE is estimated in a frequentist

way using DP-based solutions at the end of the trial.

We first evaluate the bias of MLE and show that it is unacceptably high and
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variable due to the model’s adaptiveness. We propose a new augmented estimator

with the aim of mitigating the estimation bias whilst the DP actions are deter-

ministic. Moreover, by modifying the allocation decision at every time step, we

introduce two novel allocation procedures that mitigate the bias induced by the DP

procedure: (i) DP using an augmented estimator, which adds a number of pseudo-

successes to the worse-performing intervention, and (ii) randomised DP procedure,

which perturbs the Bayes-optimal allocation decision with a given probability.

Lastly, another DP design is proposed based upon setting an interim analysis,

in which some novel and non-trivial stopping criteria have been developed, in the

middle of the trial. The interim analysis look can be implemented in the simulation

step or both the DP procedure and the simulation step, identically.

We evaluated the proposed designs via extensive simulation studies in a broad

range of scenarios.

This thesis addresses some key issues in the trade-off between reducing the bias

in the estimation and improving the subject benefit in the bandit models, which can

be considered as a limitation preventing bandit models from being implemented

in practice.
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Chapter 1

Introduction and Motivation

Before a novel intervention is widely publicised, clinical trials aiming to determine

the corresponding efficacy are among the potent tools that need to be undertaken

(Pocock, 2013). Such trials, particularly in medical science, are typically composed

of four phases (Jennison and Turnbull, 1999). Phase I trials dealing with toxicity

and pharmacology are known as the exploratory stage, in which the participat-

ing population is small in size and healthy in condition. The primary objective

of phase I is to establish a suitable and tolerable dose level for a new treatment.

Phase II pilot studies are of moderate size with a few hundred diseased patients.

Evaluating the initial efficacy and safety is of interest in this phase of the tri-

als. For instance, the frequency of a successful dose intake for properly treating

patients is investigated in the second phase (Peace and Chen, 2010). Promising

treatments proceed to phase III, where more than a thousand patient volunteers

are involved. Conventionally, the definitive evaluation of the new proposed treat-

ment is conducted by comparing it with a control (standard therapy or placebo)

in terms of effectiveness and absence of any long-term adverse side effects. This
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comparative phase III is pivotal as the statistical designs and analyses receive the

most attention and scrutiny. Finally, phase IV, known as post-marketing surveil-

lance, deals with additional testing and monitoring for long-term effects in the

wider population.

The drug development process is expensive as it may cost one to two billion

dollars and is time-consuming for patients as it could take 10 to 15 years to receive

the final efficacy and safety approval. Hence, we need to pay more attention

to patient-centric trials in which patients are treated as effectively as possible

within the trial. In 2022, the United States Food and Drug Administration (FDA)

through the Center for Drug Evaluation and Research (CDER) introduces a new

Accelerating Rare disease Cures (ARC) Program, known generally as CDER’s

ARC Program U.S. Food and Drug Administration (2022), with the vision of

enhancing the development of effective and safe treatment options for rare diseases.

CDER’s ARC Program aims to accelerate the availability of rare disease treatments

by driving scientific and regulatory innovation and engagement.

On the other hand, drug development for the approximately 7000 rare diseases

affecting over 400 million people worldwide is potentially complex owing to the

limited understanding of the natural history of the diseases and patient popula-

tions. Hence, the primary objective of CDER is to overcome obstacles associated

with rare disease trials and facilitate the development of therapies as much as pos-

sible in the U.S. However, there is still a great deal of room for improvement in

the unmet need for FDA-approved therapies for rare diseases. Accordingly, this is

where CDER’s ARC Program mission can be accomplished by utilising scientific

and regulatory innovation and engagement.

Focusing on phase III of clinical trials, where the effectiveness of a new treat-
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ment is compared with the standard therapy, we deal with those trials designed

for rare diseases. Therefore, they are associated with all the above-mentioned

complexities and hurdles.

Under the assumption of equal variances and normally distributed data, the

current gold standard design used in clinical trials is the randomised controlled

trial (RCT), in which the proportion of patients allocated to each participating

therapy is pre-fixed and typically equal. Although RCT amplifies the chance of de-

tecting any clinically and statistically meaningful differences, i.e. it maximises the

statistical power, it suffers from a lack of flexibility in patient well-being in terms

of randomising half of the participants to the inferior or control therapy. Whilst in

the context of rare diseases a substantial proportion of all diseased patients may

be involved in the trial, the primary ethical goal should be treating those patients

within the trial as effectively as possible (Palmer and Rosenberger, 1999). In this

circumstance, learning about treatment effectiveness with an assumption of hav-

ing a large population outside available, as in the traditional fixed randomised,

RCT, also known as equal fixed randomisation (EFR), may not be a plausible

objective. This, in turn, motivates the use of response-adaptive designs in which

clinicians can take advantage of the learning about treatment effectiveness using

accruing data to skew the patients towards seemingly superior treatment as the

trial progresses (Ahuja and Birge, 2016; Williamson et al., 2017).

In contrast to EFRs, response-adaptive designs favour individual ethics by

keeping the balance between exploration and exploitation. In fact, this trade-off

is typically between individual ethics, i.e. exploiting treatments with well enough

up-to-date performance, and collective ethics, i.e. correctly exploring the better

new treatment in case of existence. Hence, balancing this underlying exploration
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versus exploitation trade-off can be formulated by the multi-armed bandit problem

(MABP) (Berry and Fristedt, 1985). Dynamic programming (DP) Bellman (1957)

upon implementation can be a potential method for obtaining the optimal solution

of the MABP, although it is expensive in terms of computational complexity.

Indeed, adaptive designs have become popular in many other fields, such as

in sociology and education Rafferty et al. (2019), industry and regulatory bodies

Lipsky and Lewis (2013), as well as in modern clinical trials. This increasing

popularity and significance of adaptive designs, or to be more precise response-

adaptive randomisation (RAR) procedures, leads us to go beyond the scope of

clinical trials and consider the situation as the finite-horizon two-armed bandit

problem. It is worth mentioning that this problem naturally appears per se or as a

fundamental subproblem in the multi-armed bandit context (Jacko, 2019b). Hence,

the majority of the novel findings in this thesis can be applied and implemented

in some multi-armed generalisations.

1.1 Outline of Thesis

Chapter 2 provides the general background information and some key concepts

that laid the groundwork for subsequent chapters of this thesis. The pertinent

literature on randomisation and bandit theory, along with underlying principles of

the estimation problem, will be outlined in this chapter.

The two-armed bandit model and maximum likelihood estimator and its theo-

retical aspects will be scrutinised in chapter 3. Also, to capture a general mindset

of what we plan to do in this thesis, we touch upon the after-trial studies after-

wards. Chapters 4 and 5 broadly discuss how to mitigate the MLE estimation
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bias using dynamic programming solutions of the MABP at the end and within

the trial, respectively. In chapter 4, a novel family of estimators will be intro-

duced, whilst in chapter 5, some novel allocation procedures will be the centre of

the attention. The performance of the novel optimistic on inferior dynamic pro-

gramming (OIDP) and randomised dynamic programming (RDP) procedures will

be evaluated in the proposed model in chapter 5. However, in chapter 4, classical

dynamic programming (DP) in which allocation rules are optimal and determinis-

tic in solving the proposed two-armed model will be of interest. In chapter 6, the

focus moves to the designs with an early stopping possibility. We first define some

stopping criteria for running hypothesis testing in the middle of the trial and then

compare the outcomes to those without interim analysis inspection.

Chapter 7 concludes this thesis by summarising the main contributions and

addressing potential perspectives for further research.



Chapter 2

Methodology and Background

2.1 Randomisation

In the design of experiments, randomisation refers to a random assignment process

where the experimental units are allocated across the treatment groups. Randomi-

sation was initially popularised in an agricultural study by Fisher (1926) and soon

after began receiving well-deserved attention in clinical studies, as discussed in a

review paper by Amberson Jr et al. (1931). The first randomised controlled trial

(RCTs) came later by Craft et al. (1998). From the probability theory point of

view, in an experiment, subjects are randomised to interventions/arms 1, as the

patients are randomly assigned to treatments in the clinical trial context.

Randomisation is now a fundamental component of the design of experiments

as it (i) provides a comprehensive framework by which one can compare treatment

groups distinctly, (ii) eliminates selection bias 2 giving rise to a valid treatment
1In this thesis, we use the word subject instead of patient and intervention/arm instead of

treatment to follow Jacko (2019b) advice on unifying the terminology across the literature.
2Also known as treatment allocation bias in the literature.

6
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group’s efficacy estimation, and (iii) lays the groundwork for statistical inference,

as discussed in (Rosenberger et al., 2012), (Rosenberger et al., 2019).

The randomisation strategies can be categorised into two classes: (i) equal

fixed randomisation (EFR), where the allocation ratios (or, equivalently, “alloca-

tion probabilities" in e.g. Robertson et al. (2020) because ratios are e.g., 1:1 while

probabilities would be 0.5 and 0.5) remain constant during the course of the trial,

and (ii) adaptive randomisation, where allocation ratios can change within the trial

(Chow and Chang, 2008). In fact, adaptive randomisation utilises the accrued

data to update the randomisation ratios to achieve the experimental goals. Hu

and Rosenberger (2006) classify adaptive randomisation into four main categories:

(i) restricted randomisation, the procedure where the number of subjects balances

across intervention groups, (ii) covariate adaptive randomisation procedure, where

future allocation probabilities are determined based on observed allocation assign-

ments and subject covariate values (iii) response-adaptive randomisation (RAR),

a randomisation procedure in which allocation probabilities are adjusted based

on accumulating subject responses to minimise the number of failure responses,

and (iv) covariate-adjusted response-adaptive (CARA) randomisation procedure

which is a combination of covariate adaptive and RAR procedures. Note that

in this thesis, we solely focus on response-adaptive randomisation (RAR) proce-

dures. To find the details of RAR methods, the readers are referred to (Hu and

Rosenberger, 2006), (Rosenberger and Lachin, 2015).
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2.2 Response-Adaptive Randomisation (RAR)

Response-adaptive randomisation3 (RAR) procedures were developed to increase

the allocation ratio of assigning subjects to more promising interventions as more

information becomes available (Merrell et al., 2021). Apart from the fact that

an RAR procedure can be considered either fully randomised or deterministic,

there are some proponents against such approaches in the modern literature. For

instance, Thall et al. (2015) addresses some ethical issues, such as the possibility

of subject allocation imbalance in the wrong direction and loss of subject benefit

enrolled in the trial due to inferential problems, as undesirable properties of the

RAR procedures. On the other hand, Rosenberger and Lachin (2015) argue that

it is undeniable that RAR mitigates the chance of randomising subjects to inferior

interventions to a significant extent. However, it fails to eliminate the ethical

problem completely. It is worth mentioning that the aim of utilising an RAR

procedure as a general design of the experiment can be classified into three main

objectives.

Statistical purposes, such as maximising the power of the trial, are among the

first objective. In the RAR literature, “power" is mainly perceived as a frequentist

property, i.e. the probability of rejecting a null hypothesis when the alternative

is valid. Bear in mind that the power of a trial may have multiple definitions

needing to be clearly stated when results are reporded (Robertson et al., 2020).

Stallard and Rosenberger (2002) and Villar et al. (2015a) discuss the challenges of

overcoming a low power in different RAR methods, whilst Williamson et al. (2017)

propose an RAR procedure giving rise to a significant improvement in the power
3outcome-adaptive or data-dependent randomisation is usually used interchangeably in the

literature.
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of the test in comparison with other RAR counterparts in the literature.

The second common objective of the RAR procedure as a general design of

the experiment is minimising regret number of successes4(the difference between

the cumulative number of success responses and that of the best fixed decision in

hindsight, see e.g. (Kaufmann et al., 2012)) or equivalently maximising subject

benefit (the number of subjects that are on the superior intervention, see e.g.

(Rosenberger et al., 2001), (Villar et al., 2015a)). Setting up minimising the regret

number of successes in the objective function of a trial is conventional in the

machine learning community, Bubeck et al. (2012), whilst maximising the subject

benefit is often of interest in the Operational Research literature.

The last objective of adopting an RAR procedure is the efficacy estimation.

Despite some technical hindrances and difficulties in using the frequentist infer-

ence framework on results obtained from an RAR procedure (see, e.g. Proschan

and Evans (2020); Rosenberger and Lachin (2015)), standard statistical tests and

estimators can be simply used without adjustment in a straightforward manner.

However, the estimation, particularly efficacy estimation, is often biased due to

statistical dependencies on the responses in an RAR procedure. Hence, a con-

siderable part of the literature has been devoted to addressing this problem by

proposing bias-corrected estimators, see (Coad and Ivanova, 2001; Bowden and

Trippa, 2017; Hadad et al., 2021).

A common feature of a substantial number of papers in the RAR literature is

that they consider more than a single objective for the RAR procedure. Hence,

they examine the trade-off between these mutually exclusive objectives in their
4Depending on the operating characteristics in a sequential experiment design, one may define

Bayes regret number of successes or frequentist regret number of successes, see (Jacko, 2019b).



CHAPTER 2. METHODOLOGY AND BACKGROUND 10

proposed designs. For instance, Merrell et al. (2021); Williamson et al. (2017,

2022) suggest an RAR procedure to maximise a utility function whilst balancing

statistical power and controlling the type I error rate, i.e. keeping the balance

between the first and the second objectives. Hadad et al. (2021), on the other

hand, focus on providing an unbiased efficacy estimation whilst optimising the

power, i.e. keeping the balance between the first and the last objectives. In this

thesis, we mainly focus on the second and third objectives. In other words, we try

to mitigate the efficacy estimation bias whilst maximising the subject benefits at

the end of the proposed experiments.

Last but not least, responses in an RAR procedure can be discrete or con-

tinuous. Although choosing the type of response depends on the context of the

experiment, it can be classified into continuous and discrete types of response. For

continuous responses, see, e.g. Williamson and Villar (2020); Hadad et al. (2021),

and for discrete ones, see, e.g. Bowden and Trippa (2017); Villar et al. (2015a),

and also for composite cases, see, e.g. (Stallard et al., 2020), (Xu et al., 2022).

In this thesis, we assume responses are binary as the resultant response-adaptive

model is not only motivated by its widespread applicability, but it can serve as a

fundamental framework for introducing additional problem features as well (Jacko,

2019b).
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2.3 Bandit Models

2.3.1 The Multi-Armed Bandit Problem (MABP)

The Multi-armed bandit problems (MABPs), are a special class of optimal control

problems. They define a situation in which a fixed limited set of resources should

be allocated between competing intervention choices to maximise the ultimate ex-

pected reward over the time horizon. The allocation should be done sequentially

and evolve randomly over time. Owing to the exceptional practical potential that

MABP offers, it has received well-deserved attention from the Operational Re-

search and Machine Learning communities as well as that in Medical Statistics.

The first work on MABP can be attributed to Thompson (1933), which was later

continued and developed by Robbins (1952), Bellman (1956), Gittins et al. (2011)

and Villar et al. (2015a) in health applications, in particular.

The MABP provides a mathematical framework by which the tension between

learning (or exploration) and earning (or exploitation) can be formalised. In fact,

when one thinks about decision-making under uncertainty and being informed by

data, MABP can ideally come into play and maximises any desired objectives, e.g.

the overall reward, to achieve an optimal policy. Considering the fact that the

MABP applications’ scope is broad, the most common context motivated by this

methodology is clinical trials, Villar et al. (2015a), where the trade-off between

two objectives in tension is sought:

• To correctly identify the best treatment, i.e. exploration or learning.

• To treat patients as effectively as possible within the trial, i.e. exploitation

or earning.
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Although deployment of an MABP model can potentially result in optimal solu-

tions and allocation policies, it has yet to be applied to a real-world clinical trial.

Hence, we centre our attention around a general usage of MABP, where subjects5

are allocated to interventions6 (or arms) with the aim of optimising some pre-

determined criteria. In fact, whilst we try to maximise the number of successful

responses within the trial, we aim for an accurate efficacy estimation at the end

of the trial.

2.3.2 Markov Decision Processes (MDPs)

Without a shadow of a doubt, one of the most popular methods of modelling a

MABP is as a Markov decision process (MDP), known as a particular class of

processes which extend Markov processes by the addition of actions. In the MDP

framework, a decision-maker encounters a set of decisions (or actions), associated

with exclusive rewards, that must be taken at each stage. Hence, to formulate

an MDP, it is required to introduce a range of features, namely decision epochs,

states, actions, transitional probabilities and rewards (see Puterman (2014) for

details).

Decision epochs t, also referred to as “time epoch t” are the points in the

time horizon on which a decision must be taken, where we shall take t ∈ T :={
0, 1, 2, ..., T

}
, T < +∞. All information required to choose an action from action

set A at time epoch t is summarised the state xt. In this thesis, the state repre-

sents the up-to-date available knowledge about the effectiveness of an intervention.

States can be updated once a new subject’s response has been observed. In turn,
5Known as “patient" in Biometrics and Biostatistics, or “resource" in Operation and Manage-

ment, as well as Economics.
6Equivalent to “treatments", or “bandits", depending on the context.
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an action is taken based on the state and corresponds to allocating a subject to an

intervention. Note that actions can be deterministic if the probability of an action

being selected is 1 or randomised if each is selected with some probability. For

a randomised-action case, see e.g. (Cheng and Berry, 2007). The main focus of

this thesis is on deterministic actions, although we briefly touch upon randomised

cases in chapter 5. After taking action at at time epoch t, the system transfers

to a new state at time epoch t + 1, xt+1, based on the transitional probability

P (xt+1|xt, at), and an associated reward ra
x accrues to evaluate the chosen action.

The transitional probabilities and rewards at each time epoch t depend only on

the current state and action chosen in that state, which leads us to a Markovian

system.

In formulating an MDP, the time horizon, T , can be considered finite or infinite

depending on the problem circumstances. For the latter case, a discount factor

d ∈ (0, 1) is often introduced to ensure that total reward is finite. Additionally,

the objective function of an MDP is typically considered the total reward, which

is maximised as expected total reward if the time horizon is finite, see Puterman

(2014), chapter 8, and as expected total discounted reward if the time horizon is

infinite, see (Bellman, 1956), and ((Puterman, 2014), chapter 7).

It is worth mentioning that the undiscounted reward case is equivalent to setting

the discount factor d = 1. In some works such as Wang (1991); Hardwick et al.

(1991) the latter is referred to as uniform discounting. Hence, as the assumed

horizon in this thesis is finite, we presume d = 1 and set the objective function

of interest to maximise the expected total reward. Let X(t) = x be the state of

the system at time epoch t, and let Eπ
t [.] refer to the expectation under policy7

7A policy is a mapping from the states set to the actions set. In other words, it is a rule
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π ∈ Π conditioned on information available up to the time epoch t ∈ T . Then the

expected total reward over the remainder of the time horizon [t, T ] is

Nπ
t (x) := Eπ

t

[
T∑

u=t

r
A(u)
X(u)

∣∣∣∣∣ X(t) = x

]
(2.1)

where A(u) represents the action that is chosen at time epoch u = t, ..., T under

policy π and r
A(u)
X(u) is the reward received upon taking action A(u). Finally, by

maximising the expected total reward over the pre-determined time horizon, T ,

the optimal policy can be ultimately obtained. Note that the existence of an

optimal policy for an MDP with a finite horizon is proved in (Berry and Fristedt,

1985).

2.3.3 Dynamic Programming (DP) Approach

A MABP, in principle, can be solved by two possible methods: the Dynamic

Programming (DP) technique and an index-based approach. The latter gives rise

to sub-optimal solutions, whilst the DP results in a Bayes-optimal solution, which

is an exact one. There is also another important distinction here: the work due

to Gittins (1979); Villar et al. (2015b) show that there are index-based (optimal)

solutions to certain classes of infinite horizon MABPs with discounting, although

our focus is on the finite horizon case in which index based optimal solutions

do not exist necessarily, and therefore the deployment of DP is always available

instead. Since MABPs can be formulated as MDPs, in this thesis, we utilise the

which results in a sequence of actions, each of which is taken in light of the information available
when the action is chosen in the state x at time epoch t. In this thesis, we assume policies are
past-measurable, or history-dependent in Puterman (2014), or non-anticipating in Jacko (2019b)
at any time epoch t. All variations mean that the policy does not depend on what happens after
time epoch t.
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standard DP approach introduced and popularised by Bellman (1957) and solve

the proposed bandit models in an exact manner.

Informally, the fundamental idea of DP is based on enumeration. It breaks

the problem down into a series of sub-problems and then solves and stores each

separately. To complete the solution of the original problem, it re-uses and puts

all sub-problems together, which in turn, leads to a significant reduction in com-

putational burden.

Put technically, DP iterative procedure is based on value function calculations

aimed at maximising the expected total rewards over the set of all policies π, from

each time epoch t. The value function, Ft, stands for the best possible value of

the objective in (2.1). Starting at time epoch t with state x the value function is

defined as below

Ft(x) = max
π∈Π

Nπ
t (x) = max

π∈Π
Eπ

t

[
T∑

u=t

d(u−t)r
A(u)
X(u)

∣∣∣∣∣ X(t) = x

]
(2.2)

where d is the discount factor. Following on the fundamental property of the value

function satisfying the below recursive formula, known as the Bellman equation8,

we have

Ft(x) = max
a∈A

{
ra

x + d
∑
x′

P (x′|x, a)Ft+1(x′)
}

for 0 ≤ t ≤ T − 1 (2.3)

where P (x′|x, a) is the transitional probability of transferring from state x at time

epoch t to some new state x′ at time epoch t + 1 under the action a. Moreover,
8Known initially as the functional equation by Bellman (1957). Other name alternatives

are also the fundamental equation of dynamic programming by Berry and Fristedt (1985); the
dynamic programming equation by Gittins et al. (2011); the optimality equation by Puterman
(2014), to name but a few.
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it is worth mentioning that (2.3) is composed of (i) the immediate reward, ra
x,

and (ii) the expected (discounted) future reward, i.e. the second term. The latter

is realised by implementing an optimal policy from time t + 1 onwards, whilst

the former is earned instantly from action a chosen at state x. In other words,

the future reward is the multiplication of the expected total reward obtained by

following the policy π from time epoch t + 1, where the following state, x′, is

achieved if action a is taken at time epoch t, to T , and the probability of being in

the state x′ itself. Hence, at each time epoch, i.e. in every state, the action that

maximises the aggregation of both rewards is chosen.

The final optimisation problem is to find the maximum expected total reward

over the whole time horizon given an initial state x0 = x, that is, F0(x), at

the beginning of the trial, t = 0. The optimal policy, π∗, which determines the

sequence of optimal actions giving rise to the ultimate expected total reward, also

can be expressed as

π∗(x0) := arg maxπ∈ΠNπ
0 (x) (2.4)

Note that arg max is an operation that finds the argument that gives the maximum

value from a target function. It can also be defined as a set of points for which

the target function attains the largest value. Hence, π∗(x0) is defined as the set

of all optimal policies.

Backward Induction

We utilise backward induction, which is the process of evaluating the value func-

tions recursively backwards in time, from the final time epoch and for all possible

states until the start of the problem at t = 0, to determine a sequence of optimal
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actions, and subsequently solve the problem 2.4 in an exact manner.

The idea is that no action is taken at the last time epoch, t = T , assuming a

finite horizon situation. In fact, the final decision should be taken at t = T − 1,

which, in turn, implies that the terminal reward is an immediate reward corre-

sponding to the state only, i.e. FT (x) = rx. In the Operational Research lit-

erature, final value function, usually considered 0, is referred to as the salvage,

or scrap value (Puterman, 2014). In chapter 3, we will discuss after-trial studies

where the terminal reward is not set to 0. A similar approach which avoids some

specific states by setting up penalties, known as constrained randomised dynamic

programming (CRDP), is investigated by (Williamson et al., 2017). The maxi-

mum expected reward for every possible state is calculated for the rest of the time

epochs in the decision process. Note that this calculation also incorporates the

information obtained from the subsequent time epoch. The algorithm continues

determining the optimal reward and the corresponding optimal policy until the

beginning of the problem at time epoch t = 0. The backward induction algorithm

can be summarised as follows:

1. Let t = T and FT (x) = rx for all x = xT ,

2. For t = T − 1, T − 2, ..., 0 and for each x = xt, calculate:

(I)

Ft(x) = max
a∈A

{
ra

x + d
∑
x′

P (x′|x, a)Ft+1(x′)
}

(II)

π∗
t (x) = arg max

a∈A

{
ra

x + d
∑
x′

P (x′|x, a)Ft+1(x′)
}

3. If t = 0, stop. If not, repeat step 2.
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The algorithm terminates with returning an optimal policy (or policies), which

is determined stage by stage form step II in above algorithm, π∗(x), from state

x = x0, together with F0(x). The latter contains the maximum expected (dis-

counted) sum of rewards achieved by following the former. Hence, two multi-

dimensional arrays are required to be defined to implement the backward induc-

tion algorithm: (i) an array recording the F values corresponding to each state,

and (ii) one for optimal policies π∗ containing the sequence of actions leading to

these F values. It is noteworthy that this algorithm in detail can be found in work

by Williamson et al. (2017), and also in Appendix 4.6.1 of chapter 4.

Computational Complexity

The practicality of DP is often limited, since its computational complexity, also

known as curse of dimensionality, is an inseparable feature of the DP approach.

Bellman (1961) states that as the number of interventions increases, the size of

the problem grows exponentially. As an example demonstrating the computational

complexity associated with the DP, consider the problem of allocating subjects in a

trial of size T = n with two available arms (C and D) and binary response (success

or failure). This results in 4n possible paths that need to be enumerated, as four

possible outcomes will exist at each time epoch t. Also, for the relationship between

the DP’s computational requirements and the problem’s horizon, T , when a small

number of arms are considered, see (Villar et al., 2015a). Moreover, Zhang et al.

(2019) show that solving the DP becomes infeasible if one considers three arms

for a horizon of 100. On the other hand, owing to the advancement in computers’

memory and configuration, Sutton and Barto (2018), and Jacko (2019b) show that
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the DP procedure can be used to solve MDPs for much larger problem sizes despite

taking time for the final solution. For instance, Jacko (2019a) develops a computer

package by which MABPs with binary responses can be solved by DP in a few

minutes for T ≈ 1000, a few hours for T ≈ 2000 or a few days for T ≈ 4000.

Several methods have been proposed to overcome the computational complex-

ity problem in the operational research and bandit literature. In particular, when

the dimension of the state space is too large, the value function can be approx-

imated heuristically instead of attempting exact calculation. This procedure in-

troduces approximate dynamic programming (ADP), which is beyond the scope of

this thesis. The interested reader is referred to (Powell, 2007).

2.4 Estimation

The estimation of the efficacy of each participating arm, as the third objective of

the RAR procedures mentioned in section 2.2, is now one of the state-of-the-art

focal points in many recent research works. Apart from the estimation method and

the estimator type, providing an unbiased estimator is often the primary desired

objective in the RAR literature; see, for example (Whitehead, 1986), (Luedtke and

Van Der Laan, 2016), and (Nie et al., 2018). From a general point of view, an

efficacy estimation can be done during or at the end of RAR procedures. Each of

these possibilities is associated with a particular objective. For example, the latter

can aim for providing a more accurate conclusion about interventions’ efficacy for

post-trial applications, whilst the former may serve as a parameter estimation tool

to fit the best model with the aim of doing regression analysis (Liu and Chen,

2016).
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Estimating a parameter (or parameters) can be done via different approaches.

Considering a linear regression model, the ordinary least squares estimation (OLS)

technique, which is a type of linear least squares (LLS ) method, is often used for

estimating the unknown parameters of interest. OLS, or LLS more generally,

estimates parameters by minimizing the squared discrepancies between observed

data and their expected values. This approach is prevalent in the MABP setting

(mainly when the number of arms is more than two ), where the parameters of

interest to be estimated are the arm selection probabilities Zhang et al. (2020), or

arms’ probability distributions, see the survey by (Burtini et al., 2015). Another

approach to estimating an unknown parameter (or parameters) is the maximum

likelihood estimation (MLE), which is a method of estimating the parameters by

maximising the likelihood function derived from a given probability model, given

some observed data. Hence, this estimation approach is typically used at the end of

the trial when some responses are observed (Bowden and Trippa, 2017; Marschner,

2021).

In the sequential decision-making process, or to be more specific, the clinical

trials context, the estimation can be applied to various operating characteristics

and studies such as success probabilities, survival rate, and dose-finding studies, to

name but a few. For example, assessing the chance of detecting treatment effects

in clinical trial designs are investigated by (Han et al., 2022). After deciding which

are the parameter(s) of interest to be estimated, choosing an appropriate estimator

will be the next step.
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2.4.1 Estimation Bias

One of the principal characteristics of an estimator is bias. According to the

definition, the bias of an estimator is the difference between the expectation of

the estimator and the parameter’s true value. Let θ be the actual parameter of

interest and θ̂ be the estimator; then the bias is defined by

Bias
[
θ̂

]
:= E

[
θ̂ − θ

]
= E

[
θ̂

]
− θ (2.5)

An estimator is unbiased if its bias is equal to zero for all values of parameter

θ, or equivalently if its expected value matches the parameter. In practice, it is

sometimes rare that an estimator is unbiased, as many sources can give rise to an

estimation procedure being associated with bias. Although estimation with a small

amount of bias is acceptable in practice, several techniques and novel estimators

have been recently proposed to eliminate estimation bias9 in various settings.

It has been proved that the sample means are biased estimators of the treat-

ment success probabilities in an RAR settings (Villar et al., 2015a). In contrast

to the equal fixed randomisation (EFR) approaches, in which the sample sizes are

pre-fixed and also the proportions of allocation to participating arms can be de-

termined beforehand, in an RAR context, sample sizes are random variables as

allocation ratios can be altered as the trial goes on (Stallard et al., 2020). In fact,

such adaptivity imposes complex correlations between the data collection proce-

dure. Additionally, sample mean estimation bias can be either negative or positive,

depending on data collection, i.e. the RAR circumstances, see, (Nie et al., 2018;
9Also known as sample mean bias or selection bias, estimation bias of efficacy, and maximum

likelihood estimator (MLE) bias.
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Shin et al., 2019a,b). The challenge of eliminating efficacy estimation bias has

recently been extensively studied in the RAR context. This process of elimina-

tion has been investigated via two approaches: (i) proposing a novel debiasing

algorithm, Nie et al. (2018), and (ii) introducing a novel estimator (or family of

estimators), which is asymptotically unbiased (Hadad et al., 2021).

In this thesis, we mainly focus on the maximum likelihood estimator (MLE) as

an estimator for the actual arms’ efficacies (or success probabilities) in the proposed

trial designs. We do so because MLE can be a decent estimator for deciding on

the required sample size since, for instance, the calculation of the sample size in

clinical trials requires the specification of the treatment effect for which the study

is powered (Wassmer and Brannath, 2016). We also aim to improve the efficacy

estimation to draw a correct conclusion about the future efficiency of participating

interventions. This conclusion can be obtained from previous and similar clinical

trials, pilot studies, or preceding trial phases. Hence, we are interested in MLEs

being estimated with less bias and as accurately as possible.

2.5 Simulation Set-up

Simulation is one of the popular and straightforward tools for evaluation MABPs

by which the accuracy vs runtime trade-off, using a decent number of simulation

runs, can be addressed (Villar et al., 2015b; Jacko, 2019b). Since this thesis is

mostly built around simulation results, we evaluate all proposed trial designs as-

suming a broad range of two-arm trial scenarios. What we do in the simulation

stage is, for a given trial solved by DP, in each simulation replication, we run the

trial using DP-based solutions and record the total number of success and failure
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observations obtained from each arm at the end of the trial. Actually, this process

can be summarised as follows: after the first couple of deterministic allocations

explained below, the next allocation is determined by flipping a coin in the third

time epoch. From the third time epoch onward, the following allocation is de-

termined according to the DP solutions, which, in turn, are chosen based on the

up-to-date observed numbers of success and failure responses. The process is con-

tinued up to the last time epoch, where the ultimate total number of success and

failure observations on both arms are saved in the memory. It is noteworthy that

the simulation stage is more or less the same for all proposed designs. However,

the DP procedures used to solve the two-armed model differ from design to design

and are determined based on the trial design requirements. For instance, in chap-

ter 4, all DP algorithms are amongst classical deterministic procedures, whilst in

chapter 5, they are mainly amongst randomised or some novel procedures.

Let C stand for the control arm and D for the experimental counterpart,

and subsequently, θC and θD denote the true corresponding success probabili-

ties. Then, we take scenarios to be in a broad range of θC ∈ (0, 0.1, ..., 1) and

θD ∈ (0, 0.1, ..., 1) where all symmetric combinations are removed. Note that sce-

narios (0.1, 0.2) and (0.2, 0.1), for example, return the same simulation results if

we mirror the θC and θD. Hence, to save the running time and memory intake,

we remove all scenarios in which θC > θD and deal with those θC ≤ θD. One may

presume the general trend of assumed scenarios is similar to an upper-triangular

matrix, which results in having 66 different scenarios, i.e. (12 × 11)/2. Moreover,

in all plots representing the simulation results in this thesis, the bias of the MLE

is depicted by circles for control arm C and stars for experimental arm D.

It is worth mentioning that the frequentist estimator (and its bias) is affected
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by the researchers’ choice in dealing with situations where there are no realised

allocations to one of the arms. These situations can be classified into two circum-

stances: (i) removing these outcomes from the sample space or (ii) forcing to have

at least one observation on each arm. In this study, we apply the latter case in

which each arm is allocated once in the first two time epochs through all proposed

trials regardless of estimator type. Note that the former may give rise to some

other type of bias, such as selection bias10.

Furthermore, we set the trial sizes as a multiple of 60: T = 60, 120, 180 and

240, to have the potential of participating up to 6 arms in the trials. In turn,

having an equal number of observations can be achievable for each. We also make

use of colours to show the different 66 scenarios consisting of a pair of success

probabilities: (θC , θD) = (0, 0), (0, 0.1), ..., (0.9, 1), (1, 1). To do so, we introduce

arm D effect parameter which is the absolute difference between θD and θC , i.e.

|θD − θC |. For example, colour green represents simulation results corresponding

to the scenarios in which arm D effect is zero, i.e. θD = θC
11. For all 11 chosen

colours and their pertinent family of scenarios, please see table 2.1.

Finally, the number of simulation replications is set to one million for each

scenario and therefore, the parameter of interest is calculated by averaging out all

obtained simulation values at the total number of simulation replications, which

is one million. This number of simulation replications makes our conclusions and

calculations more accurate and convincing.
10Selection bias is the bias introduced by the selection of individuals, groups, or data for

analysis in such a way that proper randomization is not achieved, thereby failing to ensure that
the sample obtained is representative of the population intended to be analysed.

11This family of circumstances can also be named the null scenarios.
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|θD − θC | 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Colour green blue black purple red yellow orange cyan pink violet brown

Table 2.1: Colour-scenario information

2.6 Memory in Use

This section addresses a limitation on the computational capacity of the backwards

induction algorithm we encountered for all proposed trial designs throughout this

thesis. Note that the allocation policy of the DP procedure is computed on a

standard laptop with 16 GB of RAM using Julia (programming language). The

maximum trial size we have been able to compute via the mentioned configuration

is 240. In addition, upon implementing the backwards induction algorithm, two

multi-dimensional arrays are required to be defined: (i) an array recording the F

values corresponding to each combination of states, and (ii) one for optimal policies

π∗ containing the sequence of actions leading to these F values. The limitation is

imposed on the former when the trial size is T = 240 and the accuracy of rounding

(number of digits) matters. Hence, we consider two different cases for setting up

the value function array: (i) elements in the value function matrices are rounded

by a single-precision floating-point format (float32) whilst the bound of the error

is set to ϵ = 10−7 for trial sizes T = 60, 120, and 180, (ii) elements in the value

function matrices are rounded by a double-precision floating-point format (float64)

whilst the bound of the error is set to ϵ = 10−16 for trial size T = 240, solely.



Chapter 3

Model and After-trial Studies

3.1 The two-armed Bayesian Beta-Bernoulli model

In this section, we formulate the two-armed Bayesian Beta-Bernoulli model with

binary responses as a Markov decision process using the terminology of (Jacko,

2019b). We consider arms labelled by k ∈ K :=
{
C, D

}
, and the response set

by ∈ O :=
{
0, 1

}
where 0 and 1 stand for a failure and success, respectively.

The responses are uncertain, and the success probability of arm k is modelled

as Bernoulli-distribution 1 with parameter 0 ≤ θk ≤ 1. Subjects arrive (i.e. are

recruited) at discrete time epochs t ∈ T :=
{
0, 1, 2, ..., T − 1

}
, where T < +∞ is

the time horizon or experiment/trial size. In addition, we assume that responses

are observable immediately, meaning that a response of the current subject is

observed before taking the next subject’s allocation decision. To represent states

in this model, we use a four element vector x :=
(
sC , fC , sD, fD

)
, where sk and

1In probability theory and statistics, the Bernoulli distribution is a discrete probability dis-
tribution of a random variable which takes the value 1 with probability θ and the value 0 with
probability 1 − θ.

26
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fk represent the number of observed successes and failures on arm k respectively.

Moreover, the probability of observing response o ∈ O in state x if the current

subject is allocated to arm k ∈ K is denoted by qk,x,o, with ∑
o∈O qk,x,o = 1.

Assuming that at every time epoch t ∈ T a randomised actions a identified by a

pair (pa
C , pa

D) in which the arrived subject is allocated to arm C(D) with probability

pa
C(pa

D), the action set A can formally be taken as A =
{
a; pa

C + pa
D = 1

}
. Since

we consider the allocation procedure to be deterministic, and randomisation (with

equal probabilities) occurs if only there is no difference in allocating either arm, we

have: pa
C , pa

D ∈ {0, 1, 1/2}. In turn, the expected value of observing one success

at a time epoch t < T can be defined as ra
x = pa

C .qC,x,1 + pa
D.qD,x,1, and rx = 0 for

the final epoch t = T .

Since success probabilities are unknown we take the Bayesian approach and

assume that θk is a random variable drawn from the Beta distribution2. That is,

we use the Bayesian Beta-Bernoulli model for each arm k ∈ K and consider that

at the beginning of the trial, t = 0, each arm is given a prior Beta distribution

with parameters (s̃k(0), f̃k(0)). Three uninformative prior Beta distributions are

typically considered in the literature. The most conventional one is the Bayes prior

with parameters
(
s̃k(0), f̃k(0)

)
= (1, 1) while the others include the Jeffreys prior(

s̃k(0), f̃k(0)
)

= (1/2, 1/2) and the Haldane prior
(
s̃k(0), f̃k(0)

)
= (0, 0).

Owing to the fact that the Beta distribution is a conjugate prior with respect to

the Bernoulli likelihood, the posterior distribution follows another Beta distribu-

tion with parameters
(
s̃k(t), f̃k(t)

)
containing initial prior (interpreted as pseudo-

2In probability theory and statistics, the Beta distribution is a family of continuous probability
distributions defined on the interval [0, 1] parametrised by two positive shape parameters, denoted
by α and β (in this thesis, they stand for the number of success, s, and failure, f , observations,
respectively) that appear as exponents of the random variable and control the shape of the
distribution.
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observations) as well as up-to-date observed data, i.e s̃k(t) = s̃k(0) + sk(t), f̃k(t) =

f̃k(0) + fk(t), where sk(t) and fk(t) stand for the numbers of success and failure

responses observed up to time epoch t (prior excluded) on arm k, respectively.

Consequently, the probability of observing response o ∈ O can be defined as fol-

lows:

qk,x,o =


s̃k

s̃k+f̃k
if o = 1

f̃k

s̃k+f̃k
if o = 0

(3.1)

Next, we define an objective function, in which we are looking for the policy

maximising the Bayes-expected number of successes, i.e. the subject benefit in our

terminology and the patient benefit in clinical trials:

π∗ := argmaxπ∈ΠNπ
0

(
0

)
(3.2)

where

Nπ
t (x) := Eπ

t

[
T∑

u=t

r
A(u)
X(u)

∣∣∣∣∣ X(t) = x

]
(3.3)

where Eπ
t [.] refers to the expectation under policy π ∈ Π conditioned on informa-

tion available up to the time epoch t ∈ T , A(u) is the action prescribed by policy

π at time u and X(u) is the state at time u. The state process is such that at

every time epoch t, the state x(t) satisfies sC(t) + fC(t) + sD(t) + fD(t) = t. The

two-armed Bayesian Beta-Bernoulli model described above can be solved by DP

via backward induction based on the calculation of optimal value functions Nπ∗
t (x)

for all possible states starting from the final time epoch t = T . Please see section

2.3.3. Applying the Bellman equation in every single state solves the model to

optimality. By applying Bellman equations to any given time epoch t < T , and
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under an optimal policy, the expected total reward i.e. the Bayes-expected number

of successes on both arms, for time epoch t + 1 to T , is

F C
t

(
sC , fC , sD, fD

)
=qC,(x,i),1.

(
1 + Ft+1

(
sC + 1, fC , sD, fD

))
+ qC,(x,i),0.

(
0 + Ft+1

(
sC , fC + 1, sD, fD

))
F D

t

(
sC , fC , sD, fD

)
=qD,(x,i),1.

(
1 + Ft+1

(
sC , fC , sD + 1, fD

))
+ qD,(x,i),0.

(
0 + Ft+1

(
sC , fC , sD, fD + 1

))
(3.4)

therefore, based on the principle of optimality, for any 0 ≤ t ≤ T − 1 we have:

Ft

(
sC , fC , sD, fD

)
= max

{
F C

t

(
sC , fC , sD, fD

)
, F D

t

(
sC , fC , sD, fD

)}
Ft

(
sC , fC , sD, fD

)
= 0, otherwise.

(3.5)

Note that, for full generality, Jacko (2019b) recommends considering the infor-

mation state i, which is potentially dependent on the current physical state x and

any other changing during the trial. This may include real-world evidence and/or

modelling assumptions. The latter could be the type of prior distribution assumed

in the trial, while the former can be the probability of mistakes in statistical anal-

ysis and/or administration processes. Hence, the states can be defined by a pair

of (x, i). Finally, it is important to point out that our DP model allows for 50 : 50

randomisation when the two value functions are equal. In other words, although

the allocation procedure determined by DP is purely deterministic, there are sev-

eral allocation decision states where the chance of selecting an arm as optimal is

0.5 as the up-to-date arms’ performances (value functions) are the same for both.
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3.2 Maximum Likelihood Estimator (MLE) and

its Bias

This section presents a brief overview of the proposed estimation characteristics.

Note that estimation criteria, along with corresponding proofs, are explained in

the next chapter in detail. For now, we briefly characterize the frequentist MLE

and its bias in the context of the designs with binary responses. We follow and

build our assumptions based on the framework offered by Bowden and Trippa

(2017) to develop the bias of the MLE. To do so, we assume that unknown success

probabilities θk are Beta-distributed with parameters αk and βk:

θk ∼ Beta(αk, βk) ∀k ∈ K

The maximum likelihood estimator at time epoch τ ∈ T ∪ {T}, i.e., having

observed sk(τ) successes and fk(τ) failures on each arm k ∈ K, is

θ̂k(sk(τ), fk(τ)) =


sk(τ)
nk(τ) for nk(τ) > 0

any value in (0, 1) for nk(τ) = 0
(3.6)

where nk(τ) = sk(τ) + fk(τ). The bias of MLE is formulated in the study by

Bowden and Trippa (2017), whilst Shin et al. (2019a) also proposed applying a

similar expression for trials with an early and/or adaptively stopping time. The
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bias of the MLE is

Bias
[
θ̂k(τ)

]
:= E

[
θ̂k(τ)

]
− θk =



−Cov
[
nk(τ), θ̂k(τ)

]
E

[
nk(τ)

] for nk(τ) > 0 ∀k ∈ K

0 for nk(τ) = 0
(3.7)

Note that in designs where the allocation is independent of past responses, e.g.

EFR with arbitrary randomization ratio, we will have a zero covariance and thus a

zero bias on each arm. In contrast, for the designs in which the subject allocation

depends on (or is correlated with) past responses, a particular arm may have a bias

away from zero. Note that it can be concluded from equation (3.7) that a significant

bias will be obtained if the covariance is away from zero and the sample size is small.

The sign of the bias is typically negative for each arm under the response-adaptive

allocation procedures, which aim at (exactly/approximately/asymptotically) max-

imizing the expected number of observed successes since these tend to allocate

more subjects to arms with the higher estimated success probability. However,

this is not guaranteed by the above characterization in general, as shown in Nie

et al. (2018) where sufficient conditions are provided for having the estimation

bias positive or negative, depending on the trial circumstances. In particular, neg-

ative bias is not guaranteed for those designs that use other estimators rather than

the MLE for allocation decisions, which, among others, include upper confidence

bound procedures and Bayesian procedures. Furthermore, the sign of the bias can

be positive for some or all arms for some procedures (Shin et al. (2019a), Shin

et al. (2019b)), for instance, for those that aim at maximizing the statistical po-

wer, which, in some circumstances, tend to allocate more subjects to arms with
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lower estimates (Rosenberger et al., 2001).

It is noteworthy to mention that the underlying principle of this thesis is to

estimate the MLE using the optimal (and suboptimal) solutions that the DP proce-

dure provides via solving (3.2). As the two-armed Bayesian Beta-Bernoulli model

described above is under the RAR procedures umbrella, the arms’ effectiveness

is estimated with bias. In other words, the MLE estimation using the results

stemming from the model above is often associated with bias. Despite the fact

that in this thesis, we meticulously explore novel techniques to correct/mitigate

the estimation bias, there is a very old idea addressing this trade-off between the

accuracy of estimation and subject benefit via after-trial studies which is due to

(Berry and Eick, 1995). We take advantage of this idea to prepare readers’ minds

about what we plan to do next in this thesis since after-trial studies suffer from

some computational issues discussed in the section below.

3.3 After-Trial Studies

A traditional way of correcting the estimation bias in the Beta-Bernoulli two-armed

bandit model is to consider an after-trial population, S, outside of the trial so that

the optimal criterion is defined for both inside, T , and outside populations, see

(Berry and Eick, 1995; Cheng and Berry, 2007; Zhang et al., 2019). An example

of this criterion, which is more or less equivalent to what we assume here, can

be a situation where all outside populations are allocated to the arm with the

best performance within the trial. Note that what we assume here is to provide

a more accurate efficacy estimation by manipulating the arms’ value functions F

whilst keeping patients (subjects) well-being as high as possible within the trial.
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In this circumstance, the multiplication of the maximum current estimate of the

arms’ efficacy and the remaining population, (T + S) − n (assuming n number

of responses have been observed within the trial) results in the expected subject

benefit, i.e. the new value functions F . Note that this type of response-adaptive

allocation procedure is known as robust Bayes (RB) and is described and compared

to other randomisation procedures in (Berry and Eick, 1995). For another example

of RB, please see (Berry and Stangl, 1996).

We begin with setting up a new definition for the value functions instead of taking

them as zero when the trial terminates. Currently, in the backward induction

recursion, we assumed the value functions to be at zero when the trial reaches its

end, i.e., when sC(t) + fC(t) + sD(t) + fD(t) = T . In other words, if t = T , there is

nothing to do since all subjects have already been randomised and their outcomes

observed. Now, considering the fact that there is a cohort of subjects outside of

the trial where either arm will be allocated to all of them leads to setting the value

functions to be the multiplication of their current belief, i.e. the Bayes-expected

number of successes and the after-trial population size at the end of the trial.

Thus, we have:

• if t = T :

F C
t

(
sC , fC , sD, fD

)
= qC,(x,i),1.S

F D
t

(
sC , fC , sD, fD

)
= qD,(x,i),1.S

(3.8)
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• if t < T :

F C
t

(
sC , fC , sD, fD

)
=qC,(x,i),1.

(
1 + Ft+1

(
sC + 1, fC , sD, fD

))
+ qC,(x,i),0.

(
0 + Ft+1

(
sC , fC + 1, sD, fD

))
F D

t

(
sC , fC , sD, fD

)
=qD,(x,i),1.

(
1 + Ft+1

(
sC , fC , sD + 1, fD

))
+ qD,(x,i),0.

(
0 + Ft+1

(
sC , fC , sD, fD + 1

))
(3.9)

3.3.1 Average Estimation Bias

We ran the model with three different multiples of 1000 for the after-trial popula-

tion, S = 1000 and 1, 000, 000 (1 Million) and 1, 000, 000, 000 (1 Billion), and also

for four different trial sizes, T = 60, 120, 180 and 240. Recalling criteria mentioned

in section 2.5, we note that all plots depict the relationship between the bias of the

MLE (horizontal axis) and the covariance between the MLE and sample size (Ver-

tical axis) for both arm C (circles) and arm D (stars). It is interesting to mention

that the values on the vertical axis, which represents the covariance between the

MLE and sample size, are actually those obtained from the numerator of equation

(3.7) with an opposite sign.

It is also worth mentioning that in the DP procedure, the value functions in

the design with an after-trial population can take values from 0 to T + S. In

turn, in the circumstances where the trial size and after-trial population are large,

considering an appropriate level of accuracy in defining the value function matrices

along with the bound used for absolute differences to find the optimal arm can

give rise to significantly different estimation results. Hence, we present the MLE

estimation results for all trial sizes and all above-mentioned after-trial populations
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in two different accuracy cases through the DP procedure: (i) elements in the value

function matrices are saved by a single-precision floating-point format (float32)

whilst the bound of the “error term" ϵ in subtracting value functions to determine

the optimal arm is set to ϵ = 10−7.(S + 1), (ii) elements in the value function

matrices are rounded by a double-precision floating-point format (float64) whilst

the bound of the error term is set to ϵ = 10−16.(S+1). Note that considering S = 0

leads to our standard design where the after-trial population is zero. Furthermore,

owing to the limitation on the available memory capacity, which is 16GB, it is

impossible to run a trial with the size of 240 whilst the value functions matrices

precision is considered float 64.

The difference in the simulation results brings us to one noteworthy distinction

between less biased estimations for the case (i) and those with more bias for the

case (ii). From a general point of view in the DP procedure, in a given time epoch,

when the differences in the value functions between two arms become smaller

than the error term, ϵ, the DP recognises that allocating either arm has the same

reward, i.e. both arms are optimal. Consequently, the allocation procedure will

be the same as EFR, i.e. 50 : 50 randomisation profile, instead of allocating an

arm in a deterministic manner. Therefore, setting up a bigger level of precision,

i.e. the error term ϵ, whilst the trial size and after-trial population are relatively

large gives rise to observing more 50 : 50 randomisation and, therefore, having

estimation results similar to those obtained from EFR designs. This explains the

reason for observing appreciable differences between the left-hand column (float32)

and right-hand side (float 64) results illustrated in figure 3.3, as the after-trial

population is considered at one billion. However, the differences are not huge in

figure 3.2, where the after-trial population is one million. Figure 3.1, on the other
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hand, shows there is no difference in estimation results between cases (i) and (ii)

since the after-trial population is one hundred. Note that the multiplication of one

hundred by any of the assumed trial sizes results in at most six-digit numbers for

value functions. In turn, either case provides a decent accuracy in distinguishing

the optimal arm in the DP procedure.

In figures 3.1 and 3.2, using different trial sizes does not significantly reduce

the estimation bias when like-for-like plots in right-hand-side, and left-hand-side

columns are compared. However, in figure 3.1 larger trial sizes result in higher

covariance values, see the numerator of equation (3.7). This is not the case in

figures 3.2 and 3.3 since the after-trial populations are quite large, which in turn,

leads to the covariance between sample size and the estimator itself in equation

(3.7) being more or less the same for different trial sizes. Moreover, focusing on

the right-hand-side columns and comparing like-for-like plots, the estimation bias

is reduced by ≈ 0.1 in figure 3.2 in comparison with 3.1, overall. Although the

estimation bias remains the same for some scenarios in 3.3 in comparison with 3.1,

for the majority of then the overall estimation bias is reduced by ≈ 0.05 in 3.3.

Therefore, the overall reduced estimation bias is ≈ 0.15 when after-trial population

increases from 1000 to 1 billion, please compare like-for-like plots in 3.1 and 3.3.

3.3.2 Subject Benefit

Tables 3.1, 3.2, and 3.3 summarise the subject benefit results obtained from the

after-trial designs discussed above. Each cell is composed of the average aggre-

gated success responses on both interventions plus/minus the corresponding stan-

dard deviation at the end of the trial. As we discussed in section 2.2 regarding the
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tension between the second and the last objectives, i.e. the conflict between max-

imising the subject benefit and minimising the estimation bias, numerical results

presented in the tables 3.1, 3.2, and 3.3 below show that mitigating the estimation

bias leads to losing subject benefit significantly. For instance, scenario (0.2, 0.8)

in two extreme trial sizes: T = 60 and T = 240, tends to show subject benefit

of 46.25 ± 3.51 and not available (NA), respectively in the design with after-trial

population of 1000 in table 3.1 right-hand-side column (float64 [ϵ = 10−16]), whilst

it reduces to 44.15 ± 3.9 and NA, respectively in the design with after-trial popu-

lation of 1 million in table 3.1 right-hand-side column (float64 [ϵ = 10−16]). Note

that we encounter an NA error (for T = 240, (float64 [ϵ = 10−16]), and all assumed

after-trial sizes) because the computing machine becomes “out of memory" due to

the memory space needed for recording the arithmetic calculations in comparison

value functions. The reduction rates of the subject benefit results presented in

table 3.3 are interesting. The scenario (0.2, 0.8) in two extreme trial sizes, T = 60

and T = 240, shows a subject benefit of 29.99±3.85 and 119.99±7.74, respectively

in the left-hand-side column (float32 [ϵ = 10−7]), whilst it increases to 43.34±4.20

and NA, respectively in the right-hand-side column (float64 [ϵ = 10−16]). As dis-

cussed in section 3.3.1, the design with an after-trial population of 1 billion returns

almost unbiased estimation results when value functions are rounded by float32,

whilst it is associated with some small bias for float64 cases. In accordance with

these circumstances, subject benefit results in the left-hand-side column (float32)

are considerably smaller than the right-hand-side column (float64) counterparts.

Thus, the conflict between a RAR procedure’s second and last objectives can be

simply recognised in these situations.
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(a)

(b)

(c)

(d)

Figure 3.1: After-trial population: 1000. The precision of value functions in the
backward induction algorithm is set to be up to about 7 digits in the left-hand-side
column whilst it goes up to about 16 digits in the right-hand-side counterparts.
(a) T = 60 (b) T = 120 (c) T = 180 (d) T = 240. x-axis: Bias of MLE, y-axis:
Covariance (MLE, Sample Size).
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(a)

(b)

(c)

(d)

Figure 3.2: After-trial population: 1 million. The precision of value functions in
the backward induction algorithm is set to be up to about 7 digits in the left-hand-
side column whilst it goes up to about 16 digits in the right-hand-side counterparts.
(a) T = 60 (b) T = 120 (c) T = 180 (d) T = 240. x-axis: Bias of MLE, y-axis:
Covariance (MLE, Sample Size).
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(a)
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(d)

Figure 3.3: After-trial population: 1 billion. The precision of value functions in the
backward induction algorithm is set to be up to about 7 digits in the left-hand-side
column whilst it goes up to about 16 digits in the right-hand-side counterparts.
(a) T = 60 (b) T = 120 (c) T = 180 (d) T = 240. x-axis: Bias of MLE, y-axis:
Covariance (MLE, Sample Size).
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float32 [ϵ = 10−7] float64 [ϵ = 10−16]
(θC , θD) T=60 T=120 T=180 T=240 T=60 T=120 T=180 T=240

(0 , 0) 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 NA
(0 , 0.1) 3.63 ± 2.41 9.05 ± 3.64 14.91 ± 4.33 20.82 ± 4.92 3.64 ± 2.41 9.05 ± 3.65 14.92 ± 4.32 NA
(0 , 0.2) 9.05 ± 3.52 20.8 ± 4.71 32.67 ± 5.63 44.61 ± 6.43 9.04 ± 3.52 20.79 ± 4.7 32.69 ± 5.63 NA
(0 , 0.3) 15.02 ± 3.97 32.83 ± 5.32 50.72 ± 6.4 68.66 ± 7.31 15.02 ± 3.97 32.82 ± 5.32 50.73 ± 6.39 NA
(0 , 0.4) 21.14 ± 4.18 44.98 ± 5.65 68.91 ± 6.82 92.86 ± 7.79 21.15 ± 4.19 44.97 ± 5.65 68.9 ± 6.81 NA
(0 , 0.5) 27.35 ± 4.25 57.22 ± 5.74 87.14 ± 6.93 117.12 ± 7.95 27.35 ± 4.24 57.21 ± 5.75 87.15 ± 6.94 NA
(0 , 0.6) 33.63 ± 4.15 69.53 ± 5.63 105.48 ± 6.78 141.43 ± 7.77 33.63 ± 4.15 69.53 ± 5.63 105.48 ± 6.79 NA
(0 , 0.7) 39.98 ± 3.89 81.9 ± 5.27 123.85 ± 6.34 165.82 ± 7.25 39.98 ± 3.89 81.9 ± 5.27 123.85 ± 6.34 NA
(0 , 0.8) 46.39 ± 3.41 94.33 ± 4.59 142.29 ± 5.51 190.27 ± 6.3 46.39 ± 3.42 94.32 ± 4.59 142.29 ± 5.51 NA
(0 , 0.9) 52.9 ± 2.53 106.91 ± 3.44 160.93 ± 4.15 214.91 ± 4.75 52.89 ± 2.53 106.92 ± 3.44 160.92 ± 4.15 NA
(0 , 1) 59 ± 0 119 ± 0 179 ± 0 239 ± 0 59 ± 0 119 ± 0 179 ± 0 NA

(0.1 , 0.1) 5.99 ± 2.32 12 ± 3.29 18 ± 4.02 24 ± 4.65 6 ± 2.32 12 ± 3.29 18 ± 4.03 NA
(0.1 , 0.2) 9.73 ± 3.14 20.61 ± 4.74 31.99 ± 5.98 43.62 ± 6.99 9.74 ± 3.14 20.6 ± 4.74 31.99 ± 5.99 NA
(0.1 , 0.3) 14.89 ± 3.99 32.27 ± 5.63 50.07 ± 6.74 67.96 ± 7.64 14.9 ± 3.98 32.29 ± 5.64 50.07 ± 6.74 NA
(0.1 , 0.4) 20.87 ± 4.36 44.57 ± 5.87 68.44 ± 7 92.38 ± 7.96 20.87 ± 4.36 44.56 ± 5.86 68.45 ± 6.99 NA
(0.1 , 0.5) 27.12 ± 4.4 56.93 ± 5.88 86.85 ± 7.04 116.79 ± 8.04 27.13 ± 4.4 56.93 ± 5.88 86.84 ± 7.05 NA
(0.1 , 0.6) 33.47 ± 4.25 69.33 ± 5.71 105.26 ± 6.86 141.2 ± 7.84 33.47 ± 4.25 69.31 ± 5.71 105.27 ± 6.86 NA
(0.1 , 0.7) 39.88 ± 3.95 81.77 ± 5.32 123.71 ± 6.39 165.67 ± 7.29 39.87 ± 3.95 81.76 ± 5.32 123.71 ± 6.38 NA
(0.1 , 0.8) 46.33 ± 3.46 94.26 ± 4.63 142.21 ± 5.55 190.19 ± 6.34 46.33 ± 3.46 94.26 ± 4.63 142.21 ± 5.55 NA
(0.1 , 0.9) 52.87 ± 2.55 106.88 ± 3.46 160.88 ± 4.17 214.87 ± 4.78 52.87 ± 2.55 106.89 ± 3.46 160.89 ± 4.17 NA
(0.1 , 1) 59.05 ± 0.22 119.05 ± 0.22 179.05 ± 0.22 239.05 ± 0.22 59.05 ± 0.22 119.05 ± 0.22 179.05 ± 0.22 NA

(0.2 , 0.2) 12 ± 3.1 24 ± 4.38 36.01 ± 5.37 47.99 ± 6.2 12 ± 3.1 24 ± 4.38 36 ± 5.37 NA
(0.2 , 0.3) 15.76 ± 3.64 32.46 ± 5.45 49.62 ± 6.91 67.05 ± 8.17 15.76 ± 3.64 32.46 ± 5.44 49.62 ± 6.9 NA
(0.2 , 0.4) 20.91 ± 4.28 44.08 ± 6.15 67.76 ± 7.43 91.58 ± 8.44 20.91 ± 4.28 44.08 ± 6.15 67.77 ± 7.44 NA
(0.2 , 0.5) 26.94 ± 4.51 56.52 ± 6.11 86.4 ± 7.27 116.3 ± 8.26 26.93 ± 4.51 56.53 ± 6.12 86.39 ± 7.28 NA
(0.2 , 0.6) 33.29 ± 4.37 69.06 ± 5.85 104.97 ± 6.98 140.9 ± 7.94 33.28 ± 4.38 69.06 ± 5.85 104.96 ± 6.98 NA
(0.2 , 0.7) 39.73 ± 4.04 81.59 ± 5.4 123.52 ± 6.46 165.48 ± 7.37 39.73 ± 4.04 81.6 ± 5.4 123.53 ± 6.46 NA
(0.2 , 0.8) 46.25 ± 3.52 94.16 ± 4.68 142.12 ± 5.6 190.08 ± 6.38 46.25 ± 3.51 94.16 ± 4.68 142.12 ± 5.6 NA
(0.2 , 0.9) 52.83 ± 2.58 106.84 ± 3.49 160.84 ± 4.19 214.83 ± 4.8 52.84 ± 2.58 106.84 ± 3.49 160.84 ± 4.19 NA
(0.2 , 1) 59.1 ± 0.3 119.1 ± 0.3 179.1 ± 0.3 239.1 ± 0.3 59.1 ± 0.3 119.1 ± 0.3 179.1 ± 0.3 NA

(0.3 , 0.3) 18 ± 3.55 36 ± 5.02 54 ± 6.15 72 ± 7.1 18 ± 3.55 36.01 ± 5.02 54 ± 6.15 NA
(0.3 , 0.4) 21.8 ± 3.95 44.42 ± 5.86 67.48 ± 7.45 90.79 ± 8.85 21.8 ± 3.95 44.42 ± 5.86 67.46 ± 7.47 NA
(0.3 , 0.5) 27.01 ± 4.41 56.09 ± 6.38 85.7 ± 7.76 115.51 ± 8.86 27.03 ± 4.4 56.09 ± 6.39 85.7 ± 7.77 NA
(0.3 , 0.6) 33.11 ± 4.47 68.68 ± 6.09 104.54 ± 7.25 140.44 ± 8.23 33.11 ± 4.46 68.69 ± 6.09 104.53 ± 7.24 NA
(0.3 , 0.7) 39.56 ± 4.16 81.36 ± 5.54 123.28 ± 6.59 165.22 ± 7.48 39.57 ± 4.16 81.37 ± 5.55 123.29 ± 6.59 NA
(0.3 , 0.8) 46.15 ± 3.6 94.04 ± 4.75 141.99 ± 5.67 189.96 ± 6.46 46.14 ± 3.59 94.04 ± 4.76 141.98 ± 5.67 NA
(0.3 , 0.9) 52.79 ± 2.63 106.8 ± 3.52 160.77 ± 4.23 214.78 ± 4.83 52.79 ± 2.63 106.79 ± 3.52 160.78 ± 4.23 NA
(0.3 , 1) 59.15 ± 0.36 119.15 ± 0.36 179.15 ± 0.36 239.15 ± 0.36 59.15 ± 0.36 119.15 ± 0.36 179.15 ± 0.36 NA

(0.4 , 0.4) 24 ± 3.79 48 ± 5.37 72 ± 6.58 96.02 ± 7.58 24 ± 3.79 47.99 ± 5.37 72 ± 6.58 NA
(0.4 , 0.5) 27.85 ± 4.08 56.45 ± 6.06 85.47 ± 7.71 114.73 ± 9.16 27.84 ± 4.08 56.46 ± 6.07 85.47 ± 7.71 NA
(0.4 , 0.6) 33.17 ± 4.39 68.25 ± 6.36 103.84 ± 7.77 139.65 ± 8.88 33.17 ± 4.39 68.25 ± 6.36 103.85 ± 7.77 NA
(0.4 , 0.7) 39.4 ± 4.27 81.02 ± 5.79 122.87 ± 6.88 164.8 ± 7.79 39.4 ± 4.26 81.02 ± 5.79 122.89 ± 6.88 NA
(0.4 , 0.8) 46.01 ± 3.71 93.86 ± 4.88 141.8 ± 5.78 189.77 ± 6.56 46.01 ± 3.71 93.85 ± 4.88 141.8 ± 5.78 NA
(0.4 , 0.9) 52.72 ± 2.69 106.72 ± 3.58 160.7 ± 4.27 214.7 ± 4.87 52.73 ± 2.69 106.72 ± 3.57 160.71 ± 4.27 NA
(0.4 , 1) 59.2 ± 0.4 119.2 ± 0.4 179.2 ± 0.4 239.2 ± 0.4 59.2 ± 0.4 119.2 ± 0.4 179.2 ± 0.4 NA

(0.5 , 0.5) 30.01 ± 3.87 60 ± 5.48 90 ± 6.72 120 ± 7.74 30 ± 3.87 59.99 ± 5.47 90 ± 6.71 NA
(0.5 , 0.6) 33.91 ± 4.07 68.55 ± 6.04 103.59 ± 7.69 138.85 ± 9.15 33.9 ± 4.07 68.56 ± 6.05 103.59 ± 7.7 NA
(0.5 , 0.7) 39.41 ± 4.22 80.59 ± 6.08 122.25 ± 7.43 164.05 ± 8.49 39.41 ± 4.21 80.59 ± 6.09 122.24 ± 7.43 NA
(0.5 , 0.8) 45.86 ± 3.83 93.58 ± 5.12 141.48 ± 6.07 189.42 ± 6.88 45.86 ± 3.82 93.58 ± 5.13 141.48 ± 6.05 NA
(0.5 , 0.9) 52.64 ± 2.78 106.61 ± 3.67 160.59 ± 4.36 214.58 ± 4.96 52.64 ± 2.79 106.6 ± 3.67 160.59 ± 4.36 NA
(0.5 , 1) 59.25 ± 0.43 119.25 ± 0.43 179.25 ± 0.43 239.25 ± 0.43 59.25 ± 0.43 119.25 ± 0.43 179.25 ± 0.43 NA

(0.6 , 0.6) 36 ± 3.79 72 ± 5.36 108 ± 6.57 144.01 ± 7.58 36 ± 3.8 71.99 ± 5.36 108 ± 6.57 NA
(0.6 , 0.7) 40 ± 3.91 80.74 ± 5.81 121.85 ± 7.42 163.19 ± 8.81 40.01 ± 3.9 80.74 ± 5.81 121.86 ± 7.41 NA
(0.6 , 0.8) 45.78 ± 3.84 93.17 ± 5.47 140.91 ± 6.64 188.75 ± 7.6 45.78 ± 3.84 93.17 ± 5.48 140.91 ± 6.64 NA
(0.6 , 0.9) 52.52 ± 2.92 106.42 ± 3.88 160.39 ± 4.59 214.37 ± 5.2 52.52 ± 2.92 106.42 ± 3.88 160.38 ± 4.6 NA
(0.6 , 1) 59.3 ± 0.46 119.3 ± 0.46 179.3 ± 0.46 239.3 ± 0.46 59.3 ± 0.46 119.3 ± 0.46 179.3 ± 0.46 NA

(0.7 , 0.7) 42 ± 3.55 84 ± 5.02 126 ± 6.15 168 ± 7.1 42 ± 3.56 83.99 ± 5.02 126.01 ± 6.15 NA
(0.7 , 0.8) 46.17 ± 3.55 93.09 ± 5.31 140.34 ± 6.77 187.81 ± 8.05 46.18 ± 3.55 93.09 ± 5.31 140.35 ± 6.77 NA
(0.7 , 0.9) 52.38 ± 3.04 106.09 ± 4.26 159.95 ± 5.16 213.89 ± 5.87 52.38 ± 3.04 106.08 ± 4.26 159.96 ± 5.14 NA
(0.7 , 1) 59.35 ± 0.48 119.35 ± 0.48 179.35 ± 0.48 239.35 ± 0.48 59.35 ± 0.48 119.35 ± 0.48 179.35 ± 0.48 NA

(0.8 , 0.8) 48 ± 3.1 96 ± 4.38 144 ± 5.37 191.99 ± 6.2 48 ± 3.1 96 ± 4.38 144 ± 5.37 NA
(0.8 , 0.9) 52.49 ± 2.88 105.74 ± 4.34 159.26 ± 5.57 212.95 ± 6.63 52.49 ± 2.88 105.74 ± 4.35 159.27 ± 5.56 NA
(0.8 , 1) 59.4 ± 0.49 119.39 ± 0.51 179.39 ± 0.51 239.39 ± 0.51 59.4 ± 0.49 119.39 ± 0.51 179.39 ± 0.51 NA

(0.9 , 0.9) 54 ± 2.32 108 ± 3.28 162 ± 4.02 216 ± 4.65 54 ± 2.32 108 ± 3.28 162 ± 4.03 NA
(0.9 , 1) 59.44 ± 0.54 119.36 ± 0.67 179.34 ± 0.7 239.34 ± 0.72 59.44 ± 0.54 119.36 ± 0.67 179.34 ± 0.7 NA
(1 , 1) 60 ± 0 120 ± 0 180 ± 0 240 ± 0 60 ± 0 120 ± 0 180 ± 0 NA

Table 3.1: The numerical subject benefit results for the design with an after-trial
population S = 1000, and for different trial sizes T = 60, 120, 180, and 240. Each
cell is composed of the average number of success responses (first component)
added to/subtracted from the corresponding standard deviation (second compo-
nent) for each scenario (θC , θD).
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float32 [ϵ = 10−7] float64 [ϵ = 10−16]
(θC , θD) T=60 T=120 T=180 T=240 T=60 T=120 T=180 T=240

(0 , 0) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 NA
(0 , 0.1) 2.37 ± 1.98 6.13 ± 3.60 10.66 ± 4.74 15.77 ± 5.61 2.42 ± 1.96 6.26 ± 3.69 11.39 ± 4.85 NA
(0 , 0.2) 6.42 ± 3.60 16.63 ± 5.09 27.60 ± 6.00 38.95 ± 7.02 6.46 ± 3.62 17.20 ± 5.32 28.84 ± 6.05 NA
(0 , 0.3) 11.80 ± 4.43 28.22 ± 5.76 45.31 ± 6.93 62.95 ± 7.60 11.95 ± 4.57 29.23 ± 5.74 46.85 ± 6.69 NA
(0 , 0.4) 17.77 ± 4.68 40.28 ± 6.11 63.53 ± 7.17 86.77 ± 8.09 18.16 ± 4.82 41.46 ± 5.98 65.12 ± 7.08 NA
(0 , 0.5) 24.00 ± 4.68 52.66 ± 6.20 81.88 ± 7.39 111.28 ± 8.50 24.59 ± 4.71 53.88 ± 6.05 83.58 ± 7.18 NA
(0 , 0.6) 30.39 ± 4.59 65.30 ± 6.13 100.67 ± 7.27 136.49 ± 8.36 31.07 ± 4.48 66.40 ± 5.88 102.15 ± 7.02 NA
(0 , 0.7) 36.95 ± 4.33 78.18 ± 5.71 119.61 ± 6.74 161.34 ± 7.52 37.64 ± 4.20 79.07 ± 5.53 120.87 ± 6.58 NA
(0 , 0.8) 43.73 ± 3.87 91.12 ± 4.97 138.61 ± 5.94 186.27 ± 6.71 44.39 ± 3.74 91.93 ± 4.86 139.76 ± 5.76 NA
(0 , 0.9) 50.86 ± 3.09 104.33 ± 3.85 157.93 ± 4.55 211.71 ± 5.17 51.49 ± 3.01 105.07 ± 3.75 158.93 ± 4.40 NA
(0 , 1) 58.03 ± 0.17 118.00 ± 0.03 178.01 ± 1.00 237.26 ± 0.67 59.00 ± 0.00 119.00 ± 0.00 179.00 ± 0.00 NA

(0.1 , 0.1) 6.00 ± 2.32 12.00 ± 3.29 17.99 ± 4.02 24.00 ± 4.65 6.00 ± 2.32 12.00 ± 3.28 17.99 ± 4.02 NA
(0.1 , 0.2) 8.86 ± 2.95 18.30 ± 4.40 28.27 ± 5.65 38.60 ± 6.76 8.90 ± 2.96 18.43 ± 4.47 28.65 ± 5.80 NA
(0.1 , 0.3) 12.68 ± 3.90 27.88 ± 5.85 44.20 ± 7.21 61.05 ± 8.32 12.79 ± 3.95 28.41 ± 6.01 45.33 ± 7.30 NA
(0.1 , 0.4) 17.88 ± 4.63 39.58 ± 6.40 62.24 ± 7.65 85.36 ± 8.62 18.15 ± 4.73 40.54 ± 6.41 63.82 ± 7.53 NA
(0.1 , 0.5) 23.87 ± 4.82 51.97 ± 6.46 80.93 ± 7.72 110.08 ± 8.74 24.35 ± 4.87 53.14 ± 6.33 82.60 ± 7.48 NA
(0.1 , 0.6) 30.24 ± 4.71 64.70 ± 6.32 99.98 ± 7.50 135.35 ± 8.55 30.82 ± 4.63 65.85 ± 6.08 101.44 ± 7.22 NA
(0.1 , 0.7) 36.84 ± 4.41 77.66 ± 5.86 119.10 ± 6.91 160.65 ± 7.83 37.43 ± 4.31 78.66 ± 5.66 120.37 ± 6.71 NA
(0.1 , 0.8) 43.67 ± 3.94 90.76 ± 5.14 138.30 ± 6.02 185.94 ± 6.84 44.26 ± 3.83 91.66 ± 4.96 139.44 ± 5.86 NA
(0.1 , 0.9) 50.85 ± 3.13 104.19 ± 3.94 157.78 ± 4.62 211.63 ± 5.17 51.45 ± 3.06 104.95 ± 3.81 158.80 ± 4.46 NA
(0.1 , 1) 58.14 ± 0.41 117.92 ± 0.32 177.95 ± 0.98 237.45 ± 0.74 59.05 ± 0.22 119.05 ± 0.22 179.05 ± 0.22 NA

(0.2 , 0.2) 12.00 ± 3.10 24.00 ± 4.38 36.00 ± 5.37 47.99 ± 6.19 12.00 ± 3.10 24.00 ± 4.38 36.00 ± 5.37 NA
(0.2 , 0.3) 15.10 ± 3.52 30.55 ± 5.09 46.38 ± 6.39 62.51 ± 7.58 15.15 ± 3.54 30.70 ± 5.13 46.75 ± 6.49 NA
(0.2 , 0.4) 19.09 ± 4.15 39.91 ± 6.17 61.84 ± 7.70 84.36 ± 8.92 19.26 ± 4.21 40.48 ± 6.28 62.96 ± 7.78 NA
(0.2 , 0.5) 24.30 ± 4.62 51.60 ± 6.60 80.05 ± 7.98 108.95 ± 9.07 24.64 ± 4.67 52.56 ± 6.58 81.60 ± 7.82 NA
(0.2 , 0.6) 30.32 ± 4.70 64.23 ± 6.46 99.13 ± 7.73 134.34 ± 8.76 30.80 ± 4.66 65.27 ± 6.29 100.63 ± 7.46 NA
(0.2 , 0.7) 36.79 ± 4.46 77.19 ± 5.99 118.45 ± 7.13 159.88 ± 8.04 37.31 ± 4.36 78.24 ± 5.82 119.81 ± 6.87 NA
(0.2 , 0.8) 43.61 ± 4.01 90.41 ± 5.27 137.90 ± 6.14 185.47 ± 6.99 44.15 ± 3.90 91.38 ± 5.07 139.10 ± 5.97 NA
(0.2 , 0.9) 50.84 ± 3.17 104.01 ± 4.02 157.58 ± 4.69 211.42 ± 5.25 51.42 ± 3.12 104.82 ± 3.88 158.63 ± 4.52 NA
(0.2 , 1) 58.24 ± 0.53 117.88 ± 0.46 177.92 ± 0.95 237.62 ± 0.79 59.10 ± 0.30 119.10 ± 0.30 179.10 ± 0.30 NA

(0.3 , 0.3) 18.00 ± 3.55 36.00 ± 5.02 53.99 ± 6.15 72.00 ± 7.10 18.00 ± 3.55 36.00 ± 5.01 53.99 ± 6.15 NA
(0.3 , 0.4) 21.26 ± 3.83 42.77 ± 5.51 64.61 ± 6.86 86.66 ± 8.07 21.32 ± 3.85 42.96 ± 5.57 65.00 ± 6.96 NA
(0.3 , 0.5) 25.46 ± 4.26 52.27 ± 6.28 80.05 ± 7.86 108.43 ± 9.14 25.67 ± 4.30 52.88 ± 6.35 81.17 ± 7.88 NA
(0.3 , 0.6) 30.79 ± 4.51 64.02 ± 6.46 98.43 ± 7.88 133.33 ± 8.99 31.14 ± 4.51 64.93 ± 6.37 99.87 ± 7.70 NA
(0.3 , 0.7) 36.92 ± 4.42 76.79 ± 6.13 117.75 ± 7.36 159.00 ± 8.26 37.36 ± 4.35 77.81 ± 5.97 119.15 ± 7.10 NA
(0.3 , 0.8) 43.61 ± 4.05 90.10 ± 5.38 137.46 ± 6.31 184.91 ± 7.18 44.10 ± 3.95 91.06 ± 5.19 138.68 ± 6.11 NA
(0.3 , 0.9) 50.85 ± 3.20 103.81 ± 4.12 157.36 ± 4.78 211.14 ± 5.35 51.40 ± 3.17 104.67 ± 3.95 158.44 ± 4.59 NA
(0.3 , 1) 58.33 ± 0.61 117.88 ± 0.57 177.92 ± 0.91 237.77 ± 0.83 59.15 ± 0.36 119.15 ± 0.36 179.15 ± 0.36 NA

(0.4 , 0.4) 24.00 ± 3.79 48.00 ± 5.36 72.00 ± 6.57 96.01 ± 7.59 24.00 ± 3.79 47.99 ± 5.36 71.99 ± 6.57 NA
(0.4 , 0.5) 27.39 ± 3.97 55.00 ± 5.69 82.89 ± 7.06 110.99 ± 8.29 27.46 ± 3.99 55.25 ± 5.74 83.35 ± 7.14 NA
(0.4 , 0.6) 31.81 ± 4.22 64.72 ± 6.13 98.54 ± 7.68 132.91 ± 8.99 32.04 ± 4.24 65.37 ± 6.14 99.62 ± 7.64 NA
(0.4 , 0.7) 37.32 ± 4.27 76.66 ± 6.14 117.19 ± 7.49 158.16 ± 8.47 37.70 ± 4.24 77.55 ± 6.03 118.51 ± 7.29 NA
(0.4 , 0.8) 43.73 ± 4.02 89.81 ± 5.48 136.97 ± 6.49 184.26 ± 7.37 44.16 ± 3.95 90.77 ± 5.32 138.20 ± 6.28 NA
(0.4 , 0.9) 50.89 ± 3.23 103.62 ± 4.21 157.12 ± 4.88 210.78 ± 5.48 51.41 ± 3.20 104.50 ± 4.03 158.21 ± 4.68 NA
(0.4 , 1) 58.43 ± 0.67 117.92 ± 0.66 177.92 ± 0.86 237.89 ± 0.87 59.20 ± 0.40 119.20 ± 0.40 179.20 ± 0.40 NA

(0.5 , 0.5) 30.00 ± 3.87 60.01 ± 5.48 90.00 ± 6.70 120.01 ± 7.75 30.00 ± 3.87 60.00 ± 5.47 90.00 ± 6.71 NA
(0.5 , 0.6) 33.50 ± 3.95 67.21 ± 5.62 101.17 ± 6.97 135.33 ± 8.17 33.58 ± 3.96 67.49 ± 5.65 101.66 ± 7.01 NA
(0.5 , 0.7) 38.16 ± 4.03 77.25 ± 5.87 117.27 ± 7.35 157.76 ± 8.52 38.41 ± 4.03 77.91 ± 5.84 118.29 ± 7.25 NA
(0.5 , 0.8) 44.02 ± 3.93 89.70 ± 5.51 136.50 ± 6.65 183.58 ± 7.57 44.39 ± 3.87 90.55 ± 5.39 137.68 ± 6.46 NA
(0.5 , 0.9) 50.97 ± 3.22 103.46 ± 4.29 156.83 ± 5.01 210.38 ± 5.63 51.45 ± 3.20 104.33 ± 4.14 157.92 ± 4.81 NA
(0.5 , 1) 58.53 ± 0.71 118.00 ± 0.74 177.90 ± 0.82 237.99 ± 0.89 59.25 ± 0.43 119.25 ± 0.43 179.25 ± 0.43 NA

(0.6 , 0.6) 36.00 ± 3.80 72.00 ± 5.36 108.00 ± 6.57 144.00 ± 7.59 36.00 ± 3.79 72.00 ± 5.37 108.00 ± 6.58 NA
(0.6 , 0.7) 39.62 ± 3.77 79.44 ± 5.39 119.55 ± 6.67 159.77 ± 7.80 39.70 ± 3.78 79.73 ± 5.41 120.01 ± 6.70 NA
(0.6 , 0.8) 44.63 ± 3.73 90.12 ± 5.31 136.43 ± 6.59 183.15 ± 7.65 44.90 ± 3.72 90.77 ± 5.27 137.42 ± 6.48 NA
(0.6 , 0.9) 51.14 ± 3.18 103.39 ± 4.35 156.51 ± 5.15 209.93 ± 5.79 51.56 ± 3.16 104.19 ± 4.22 157.58 ± 4.95 NA
(0.6 , 1) 58.66 ± 0.75 118.13 ± 0.81 177.90 ± 0.79 238.07 ± 0.90 59.30 ± 0.46 119.30 ± 0.46 179.30 ± 0.46 NA

(0.7 , 0.7) 42.00 ± 3.55 84.00 ± 5.02 126.00 ± 6.15 168.02 ± 7.10 42.00 ± 3.55 84.01 ± 5.02 126.01 ± 6.15 NA
(0.7 , 0.8) 45.80 ± 3.43 91.84 ± 4.88 138.11 ± 6.03 184.57 ± 7.05 45.90 ± 3.44 92.12 ± 4.90 138.60 ± 6.05 NA
(0.7 , 0.9) 51.47 ± 3.05 103.61 ± 4.28 156.36 ± 5.19 209.52 ± 5.93 51.80 ± 3.05 104.26 ± 4.21 157.31 ± 5.06 NA
(0.7 , 1) 58.82 ± 0.76 118.32 ± 0.86 177.97 ± 0.78 238.15 ± 0.89 59.35 ± 0.48 119.35 ± 0.48 179.35 ± 0.48 NA

(0.8 , 0.8) 48.00 ± 3.10 96.00 ± 4.38 144.00 ± 5.36 192.00 ± 6.20 48.00 ± 3.10 96.00 ± 4.38 144.00 ± 5.36 NA
(0.8 , 0.9) 52.18 ± 2.78 104.61 ± 3.95 157.21 ± 4.85 210.00 ± 5.65 52.31 ± 2.80 104.94 ± 3.98 157.80 ± 4.85 NA
(0.8 , 1) 59.01 ± 0.74 118.57 ± 0.89 178.18 ± 0.78 238.33 ± 0.85 59.40 ± 0.49 119.40 ± 0.49 179.40 ± 0.49 NA

(0.9 , 0.9) 54.00 ± 2.33 108.00 ± 3.29 162.00 ± 4.03 215.99 ± 4.65 54.01 ± 2.32 108.00 ± 3.29 162.00 ± 4.03 NA
(0.9 , 1) 59.25 ± 0.66 118.96 ± 0.84 178.58 ± 0.71 238.67 ± 0.79 59.44 ± 0.52 119.45 ± 0.50 179.45 ± 0.50 NA
(1 , 1) 60.00 ± 0.00 120.00 ± 0.00 180.00 ± 0.00 240.00 ± 0.00 60.00 ± 0.00 120.00 ± 0.00 180.00 ± 0.00 NA

Table 3.2: The numerical subject benefit results for the design with an after-trial
population S = 1 million, and for different trial sizes T = 60, 120, 180, and 240.
Each cell is composed of the average number of success responses (first component)
added to/subtracted from the corresponding standard deviation (second compo-
nent) for each scenario (θC , θD).
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float32 [ϵ = 10−7] float64 [ϵ = 10−16]
(θC , θD) T=60 T=120 T=180 T=240 T=60 T=120 T=180 T=240

(0 , 0) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 NA
(0 , 0.1) 2.14 ± 1.72 5.27 ± 2.87 8.69 ± 3.33 11.94 ± 3.49 2.00 ± 1.66 4.61 ± 3.25 8.51 ± 4.82 NA
(0 , 0.2) 5.18 ± 2.79 11.89 ± 3.48 17.99 ± 4.04 24.00 ± 4.65 5.13 ± 3.31 13.92 ± 5.82 25.05 ± 6.89 NA
(0 , 0.3) 8.62 ± 3.15 17.99 ± 3.92 27.00 ± 4.79 36.00 ± 5.53 9.92 ± 4.73 25.88 ± 6.50 43.19 ± 7.13 NA
(0 , 0.4) 11.90 ± 3.23 24.00 ± 4.37 36.00 ± 5.36 47.99 ± 6.19 15.96 ± 5.36 38.32 ± 6.43 61.53 ± 7.37 NA
(0 , 0.5) 14.97 ± 3.36 30.00 ± 4.73 45.00 ± 5.80 60.00 ± 6.69 22.54 ± 5.23 50.90 ± 6.34 80.14 ± 7.42 NA
(0 , 0.6) 17.99 ± 3.52 35.99 ± 5.00 54.00 ± 6.13 72.00 ± 7.08 29.21 ± 4.84 63.61 ± 6.14 98.91 ± 7.24 NA
(0 , 0.7) 21.00 ± 3.66 41.99 ± 5.20 63.01 ± 6.38 83.99 ± 7.37 36.02 ± 4.52 76.49 ± 5.76 117.92 ± 6.80 NA
(0 , 0.8) 24.00 ± 3.75 48.00 ± 5.34 71.99 ± 6.55 96.00 ± 7.57 43.18 ± 4.17 89.70 ± 5.10 137.22 ± 5.98 NA
(0 , 0.9) 27.00 ± 3.80 54.00 ± 5.41 81.01 ± 6.64 108.00 ± 7.69 51.06 ± 3.41 103.48 ± 4.09 157.01 ± 4.64 NA
(0 , 1) 30.01 ± 3.81 60.00 ± 5.43 89.99 ± 6.67 120.00 ± 7.70 59.00 ± 0.00 119.00 ± 0.00 179.00 ± 0.00 NA

(0.1 , 0.1) 6.00 ± 2.33 12.00 ± 3.28 18.00 ± 4.03 24.01 ± 4.66 6.00 ± 2.32 12.00 ± 3.29 18.00 ± 4.03 NA
(0.1 , 0.2) 8.61 ± 2.82 17.49 ± 4.00 26.57 ± 4.90 35.68 ± 5.63 8.69 ± 2.93 17.44 ± 4.27 26.74 ± 5.50 NA
(0.1 , 0.3) 11.43 ± 3.31 23.72 ± 4.52 35.93 ± 5.41 47.97 ± 6.21 12.08 ± 3.90 25.78 ± 6.04 41.50 ± 7.67 NA
(0.1 , 0.4) 14.68 ± 3.57 29.96 ± 4.77 45.00 ± 5.80 60.01 ± 6.70 16.95 ± 4.76 37.37 ± 6.87 59.81 ± 8.01 NA
(0.1 , 0.5) 17.91 ± 3.62 36.00 ± 5.01 54.00 ± 6.14 71.99 ± 7.10 22.90 ± 5.04 50.06 ± 6.74 78.73 ± 7.85 NA
(0.1 , 0.6) 20.99 ± 3.69 42.01 ± 5.21 63.00 ± 6.40 84.00 ± 7.38 29.34 ± 4.86 62.89 ± 6.38 97.82 ± 7.53 NA
(0.1 , 0.7) 24.00 ± 3.77 48.01 ± 5.35 72.01 ± 6.56 95.99 ± 7.58 36.05 ± 4.56 75.94 ± 5.95 117.12 ± 7.02 NA
(0.1 , 0.8) 27.00 ± 3.82 54.00 ± 5.42 80.99 ± 6.65 107.99 ± 7.69 43.22 ± 4.22 89.34 ± 5.25 136.70 ± 6.13 NA
(0.1 , 0.9) 29.99 ± 3.83 60.00 ± 5.45 89.99 ± 6.69 119.99 ± 7.72 51.09 ± 3.41 103.36 ± 4.19 156.78 ± 4.73 NA
(0.1 , 1) 33.00 ± 3.80 66.01 ± 5.42 99.00 ± 6.64 132.01 ± 7.68 59.05 ± 0.22 119.05 ± 0.22 179.05 ± 0.22 NA

(0.2 , 0.2) 12.00 ± 3.10 24.01 ± 4.39 36.00 ± 5.37 48.00 ± 6.20 12.00 ± 3.10 24.00 ± 4.38 36.01 ± 5.36 NA
(0.2 , 0.3) 14.83 ± 3.41 29.72 ± 4.80 44.72 ± 5.85 59.77 ± 6.76 15.05 ± 3.53 30.01 ± 5.06 45.32 ± 6.31 NA
(0.2 , 0.4) 17.76 ± 3.67 35.79 ± 5.10 53.91 ± 6.17 71.97 ± 7.11 18.89 ± 4.15 38.54 ± 6.25 59.67 ± 7.91 NA
(0.2 , 0.5) 20.88 ± 3.76 41.97 ± 5.24 63.00 ± 6.41 84.00 ± 7.38 23.92 ± 4.65 49.97 ± 6.76 77.84 ± 8.14 NA
(0.2 , 0.6) 23.97 ± 3.80 48.00 ± 5.36 72.00 ± 6.57 96.00 ± 7.58 29.85 ± 4.73 62.49 ± 6.49 96.88 ± 7.76 NA
(0.2 , 0.7) 27.00 ± 3.83 54.01 ± 5.44 81.00 ± 6.66 108.00 ± 7.69 36.33 ± 4.51 75.49 ± 6.10 116.33 ± 7.22 NA
(0.2 , 0.8) 29.99 ± 3.85 60.01 ± 5.45 89.99 ± 6.69 119.99 ± 7.74 43.34 ± 4.20 89.02 ± 5.39 136.17 ± 6.29 NA
(0.2 , 0.9) 33.00 ± 3.82 65.99 ± 5.43 99.00 ± 6.66 131.99 ± 7.68 51.13 ± 3.39 103.24 ± 4.29 156.53 ± 4.83 NA
(0.2 , 1) 36.00 ± 3.75 72.01 ± 5.34 108.01 ± 6.55 143.99 ± 7.58 59.10 ± 0.30 119.10 ± 0.30 179.10 ± 0.30 NA

(0.3 , 0.3) 18.00 ± 3.55 35.99 ± 5.02 53.99 ± 6.15 72.00 ± 7.10 18.01 ± 3.55 36.00 ± 5.02 54.00 ± 6.15 NA
(0.3 , 0.4) 20.94 ± 3.72 41.87 ± 5.28 62.86 ± 6.44 83.87 ± 7.41 21.26 ± 3.84 42.53 ± 5.53 63.92 ± 6.87 NA
(0.3 , 0.5) 23.92 ± 3.83 47.93 ± 5.40 71.97 ± 6.60 95.98 ± 7.59 25.43 ± 4.28 51.49 ± 6.24 78.55 ± 7.85 NA
(0.3 , 0.6) 26.98 ± 3.86 53.99 ± 5.45 81.00 ± 6.67 108.00 ± 7.70 30.71 ± 4.52 62.79 ± 6.35 96.40 ± 7.82 NA
(0.3 , 0.7) 30.00 ± 3.86 59.98 ± 5.47 90.00 ± 6.70 119.99 ± 7.74 36.77 ± 4.39 75.31 ± 6.14 115.63 ± 7.40 NA
(0.3 , 0.8) 33.00 ± 3.83 65.99 ± 5.43 98.99 ± 6.66 132.00 ± 7.70 43.54 ± 4.14 88.76 ± 5.50 135.64 ± 6.46 NA
(0.3 , 0.9) 36.00 ± 3.77 72.00 ± 5.35 108.00 ± 6.56 144.00 ± 7.58 51.19 ± 3.37 103.14 ± 4.39 156.26 ± 4.94 NA
(0.3 , 1) 39.00 ± 3.66 77.99 ± 5.20 117.00 ± 6.38 156.00 ± 7.36 59.15 ± 0.36 119.15 ± 0.36 179.15 ± 0.36 NA

(0.4 , 0.4) 24.00 ± 3.80 47.99 ± 5.37 72.01 ± 6.57 96.01 ± 7.59 23.99 ± 3.80 48.00 ± 5.36 72.00 ± 6.57 NA
(0.4 , 0.5) 26.99 ± 3.86 53.97 ± 5.46 80.98 ± 6.68 107.97 ± 7.72 27.42 ± 3.99 54.93 ± 5.69 82.59 ± 7.03 NA
(0.4 , 0.6) 30.00 ± 3.89 59.98 ± 5.48 90.00 ± 6.71 120.00 ± 7.75 31.91 ± 4.23 64.27 ± 5.99 97.38 ± 7.45 NA
(0.4 , 0.7) 33.03 ± 3.86 66.00 ± 5.45 99.00 ± 6.67 132.00 ± 7.71 37.40 ± 4.24 75.67 ± 6.02 115.36 ± 7.43 NA
(0.4 , 0.8) 36.03 ± 3.80 72.00 ± 5.36 108.01 ± 6.57 144.00 ± 7.58 43.83 ± 4.05 88.73 ± 5.54 135.17 ± 6.60 NA
(0.4 , 0.9) 39.01 ± 3.69 78.01 ± 5.21 117.00 ± 6.40 156.01 ± 7.38 51.26 ± 3.32 103.11 ± 4.47 156.00 ± 5.07 NA
(0.4 , 1) 42.00 ± 3.53 84.00 ± 5.00 126.00 ± 6.13 168.00 ± 7.09 59.20 ± 0.40 119.20 ± 0.40 179.20 ± 0.40 NA

(0.5 , 0.5) 30.00 ± 3.87 60.00 ± 5.47 90.00 ± 6.70 120.00 ± 7.75 30.00 ± 3.87 60.00 ± 5.47 90.00 ± 6.71 NA
(0.5 , 0.6) 33.02 ± 3.86 66.03 ± 5.47 99.03 ± 6.69 132.03 ± 7.72 33.56 ± 3.96 67.21 ± 5.60 101.01 ± 6.90 NA
(0.5 , 0.7) 36.08 ± 3.83 72.08 ± 5.40 108.03 ± 6.59 144.02 ± 7.59 38.31 ± 4.02 76.97 ± 5.75 116.28 ± 7.11 NA
(0.5 , 0.8) 39.12 ± 3.76 78.03 ± 5.24 117.01 ± 6.40 156.01 ± 7.39 44.23 ± 3.91 89.07 ± 5.48 134.98 ± 6.63 NA
(0.5 , 0.9) 42.10 ± 3.62 84.01 ± 5.01 126.00 ± 6.15 168.00 ± 7.09 51.37 ± 3.27 103.17 ± 4.50 155.77 ± 5.18 NA
(0.5 , 1) 45.03 ± 3.39 90.00 ± 4.73 135.00 ± 5.80 180.01 ± 6.70 59.25 ± 0.43 119.25 ± 0.43 179.25 ± 0.43 NA

(0.6 , 0.6) 36.00 ± 3.79 72.00 ± 5.37 108.00 ± 6.58 144.01 ± 7.59 36.00 ± 3.80 72.00 ± 5.36 107.99 ± 6.57 NA
(0.6 , 0.7) 39.07 ± 3.72 78.13 ± 5.27 117.15 ± 6.44 156.12 ± 7.43 39.69 ± 3.78 79.49 ± 5.38 119.46 ± 6.61 NA
(0.6 , 0.8) 42.24 ± 3.67 84.20 ± 5.09 126.09 ± 6.17 168.03 ± 7.12 44.84 ± 3.74 90.04 ± 5.27 135.66 ± 6.42 NA
(0.6 , 0.9) 45.33 ± 3.57 90.05 ± 4.78 135.00 ± 5.81 180.00 ± 6.70 51.52 ± 3.20 103.40 ± 4.45 155.70 ± 5.27 NA
(0.6 , 1) 48.15 ± 3.32 96.00 ± 4.37 143.99 ± 5.36 191.99 ± 6.19 59.30 ± 0.46 119.30 ± 0.46 179.30 ± 0.46 NA

(0.7 , 0.7) 42.01 ± 3.55 84.00 ± 5.02 126.00 ± 6.14 168.01 ± 7.11 42.00 ± 3.55 84.00 ± 5.02 126.00 ± 6.15 NA
(0.7 , 0.8) 45.17 ± 3.41 90.29 ± 4.80 135.29 ± 5.87 180.25 ± 6.76 45.89 ± 3.44 91.96 ± 4.89 138.10 ± 5.99 NA
(0.7 , 0.9) 48.57 ± 3.32 96.29 ± 4.54 144.09 ± 5.42 192.03 ± 6.21 51.78 ± 3.06 103.86 ± 4.30 156.10 ± 5.19 NA
(0.7 , 1) 51.50 ± 3.27 102.01 ± 3.93 153.01 ± 4.79 204.00 ± 5.53 59.35 ± 0.48 119.35 ± 0.48 179.35 ± 0.48 NA

(0.8 , 0.8) 48.00 ± 3.10 96.00 ± 4.38 144.00 ± 5.37 191.99 ± 6.20 48.00 ± 3.10 95.99 ± 4.38 144.00 ± 5.37 NA
(0.8 , 0.9) 51.40 ± 2.83 102.53 ± 4.02 153.47 ± 4.92 204.35 ± 5.64 52.31 ± 2.81 104.85 ± 3.98 157.45 ± 4.85 NA
(0.8 , 1) 54.98 ± 2.85 108.21 ± 3.59 162.08 ± 4.19 216.01 ± 4.65 59.40 ± 0.49 119.40 ± 0.49 179.40 ± 0.49 NA

(0.9 , 0.9) 54.00 ± 2.32 108.00 ± 3.29 162.00 ± 4.02 216.00 ± 4.65 54.00 ± 2.33 108.00 ± 3.29 161.99 ± 4.02 NA
(0.9 , 1) 57.95 ± 1.70 114.93 ± 2.91 171.79 ± 3.60 228.24 ± 3.67 59.44 ± 0.52 119.45 ± 0.50 179.45 ± 0.50 NA
(1 , 1) 60.00 ± 0.00 120.00 ± 0.00 180.00 ± 0.00 240.00 ± 0.00 60.00 ± 0.00 120.00 ± 0.00 180.00 ± 0.00 NA

Table 3.3: The numerical subject benefit results for the design with an after-trial
population S = 1 billion, and for different trial sizes T = 60, 120, 180, and 240.
Each cell is composed of the average number of success responses (first component)
added to/subtracted from the corresponding standard deviation (second compo-
nent) for each scenario (θC , θD).



Chapter 4

On the Estimation Bias of the

Bayesian Decision-Theoretic

Response-Adaptive

Randomization Procedure

4.1 Introduction

Response-adaptive randomisation (RAR), in which allocation probabilities change

as data is being accrued, has the potential to provide improvements to the de-

sign of sequential experiments in certain situations. The primary feature of any

RAR procedure is the ability to modify the allocation ratio of subjects to arms

to follow the objectives of an experiment. When the objectives are defined based

on unknown parameters that need to be learnt during the experiment, this goal

is achieved by finding an appropriate balance between learning i.e., identifying
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the unknown parameters correctly, and earning i.e., allocating subjects to achieve

the objectives during the experiment. That is, there are two major objectives

which, perhaps with different weights, are typically present when one designs any

sequential experiment: (i) minimisation of “learning” errors, such as estimation

bias and/or variability often captured by considering the Type I and/or Type II

errors; and (ii) minimisation of “earning” errors, such as regret (subject loss).

A very popular design in today’s practice is based on the statistical theory of

the design of (non-sequential) experiments proposed more than a century ago, equal

fixed randomisation (EFR), known as the randomised controlled trial in medicine,

as the between-group comparison in social sciences, or as the A/B testing in digital

marketing. This procedure allocates subjects to all arms with equal probability,

and is fixed during the course of the experiment, i.e., it is not response-adaptive.

Unfortunately, although being very simple, this procedure does not optimise any

of the above objectives (except in very special cases) (Robertson et al., 2020).

Thompson (1933) and Robbins (1952) are among the pioneers of develop-

ing RAR procedures with the aim of improving over the suboptimality of EFR.

Thompson (1933) proposed a simple procedure within the Bayesian setting, ran-

domising each subject by matching the allocation probability to the probability

of each arm being the best, aiming at improving the expected subject benefit,

i.e., objective (ii). Robbins (1952) clarified that in order to obtain an estima-

tor of the difference of efficacies with minimal variability (i.e., objective (i)), one

should randomise the subjects using fixed randomisation with unequal weights,

in which the weights are given by the standard deviations of each arm’s efficacy.

Robbins (1952) also considered objective (ii) and showed that the “stay-with-a-

winner&switch-on-a-loser” rule, which allocates the current subject based only on
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the allocation and the observation from the last subject, is superior over EFR and

there exist response-adaptive procedures that perform even better (asymptotically,

as the number of subjects approaches infinity).

The literature on RAR is rich and abounds with ad hoc procedures whose prop-

erties are however not easy to understand theoretically for finite-time experiments,

and thus most of the theoretical results are asymptotic, while the standard of eval-

uation and comparison for finite-time experiments is based on computational (typ-

ically simulation) studies. Notable contributions include Wei and Durham (1978),

who proposed the randomised play-the-winner rule described as an urn model with

replacement where the allocation process is specified by drawing a ball from the

urn. Addressing some common criticisms to adaptive procedures, Berry and Eick

(1995) compared four RAR procedures with the EFR. They showed that, in the

case of less prevalent disease, RAR procedures should be the preferred choice.

Studies such as Rosenberger et al. (2001) who considered objective (i), proposed a

RAR procedure with which the optimal allocation can be derived asymptotically,

and Ivanova and Rosenberger (2001) where, considering Neyman allocation, the

authors show that the allocations obtained by two RAR procedures based on se-

quential maximum likelihood estimation (MLE) and an urn model are very close

to the optimal.

The trade-off between learning and earning is huge. Typically, procedures

optimised for one of these two objectives perform very poorly in the other one.

The most illustrative of this is the Bayesian decision-theoretic RAR procedure

(see, e.g., Jacko (2019b) for a review) which minimises the Bayes-expected earning

errors, and results in subject allocations which are deterministic (as functions

of the past observations and the remaining size of the experiment) except when
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several arms are identified as equivalent, when any deterministic or randomised

allocation between them is allowed. When using traditional statistical inference

methods (which are not specifically adapted to RAR procedures), the operational

characteristics such as statistical power or estimation bias are very far from the

levels that could be achieved using EFR. One approach to decrease its learning

errors to acceptable levels is by forcing randomisation over these deterministic

decisions, see, e.g., Cheng and Berry (2007); Williamson et al. (2017). Another

approach is to use inference methods which are better suited for RAR procedures,

such as randomisation tests (Rosenberger et al., 2019) and estimation-correcting

methods (Bowden and Trippa, 2017). However, these typically do not apply to

deterministic RAR procedures.

4.1.1 Estimation Bias under RAR Procedures

In the design of experiments, one of the key “learning” measures is the bias and

the variance of efficacy estimators. All traditional estimators are biased when

used on data obtained by any RAR procedures. That is because of the fact that

the randomisation probabilities can be adjusted to skew allocations to achieve

their objectives as the experiment moves along and responses accrue. Bowden

and Trippa (2017) showed that the maximum likelihood estimator (MLE) under

RAR procedures is calculated as the sample mean (i.e., in the same way as in

non-adaptive experiments) when the parameter of interest is the efficacy. The

authors developed a formula for the magnitude of the bias of the MLE induced

by RAR procedures, along with proposing several methods for obtaining unbiased

estimates, which, however, suffer from large variance. Ji et al. (2019) evaluated
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the estimation bias in biomarker-stratified RAR experiments. They showed that

estimation of log odds ratio in experiments in which randomisation ratios depend

on both covariates and subject responses, are usually associated with bias and

proposed an asymptotically unbiased estimator which utilises the experiment size

(total enrolled subjects). Hadad et al. (2021) introduced a particular class of test

statistics and, in turn, asymptotically normally distributed estimators to develop

frequentist confidence intervals for intervention-efficacy in adaptive experimental

settings. The paper shows that for any non-deterministic RAR procedures, though

the inverse-probability weighting (IPW) estimator tends to be unbiased, it does

not result in a normal asymptotic distribution. To address this, the authors for-

mulate a novel estimator called adaptively weighted augmented IPW. Estimation

bias in deterministic RAR procedures is much less understood. Nie et al. (2018) fo-

cused on deterministic RAR procedures and proved that when the data collection

process satisfies certain conditions (exploit and independence of irrelevant option),

then each arm’s MLE (i.e., sample mean) is associated with negative bias. In Shin

et al. (2019a) and Shin et al. (2019b), adaptive sampling, adaptive stopping, adap-

tive choosing, and adaptive rewinding were identifed as the sources of the bias of

the MLE in the context of deterministic RAR procedures. In both studies, the au-

thors illustrated that the sign of the bias varies according to the assumptions of the

procedure. Considering the monotonic behaviors of the data collection strategies

and a new notion called “optimism”, they delivered a comprehensive insight into

not only the bias, but risk and consistency of the MLE. Furthermore, they argued

that the reason why Nie et al. (2018) encountered negative bias for MLE is that

they considered an optimistic sampling for a given arm at a fixed time, while it

is not the case when deceptively stopping and/or choosing rules are also assumed
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in the experiment. Another factor which may affect the magnitude and direction

of the bias is the time trend (Villar et al., 2018; Jiang et al., 2020). Considering

a time trend together with the early stopping assumption in an experiment can

cause one to estimate treatment effect with even larger bias. To make some notes

on the importance of choosing a prior in Bayesian settings, in the field of educa-

tional technology Rafferty et al. (2019) showed that although MAB experiments

perform very well in comparison to traditional designs in terms of students’ ben-

efit, to maintain statistical power at least twice as many students participating

in a trial are needed. To alleviate this problem, they suggested using optimistic

(prior above) and pessimistic (prior below) distributions in which prior parameters

are not equal necessarily. Finally, a decreasingly informative prior (DIP) model

to mitigate variability in adaptive allocation ratio, has been introduced by Sabo

(2014). A so-called natural “lead-in” period where the allocation weights are not

being changed and are being allocated based on the mode of prior distribution has

been incorporated through making prior distributions in a Bayesian design.

4.1.2 Our Contributions

In this chapter we study the estimation bias of the Bayesian decision-theoretic RAR

procedure, which focuses on objective (ii) and delivers the minimal Bayes-expected

earning errors. For binary (success/failure) responses, it means maximising the

Bayes-expected number of successes by the end of the experiment. It can be

obtained as a solution to the so-called finite-horizon Bayesian multi-armed bandit

problem by dynamic programming (DP) (Williamson et al., 2017; Zhang et al.,

2019) or approximately by using the so-called Whittle index (Villar et al., 2015a;
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Williamson et al., 2017; Villar, 2018; Panigrahi et al., 2016) and performs as the

best or nearly-best also in the sense of frequentist expectation of the number of

successes (or, equivalently, cumulative regret) when compared to other procedures

in a wide range of scenarios (Jacko, 2019b).

We consider the usual model of the Bayesian Beta-Bernoulli two-armed problem

with binary responses in section 3.1. Our contributions are as follows:

• We characterise theoretically the estimation bias of the MLE and prove that

it is always associated with negative bias in section 4.2. We also discuss other

estimators and investigate their performance, for instance the bias-corrected

estimators proposed by Bowden and Trippa (2017), which however do not

apply to deterministic RAR procedures and we illustrate that the inverse

probability weighted (IPW) estimator has a notably larger bias than the

MLE.

• The weaknesses of all the above estimators in bias correction motivate us in

section 4.3 to introduce the augmented estimator, in which observations are

augmented with pseudo-observations, and we derive a formula for its estima-

tion bias, which gives insights into possible approaches by which estimation

bias could be substantially mitigated.

• In section 4.4 we characterise the estimation bias of the MLE and other esti-

mators numerically in an extensive simulation study, showing that the bias is

unacceptably large in many scenarios. We investigate different combinations

of augmentations in order to tune the augmented estimator and numerically

characterise its bias. Furthermore, we also illustrate that the estimation bias



CHAPTER 4. ESTIMATION BIAS MITIGATION – POST TRIAL 51

of the IPW estimator can be reduced using thoughtfully selected augmenta-

tions.

Simulation set-up information is presented in section 2.5. We outline the main

conclusions of this paper and highlight areas for future research in section 4.5. All

proofs and additional computational experiments can be found in the appendix

4.6.

4.2 Estimation Bias: Theoretical Characteriza-

tion

In this section, we provide a comprehensive analysis of theoretical aspects of the

bias of the MLE in the problem described in section 3.1. Then, we introduce a novel

estimator called an augmented estimator, and subsequently characterise the bias

associated with it. In section 4.4 using extensive simulation studies, we illustrate

that the augmented estimator can mitigate the bias significantly. Note that both

the MLE and Bayesian estimator can be recovered with appropriate choices of

priors and augmentations of the augmented estimator. To do so, we assume that

unknown success probabilities θk are Beta-distributed with parameters αk and βk:

θk ∼ Beta(αk, βk) ∀k ∈ K

4.2.1 Maximum Likelihood Estimator and its Bias

To begin with, we characterize the MLE and its bias in the context of the design

with binary responses with any fixed or response-adaptive randomization. See,
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e.g., Bowden and Trippa (2017), which we follow and build on.

Theorem 4.1. The joint likelihood function at time epoch τ ∈ T ∪{T}, i.e., having

observed sk(τ) successes and fk(τ) failures on each arm k ∈ K, is proportional to

the joint likelihood function for K observations, each having independent Beta

distribution with parameters αk = sk(τ) + 1 and βk = fk(τ) + 1.

Theorem 4.2. The maximum likelihood estimator at time epoch τ ∈ T ∪ {T},

i.e., having observed sk(τ) successes and fk(τ) failures on each arm k ∈ K, is

θ̂k(sk(τ), fk(τ)) =


sk(τ)
nk(τ) for nk(τ) > 0

any value in (0, 1) for nk(τ) = 0
(4.1)

where nk(τ) = sk(τ) + fk(τ).

In what follows, we will also refer to the MLE briefly as the Frequentist esti-

mator. We will also use the short-hand notation θ̂k(τ) = θ̂k(sk(τ), fk(τ)). Next we

state a result which we will later use to draw analogies between the Frequentist

and Bayesian estimators.

Theorem 4.3. The maximum likelihood estimator at time epoch τ ∈ T ∪{T}, i.e.,

having observed sk(τ) successes and fk(τ) failures on each arm k ∈ K, coincides

with the mode of the Beta distribution with parameters αk = sk(τ) + 1 and βk =

fk(τ) + 1.

The bias of MLE induced in RAR procedures is initially formulated in the

study by (Bowden and Trippa, 2017); Shin et al. (2019a) also proposed applying

the similar formula to the trials with early and/or adaptively stopping time.
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Theorem 4.4. The bias of the maximum likelihood estimator given in (4.1) is

Bias
[
θ̂k(τ)

]
:= E

[
θ̂k(τ)

]
− θk =



−Cov
[
nk(τ), θ̂k(τ)

]
E

[
nk(τ)

] for nk(τ) > 0 ∀k ∈ K

0 for nk(τ) = 0
(4.2)

According to Theorem 4.2, and in the case of nk(τ) = 0 we can choose an

arbitrary value like γ and set γ := θ̂k(τ) ∈ (0, 1). Then, Bias
[
θ̂k(τ)

]
= nk(τ).

(
γ −

θk

)
= 0 ∀k ∈ K.

It is worth mentioning that the proof of this theorem can be obtained upon

appropriately setting out the parameters of interest through the proof of Theo-

rem 4.9. Note that any design whose subject allocation is independent of past

responses, e.g., fixed randomization with arbitrary randomization ratio, will have

a zero covariance and thus a zero bias on every arm. For the designs whose

subject allocation depends on or is correlated with past responses, a particu-

lar arm may have a bias away from zero if either the covariance is away from

zero, or if E
[
nk(τ)

]
is small, or both. The sign of the bias is typically nega-

tive for each arm under the response-adaptive allocation procedures which aim at

(exactly/approximately/asymptotically) maximizing the expected number of ob-

served successes, since these tend to allocate more subjects to arms with higher

estimates. However, this is not guaranteed by the above characterization in gen-

eral, as shown in Nie et al. (2018) who provided sufficient conditions for it to be

true. In particular, negative bias is not guaranteed for those designs that use other

estimators rather than the MLE for allocation decisions, which, among others, in-

clude upper confidence bound procedures and Bayesian procedures. The sign of
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the bias can be positive for some or all arms for some procedures, for instance for

those that aim at maximizing the statistical power, which, in some circumstances,

tend to allocate more subjects to arms with lower estimates (Rosenberger et al.,

2001).

4.2.2 Bayesian Estimators and their Bias

In this section we characterise the Bayesian estimators along with their associated

bias. Note that, these estimators are formulated based on the posterior distribu-

tion, and the posterior mean is a natural estimator being used in Bayesian statistics

and in Bayesian decision theory. The posterior mode is less commonly used but it

is also a reasonable choice for a Bayesian estimator.

Theorem 4.5. Consider time epoch τ ∈ T ∪ {T} and for arm k ∈ K, let sk(τ)

and fk(τ) be the numbers of observed successes and failures, respectively, and let

(s̃k(0), f̃k(0)) be the parameters of the prior Beta distribution. Then, the posterior

distribution is a Beta distribution with parameters s̃k(τ) := sk(τ) + s̃k(0), f̃k(τ) :=

fk(τ) + f̃k(0), and thus the posterior mean is

θ̃Mn
k (τ) :=


s̃k(τ)
ñk(τ) for ñk(τ) > 0

any value in (0, 1) for ñk(τ) = 0
(4.3)

and, assuming s̃k(τ), f̃k(τ) ≥ 1, the posterior mode is

θ̃Md
k (τ) :=


s̃k(τ) − 1
ñk(τ) − 2 for ñk(τ) > 2

any value in (0, 1) for ñk(τ) = 2
(4.4)
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Following the convention, we assume that the prior parameters do not change

with time, which are thus related to time epoch 0 rather than τ . The following two

theorems are obtained as a special case of our main result presented in Theorem

4.9.

Theorem 4.6. The bias of the posterior mean given in (4.3) is

Bias
[
θ̃Mn

k (τ)
]

:= E
[
θ̃Mn

k (τ)
]

− θk =
−Cov

[
ñk(τ), θ̃Mn

k (τ)
]

+ ñk(0)
(
θ̃Mn

k (0) − θk

)
E

[
ñk(τ)

]
(4.5)

Note that θ̃Mn
k (0) = s̃k(0)/ñk(0) is the prior mean, thus θ̃Mn

k (0) − θk is the bias

of the prior mean. If it has an opposite sign to the sign of the covariance, then the

bias of the posterior mean is further away from zero. This is further exacerbated

if the prior is very informative, i.e., if ñk(0) is large.

Theorem 4.7. The bias of the posterior mode given in (4.4) is

Bias
[
θ̃Md

k (τ)
]

:=E
[
θ̃Md

k (τ)
]

− θk

=
−Cov

[
ñk(τ) − 2, θ̃Md

k (τ)
]

+ ñk(0)
(
θ̃Mn

k (0) − θk

)
− 2

(
1
2 − θk

)
E

[
ñk(τ) − 2

]
(4.6)

The above results lead to the following corollaries.

Corollary 4.1. If the parameters of the prior Beta distribution are (s̃k(0), f̃k(0)) =
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(0, 0) (the so-called Haldane prior), then the posterior mean is

θ̃Mn
k (τ) =


sk(τ)
nk(τ) for nk(τ) > 0

any value in (0, 1) for nk(τ) = 0
(4.7)

and its bias simplifies to

Bias
[
θ̃Mn

k (τ)
]

=
−Cov

[
nk(τ), θ̃Mn

k (τ)
]

E
[
nk(τ)

] (4.8)

and thus it coincides with the Frequentist maximum likelihood estimator and its

bias.

Corollary 4.2. If the parameters of the prior Beta distribution are (s̃k(0), f̃k(0)) =

(1, 1) (the so-called Bayes prior), then the posterior mode is

θ̃Md
k (τ) =


sk(τ)
nk(τ) for nk(τ) > 0

any value in (0, 1) for nk(τ) = 0
(4.9)

and its bias simplifies to

Bias
[
θ̃Md

k (τ)
]

=
−Cov

[
nk(τ), θ̃Md

k (τ)
]

E
[
nk(τ)

] (4.10)

and thus it coincides with the Frequentist maximum likelihood estimator and its

bias.
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4.2.3 HT and IPW Estimators

In the study by Bowden and Trippa (2017), the authors propose a simple bias-

corrected estimator for success probabilities, called Horvitz–Thompson(HT) which

utilises randomisation probabilities πk(t) at each time epoch t, as below:

θ̂k,HT = 1
T

T∑
t=1

δk(t)yk(t)
πk(t) (4.11)

This estimator, nowadays also called Inverse Probability Weighted (IPW) estima-

tor in the literature as in the study by Hadad et al. (2021) where Yk(t) represents

the random variable (and yk(t) the realization) of the response at time epoch t ∈ T

corresponding to arm k ∈ K, and δk(t) stands for a binary variable equalling 1 if

time epoch t is allocated to arm k and 0 otherwise. Denote by k(t) ∈ K the actual

assigned arm at each time epoch t such that δk(t)(t) ≡ 1, then, assuming a notion

of the inverse probability weighted (IPW) by which the values of HT estimator can

be fitted within the unit interval, the “normalised" version of the HT estimator is

defined as follows:

θ̂k,IP W = T θ̂k,HT∑T
t=1

δk(t)
πk(t)(t)

=

∑T
t=1

δk(t)yk(t)
πk(t)∑T

t=1
δk(t)

πk(t)(t)

(4.12)

Finally, using Rao-Blackwellization result in which all permutations of the order

of columns in the realisation matrix have been computed, a significant improve-

ment on the HT estimator, by averaging out all HT estimators corresponding to

each permutation, has been achieved. However, we show that neither of above

estimators can necessarily either mitigate or eliminate the bias of estimation in



CHAPTER 4. ESTIMATION BIAS MITIGATION – POST TRIAL 58

RAR settings. Therefore, this has been taken into account as a motivation for this

study which ultimately leads us to introduce a novel estimator in the following

section.

To begin with, we recall the primary assumption about the action set considered

in this study. We assume three possible cases for randomisation probabilities,

based on which the action set A(x) is built: A(x) ⊆
{
a; πa

C + πa
D = 1, πa

C , πa
D ∈

{0, 1, 1/2}
}
. The third case, i.e., πa

C = πa
D = 1/2, can happen when there is no

difference between arms allocation. Without loss of generality, we can presume

that:

πk(t) =


ϵ if δk(t) = 0 ∀k ∈ K

1 − ϵ if δk(t) = 1
(4.13)

Assuming a non-randomised RAR procedure rearranges the equation (4.11) ( by

applying a limit on the summation of each time epoch divided by the corresponding

randomisation probability, when epsilon tends to zero) in the following equality in

which the number of success observations is divided by the trial size rather than

the sample size on a given arm.

θ̂k,HT = sk(T )
T

(4.14)

Hence, in comparison with MLE, it is quite obvious that the next equality tends

to estimate any probability of successes with smaller values in magnitude, con-

sequently leading us to estimate success probabilities with more bias at the end

of the trial. Figure 4.5 (left-hand-side column) represents HT estimators for four

different trial sizes assumed in this study. It is also noteworthy to mention that

the normalised version of HT estimator (4.12) is functioning as an MLE, since the
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term ∑T
t=1

δk(t)
πk(t)(t)

in the denominator represents the sample size on a given arm at

the end of the trial. In section 4.4 we introduce a thoughtfully-selected augmen-

tation by which the bias of the IPW estimator is notably reduced. However, in

the study by Bowden and Trippa (2017) the authors employ Rao-Blackwellization

technique, which suffers from a rather high computational complexity associated

with computing permutations to achieve θ̂RBHT , to improve the HT estimator.

Considering the assumption of not having any early stopping or adaptive stopping

in the trial one needs to carry out a factorial of trial size i.e., T ! computations

along with computing the HT estimator in each replica in order to calculate the

θ̂RBHT . To overcome this, the authors suggest using Monte Carlo approximation,

since integration used for likelihood function becomes unfeasible in large enough

trials. Hence, the assumed trial size by Bowden and Trippa (2017) is only 25 which

is computationally achievable to calculate, whilst in the present study trial sizes

are a multiple of 60. Since in practical settings the size of trials are assumed quite

large, the performance of the θ̂RBHT estimator is poor and at some points it is

expensive to compute.

4.3 Augmented Estimator and its Bias

From the practical point of view, and due to potential limitations on resources,

budgets and also ethical obligations, trials are usually conducted once or for a lim-

ited number of repetitions. Hence, by using extensive simulation studies, we intend

to develop a framework by which an adequate augmentation can be selected. Aug-

mentations are formulated based on the trial’s characteristics and specifications.

By applying the proposed framework in the efficacy calculation process, one can
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select an appropriate level of augmentation to make the MLE estimation relatively

accurate at the end of the trial.

In this section we characterise the Bayesian posterior mean, which is a natural

estimator being used in Bayesian designs, and we will derive its bias. We will do

so as a special case of our newly-proposed augmented estimator, defined next.

Definition 4.1. Consider time epoch τ ∈ T ∪ {T} and for arm k ∈ K. Let

sk(τ) and fk(τ) be the numbers of observed successes and failures, respectively, let

(s̃k(0), f̃k(0)) be the parameters of the prior Beta distribution, and let ṡk(τ), ḟk(τ)

be called the augmentations of the numbers of successes and failures, respectively.

Denote ṅk(τ) := ṡk(τ) + ḟk(τ) and suppose that nk(τ) + ñk(0) + ṅk(τ) ≥ 0. Then,

we define the augmented estimator as

θ̃k(τ) :=


sk(τ) + s̃k(0) + ṡk(τ)
nk(τ) + ñk(0) + ṅk(τ) for nk(τ) + ñk(0) + ṅk(τ) > 0

any value in (0, 1) for nk(τ) + ñk(0) + ṅk(τ) = 0
(4.15)

Theorem 4.8. The augmented estimator θ̃k(τ) is asymptotically consistent.

Proof. According to the definition of consistency we have:

p lim
nk→∞

θ̃k(τ) = θk ∀k ∈ K

That is, if, for all ϵ > 0

lim
nk→∞

Pr
(∣∣∣θ̃k(τ) − θk

∣∣∣ > ϵ
)

= 0 ∀k ∈ K
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Recalling the fact that both prior beliefs and augmentations are constants:

lim
nk→∞

(
θ̃k(τ) − θk

)
= lim

nk→∞

(
sk(τ) + s̃k(0) + ṡk(τ)
nk(τ) + ñk(0) + ṅk(τ) − θk

)

≡ lim
nk→∞

(
sk(τ)
nk(τ) − θk

)
= 0

(4.16)

The last term indicates that augmented estimator converges to MLE, i.e. sk(τ)
nk(τ) ,

and it has been proved that MLE is asymptotically consistent estimator.

Note that we allow for the augmentations to change with time, which are

thus related to time epoch τ . The augmented estimator can be seen in both the

Bayesian and the Frequentist setting; for the Frequentist setting we would simply

set s̃k(0) = f̃k(0) = 0 and thus consider the Frequentist version.

θ̃k(τ) =


sk(τ) + ṡk(τ)
nk(τ) + ṅk(τ) for nk(τ) + ṅk(τ) > 0

any value in (0, 1) for nk(τ) + ṅk(τ) = 0
(4.17)

In turn, the Frequentist MLE is recovered when the augmentations are ṡk(τ) =

ḟk(τ) = 0. In the Bayesian setting, the posterior mean is recovered when the

augmentations are ṡk(τ) = ḟk(τ) = 0.

The idea of augmentation of the numbers of successes and failures in statistical

inference is not new. For instance, Agresti and Caffo (2000) suggested constructing

confidence intervals around an augmented estimator. They showed that these

adjusted confidence intervals, which can be derived by adding pseudo observations,

half of each type, to the MLE i.e., the sample mean, can simply bypass sample size

rules in the Wald approach. They also numerically proved that adding four pseudo

observation performs the best among other adjusted cases. The second best, which
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indicates adding two pseudo observations, coincides with Bayesian estimator with

prior beliefs (s̃k(0), f̃k(0)) = (1, 1), and equivalently with the mode of the Beta

distribution with parameters αk = sk(τ) + 1 and βk = fk(τ) + 1. See Theorem

(4.3).

Theorem 4.9. The bias of the augmented estimator given in (4.15) is

Bias
[
θ̃k(τ)

]
:= E

[
θ̃k(τ)

]
− θk

=
−Cov

[
nk(τ) + ñk(0) + ṅ(τ), θ̃k(τ)

]
+ ñk(0)

(
θ̃k(0) − θk

)
+ ṅk(τ)

(
θ̇k(τ) − θk

)
E

[
nk(τ) + ñk(0) + ṅ(τ)

]
(4.18)

where θ̃k(0) is the prior mean, and θ̇k(τ) = ṡ(τ)
ṅ(τ) .

4.4 Estimation Bias: Numerical Characteriza-

tion for Decision-Theoretic Designs

Figure 4.2 represents the MLE simulation results corresponding to frequentist esti-

mator i.e., the equation (4.1) in the left-hand-side plots, and the Bayesian one i.e.,

equation (4.3) with Bayes prior in the right-hand-side. As a general observation,

the covariance of the trial size and either the frequentist or the Bayesian estimator

increases when a larger time horizon is taken into account. However, trial size

variation fails to lessen the bias induced significantly.

The frequentist estimator tends to have a larger (negative) bias on the worse

arm, and may reach as much as ≈ −0.23 on the worse arm and ≈ −0.18 on the

better arm. The single-arm bias tends to deteriorate with increased arm D effect
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and with decreased efficacy values. Although the bias on both arms is negative, the

single-arm bias may affect also the estimate of the arm D effect. This estimator

tends to notably inflate the effect, e.g., if θD − θC = 0.1 (blue circles and stars),

the bias in the effect estimation may be as large as +0.14 for the time horizon

T = 240 (estimating the effect to be 0.24). One of the exceptional scenarios of

this class is (0.9, 1). On the contrary to other scenarios in this class, where the

larger values of θC and θD are assumed, as the bias and covariance increase, the

bias of scenario (0.9, 1) falls to less than −0.1. It is also quite noticeable that for

those scenarios with bigger arm D effects, the gap between both arms is wider.

This phenomenon confirms that due to lack of observations on worse arm (arm C

in these cases), the bias tends to take larger (negative) values.

On the other hand, the bias of the Bayesian estimator is much more complicated

to capture, because besides the two effects present for the Frequentist estimator it

tends to estimate each arm closer to its prior mean due to the fact that s̃k

s̃k+f̃k
is

between the values of the Frequentist estimator sk

sk+fk
and the prior mean s̃k(0)

s̃k(0)+f̃k(0)
.

This effect goes in the same direction (negative bias) as the other two effects if

θk is greater than the prior mean, but goes in the opposite direction if θk is lower

than the prior mean, and it is particularly notable on the worse arm as it tends

to have fewer allocations. When using the Bayes prior (which is uninformative,

with the mean 0.5), the bias on the worse arm can reach as much as −0.2 or +0.35

(scenario (0.9, 1) is the only case out of this range). Some general conclusions

on the Bayesian estimator one: (i) the covariance values decline in comparison

with the frequentist case (scenarios with equal success probabilities are more or

less the same), (ii) estimation for worse arm in scenario (0, 1) has been calculated

≈ 0.34, (iii) the bias of the inferior arms for those scenarios with θD − θC ≥ 0.5
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has been estimated positively while superior ones are unbiased, (iv) the density

around origin confirms that the bigger trial size, the less biased the superior arms,

and (v) in those scenarios with positive bias values, as the difference between

success probabilities decreases the inferior arm estimates with smaller (positive)

bias values. This estimator thus may either inflate or deflate the effect, e.g.,

if θD − θC = 0.1, the bias in the effect estimation may be as large as +0.04

(estimating the effect to be 0.14) or as low as −0.22 (estimating the effect to

be 0.21), depending on whether the efficacy values are closer to 0 or closer to 1.

Unfortunately, in situations of practical relevance such as short (T ≈ 101—102)

and moderate (T ≈ 103—104) trial duration, the bias on each arm is non-negligible.

4.4.1 Modification criterion and estimation functionality

In order to mitigate these effects, in this thesis we explore a number of heuris-

tical modifications applying to the end-of-trial Frequentist MLE chiefly, and the

Bayesian estimator partially. These modifications, apart from their prior specifica-

tions
(

s̃k(0), f̃k(0)
)

which clarify the type of initial estimator, are determined by

adjusting augmentations to the desired/intended values. Technically, the augmen-

tation ḟk(τ) should be valued at negative numbers. That is because (i) reducing

the number of failure observations gives rise to notably modifying MLE, (ii) ap-

plying an appropriate negative ḟk(τ) converts the Bayesian estimator to MLE,

accordingly. However, in this study we assume ḟk(τ) = 0 ∀τ .

To identify the worse-performing arm and modify its corresponding MLE, we

compare θ̃Mn
C (T ) and θ̃Mn

D (T ), for each simulation iteration. Once the inferior arm

has been determined, the pre-fixed augmentations are being added to both nu-
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merator and denominator of (4.3) to form the corresponding augmented estimator

(4.15). In other words, we increase the estimator of the arm whose (unmodified)

estimator is lower, and we do so being encouraged by the fact that the bias of the

Frequentist estimator is always negative (Nie et al., 2018). Although this is not

a perfect logic for Bayesian estimator, we apply the novel idea for some specific

augmentations to Bayesian estimator. Note that those simulation replications in

which θ̃Mn
C (T ) = θ̃Mn

D (T ), the estimator is not modified, and considered as it is

estimated. Finally, the ultimate estimated efficacy, which would be closer to the

actual corresponding success probability, and therefore less biased, is obtained by

an average over the total number of simulation iterations.

To explain the idea of modification and augmented estimators in general and

clear terms, we propose a framework in which each augmentation can be composed

of three multiplicative parts: a coefficient, a root function of natural logarithm of

trial size (square and cube root perform the best), and a power function of the

MLE (4.1) (Bayesian estimator (4.3) could also be the case). Hence, the proposed

formula can be considered in a general sense as follows:

ṅk(T ) = ṡk(T ) + ḟk(T )
∣∣∣∣
ḟk(T )=0

= A. n

√
ln(T + 1).

(
θ̂k

)p
(4.19)

By virtue of a trial and error technique along with extensive simulation studies,

we noticed that the function above 4.19 performs better when the exponent in

the power function is odd whilst the root for natural logarithm is even. Also, the

constant being chosen to scale the effect of two others should not be very large.

Table 4.1 summarises the augmentations’ specification using the equation (4.19).

Note that, corresponding simulation outcomes are presented in figures below, and
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ṡk(T ) Prior belief Statistics

Fig. 4.1 RHS 0 Bayes Bayesian
LHS 0 - Frequentist

Fig. 4.2 RHS θ̃Mn
k (T ) Bayes Bayesian

LHS θ̂k(T ) - Frequentist

Fig. 4.3 RHS 4 ln(T + 1)(θ̂k(T ))2 - Frequentist
LHS ln(T + 1)θ̂k(T ) - Frequentist

Fig. 4.4 RHS 27
√

ln(T + 1)(θ̂k(T ))3 - Frequentist
LHS 9 ln(T + 1)(θ̂k(T ))3 - Frequentist

Table 4.1: Specifications of modifications

those with Jeffreys prior may be found in the Appendix 4.6.4.

4.4.2 Augmented Estimator Performance

To begin with, figure 4.2 represents augmented estimators in which the value of

the augmentation is considered the same as MLE, i.e. ṡk(T ) = θ̂k(T ). The bias

of the augmented Bayesian estimators (right-hand side column) follows the same

pattern as figure 4.1 with two main differences. First, covariance values are slightly

declined compared to the original Bayesian equivalent. Second, for those scenarios

with success probabilities on arm D closer to zero, estimation is too optimistic. In

other words, the bias values lie far from the origin on large positive values, while

the reductions in the negative side do not seem substantial. Note that we ignore

the augmented Bayesian estimator and do not present the simulation results for

further augmentations later in this section.

On the other hand, the Frequentist results illustrate that: (i) overall, a slight

improvement, which looks as if a horizontal transfer has been occurred, in bias
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values can be observed, (ii) as in the augmented Bayesian case, lower covariance

values can be discerned in comparison with the original Frequentist equivalent,

(iii) the inflation patterns in each trial size are also in same proportion to the

original equivalent. It is quite wise to try some other augmentations with which the

improvements in either bias values or inflation patterns could be more significant

and substantial. To do so, we consider a well-chosen multiplier which draws a

connection between trial size and assumed augmentation. Further variants on this

multiplier and the augmented estimator together with allocating an appropriate

constant led us to have ≈ 0.15 improvement in the worse case scenario.

Figure (4.3) compares simulation results obtained from the augmentations

ṡk(T ) = ln(T + 1)θ̂k(T ) on the left-hand-side and ṡk(T ) = 4 ln(T + 1)(θ̂k(T ))2

on the right hand side with one another. It is quite obvious that the overall mag-

nitude of the reduction in bias values, in the worst case scenario, reports around

0.05 which emphases the importance of considering an appropriate constant as a

multiplier and variant, square function in this case, of the augmented estimator.

In addition, the bias in the arm D equal to 0.1, i.e. θD −θC = 0.1 noticeably dimin-

ishes since the bias of arm C, which has been considered inferior arm, is modified

by large and well-chosen augmentations. Note that, like in previous cases, slight

reductions in covariance values are made as the augmentations are enlarged.

Finally, the figure 4.4 provides a comparison between augmentations ṡk(T ) =

9 ln(T + 1)(θ̂k(T ))3 on the left-hand-side and ṡk(T ) = 27
√

ln(T + 1)(θ̂k(T ))3 in

the right hand side. First of all, by comparing the right-hand-side plots with

their equivalent on left-hand-side in figure 4.1, which illustrates the original Fre-

quentist MLE, it is quite discernible that the magnitude of reduced bias lies in

the [0.1, 0.13]. Furthermore, a significant reduction in covariance values also has
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occurred. It is noteworthy that those scenarios with the effect of 0.1 and equal

success probabilities i.e., green circles and stars, tend to constantly be among the

worst case scenarios. The former is known for showing arm C as an inferior arm

while the effect is just 0.1. Even for the simulation result in the figure 4.4 this is

going to be the case. By this, we mean that although the augmented estimators

considerably diminish bias values on arm C, the reduction rate is not in proportion

to other scenarios with an arm D effect bigger than 0.1. Note that, in almost all

trials presented in the figure 4.4, and for any given arm C, the lower bound of

success probability estimation will be θC − 0.1 which is negligible in practice.

4.4.3 Augmented HT in a non-Randomised RAR proce-

dure

As we showed in section 4.2.3, the performance of the HT estimator in a non-

randomised RAR trial because of extreme randomised probabilities, as well as

division by trial size, is worse than MLE. To compensate for this, and using initial

fixed allocations i.e., the first time epoch allocates to control arm C and the second

one to research arm D, we define the augmentation for a given arm as follows:

• If the first allocation is a success, then we add some pseudo success observa-

tions to the sample size of the other arm to the numerator of (4.14) at the

end of the trial i.e., ṡk(T ) = nk′(T ) .

θ̃k,HT = sk(T ) + nk′(T )
T

(4.20)
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(a)

(b)

(c)

(d)

Figure 4.1:
(

ṡk(T ) = 0, ḟk(T ) = 0, s̃k(0) = 0, f̃k(0) = 0
)

vs.
(

ṡk(T ) = 0, ḟk(T ) =

0, s̃k(0) = 1, f̃k(0) = 1
)

i.e.,
(

Frequentist MLE eq. (4.1)
)

vs.
(

Bayesian estimator

eq. (4.3)
)

: (a) T=60 (b) T=120 (c) T=180 (d) T=240. x-axis: Bias of estimator,
y-axis: Covariance (Estimator, Sample Size).
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(a)

(b)

(c)

(d)

Figure 4.2:
(

ṡk(T ) = θ̂k(T ), ḟk(T ) = 0, s̃k(0) = 0, f̃k(0) = 0
)

vs.
(

ṡk(T ) =

θ̂k(T ), ḟk(T ) = 0, s̃k(0) = 1, f̃k(0) = 1
)

: (a) T=60 (b) T=120 (c) T=180 (d)
T=240. x-axis: Bias of estimator, y-axis: Covariance (Estimator, Sample Size).
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(a)

(b)

(c)

(d)

Figure 4.3:
(

ṡk(T ) = ln(T + 1)θ̂k(T ), ḟk(T ) = 0, s̃k(0) = 0, f̃k(0) = 0
)

vs.(
ṡk(T ) = 4 ln(T + 1)(θ̂k(T ))2, ḟk(T ) = 0, s̃k(0) = 0, f̃k(0) = 0

)
: (a) T=60 (b)

T=120 (c) T=180 (d) T=240. x-axis: Bias of estimator, y-axis: Covariance (Es-
timator, Sample Size).
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(a)

(b)

(c)

(d)

Figure 4.4:
(

ṡk(T ) = 9 ln(T + 1)(θ̂k(T ))3, ḟk(T ) = 0, s̃k(0) = 0, f̃k(0) = 0
)

vs.(
ṡk(T ) = 27

√
ln(T + 1)(θ̂k(T ))3, ḟk(T ) = 0, s̃k(0) = 0, f̃k(0) = 0

)
: (a) T=60

(b) T=120 (c) T=180 (d) T=240. x-axis: Bias of estimator, y-axis: Covariance
(Estimator, Sample Size).
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• If the first allocation is a failure, then we keep the estimator as in (4.14).

θ̃k,HT = θ̂k,HT = sk(T )
T

(4.21)

In other words, for those simulation replications where the first allocation of a given

arm is a success, it is also counted as a success response up to the sample size of

the other arm. One might interpret it as a circumstance in which we complete

the lack of observations on a given arm by the number of times when the other

arm is being pulled. Additionally, it can be easily proven that augmented HT is

asymptotically consistent. Recalling the proof procedure used for theorem 4.8, it

follows that:

lim
T →∞

(
θ̃k,HT − θ̂k,HT

)
= lim

T →∞

(
sk(T ) + nk′(T )

T
− θ̂k,HT

)
= lim

T →∞

(
nk′(T )

T

)
= 0

(4.22)

The right-hand-side column of figure 4.5 represents augmented HT estimators for

the different trial sizes. It is quite obvious that both bias and covariance values are

notably reduced. For the trial size 240, estimation bias is reduces by −0.8 whilst it

is −0.65 for T = 60 approximately, since the augmentation in the former is larger

due to the bigger assumed trial size. Moreover, as a general trend that represents

the relationship between covariance and bias values, one can see that less biased

estimations are associated with higher covariance values as the trial size increases.

Finally, the augmented HT estimator is biased no more than −0.07 in any trial

size.
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(a)

(b)

(c)

(d)

Figure 4.5: HT (IPW) estimator vs augmented equivalent: (a) T=60 (b) T=120
(c) T=180 (d) T=240. x-axis: Bias of estimator, y-axis: Covariance (Estimator,
Sample Size).
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4.5 Discussion

In this chapter, using DP designs, we evaluate different modifications for both

Frequentist and Bayesian MLE estimators. First of all, we formulate the DP us-

ing the novel unified terminologies proposed by Jacko (2019b). Then we propose

the augmented estimator with which the derived bias of MLE can be mitigated

in a considerable manner. Furthermore, to check the performance of this novel

estimator, we conduct extensive simulation studies in the largest possible range

of scenarios for both Bayes and Jeffreys priors. Those with Jeffreys prior can be

found in the Appendix 4.6.4. In addition, we also prove that DP as a selection

function fulfils the so-called Exploit property proposed by Nie et al. (2018).

Using the augmented estimator, the magnitude of the reduced bias of MLE can lie

in the interval [0.1, 0.13] in this study. Although our proposed estimator performs

very well in the Frequentist context, this is not the case of the Bayesian setting,

since the bias of the Bayesian estimator is more complicated to capture and con-

trol. As an area of further work, we recommend applying our augmented estimator

to previous adaptive designs and estimation processes to modify the derived bias

as much as possible.

In this study, we try to find the optimal augmentation which can eradicate the

bias from estimations totally. However, due to the complexity and data depen-

dency this has not been achieved completely, while we noticed that in order to

create an augmentation ṡk(T ), one had better consider an odd exponent for θ̂k(T )

together with a well-chosen coefficient. Hence, another area of future work can be

formulating ṡk(T ) in an optimal manner by which an unbiased estimation can be

obtained. To do so, it will be necessary to carefully analyse the behaviour of the
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MLE along with the effects of time horizons in choosing the augmentation.

Appendix 4.6.3 consists of simulation results obtained from two not suitable mod-

ifications. Figure 4.5 (left-hand side column) shows a situation in which augmen-

tations are identically added to both arms at the end of the trial. It is clear, the

estimation ended up with several positive bias values in some scenarios while quite

a few negative bias observations are still there. Note that, negative bias values, in

this case, are even larger than those in Figure 4.4 (both sides). On the other hand,

Figure 4.5 (right) shows an overshooting in the positive quadrant which mainly

happens due to assuming a large coefficient for ṡk(T ).

One can also consider expanding the practical framework of covariate-adaptive

RAR design offered by Ji et al. (2019) in which randomisation probabilities de-

pend on both covariates and patients response as future work. Note that, in the

commentary by Saville and Meurer (2019), some objections associated with the

study of Ji et al. (2019) have been raised. The foremost ones which can be served

as a motivation for future studies, are the difficulty of extrapolating and poor

understanding of statistical properties such as power, bias etc related to the pro-

posed framework, to a multi-armed context. Another practical and useful problem

for future study can be obtained by considering time-trend with or without early

stopping assumptions in a multi-armed bandit setting. The details of two-armed

case have been investigated in the work of Jiang et al. (2020).

Practical implications of this study are countless. Generally, one can take advan-

tage of the present study in any decision making context. For instance, clinical

trials where the efficacy of an experimental treatment arm is being estimated

within a trial and compared with the control treatment arm is one of the practical

implications. As a rule in clinical trials settings, the treatment with the smallest
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true efficacy shows the largest bias, and this bias grows as the difference between

the superior and inferior treatment increases (Bowden and Trippa, 2017). Bene-

fiting from our proposed estimator, the bias can be substantially reduced and the

treatment efficacy can be estimated more accurately. Digital marketing and social

networks are among the other practical settings in which implications of this paper

might be the case. For example, the augmented estimators may give the decision

maker more profound insight into the popularity of a post or product on Instagram

when people who follow the page like or dislike the post.

In summary, the RAR design is useful in many settings to improve the overall

response in the trial. Although the arm effect estimation is usually associated with

relatively small and negative bias, we propose a framework with which the bias

is mitigated significantly. In order to have minimal bias, more studies need to be

carried out to adjust the augmentation appropriately. Note that, in this paper we

only focus on DP designs while one can apply the proposed contributions in other

randomisation procedures to improve the performance of the estimators.

4.6 Appendix

4.6.1 DP satisfies Exploit

Nie et al. (2018) prove that, in adaptive data collection context, for any selec-

tion function which satisfies natural conditions i.e., Exploit and Independence of

Irrelevant Option (IIO) sample means of the data have negative biases. Since we

consider a two-armed Bayesian Beta-Bernoulli model described in section (3.1),

(IIO) conditions need not to be taken into account Nie et al. (2018), while we
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show that DP, which plays the role of selection function, satisfies Exploit. Accord-

ing to Nie et al. (2018) “Exploit means that for any given time epoch t if an arm

is selected in a scenario in which it has lower sample average, then it would also

be selected in a scenario where it has higher sample average.”

Since sC + fC + sD + fD = t represents the history of the trial, for arm C for in-

stance, we can define two histories with same length and different combinations of

sC and fC . To do so, we suppose sC +fC = s
′
C +f

′
C such that sC ≤ s

′
C and fC ≥ f

′
C

then sample means sC

sC+fC
≤ s

′
C

s
′
C+f

′
C

. Furthermore, due to the fact that prior beliefs

are among non-negative pseudo-observations, the monotonicity of current sample

means holds in the Bayesian sense as well:

sC

sC + fC

≤ s
′
C

s
′
C + f

′
C

⇔ sC + s̃C(0)
sC + s̃C(0) + fC + f̃C(0)

≤ s
′
C + s̃C(0)

s
′
C + s̃C(0) + f

′
C + f̃C(0)

⇔

s̃C

s̃C + f̃C

≤ s̃
′
C

s̃
′
C + f̃

′
C

⇔ qC,(x,i),1 ≤ q
′

C,(x,i),1

(4.23)

Let Ft

(
sC , fC , sD, fD

) = max
{
F C

t

(
sC , fC , sD, fD

)
, F D

t

(
sC , fC , sD, fD

)}
be the value

function determining the maximum Bayes-expected number of successes after the

time epoch t towards the end of the trial when the history is
(
sC , fC , sD, fD

)
.

Without loss of generality if we assume that arm C is being selected to allocate

at any time epoch, t i.e., pa
C = 1, then a quite similar proof can be applied for

arm D as well. Note that in the case of equality in the equation (4.23) i.e.,

qC,(x,i),1 = q
′

C,(x,i),1, DP always satisfies Exploit, and therefore, all proofs below will

be trivial. Now, considering the backward induction algorithm together with the

value functions F C
t

(
sC , fC , sD, fD

)
and F

′C
t

(
s

′
C , f

′
C , sD, fD

)
corresponding to the
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histories
(
sC , fC , sD, fD

)
and

(
s

′
C , f

′
C , sD, fD

)
of arm C respectively:

• If t = T , we are at the end of the trial and there is nothing to do. Thus,

FT

(
sC , fC , sD, fD

)
= 0.

• If t = T − 1, there is only one state left, which needs to be allocated. Hence,

the value functions, which are expected one-period rewards, can be formu-

lated as follow:

FT −1
(
sC , fC , sD, fD

)
= max

{
F C

T −1

(
sC , fC , sD, fD

)
, F D

T −1

(
sC , fC , sD, fD

)}
= F C

T −1

(
sC , fC , sD, fD

)
= qC,(x,i),1

(4.24)

Similarly, F
′C
T −1

(
s

′
C , f

′
C , sD, fD

)
= q

′

C,(x,i),1.

According to (4.23), since qC,(x,i),1 ≤ q
′

C,(x,i),1, then F C
T −1

(
sC , fC , sD, fD

)
≤

F
′C
T −1

(
s

′
C , f

′
C , sD, fD

). Hence, we have:

FT −1
(
sC , fC , sD, fD

)
= max

{
F

′C
T −1

(
s

′

C , f
′

C , sD, fD

)
, F D

T −1

(
sC , fC , sD, fD

)}
= F

′C
T −1

(
s

′

C , f
′

C , sD, fD

)
(4.25)

• et cetera.

First of all, at any given time epoch t, the value functions can be expressed
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in general form as follows:

F C
t

(
sC , fC , sD, fD

)
=qC,(x,i),1.

(
1 + Ft+1

(
sC + 1, fC , sD, fD

))
+ qC,(x,i),0.

(
0 + Ft+1

(
sC , fC + 1, sD, fD

))
F D

t

(
sC , fC , sD, fD

)
=qD,(x,i),1.

(
1 + Ft+1

(
sC , fC , sD + 1, fD

))
+ qD,(x,i),0.

(
0 + Ft+1

(
sC , fC , sD, fD + 1

))

according to our primary assumption Ft
(
sC , fC , sD, fD

) = F C
t

(
sC , fC , sD, fD

).
Second, we presume two conditions: s

′
C = sC + ŝ and f

′
C = fC − ŝ for the

history
(
s

′
C , f

′
C , sD, fD

)
in which ŝ ≥ 1. Then, the posterior probability, or in

other words the current belief of success for arm C can be written as follows:

q
′

C,(x,i),1 = s̃
′
C

s̃
′
C + f̃

′
C

= s̃C + ŝ

s̃
′
C + f̃

′
C

= s̃C

s̃
′
C + f̃

′
C

+ ŝ

s̃
′
C + f̃

′
C

=qC,(x,i),1 + ŝ

s̃
′
C + f̃

′
C

(4.26)

In turn, the value functions corresponding to the histories
(
sC , fC , sD, fD

)
and

(
s

′
C , f

′
C , sD, fD

)
of arm C by applying the equation (4.26) can be written

as follows:

F C
t

(
sC , fC , sD, fD

)
=qC,(x,i),1.

(
1 + Ft+1

(
sC + 1, fC , sD, fD

))
+ qC,(x,i),0.

(
0 + Ft+1

(
sC , fC + 1, sD, fD

)) (4.27)
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F
′C
t

(
s

′

C , f
′

C , sD, fD

)
= q

′

C,(x,i),1.
(

1 + Ft+1
(
s

′

C + 1, f
′

C , sD, fD

))
+ q

′

C,(x,i),0.
(

0 + Ft+1
(
s

′

C , f
′

C + 1, sD, fD

))
=

(
qC,(x,i),1 + ŝ

s̃
′
C + f̃

′
C

)
.
(

1 + Ft+1
(
sC + ŝ + 1, fC − ŝ, sD, fD

))

+
(

qC,(x,i),0 − ŝ

s̃
′
C + f̃

′
C

)
.
(

0 + Ft+1
(
sC + ŝ, fC − ŝ + 1, sD, fD

))
(4.28)

If we show that F C
t

(
sC , fC , sD, fD

)
< F

′C
t

(
s

′
C , f

′
C , sD, fD

), then one can sim-

ply conclude that:

Ft

(
sC , fC , sD, fD

)
=max

{
F

′C
t

(
s

′

C , f
′

C , sD, fD

)
, F D

t

(
sC , fC , sD, fD

)}
=F

′C
t

(
s

′

C , f
′

C , sD, fD

)

which satisfies the Exploit for this case. To do so, we rearrange equations

above in order to have a convex combination of Ft+1s in the right hand sides:

F C
t

(
sC , fC , sD, fD

)
− qC,(x,i),1 = qC,(x,i),1.Ft+1

(
sC + 1, fC , sD, fD

)
+ qC,(x,i),0.Ft+1

(
sC , fC + 1, sD, fD

) (4.29)
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F
′C
t

(
s

′

C , f
′

C , sD, fD

)
− qC,(x,i),1

− ŝ

s̃
′
C + f̃

′
C

.
[
1 + Ft+1

(
sC + ŝ + 1, fC − ŝ, sD, fD

)

− Ft+1
(
sC + ŝ, fC − ŝ + 1, sD, fD

)]
= qC,(x,i),1.Ft+1

(
sC + ŝ + 1, fC − ŝ, sD, fD

)
+ qC,(x,i),0.Ft+1

(
sC + ŝ, fC − ŝ + 1, sD, fD

)
(4.30)

Lemma 4.1. For any given ŝ in the recursion (4.30), it can be concluded

that:

Ft+1
(
sC + ŝ, fC − ŝ+1, sD, fD

)
< Ft+1

(
sC + ŝ+1, fC − ŝ, sD, fD

)
∀ŝ (4.31)

Proof. Using Mathematical induction with an assumption for time epoch

t + 1 such that:

Ft+1
(
sC + ŝ, fC − ŝ + 1, sD, fD

)
< Ft+1

(
sC + ŝ + 1, fC − ŝ, sD, fD

)
∀ŝ

and considering backward induction, we need to prove:

Ft

(
sC + ŝ, fC − ŝ + 1, sD, fD

)
< Ft

(
sC + ŝ + 1, fC − ŝ, sD, fD

)
∀ŝ

According to the value function definition, we have:

Ft

(
sC + ŝ, fC − ŝ + 1, sD, fD

)
= max

{
F C

t

(
sC + ŝ, fC − ŝ + 1, sD, fD

)
, F D

t

(
sC + ŝ, fC − ŝ + 1, sD, fD

)}
(4.32)
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Ft

(
sC + ŝ + 1, fC − ŝ, sD, fD

)
= max

{
F C

t

(
sC + ŝ + 1, fC − ŝ, sD, fD

)
, F D

t

(
sC + ŝ + 1, fC − ŝ, sD, fD

)}
(4.33)

– Arm C comparison:

Using definition, value functions corresponding to arm C in the equa-

tions (4.32) and (4.33) can be written as follows:

F C
t

(
sC + ŝ, fC − ŝ + 1, sD, fD

)
= s̃C + ŝ

s̃C + f̃C + 1
.(

1 + Ft+1
(
sC + ŝ + 1, fC − ŝ + 1, sD, fD

))

+ f̃C − ŝ

s̃C + f̃C + 1
.(

0 + Ft+1
(
sC + ŝ, fC − ŝ + 2, sD, fD

))
F C

t

(
sC + ŝ + 1, fC − ŝ, sD, fD

)
= s̃C + ŝ + 1

s̃C + f̃C + 1
.(

1 + Ft+1
(
sC + ŝ + 2, fC − ŝ, sD, fD

))

+ f̃C − ŝ

s̃C + f̃C + 1
.(

0 + Ft+1
(
sC + ŝ + 1, fC − ŝ + 1, sD, fD

))

(4.34)

Applying some arithmetic simplifications and properties of inequalities,

namely: if a < b and c < d then a + c < b + d, together with the

induction assumption for time epoch t + 1, which mainly confirms that:

Ft+1
(
sC + ŝ + 1, fC − ŝ + 1, sD, fD

)
< Ft+1

(
sC + ŝ + 2, fC − ŝ, sD, fD

)
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Ft+1
(
sC + ŝ, fC − ŝ + 2, sD, fD

)
< Ft+1

(
sC + ŝ + 1, fC − ŝ + 1, sD, fD

)
it can be concluded that:

F C
t

(
sC + ŝ, fC − ŝ + 1, sD, fD

)
< F C

t

(
sC + ŝ + 1, fC − ŝ, sD, fD

)
(4.35)

– Arm D comparison:

Similarly, we can also set up the value functions of arm D in the equa-

tions (4.32) and (4.33) as below:

F D
t

(
sC + ŝ, fC − ŝ + 1, sD, fD

)
= qD,(x,i),1.

(
1 + Ft+1

(
sC + ŝ, fC − ŝ + 1, sD + 1, fD

))
+ qD,(x,i),0.

(
0 + Ft+1

(
sC + ŝ, fC − ŝ + 1, sD, fD + 1

))
F D

t

(
sC + ŝ + 1, fC − ŝ, sD, fD

)
= qD,(x,i),1.

(
1 + Ft+1

(
sC + ŝ + 1, fC − ŝ, sD + 1, fD

))
+ qD,(x,i),0.

(
0 + Ft+1

(
sC + ŝ + 1, fC − ŝ, sD, fD + 1

))

(4.36)

Due to the fact that the histories of arm D in both equations above are

the same, so are the posterior probabilities i.e., qD,(x,i),1 and qD,(x,i),0 in

the right hand sides. Recalling the induction assumption, we have:

Ft+1
(
sC + ŝ, fC − ŝ+1, sD +1, fD

)
< Ft+1

(
sC + ŝ+1, fC − ŝ, sD +1, fD

)
Ft+1

(
sC + ŝ, fC − ŝ+1, sD, fD +1

)
< Ft+1

(
sC + ŝ+1, fC − ŝ, sD, fD +1

)
which leads to us concluding that:

F D
t

(
sC + ŝ, fC − ŝ + 1, sD, fD

)
< F D

t

(
sC + ŝ + 1, fC − ŝ, sD, fD

)
(4.37)
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Finally, considering (4.35) and (4.37) results that:

max
{

F C
t

(
sC + ŝ, fC − ŝ + 1, sD, fD

)
,F D

t

(
sC + ŝ, fC − ŝ + 1, sD, fD

)}
<

max
{

F C
t

(
sC + ŝ + 1, fC − ŝ, sD, fD

)
,F D

t

(
sC + ŝ + 1, fC − ŝ, sD, fD

)}

and therefore, Ft

(
sC +ŝ, fC −ŝ+1, sD, fD

)
< Ft

(
sC +ŝ+1, fC −ŝ, sD, fD

)
∀ŝ,

which confirms that the induction assumption is true.

Now, recalling convex combination properties together with lemma 1, and

considering the fact that qC,(x,i),1 and qC,(x,i),0 are the posterior probabilities

(weights in weighted mean) in the equation (4.29) and (4.30), we have:

F C
t

(
sC , fC , sD, fD

)
− qC,(x,i),1 = qC,(x,i),1.Ft+1

(
sC + 1, fC , sD, fD

)
+ qC,(x,i),0.Ft+1

(
sC , fC + 1, sD, fD

)
< Ft+1

(
sC + 1, fC , sD, fD

) (4.38)

F
′C
t

(
s

′

C , f
′

C , sD, fD

)
− qC,(x,i),1

− ŝ

s̃
′
C + f̃

′
C

.
[
1 + Ft+1

(
sC + ŝ + 1, fC − ŝ, sD, fD

)

− Ft+1
(
sC + ŝ, fC − ŝ + 1, sD, fD

)]
= qC,(x,i),1.Ft+1

(
sC + ŝ + 1, fC − ŝ, sD, fD

)
+ qC,(x,i),0.Ft+1

(
sC + ŝ, fC − ŝ + 1, sD, fD

)
> Ft+1

(
sC + ŝ, fC − ŝ + 1, sD, fD

)
(4.39)
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It is noteworthy to mention that for ŝ = 1 right hand sides of (4.38) and

(4.39) will be the same, and thereafter for any given ŝ > 1, according to the

lemma 1, we have:

Ft+1
(
sC + 1, fC , sD, fD

)
< Ft+1

(
sC + ŝ, fC − ŝ + 1, sD, fD

)
F C

t

(
sC , fC , sD, fD

)
− qC,(x,i),1 < F

′C
t

(
s

′

C , f
′

C , sD, fD

)
− qC,(x,i),1

− ŝ

s̃
′
C + f̃

′
C

.

[
1 + Ft+1

(
sC + ŝ + 1, fC − ŝ, sD, fD

)
− Ft+1

(
sC + ŝ, fC − ŝ + 1, sD, fD

)]
F C

t

(
sC , fC , sD, fD

)
< F

′C
t

(
s

′

C , f
′

C , sD, fD

)
− ŝ

s̃
′
C + f̃

′
C

.
[
1 + δ

]

(4.40)

where δ is positive value quantifying the difference of value functions for two

neighbour time epochs. Finally, the last line of (4.40) implies that:

F C
t

(
sC , fC , sD, fD

)
< F

′C
t

(
s

′
C , f

′
C , sD, fD

)
.

4.6.2 Proofs of the main results

Proof. of Theorem (4.1): Let Yk(t) represent the random variable (and yk(t) the

realization) of the response at time epoch t ∈ T corresponding to arm k ∈ K.

Denote by k(t) ∈ K the actual assigned arm at each time epoch t. The 2 × t

matrix of the total information in the trial before time epoch t is as follows:

D(t − 1) =

 k(0) ... k(t − 1)

yk(0)(0) ... yk(t−1)(t − 1)

 (4.41)
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This information matrix keeps the record of allocations and responses from all

the previous time epochs, and thus plays a significant role in the allocation at

time epoch t. Consider that the responses follow a distribution with parameter

θk. After allocating and observing the response of time epoch τ , the likelihood

function for the parameter vector Θ = (θk)k∈K can be factorised as follows:

L(Θ|D(τ)) =
τ∏

t=0
fΘ

(
yk(t)(t)|k(t)

)
f

(
k(t)|D(t − 1)

)
(4.42)

Term f
(

k(t)|D(t − 1)
)

is the probability of allocating the subject to arm k(t)

at time epoch t conditional on previous information D(t − 1). According to the

standard likelihood theory (cf. Boos and Stefanski, 2013), and the fact that this

term does not depend on Θ since it is a known function of data, we can write

L(Θ|D(τ)) ∝
τ∏

t=0
fΘ

(
yk(t)(t)|k(t)

)
. (4.43)

Assuming that responses are independently Bernoulli distributed, the likelihood

function can be written as

L(Θ|D(τ)) ∝
∏
k∈K

θ
sk(τ)
k (1 − θk)fk(τ). (4.44)

It is well-known that if (Xk)k∈K are independent (not identically distributed) ran-

dom variables each having a Beta distribution with parameters αk, βk, then the

joint likelihood function for these observations is

L(α, β|X) ∝
∏
k∈K

Xαk−1
k (1 − Xk)βk−1. (4.45)
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The right-hand sides of the two proportionality-equations are equal when αk =

sk(τ) + 1 and βk = fk(τ) + 1, therefore the left-hand sides are proportional to each

other.

Proof. of Theorem (4.2): Applying the natural logarithm to obtain the log-likelihood

function,

l
(

Θ|D(τ)
)

:= ln
(

L
(
Θ|D(τ)

))
∝

∑
k∈K

[
sk(τ) ln(θk) + fk(τ) ln(1 − θk)

]
(4.46)

the critical points for sk(τ) + fk(τ) > 0 can be found using partial differentiation

with respect to θk :

∇
(

l
(
Θ|D(τ)

))
= 0 ⇒

∑
k∈K

∂
[
sk(τ) ln(θk) + fk(τ) ln(1 − θk)

]
∂θk

= 0

⇒
∑
k∈K

[∂
(

sk(τ) ln(θk)
)

∂θk

+
∂

(
fk(τ) ln(1 − θk)

)
∂θk

]
= 0

⇒ sk(τ)
θk

− fk(τ)
(1 − θk) = 0 ∀k ∈ K

⇒ θk = sk(τ)
sk(τ) + fk(τ) ∀k ∈ K

(4.47)

which for sk(τ) = fk(τ) = 0 is satisfied by any value in (0, 1), and for sk(τ) +

fk(τ) > 0 can be rearranged as sk(τ)
sk(τ)+fk(τ) . Due to the fact that the corresponding

Hessian matrix H, which is a diagonal matrix of size K, is negative-definite at θk,
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it can be shown θk is maxima ∀k ∈ K:

H
(
l
(
Θ|D(τ)

))
=



−
(

s1(τ)
θ1

2 + f1(τ)
(1−θ1)2

)
0 · · · 0

0 −
(

s2(τ)
θ2

2 + f2(τ)
(1−θ2)2

)
· · · 0

...
... . . . ...

0 0 · · · −
(

sK(τ)
θK

2 + fK(τ)
(1−θK)2

)



Proof. of Theorem (4.3): Note that the mode of the Beta distribution is



α − 1
α + β − 2 for α, β > 1

any value in (0, 1) for α = β = 1

{0, 1} for α, β < 1

0 for α ≤ 1, β > 1

1 for α > 1, β ≤ 1

(4.48)

and thus the equivalence holds under our assumption of sk(τ), fk(τ) ≥ 0, which

corresponds to α, β ≥ 1.

Proof. of Theorem (4.9): We start by using the definition of the covariance of two

random variables, Cov[X, Y ] = E[XY ] − E[X]E[Y ], to obtain

Cov
[
nk(τ) + ñk(0) + ṅ(τ), θ̃k(τ)

]
(4.49)

= E
[(

nk(τ) + ñk(0) + ṅ(τ)
)
θ̃k(τ)

]
− E

[
nk(τ) + ñk(0) + ṅ(τ)

]
E

[
θ̃k(τ)

]
(4.50)
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which after extracting E
[
θ̃k(τ)

]
gives

E
[
θ̃k(τ)] =

−Cov
[
nk(τ) + ñk(0) + ṅ(τ), θ̃k(τ)] + E

[(
nk(τ) + ñk(0) + ṅ(τ))

θ̃k(τ)
]

E
[
nk(τ) + ñk(0) + ṅ(τ)]

(4.51)

Subtracting θk from both sides and using the definition of the bias gives

Bias
[
θ̃k(τ)

]

=
−Cov

[
nk(τ) + ñk(0) + ṅ(τ), θ̃k(τ)

]
+ E

[(
nk(τ) + ñk(0) + ṅ(τ)

)
(θ̃k(τ) − θk)

]
E

[
nk(τ) + ñk(0) + ṅ(τ)

]
(4.52)

We will now continue with simplification of the second term of the numerator,

E
[(

nk(τ) + ñk(0) + ṅ(τ)
)
(θ̃k(τ) − θk)

]
= E

[(
nk(τ) + ñk(0) + ṅ(τ)

)
θ̃k(τ)

]
− E

[(
nk(τ) + ñk(0) + ṅ(τ)

)
θk

]
= E

[(
nk(τ) + ñk(0) + ṅ(τ)

) sk(τ) + s̃k(0) + ṡ(τ)
nk(τ) + ñk(0) + ṅ(τ)

]
− E

[(
nk(τ) + ñk(0) + ṅ(τ)

)
θk

]
= E

[
sk(τ) − nk(τ)θk

]
+ s̃k(0) − ñk(0)θk + ṡ(τ) − ṅ(τ)θk

= ñk(0)
(
θ̃k(0) − θk

)
+ ṅk(τ)

(
θ̇k(τ) − θk

)

(4.53)

which finally gives (4.18).
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4.6.3 Both-arms modification and overshooting

This section consists of simulation results obtained from two inappropriate mod-

ifications. The left-hand side represents a situation in which augmentations are

applied to both arms apart from being inferior or superior arm. The right-hand

side denotes an overshooting in positive axis which mainly happens due to assum-

ing 243 in ṡk(T ).
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(a)

(b)

(c)

(d)

Figure 4.6: Left-hand side: Applying augmentations on both arms
(

ṡk(T ) =

27
√

ln(T + 1)(θ̂k(T ))3, ḟk(T ) = 0, s̃k(0) = 0, f̃k(0) = 0
)

, and right-hand side:

Overshooting by too large constant
(

ṡk(T ) = 243
√

ln(T + 1)(θ̂k(T ))3, ḟk(T ) =

0, s̃k(0) = 0, f̃k(0) = 0
)

: (a) T=60 (b) T=120 (c) T=180 (d) T=240. x-axis: Bias
of estimator, y-axis: Covariance (Estimator, Sample Size).
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4.6.4 Results with Jeffreys prior

In this section, simulation results corresponding to Jeffreys prior are presented.

Note that, Jeffreys prior is used for both DP and efficiency estimation process

described in section (4.2). In this case, due to the fact that Jeffreys prior performs

better than the Bayes counterpart, it is quite obvious that results are usually as-

sociated with smaller negative bias values. Furthermore, table (4.2) shows the

assumed augmentation information in simulation set-up.

ṡk(T ) Prior belief Statistics

Fig. 4.7 RHS 0 Jeffreys Bayesian
LHS 0 - Frequentist

Fig. 4.8 RHS θ̃Mn
k (T ) Jeffreys Bayesian

LHS θ̂k(T ) - Frequentist

Fig. 4.9 RHS 4 ln(T + 1)(θ̂k(T ))2 - Frequentist
LHS ln(T + 1)θ̂k(T ) - Frequentist

Fig. 4.10 RHS 27
√

ln(T + 1)(θ̂k(T ))3 - Frequentist
LHS 9 ln(T + 1)(θ̂k(T ))3 - Frequentist

Table 4.2: Specifications of modifications
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(a)

(b)

(c)

(d)

Figure 4.7:
(

ṡk(T ) = 0, ḟk(T ) = 0, s̃k(0) = 0, f̃k(0) = 0
)

vs.
(

ṡk(T ) = 0, ḟk(T ) =

0, s̃k(0) = 1, f̃k(0) = 1
)

i.e.,
(

Frequentist MLE eq. (4.1)
)

vs.
(

Bayesian estimator

eq. (4.3)
)

: (a) T=60 (b) T=120 (c) T=180 (d) T=240. x-axis: Bias of estimator,
y-axis: Covariance (Estimator, Sample Size).



CHAPTER 4. ESTIMATION BIAS MITIGATION – POST TRIAL 95

(a)

(b)

(c)

(d)

Figure 4.8:
(

ṡk(T ) = θ̂k(T ), ḟk(T ) = 0, s̃k(0) = 0, f̃k(0) = 0
)

vs.
(

ṡk(T ) =

θ̂k(T ), ḟk(T ) = 0, s̃k(0) = 1/2, f̃k(0) = 1/2
)

: (a) T=60 (b) T=120 (c) T=180 (d)
T=240. x-axis: Bias of estimator, y-axis: Covariance (Estimator, Sample Size).
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(a)

(b)

(c)

(d)

Figure 4.9:
(

ṡk(T ) = ln(T + 1)θ̂k(T ), ḟk(T ) = 0, s̃k(0) = 0, f̃k(0) = 0
)

vs.(
ṡk(T ) = 4 ln(T + 1)(θ̂k(T ))2, ḟk(T ) = 0, s̃k(0) = 0, f̃k(0) = 0

)
: (a) T=60 (b)

T=120 (c) T=180 (d) T=240. x-axis: Bias of estimator, y-axis: Covariance (Es-
timator, Sample Size).
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(a)

(b)

(c)

(d)

Figure 4.10:
(

ṡk(T ) = 9 ln(T + 1)(θ̂k(T ))3, ḟk(T ) = 0, s̃k(0) = 0, f̃k(0) = 0
)

vs.(
ṡk(T ) = 27

√
ln(T + 1)(θ̂k(T ))3, ḟk(T ) = 0, s̃k(0) = 0, f̃k(0) = 0

)
: (a) T=60

(b) T=120 (c) T=180 (d) T=240. x-axis: Bias of estimator, y-axis: Covariance
(Estimator, Sample Size).



Chapter 5

Addressing the trade-off between

optimal cumulative reward and

unbiased estimation in sequential

experiments

5.1 Introduction

As opposed to the standard equal fixed randomisation (EFR) procedures, where al-

location probabilities are considered to be fixed during the trial, response-adaptive

randomisation (RAR) procedures update allocation probabilities as data is being

accrued. This feature of RAR procedures balances: (i) learning, i.e. identifying the

unknown interventions’ efficacies correctly, and (ii) earning, i.e. allocating subjects

to achieve the objectives during the experiment. For instance, in the clinical trials

context, RAR procedures maximise the patients’ welfare by reducing exposures to

98
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inferior treatment arms based on observed responses.

Conventionally, the design of (non-sequential) experiments, particularly in prac-

tice, is expressed based on a (EFR) procedure. EFR, also known as the randomised

controlled trial (RCT) in medicine, as the between-group comparison in social sci-

ences, or as the A/B testing in digital marketing, stands for procedures in which

allocation probabilities are fixed and equal during the trial. In turn, using data

obtained from EFR leads to an unbiased Maximum Likelihood Estimator (MLE)

for each intervention. However, this procedure is not optimal in terms of resource

allocation since half of the available resources have to be directed to the inferior

intervention. For example, when it comes to rare disease contexts, allocating a

less promising treatment arm to half of the patients is not logically appealing.

This paper considers the MLE to estimate the success probabilities from data

collected from a finite-horizon Bayesian Beta-Bernoulli two-armed bandit problem

with binary (success/failure) responses. This problem can be considered a fun-

damental model that usually appears per se or as a sub-problem in bandit-based

settings (Jacko, 2019b). Moreover, the standard allocation procedure in the design

of sequential experiments obtained by optimising the Bayesian multi-armed bandit

problem using dynamic programming (DP) achieves the Bayes-optimal cumulative

reward but leads to severely biased MLE.

As mentioned above, both EFR and RAR procedures offer some exclusive ad-

vantages, which in a sense might be mutually exclusive. In this chapter, we try to

achieve a balance between these advantages in a framework of the RAR procedure

as Williamson et al. (2017), Williamson et al. (2022). In chapter 4, we introduced

the novel augmented estimator by which the bias induced by DP adaptiveness can

be notably mitigated at the end of the trial, whilst this chapter aims to do so by
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developing novel dynamic modifications and procedures implemented within the

trial.

The literature on RAR has been diverse and well-developed ever since Thomp-

son (1933) and Robbins (1952) proposed it for the first time. Whilst Thompson

(1933) focused on subject benefit improvement by assuming a Bayesian setting,

so Robbins (1952) did for minimising variability in intervention efficacies. Some

RAR procedures which emerged after Robbins (1952) showed the “stay-with-a-

winner&switch-on-a-loser" rule performs better than EFR. For a comprehensive

list, see (Chow and Chang, 2008). Wei and Durham (1978) proposed the “ran-

domised play-the-winner" rule for the first time, and later Williamson et al. (2017)

compared the performance of this rule with some other adaptive designs against

EFR in a two-armed bandit setting with a binary endpoint. Preliminary results

tend to outperform the EFR in terms of subject benefit.

Multi-armed bandit problems (MABP), which nicely balance exploitation vs

exploration trade-off, play a pivotal role in the class of problems involving adaptive

designs. Bellman is among the pioneers who proposed a backward induction algo-

rithm to study the sequential design of experiments. Due to backwards induction’s

computational complexity, Gittins (1979) proposed an indexing algorithm called

Gittins Index, where allocations take place based on the highest up-to-date in-

dexes. For some RAR designs based on forward-looking Gittins Indices, see (Villar

et al., 2015b; Williamson and Villar, 2020), and (Ahuja and Birge, 2016). Whilst

Williamson and Villar (2020) propose a forward-looking Gittins index framework

for tackling multi-arm bandit models in which the responses are assumed contin-

uous and normally distributed, Ahuja and Birge (2016) using a forward-looking

algorithm in the Jointly Adaptive design formulated as the Bayes-adaptive Markov
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decision process, provide circumstances where one can learn from multiple patients

whilst randomised to multiple interventions simultaneously.

A huge stream of literature from clinical trials to social science and A/B test-

ing has focused on the two-armed bandit problem since it serves as the foundation

of multi-armed generalisations. For a comprehensive myths review and detailed

methodology as well as proposed unified terminology across disciplines, see (Jacko,

2019b). The two-armed bandit problem investigated with the Bayesian learning

procedure has been studied by Berry (1978) for the first time. Later, Berry and

Eick (1995) by extending the two-armed model, compared some RAR procedures

associated with the conflicting goals of patient well-being and high statistical po-

wer with EFR. To address the operational characteristics such as statistical power

or estimation bias whilst using traditional statistical inference, Cheng and Berry

(2007) proposed a constrained adaptive design. In fact, Cheng and Berry (2007) by

forcing randomisation over these deterministic decisions, ensure that subjects are

allocated to each intervention with a minimum probability of being chosen. Simi-

larly, Williamson et al. (2017) and Williamson et al. (2022) by introducing a family

of randomisation procedures referred to as Constrained Randomised Dynamic Pro-

gramming (CRDP), try to achieve a balance between operational characteristics

and subject benefit. The authors in Williamson et al. (2022) also provide an al-

ternative interpretation of CRDP as a bi-level randomisation procedure that can

be considered a non-myopic generalisation of the epsilon-greedy algorithm.

In the adaptive sequential experiments, the bias and the variance associated

with the estimation of intervention efficacies, i.e. “learning", are amongst criti-

cal measures. Skewing allocations to the superior intervention by updating the

randomisation probabilities as data accrue gives rise to not having enough obser-
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vations on the other intervention, and therefore the corresponding estimator will

be heavily biased. Hence, all classical estimators utilising data obtained by any

RAR procedures are biased. Bowden and Trippa (2017) showed that the maximum

likelihood estimator (MLE) under RAR procedures is biased for the sample mean

on which the parameter of interest is each arm’s efficacy. Nie et al. (2018) proved

that the MLE is associated with negative bias if the data collection procedure by

which the MLE is estimated satisfies certain conditions. Later, Shin et al. (2019a)

and Shin et al. (2019b) by categorising the sources of the estimation bias in any

adaptive procedures under the umbrella of adaptive sampling, adaptive stopping,

adaptive choosing, and adaptive rewinding, showed that, depending on the data

collection assumptions, MLE might be associated with positive bias as well as neg-

ative. A novel estimator called adaptively weighted augmented inverse-probability

weighting (IPW) is introduced by (Hadad et al., 2021). The authors also propose

a particular class of test statistics leading to asymptotically normally distributed

unbiased estimators to develop frequentist confidence intervals for interventions’

efficacy in adaptive experimental settings with normally distributed responses.

5.1.1 Our contribution

This chapter considers the MLE to estimate the success probabilities from data

collected from a finite-horizon Bayesian Beta-Bernoulli two-armed bandit prob-

lem with binary (success/failure) responses, explained in section 3.1. As opposed

to the approach introduced in chapter 4, in which estimations can be corrected

by selecting appropriate augmentations at the end of the trial, we propose two

novel allocation procedures that can correct the bias induced by the DP procedure
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during the trial. Taking into account that randomisation can potentially elimi-

nate estimation bias Rosenberger and Lachin (2015), we try to move away from

deterministic allocation baseline in DP procedure towards randomising actions

containing deterministic allocations (Williamson et al., 2017), (Williamson et al.,

2022). The contribution of our proposed procedures beyond existing literature can

be summarised as follows:

• A novel modification framework applying to the DP procedure using an

augmented estimator in order to overcome the passive-aggressive behaviour of

classical DP is introduced in section 5.2. As opposed to chapter 4, where we

modified MLE using appropriate augmented estimators, allocation decisions

are modified during the trial and at every step.

• We develop an RDP procedure for a two-armed bandit problem with binary

responses, where Bayes-optimal allocation decisions are perturbed at each

decision step. This procedure can be equivalently interpreted as so-called bi-

level randomisation. Moreover, the generalisation of the RDP procedure in

terms of constrained RDP (CRDP) and bi-level randomisation are proposed

by Williamson et al. (2017) and later Williamson et al. (2022) for the first

time in the literature.

• The inverse Probability Weighting (IPW) estimator and its normalised ver-

sion (nIPW) is evaluated in section 5.4. We show that the IPW and nIPW

estimators can be estimated unbiasedly using our proposed RDP procedure.

• In section 5.5, we provide a comparison of MLEs’ performance in some

purposefully-selected designs in terms of root mean squared error (RMSE).
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Results confirm that the estimator variability grows as the degree of ran-

domisation increases in the RDP procedures. By visualising the simulated

data on MLE using box plot, we compare the performance of this estimator

in our proposed designs with EFR and classical DP.

5.2 Response-Adaptive non-Randomised (RAnR)

procedure

The two-armed Bayesian Beta-Bernoulli model formulated in section 3.1 could be

exactly solved by DP. Since assuming deterministic actions in this model, it can

be known as a Response-Adaptive non-Randomised (RAnR) procedure. Moreover,

enumeration, by which all possible allocation sequences over a time horizon can be

determined, is the most striking feature of DP methods. Although DP suffers from

the curse of dimensionality and therefore classifies as a computationally intensive

method Bellman (1966), it is considered as a myopic allocation procedure in RAR

designs and any online learning strategies. On the other hand, DP is likened to

the passive-aggressive family of algorithms in Machine Learning, particularly for

some circumstances where the gap between interventions’ efficacy is not negligi-

ble. Being passive-aggressive means that when DP adheres to a seemingly superior

intervention after a few success responses, it will most likely continue allocating

subjects to that arm, which in turn gives rise to a relative lack of enough observa-

tions on the other arm. Subsequently, this severe shortage of response contributes

to MLE estimation being notably biased at the end of the trial. Moreover, the

essence of the action set defined in the above bandit model implies the passive-
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aggressive performance of DP. Based on the action set assumption, we can solely

have three different actions as follows:

(i) Action 1 (a = 1): the next subject allocates to arm C with pa
C = 1 and to

arm D with pa
D = 0

(ii) Action 2 (a = 2): the next subject allocates to arm C with pa
C = 0 and to

arm D with pa
D = 1

(iii) Action 3 (a = 3): the next subject allocates to arm C with pa
C = 1/2 and

to arm D with pa
D = 1/2

Except for the third action denoting a simple 50:50 randomisation when there

is no difference between interventions’ rewards, others are utterly deterministic.

Although in the next section we raise a point about randomised dynamic pro-

gramming (RDP), which can overcome the passive-aggressive property of DP to

a considerable extent, we now introduce a novel contribution called Optimistic on

Inferior DP (OIDP).

5.2.1 Optimistic on Inferior Dynamic Programming (OIDP)

The idea of the OIDP originates from the question: Is that possible to force DP

to pull the allegedly inferior intervention more frequently so that the number of

observations on that intervention increases, which, in turn, will imply that the

bias of the MLE will be mitigated most likely? In other words, we try to soften

the impact of the passive-aggressive behaviour on DP by making the seemingly

inferior intervention more attractive to assign. The question is finely answered

by changing the Bayes-expected number of successes on the inferior intervention,

which increases the expected total rewards, whilst the principle of optimality still
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holds. Hence, at each time epoch in the backward induction algorithm, a particular

pseudo-success response is applied to the intervention with a lower quantity of qk,x,1

in the equation (3.1). Bear in mind, at time epochs where there is no difference in

the interventions Bayesian posterior expectations and subsequently in the up-to-

date value functions, we do not apply modifications on q̃k,x,1. Thus, the expected

total rewards for both interventions remain the same. Let k denote the inferior

intervention at each time epoch. The modified qk,x,1 can be formulated as follows:

q̃k,x,1 = s̃k + ṡ

s̃k + f̃k + ṡ
, (5.1)

where ṡ is the pseudo-success responses. Although the optimal quantity of the

pseudo-success observation in order to have MLE unbiasedly estimated in the

assumed RAnR procedure is still unknown, we simulate some trials where the

pseudo-increments have been set to ṡ = 1, 2, and ln(t). Note that, ṡ = ln(t) is

known as dynamic increments, because of the fact that as the trial moves forward,

the larger pseudo-increments are applied to qk,x,1 corresponding to the inferior

intervention. Table 5.1 shows how one can develop an algorithm for the OIDP

procedure.

5.2.2 Subject Benefit

The idea of utilising OIDP in a trial design procedure can notably mitigate the

estimation bias, whereas it might adversely affect the subject benefit whilst the

impact is not appreciable. Tables 5.2 and 5.3 summarise the numerical results

of the subject benefit, defined as the average of aggregated success responses on

both interventions together with corresponding standard deviation at the end of
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Algorithm 1: OIDP procedure

Parameter: set up a positive ṡ.
for t = T − 1 to 0 do
enumerate all possible combinations of sC(t) + fC(t) + sD(t) + fD(t) = t.
calculate qC,x,1 and qD,x,1 for each combination obtained above.

if qC,x,1 > qD,x,1
replace qD,x,1 with q̃D,x,1 in (5.1).

elseif qC,x,1 < qD,x,1
replace qC,x,1 with q̃C,x,1 in (5.1).

else keep qC,x,1 and qD,x,1
determine the optimal arm using (3.5).
end if

end for

Table 5.1: OIDP procedure pseu-code

the trial. Hence, given a scenario, one can compare the subject benefit obtained

from different OIDP designs with one another. For instance, scenario (0.2, 0.8) in

two extreme trial sizes: T = 60 and T = 240, tends to show subject benefit of

46.89±3.35 and 190.69±6.376, respectively in the design with classical DP, whilst

it reduces to 45.83±3.48 and 188.84±6.72, respectively in the design with OIDP in

which ṡ = 1. Furthermore, the reduction rate is slightly higher if one considers the

design with OIDP in which ṡ = 2, 45.30 ± 3.71 and 187.87 ± 7, respectively. Note

that, owing to the performance of the natural logarithm function, the difference

between designs with OIDP where ṡ = 2 and ṡ = ln(t) is not noticeable in terms

of subject benefit. Despite infinitesimal increments happening in some scenarios,

which can be attributed to the error and uncertainty in simulation, for some other

cases, particularly those with identical success probabilities, the subject benefit

remains the same regardless of the modifications applied.

Although it can be concluded that the larger ṡ applying to OIDP designs leads
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to higher reductions in subject benefit and the estimation bias consequently, there

is no unique trend describing the relationship between the reduction of subject

benefit rate, the quantity of modification in OIDP, and the arm D effect. Note

that the trade-off between sacrificing the subject benefit in favour of mitigating the

estimation bias depends mostly on researchers and trial experts. Considering that

the overall reduction is negligible, the mentioned trade-off may vary in different

trial platforms.

5.2.3 Average Estimation Bias

As opposed to the loss of subject benefit upon applying modifications to OIDP, the

average estimation bias is notably reduced. Figure 5.2 illustrates the comparison

of estimation bias reduction between classical DP (left-hand side group of plots)

and OIDP where ṡ = 1 (right-hand side group of plots), as does figure 5.3 between

OIDP where ṡ = 2 ( left-hand side group of plots) and ṡ = ln(t) (right-hand side

group of plots). Because of the passive-aggressive performance of the classical DP,

both bias and covariance values tend towards large magnitudes. Although the bias

values remain more or less the same whilst the trial size increases, covariance values

increase noticeably. It is worth mentioning that the latter can be generalised to

all other RAR procedures proposed in this paper, as the covariance of sample size

(trial size) and the intended estimator is measured.

On the other hand, for those trial designs using OIDP, not only bias and

covariance has notably plummeted, but the scatteredness throughout different

scenarios and the arms has been significantly reduced. Figure 5.2 shows that

the estimation bias is declined by approximately 0.1 for all trial sizes when one
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moves away from the classical DP baseline to OIDP with ṡ = 1. It is discernible

that the gaps between the estimates for the arms’ efficacy (the gaps between stars

and circles) are notably reduced in each scenario.

Except for those scenarios where the actual efficacies are extreme, i.e. 0 and/or

1, a generic observation in both classical DP and OIDPs designs is that as the

difference in arm D effect grows, the gap in arms efficacies also widens. For

example, there is no gap in green circles and stars since they stand for scenarios

with equal success probabilities. In contrast, the gaps in blue circles and stars

are smaller than black ones since the arm D effect is 0.1 and 0.2 in blue and

black scenarios, respectively. Unlike the stars, which denote the research arm and

thus are less biased, circles exhibit larger bias quantities. This is mainly because

of the fact that in each scenario defined in this paper, θD is always considered

equal to or greater than θC . In turn, by taking into account the passive-aggressive

performance of DP based designs, circles are placed farther away than the stars

from origin. Note that attention must be paid to the fact that there is no direct

relationship between the variation in the location of marker shapes, i.e. stars and

circles, and the growing trend in success probabilities in scenarios, necessarily.

Hence, the numbers reported in the text may not be identifiable from the figures

but written based on numerical excel files.

To be more specific, we draw attention to those scenarios with an arm D

effect of 0.1 i.e. blue-colour stars and circles since there is a direct relationship

between the rate of growth of bias and covariance values and the magnitudes of

success probabilities. Hence, scenario (0.7, 0.8) exhibits the worst performance

amongst others (not even (0.8, 0.9) since either arm places relatively close to 1 and

therefore might be considered as an extreme efficacy) in all trial designs presented
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in figure 5.2. Applying equation (3.7) to the designs using classical DP (left-hand

side column of figures 5.2) the scenario (0.7, 0.8) estimated for (0.7 − 0.22, 0.8 −

0.13) = (0.48, 0.67) in T = 60, and (0.7 − 0.21, 0.8 − 0.06) = (0.49, 0.74) in T =

240. However, for the designs using OIDP with ṡ = 1 (right-hand side column of

figures 5.2), it is estimated for (0.7 − 0.11, 0.8 − 0.05) = (0.59, 0.75) and (0.7 −

0.09, 0.8 − 0.02) = (0.61, 0.78) in T = 60 and T = 240, respectively. The amount

of improvement on the MLE estimation process is more discernible in the designs

using OIDP with ṡ = 2 presented in figure 5.3, left-hand side column. As it can

be seen the scenario (07, 08) in this class of designs estimated for (0.7 − 0.09, 0.8 −

0.04) = (0.61, 0.76) and (0.7 − 0.06, 0.8 − 0.01) = (0.64, 0.79) in T = 60 and

T = 240, respectively. On the other hand, the variability of the designs using

OIDP with dynamic modifications, ṡ = ln(t), is relatively high, because of the fact

that ṡ values applied to equation (5.1) are not fixed, but change as time epochs

and/or the trial size shift. Moreover, utilising the backward induction algorithm in

the randomisation procedure incorporated into either DP or OIDP based designs

results in exerting more considerable pseudo-increments i.e. modifications at the

beginning of the trial rather than the middle or towards the end. Hence, it can

be seen from the figure 5.3 (right-hand side column) that the performance of the

designs using OIDP with dynamic modifications in some scenarios is slightly better

than the classical DP and other OIDP-based designs for all assumed trial sizes.

However, it is not comparably good for some other scenarios, particularly those

made up of smaller success probabilities. Figure 5.3 (right-hand side column) shows

that the scenario (0.7, 0.8) is estimated for (0.7 − 0.12, 0.8 − 0.03) = (0.61, 0.76)

and (0.7 − 0.07, 0.8 − 0.01) = (0.64, 0.79) for T = 60 and T = 240, respectively.
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5.3 Randomised Dynamic Programming (RDP)

In this section, we propose a randomisation framework to the DP procedure

whereby the passive-aggressive property can be mitigated significantly. On the

one hand, this procedure allows for tuning the involved parameters to meet the

overall and practical goals of the trial. On the other hand, it minimises the bias

of the MLE and subsequently achieves a decent level of accuracy and reliability.

As Chow and Liu (2008) discuss randomisation is a vital element in the design of

clinical trials. By forcing actions to be randomised throughout the DP procedure

at each time epoch, a fully randomised framework named randomised dynamic

programming (RDP) can be achieved. Williamson et al. (2017) is amongst the

pioneers of optimally designing trials using RDP. The first step towards formu-

lating RDP is taking the optimal action instead of the optimal arm at each time

epoch. Considering the two-armed Bayesian Betta-Bernoulli model described in

section 6.2, we define the following actions so that, at time epoch t + 1 a given

arm can be pulled with a probability of pk(t), whilst the other has an equivalent

complementary probability:

(i) Action 1 (a = 1): the next subject allocates to arm C with pC(t) and to

arm D with 1 − pC(t)

(ii) Action 2 (a = 2): the next subject allocates to arm D with pD(t) and to

arm C with 1 − pD(t)

(iii) Action 3 (a = 3): equally randomised between these two actions if there

is no difference between arms’ rewards

In turn, by updating the definition of actions and subsequently, corresponding

value functions, the expected total reward, i.e. the Bayes-expected number of
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success, for time epoch t + 1 to T can be as below when a = 1

F 1
t

(
sC , fC , sD, fD

)
= pC(t).F C

t

(
sC , fC , sD, fD

)
+

(
1 − pC(t)

)
.F D

t

(
sC , fC , sD, fD

)

and similarly when a = 2

F 2
t

(
sC , fC , sD, fD

)
=

(
1 − pD(t)

)
.F C

t

(
sC , fC , sD, fD

)
+ pD(t).F D

t

(
sC , fC , sD, fD

)

Therefore, an equivalent expression as (3.5) satisfies

Ft

(
sC , fC , sD, fD

)
= max

{
F 1

t

(
sC , fC , sD, fD

)
, F 2

t

(
sC , fC , sD, fD

)}
for 0 ≤ t ≤ T − 1,

Ft

(
sC , fC , sD, fD

)
= 0, otherwise.

It would be worth mentioning pk(t) referring to degree of randomisation is

defined by a set of parameters 0 ≤ pk(t) ≤ 1 for each arm k at each time

epoch 0 ≤ t ≤ T (Williamson et al., 2017) and (Williamson et al., 2022). Al-

though pk(t) may vary arm to arm and differ between time epochs, it is usually

set as a fixed parameter not only for both arms but also for the whole course

of the trial. In practice, trialists consider pk(t) no less than 0.5 and usually set

0.5 ≤ pk(t) ≤ 1, although this is not a theoretical obligation. Note that, assuming

pk(t) = 0.5 and pk(t) = 1 for both arms and throughout the trial, recovers equal

randomisation, EFR, and RAnR procedure, respectively. This study mainly fo-

cuses on RDP designs in which pk(t) = p = 0.9 for all trial sizes. Additionally,

we investigate those RDP designs where the different “degree of randomisation",

pk(t) = p = 0.6, 0.7, 0.8, is used for the trial size T = 60, merely. This study mainly

focuses on RDP designs in which pk(t) = p = 0.9 for all trial sizes. Additionally,
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we investigate those RDP designs where the different “degree of randomisation",

pk(t) = p = 0.6, 0.7, 0.8, is used for the trial size T = 60, merely. Note that we

are interested in setting p closer to 1 in order to not being exceedingly deviated

from the “exploitation" baseline. As a result, this leads to estimating MLE in a

less biased manner at the end of the trial.

5.3.1 Bi-level Randomisation- Alternative Interpretation

of RDP

There is an alternative interpretation of the RDP randomisation procedure pro-

posed by (Williamson et al., 2022). The RDP randomisation procedure is equiva-

lent to a situation when there are two parallel branches of the trial: a fixed branch

and an adaptive branch. In the first level of randomisation, and after the first cou-

ple of time epochs where both arms are deterministically pulled one after the other

(in this study, we set up all the simulation algorithms commencing in this way to

prevent trials from ending with no observation on each arm) each time epoch t is

randomised between either fixed or adaptive branches. Thus, it might be directed

towards the fixed branch with probability 2 − pC(t) − pD(t), or the adaptive one

with the complementary probability pC(t) + pD(t) − 1. In the second level, if time

epoch t has been diverted to the fixed branch, then the randomisation probabilities

to arm C and arm D will be 1 − pC(t) and 1 − pD(t), respectively. Otherwise, the

time epoch t has been directed to the adaptive branch where the allocation proce-

dure is deterministic, i.e. the allocation probabilities are either 0 or 1. In fact, the

allocation procedure follows the RDP matching actions depending on joint data Z
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available up to time epoch t. Thus, one of the following possibilities will happen

to the current time epoch t:

(i) under action 1: it allocates to arm C with probability 1 and to arm D with

probability 0

(ii) under action 2: it allocates to arm D with probability 1 and to arm C with

probability 0

(iii) under action 3: it equally randomises between two arms if there is no

difference between arms’ rewards

Note that, in this study, pk(t) values are considered to be fixed, equal for

both arms and determined before the trial, whilst they are time dependent in

general and can be different from arm to arm. Randomisation occurs uniformly

between arms throughout the fixed branch, resulting in the EFR procedure. Thus,

randomisation probabilities are considered 50% in a two-armed trial. Figure 5.1

below depicts the whole bi-level randomisation procedure described above.

State 𝒛 at time 𝑡 First level randomisation Second level randomisation Allocation 𝛿𝑗,𝑡

Treatment A

Treatment B

Patient 𝑡 + 1

Fixed branch

Adaptive branch

w.p. (1 − 𝑝𝐵,𝑡)/(2 − 𝑝𝐴,𝑡 − 𝑝𝐵,𝑡)

w.p. 1 if 𝑎𝑡(𝒛) = 2

Figure 5.1: Alternative interpretation of the RDP randomisation procedure

To provide a comprehensive insight into the merits and demerits offered by RDP

and the bi-level randomisation procedure, we classify after-trial results into three

categories: Observations obtained through (i) initial allocations, (ii) fixed branch,

and (iii) adaptive branch. Initial allocations refer to the prevention of not having
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any observation at the end of the trial (default assumption of all simulation set-

ups in this study). We group this category with the fixed branch since allocations

are deterministic with an equal ratio of 1:1. Furthermore, the synthesis of all

branches, which we call pooled data, is compared with the adaptive branch data

to demonstrate the effect of randomisation and bi-level procedure in reducing the

estimation bias. Figure 5.4 compares the adaptive branch data with corresponding

pooled data for all trial sizes. Figure 5.5, on the other hand, depicts the impact

of using the different degrees of randomisation on the estimation bias trend for

T = 60.

5.3.2 Subject Benefit

The left-hand side column of table 5.4 summarises the subject benefit information

from the RDP procedure with a degree of randomisation of 0.9 for all trial sizes.

Focusing on scenario (0.2, 0.8), we compare subject benefits stemming from RDP

design with classical DP counterparts presented in table 5.2. For two extreme

trial sizes, T = 60 and T = 240, classical DP design returns a subject benefit of

46.89 ± 3.35 and 190.69 ± 6.376, respectively, whereas it plummets to 43.55 ± 3.52

and 176.70 ± 6.86, in the RDP procedure, respectively. Also, in trial sizes T = 120

and T = 180 it plunges from 94.82 ± 4.58 and 142.76 ± 5.56 to 87.93 ± 4.589

and 132.32 ± 5.95. Although the reductions in subject benefits are significant, the

average estimation bias declined substantially. In other words, a higher level of

randomness gives rise to fewer success responses but more accurate estimation, i.e.

less bias at the end of the trial. Thus, we emphasise that it depends on researchers

and trialists to identify the extent to which they aim to sacrifice subject benefit in
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favour of mitigating bias.

The subject benefit information on RDP procedure with different randomi-

sation degrees is summarised on the right-hand side of table 5.4. The aim of

presenting this column is to see the effect of altering randomisation degrees on the

number of success responses at the end of the trial. The underlying trend in the

column labelled by “RDP with different p values for T = 60" is opposite of the

right-hand side one in table 5.4. In fact, as the assumed degrees of randomisation

become bigger and closer to 1 than 0.5, the trial design moves away from the EFR

baseline and becomes more adaptive. In turn, the number of success responses

and estimation bias noticeably increase. For instance, scenario (0.2, 0.8) results in

30 ± 3.85 and 40.18 ± 3.66 subject benefits when p = 0.5 and p = 0.8, respectively,

whilst it may be seen in figure 5.5 that the corresponding estimated efficacies are

associated with significant bias.

5.3.3 Average Estimation Bias

Figure 5.4 illustrates the average bias associated with the arms’ efficacies estima-

tion utilising adaptive branches results (left-hand side column of plots) and pooled

data (right-hand side column of plots) for designs with RDP where p = 0.9. Aside

from the fact that bigger trial sizes result in terminating the trial with more avail-

able observations and therefore less bias, the impact of randomness entailed in

the RDP procedure on average bias reduction and data variability is substantial.

For example, under scenario (0.7, 0.8) for T = 60, which has the highest bias

amongst other scenarios as we discussed in section 5.2.3, the bias is estimated as

(0.7 − 0.17, 0.8 − 0.08) = (0.53, 0.72) using data obtained from adaptive branch
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whilst it is estimated as (0.7 − 0.05, 0.8 − 0.03) = (0.65, 0.78) by pooled data. For

the case T = 240 it is also estimated as (0.7 − 0.14, 0.8 − 0.02) = (0.56, 0.78)

and (0.7 − 0.02, 0.8 − 0.01) = (0.78, 0.79) using adaptive branch and pooled data,

respectively. As a result, it can be concluded that the differences for larger trial

sizes under the RDP procedure are negligible.

Figure 5.5 also compares the average bias derived from the arms’ efficacies

estimation process using adaptive branch observation (left-hand side column of

plots) with pooled data (right-hand side column of plots). In this case, we presume

the trial size to be fixed at T = 60, and designs vary according to the assumed

degrees of randomisation. It is noteworthy that setting p = 0.5 results in an EFR

design as the randomisation procedure is ongoing with odds of 0.5 for both arms

at each time epoch. Hence, all estimation results presented in figure 5.5 part (a)

are unbiased in both adaptive branch and pooled data. As a matter of fact, as

the assumed degrees of randomisation become bigger and closer to 1 than 0.5,

the trial design moves away from the EFR baseline and becomes more adaptive.

Moreover, the intensity of becoming adaptive and acting passive-aggressive as the

degree of randomisation grows is notably higher in the adaptive branch than in

pooled data cases. For instance, scenario (0.7, 0.8) using pooled data in the design

with p = 0.6 is estimated as (0.7 − 0.01, 0.8 − 0.00) = (0.69, 0.8), whilst in the

design with p = 0.8 it comes to (0.7−0.02, 0.8−0.02) = (0.68, 0.78). Although the

differences in arms’ efficacies estimation using pooled data set might be negligible,

it is not the case when the estimation process is carried out in the adaptive branch.

For example, scenario (0.7, 0.8) is estimated as (0.7−0.08, 0.8−0.03) = (0.62, 0.77)

and (0.7 − 0.15, 0.8 − 0.06) = (0.55, 0.74) in the design with p = 0.6 and p = 0.8,

respectively.
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5.4 An Unbiased Estimator

In this section, we note the performance of the Inverse Probability Weighting

(IPW) estimator, which is usually considered a bias-corrected estimate for MLE

Bowden and Trippa (2017) and Hadad et al. (2021), and its normalised version

(nIPw) in designs with the RDP procedure. Since IPW utilises randomisation

probabilities in the estimation process, it can finely compensate for the lack of

observations in a randomised setting such as the RDP designs. Considering πk(t)

as randomisation probabilities at each time epoch t, then:

θ̂k,IP W = 1
T

T∑
t=1

δk(t)yk(t)
πk(t) , (5.2)

where Yk(t) represents the random variable (and yk(t) the realization) of the re-

sponse at time epoch t ∈ T corresponding to arm k ∈ K, and δk(t) stands for a

binary variable equalling 1 if time epoch t is allocated to arm k and 0 otherwise.

Note that the IPW estimator’s main drawback is its variability, which may go

beyond the acceptable range, i.e. larger than 1. Applying a constraint to over-

come this issue, the new estimator will not be unbiased anymore. Hence, we take

a similar approach as in Bowden and Trippa (2017) and normalise the IPW esti-

mator to shrink it to be within the unit interval. Denote by k(t) ∈ K the actual

assigned arm at each time epoch t such that δk(t)(t) ≡ 1, then, the “normalised"

IPW estimator (nIPW) is as follows:

θ̂k,nIP W = T θ̂k,IP W∑T
t=1

δk(t)
πk(t)(t)

(5.3)
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This study presents IPW and nIPW estimations using the RDP designs with

p = 0.9 for all trial sizes (see figure 5.6). It is worth mentioning that although

randomisation probabilities πk(t)(t) can be set in a time-varying manner, in both

(5.2) and (5.3) they are considered to be fixed for both arms during the course

of the trial. On the other hand, they follow one of the possibilities below at each

time epoch:

∀t ∈ T ∪{T}, πk(t)(t) = π =



0.5 if t ≤ 2 or no difference between arms’ rewards

0.1 if t randomised to up-to-date inferior arm

0.9 otherwise
(5.4)

Figure 5.6 (left-hand side column of plots) shows the bias of the IPW for the

RDP design with p = 0.9 for all trial sizes. Apart from the slight alterations in the

covariance axis (owing to utilising different trial sizes), all IPW estimators tend

to be unbiased. Similarly, figure 5.6 (right-hand side column of plots) represents

the resultant nIPW estimators associated with very little bias. However, as we

mentioned above, these estimators are associated with reasonably small variability

that is now constrained to (0, 1). Furthermore, it is evident that assuming a large

enough trial size can compensate for the bias of nIPW estimators, as we can see

throughout designs with T = 180 and T = 240. As a result, the performances of

both IPW and nIPW estimators in a randomised context can be considered almost

unbiased. In contrast, variability might be crucial in trialists’ and experts’ final

decisions in favour or against IPW and nIPW estimators.
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5.5 Root Mean Square Error (RMSE) and Data

Visualisation

In this section, we compare the performance of MLE in terms of quality and

variability in some proposed designs. The main focus will be on root mean square

error (RMSE) and box plots. Note that we evaluate the performances of proposed

design procedures by simulating a million replications of each trial and taking the

average values.

5.5.1 Root Mean Square Error (RMSE)

The RMSE can measure the quality and variability of an estimator since it has

the same units as the estimators themselves:

RMSE(θ̂) =
√
E

[(
θ̂ − θ

)2
]

. (5.5)

It can also be expressed as follows:

RMSE(θ̂) =
√

Bias(θ̂)2 + V ar(θ̂) (5.6)

Figure 5.7 compares the RMSE of the MLE, i.e. arm efficacy, as defined by

(5.5), in OIDP and RDP designs assuming T = 60. The left-hand column of the

plots illustrates the RMSE for OIDP designs with all proposed modifications, and

as does the right-hand side column for RDP with different degrees of randomi-

sations. Note that in figure 5.7 the horizontal axis represents scenarios (θC , θD)

and the vertical axis shows the corresponding RMSE values. In general, all RDP



CHAPTER 5. ESTIMATION BIAS MITIGATION – DURING TRIAL 121

designs together with classical DP (part a, left-hand side plot) exhibit relatively

large RMSE values, which can be attributed to the large estimation bias values we

discussed in section 5.2 (see Figures 5.2 and 5.3). A general observation pertinent

to the large estimation bias is that the gap between stars and circles increases as

the arm D effect increases. For example, the gaps in blue stars and circles, i.e.

scenarios in which the arm D effect 0.1, are smaller than those in black and purple

with arm D effect of 0.2 and 0.3, respectively. Although differences in RMSE and

variabilities amongst scenarios are relatively high in designs with DP and OIDP

procedures, compared to designs with RDP counterparts, the general expanding

trend related to the arm D effect can also be traced in the designs with RDP

procedures. Moving away from the EFR baseline by increasing the degrees of

randomisation, the variabilities in RMSE are also notably heightening. However,

moving from the classical DP baseline by applying appropriate ṡ to OIDP proce-

dures, the variabilities slightly reduce. According to equation (5.6), the variability

in RMSE is directly related to estimation bias induced in the MLE, which can be

attributed to the passive-aggressive performance of the DP algorithm (see section

5.2 figures 5.2, 5.3, and 5.5).

5.5.2 Data visualisation- Box plot

This section compares the diffusion of MLE estimations for a trial size T = 240

across the design using OIDP with ṡ = 2, RDP with p = 0.9, and EFR with the

design utilising classical DP. We draw the box plots for a range of scenarios in which

θC is fixed at 0.5, and θD varies from 0 to 1, i.e. (0.5, 0), (0.5, 0.1), (0.5, 0.2), ..., (0.5, 1).

Hence, the left-hand side of plots in figure 5.8 depicts arm C variations, as does the
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right-hand side for arm D. Note that the horizontal axis on both sides shows the

range of θD, whilst the vertical axis is set to be in the range of [0, 1]. Since arm C

is considered as the superior arm, for those scenarios where θD is less than 0.5, the

Inter Quartile Range (IQR) and second quartile, i.e. median, are almost the same

for arm C throughout the designs with classical DP, OIDP, and RDP. In fact, the

efficacy estimation process in the range of scenarios (0.5, 0), (0.5, 0.1), ..., (0.5, 0.4)

for arm C has the same dispersion distribution because of having a higher suc-

cess probability, whilst the estimation distribution for arm D depends on the level

of adaptiveness in the given design. For instance, the range of estimation dis-

tribution in the design with classical DP is wider than OIDP and RDP designs,

whilst the design with the RDP procedure tends to show a less dispersed estima-

tion distribution. Furthermore, for this range of scenarios, the second quartile,

i.e. median, is estimated lower than the actual efficacy, which can be interpreted

as a biased estimator. However, as OIDP and RDP designs move away from the

baseline of adaptiveness, median estimation becomes closer to the actual efficacies.

Note that the same trend in dispersion distribution of estimation process repeats

in the range of scenarios (0.5, 0.6), (0.5, 0.7), ..., (0.5, 1) if one replaces one arm

with another. Focusing on arm C estimation dispersion in scenario (0.5, 0.8), the

passive-aggressive performance of classical DP causes the third quartile to comply

with actual efficacy. In fact, the passive-aggressive property in the DP procedure

estimates MLE in up to %75 cases less than actual efficacy. However, the third

quartile in OIDP and RDP procedures moves above the actual efficacy, resulting

in less baised estimation. Hence, it can be concluded that applying modifications,

i.e. OIDP and amending the degree of randomisation, i.e. RDP, leads to less

baised estimation and less dispersed estimation distribution.
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Scenario (0.5, 0.5) returns the same dispersion distribution in all designs pre-

sented in figure 6 for both arms. However, the estimation distribution range re-

duces as the design moves away from the adaptiveness baseline (see figure 5.6 part

a to c). Note that estimating efficacy using the EFR procedure results in the same

dispersion distribution for both arms and the whole range of scenarios. This mainly

occurs because, in the EFR procedure, allocation ratios are pre-determined, and

therefore, the estimation process is unbiased (second quartiles comply with actual

efficacies).

5.6 Discussion

The EFR randomisation procedure gives rise to an unbiased estimate of the inter-

vention efficacy because of the fixed randomisation ratio and the pre-determined

sample size. However, it is not an efficient procedure design when there is a lim-

itation on in-trial subjects such as clinical trials designed for rare diseases. As

an alternative, the response-adaptive randomisation procedure allows for learning

about the intervention efficacy from up-to-date responses and therefore adjusting

allocation ratios in favour of superior interventions accordingly.

Response-adaptive randomisation designs are amongst sequential decision-making

procedures. These designs can be modelled by a classical two-armed bandit prob-

lem that exemplifies the tradeoff between exploration or learning vs. exploitation

or earning. In this chapter, using a Bayesian-Bernoulli two-armed problem with

binary responses, we propose a response-adaptive design to estimate interven-

tions’ efficacy by the Maximum Likelihood Estimator (MLE). However, due to the

passive-aggressive feature of dynamic programming in solving the model, MLE,
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which is calculated based on dynamic programming solutions, tends to be heavily

biased. To mitigate this bias in the intervention estimation process, we propose

two novel allocation procedures by modifying the allocation decision at every time

step.

In section 5.2, we evaluated a modified dynamic programming procedure, where

an augmented estimator is obtained by adding a number of pseudo-successes to

the inferior intervention is used, performed for different variations in pseudo ob-

servations. Results showed that larger values for pseudo observations give rise to

smaller values for estimation bias. However, a larger selection may result in miss-

ing subject benefit at the end of the trial. Hence, identifying the trade-off between

the loss of subject benefit and bias mitigation, and therefore setting a suitable

level of pseudo-observation to satisfy this trade-off, depends on the trialist and

researcher’s criteria.

In section 5.3, we applied a randomisation framework to the DP algorithm to

develop RDP, which perturbs the Bayes-optimal allocation decision with a given

probability called the degree of randomisation. Then, we showed that RDP could

be interpreted as a bi-level randomisation where two parallel branches of the trial,

a fixed branch and an adaptive branch are running at the same time, and each sub-

ject can be directed to either branch with pre-determined probabilities. Although

the idea of RDP and its being equivalent to bi-level randomisation procedure has

been proposed by Williamson et al. (2022) for trials considering delay and normally

distributed response, we developed RDP for trials where responses are observable

immediately and follow Bernoulli’s distribution. We provided the simulation re-

sults for different randomisation degrees (p = 0.6, 0.7, 0.8, 0.9) and different trial

sizes (T = 60, 120, 180, 240), all of which demonstrate a considerable reduction in
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bias, whilst the loss of subject benefit is negligible compared to OIDPs counter-

parts.

We used Julia programming language to code up all the models and proposed

designs on a laptop with 16 GB RAM. Julia is an efficient programming lan-

guage where syntaxes are implemented to allow for solving large trials via the DP

approach. For details, see (Jacko, 2019a). We used the same codes for all computa-

tions from chapter 4. Furthermore, four trial sizes (T = 60, 120, 180, 240) together

with 1 million simulation replications are assumed throughout all computations in

this paper.

Inverse Probability Weighting (IPW) estimator and its normalised version are

investigated in section 5.4, where the RDP procedure with p = 0.9 were used

to estimate the IPW estimator for all trial sizes. Simulation results returned an

unbiased estimator for all designs because, in the IPW estimation process, success

responses are weighted by allocation probabilities.

Limitations. RAR designs have been amongst hot topics and the centre of data

scientists’ attention over the last two decades, whilst they are not fully applica-

ble in all trial contexts and real-world trials. For instance, the assumption that

subject response will be instantly observable is not entirely realistic. Moreover, in

a Bayesian setting, evaluating frequentist operating characteristics like confidence

intervals and type I error can not be translated accordingly. In reality, trialists,

pharmaceutical companies and FDA are more interested in having insight into

frequentist characteristics than Bayesian counterparts.

Future work. For extensions of this work, finding the optimal ṡ in the OIDP

procedure can be considered as a potential area to improve the trade-off be-

tween bias reduction and the loss of subject benefit. To do so, we need to in-
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vestigate the DP algorithm mathematically and therefore modify the Bellman

equations accordingly. Another extension can be applied to the bi-level pro-

cedure by filtering observations based on the branch they obtained. We mean

defining an 8-dimensional vector of observations containing the success and fail-

ure responses on both arms for EFR and deterministic DP branches, i.e. x :=(
sC,EF R, fC,EF R, sD,EF R, fD,EF R, sC,DP , fC,DP , sD,DP , fD,DP

)
. Then, based on pos-

terior distribution calculated by the equation (3.1) using this vector, allocation

policies can be formed in such a way that the MLE estimates have minimum bias

and variability. Finally, all proposed procedures can be extended to the multi-

arm models, particularly those in which covariates can be added as extra arms.

However, computational complexity is a critical factor that often leads to imple-

mentation of trials with smaller sizes.
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(a)

(b)

(c)

(d)

Figure 5.2: The estimation bias and covariance reduction comparison in the design
with classical DP (left-hand side column) vs OIDP in which (ṡ = 1) (right-hand
side column) for varying trial sizes: (a) T = 60 (b) T = 120 (c) T = 180 (d)
T = 240. x-axis: Bias of MLE, y-axis: Covariance (MLE, Sample Size).



CHAPTER 5. ESTIMATION BIAS MITIGATION – DURING TRIAL 128

(a)

(b)

(c)

(d)

Figure 5.3: The estimation bias and covariance reduction comparison in the design
with OIDP in which (ṡ = 2) (left-hand side column) vs (ṡ = ln(t)) (right-hand side
column) for varying trial sizes: (a) T = 60 (b) T = 120 (c) T = 180 (d) T = 240.
x-axis: Bias of MLE, y-axis: Covariance (MLE, Sample Size).
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(a)

(b)

(c)

(d)

Figure 5.4: RDP procedure (bi-level randomisation): adaptive branch vs. pooled
data: (a) T = 60 (b) T = 120 (c) T = 180 (d) T = 240. x-axis: Bias of MLE,
y-axis: Covariance (MLE, Sample Size).
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(a)

(b)

(c)

(d)

Figure 5.5: RDP procedure (bi-level randomisation) with different degrees of ran-
domisation for T = 60: adaptive branch vs. pooled data: (a) P = 0.5 (b) P = 0.6
(c) P = 0.7 (d) P = 0.8. x-axis: Bias of MLE, y-axis: Covariance (MLE, Sample
Size).
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(a)

(b)

(c)

(d)

Figure 5.6: IPW vs. nIPW estimated in the designs using RDP procedure where
p = 0.9: (a) T = 60 (b) T = 120 (c) T = 180 (d) T = 240. x-axis: Bias of the
estimator, y-axis: Covariance (Estimator, Sample Size).



CHAPTER 5. ESTIMATION BIAS MITIGATION – DURING TRIAL 132

(a)

(b)

(c)

(d)

Figure 5.7: RMSE comparison for T = 60: OIDP designs with modifications vs.
RDP designs with different degrees of randomisations. (a) ṡ = 0 vs P = 0.6 (b)
ṡ = 1 vs P = 0.7 (c) ṡ = 2 vs P = 0.8 (d) ṡ = ln(τ + 1) vs P = 0.9. x-axis:
Scenario, y-axis: RSME.
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(a)

(b)

(c)

(d)

Figure 5.8: Box Plots comparison for T = 240: (a) Classical DP (b) OIDP with
ṡ = 2 (c) RDP with p = 0.9 (d) EFR. x-axis: Scenario.
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Classical DP OIDP (ṡ = 1)
(θC , θD) T=60 T=120 T=180 T=240 T=60 T=120 T=180 T=240

(0 , 0) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
(0 , 0.1) 4.57 ± 2.46 10.14 ± 3.49 15.91 ± 4.23 21.74 ± 4.84 3.86 ± 2.47 9.17 ± 3.66 14.80 ± 4.39 20.53 ± 5.00
(0 , 0.2) 10.31 ± 3.34 21.94 ± 4.60 33.73 ± 5.56 45.56 ± 6.37 9.37 ± 3.52 20.78 ± 4.76 32.41 ± 5.73 44.15 ± 6.55
(0 , 0.3) 16.29 ± 3.80 33.96 ± 5.22 51.74 ± 6.33 69.59 ± 7.26 15.28 ± 3.95 32.68 ± 5.39 50.32 ± 6.50 68.06 ± 7.43
(0 , 0.4) 22.37 ± 4.04 46.05 ± 5.57 69.85 ± 6.75 93.72 ± 7.75 21.28 ± 4.19 44.70 ± 5.73 68.33 ± 6.91 92.08 ± 7.91
(0 , 0.5) 28.51 ± 4.11 58.22 ± 5.68 88.03 ± 6.88 117.90 ± 7.90 27.34 ± 4.27 56.77 ± 5.85 86.42 ± 7.04 116.18 ± 8.06
(0 , 0.6) 34.68 ± 4.02 70.42 ± 5.55 106.27 ± 6.73 142.16 ± 7.74 33.46 ± 4.20 68.94 ± 5.76 104.58 ± 6.93 140.34 ± 7.95
(0 , 0.7) 40.85 ± 3.73 82.68 ± 5.21 124.53 ± 6.31 166.42 ± 7.23 39.61 ± 3.94 81.19 ± 5.43 122.85 ± 6.54 164.65 ± 7.50
(0 , 0.8) 46.99 ± 3.20 94.92 ± 4.50 142.87 ± 5.49 190.82 ± 6.33 45.74 ± 3.43 93.46 ± 4.74 141.20 ± 5.73 189.09 ± 6.59
(0 , 0.9) 53.03 ± 2.36 107.02 ± 3.31 161.01 ± 4.05 215.01 ± 4.68 51.86 ± 2.58 105.71 ± 3.57 159.58 ± 4.33 213.53 ± 4.96
(0 , 1) 59.00 ± 0.00 119.00 ± 0.00 179.00 ± 0.00 239.00 ± 0.00 58.00 ± 0.00 118.00 ± 0.00 178.00 ± 0.00 238.00 ± 0.00

(0.1 , 0.1) 6.00 ± 2.33 12.00 ± 3.29 18.00 ± 4.02 24.00 ± 4.65 6.00 ± 2.32 12.00 ± 3.28 18.00 ± 4.02 24.00 ± 4.65
(0.1 , 0.2) 10.26 ± 3.36 21.39 ± 5.07 32.87 ± 6.39 44.51 ± 7.45 9.96 ± 3.22 20.90 ± 4.81 32.22 ± 6.01 43.76 ± 6.98
(0.1 , 0.3) 15.99 ± 4.12 33.49 ± 5.75 51.22 ± 6.87 69.04 ± 7.78 15.33 ± 3.98 32.52 ± 5.60 50.04 ± 6.73 67.64 ± 7.70
(0.1 , 0.4) 22.11 ± 4.33 45.77 ± 5.84 69.57 ± 6.97 93.40 ± 7.95 21.23 ± 4.29 44.54 ± 5.88 68.08 ± 7.09 91.69 ± 8.12
(0.1 , 0.5) 28.33 ± 4.30 58.05 ± 5.80 87.85 ± 6.98 117.71 ± 7.98 27.31 ± 4.36 56.65 ± 5.96 86.21 ± 7.21 115.85 ± 8.27
(0.1 , 0.6) 34.56 ± 4.13 70.31 ± 5.62 106.14 ± 6.79 142.02 ± 7.79 33.45 ± 4.27 68.85 ± 5.86 104.44 ± 7.06 140.11 ± 8.11
(0.1 , 0.7) 40.78 ± 3.80 82.59 ± 5.24 124.45 ± 6.35 166.34 ± 7.27 39.62 ± 3.98 81.13 ± 5.51 122.76 ± 6.65 164.49 ± 7.63
(0.1 , 0.8) 46.94 ± 3.25 94.89 ± 4.53 142.82 ± 5.51 190.76 ± 6.35 45.78 ± 3.47 93.43 ± 4.81 141.12 ± 5.81 188.96 ± 6.69
(0.1 , 0.9) 53.03 ± 2.39 107.02 ± 3.34 161.00 ± 4.07 214.99 ± 4.69 51.92 ± 2.60 105.71 ± 3.61 159.48 ± 4.37 213.39 ± 5.03
(0.1 , 1) 59.05 ± 0.22 119.05 ± 0.22 179.05 ± 0.22 239.05 ± 0.22 58.04 ± 0.24 117.99 ± 0.16 177.86 ± 0.36 237.84 ± 0.43

(0.2 , 0.2) 12.00 ± 3.09 24.00 ± 4.38 36.01 ± 5.37 48.00 ± 6.19 12.01 ± 3.10 24.00 ± 4.38 36.00 ± 5.36 48.00 ± 6.19
(0.2 , 0.3) 16.13 ± 3.89 33.01 ± 5.92 50.25 ± 7.58 67.70 ± 8.99 15.95 ± 3.73 32.75 ± 5.57 49.93 ± 7.05 67.30 ± 8.28
(0.2 , 0.4) 21.78 ± 4.59 45.12 ± 6.63 68.80 ± 8.00 92.59 ± 9.08 21.32 ± 4.32 44.44 ± 6.15 67.89 ± 7.42 91.50 ± 8.46
(0.2 , 0.5) 28.00 ± 4.71 57.66 ± 6.36 87.46 ± 7.51 117.31 ± 8.45 27.30 ± 4.47 56.60 ± 6.10 86.12 ± 7.32 115.74 ± 8.35
(0.2 , 0.6) 34.35 ± 4.46 70.10 ± 5.89 105.93 ± 7.02 141.79 ± 7.97 33.46 ± 4.34 68.84 ± 5.91 104.38 ± 7.11 140.03 ± 8.16
(0.2 , 0.7) 40.65 ± 3.99 82.47 ± 5.36 124.33 ± 6.43 166.21 ± 7.33 39.65 ± 4.02 81.13 ± 5.53 122.72 ± 6.67 164.40 ± 7.67
(0.2 , 0.8) 46.89 ± 3.35 94.82 ± 4.58 142.76 ± 5.56 190.69 ± 6.38 45.83 ± 3.48 93.44 ± 4.83 141.08 ± 5.83 188.84 ± 6.72
(0.2 , 0.9) 53.03 ± 2.44 107.00 ± 3.36 160.99 ± 4.10 214.97 ± 4.70 51.98 ± 2.60 105.70 ± 3.63 159.40 ± 4.39 213.27 ± 5.07
(0.2 , 1) 59.10 ± 0.30 119.10 ± 0.30 179.10 ± 0.30 239.10 ± 0.30 58.07 ± 0.36 117.96 ± 0.31 177.74 ± 0.52 237.67 ± 0.65

(0.3 , 0.3) 17.99 ± 3.55 36.00 ± 5.02 54.00 ± 6.15 72.00 ± 7.10 18.00 ± 3.55 36.01 ± 5.01 54.00 ± 6.14 72.00 ± 7.10
(0.3 , 0.4) 22.05 ± 4.20 44.80 ± 6.41 67.89 ± 8.26 91.23 ± 9.85 21.95 ± 4.04 44.67 ± 6.04 67.76 ± 7.68 91.08 ± 9.05
(0.3 , 0.5) 27.67 ± 4.87 56.91 ± 7.15 86.51 ± 8.76 116.32 ± 9.99 27.36 ± 4.51 56.42 ± 6.47 85.92 ± 7.83 115.52 ± 8.90
(0.3 , 0.6) 33.96 ± 4.90 69.62 ± 6.65 105.43 ± 7.85 141.33 ± 8.77 33.44 ± 4.48 68.78 ± 6.12 104.34 ± 7.28 139.98 ± 8.28
(0.3 , 0.7) 40.41 ± 4.40 82.23 ± 5.78 124.11 ± 6.77 166.00 ± 7.62 39.67 ± 4.11 81.12 ± 5.58 122.71 ± 6.69 164.38 ± 7.67
(0.3 , 0.8) 46.77 ± 3.60 94.71 ± 4.75 142.65 ± 5.65 190.58 ± 6.46 45.88 ± 3.51 93.44 ± 4.82 141.05 ± 5.83 188.80 ± 6.71
(0.3 , 0.9) 52.99 ± 2.56 106.98 ± 3.42 160.97 ± 4.13 214.95 ± 4.74 52.04 ± 2.60 105.71 ± 3.62 159.35 ± 4.40 213.17 ± 5.06
(0.3 , 1) 59.15 ± 0.36 119.15 ± 0.36 179.15 ± 0.36 239.15 ± 0.36 58.12 ± 0.44 117.94 ± 0.45 177.63 ± 0.67 237.51 ± 0.81

(0.4 , 0.4) 24.00 ± 3.79 48.00 ± 5.37 72.01 ± 6.57 95.99 ± 7.59 24.00 ± 3.80 48.00 ± 5.38 72.00 ± 6.57 95.99 ± 7.58
(0.4 , 0.5) 28.02 ± 4.35 56.72 ± 6.66 85.73 ± 8.60 114.96 ± 10.32 27.96 ± 4.18 56.68 ± 6.27 85.72 ± 7.98 114.98 ± 9.45
(0.4 , 0.6) 33.65 ± 4.96 68.83 ± 7.39 104.44 ± 9.12 140.18 ± 10.46 33.45 ± 4.53 68.57 ± 6.54 104.06 ± 7.90 139.70 ± 8.98
(0.4 , 0.7) 40.02 ± 4.86 81.73 ± 6.66 123.58 ± 7.84 165.47 ± 8.76 39.63 ± 4.29 81.07 ± 5.82 122.66 ± 6.90 164.35 ± 7.82
(0.4 , 0.8) 46.53 ± 4.09 94.47 ± 5.30 142.42 ± 6.13 190.38 ± 6.89 45.90 ± 3.63 93.46 ± 4.88 141.07 ± 5.85 188.81 ± 6.70
(0.4 , 0.9) 52.92 ± 2.84 106.92 ± 3.63 160.90 ± 4.26 214.89 ± 4.84 52.11 ± 2.63 105.73 ± 3.62 159.34 ± 4.39 213.13 ± 5.04
(0.4 , 1) 59.20 ± 0.40 119.20 ± 0.40 179.20 ± 0.40 239.20 ± 0.40 58.18 ± 0.51 117.93 ± 0.56 177.56 ± 0.82 237.39 ± 0.95

(0.5 , 0.5) 29.99 ± 3.87 60.00 ± 5.48 89.99 ± 6.72 119.99 ± 7.74 29.99 ± 3.88 60.01 ± 5.47 90.00 ± 6.71 120.01 ± 7.75
(0.5 , 0.6) 34.03 ± 4.35 68.72 ± 6.70 103.71 ± 8.69 138.91 ± 10.44 34.01 ± 4.18 68.73 ± 6.28 103.79 ± 8.01 139.07 ± 9.50
(0.5 , 0.7) 39.70 ± 4.88 80.92 ± 7.35 122.53 ± 9.10 164.31 ± 10.45 39.59 ± 4.37 80.81 ± 6.30 122.34 ± 7.63 164.02 ± 8.64
(0.5 , 0.8) 46.14 ± 4.57 93.96 ± 6.27 141.92 ± 7.33 189.87 ± 8.17 45.86 ± 3.85 93.43 ± 5.16 141.05 ± 6.08 188.79 ± 6.90
(0.5 , 0.9) 52.73 ± 3.38 106.75 ± 4.19 160.74 ± 4.77 214.75 ± 5.25 52.18 ± 2.73 105.80 ± 3.67 159.40 ± 4.41 213.16 ± 5.04
(0.5 , 1) 59.25 ± 0.44 119.25 ± 0.43 179.25 ± 0.43 239.25 ± 0.43 58.28 ± 0.56 117.96 ± 0.65 177.55 ± 0.95 237.34 ± 1.06

(0.6 , 0.6) 36.00 ± 3.80 72.00 ± 5.36 108.00 ± 6.57 143.99 ± 7.58 36.00 ± 3.79 71.99 ± 5.36 107.99 ± 6.58 143.99 ± 7.59
(0.6 , 0.7) 40.05 ± 4.21 80.76 ± 6.54 121.78 ± 8.52 163.04 ± 10.24 40.07 ± 4.00 80.85 ± 6.07 121.98 ± 7.74 163.32 ± 9.20
(0.6 , 0.8) 45.79 ± 4.61 93.16 ± 6.98 140.87 ± 8.67 188.73 ± 9.98 45.82 ± 3.98 93.18 ± 5.72 140.81 ± 6.83 188.56 ± 7.71
(0.6 , 0.9) 52.40 ± 3.96 106.33 ± 5.23 160.36 ± 5.98 214.37 ± 6.61 52.20 ± 2.96 105.84 ± 3.91 159.47 ± 4.60 213.26 ± 5.17
(0.6 , 1) 59.29 ± 0.48 119.29 ± 0.47 179.30 ± 0.46 239.30 ± 0.46 58.41 ± 0.60 118.06 ± 0.72 177.65 ± 1.02 237.40 ± 1.12

(0.7 , 0.7) 42.00 ± 3.55 84.00 ± 5.02 125.99 ± 6.15 168.01 ± 7.10 41.99 ± 3.56 84.00 ± 5.02 125.99 ± 6.15 168.00 ± 7.10
(0.7 , 0.8) 46.10 ± 3.90 92.88 ± 6.14 140.03 ± 8.06 187.39 ± 9.73 46.18 ± 3.65 93.11 ± 5.56 140.35 ± 7.11 187.82 ± 8.42
(0.7 , 0.9) 52.10 ± 4.05 105.55 ± 6.22 159.38 ± 7.63 213.36 ± 8.57 52.18 ± 3.16 105.74 ± 4.45 159.46 ± 5.25 213.26 ± 5.88
(0.7 , 1) 59.30 ± 0.62 119.33 ± 0.52 179.33 ± 0.51 239.34 ± 0.50 58.59 ± 0.63 118.24 ± 0.74 177.88 ± 1.01 237.63 ± 1.11

(0.8 , 0.8) 48.00 ± 3.10 96.01 ± 4.38 144.01 ± 5.36 192.00 ± 6.19 48.01 ± 3.10 96.01 ± 4.38 144.00 ± 5.37 192.00 ± 6.20
(0.8 , 0.9) 52.31 ± 3.32 105.23 ± 5.43 158.43 ± 7.27 211.84 ± 8.89 52.39 ± 2.96 105.61 ± 4.54 159.13 ± 5.75 212.77 ± 6.77
(0.8 , 1) 59.18 ± 1.20 119.28 ± 0.91 179.33 ± 0.68 239.34 ± 0.61 58.84 ± 0.64 118.53 ± 0.73 178.26 ± 0.90 238.04 ± 1.00

(0.9 , 0.9) 54.00 ± 2.32 107.99 ± 3.29 162.01 ± 4.02 216.00 ± 4.65 54.00 ± 2.32 107.99 ± 3.29 162.00 ± 4.02 216.00 ± 4.64
(0.9 , 1) 58.83 ± 1.70 118.55 ± 2.66 178.62 ± 2.93 238.79 ± 2.79 59.11 ± 0.68 118.94 ± 0.67 178.80 ± 0.72 238.66 ± 0.80
(1 , 1) 60.00 ± 0.00 120.00 ± 0.00 180.00 ± 0.00 240.00 ± 0.00 60.00 ± 0.00 120.00 ± 0.00 180.00 ± 0.00 240.00 ± 0.00

Table 5.2: The numerical results of comparing classical DP vs OIDP in which
(ṡ = 1). Each cell is composed of the average number of success responses (first
component) added to/subtracted from the corresponding standard deviation (sec-
ond component) for each scenario (θC , θD) in all trial sizes T = 60, 120, 180, and
240
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OIDP [ṡ = 2] OIDP [ṡ = ln(t)]
(θC , θD) T=60 T=120 T=180 T=240 T=60 T=120 T=180 T=240

(0 , 0) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
(0 , 0.1) 3.39 ± 2.32 8.27 ± 3.76 13.79 ± 4.58 19.50 ± 5.18 2.86 ± 2.09 6.56 ± 3.68 11.27 ± 4.93 16.58 ± 5.74
(0 , 0.2) 8.50 ± 3.64 19.80 ± 4.94 31.38 ± 5.88 43.06 ± 6.69 7.16 ± 3.79 17.78 ± 5.45 29.12 ± 6.32 40.62 ± 7.07
(0 , 0.3) 14.37 ± 4.16 31.70 ± 5.55 49.24 ± 6.65 66.94 ± 7.57 13.07 ± 4.61 30.11 ± 5.92 47.49 ± 6.97 65.00 ± 7.89
(0 , 0.4) 20.40 ± 4.39 43.70 ± 5.87 67.26 ± 7.07 90.93 ± 8.06 19.44 ± 4.77 42.54 ± 6.18 65.94 ± 7.34 89.48 ± 8.35
(0 , 0.5) 26.53 ± 4.47 55.77 ± 6.01 85.38 ± 7.23 115.05 ± 8.23 25.87 ± 4.73 55.01 ± 6.23 84.44 ± 7.45 114.01 ± 8.46
(0 , 0.6) 32.74 ± 4.42 67.98 ± 5.95 103.61 ± 7.11 139.31 ± 8.13 32.34 ± 4.61 67.51 ± 6.11 103.00 ± 7.30 138.57 ± 8.30
(0 , 0.7) 39.03 ± 4.18 80.28 ± 5.61 121.95 ± 6.68 163.67 ± 7.66 38.92 ± 4.41 80.18 ± 5.82 121.70 ± 6.93 163.27 ± 7.84
(0 , 0.8) 45.37 ± 3.66 92.57 ± 4.89 140.29 ± 5.84 188.10 ± 6.72 45.70 ± 3.97 92.97 ± 5.13 140.58 ± 6.16 188.20 ± 6.99
(0 , 0.9) 51.69 ± 2.74 104.81 ± 3.65 158.62 ± 4.39 212.54 ± 5.05 52.53 ± 2.96 105.57 ± 3.79 159.41 ± 4.58 213.22 ± 5.27
(0 , 1) 58.00 ± 0.00 117.00 ± 0.00 177.00 ± 0.00 237.00 ± 0.00 59.00 ± 0.00 118.00 ± 0.00 178.00 ± 0.00 238.00 ± 0.00

(0.1 , 0.1) 6.00 ± 2.32 12.00 ± 3.29 18.00 ± 4.03 24.00 ± 4.64 6.00 ± 2.32 11.99 ± 3.29 18.00 ± 4.02 24.00 ± 4.65
(0.1 , 0.2) 9.60 ± 3.15 20.26 ± 4.76 31.42 ± 5.98 42.82 ± 6.98 9.11 ± 3.10 18.97 ± 4.79 29.43 ± 6.16 40.35 ± 7.31
(0.1 , 0.3) 14.58 ± 4.05 31.53 ± 5.77 48.90 ± 6.94 66.45 ± 7.94 13.49 ± 4.21 29.70 ± 6.25 46.75 ± 7.56 64.02 ± 8.60
(0.1 , 0.4) 20.37 ± 4.48 43.50 ± 6.12 66.93 ± 7.36 90.48 ± 8.42 19.28 ± 4.89 42.04 ± 6.63 65.22 ± 7.91 88.58 ± 9.07
(0.1 , 0.5) 26.47 ± 4.59 55.63 ± 6.20 85.08 ± 7.51 114.66 ± 8.59 25.64 ± 4.98 54.58 ± 6.64 83.84 ± 7.99 113.23 ± 9.14
(0.1 , 0.6) 32.69 ± 4.52 67.88 ± 6.12 103.37 ± 7.35 139.00 ± 8.42 32.15 ± 4.84 67.20 ± 6.46 102.52 ± 7.78 137.95 ± 8.91
(0.1 , 0.7) 38.98 ± 4.26 80.21 ± 5.74 121.76 ± 6.91 163.47 ± 7.89 38.80 ± 4.57 79.94 ± 6.09 121.34 ± 7.31 162.86 ± 8.33
(0.1 , 0.8) 45.31 ± 3.71 92.51 ± 5.00 140.18 ± 6.03 187.93 ± 6.88 45.58 ± 4.09 92.78 ± 5.32 140.32 ± 6.44 187.88 ± 7.35
(0.1 , 0.9) 51.61 ± 2.77 104.78 ± 3.74 158.60 ± 4.53 212.39 ± 5.16 52.45 ± 3.04 105.41 ± 3.90 159.20 ± 4.78 212.98 ± 5.51
(0.1 , 1) 57.87 ± 0.36 117.02 ± 0.30 177.02 ± 0.30 236.82 ± 0.51 58.94 ± 0.26 117.84 ± 0.43 177.83 ± 0.47 237.82 ± 0.48

(0.2 , 0.2) 12.00 ± 3.10 24.00 ± 4.38 36.00 ± 5.37 48.00 ± 6.20 12.00 ± 3.10 24.00 ± 4.39 36.01 ± 5.36 48.00 ± 6.20
(0.2 , 0.3) 15.70 ± 3.66 32.30 ± 5.44 49.33 ± 6.87 66.64 ± 8.07 15.31 ± 3.63 31.33 ± 5.41 47.84 ± 6.88 64.69 ± 8.11
(0.2 , 0.4) 20.72 ± 4.31 43.60 ± 6.17 66.90 ± 7.47 90.39 ± 8.53 19.86 ± 4.44 42.03 ± 6.56 65.00 ± 7.98 88.22 ± 9.12
(0.2 , 0.5) 26.56 ± 4.59 55.63 ± 6.26 85.01 ± 7.55 114.55 ± 8.63 25.66 ± 4.91 54.37 ± 6.75 83.49 ± 8.09 112.78 ± 9.27
(0.2 , 0.6) 32.72 ± 4.54 67.87 ± 6.15 103.29 ± 7.41 138.86 ± 8.51 32.07 ± 4.89 67.00 ± 6.57 102.18 ± 7.94 137.53 ± 9.15
(0.2 , 0.7) 38.99 ± 4.26 80.18 ± 5.78 121.67 ± 7.00 163.31 ± 8.01 38.70 ± 4.63 79.76 ± 6.19 121.06 ± 7.49 162.46 ± 8.64
(0.2 , 0.8) 45.30 ± 3.71 92.50 ± 5.05 140.12 ± 6.15 187.78 ± 7.00 45.51 ± 4.12 92.60 ± 5.41 140.06 ± 6.63 187.59 ± 7.65
(0.2 , 0.9) 51.56 ± 2.78 104.78 ± 3.79 158.54 ± 4.63 212.23 ± 5.27 52.37 ± 3.08 105.24 ± 4.00 158.96 ± 4.94 212.71 ± 5.75
(0.2 , 1) 57.77 ± 0.50 117.00 ± 0.51 176.99 ± 0.53 236.65 ± 0.74 58.88 ± 0.40 117.67 ± 0.65 177.62 ± 0.77 237.58 ± 0.82

(0.3 , 0.3) 18.00 ± 3.55 36.00 ± 5.02 54.00 ± 6.15 71.99 ± 7.11 18.00 ± 3.55 36.00 ± 5.01 54.01 ± 6.15 71.99 ± 7.09
(0.3 , 0.4) 21.76 ± 3.97 44.36 ± 5.87 67.35 ± 7.42 90.58 ± 8.74 21.46 ± 3.94 43.62 ± 5.80 66.20 ± 7.32 89.07 ± 8.62
(0.3 , 0.5) 26.89 ± 4.44 55.75 ± 6.37 85.07 ± 7.72 114.57 ± 8.81 26.21 ± 4.54 54.49 ± 6.63 83.46 ± 8.10 112.70 ± 9.25
(0.3 , 0.6) 32.83 ± 4.53 67.94 ± 6.19 103.32 ± 7.42 138.88 ± 8.48 32.13 ± 4.82 66.92 ± 6.59 102.07 ± 7.93 137.38 ± 9.06
(0.3 , 0.7) 39.05 ± 4.26 80.26 ± 5.75 121.67 ± 6.97 163.27 ± 7.98 38.66 ± 4.63 79.67 ± 6.19 120.89 ± 7.48 162.27 ± 8.60
(0.3 , 0.8) 45.32 ± 3.69 92.53 ± 5.03 140.09 ± 6.14 187.70 ± 7.01 45.44 ± 4.11 92.47 ± 5.41 139.87 ± 6.63 187.34 ± 7.67
(0.3 , 0.9) 51.55 ± 2.77 104.78 ± 3.79 158.50 ± 4.65 212.10 ± 5.29 52.29 ± 3.08 105.10 ± 4.02 158.73 ± 5.00 212.44 ± 5.82
(0.3 , 1) 57.71 ± 0.61 116.97 ± 0.70 176.91 ± 0.77 236.47 ± 1.00 58.81 ± 0.53 117.50 ± 0.81 177.38 ± 1.07 237.29 ± 1.15

(0.4 , 0.4) 24.00 ± 3.79 48.01 ± 5.37 72.01 ± 6.57 96.01 ± 7.58 24.00 ± 3.79 48.00 ± 5.37 71.99 ± 6.58 96.01 ± 7.59
(0.4 , 0.5) 27.83 ± 4.11 56.44 ± 6.09 85.43 ± 7.70 114.66 ± 9.09 27.60 ± 4.07 55.85 ± 5.99 84.54 ± 7.53 113.51 ± 8.85
(0.4 , 0.6) 33.09 ± 4.43 68.01 ± 6.35 103.36 ± 7.67 138.91 ± 8.73 32.58 ± 4.51 67.06 ± 6.51 102.10 ± 7.93 137.40 ± 9.02
(0.4 , 0.7) 39.13 ± 4.27 80.33 ± 5.80 121.76 ± 6.97 163.36 ± 7.92 38.70 ± 4.56 79.62 ± 6.16 120.86 ± 7.40 162.20 ± 8.45
(0.4 , 0.8) 45.38 ± 3.69 92.63 ± 5.00 140.14 ± 6.08 187.70 ± 6.93 45.39 ± 4.10 92.39 ± 5.37 139.74 ± 6.53 187.19 ± 7.53
(0.4 , 0.9) 51.58 ± 2.76 104.84 ± 3.77 158.49 ± 4.64 212.02 ± 5.29 52.22 ± 3.07 105.01 ± 4.01 158.55 ± 4.96 212.20 ± 5.78
(0.4 , 1) 57.70 ± 0.70 116.96 ± 0.88 176.82 ± 1.00 236.29 ± 1.28 58.74 ± 0.63 117.36 ± 0.95 177.11 ± 1.36 236.97 ± 1.47

(0.5 , 0.5) 30.00 ± 3.87 60.00 ± 5.48 90.00 ± 6.71 119.98 ± 7.75 30.00 ± 3.87 60.00 ± 5.47 90.00 ± 6.72 120.00 ± 7.74
(0.5 , 0.6) 33.90 ± 4.09 68.56 ± 6.08 103.58 ± 7.70 138.84 ± 9.10 33.72 ± 4.07 68.13 ± 5.96 102.94 ± 7.50 137.98 ± 8.79
(0.5 , 0.7) 39.31 ± 4.23 80.36 ± 6.04 121.77 ± 7.30 163.36 ± 8.28 38.98 ± 4.33 79.68 ± 6.14 120.88 ± 7.41 162.25 ± 8.43
(0.5 , 0.8) 45.45 ± 3.77 92.73 ± 5.07 140.26 ± 6.10 187.81 ± 6.92 45.38 ± 4.06 92.35 ± 5.36 139.72 ± 6.44 187.18 ± 7.39
(0.5 , 0.9) 51.67 ± 2.77 104.97 ± 3.75 158.55 ± 4.60 212.06 ± 5.24 52.16 ± 3.06 104.98 ± 3.98 158.45 ± 4.90 212.05 ± 5.70
(0.5 , 1) 57.76 ± 0.78 117.02 ± 1.03 176.75 ± 1.22 236.17 ± 1.57 58.68 ± 0.68 117.28 ± 1.07 176.87 ± 1.61 236.67 ± 1.76

(0.6 , 0.6) 36.00 ± 3.80 72.01 ± 5.36 108.00 ± 6.57 144.01 ± 7.59 36.00 ± 3.79 72.01 ± 5.37 108.00 ± 6.57 144.00 ± 7.59
(0.6 , 0.7) 39.99 ± 3.92 80.74 ± 5.85 121.85 ± 7.42 163.17 ± 8.76 39.88 ± 3.91 80.45 ± 5.73 121.40 ± 7.19 162.58 ± 8.42
(0.6 , 0.8) 45.58 ± 3.81 92.80 ± 5.38 140.32 ± 6.45 187.93 ± 7.28 45.50 ± 3.93 92.41 ± 5.42 139.76 ± 6.49 187.27 ± 7.37
(0.6 , 0.9) 51.81 ± 2.86 105.16 ± 3.81 158.75 ± 4.59 212.29 ± 5.23 52.12 ± 3.07 105.04 ± 3.97 158.47 ± 4.82 212.10 ± 5.56
(0.6 , 1) 57.90 ± 0.84 117.18 ± 1.14 176.80 ± 1.36 236.23 ± 1.75 58.65 ± 0.69 117.30 ± 1.14 176.77 ± 1.74 236.50 ± 1.93

(0.7 , 0.7) 42.00 ± 3.55 83.99 ± 5.02 126.00 ± 6.14 167.99 ± 7.10 42.01 ± 3.55 84.00 ± 5.01 125.99 ± 6.15 168.00 ± 7.10
(0.7 , 0.8) 46.11 ± 3.54 93.03 ± 5.31 140.28 ± 6.75 187.72 ± 7.93 46.10 ± 3.56 92.85 ± 5.20 140.00 ± 6.50 187.39 ± 7.59
(0.7 , 0.9) 51.96 ± 2.97 105.38 ± 4.07 159.00 ± 4.84 212.64 ± 5.45 52.12 ± 3.08 105.18 ± 4.08 158.67 ± 4.86 212.31 ± 5.52
(0.7 , 1) 58.15 ± 0.85 117.50 ± 1.15 177.08 ± 1.37 236.61 ± 1.69 58.67 ± 0.65 117.49 ± 1.13 176.93 ± 1.66 236.62 ± 1.81

(0.8 , 0.8) 48.00 ± 3.10 96.00 ± 4.38 144.00 ± 5.37 192.00 ± 6.21 48.01 ± 3.10 96.00 ± 4.38 143.99 ± 5.36 192.01 ± 6.19
(0.8 , 0.9) 52.34 ± 2.84 105.54 ± 4.25 159.03 ± 5.35 212.67 ± 6.21 52.37 ± 2.88 105.43 ± 4.16 158.86 ± 5.15 212.48 ± 5.94
(0.8 , 1) 58.49 ± 0.81 117.99 ± 1.05 177.62 ± 1.21 237.30 ± 1.41 58.77 ± 0.58 117.88 ± 1.01 177.41 ± 1.37 237.09 ± 1.51

(0.9 , 0.9) 54.00 ± 2.32 108.00 ± 3.29 162.00 ± 4.03 216.01 ± 4.65 54.00 ± 2.32 108.00 ± 3.29 162.00 ± 4.03 216.00 ± 4.65
(0.9 , 1) 58.96 ± 0.70 118.66 ± 0.83 178.43 ± 0.92 238.24 ± 1.02 59.01 ± 0.55 118.49 ± 0.81 178.21 ± 0.99 237.98 ± 1.11
(1 , 1) 60.00 ± 0.00 120.00 ± 0.00 180.00 ± 0.00 240.00 ± 0.00 60.00 ± 0.00 120.00 ± 0.00 180.00 ± 0.00 240.00 ± 0.00

Table 5.3: The numerical results of comparing OIDP in which (ṡ = 2) vs
(ṡ = ln(t + 1)). Each cell is composed of the average number of success responses
(first component) added to/subtracted from the corresponding standard deviation
(second component) for each scenario (θC , θD) in all trial sizes T = 60, 120, 180,
and 240
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RDP with p = 0.9 RDP with different p values for T = 60
(θC , θD) T=60 T=120 T=180 T=240 p=0.5 p=0.6 p=0.7 p=0.8

(0 , 0) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
(0 , 0.1) 4.39 ± 2.36 9.62 ± 3.33 14.95 ± 4.03 20.31 ± 4.60 3.00 ± 1.69 3.41 ± 1.87 3.80 ± 2.05 4.14 ± 2.22
(0 , 0.2) 9.71 ± 3.17 20.45 ± 4.38 31.20 ± 5.29 41.97 ± 6.09 6.00 ± 2.32 7.02 ± 2.55 8.00 ± 2.76 8.92 ± 2.97
(0 , 0.3) 15.16 ± 3.61 31.33 ± 5.00 47.49 ± 6.07 63.68 ± 6.99 9.00 ± 2.76 10.62 ± 2.99 12.22 ± 3.21 13.75 ± 3.41
(0 , 0.4) 20.63 ± 3.87 42.21 ± 5.37 63.78 ± 6.54 85.40 ± 7.53 12.00 ± 3.08 14.22 ± 3.31 16.43 ± 3.51 18.60 ± 3.70
(0 , 0.5) 26.10 ± 3.97 53.08 ± 5.53 80.08 ± 6.75 107.07 ± 7.77 15.00 ± 3.33 17.83 ± 3.54 20.64 ± 3.71 23.43 ± 3.86
(0 , 0.6) 31.57 ± 3.95 63.96 ± 5.52 96.35 ± 6.74 128.76 ± 7.77 18.00 ± 3.53 21.43 ± 3.70 24.85 ± 3.82 28.25 ± 3.90
(0 , 0.7) 37.02 ± 3.80 74.80 ± 5.33 112.60 ± 6.52 150.42 ± 7.50 21.00 ± 3.66 25.02 ± 3.80 29.03 ± 3.86 33.05 ± 3.85
(0 , 0.8) 42.43 ± 3.50 85.63 ± 4.93 128.83 ± 6.04 172.04 ± 6.96 23.99 ± 3.75 28.62 ± 3.84 33.23 ± 3.82 37.84 ± 3.71
(0 , 0.9) 47.83 ± 3.03 96.44 ± 4.30 145.02 ± 5.26 193.63 ± 6.07 27.00 ± 3.80 32.22 ± 3.81 37.41 ± 3.69 42.63 ± 3.44
(0 , 1) 53.20 ± 2.29 107.20 ± 3.26 161.20 ± 4.00 215.20 ± 4.62 30.00 ± 3.81 35.80 ± 3.73 41.60 ± 3.49 47.40 ± 3.04

(0.1 , 0.1) 6.00 ± 2.32 12.00 ± 3.28 17.99 ± 4.03 24.01 ± 4.65 6.00 ± 2.32 6.00 ± 2.32 6.00 ± 2.32 6.00 ± 2.32
(0.1 , 0.2) 10.07 ± 3.23 20.86 ± 4.79 31.92 ± 5.96 43.10 ± 6.89 9.00 ± 2.77 9.30 ± 2.85 9.58 ± 2.96 9.83 ± 3.09
(0.1 , 0.3) 15.34 ± 3.89 31.90 ± 5.43 48.62 ± 6.51 65.37 ± 7.39 12.00 ± 3.10 12.89 ± 3.25 13.76 ± 3.44 14.59 ± 3.66
(0.1 , 0.4) 20.89 ± 4.11 43.02 ± 5.61 65.18 ± 6.74 87.34 ± 7.70 15.00 ± 3.35 16.54 ± 3.51 18.04 ± 3.68 19.52 ± 3.89
(0.1 , 0.5) 26.47 ± 4.13 54.04 ± 5.66 81.61 ± 6.85 109.20 ± 7.87 17.99 ± 3.54 20.17 ± 3.68 22.32 ± 3.83 24.44 ± 3.98
(0.1 , 0.6) 32.03 ± 4.03 65.01 ± 5.58 98.00 ± 6.78 130.98 ± 7.79 21.00 ± 3.67 23.79 ± 3.79 26.57 ± 3.89 29.32 ± 3.96
(0.1 , 0.7) 37.54 ± 3.83 75.91 ± 5.34 114.32 ± 6.50 152.70 ± 7.50 24.00 ± 3.77 27.40 ± 3.85 30.80 ± 3.88 34.19 ± 3.87
(0.1 , 0.8) 43.00 ± 3.49 86.79 ± 4.90 130.60 ± 5.98 174.39 ± 6.91 27.00 ± 3.82 31.01 ± 3.84 35.01 ± 3.80 39.01 ± 3.69
(0.1 , 0.9) 48.43 ± 2.99 97.63 ± 4.22 146.84 ± 5.17 196.02 ± 5.96 30.00 ± 3.83 34.61 ± 3.78 39.23 ± 3.64 43.84 ± 3.38
(0.1 , 1) 53.84 ± 2.19 108.45 ± 3.12 163.03 ± 3.82 217.63 ± 4.41 33.00 ± 3.80 38.21 ± 3.67 43.42 ± 3.39 48.64 ± 2.94

(0.2 , 0.2) 12.00 ± 3.10 24.01 ± 4.38 36.00 ± 5.37 48.01 ± 6.20 12.00 ± 3.10 12.00 ± 3.10 12.00 ± 3.10 12.00 ± 3.10
(0.2 , 0.3) 15.94 ± 3.74 32.52 ± 5.55 49.40 ± 6.98 66.43 ± 8.14 15.00 ± 3.35 15.25 ± 3.40 15.51 ± 3.49 15.73 ± 3.60
(0.2 , 0.4) 21.13 ± 4.29 43.55 ± 6.09 66.21 ± 7.30 88.93 ± 8.26 18.00 ± 3.55 18.82 ± 3.65 19.63 ± 3.81 20.41 ± 4.03
(0.2 , 0.5) 26.74 ± 4.40 54.82 ± 5.97 82.97 ± 7.11 111.14 ± 8.11 21.00 ± 3.69 22.48 ± 3.79 23.94 ± 3.94 25.38 ± 4.13
(0.2 , 0.6) 32.40 ± 4.22 65.96 ± 5.73 99.53 ± 6.89 133.11 ± 7.89 24.00 ± 3.79 26.13 ± 3.86 28.25 ± 3.94 30.36 ± 4.06
(0.2 , 0.7) 38.01 ± 3.93 76.98 ± 5.38 115.98 ± 6.53 154.93 ± 7.51 27.00 ± 3.84 29.77 ± 3.87 32.53 ± 3.89 35.29 ± 3.91
(0.2 , 0.8) 43.55 ± 3.52 87.93 ± 4.89 132.32 ± 5.95 176.70 ± 6.86 30.00 ± 3.85 33.40 ± 3.83 36.79 ± 3.76 40.18 ± 3.66
(0.2 , 0.9) 49.03 ± 2.95 98.82 ± 4.14 148.62 ± 5.06 198.41 ± 5.85 33.00 ± 3.82 37.01 ± 3.73 41.02 ± 3.56 45.02 ± 3.32
(0.2 , 1) 54.48 ± 2.09 109.68 ± 2.96 164.87 ± 3.63 220.07 ± 4.19 36.00 ± 3.75 40.62 ± 3.57 45.24 ± 3.27 49.85 ± 2.81

(0.3 , 0.3) 18.00 ± 3.55 36.00 ± 5.02 54.00 ± 6.16 72.00 ± 7.09 18.00 ± 3.55 18.00 ± 3.55 18.00 ± 3.55 18.01 ± 3.55
(0.3 , 0.4) 21.87 ± 4.03 44.35 ± 5.98 67.11 ± 7.52 90.04 ± 8.81 21.00 ± 3.69 21.24 ± 3.73 21.47 ± 3.80 21.67 ± 3.90
(0.3 , 0.5) 27.03 ± 4.49 55.34 ± 6.41 83.97 ± 7.69 112.64 ± 8.71 24.01 ± 3.79 24.80 ± 3.86 25.57 ± 3.99 26.32 ± 4.20
(0.3 , 0.6) 32.67 ± 4.47 66.74 ± 6.06 100.89 ± 7.17 135.03 ± 8.14 27.00 ± 3.84 28.46 ± 3.90 29.91 ± 4.01 31.31 ± 4.18
(0.3 , 0.7) 38.40 ± 4.11 77.95 ± 5.53 117.52 ± 6.62 157.08 ± 7.56 30.00 ± 3.87 32.13 ± 3.87 34.25 ± 3.91 36.34 ± 3.97
(0.3 , 0.8) 44.04 ± 3.60 89.02 ± 4.91 134.02 ± 5.95 178.97 ± 6.83 33.01 ± 3.84 35.78 ± 3.79 38.54 ± 3.73 41.30 ± 3.66
(0.3 , 0.9) 49.60 ± 2.94 100.00 ± 4.09 150.39 ± 4.97 200.78 ± 5.73 35.99 ± 3.77 39.41 ± 3.65 42.80 ± 3.48 46.21 ± 3.25
(0.3 , 1) 55.12 ± 1.97 110.91 ± 2.79 166.72 ± 3.42 222.50 ± 3.95 39.00 ± 3.66 43.03 ± 3.44 47.06 ± 3.12 51.08 ± 2.67

(0.4 , 0.4) 23.99 ± 3.79 48.01 ± 5.37 72.00 ± 6.58 96.00 ± 7.59 24.01 ± 3.79 24.00 ± 3.79 24.01 ± 3.80 24.01 ± 3.80
(0.4 , 0.5) 27.86 ± 4.16 56.27 ± 6.16 84.99 ± 7.76 113.90 ± 9.08 27.00 ± 3.85 27.23 ± 3.87 27.45 ± 3.93 27.66 ± 4.02
(0.4 , 0.6) 33.00 ± 4.50 67.30 ± 6.45 101.90 ± 7.72 136.58 ± 8.72 30.00 ± 3.87 30.79 ± 3.91 31.56 ± 4.02 32.30 ± 4.20
(0.4 , 0.7) 38.70 ± 4.33 78.77 ± 5.84 118.93 ± 6.88 159.07 ± 7.78 33.00 ± 3.85 34.46 ± 3.85 35.91 ± 3.91 37.33 ± 4.05
(0.4 , 0.8) 44.48 ± 3.76 90.05 ± 5.02 135.61 ± 6.00 181.17 ± 6.84 36.00 ± 3.78 38.14 ± 3.72 40.28 ± 3.68 42.39 ± 3.68
(0.4 , 0.9) 50.16 ± 2.96 101.14 ± 4.04 152.13 ± 4.90 203.11 ± 5.62 39.01 ± 3.68 41.80 ± 3.53 44.59 ± 3.37 47.37 ± 3.17
(0.4 , 1) 55.75 ± 1.85 112.14 ± 2.61 168.55 ± 3.19 224.93 ± 3.69 42.00 ± 3.52 45.43 ± 3.28 48.87 ± 2.95 52.31 ± 2.50

(0.5 , 0.5) 30.00 ± 3.87 60.00 ± 5.48 90.00 ± 6.71 120.00 ± 7.75 30.00 ± 3.87 30.00 ± 3.88 30.00 ± 3.87 30.00 ± 3.87
(0.5 , 0.6) 33.86 ± 4.14 68.28 ± 6.13 103.02 ± 7.70 137.89 ± 9.02 33.00 ± 3.85 33.23 ± 3.87 33.45 ± 3.92 33.65 ± 4.01
(0.5 , 0.7) 39.05 ± 4.35 79.38 ± 6.20 119.99 ± 7.40 160.67 ± 8.29 36.00 ± 3.79 36.80 ± 3.79 37.58 ± 3.88 38.34 ± 4.04
(0.5 , 0.8) 44.83 ± 3.95 90.93 ± 5.26 137.09 ± 6.18 183.21 ± 6.96 38.99 ± 3.69 40.49 ± 3.63 41.97 ± 3.63 43.43 ± 3.70
(0.5 , 0.9) 50.66 ± 3.06 102.25 ± 4.06 153.82 ± 4.86 205.36 ± 5.55 42.00 ± 3.54 44.17 ± 3.39 46.35 ± 3.25 48.51 ± 3.12
(0.5 , 1) 56.39 ± 1.71 113.38 ± 2.40 170.38 ± 2.93 227.36 ± 3.39 45.00 ± 3.34 47.83 ± 3.07 50.68 ± 2.75 53.53 ± 2.32

(0.6 , 0.6) 36.00 ± 3.80 72.00 ± 5.36 108.00 ± 6.56 144.01 ± 7.60 36.00 ± 3.80 36.00 ± 3.79 36.00 ± 3.79 36.00 ± 3.79
(0.6 , 0.7) 39.89 ± 3.96 80.37 ± 5.87 121.11 ± 7.35 162.03 ± 8.57 39.00 ± 3.69 39.24 ± 3.70 39.47 ± 3.74 39.69 ± 3.82
(0.6 , 0.8) 45.19 ± 3.99 91.64 ± 5.58 138.27 ± 6.62 184.96 ± 7.36 42.00 ± 3.55 42.83 ± 3.51 43.66 ± 3.54 44.45 ± 3.68
(0.6 , 0.9) 51.09 ± 3.21 103.26 ± 4.17 155.42 ± 4.90 207.52 ± 5.55 45.01 ± 3.34 46.55 ± 3.21 48.09 ± 3.11 49.61 ± 3.08
(0.6 , 1) 57.02 ± 1.55 114.60 ± 2.17 172.20 ± 2.64 229.77 ± 3.06 48.00 ± 3.08 50.24 ± 2.82 52.49 ± 2.50 54.75 ± 2.10

(0.7 , 0.7) 42.00 ± 3.54 84.00 ± 5.02 126.00 ± 6.15 168.00 ± 7.09 42.00 ± 3.54 42.01 ± 3.55 42.00 ± 3.55 42.00 ± 3.55
(0.7 , 0.8) 45.97 ± 3.61 92.56 ± 5.34 139.42 ± 6.65 186.39 ± 7.68 45.00 ± 3.35 45.26 ± 3.34 45.51 ± 3.37 45.75 ± 3.45
(0.7 , 0.9) 51.49 ± 3.27 104.12 ± 4.43 156.83 ± 5.12 209.49 ± 5.70 48.00 ± 3.10 48.91 ± 2.99 49.80 ± 2.95 50.67 ± 3.01
(0.7 , 1) 57.63 ± 1.38 115.81 ± 1.91 173.99 ± 2.32 232.16 ± 2.68 50.99 ± 2.76 52.64 ± 2.50 54.29 ± 2.20 55.95 ± 1.85

(0.8 , 0.8) 48.00 ± 3.10 96.00 ± 4.38 143.99 ± 5.36 192.00 ± 6.19 48.00 ± 3.10 48.00 ± 3.10 48.00 ± 3.09 48.00 ± 3.10
(0.8 , 0.9) 52.14 ± 2.96 104.95 ± 4.35 158.00 ± 5.31 211.14 ± 6.01 51.00 ± 2.77 51.31 ± 2.71 51.61 ± 2.72 51.89 ± 2.78
(0.8 , 1) 58.18 ± 1.25 116.97 ± 1.64 175.74 ± 1.97 234.49 ± 2.27 54.00 ± 2.32 55.03 ± 2.08 56.08 ± 1.83 57.13 ± 1.55

(0.9 , 0.9) 54.00 ± 2.33 108.00 ± 3.29 162.00 ± 4.02 216.00 ± 4.65 54.00 ± 2.32 54.01 ± 2.32 54.00 ± 2.32 54.00 ± 2.32
(0.9 , 1) 58.64 ± 1.22 118.02 ± 1.43 177.39 ± 1.60 236.68 ± 1.90 57.00 ± 1.69 57.43 ± 1.50 57.88 ± 1.33 58.29 ± 1.19
(1 , 1) 60.00 ± 0.00 120.00 ± 0.00 180.00 ± 0.00 240.00 ± 0.00 60.00 ± 0.00 60.00 ± 0.00 60.00 ± 0.00 60.00 ± 0.00

Table 5.4: The numerical results for RDP (bi-level randomisation) in which p = 0.9
for all trial sizes (right-hand side column) and RDP (bi-level randomisation) in
which T = 60 for different degrees of randomisation (left-hand side column). Each
cell is composed of the average number of success responses (first component)
added to/subtracted from the corresponding standard deviation (second compo-
nent) for each scenario (θC , θD)



Chapter 6

Extension to Trials with Early

Stopping

6.1 Introduction

Temporarily stopping a trial to perform planned interim analyses for safety, effi-

cacy, or futility is relatively common in the RAR procedures literature. The term

‘futility’ is used to refer to the inability of a clinical trial to achieve its objec-

tives. Frequentist hypothesis testing, where the efficacy of an experimental arm

is compared with the control one, is a crucial factor in formulating an interim

analysis. Bayesian testing approaches can also be allowed for interim studies with

more exact precision (Berry, 2005). However, providing a test statistic using the

Bayes factor is not as straightforward as in the frequentist counterpart (Pham-Gia

et al., 2017). Another essential element in the designs with interim analysis is set-

ting up appropriate stopping criteria by which a statistical inference can be firmly

obtained.

137
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From a more general point of view, sequential designs with interim inspections

are not only convenient to implement in practice but also raise the possibility that

a trial needs fewer subjects to reach a statistically significance test result (Jennison

and Turnbull, 1999; Wassmer and Brannath, 2016). However, recruiting less sub-

jects may result in efficacy estimation with either positive or negative bias. Since

the lack of observations gives rise to estimation with bias (even in RCT designs

with potential early stopping) Bauer et al. (2010) broadly discussed the trade-off

between the selection scheme determined in advance and the reporting bias to

overcome this sparsity of observed data in the trial designs with a planned interim

analysis. On the other side of the related literature, the sign and magnitude of the

bias, together with some certain natural monotonicity properties of conditional

bias of the rewards, e.g. the sample mean of each arm in MAB experiments, have

been thoroughly examined in Shin et al. (2019a,b), and Shin et al. (2020), respec-

tively. The authors of all three contributions show that the sign of the bias can

potentially depend on stopping rules as well as sampling and choosing rules that

are defined adaptively. Long before this, Starr and Woodroofe (1968) also showed

that under specific stopping circumstances, the sample mean can be positively

biased regardless of the actual efficacy. Last but not least, simulation results in

the study by Jiang et al. (2017) show that in Bayesian RAR settings, the Type I

error rate can be inflated depending on the frequency of implementing an interim

analysis. Hence, the critical boundaries should be carefully chosen to preserve the

Type I error rate for a given efficacy.

In this chapter, we first formulate a one-sided Frequentist hypothesis testing

where up-to-date arms’ MLEs are compared in our Bayesian-Bernoulli two-armed

problem. Then we develop some stopping criteria upon which a trial can be inter-
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rupted for a non-trivial interim analysis in the middle of the time horizon. It is

worth mentioning that we assume two different model cases: (i) Dynamic Pro-

gramming without Interim (DPWOI ): setting an interim analysis through

the simulation step whilst the classical DP solutions are used for estimation, (ii)

Dynamic Programming with Interim (DPWI ): setting an identical interim

inspection in both the DP and simulation step. Estimation results in section 6.5

are presented in three different trial categories for each model case. Also, we show

that the frequency of the false early stopping is inflated above the significance level

of the test in section 6.6 followed by some notes on subject benefits acquired from

model cases mentioned above.

6.2 Model

Recalling the backward induction algorithm used for solving the Bayesian-Bernoulli

two-armed model, see section 2.3.3, together with the fact that the model con-

verts to the probability tree when the allocation procedure implements with only

one arm, we run a hypothesis testing upon satisfying early stopping criteria once

the trial reaches the middle, i.e. t = T/2. The early stopping criteria and the

pertinent developmental process by which the intended requirements are getting

satisfied will be described in section 6.4.3. Now, suppose the trial reaches the

state x(t) when t = T/2 so that all possible combinations can be enumerated by

sC(t) + fC(t) + sD(t) + fD(t) = t. For those combinations satisfying the early

stopping criteria, the trial enters the hypothesis-testing phase, where it can be

terminated upon rejecting the null hypothesis or continue otherwise. It is evident

that rejecting the null hypothesis depends on the predetermined significance level
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α and, subsequently, the critical value zα for the one-sided test as we compare

up-to-date arms’ MLE. After entering the hypothesis-testing phase, the trial can

be directed towards two possible routes depending on the calculated z-statistic

value formulated in section 6.4.1.

Route 1 : the null hypothesis fails to reject; therefore, the trial continues to the

end, and the classical DP procedure can be applied accordingly.

Route 2 : the null hypothesis is rejected, and the trial stops early.

Now, we need to set up well-defined quantities for the corresponding value

functions at t = T/2. To do so, one can assume that stopping a trial early in

favour of the superior arm is equivalent to dropping the inferior arm in the middle

of the trial and continuing to allocate the superior one to the remaining subjects.

Hence, based on the probability tree drawing from t = T/2 to t = T for each arm,

the appropriate quantity for the value functions can be the multiplication of the

corresponding current beliefs, i.e. the Bayes-expected number of successes by the

number of remaining subjects, i.e. half of the trial size. The whole procedure can

be formulated as below:

For any given time epoch t < T/2 in all designs, and for all time epochs for those

designs that fail to stop early, under an optimal policy, the expected total reward,

i.e. the Bayes-expected number of successes, see section 3.1, can be calculated as
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follows:
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(6.1)

However, for the designs with early stopping at time epoch t = T/2, we have:
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(
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sC , fC , sD, fD

)
=qD,(x,i),1.

(
T/2

) (6.2)

where qk,(x,i),o represents the posterior probability of observing response o ∈ O for

arm k at time epoch t. See equation (3.1). Therefore, based on the principle of

optimality if a trial stops early we have:
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(6.3)

and if not we have
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(6.4)
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6.3 Simulation Set-up

The simulation set-ups and criteria used for this chapter are the same as for the

previous two. Also, we are evaluating the frequentist Maximum Likelihood Esti-

mator (MLE) and its bias formulated in the previous chapters. For details, please

see section 3.2. Note that we mainly focus on two types of model cases in this

study: (i)DPWOI : a design in which an interim analysis is performed in the sim-

ulation step only whilst the classical DP results are used, (ii) DPWI : a design in

which identical interim analysis conditions are applied in the DP and simulation

procedures. It is worth mentioning that MLE estimation results are given in three

different trial categories: (i) MLE results obtained from trials without stopping

early, i.e. the null hypothesis fails to reject, (ii) those estimated from trials with

early stopping owing to the rejection of the null hypothesis at interim, (iii) pooled

MLE results which are made up of the mixture of categories (i) and (ii).

6.4 Interim Analysis Characteristics

6.4.1 z-test

To begin with, we borrow the z statistic (pooled version) for comparing the differ-

ences in two proportions using the normal approximation offered by (Pham-Gia

et al., 2017). Using the observed responses obtained from the arms up to the mid-

dle of the trial, we implement a frequentist hypothesis test where the control arm

C is compared with the research arm D. In addition, we consider the following
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hypotheses: 
H0 : θC ≥ θD

Ha : θC < θD

(6.5)

As above, the null hypothesis is that the control arm C has the same or higher

efficacy, i.e. Bernoulli mean, than the research arm D. Hence, the z statistic, which

is a suitable test statistic for large samples binomial distribution approximated by

normal distribution, can be formulated as below:

Zst = θ̂C(τ) − θ̂D(τ)√√√√√
 sC(τ) + sD(τ)

nC(τ) + nD(τ)

1 − sC(τ) + sD(τ)
nC(τ) + nD(τ)

 1
nC(τ) + 1

nD(τ)


(6.6)

where τ = T/2 in this study. This test statistic could also be used when multiple

interim analyses are proposed by adapting the value of τ . Note that we run the

one-tailed hypothesis test above by comparing the z statistic with four different

standard Normal critical values corresponding to significance levels: α = 0.0025,

α = 0.005, α = 0.01, and α = 0.02, respectively. Furthermore, in this study, we

focus on RAR procedures where the trial size is set to T = 120 and T = 240 as

they are large enough to return a decent amount of observations to carry out the

z-test in the middle of the trial. In addition, these values underpin the use of

the Normal approximation, and also the results of those trials with early stopping

can be compared with the RAR procedures presented in the first chapter, where

T = 60 and T = 120.



CHAPTER 6. EXTENSION TO TRIALS WITH EARLY STOPPING 144

6.4.2 Stopping Criteria: Primary Set-up

Stopping a trial for an interim analysis by running a statistical hypothesis test

requires establishing criteria so that dividing by zeros is excluded in the z statistic

calculation. To do so, aside from the fixed initial allocations (applying in the

simulation step) assumed in our proposed designs, we let the necessary conditions

for stopping a trial at the middle have at least one observation on the summation

of successes and the summation of failures for both arms, i.e. sC(τ) + sD(τ) ≥ 1

and fC(τ) + fD(τ) ≥ 1 when τ = T/2. Typically, considering the stopping rule

together with fixed initial allocations guarantees that the denominator of equation

(6.6) will not be zero. By taking the defined stopping criteria into account, the

trial can be stopped early for some scenarios in which one can firmly conclude

about arms’ efficacies based on observed responses up to the interim inspection

point.

6.4.3 Stopping Criteria: Developmental Process

We begin with the model case DPWOI, and fix the trial size at 120 and the

significance level at α = 0.01. Figure 6.1 part (a) illustrates estimation results

corresponding to the trial that does not stop early (left-hand side) and the one

that terminates at the interim (right-hand side). For those stopping early, it is

evident that all stars show positive bias since we assume θC to be the inferior arm

and θD the superior one. In contrast, circles are placed in the negative part of

the bias axis with a relatively wide range. Focusing on the green cases (the null

scenarios, see 2.5), which stand for the scenarios with equal efficacies, i.e. θC = θD,

larger values of θC give rise to more negative bias as choosing larger values for
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efficacies causes the observation of more success responses in Bernoulli trials. In

turn, these heavily-negative bias estimations are happening because of the passive-

aggressive performance of DP when it continues sampling from a seemingly better

arm which returns some initial appealing responses. Thus, a lack of observations

on the other arm leads to even more negative bias estimations when the trial stops

in the interim.

On the other hand, in the left-hand side column of figure 6.1 part (a) represent-

ing completed trials, one can see that for some scenarios, the MLE of the inferior

arm is estimated with highly positive bias. Note that the MLE for most scenarios

are negatively estimated as it is typical in our assumed response-adaptive proce-

dure. Numerical investigations revealed that our proposed primary stopping cri-

teria estimate the MLE corresponding to the inferior arm to have heavily-positive

bias for the family of scenarios in which θD = 1 and a few of which θD = 0.9

(except for extreme cases, i.e. θC = 1 and θC = 0). For example, the violet circle

on the far right represents arm C in scenario (0.1, 1). Based on the bias equation

presented in the first chapter, it can be concluded that the MLE has been esti-

mated at 1 as the bias is valued at 0.9. Recalling the fixed initial allocations in

which arm C and arm D are deterministically allocated to the first and the second

time epochs, respectively, along with allocating either arm with a probability of

0.5 at the third time epoch, we expect θC = 0.1 to be estimated at 1 with a chance

of approximately 5% and 0 with 45%. That is, as arm C is allocated at the third

time epoch with a probability of 0.5, we expect to observe a success response in

10% of the time (θC = 0.1). This results in estimating MLE at 1 with a chance

of approximately 5%, i.e. 0.5 × 0.1 = 0.05. A similar explanation can be applied

to those 45% cases. For those scenarios where θC is close to 1 (black: 0.8 and
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blue: 0.9), this chance will be even more than 5% as the probability of observing a

success response increases. Less severe but similar circumstances can be applied to

the scenarios in which θD = 0.9 and θC ≤ 0.7. For example, the second pink circle

from the far right representing arm C in scenario (0.1, 0.9) tends to show a bias

of 0.4, resulting in estimating MLE at 0.5. Again, a similar reasoning mentioned

above can be used for justifying why the estimation bias is large and positive in

this case.

To fix the issue with heavily-positive biased observations, we implemented the

model DPWI by defining the new value functions and transitional probabilities

according to the equation (6.2). Figure 6.1 part (b) illustrates the estimation

results acquired from this type of design. Although some scenarios have been

slightly improved, those heavily-positive biased observations still appear in their

places. Comparing the information of the success and failure observations on both

arms in the interim with the end-of-the-trial counterparts for a given scenario,

we noticed that for most simulation replications where the number of success

observations on the inferior arm (arm C) is zero, the trial stops early. For those

replications without stopping early (mainly because of the smaller mean for the

other arm), the number of success observations remains zero at the end of the trial.

On the other hand, highly-positive biased estimations belong to the replications

where the number of success observations on the inferior arm (arm C) is not zero.

Hence, the trial does not stop early in these cases as the z-score is not as extreme

as the critical value. As a final alteration in formulating appropriate stopping

criteria, we force a trial to continue even if no success response has been observed

up to the interim point instead of stopping early. By doing so, we have quite a few

simulation replications where the MLE is estimated by 0 to decrease the average
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(a)

(b)

Figure 6.1: The estimation bias and covariance reduction comparison in the model
case (a) DPWOI, and (b) DPWI. Note that T = 120 and α = 0.01, and completed
trials (left-hand side) are compared with those stopped at the interim (right-hand
side). x-axis: Bias of the estimator, y-axis: Covariance (Estimator, Sample Size).

bias at the end of the trial. This alteration can ultimately remove all scenarios

with heavily-positive bias estimation (those with a 5% chance of MLE estimated at

1) by preventing the other 45% simulation replications from entering the interim

stage.

6.4.4 Stopping Criteria: Final Necessary Conditions

The final stopping criteria for the two-armed Bayesian Beta-Bernoulli model with

a planned interim analysis in the middle of the trial (τ = T/2) can be formulated
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as follows: 

sC(τ) + sD(τ) ≥ 1

fC(τ) + fD(τ) ≥ 1

sC(τ) ̸= 0 & fC(τ) ̸= 1

sD(τ) ̸= 0 & fD(τ) ̸= 1

(6.7)

Note that the above final conditions guarantee that not only do trials without

success observation fail to enter the interim analysis phase, but those where MLE

is estimated at 0 up to the interim inspection point are prevented from entering as

well. Considering the ultimate stopping criteria, we set up the one-tailed hypoth-

esis testing (6.5) with four different significance levels: α = 0.0025, α = 0.005,

α = 0.01, and α = 0.02, in both model cases DPWOI and DPWI with the sizes

of 120 and 240. The estimation results are presented in the following section.

6.5 Average Estimation Bias

In this section the estimation results are generally presented in three different trial

categories for T = 120 and T = 240:

• Trial category (i): completed trials, i.e. the null hypothesis fails to reject,

figures 6.2 and 6.5.

• Trial category (ii): trials terminated at interim, i.e. the alternative hy-

pothesis is statistically significant as the null is rejected, figures 6.3 and 6.6.

• Trial category (iii): pooling the first and the second categories, which is

called standard design, 6.4 and 6.7
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We also assumed two different model cases:

• (i) DPWOI : figures 6.2, 6.3, and 6.4.

• (ii) DPWI : figures 6.5, 6.6, and 6.7.

Simulation results presented in figures 6.2 to 6.7 generally show that the dif-

ferences in like-for-like designs for model cases (i) DPWOI and (ii) DPWI are

relatively small. For most scenarios, there is no change, or the changes are in-

finitesimal in a way that one might ignore them. On the other hand, comparing

trial categories (i) and (iii) in both DPWOI and DPWI reveals that the results

in the standard designs are slightly better than the equivalent completed trials

(trial category (i)) as there are some reductions in both bias and covariance values

(compare the blue colour scenarios). This mainly occurs because of the fact that

adding the second category results, which are usually associated with positive bias

values, can compensate for negative counterparts in the first category.

The effect of increasing the significance level of the hypothesis test in the in-

terim for trial category (i) is the inverse of trial category (ii). By comparing part

(a) with part (d) in figure 6.2, one can realise that using a larger significance level

α in the first category causes more trials to be rejected and consequently makes the

estimations slightly more negative in bias when it averages out over the number of

simulation replications. However, this increment in α has an almost reverse effect

(except for some extreme scenarios) in the second trial category, see figure 6.3.

In fact, assuming higher significance levels results in rejecting the null hypothesis

more frequently, which makes the estimation range tighter for trial category (ii),

and in both DPWOI and DPWI when it averages out over the number of simula-

tion replications. Note that the reason for having almost all circles in the negative



CHAPTER 6. EXTENSION TO TRIALS WITH EARLY STOPPING 150

part and stars in the positive part of the bias axis, along with those extreme sce-

narios, i.e. circles appearing in the positive part, has been explained in section

6.4.3.

Another interesting observation in the data illustrated in trial category (i)

and both DPWOI and DPWI is the null scenarios, i.e. scenarios in which arms’

efficacies are identical. Comparing plots through part (a) to part (d) ascertains

that the higher the significance level, the larger the gap between the star and circle

in several null scenarios. Consequently, these trials are now plotted in the trial

category (ii) instead. Although in the null scenarios in which θk ≤ 0.5, the gap can

be ignored as it is not appreciable, for those where θk is close to 1 the frequency

of false early stopping slightly inflates and goes beyond the significance level of

the test. The reason for the larger gaps observed in those null scenarios can be

attributed to the passive-aggressive property of the DP procedure. This property,

together with the frequency of false early stopping, is explained in section 6.6.

6.6 Percentage of False Early Stopping

In this section, we report some key points about the frequencies of rejecting the

null hypothesis in (6.5) and stopping the trial in the interim when the arm’s effi-

cacies are equal. Note that all numbers are obtained by averaging over the total

number of simulation replications which is set to 1 million. We call this phe-

nomenon the percentage of false early stopping. In other words, and equivalent to

the type I error rate, the percentage of false early stopping is the percentage of

erroneously rejecting the null hypothesis when it is statistically significant. Figure

6.8 illustrates the percentage of false early stopping in the model cases DPWOI



CHAPTER 6. EXTENSION TO TRIALS WITH EARLY STOPPING 151

(a)

(b)

(c)

(d)

Figure 6.2: The estimation bias and covariance reduction comparison in the model
case DPWOI, trial category (i), T = 120 vs T = 240: (a) α = 0.0025 (b) α = 0.005
(c) α = 0.01 (d) α = 0.02. x-axis: Bias of the estimator, y-axis: Covariance
(Estimator, Sample Size).
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(a)

(b)

(c)

(d)

Figure 6.3: The estimation bias and covariance reduction comparison in the model
case DPWOI, trial category (ii), T = 120 vs T = 240: (a) α = 0.0025 (b) α = 0.005
(c) α = 0.01 (d) α = 0.02. x-axis: Bias of the estimator, y-axis: Covariance
(Estimator, Sample Size).
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(a)

(b)

(c)

(d)

Figure 6.4: The estimation bias and covariance reduction comparison in the model
case DPWOI, trial category (iii), T = 120 vs T = 240: (a) α = 0.0025 (b)
α = 0.005 (c) α = 0.01 (d) α = 0.02. x-axis: Bias of the estimator, y-axis:
Covariance (Estimator, Sample Size).
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(a)

(b)

(c)

(d)

Figure 6.5: The estimation bias and covariance reduction comparison in the model
case DPWI, trial category (i), T = 120 vs T = 240: (a) α = 0.0025 (b) α = 0.005
(c) α = 0.01 (d) α = 0.02. x-axis: Bias of the estimator, y-axis: Covariance
(Estimator, Sample Size).
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(a)

(b)

(c)

(d)

Figure 6.6: The estimation bias and covariance reduction comparison in the model
case DPWI, trial category (ii), T = 120 vs T = 240: (a) α = 0.0025 (b) α = 0.005
(c) α = 0.01 (d) α = 0.02. x-axis: Bias of the estimator, y-axis: Covariance
(Estimator, Sample Size).



CHAPTER 6. EXTENSION TO TRIALS WITH EARLY STOPPING 156

(a)

(b)

(c)

(d)

Figure 6.7: The estimation bias and covariance reduction comparison in the model
case DPWI, trial category (iii), T = 120 vs T = 240: (a) α = 0.0025 (b) α = 0.005
(c) α = 0.01 (d) α = 0.02. x-axis: Bias of the estimator, y-axis: Covariance
(Estimator, Sample Size).
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(part a) and DPWI (part b) for various significance levels. It can be seen that

the alteration patterns in the percentage of false early stopping plots are almost

identical in DPWOI and DPWI for both trial sizes.

For the trial size of 120, and both parts (a) and (b), the percentage of false

early stopping in all scenarios is below the significance level of the test. Whilst for

the scenarios where 0.5 ≤ θk ≤ 0.9 the alteration trend dramatically inflates with a

maximum at θk = 0.8 for the significance levels α = 0.01, 0.02. However, the story

is slightly different for the designs with a trial size of 240. For the significance level

α = 0.02, the climax is still at θk = 0.8, whilst the percentage of false early stopping

goes above the significance level for this scenario. Furthermore, the percentage of

false early stopping also inflates beyond the significance levels α = 0.0025, 0.005,

and 0.01 in the scenario with θk = 0.9. This issue can be justified by the possibility

that the trial size of 240 can potentially provide a decent number of observations

for running hypothesis testing (6.5). On the other hand, sticking the DP procedure

to one arm in the null scenarios when the efficacy is close to 1 particularly gives

rise to rejecting the null hypothesis more frequently than the allowed boundary,

i.e. significance test level. To soften this passive-aggressive behaviour of the DP

procedure and subsequently correct the inflation of the percentage of false early

stopping, one may be interested in applying techniques introduced in chapter 5 of

this dissertation.

Table 6.1 reports the percentage of trials stopping early for all scenarios in

both model cases DPWOI and DPWI and for each significance level. All reported

numbers are rounded to three decimal places since the simulation error for our
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(a)

(b)

Figure 6.8: The percentages of false early stopping for various significance levels:
left-hand side T = 120 vs right-hand side T = 240. Part (a): DPWOI, and part
(b): DPWI. x-axis: Scenario, y-axis: Percentage.

Bayesian-Bernoulli two-armed model is fixed at 0.5%. As a general rule, numbers

reported for trial size 240 are larger than the like-for-like counterpart in trial size

120. For example, for scenario (0.2, 0.8), and significance levels at α = 0.005 and

0.02, the designs with the trial size 120 show that 2.08% and 6.963% in the model

case DPWOI , and 2.101% and 7.009% in DPWI of the trials stop early at interim

inspection. On the other hand, the like-for-like numbers for the trial size 240

are 3.471% and 10.819% in the model case DPWOI, and 3.494% and 10.896% in

DPWI, respectively.
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DPWOI [T = 120] DPWI [T = 120] DPWOI [T = 240] DPWI [T = 240]
PPPPPPPPP(θC , θD)

α 0.0025 0.005 0.01 0.02 0.0025 0.005 0.01 0.02 0.0025 0.005 0.01 0.02 0.0025 0.005 0.01 0.02

(0 , 0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0 , 0.1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0 , 0.2) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0 , 0.3) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0 , 0.4) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0 , 0.5) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0 , 0.6) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0 , 0.7) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0 , 0.8) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0 , 0.9) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0 , 1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(0.1 , 0.1) 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.011 0.000 0.000 0.002 0.010
(0.1 , 0.2) 0.000 0.001 0.008 0.048 0.000 0.001 0.009 0.053 0.005 0.023 0.084 0.393 0.004 0.020 0.083 0.401
(0.1 , 0.3) 0.003 0.012 0.078 0.345 0.003 0.012 0.072 0.350 0.052 0.169 0.498 1.718 0.053 0.160 0.506 1.702
(0.1 , 0.4) 0.020 0.067 0.288 1.011 0.020 0.065 0.286 1.009 0.176 0.424 1.105 3.293 0.169 0.444 1.103 3.314
(0.1 , 0.5) 0.076 0.204 0.621 1.833 0.070 0.207 0.610 1.849 0.304 0.715 1.693 4.521 0.300 0.719 1.730 4.579
(0.1 , 0.6) 0.176 0.431 1.005 2.724 0.173 0.425 1.000 2.740 0.504 1.038 2.331 5.944 0.495 1.035 2.337 5.926
(0.1 , 0.7) 0.421 0.789 1.625 3.520 0.422 0.796 1.629 3.551 0.772 1.527 3.088 6.619 0.759 1.534 3.091 6.605
(0.1 , 0.8) 0.857 1.250 2.345 4.035 0.864 1.258 2.337 3.996 1.193 2.049 3.762 6.087 1.191 2.061 3.774 6.092
(0.1 , 0.9) 1.180 1.642 2.394 2.824 1.178 1.642 2.375 2.806 2.232 2.826 3.318 3.619 2.228 2.824 3.345 3.613
(0.1 , 1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(0.2 , 0.2) 0.000 0.000 0.002 0.013 0.000 0.000 0.002 0.015 0.000 0.002 0.008 0.059 0.000 0.002 0.009 0.055
(0.2 , 0.3) 0.001 0.005 0.032 0.167 0.001 0.004 0.027 0.170 0.013 0.049 0.165 0.723 0.013 0.048 0.174 0.718
(0.2 , 0.4) 0.012 0.046 0.181 0.770 0.013 0.045 0.190 0.768 0.116 0.307 0.856 2.803 0.117 0.312 0.869 2.813
(0.2 , 0.5) 0.060 0.204 0.605 1.994 0.064 0.198 0.601 1.974 0.372 0.868 2.057 5.570 0.371 0.877 2.051 5.579
(0.2 , 0.6) 0.210 0.557 1.317 3.776 0.210 0.566 1.323 3.775 0.755 1.531 3.400 8.592 0.757 1.530 3.396 8.515
(0.2 , 0.7) 0.602 1.190 2.511 5.494 0.605 1.193 2.512 5.491 1.206 2.441 4.929 10.491 1.253 2.443 4.920 10.454
(0.2 , 0.8) 1.371 2.080 4.006 6.963 1.356 2.101 4.001 7.009 2.008 3.471 6.545 10.819 2.032 3.494 6.559 10.896
(0.2 , 0.9) 2.164 3.027 4.507 5.354 2.187 3.034 4.495 5.334 4.121 5.260 6.330 7.070 4.112 5.217 6.361 7.116
(0.2 , 1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(0.3 , 0.3) 0.001 0.001 0.007 0.050 0.000 0.001 0.007 0.045 0.001 0.003 0.022 0.127 0.001 0.005 0.022 0.131
(0.3 , 0.4) 0.004 0.014 0.076 0.355 0.005 0.017 0.073 0.347 0.023 0.082 0.290 1.159 0.027 0.079 0.280 1.138
(0.3 , 0.5) 0.034 0.109 0.360 1.315 0.032 0.107 0.362 1.322 0.198 0.501 1.336 3.980 0.198 0.509 1.322 3.978
(0.3 , 0.6) 0.164 0.436 1.123 3.363 0.157 0.436 1.121 3.358 0.687 1.427 3.262 8.457 0.673 1.436 3.287 8.432
(0.3 , 0.7) 0.583 1.210 2.644 6.048 0.582 1.212 2.669 6.040 1.451 2.812 5.630 12.082 1.424 2.761 5.590 12.073
(0.3 , 0.8) 1.555 2.525 4.961 8.898 1.553 2.545 4.954 8.920 2.603 4.439 8.321 14.008 2.580 4.451 8.319 14.125
(0.3 , 0.9) 2.949 4.219 6.202 7.669 2.946 4.259 6.230 7.642 5.647 7.127 8.825 10.219 5.643 7.209 8.833 10.246
(0.3 , 1) 0.000 0.000 0.001 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(0.4 , 0.4) 0.001 0.004 0.022 0.111 0.001 0.004 0.017 0.106 0.002 0.009 0.048 0.263 0.002 0.010 0.046 0.272
(0.4 , 0.5) 0.012 0.045 0.142 0.621 0.011 0.040 0.144 0.623 0.045 0.143 0.472 1.688 0.049 0.142 0.469 1.716
(0.4 , 0.6) 0.083 0.247 0.661 2.225 0.077 0.224 0.666 2.222 0.332 0.795 2.074 5.895 0.339 0.800 2.074 5.892
(0.4 , 0.7) 0.419 0.921 2.118 5.222 0.418 0.923 2.141 5.249 1.244 2.475 5.139 11.310 1.211 2.468 5.137 11.326
(0.4 , 0.8) 1.440 2.490 5.134 9.540 1.436 2.501 5.085 9.545 2.817 4.813 9.081 15.734 2.825 4.836 9.056 15.795
(0.4 , 0.9) 3.395 5.018 7.503 9.524 3.417 5.027 7.467 9.494 6.784 8.683 10.872 13.050 6.715 8.690 10.835 13.130
(0.4 , 1) 0.008 0.011 0.013 0.014 0.009 0.013 0.011 0.000 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.001

(0.5 , 0.5) 0.002 0.011 0.043 0.217 0.003 0.009 0.041 0.209 0.006 0.023 0.101 0.453 0.007 0.025 0.104 0.467
(0.5 , 0.6) 0.026 0.095 0.286 1.084 0.027 0.090 0.296 1.086 0.088 0.259 0.801 2.734 0.090 0.260 0.778 2.727
(0.5 , 0.7) 0.214 0.529 1.304 3.549 0.221 0.515 1.317 3.543 0.649 1.444 3.326 8.122 0.652 1.433 3.330 8.063
(0.5 , 0.8) 1.048 1.987 4.290 8.560 1.052 1.988 4.290 8.565 2.489 4.410 8.422 15.298 2.475 4.471 8.459 15.301
(0.5 , 0.9) 3.432 5.247 8.031 10.554 3.440 5.233 8.063 10.570 7.287 9.569 12.295 15.310 7.322 9.610 12.282 15.295
(0.5 , 1) 0.050 0.079 0.094 0.103 0.047 0.077 0.096 0.000 0.025 0.023 0.028 0.024 0.021 0.026 0.025 0.024

(0.6 , 0.6) 0.005 0.025 0.091 0.388 0.006 0.026 0.091 0.409 0.012 0.047 0.191 0.851 0.016 0.054 0.190 0.868
(0.6 , 0.7) 0.081 0.208 0.616 1.820 0.085 0.222 0.607 1.824 0.195 0.491 1.398 4.000 0.195 0.496 1.396 3.972
(0.6 , 0.8) 0.601 1.196 2.887 6.195 0.591 1.212 2.872 6.159 1.495 2.925 6.033 11.899 1.529 2.945 6.067 11.802
(0.6 , 0.9) 2.785 4.556 7.249 10.058 2.781 4.552 7.277 10.049 6.964 9.542 12.546 16.337 6.989 9.525 12.552 16.302
(0.6 , 1) 0.180 0.331 0.414 0.481 0.178 0.337 0.428 0.000 0.181 0.180 0.185 0.185 0.180 0.172 0.180 0.180

(0.7 , 0.7) 0.023 0.062 0.206 0.697 0.023 0.058 0.207 0.701 0.033 0.101 0.362 1.304 0.034 0.111 0.361 1.303
(0.7 , 0.8) 0.254 0.556 1.461 3.453 0.258 0.537 1.466 3.436 0.532 1.175 2.814 6.375 0.531 1.163 2.840 6.399
(0.7 , 0.9) 1.743 3.005 5.046 7.422 1.744 2.982 5.027 7.389 5.190 7.565 10.454 14.537 5.271 7.556 10.504 14.545
(0.7 , 1) 0.440 0.968 1.382 1.815 0.439 0.954 1.358 0.000 0.933 0.995 0.978 1.005 0.939 0.966 0.979 0.987

(0.8 , 0.8) 0.074 0.162 0.506 1.298 0.074 0.161 0.530 1.304 0.107 0.282 0.839 2.137 0.110 0.285 0.817 2.134
(0.8 , 0.9) 0.719 1.265 2.295 3.504 0.714 1.279 2.285 3.505 2.244 3.368 5.017 7.699 2.204 3.342 5.043 7.731
(0.8 , 1) 0.696 1.754 2.893 4.653 0.700 1.763 2.912 0.000 3.642 4.177 4.231 4.323 3.655 4.130 4.229 4.283

(0.9 , 0.9) 0.134 0.274 0.525 0.884 0.139 0.263 0.524 0.812 0.394 0.615 0.967 1.646 0.386 0.606 0.970 1.649
(0.9 , 1) 0.539 1.582 2.984 5.772 0.530 1.578 2.971 0.000 7.141 9.632 10.883 12.073 7.117 9.637 10.862 12.146
(1 , 1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 6.1: The percentages of the trials that the null hypothesis in (6.5) rejects
at interim inspection. Numbers rounded to three decimal places as the simulation
error fixed at 0.005.
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6.7 Subject benefit

Tables 6.2 and 6.3 report the numerical results of the subject benefit obtained

from the model cases DPWOI and DPWI, respectively. Each component in the

tables comprises the average number of success responses on both arms and the

corresponding standard deviation at the end of the trial. Comparing the like-for-

like results in cases DPWOI and DPWI, the differences are so small that one can

consider them almost identical. The estimation results confirmed this identical

resemblance in the data in section 6.5. On the other hand, setting higher signif-

icance levels for the test generally results in losing subject benefit in both cases

DPWOI and DPWI and for both trial sizes 120 and 240. However, the loss of the

subject benefit may not be appreciable as the reductions in estimation bias, dis-

cussed in section 6.5, are also not substantial. For instance, for scenario (0.2, 0.8)

and significance levels at α = 0.005 and 0.02, the designs with the trial size 120

give a subject benefit of 93.82 ± 8.41 and 91.48 ± 13.28 in the model case DPWOI,

and 93.81 ± 8.43 and 91.46 ± 13.33 in DPWI. On the other hand, the like-for-like

results for the trial size 240 are 187.35 ± 18.88 and 180.31 ± 30.75 in the model

case DPWOI, and 187.73 ± 18.93 and 180.24 ± 30.84 in DPWI, respectively.

6.8 Discussion

In this chapter, we implemented an interim study on the two-armed Bayesian

Bernoulli bandit model for the first time in the literature. Apart from the tech-

nical complexity associated with the implementation process, numerical results

confirmed improvements in the efficacy estimation bias when an interim analysis
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is implemented in the model compared with the original model without interim

studies. Moreover, by introducing a concept called percentage of false early stop-

ping, we made some points about the inflation of the percentage of false early

stopping, together with the acquired subject benefit results.

In the following, it is worth mentioning some areas of improvement and future

works for this novel family of RAR designs. The test statistic we used in this

study is the pooled version of the z statistic with the approximation of standard

Normal distribution. Please note that using another frequentist or Bayesian test

statistic might be of interest, see Pham-Gia et al. (2017). Furthermore, comparing

the Bayesian posterior distribution at interim inspections can be a good substi-

tution for the frequentist hypothesis testing. Raineri et al. (2014) introduced a

known algorithm for computing exactly inequalities between Beta distributions by

which, in turn, a statistically significant inference about arm’s efficacies can be

achieved at interim analysis points.

While we considered a single interim inspection look at the middle of the trial,

setting up a sequence of interim analyses can be another potential area to make a

more accurate estimate. However, implementing multiple interim inspection looks

in our model will be associated with greater statistical complexity as each point

will depend on all previous interim points.

Finally, setting up an interim analysis in the modified models discussed in chapter

2 can also give rise to having less biased estimation. For instance, the relationship

between the ṡ in OIDP, the degree of randomisation in RDP, and the stopping

criteria are other areas that potentially need improvement.
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model case DPWOI [T = 120] model case DPWOI [T = 240]

(θC , θD) α = 0.0025 α = 0.005 α = 0.01 α = 0.02 α = 0.0025 α = 0.005 α = 0.01 α = 0.02
(0 , 0) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

(0 , 0.1) 10.15 ± 3.50 10.15 ± 3.49 10.14 ± 3.50 10.15 ± 3.50 21.74 ± 4.84 21.74 ± 4.84 21.73 ± 4.84 21.73 ± 4.83
(0 , 0.2) 21.94 ± 4.59 21.95 ± 4.59 21.95 ± 4.59 21.94 ± 4.60 45.55 ± 6.37 45.56 ± 6.38 45.56 ± 6.37 45.55 ± 6.38
(0 , 0.3) 33.95 ± 5.23 33.96 ± 5.22 33.96 ± 5.22 33.96 ± 5.23 69.58 ± 7.28 69.59 ± 7.26 69.58 ± 7.26 69.58 ± 7.27
(0 , 0.4) 46.06 ± 5.57 46.04 ± 5.56 46.06 ± 5.57 46.05 ± 5.57 93.72 ± 7.75 93.71 ± 7.75 93.71 ± 7.75 93.72 ± 7.75
(0 , 0.5) 58.21 ± 5.68 58.22 ± 5.68 58.21 ± 5.67 58.22 ± 5.68 117.91 ± 7.89 117.91 ± 7.91 117.90 ± 7.89 117.93 ± 7.91
(0 , 0.6) 70.42 ± 5.55 70.42 ± 5.54 70.42 ± 5.55 70.42 ± 5.54 142.16 ± 7.74 142.17 ± 7.74 142.15 ± 7.74 142.15 ± 7.73
(0 , 0.7) 82.67 ± 5.21 82.67 ± 5.21 82.66 ± 5.21 82.67 ± 5.20 166.41 ± 7.23 166.44 ± 7.22 166.44 ± 7.23 166.43 ± 7.23
(0 , 0.8) 94.93 ± 4.50 94.92 ± 4.50 94.93 ± 4.49 94.93 ± 4.50 190.82 ± 6.33 190.82 ± 6.33 190.81 ± 6.33 190.80 ± 6.33
(0 , 0.9) 107.02 ± 3.32 107.02 ± 3.32 107.02 ± 3.32 107.02 ± 3.32 215.01 ± 4.68 215.01 ± 4.68 215.01 ± 4.68 215.01 ± 4.68
(0 , 1) 119.00 ± 0.00 119.00 ± 0.00 119.00 ± 0.00 119.00 ± 0.00 239.00 ± 0.00 239.00 ± 0.00 239.00 ± 0.00 239.00 ± 0.00

(0.1 , 0.1) 12.00 ± 3.28 12.00 ± 3.29 12.00 ± 3.29 12.00 ± 3.29 24.00 ± 4.65 24.01 ± 4.65 23.99 ± 4.65 24.00 ± 4.65
(0.1 , 0.2) 21.40 ± 5.06 21.40 ± 5.07 21.41 ± 5.07 21.40 ± 5.07 44.52 ± 7.45 44.50 ± 7.44 44.49 ± 7.48 44.41 ± 7.56
(0.1 , 0.3) 33.49 ± 5.75 33.49 ± 5.75 33.47 ± 5.77 33.42 ± 5.83 69.03 ± 7.83 68.99 ± 7.92 68.87 ± 8.20 68.43 ± 9.09
(0.1 , 0.4) 45.76 ± 5.85 45.76 ± 5.87 45.71 ± 5.97 45.53 ± 6.31 93.31 ± 8.23 93.21 ± 8.61 92.87 ± 9.50 91.82 ± 11.83
(0.1 , 0.5) 58.02 ± 5.87 57.98 ± 5.98 57.84 ± 6.29 57.49 ± 7.12 117.52 ± 8.72 117.27 ± 9.56 116.70 ± 11.30 114.98 ± 15.02
(0.1 , 0.6) 70.24 ± 5.83 70.15 ± 6.13 69.94 ± 6.74 69.32 ± 8.23 141.67 ± 9.40 141.28 ± 10.82 140.34 ± 13.54 137.73 ± 18.87
(0.1 , 0.7) 82.41 ± 5.93 82.26 ± 6.49 81.91 ± 7.55 81.12 ± 9.53 165.70 ± 10.43 165.06 ± 12.74 163.75 ± 16.41 160.77 ± 22.40
(0.1 , 0.8) 94.47 ± 6.42 94.28 ± 7.12 93.76 ± 8.70 92.94 ± 10.66 189.61 ± 12.32 188.79 ± 15.15 187.15 ± 19.52 184.91 ± 24.02
(0.1 , 0.9) 106.38 ± 6.83 106.13 ± 7.78 105.72 ± 9.15 105.49 ± 9.87 212.58 ± 16.76 211.94 ± 18.74 211.42 ± 20.27 211.09 ± 21.13
(0.1 , 1) 119.05 ± 0.22 119.05 ± 0.22 119.05 ± 0.22 119.05 ± 0.22 239.05 ± 0.22 239.05 ± 0.22 239.05 ± 0.22 239.05 ± 0.22

(0.2 , 0.2) 24.00 ± 4.38 24.00 ± 4.38 24.00 ± 4.38 24.01 ± 4.38 48.01 ± 6.20 48.00 ± 6.20 47.98 ± 6.19 47.98 ± 6.22
(0.2 , 0.3) 33.01 ± 5.93 33.01 ± 5.93 33.01 ± 5.93 32.98 ± 5.96 67.69 ± 8.99 67.68 ± 9.02 67.65 ± 9.08 67.42 ± 9.41
(0.2 , 0.4) 45.12 ± 6.64 45.10 ± 6.66 45.08 ± 6.70 44.93 ± 6.90 92.54 ± 9.23 92.43 ± 9.49 92.18 ± 10.12 91.24 ± 11.99
(0.2 , 0.5) 57.64 ± 6.39 57.60 ± 6.49 57.47 ± 6.77 57.04 ± 7.59 117.10 ± 9.31 116.78 ± 10.27 116.06 ± 12.20 113.97 ± 16.32
(0.2 , 0.6) 70.02 ± 6.13 69.89 ± 6.49 69.62 ± 7.23 68.73 ± 9.13 141.25 ± 10.32 140.69 ± 12.13 139.35 ± 15.56 135.60 ± 21.89
(0.2 , 0.7) 82.22 ± 6.31 81.98 ± 7.13 81.43 ± 8.61 80.17 ± 11.20 165.21 ± 11.92 164.17 ± 15.13 162.08 ± 19.86 157.40 ± 27.12
(0.2 , 0.8) 94.16 ± 7.36 93.82 ± 8.41 92.91 ± 10.65 91.48 ± 13.28 188.76 ± 15.07 187.35 ± 18.88 184.41 ± 24.82 180.31 ± 30.75
(0.2 , 0.9) 105.84 ± 8.71 105.37 ± 10.06 104.57 ± 12.04 104.12 ± 13.07 210.53 ± 22.17 209.29 ± 24.89 208.13 ± 27.20 207.35 ± 28.66
(0.2 , 1) 119.10 ± 0.30 119.10 ± 0.30 119.10 ± 0.30 119.10 ± 0.30 239.10 ± 0.30 239.10 ± 0.30 239.10 ± 0.30 239.10 ± 0.30

(0.3 , 0.3) 36.00 ± 5.02 36.00 ± 5.02 36.00 ± 5.01 35.99 ± 5.03 72.00 ± 7.10 71.99 ± 7.10 71.99 ± 7.12 71.96 ± 7.20
(0.3 , 0.4) 44.81 ± 6.42 44.80 ± 6.41 44.79 ± 6.43 44.73 ± 6.53 91.19 ± 9.89 91.17 ± 9.94 91.06 ± 10.14 90.66 ± 10.91
(0.3 , 0.5) 56.89 ± 7.18 56.88 ± 7.22 56.80 ± 7.35 56.49 ± 7.83 116.15 ± 10.36 115.98 ± 10.85 115.48 ± 12.13 113.89 ± 15.23
(0.3 , 0.6) 69.56 ± 6.80 69.46 ± 7.07 69.22 ± 7.64 68.41 ± 9.23 140.82 ± 10.78 140.29 ± 12.43 138.96 ± 15.73 135.22 ± 21.96
(0.3 , 0.7) 82.00 ± 6.62 81.73 ± 7.44 81.14 ± 8.95 79.69 ± 11.71 164.78 ± 12.90 163.64 ± 16.17 161.27 ± 21.14 155.85 ± 28.78
(0.3 , 0.8) 93.96 ± 7.74 93.49 ± 9.10 92.33 ± 11.64 90.44 ± 14.73 188.08 ± 16.85 186.32 ± 21.05 182.59 ± 27.57 177.14 ± 34.22
(0.3 , 0.9) 105.39 ± 9.96 104.70 ± 11.65 103.63 ± 13.88 102.83 ± 15.33 208.85 ± 25.61 207.26 ± 28.58 205.41 ± 31.57 203.91 ± 33.75
(0.3 , 1) 119.15 ± 0.38 119.15 ± 0.37 119.15 ± 0.41 119.15 ± 0.38 239.15 ± 0.38 239.15 ± 0.36 239.15 ± 0.36 239.15 ± 0.40

(0.4 , 0.4) 47.99 ± 5.37 48.01 ± 5.36 48.00 ± 5.37 47.97 ± 5.42 95.99 ± 7.60 96.01 ± 7.60 95.97 ± 7.66 95.87 ± 7.96
(0.4 , 0.5) 56.72 ± 6.66 56.70 ± 6.69 56.68 ± 6.73 56.54 ± 6.95 114.96 ± 10.39 114.92 ± 10.51 114.70 ± 10.99 113.96 ± 12.52
(0.4 , 0.6) 68.80 ± 7.45 68.75 ± 7.58 68.60 ± 7.88 68.03 ± 8.91 139.94 ± 11.26 139.60 ± 12.25 138.68 ± 14.55 135.95 ± 19.56
(0.4 , 0.7) 81.55 ± 7.18 81.32 ± 7.77 80.83 ± 8.96 79.52 ± 11.41 164.42 ± 12.97 163.38 ± 15.97 161.16 ± 20.72 155.97 ± 28.17
(0.4 , 0.8) 93.78 ± 7.87 93.28 ± 9.29 92.00 ± 11.95 89.90 ± 15.23 187.66 ± 17.65 185.75 ± 21.99 181.65 ± 28.76 175.27 ± 35.94
(0.4 , 0.9) 105.08 ± 10.67 104.20 ± 12.64 102.86 ± 15.16 101.78 ± 16.89 207.56 ± 27.89 205.51 ± 31.25 203.15 ± 34.61 200.80 ± 37.49
(0.4 , 1) 119.20 ± 0.69 119.19 ± 0.76 119.19 ± 0.80 119.19 ± 0.82 239.20 ± 0.79 239.20 ± 0.69 239.20 ± 0.71 239.20 ± 0.64

(0.5 , 0.5) 60.00 ± 5.47 60.00 ± 5.48 59.99 ± 5.51 59.93 ± 5.64 120.00 ± 7.75 120.00 ± 7.78 119.93 ± 7.96 119.74 ± 8.68
(0.5 , 0.6) 68.70 ± 6.72 68.67 ± 6.77 68.60 ± 6.91 68.30 ± 7.47 138.88 ± 10.64 138.72 ± 11.00 138.33 ± 12.04 136.95 ± 15.10
(0.5 , 0.7) 80.83 ± 7.59 80.71 ± 7.89 80.37 ± 8.61 79.43 ± 10.42 163.74 ± 12.46 163.08 ± 14.44 161.52 ± 18.17 157.48 ± 24.85
(0.5 , 0.8) 93.47 ± 7.93 93.02 ± 9.15 91.90 ± 11.49 89.86 ± 14.74 187.49 ± 17.27 185.65 ± 21.56 181.77 ± 28.08 175.17 ± 35.65
(0.5 , 0.9) 104.89 ± 10.89 103.91 ± 13.03 102.41 ± 15.72 101.05 ± 17.75 206.88 ± 28.93 204.42 ± 32.73 201.47 ± 36.56 198.22 ± 40.11
(0.5 , 1) 119.22 ± 1.44 119.20 ± 1.78 119.19 ± 1.93 119.19 ± 2.01 239.22 ± 1.96 239.22 ± 1.88 239.22 ± 2.06 239.22 ± 1.92

(0.6 , 0.6) 72.00 ± 5.36 71.99 ± 5.39 71.96 ± 5.47 71.86 ± 5.78 143.98 ± 7.63 143.97 ± 7.74 143.87 ± 8.19 143.39 ± 9.97
(0.6 , 0.7) 80.73 ± 6.64 80.68 ± 6.77 80.51 ± 7.19 80.00 ± 8.31 162.89 ± 10.84 162.60 ± 11.67 161.85 ± 13.85 159.65 ± 18.64
(0.6 , 0.8) 92.87 ± 7.83 92.61 ± 8.59 91.78 ± 10.36 90.18 ± 13.10 187.27 ± 15.29 185.92 ± 18.87 182.90 ± 24.69 177.27 ± 32.16
(0.6 , 0.9) 104.83 ± 10.38 103.87 ± 12.56 102.42 ± 15.22 100.90 ± 17.51 206.85 ± 28.57 204.05 ± 32.89 200.82 ± 37.04 196.72 ± 41.30
(0.6 , 1) 119.19 ± 2.64 119.10 ± 3.55 119.05 ± 3.96 119.01 ± 4.27 239.08 ± 5.18 239.08 ± 5.16 239.08 ± 5.23 239.08 ± 5.24

(0.7 , 0.7) 83.98 ± 5.06 83.97 ± 5.12 83.91 ± 5.33 83.71 ± 6.04 167.97 ± 7.26 167.92 ± 7.56 167.70 ± 8.65 166.91 ± 11.79
(0.7 , 0.8) 92.75 ± 6.53 92.61 ± 6.97 92.18 ± 8.13 91.23 ± 10.24 186.86 ± 11.80 186.27 ± 13.85 184.68 ± 17.98 181.25 ± 24.35
(0.7 , 0.9) 104.61 ± 9.35 103.93 ± 11.05 102.83 ± 13.34 101.53 ± 15.54 207.76 ± 25.40 205.19 ± 29.90 202.06 ± 34.35 197.66 ± 39.36
(0.7 , 1) 119.06 ± 4.09 118.75 ± 6.03 118.50 ± 7.18 118.24 ± 8.21 238.22 ± 11.68 238.15 ± 12.06 238.17 ± 11.96 238.13 ± 12.12

(0.8 , 0.8) 95.97 ± 4.56 95.93 ± 4.76 95.76 ± 5.49 95.38 ± 6.92 191.89 ± 6.91 191.73 ± 7.95 191.19 ± 10.60 189.94 ± 15.05
(0.8 , 0.9) 104.85 ± 7.00 104.55 ± 8.00 103.99 ± 9.60 103.33 ± 11.18 209.43 ± 17.93 208.21 ± 21.02 206.44 ± 24.77 203.54 ± 29.64
(0.8 , 1) 118.86 ± 5.17 118.23 ± 8.10 117.54 ± 10.32 116.49 ± 12.97 234.98 ± 22.77 234.33 ± 24.33 234.27 ± 24.49 234.16 ± 24.75

(0.9 , 0.9) 107.93 ± 3.84 107.85 ± 4.35 107.72 ± 5.14 107.52 ± 6.10 215.58 ± 8.21 215.33 ± 9.67 214.95 ± 11.62 214.22 ± 14.60
(0.9 , 1) 118.22 ± 5.17 117.60 ± 8.01 116.75 ± 10.65 115.08 ± 14.40 230.22 ± 31.29 227.22 ± 35.89 225.72 ± 37.94 224.30 ± 39.77
(1 , 1) 120.00 ± 0.00 120.00 ± 0.00 120.00 ± 0.00 120.00 ± 0.00 240.00 ± 0.00 240.00 ± 0.00 240.00 ± 0.00 240.00 ± 0.00

Table 6.2: The numerical subject benefit results for different significance levels in
the model case DPWOI. Each cell is composed of the average number of success
responses (first component) added to/subtracted from the corresponding standard
deviation (second component) for each scenario (θC , θD).
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model case DPWI [T = 120] model case DPWI [T = 240]

(θC , θD) α = 0.0025 α = 0.005 α = 0.01 α = 0.02 α = 0.0025 α = 0.005 α = 0.01 α = 0.02
(0 , 0) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

(0 , 0.1) 10.15 ± 3.49 10.15 ± 3.49 10.14 ± 3.50 10.14 ± 3.49 21.73 ± 4.84 21.73 ± 4.84 21.74 ± 4.84 21.74 ± 4.84
(0 , 0.2) 21.95 ± 4.59 21.95 ± 4.60 21.94 ± 4.59 21.95 ± 4.60 45.55 ± 6.38 45.56 ± 6.37 45.55 ± 6.38 45.56 ± 6.37
(0 , 0.3) 33.96 ± 5.22 33.95 ± 5.23 33.96 ± 5.22 33.96 ± 5.23 69.59 ± 7.26 69.58 ± 7.26 69.59 ± 7.27 69.59 ± 7.26
(0 , 0.4) 46.05 ± 5.57 46.05 ± 5.56 46.05 ± 5.57 46.06 ± 5.56 93.72 ± 7.76 93.72 ± 7.75 93.71 ± 7.76 93.70 ± 7.74
(0 , 0.5) 58.22 ± 5.67 58.21 ± 5.67 58.21 ± 5.66 58.22 ± 5.67 117.91 ± 7.89 117.91 ± 7.91 117.91 ± 7.91 117.91 ± 7.90
(0 , 0.6) 70.42 ± 5.55 70.42 ± 5.55 70.42 ± 5.55 70.42 ± 5.55 142.17 ± 7.74 142.16 ± 7.74 142.16 ± 7.74 142.15 ± 7.74
(0 , 0.7) 82.67 ± 5.21 82.68 ± 5.21 82.67 ± 5.20 82.66 ± 5.20 166.43 ± 7.23 166.45 ± 7.24 166.45 ± 7.23 166.42 ± 7.23
(0 , 0.8) 94.93 ± 4.50 94.93 ± 4.50 94.92 ± 4.50 94.93 ± 4.50 190.80 ± 6.34 190.81 ± 6.33 190.81 ± 6.33 190.80 ± 6.33
(0 , 0.9) 107.02 ± 3.32 107.02 ± 3.32 107.02 ± 3.32 107.02 ± 3.32 215.01 ± 4.68 215.01 ± 4.68 215.01 ± 4.68 215.01 ± 4.67
(0 , 1) 119.00 ± 0.00 119.00 ± 0.00 119.00 ± 0.00 119.00 ± 0.00 239.00 ± 0.00 239.00 ± 0.00 239.00 ± 0.00 239.00 ± 0.00

(0.1 , 0.1) 11.99 ± 3.28 12.00 ± 3.29 12.00 ± 3.28 12.00 ± 3.29 24.00 ± 4.65 24.01 ± 4.65 24.00 ± 4.65 24.00 ± 4.65
(0.1 , 0.2) 21.40 ± 5.07 21.41 ± 5.07 21.40 ± 5.07 21.39 ± 5.07 44.51 ± 7.45 44.51 ± 7.45 44.48 ± 7.47 44.41 ± 7.56
(0.1 , 0.3) 33.50 ± 5.75 33.49 ± 5.74 33.47 ± 5.77 33.43 ± 5.83 69.02 ± 7.82 68.99 ± 7.92 68.86 ± 8.20 68.42 ± 9.09
(0.1 , 0.4) 45.77 ± 5.85 45.77 ± 5.87 45.71 ± 5.98 45.53 ± 6.31 93.32 ± 8.22 93.19 ± 8.63 92.88 ± 9.51 91.82 ± 11.85
(0.1 , 0.5) 58.02 ± 5.86 57.98 ± 5.96 57.86 ± 6.30 57.48 ± 7.14 117.53 ± 8.71 117.28 ± 9.57 116.68 ± 11.35 114.96 ± 15.08
(0.1 , 0.6) 70.24 ± 5.83 70.16 ± 6.12 69.95 ± 6.74 69.31 ± 8.24 141.66 ± 9.40 141.28 ± 10.81 140.33 ± 13.56 137.74 ± 18.84
(0.1 , 0.7) 82.41 ± 5.94 82.27 ± 6.49 81.91 ± 7.56 81.11 ± 9.57 165.70 ± 10.38 165.05 ± 12.76 163.75 ± 16.42 160.80 ± 22.38
(0.1 , 0.8) 94.47 ± 6.43 94.29 ± 7.13 93.77 ± 8.68 92.97 ± 10.62 189.62 ± 12.32 188.78 ± 15.18 187.13 ± 19.54 184.92 ± 24.02
(0.1 , 0.9) 106.38 ± 6.82 106.13 ± 7.77 105.73 ± 9.12 105.50 ± 9.84 212.59 ± 16.74 211.95 ± 18.73 211.38 ± 20.34 211.10 ± 21.11
(0.1 , 1) 119.05 ± 0.22 119.05 ± 0.22 119.05 ± 0.22 119.10 ± 0.30 239.05 ± 0.22 239.05 ± 0.22 239.05 ± 0.22 239.05 ± 0.22

(0.2 , 0.2) 24.00 ± 4.38 24.00 ± 4.38 24.01 ± 4.39 24.00 ± 4.38 48.01 ± 6.19 47.99 ± 6.20 48.01 ± 6.20 47.99 ± 6.22
(0.2 , 0.3) 33.01 ± 5.92 33.02 ± 5.92 33.01 ± 5.92 32.97 ± 5.94 67.70 ± 9.00 67.67 ± 9.01 67.63 ± 9.10 67.42 ± 9.39
(0.2 , 0.4) 45.12 ± 6.63 45.11 ± 6.65 45.07 ± 6.71 44.93 ± 6.91 92.54 ± 9.24 92.45 ± 9.48 92.19 ± 10.13 91.26 ± 11.99
(0.2 , 0.5) 57.65 ± 6.40 57.59 ± 6.50 57.48 ± 6.77 57.06 ± 7.57 117.11 ± 9.32 116.79 ± 10.30 116.07 ± 12.18 113.97 ± 16.34
(0.2 , 0.6) 70.02 ± 6.13 69.90 ± 6.51 69.60 ± 7.24 68.73 ± 9.13 141.26 ± 10.30 140.69 ± 12.13 139.35 ± 15.54 135.67 ± 21.79
(0.2 , 0.7) 82.22 ± 6.31 81.98 ± 7.13 81.43 ± 8.60 80.18 ± 11.19 165.18 ± 12.08 164.16 ± 15.14 162.08 ± 19.83 157.42 ± 27.07
(0.2 , 0.8) 94.17 ± 7.33 93.81 ± 8.43 92.90 ± 10.64 91.46 ± 13.33 188.73 ± 15.15 187.33 ± 18.93 184.39 ± 24.84 180.24 ± 30.84
(0.2 , 0.9) 105.83 ± 8.75 105.37 ± 10.07 104.58 ± 12.03 104.14 ± 13.06 210.54 ± 22.15 209.34 ± 24.80 208.11 ± 27.27 207.28 ± 28.76
(0.2 , 1) 119.10 ± 0.30 119.10 ± 0.30 119.10 ± 0.31 119.20 ± 0.40 239.10 ± 0.30 239.10 ± 0.30 239.10 ± 0.30 239.10 ± 0.30

(0.3 , 0.3) 36.00 ± 5.02 36.01 ± 5.02 35.99 ± 5.02 35.99 ± 5.03 72.00 ± 7.10 71.99 ± 7.11 71.99 ± 7.12 71.94 ± 7.20
(0.3 , 0.4) 44.82 ± 6.42 44.81 ± 6.42 44.80 ± 6.43 44.73 ± 6.52 91.20 ± 9.88 91.17 ± 9.94 91.08 ± 10.13 90.68 ± 10.88
(0.3 , 0.5) 56.89 ± 7.18 56.87 ± 7.21 56.79 ± 7.35 56.50 ± 7.84 116.16 ± 10.38 115.97 ± 10.87 115.49 ± 12.09 113.89 ± 15.24
(0.3 , 0.6) 69.55 ± 6.80 69.45 ± 7.07 69.21 ± 7.65 68.42 ± 9.22 140.82 ± 10.75 140.26 ± 12.47 138.96 ± 15.76 135.24 ± 21.93
(0.3 , 0.7) 81.99 ± 6.62 81.73 ± 7.44 81.11 ± 8.98 79.70 ± 11.69 164.79 ± 12.83 163.67 ± 16.06 161.29 ± 21.08 155.85 ± 28.77
(0.3 , 0.8) 93.97 ± 7.74 93.50 ± 9.12 92.33 ± 11.63 90.43 ± 14.74 188.11 ± 16.79 186.31 ± 21.08 182.60 ± 27.56 177.03 ± 34.35
(0.3 , 0.9) 105.39 ± 9.96 104.68 ± 11.70 103.61 ± 13.91 102.88 ± 15.32 208.85 ± 25.61 207.17 ± 28.73 205.41 ± 31.59 203.88 ± 33.80
(0.3 , 1) 119.15 ± 0.38 119.15 ± 0.40 119.15 ± 0.42 119.30 ± 0.46 239.15 ± 0.40 239.15 ± 0.36 239.15 ± 0.38 239.15 ± 0.36

(0.4 , 0.4) 47.99 ± 5.37 48.00 ± 5.36 47.98 ± 5.37 47.97 ± 5.41 96.01 ± 7.59 96.00 ± 7.60 95.98 ± 7.65 95.87 ± 7.97
(0.4 , 0.5) 56.71 ± 6.67 56.70 ± 6.67 56.67 ± 6.72 56.52 ± 6.96 114.96 ± 10.37 114.91 ± 10.53 114.69 ± 10.98 113.96 ± 12.56
(0.4 , 0.6) 68.80 ± 7.45 68.74 ± 7.57 68.60 ± 7.89 68.04 ± 8.90 139.93 ± 11.29 139.58 ± 12.27 138.67 ± 14.56 135.93 ± 19.56
(0.4 , 0.7) 81.55 ± 7.18 81.35 ± 7.75 80.82 ± 8.98 79.52 ± 11.44 164.46 ± 12.88 163.41 ± 15.96 161.16 ± 20.72 155.97 ± 28.19
(0.4 , 0.8) 93.79 ± 7.85 93.27 ± 9.29 92.02 ± 11.91 89.89 ± 15.24 187.67 ± 17.67 185.73 ± 22.04 181.69 ± 28.72 175.22 ± 35.98
(0.4 , 0.9) 105.07 ± 10.69 104.20 ± 12.65 102.88 ± 15.12 101.81 ± 16.89 207.64 ± 27.76 205.50 ± 31.27 203.18 ± 34.56 200.71 ± 37.59
(0.4 , 1) 119.19 ± 0.70 119.19 ± 0.79 119.19 ± 0.76 119.40 ± 0.49 239.20 ± 0.71 239.20 ± 0.65 239.20 ± 0.68 239.20 ± 0.59

(0.5 , 0.5) 60.00 ± 5.48 60.00 ± 5.49 59.99 ± 5.51 59.93 ± 5.63 120.00 ± 7.76 119.99 ± 7.80 119.94 ± 7.97 119.72 ± 8.71
(0.5 , 0.6) 68.70 ± 6.71 68.67 ± 6.76 68.60 ± 6.92 68.30 ± 7.48 138.85 ± 10.64 138.73 ± 10.99 138.34 ± 11.99 136.95 ± 15.11
(0.5 , 0.7) 80.82 ± 7.60 80.71 ± 7.89 80.36 ± 8.63 79.44 ± 10.41 163.76 ± 12.45 163.07 ± 14.44 161.49 ± 18.19 157.50 ± 24.78
(0.5 , 0.8) 93.45 ± 7.96 93.01 ± 9.16 91.90 ± 11.49 89.86 ± 14.74 187.49 ± 17.23 185.57 ± 21.68 181.73 ± 28.15 175.18 ± 35.65
(0.5 , 0.9) 104.89 ± 10.89 103.92 ± 13.03 102.39 ± 15.74 101.07 ± 17.77 206.84 ± 28.99 204.37 ± 32.79 201.48 ± 36.55 198.25 ± 40.10
(0.5 , 1) 119.22 ± 1.40 119.20 ± 1.75 119.19 ± 1.94 119.50 ± 0.50 239.22 ± 1.81 239.22 ± 2.02 239.22 ± 1.95 239.22 ± 1.94

(0.6 , 0.6) 71.99 ± 5.37 71.98 ± 5.39 71.97 ± 5.46 71.86 ± 5.80 143.99 ± 7.64 143.95 ± 7.77 143.88 ± 8.19 143.37 ± 10.03
(0.6 , 0.7) 80.73 ± 6.64 80.67 ± 6.78 80.51 ± 7.17 79.99 ± 8.32 162.87 ± 10.84 162.60 ± 11.68 161.86 ± 13.83 159.69 ± 18.58
(0.6 , 0.8) 92.87 ± 7.82 92.59 ± 8.59 91.79 ± 10.34 90.23 ± 13.08 187.24 ± 15.38 185.87 ± 18.94 182.87 ± 24.75 177.38 ± 32.07
(0.6 , 0.9) 104.84 ± 10.36 103.88 ± 12.55 102.42 ± 15.24 100.95 ± 17.53 206.82 ± 28.62 204.08 ± 32.86 200.81 ± 37.03 196.76 ± 41.26
(0.6 , 1) 119.19 ± 2.63 119.09 ± 3.58 119.04 ± 4.03 119.60 ± 0.49 239.08 ± 5.17 239.09 ± 5.05 239.08 ± 5.16 239.08 ± 5.16

(0.7 , 0.7) 83.99 ± 5.05 83.97 ± 5.12 83.92 ± 5.33 83.71 ± 6.05 167.97 ± 7.25 167.91 ± 7.62 167.71 ± 8.63 166.91 ± 11.78
(0.7 , 0.8) 92.76 ± 6.54 92.62 ± 6.95 92.18 ± 8.14 91.25 ± 10.23 186.88 ± 11.78 186.26 ± 13.82 184.66 ± 18.04 181.23 ± 24.39
(0.7 , 0.9) 104.62 ± 9.34 103.94 ± 11.02 102.84 ± 13.33 101.60 ± 15.54 207.67 ± 25.56 205.20 ± 29.88 202.02 ± 34.43 197.65 ± 39.38
(0.7 , 1) 119.06 ± 4.09 118.75 ± 5.98 118.51 ± 7.12 119.70 ± 0.46 238.21 ± 11.72 238.18 ± 11.88 238.16 ± 11.96 238.15 ± 12.01

(0.8 , 0.8) 95.97 ± 4.56 95.92 ± 4.76 95.74 ± 5.54 95.37 ± 6.94 191.89 ± 6.93 191.73 ± 7.96 191.22 ± 10.51 189.96 ± 15.04
(0.8 , 0.9) 104.84 ± 7.00 104.55 ± 8.02 104.00 ± 9.59 103.38 ± 11.22 209.47 ± 17.81 208.24 ± 20.96 206.40 ± 24.82 203.49 ± 29.70
(0.8 , 1) 118.86 ± 5.19 118.22 ± 8.12 117.53 ± 10.35 119.80 ± 0.40 234.96 ± 22.81 234.39 ± 24.20 234.27 ± 24.49 234.21 ± 24.64

(0.9 , 0.9) 107.92 ± 3.86 107.86 ± 4.31 107.71 ± 5.14 107.56 ± 5.95 215.59 ± 8.15 215.35 ± 9.61 214.95 ± 11.63 214.22 ± 14.62
(0.9 , 1) 118.23 ± 5.14 117.60 ± 8.00 116.76 ± 10.63 119.90 ± 0.30 230.24 ± 31.24 227.22 ± 35.90 225.75 ± 37.90 224.21 ± 39.88
(1 , 1) 120.00 ± 0.00 120.00 ± 0.00 120.00 ± 0.00 120.00 ± 0.00 240.00 ± 0.00 240.00 ± 0.00 240.00 ± 0.00 240.00 ± 0.00

Table 6.3: The numerical subject benefit results for different significance levels in
the model case DPWI. Each cell is composed of the average number of success
responses (first component) added to/subtracted from the corresponding standard
deviation (second component) for each scenario (θC , θD) .



Chapter 7

Conclusion and Further Work

7.1 Summary and Contributions

This thesis examines the estimation problem in response-adaptive procedures,

namely, two-armed bandit models. In particular, we have proposed a range of ran-

domisation designs based on solutions to the multi-armed bandit problem (MABP)

with the aim of balancing the trade-off between reducing the bias in the estimation

process whilst maintaining subject benefits, i.e. the total number of success re-

sponses is maximised. It is worth mentioning that each design was associated with

merits and demerits that inhibit the bandit-based design from being implemented

in practice. We briefly summarise the main points made in each chapter and,

in turn, highlight the corresponding contributions together with areas of further

investigation.

164



CHAPTER 7. CONCLUSION AND FURTHER WORK 165

7.1.1 Chapter 3, Model and After-trial Studies

In chapter 2, we formulated a Bayesian Beta-Bernoulli finite-horizon two-armed

bandit problem with binary responses with the objective function of maximising

the Bayes-expected total number of subject successes in the trial. The model’s

performance in using the MLE to estimate success probabilities while using a DP

solution for subject allocation was assessed when using a traditional method of

correcting the MLE estimation called after-trial studies, although the results were

not good enough. We learnt that some computational issues must be considered

when implementing the after-trial studies. As an area of improvement, we mention

the relationship between the size of the entire population of the trial and avail-

able computational capacity. Moreover, applying proposed alternative designs and

novel estimators instead of the classical DP design and MLE, respectively, can be

another potential area of improvement.

Moreover, we believe that after-trial studies have much room to be improved,

most of which with much scope here might be considered potential candidates for

some serious future works. In order to gain a more profound insight into the re-

lationship between the level of precision and the type of randomisation occurring

in the course of the trial, (i) to investigate the frequency of 50 : 50 randomisa-

tion happening in the trial, we recommend comparing the optimal arm matrices

obtained from the DP procedure to one another for the cases mentioned above,

(ii) to show the trade-off between losing the subject benefit and unbiased estima-

tion, we advise on calculating the patient benefit results in terms of the average

total number of success observations at the end of the trial, for a different level of

precision used for the DP procedure, i.e. for case (i) and (ii).
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7.1.2 Chapter 4, Augmented Estimator

An augmented estimator with the aim of mitigating the bias of the MLE was

introduced and mathematically investigated in this chapter. We showed it can po-

tentially be in either the frequentist or Bayesian sense. Moreover, we showed that

since DP satisfies the exploit property proposed in Nie et al. (2018), the derived

bias of the MLE is always negative, but this is not the case with the Bayesian

augmented estimator. We evaluated the performance of the augmented estima-

tor performance with different carefully chosen augmentations and compared it

to other estimators, such as the inverse probability weighted (IPW) estimator in

the literature. Finding the optimal augmentation coefficient, which will be di-

rectly correlated with the assumed design’s matrices, and applying the augmented

estimator to previous adaptive designs, are possible areas of future work.

7.1.3 Chapter 5, OIDP and RDP

The optimistic on inferior dynamic programming (OIDP) design and the ran-

domised dynamic programming (RDP) design were discussed in this chapter.

Please note that RDP is equivalent to bi-level randomisation procedure which

has been applied to the Bayesian Beta-Bernoulli two-armed bandit model for the

first time in the literature. Both are novel allocation procedures that aim to mit-

igate the bias induced by the DP procedure within the trial by modifying the

allocation decision at every time step. OIDP was evaluated by applying different

pseudo success observations, whilst the RDP was examined by varying the degree

of randomisation. Simulation results from both procedures illustrate the trade-off

between reducing the bias and increasing the suboptimality in terms of cumulative
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reward. As an extension of this work, we can mention learning the optimal ṡ in

the OIDP design, which needs a meticulous mathematical investigation of the DP

algorithm. Another extension can be applied to the RDP or bi-level randomisa-

tion procedure by filtering observations based on the branch they obtained. We

mean defining an 8-dimensional vector of observations containing the success and

failure responses on both arms for fixed randomisation (FR) and deterministic DP

branches, i.e. x :=
(
sC,EF R, fC,EF R, sD,EF R, fD,EF R, sC,DP , fC,DP , sD,DP , fD,DP

)
.

Then, based on the posterior distribution calculated by equation (3.1) allocation

policies can be formed in a way that the MLE estimates with less bias.

7.1.4 Chapter 6, DPWOI, DPWI

Formulating response-adaptive designs where an interim analysis was implemented

in the middle of the trial was another novel investigation in the classical Bayesian

Beta-Bernoulli two-armed bandit model. After developing some stopping criteria

for a non-trivial interim analysis in the middle of the time horizon, we assume two

different circumstances: (i) setting an interim analysis through the simulation step

whilst the classical DP solution is used for estimation, i.e. DPWOI (ii) considering

an identical interim analysis condition in both DP and the simulation step, i.e.

DPWI. The latter case showed slightly less biased results in comparison with the

former. However, to draw a more decisive conclusion, one needs to set up multiple

interim inspections of the data instead of a single one. Doing so will be associated

with some statistical complexity between the interim analysis points. Hence, it

might be considered a useful potential line of enquiry for this context.
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7.2 Future Work

Apart from all the aforementioned potentials for future work, in this part, we

briefly list some other general areas that need improvement. One can also consider

expanding the practical framework of covariate-adaptive RAR design offered by Ji

et al. (2019) in which randomisation probabilities depend on both covariates and

patients’ responses. Note that, in the commentary by Saville and Meurer (2019),

some objections associated with the study of Ji et al. (2019) have been raised. The

foremost ones that can serve as a motivation for future studies are the difficulty

of extrapolating and poor understanding of statistical properties such as power,

bias, etc., related to a multi-armed context. Another practical and useful problem

for future study can be obtained by considering the time-trend with or without

an early stopping assumption in a multi-armed bandit setting. The details on the

two-armed case have been investigated in the work of (Jiang et al., 2020).

The practical implications of this study are countless. Generally, one can take

advantage of the present study in many decision-making contexts. For instance,

the first in the list belongs to clinical trials where the efficacy of an experimental

treatment arm is being estimated within a trial compared with the control treat-

ment arm. As a rule in the clinical trials setting, the treatment with the smallest

true efficacy shows the largest bias, and this bias grows as the difference between

the superior and inferior treatment increases (Bowden and Trippa, 2017). Ben-

efiting from our proposed estimator, the bias can be substantially reduced, and

the treatment efficacy can be estimated more accurately. Digital marketing and

social networks are among the other practical settings in which issues discussed

in this paper might arise. For example, an augmented estimator may give the
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decision maker more profound insight into the popularity of a post or product on

Instagram when people, who follow the page, like or dislike the post. In summary,

the RAR design is useful in many settings to improve the overall response in the

trial. Although the arm effect estimation is usually associated with a relatively

small and negative bias, we propose a framework within which the bias is mitigated

significantly. In order to have this unavoidable bias converge to zero, more studies

need to be carried out to adjust the augmentation appropriately. Note that, in

this thesis, we only focus on DP designs, while one can apply the proposed con-

tributions in other randomisation procedures to improve the performance of the

estimators.

Another general potential direction for future work could be applying all miti-

gation bias techniques, aside from implementing them post or during the trial, to

a multi-arm bandit setting with binary responses. It is evident that extension to

a multi-arm setting requires dealing with extra dimensions in the DP procedure,

which in turn gives rise to computational limitations and complexity in the algo-

rithm (Powell, 2007). To overcome the curse of dimensionality, some coding and

programming techniques, together with taking advantage of computer machines

with larger memory capacity and more advanced configuration, could be potential

alternatives.

Furthermore, we strongly believe that using the augmented estimators intro-

duced in chapter 4 in the OIDP designs discussed in chapter 5 can produce the

most effective estimation results in terms of having less bias. Both novel areas need

more investigation in tuning the parameters involved separately. For example, the

augmented estimators should be appropriately formulated by tuning the param-

eters in the equation (4.19), and the OIDP by choosing ṡ in the equation (5.1).
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Although both require serious research and time, thinking about mixing these two

mitigation approaches can be an intriguing area for further studies. Note that the

relationship in tuning parameters can become sophisticated upon mixing these

two approaches, but it plays a crucial role in estimation with minimal bias. How-

ever, drawing such a relationship and formulating the correlation involved requires

broad research work and commitment.

Finally, to define a potential PhD project for the future, we recommend de-

signing a group sequential procedure utilising either RDP or OIDP designs so that

an appropriate (identical or different) augmented estimator is used for modifying

up-to-date effectiveness estimation at each interim inspection look before entering

the following interim point. We actually mean that combining all novel findings of

this PhD project can be a fruitful starting point for more investigation to produce

unbiased estimation in this particular bandit context.
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