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Abstract

Parametric probability distributions are commonly used for modelling uncertain de-

mand and other random elements in stochastic optimisation models. However, when

the distribution is not known exactly, it is more common that the distribution is

either replaced by an empirical estimate or a non-parametric ambiguity set is built

around this estimated distribution. In the latter case, we can then hedge against

distributional ambiguity by optimising against the worst-case objective value over all

distributions in the ambiguity set. This methodology is referred to as distribution-

ally robust optimisation. When applying this approach, the ambiguity set necessarily

contains non-parametric distributions. Therefore, applying this approach often means

that any information about the true distribution’s parametric family is lost.

This thesis introduces a novel framework for building and solving optimisation models

under ambiguous parametric probability distributions. Instead of building an ambi-

guity set for the true distribution, we build an ambiguity set for its parameters. Every

distribution considered by the model is then a member of the same parametric family

as the true distribution. We reformulate the model using discretisation of the ambi-

guity set, which can result in a large, complex problem that is slow to solve.
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We first develop the parametric distributionally robust optimisation framework for

a workforce planning problem under binomial demands. We then study a budgeted,

multi-period newsvendor model under Poisson and normal demands. In these first two

cases, we develop fast heuristic cutting surface algorithms using theoretical properties

of the cost function. Finally, we extend the framework into the dynamic decision

making space via robust Markov decision processes. We develop a novel projection-

based bisection search algorithm that completely eliminates the need for discretisation

of the ambiguity set. In each case, we perform extensive computational experiments to

show that our algorithms offer significant reductions in run times with only negligible

losses in solution quality.
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Chapter 1

Introduction

In this chapter, we provide motivation for the research in this thesis and introduce a

number of relevant concepts and methodologies. Section 1.1 describes the motivation

for the content of this thesis. Following this, Section 1.2 introduces basic deterministic

optimisation. Section 1.3 then introduces optimisation under parameter uncertainty,

describing existing methodologies and the parametric framework that we develop in

this thesis. Following this, Section 1.4 details the contributions that we have made.

Finally, Section 1.5 gives an outline of the structure of the thesis.

1.1 Motivation

While this thesis considers a more general class of uncertain optimisation problems, its

initial direction was motivated by the planning problems faced by a large UK service

industry company. In particular, this company is a telecommunications company,

1
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providing services such as television, broadband and telephone to customers across

the entirety of the UK. The company employs around 20,000 technical engineers that

are tasked with installing and maintaining the equipment that allows customers to

consume their services. In order to maximise profits and minimise the number of

dissatisfied customers, extensive planning is employed.

The particular planning problem that we are motivated by is optimising the use of the

workforce’s hours in order to meet as much demand as possible over a given planning

horizon. In particular, we consider deciding upon how many jobs to complete on each

day by completing some jobs prior to their due dates. Two types of jobs must be

planned for: installation and repair jobs. Installation jobs correspond to engineers

installing new equipment, such as routers or cable networks, that allow new customers

to use the company’s services. Repair jobs correspond to engineers repairing existing

equipment for current customers, so that they can continue to use the services. At the

time of planning, there are some jobs due on each day in the planning horizon that

we know about. However, due to the unpredictable nature of breakages in equipment

and new customer arrivals, the number of jobs that will arrive in the system between

the time of planning and the period concerned (intake jobs) is uncertain.

Dealing with the uncertainty caused by the number of intake jobs is of great impor-

tance to the performance of plans. However, incorporating uncertainty often leads to

greatly increased solution times for large models such as these. A simple approach

used in some papers has been to forecast the number of intake jobs and use the fore-

cast as the truth (Ainslie et al., 2015, 2018). However, this makes the performance
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of the plan directly dependent on the accuracy of the forecast. Over-predicting the

number of intakes may lead to wasted capacity, and under-predicting the number of

intakes can cause jobs to be left incomplete. In any case, the company either wastes

money or is left with dissatisfied customers. Another approach is to treat the number

of intakes for each day as a random variable with a known distribution (Zhu and

Sherali, 2009; Ross, 2016). In practice, however, these distributions cannot be known

exactly and must be estimated from historical data. In this thesis, we therefore do not

assume that any distributions are known exactly. Instead, we explicitly incorporate

distributional ambiguity in order to hedge against the effects of poor estimation.

In this planning problem, it is important that our models utilise all information on

the intake random variable’s distribution in order to ensure that its behaviour is

adequately represented. We make the following observations on this random variable.

Firstly, it is a count variable, meaning that it is discrete. Secondly, the number

of repair jobs is bounded by the number of devices and the maximum number of

installation jobs can be fixed by the company. Hence, the number of intakes for

a given day is bounded above. Finally, jobs arrive independently of one another.

Therefore, this random variable is well-described by a binomial distribution.

Parametric distributions are commonly used for demand in stochastic optimisation

problems, particularly in the newsvendor problem when the distribution is known (Nah-

mias, 1994; Agrawal and Smith, 1996; Gallego et al., 2007; Rossi et al., 2014). How-

ever, in problems where the distribution of demand is not known exactly (such as

our planning problem), the information that the true distribution lies in a given
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parametric family is often ignored. This is done since incorporating this additional

information results in greatly increased model complexity. Instead of incorporating

this information, models usually represent distributional ambiguity using sets of can-

didate non-parametric or semi-parametric distributions. However, sets of this kind

can contain distributions that do not belong to the same parametric family as the

true distribution was assumed to lie in. This means that any modelling conveniences

that led to the use of parametric distributions are lost in the model’s output.

This thesis is more generally motivated by a wider class of problems similar to this

planning problem. In particular, we focus on optimisation problems with the follow-

ing characteristics. Firstly, some of the model’s parameters are random. Secondly,

we cannot know their distributions exactly. Finally, parametric distributions pro-

vide a logical and appropriate way to model their behaviour. The main goal of this

thesis is to improve the modelling of such problems by not only representing distri-

butional ambiguity, but also incorporating and preserving all information about the

parametric family in which the true distribution lies. While many approaches exist for

inorporating distributional ambiguity, the most common approaches do not preserve

all distributional information. This thesis develops methods for doing so, and assesses

the benefit of using such methods over more common ones.

Our framework for accomplishing this goal can be described as follows. We explicitly

incorporate and preserve the parametric family of the true distribution, only consid-

ering distributions that lie in this family. We use maximum likelihood estimation in

order to build confidence sets for the true parameters. Our models then optimise
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against the worst-case parameters in this set. This allows us to integrate estimation

and optimisation, hedge against distributional ambiguity and parameter uncertainty,

and also ensure that any distributions returned by the model lie in the same para-

metric family that the true distribution was assumed to lie in.

1.2 Deterministic Optimisation

In many real-world decision-making problems, we are tasked with selecting the best

decision from a set of potential choices. Since this set can become very large and

complex, solving the real problem directly is often challenging. Operational Research

(OR) consists of creating and solving mathematical models for such problems, which

are easier to solve than the problems themselves.

Denote by x a vector of n decision variables1. These represent the values that we are

in control of and wish to decide on the values of. The set of values that x can take

is represented by a set of constraints. We measure the performance of the x using

an objective function, denoted by f . Provided that the model adequately represents

the true problem, solving the real-world problem is then equivalent to finding the

value of x that either minimises or maximises the objective function over all those

that satisfy the constraints. A general mathematical model representing a decision-

making problem is of the form shown in (1.2.1)-(1.2.3).

min
x

h(x) (1.2.1)

s.t. gi(x) ≤ 0 ∀ i ∈ {1, . . . ,m} (1.2.2)

1Note that the notation used in this chapter may be re-defined elsewhere in the thesis.



CHAPTER 1. INTRODUCTION 6

x ∈ Rn1
+ × Nn2

0 . (1.2.3)

Here, (1.2.1) represents the objective of the model, (1.2.2) defines the constraints,

and (1.2.3) defines which variables are allowed to be continuous and which must be

integer (with n1+n2 = n). The methodology used to solve a model of this form, where

all parameters are known, is referred to as deterministic optimisation. This framework

encompasses a large selection of methods and algorithms that differ depending on the

form that f and the gi take, and also on the values of n1 and n2. The most simple

model occurs when all variables are continuous and f and the gi are all linear, i.e.

f(x) =
n∑
j=1

cjxj, gi(x) =
n∑
j=1

Ai,jxj − bi ∀ i ∈ {1, . . . ,m}, n1 = n, (1.2.4)

where c ∈ Rn is a known vector of objective coefficients, A ∈ Rm×n is a known

constraint matrix, and b ∈ Rm provides the constraints’ right-hand sides. In this case,

the model is referred to as a linear program (LP)2 and can be solved to optimality

via the simplex algorithm (Dantzig, 1960).

Any deviation from the LP format results in increased model complexity. For exam-

ple, when some variables must be integer, the model becomes a mixed integer linear

program (MILP). Such problems can no longer be solved via the simplex algorithm,

and other methods such as branch and bound (Land and Doig, 1960) must be applied.

This method consists of solving a sequence of LP relaxations, each time generating

bounds on the optimal objective value. When either f or g are non-linear, the prob-

lem becomes a non-linear program (NLP). For such problems, an entirely different

2Definitions of key terminology and abbreviations are given again in later chapters, in case readers

prefer not to read the thesis in order.
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set of methods based on a set of first-order optimality conditions referred to as the

Karush-Kuhn-Tucker (KKT) conditions (Kuhn and Tucker, 1951) are employed.

This thesis considers LPs, MILPs and NLPs. While different methods are applied

to each, one characteristic is common among them all. Although optimal algorithms

often exist, they can solve slowly when n and/or m are large. Hence, we develop our

own heuristic algorithms to solve our models. A heuristic algorithm is one that is

designed to provide near-optimal solutions in a short time.

1.3 Optimisation Under Parameter Uncertainty

The models discussed in Section 1.2 assume that all parameters are known. However,

uncertainty is inherent in many real-world OR problems since it is often impossible to

calculate all of a model’s parameters exactly. Of particular importance to this thesis is

uncertain demand, which is perhaps the most common. This section introduces some

methodologies that have been developed to handle such uncertainties in optimisation

models, along with the novel methodology that we develop in this thesis.

1.3.1 Existing Methodologies

Many methodologies for dealing with uncertainty in optimisation problems have been

developed over the years. In order to introduce these methodologies, consider the

optimisation problem given in (1.2.1)-(1.2.3). Furthermore, suppose that some vector

or matrix of parameters, Y , is unknown. In the case of an LP, we may have that

Y = c or Y = A, for example. We will treat Y as a random variable with support
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set Y . The first methodology that we discuss for modelling uncertainty is robust

optimisation (Ben-Tal and Nemirovski, 1998) (RO). RO constructs an uncertainty set

U ⊆ Y containing potential values for the uncertain parameters. It then optimises

against the worst-case value of the objective function over all realisations of Y in

the uncertainty set, while ensuring that the solution of the problem is feasible for all

realisations. A robust version of (1.2.1)-(1.2.3) is formulated as follows:

min
x

max
y∈U

h(x,y)

s.t. gi(x,y) ≤ 0 ∀ i ∈ {1, . . . ,m}, ∀ y ∈ U

x ∈ Rn1
+ × Nn2

0 .

RO hedges against uncertainty by protecting against the very worst realisations of

the uncertain parameter. However, due to the risk-averse nature of this worst-case

approach, RO can produce overly conservative solutions.

Stochastic programming (SP) instead assumes that the unknown parameters are ran-

dom variables with known probability distributions (Kall et al., 1994). Suppose that

the distribution of Y is P 0. The most basic stochastic programming model assumes

that Y only affects the objective function, and can be formulated as:

min
x

EP 0 [h(x,Y )]

s.t. gi(x) ≤ 0 ∀ i ∈ {1, . . . ,m}

x ∈ Rn1
+ × Nn2

0 .

Where RO models can be viewed as hedging against the worst possible realisation

of Y , SP models such as this one account for the effects of all potential realisations
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without assuming that the worst will always occur.

However, similarly to how it is not always possible to know a parameter’s value

exactly, it is also not always possible to know its probability distribution exactly. In

such cases, distributionally robust optimisation (DRO) is an appropriate methodology.

DRO combines elements from RO and SP; it constructs an ambiguity set P containing

candidates for the true distribution P 0 of the uncertain parameters, and optimises

against the worst-case distribution in this set (Ben-Tal et al., 2013). A general DRO

model is of the form:

min
x

max
P∈P

EP [f(x,Y )]

s.t. gi(x) ≤ 0 ∀ i ∈ {1, . . . ,m}

x ∈ Rn1
+ × Nn2

0 .

The ambiguity set P incorporates any available information on the true distribution.

For example, early models assumed that the first two moments were known (Scarf,

1957), and the ambiguity set contained all distributions with said moments. The most

common ambiguity sets in the recent DRO literature, however, have been distance-

based non-parametric ambiguity sets. Distance-based ambiguity sets contain all dis-

tributions that lie within some pre-prescribed distance from a nominal distribution, as

measured by some distance measure. Examples of distance measures used to construct

ambiguity sets include ϕ-divergences (Ben-Tal et al., 2013), ζ-structure probability

metrics (Zhao and Guan, 2015) and the Wasserstein distance (Mohajerin Esfahani

and Kuhn, 2018).
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Non-parametric distance-based DRO methods typically do not incorporate any in-

formation about the moments or parameters of the true distribution. Other DRO

methods allow users to specify and control such parameters, enforcing that all distri-

butions in the ambiguity set share these parameters. Marginal distribution models

allow users to provide complete marginal distributions, and then build ambiguity

sets containing all joint distributions with these marginals. The first example of

a marginal distribution DRO model came from Meilijson and Nádas (1979), who

studied calculating critical paths in a PERT network when only the marginal distri-

butions of project lengths were known. The framework has recently been used as a

more general framework for solving discrete choice models with uncertain objective

coefficients (Natarajan et al., 2009).

Marginal distribution models allow us to ensure that the worst-case distribution has

the required marginals, but allows the covariance among the random variables to vary

freely. While assuming that we know the marginal distribution is not always realistic,

this may be appropriate when we have strong empirical estimates of the marginals and

are more concerned about how they interact via correlation or covariance. In the case

where parametric distributions are appropriate for the marginals, this approach does

ensure that the marginals of the worst-case distribution lie within the correct family.

However, it can only be used when the parameter estimates are accurate.

Semi-parametric models are another type of DRO model that differ from the distance-

based ones that we have discussed. Semi-parametric models consider scenarios where

the distribution is not known, but some of its moments can be controlled by the
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decision maker. The ambiguity set then contains all distributions with the specified

moment information. The parameters controlled by the decision maker can encompass

any number of the distribution’s moments. An example of a semi-parametric model

comes from Ahipasaoglu et al. (2019), who studied distributionally robust project

crashing. In their model, they assumed that they could control the first two moments

of the project duration. The covariance matrix of the project durations was considered

as uncontrollable, but if it was known then it could be specified. Then, the ambiguity

set would only contain distributions with the given covariance matrix.

Semi-parametric models are applicable when the random variables of interest are un-

der at least partial control of the decision maker. In the problem of Ahipasaoglu et al.

(2019), the project durations can be controlled by allocating more or less resources to

them. In the context of demand for a product or service, it may be possible to control

the mean of the distribution by increasing expenditure on advertising. However, since

demand is exogenous, it is not guaranteed that the mean demand will be affected

by this in the way intended. Therefore, it is more common in demand modelling to

treat such parameters as unknown and uncontrollable. In this context, it is more

appropriate to estimate the parameters than to try to control them.

In recent years, DRO has gained significant traction in the OR literature for a num-

ber of reasons. For example, it maintains some of the risk-aversion of RO whilst still

incorporating probabilistic information about the uncertain parameters and not as-

suming that the worst-case realisations will occur. In addition, when distance-based

ambiguity sets are used, maximum likelihood estimation can be utilised to create con-
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fidence sets for the true distribution (Ben-Tal et al., 2013). This allows the decision

maker to directly control the risk-aversion associated with the model via tuning the

confidence level of the confidence set. Furthermore, DRO models with distance-based

ambiguity sets often yield linear or convex quadratic programming reformulations via

Lagrangian duality (Bayraksan and Love, 2015). When the reformulations are slow to

solve, fast iterative methods such as cutting surface algorithms (Mehrotra and Papp,

2014) can be applied. Cutting surface algorithms iteratively solve the DRO model

over increasing discrete subsets of the ambiguity set. Therefore, DRO models provide

a way to incorporate distributional ambiguity without sacrificing tractability.

Another key methodology for modelling uncertainty isMarkov decision processes (Bell-

man, 1957) (MDPs). In an MDP, a decision maker is in partial control of a stochasti-

cally evolving system. At each epoch t ∈ T = {0, . . . ,∞}, they take an action at ∈ A

based on some limited information about the state of the system. This information

is represented by the state variable st ∈ S. The state of the system then becomes

st+1 ∈ S, and the decision maker receives a one-period reward rst,at,st+1 . The evo-

lution of the system is described by a transition matrix P 0, where P 0
s,a,s′ gives the

probability of transitioning to state s′ given that action a is taken when in state s,

for each (s, a, s′) ∈ S ×A× S.

A solution of an MDP is a policy π such that πs,a gives the probability of taking

action a when in state s, for each s ∈ S and a ∈ A. The goal of the decision maker is

to determine the policy that maximises their total discounted expected reward:

max
π∈Π

EP 0,π

[
∞∑
t=0

γtrst,at,st+1

∣∣∣∣S0 ∼ Q

]
,
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where γ is a discount factor and Q is the known distribution of the initial state

random variable S0. When P 0 is known, the MDP can be solved via dynamic pro-

gramming (Bellman, 1966). Of more interest to this thesis, however, is the case where

P 0 is not known. In such cases, it has been found that replacing the true transition

distributions with estimates can result in decision-making policies that fail drastically

when implemented (Le Tallec, 2007), and large variance and bias in the estimates of

outputs (Mannor et al., 2007). As a result of this, robust MDPs (RMDPs) were intro-

duced (Satia and Lave, 1973). They employ similar concepts to DRO; they construct

an ambiguity set P for P 0 and optimise against the worst-case:

max
π∈Π

min
P∈P

EP ,π

[
∞∑
t=0

γtrst,at,st+1

∣∣∣∣S0 ∼ Q

]
.

While early ambiguity sets focused on bounding probabilities (Satia and Lave, 1973;

Givan et al., 2000), distance-based ambiguity sets soon became the standard for

RMDPs. Examples of distances measures used to construct RMDP ambiguity sets

include the Kullback-Leibler divergence, χ2 distance and L1-norms (Iyengar, 2005),

and more recently the general class of ϕ-divergences (Ho et al., 2022). The most com-

mon algorithm for solving RMDPs is robust value iteration, an iterative algorithm

that solves a DRO problem (referred to as a robust Bellman update) in each itera-

tion. Since a robust Bellman update is a DRO problem, each iteration of robust value

iteration is often as simple as solving a linear or convex quadratic program.
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1.3.2 Parametric Framework for DRO and RMDPs

The main issue that this thesis aims to address with respect to optimisation under

uncertainty is the treatment of parametric distributions in DRO and RMDPs. In

many uncertain optimisation problems, the true distribution is assumed to lie in

some parametric family. When the distribution or its parameters are unknown, DRO

models build ambiguity sets containing candidates for the true distribution.

It is generally understood that all information that helps to characterise the true

distribution should be incorporated into the ambiguity set. We can then enforce

that all distributions in the ambiguity set share this information. For example, when

some moments of the distribution are assumed to be known, semi-parametric models

can enforce that the worst-case distribution has these moments. When the marginal

distributions are assumed to be known, marginal distribution models enforce that

the worst-case distribution has these marginals. However, when the family in which

the true distribution lies is assumed to be known, no DRO methodologies exist that

enforce that the worsts-case distribution lies in this family.

PDRO is a framework that is designed for problems where parametric distributions

provide strong models for the uncertain parameters, but nothing else about the true

distribution is known. In such cases, marginal distribution and semi-parametric mod-

els are not appropriate. For such problems, one might consider using distance-based

non-parametric ambiguity sets. While these do not make assumptions about any of

the model’s parameters or marginals, they also ignore the assumption made about the

family of the true distribution. Therefore, worst-case distributions from such models
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do not necessarily satisfy this assumption. This may result in worst-case distributions

that are not reasonable models for the true parameters. PDRO alters the formulations

used in DRO and RMDPs to strictly enforce that every distribution considered lies

in the assumed parametric family.

We enforce this by optimising against the worst-case parameters instead of the worst-

case distribution, and using the probability mass/density function (PMF/PDF) in

the objective function directly. More specifically, suppose that P 0 = P θ0
is assumed

to lie in some set PΘ =
{
P θ : θ ∈ Θ

}
. In other words, the distribution P θ can be

calculated entirely from θ and Y via a PMF or PDF fY :

P θ = (fY (y|θ))y∈Y ,

for each θ ∈ Θ. Let us define the feasible region for x as:

X =
{
x ∈ Rn1

+ × Nn2
0 : gi(x) ≤ 0 ∀ i ∈ {1, . . . ,m}

}
.

Then, a general PDRO model can then be written as:

min
x∈X

max
θ∈Θ

Eθ [h(x,Y )], (1.3.1)

where:

Eθ [h(x,Y )] =
∑
y∈Y

h(x,y)fY (y|θ) (1.3.2)

when Y is discrete, or:

Eθ [h(x,Y )] =

∫
Y
h(x,y)fY (y|θ)dy. (1.3.3)

if it is continuous. PDRO is our framework for building and solving models of the

form (1.3.1). In general, the framework works as follows:
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1. Decide on parametric family. We must first decide upon the parametric

family that best models our random variable Y . This can be done based on

expert knowledge or model fitting.

2. Re-write objective function. Explicitly calculating the expected value and

performing simplifications can result in a more convenient expression.

3. Analyse objective function as a function of θ. We aim to characterise the

worst-case parameter for a given x decision.

4. Take samples and calculate MLE. Denote by θ̂ the MLE of θ0.

5. Construct ambiguity set. We typically use an approximate 100(1 − α)%

confidence set, Θα, for θ
0 centred around θ̂ as an ambiguity set.

6. Discretise ambiguity set. This gives a discrete subset of the ambiguity set,

Θ′ ⊆ Θ.

7. Reformulate and solve. We reformulate (1.3.1) approximately as follows:

min
x∈X ,ϑ

{ϑ : ϑ ≥ Eθ [h(x,Y )] ∀ θ ∈ Θ′} . (1.3.4)

Model (1.3.4) can then be solved using an appropriate method.

The steps involved in PDRO each need to be adjusted depending on the problem at

hand. The first characteristic of the problem that affects these steps is whether Y

is discrete and finite, discrete and infinite, or continuous. In the first case, step 2.

simply entails calculating the entire distribution for any θ and treating the PMFs

as constant coefficients. The model will be linear if h(x,y) is linear in x. In the
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second and third cases, step 2. will need to evaluate all sums and integrals in order

to simplify the objective function as much as possible. In general, we aim to re-write

the objective function in a simple format with finitely many terms.

The behaviour of the objective function after the simplifications in step 1. affects many

of the other steps in PDRO. For example, Eθ[h(x,Y )] may be non-linear in x even

if h(x,y) is linear in x. This can happen when Y is infinite and/or continuous, and

in such cases (1.3.4) may need to be adapted in order to be solvable using standard

solvers. If the objective function is neither linear nor quadratic, we will need to apply

methods such as piecewise linear approximations or KKT conditions in order to solve

it. Step 3. is also affected by the behaviour of the objective function. In step 3. we

typically differentiate the objective function w.r.t. each θt in order to find theoretical

results such as convexity or monotonicity. These results can help build heuristics for

solving the model. When the objective function is not differentiable w.r.t. some θt,

we may need to use less rigorous methods such as plotting the objective function in

order to better characterise the worst-case parameter.

Other mathematical properties of the family of distributions chosen in step 1. can also

affect the steps used in PDRO. For many families of distributions, the MLEs in step

4. can easily be found using closed form equations. However, for some families such

as Gamma or Cauchy, no closed form solution exists. In such cases, finding the MLEs

can only be done numerically, making step 4. more complex. In addition, in step 5. we

typically use the MLEs to construct confidence sets based on the Wald test statistic.

Computing this statistic requires the Fisher information matrix, which is only defined
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under certain regularity conditions. One such condition is that the support does not

depend on θ. Therefore, for marginal distributions such as the uniform distribution

on [0, θt], we cannot use the Wald-based confidence set. In such cases, one might use

the likelihood ratio statistic to construct a confidence set instead.

This parametric formulation has a number of benefits. Firstly, finding the worst-

case parameters as opposed to the worst-case distribution itself greatly reduces the

dimension of the vector that we search for. The worst-case parameter is a small vector

consisting of only a few values, whereas the worst-case distribution is a vector with as

many entries as the uncertain parameter has realisations. Secondly, it improves the

realism of the output, since the worst-case distribution will share the same structural

properties as the true distribution since it lies in the same family. In addition, the

output is more explainable, since the worst-case distribution can be characterised by

only a small number of values. Finally, the use of parametric distributions means that

our approach allows us to combine maximum likelihood estimation and optimisation

via our ambiguity sets. In particular, we can use MLEs to construct confidence sets for

use as ambiguity sets, meaning they have asymptotic probabilistic guarantees.

However, the parametric framework comes with a number of challenges. PMFs/PDFs

of parametric distributions as functions of the parameters are usually polynomials or

contain exponential functions or logarithms. Therefore, treating the parameters as

decision variables means that the model does not have a convenient reformulation3

3We use the term convenient reformulation to loosely mean a reformulation that is solvable using

standard solvers, such as an LP, MILP, quadratic or second-order cone program.
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via Lagrangian duality. As a result, the standard reformulation methods in DRO

and RMDPs no longer apply. Due to this, our methods discretise the ambiguity set

of parameters, allowing us to represent the worst-case objective value via a set of

expected value constraints. For discrete distributions, this method often relies on

computing the corresponding PMF for every parameter in the ambiguity set.

In any case, when this discretised ambiguity set is large, our models have a large

number of constraints and present a significant computational burden, making them

slow to build and solve. Therefore, a key focus of this thesis is to develop exact

and heuristic algorithms for our parametric models that reduce solution times. For

every problem considered, we perform computational experiments to show that our

algorithms solve the models to near optimality and drastically reduce solution times

when compared with solving the models directly.

1.4 Contributions

The major contributions of this thesis are as follows. In this thesis, we:

1. Introduce the novel framework of parametric DRO.

2. Show how to build and solve parametric DRO models under binomial, Poisson

and normal random variables, linear and non-linear objective functions, and

continuous and integer decision variables.

3. Show how to use maximum likelihood estimation to construct confidence sets

for the true parameters, and use them as ambiguity sets in our models.
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4. Present a selection of novel heuristic cutting surface algorithms for the para-

metric DRO models. These algorithms use theoretical results concerning the

objective function as a function of the distribution’s parameters to develop a

small subset of extreme parameters in which to search for the worst-case.

5. Introduce the parametric RMDP framework, based on the aforementioned para-

metric DRO framework.

6. Develop a bisection search algorithm that solves the parametric robust Bellman

updates to ϵ-optimality and does not rely on discretisation of ambiguity sets.

7. Carry out extensive computational experiments to test the efficacy of our algo-

rithms, and compare with non-parametric DRO and RMDP approaches.

1.5 Thesis Outline

In Chapter 2, which is an adapted version of Black et al. (2022a), we study a distri-

butionally robust resource planning problem under binomial demands. We introduce

the framework of parametric DRO and develop a novel heuristic cutting surface algo-

rithm for solving the problem. We also present a heuristic that is based on removing

intakes that always have a low probability of occurring. We perform computational

experiments in order to test our algorithms against the optimal parametric solution

and also provide comparisons of the parametric and non-parametric solutions.

In Chapter 3, we extend the framework to solve a static, multi-period, budgeted,

distributionally robust newsvendor problem. This newsvendor problem has a non-
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linear objective function and we consider both continuous and discrete parametric

demand distributions with infinite support. We first develop a heuristic algorithm

for the model under a known distribution and test this algorithm against off-the-

shelf solvers. Then, we develop cutting surface algorithms for the problem under

normal and Poisson demands and test their efficacy using computational experiments.

Chapter 3 is adapted from our paper that we submitted to a journal using double-blind

reviewing. Hence, no citation for this paper is currently available.

In Chapter 4, which is an adapted version of Black et al. (2022b), we present para-

metric RMDPs. We extend the concept of parametric DRO into the MDP framework

and develop a number of algorithms for carrying out robust value iteration. The main

algorithm is a bisection search algorithm that solves each parametric robust Bellman

update to ϵ-optimality. We test our algorithms against the non-parametric RMDP

solutions, comparing solution times, policies and worst-case distributions. Finally, in

Chapter 5, we conclude the thesis and discuss areas for future research.



Chapter 2

Distributionally Robust Resource

Planning Under Binomial Demand

Intakes

In this chapter, we consider a distributionally robust resource planning model inspired

by the real-world service industry problem discussed in Section 1.1. In this problem,

there is a mixture of known demand and uncertain future demand. Prior to having full

knowledge of the demand, we must decide upon how many jobs we plan to complete

on each day in the planning horizon. Any jobs that are not completed by the end of

their due date incur a cost and become due the following day.

We present two distributionally robust optimisation (DRO) models for this problem.

The first is a non-parametric model with a ϕ-divergence based ambiguity set. The

second is a parametric model, where we treat the number of uncertain jobs due on

22
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each day as a binomial random variable with an unknown success probability. We

reformulate the parametric model as a mixed integer program and find that it scales

poorly with the sizes of the ambiguity and uncertainty sets.

Hence, we make use of theoretical properties of the binomial distribution to derive fast

heuristics based on dimension reduction. One algorithm is based on cutting surface

algorithms commonly seen in the DRO literature. The other operates on a small subset

of the uncertainty set for the future demand. We perform extensive computational

experiments to establish the performance of our algorithms. We compare decisions

from the parametric and non-parametric models, to assess the benefit of including the

binomial information.

2.1 Introduction

In this chapter, we consider a resource planning problem motivated by a real-world

telecommunications service company. This real problem consists of optimising the

use of a large workforce of service engineers, in the face of a mixture of known and

uncertain jobs.

2.1.1 Problem Setting

The planning process for a service company is subject to three stages, named the three

stages of planning. Each serves a different purpose, covers a different time horizon,

and creates results that feed into the next. The three stages are strategic, tactical,

and operational planning. Strategic planning covers a period of multiple years, and
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concerns long term decisions such as how many employees to be hired and in which

skills they should be trained. Tactical planning concerns a period of weeks or months.

It involves aggregate decisions such as deciding upon the capacity needed in each

period, or how many jobs can and cannot be completed in each period. Operational

planning concerns short-term decisions such as scheduling the day-to-day activities of

the workforce at the individual level. We focus on the tactical planning stage in this

chapter. The decisions that we make are at the aggregate level, i.e. we do not plan

the specific activities of every worker but we instead aggregate their availability into a

daily capacity value. We are tasked with planning the use of this capacity to maximise

job completions, or equivalently minimise the number of jobs left incomplete. Since it

is typically not possible to move capacity between days, planners manipulate demand

to make the best use of what they have.

In the telecommunications industry, jobs can be divided into two categories: repair

jobs and installation jobs. Repair jobs correspond to service engineers being tasked

with fixing broken equipment for existing customers, such as broadband routers and

telephone systems. Installation jobs correspond to engineers installing equipment in

order to obtain new customers. For example, this may be installing new cabling

cabinets and networks in order to provide broadband to a new geographical area.

Repair jobs are treated as emergency jobs and they are given a high priority for

completion. Installation jobs are treated as additional jobs that a company can plan

to complete in order to generate more profit.

In this chapter, we will consider planning the activities of a telecommunications work-
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force carrying out repair jobs. Since breakages in equipment and services are not

planned, these jobs offer a source of uncertainty. In particular, for any given planning

period we have knowledge of a fixed number of repair jobs that are already in the

system at the time of planning (workstack jobs). However, the number of breakages

between the time of planning and the date concerned is subject to uncertainty. The

jobs generated by these future breakages are referred to as intake jobs or intakes .

At the time of planning, we have an aggregate capacity value that gives the number

of jobs that our workforce can complete, for each day in a planning horizon of fixed

length. This is obtained from the number of engineers working on each day, and the

number of hours that they will work. By default, we will use all available capacity on

each day to complete jobs that are due on that day. Furthermore, workstack jobs can

be completed on or before their due date, and completing them early is referred to

as pulling forward. However, the same does not apply to intake jobs. Since the day

that they will arrive in the system is unknown, allowing them to be pulled forward

could suggest that they will be completed before they even arrive. Hence, intake jobs

cannot be pulled forward.

If any jobs are still incomplete by the end of their due date, then they will not leave

the system but incur a cost, and become due on the following day. This is referred to

as rollover. In this chapter, since capacity is fixed, our model will optimise the pulling

forward decision in order to minimise the total rollover cost over the planning horizon.

Pulling forward can be utilised to free up capacity on due dates that we expect to

have high intake. This helps to reduce rollover and utilise spare capacity.
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In the literature on service industry planning models that are closest to ours, de-

mand uncertainty often results in unreasonably large models due to poor scalability.

Examples of this come from Ainslie et al. (2015) and Ainslie et al. (2018). In these

papers, models had to be solved heuristically due to their size, even though they were

deterministic. However, the demand uncertainty is still acknowledged. In fact, in

some cases the plan is passed through a predictive model in order to better assess its

performance (Ainslie et al., 2017).

The closest model to ours that does model uncertain demand comes from Ross (2016),

who used two-stage stochastic programming models for service industry workforce

planning. However, this methodology requires the assumption that the demand dis-

tribution is known, and this is not an assumption that is reasonable here. The frame-

work that we use to model our problem is distributionally robust optimisation (DRO).

This framework allows us to include distributional information in our models, without

full knowledge of the distributions themselves.

More specifically, we model intakes as binomial random variables where each distri-

bution is ambiguous. Furthermore, we assume that the intake random variables for

any two days in the planning horizon are independent of one another. We assume

that we have access to a forecasting model or expert knowledge that gives a point

estimate of intake and a range of potential values. Hence, for each day, the number of

trials is fixed at the maximum intake. Therefore, the success probability is the only

unknown parameter for each distribution. This parameter can be estimated through

maximum likelihood estimation, with access to past intake data. Our decision to use
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the binomial distribution can be justified by the following three reasons:

1. The number of intake jobs due on each day is a discrete quantity and any two

jobs arriving on the same day arrive independently of one another.

2. There is a fixed and finite set of values that each intake random variable can take.

Other discrete distributions such as the Poisson distribution are unbounded, and

hence not fitting for these random variables.

3. Apart from naturality, it gives a concise way of modelling the uncertainty. We

can represent each distribution uniquely by one choice of p, which is a vector

of dimension equal to the number of periods in the planning horizon. Using a

non-parametric approach would mean having to analyse the entire distribution,

which is a larger vector that has one entry for every realisation of intake.

We emphasize that the binomial assumption is in contrast with much of the DRO

literature, in which distributions are usually non-parametric. The reason for this is

that parametric distributions often lead to models that do not have convenient re-

formulations. However, in the context of our problem, we show that it is possible

to derive algorithms which are both fast and near-optimal. Binomial and negative

binomial distributions have often been used for demand modelling, particularly in

inventory management. Examples of this include Collins (2004) for a risk-minimising

newsvendor, Gallego et al. (2007) for inventory planning under highly uncertain de-

mand, Dolgui and Pashkevich (2008) for forecasting demand in slow-moving inventory

systems, and Rossi et al. (2014) for confidence-based newsvendor problems.
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In this chapter, we will use the fact that every distribution in the ambiguity set

is binomial in order to find the worst-case expected cost for a fixed pulling forward

decision. In general, our methodology consists of three key steps. Firstly, we construct

a discrete ambiguity set for the parameters of the true distribution. Secondly, we

create a MILP reformulation of the model by replacing the inner objective with a

finite number of constraints. In particular, there is one constraint for each distribution

in the ambiguity set. Thirdly, we study the objective function as a function of the

distribution’s parameters in order to construct a set of extreme parameters.

For discrete distributions, the constraints representing the inner objective will always

be linear. For continuous distributions, this is not necessarily the case. In such situa-

tions, for the second step, one would have to use a linear or quadratic approximation

of the objective function. For example, this could be done using piecewise linear

approximations or sample average approximations. Doing so would then allow our

methodology to be applied.

2.1.2 Our Contributions

We consider a DRO model for a resource planning problem with an unknown number

of intake jobs on each day. Using the problem structure, we model intakes as binomial

random variables and study the resulting DRO model. Due to the use of the binomial

distribution, the problem is considerably harder from a computational point of view.

Our contributions in this chapter include the following:

1. A new framework for solving DRO problems with ambiguity sets containing
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only distributions in the same parametric family as the nominal distribution. A

comparison of this framework with a common, non-parametric framework based

on the use of ϕ-divergences.

2. Three solver-based algorithms for the parametric model: an optimal and a

heuristic cutting surface algorithm (named CS opt and CS, respectively), and

another heuristic algorithm named Approximate Objective (AO). These algo-

rithms are described in Section 2.3.6. CS, while not exact, considerably sim-

plifies the main bottleneck step of CS opt: finding the worst-case distribution

for a fixed pulling forward decision (referred to as the distribution separation

problem). This makes it much more scalable with the size of the ambiguity set.

3. Extensive computational experiments on a variety of constructed instances which

show the efficacy of our methods. See Section 2.5 for these results.

2.2 Literature Review

In this section, we review relevant literature relating to our problem and problems of

a similar nature. In Section 2.2.1, we review the workforce planning literature and

highlight the methodologies used there. In Section 2.2.2, we summarise the recent

DRO literature and discuss how our research differs from it.

2.2.1 Workforce and Resource Planning

Workforce planning models of various forms have been studied in the OR literature

since the mid 1950’s, with early papers focusing on creating tractable deterministic
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models (Holt et al., 1955; Hanssmann and Hess, 1960). Demand uncertainty has

always been discussed in these early papers, with some authors extending previous

models to minimise expected cost rather than cost (Fetter, 1961). In more recent

literature, the modelling of uncertain demand has been developed further. The most

common method in the literature has been two-stage stochastic programming. This

methodology was applied to nurse scheduling (J. Abernathy et al., 1973) and recruit-

ment for a military organisation (Martel and Price, 1978) in the early literature.

More recent examples of stochastic programming in workforce planning include plan-

ning a cyber branch of the US army (Bastian et al., 2020), and service industry

workforce planning (Zhu and Sherali, 2009; Ross, 2016). These authors use stochastic

programming due to their assumption that the distribution of the uncertain param-

eters is known. When this is not the case, or if the planner is risk-averse, robust

optimisation (RO) can be used to represent demand uncertainty. This methodology

has been used, for example, in healthcare (Holte and Mannino, 2013) and air traffic

control (Hulst et al., 2017).

Recently, there have also been some applications of DRO to workforce and resource

planning. Liao et al. (2013) used DRO for staffing a workforce to take calls arriving at

a call centre at an uncertain rate. The reason for using DRO was cited as being that

the true arrival rates of calls are usually subject to fluctuations, meaning that the

typical stochastic model with a fixed Poisson distribution was not appropriate. They

simulated the DRO solution and the stochastic programming solution and found that

the two had similar costs. However, the stochastic programming solution violated
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more model constraints. Chen et al. (2015) also used DRO for workforce planning in

a hospital environment. In particular, they used DRO to determine bed requirements

in order to appropriately manage admissions to the hospital. They use DRO due

to the difficulty in specifying a distribution to describe patient movements in the

hospital, and find that it performs better than a deterministic approach.

Our resource planning problem deals with the management of both planned and

unplanned jobs. Similar problems exist in other settings, such as scheduling for gas

pipeline maintenance (Angalakudati et al., 2014), and operating room scheduling

in hospitals (Samudra et al., 2016). Particularly, in operating room planning, the

workstack and intake jobs as defined in our model are similar to elective (inpatient

and outpatient) and non-elective (emergency) surgeries. Similarly, in gas pipeline

maintenance the workstack and intake jobs correspond to planned maintenance jobs

and emergency gas leak repairs, respectively.

The main difference between our research and these papers is the choice of performance

measure. For example, Angalakudati et al. (2014) use overtime hours as a performance

measure under the assumption that jobs have individual completion times. However,

since our model is for tactical and not operational planning, jobs and capacity are

aggregated. The duration of each job is not modelled directly. Hence, in our case,

the amount of overtime would be inferred by the number of jobs that could not

be completed, i.e. the number that rolled over. As discussed by Samudra et al.

(2016), metrics chosen for optimisation differ based on the underlying context and

the stakeholders involved. They emphasize that traditional metrics such as makespan
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do not work in presence of both planned and emergency demands. In our application,

the time taken to complete jobs is not of particular concern. However, leaving jobs

incomplete is very costly due to its effects on customer satisfaction. In industries like

telecommunications, customer satisfaction is of great importance, and hence rollover

may be the most appropriate performance measure.

The literature reviewed here shows that the modelling of uncertain demand in resource

and workforce planning has been the subject of a breadth of research in the past. It

suggests that the most common approach is to employ two-stage stochastic program-

ming models. However, the assumption that the distribution of demand is known is

not reasonable in our setting. We do assume, however, that we can take samples of

intake in order to estimate the parameters of its distribution. In addition, there are no

recourse actions in our problem. In such settings, RO and DRO are the only potential

solution approaches. For our problem, a robust model will be shown to lead to more

conservative decisions and large costs. We show this in Appendix A.2.2.

Hence, we present a DRO model for our problem, which will extend the previous

stochastic programming approaches to the case where the distribution is not known

exactly. We find that the model is large and complex, due to the size of the sets of

intakes and distributions. Hence, we develop heuristics that apply dimension reduc-

tion to these sets in order to reduce solution times. One algorithm considers only a

small subset of distributions, and the other operates on a small subset of the set of

potential intake realisations. While these algorithms perform well on average, they

do sacrifice optimality for speed in some large instances.
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2.2.2 Distributionally Robust Optimisation

DRO combines concepts from robust optimisation and stochastic programming in or-

der to protect the decision maker from distributional ambiguity. DRO models are

constructed using only limited information on the true distribution of the uncertain

parameters. This information is encoded in an ambiguity set : a set of distributions

in which the true distribution should lie. The earliest type of ambiguity set in the lit-

erature is the moment-based ambiguity set. This set contains all distributions whose

moments satisfy a given set of constraints. The simplest moment-based sets con-

sider moments to be fixed and known. The moments concerned have often been the

mean and variance. This case was studied by Scarf (1957) for a newsvendor model.

Other papers included models where the first m moments were known (Shapiro and

Kleywegt, 2002).

Authors have also developed models that did not assume that these values were fixed

but that they were known to lie in an interval or that ordinal relationships between

probabilities were known (Breton and Hachem, 1995). Other examples of this come

from Ghaoui et al. (2003) and Lotfi and Zenios (2018), who study a CVaR model

where the first two moments are only known to belong to polytopic or interval sets.

Methodologies for solving moment-based ambiguity set models include reformulation

via Cauchy-Schwarz bounds on the objective function (Scarf, 1957), reformulating as

a second order conic program (Ghaoui et al., 2003; Lotfi and Zenios, 2018), sample

average approximations (Shapiro and Kleywegt, 2002) and sub-gradient decomposi-

tion (Breton and Hachem, 1995).
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The second common methodology for constructing ambiguity sets is using distance

measures. A distance-based ambiguity set contains all distributions that lie within

some pre-prescribed distance of a nominal one. In the literature, many ways to mea-

sure this distance have been studied. For example, many papers have used the Wasser-

stein distance. This distance can lead to reformulations as convex programs (Mo-

hajerin Esfahani and Kuhn, 2018). Due to this, it has been used in a number of

contexts, such as portfolio selection (Pflug and Wozabal, 2007), least squares prob-

lems (Mehrotra and Zhang, 2013) and statistical learning (Lee and Mehrotra, 2015;

Lee and Raginsky, 2018).

Another common family of distance measures in DRO has been ϕ-divergences. This

family contains a number of distance measures, such as the χ2 distance, variation dis-

tance and Kullback-Leibler divergence. Such measures typically lead to second-order

conic programming or even linear programming relaxations via taking the Lagrangian

dual of the inner problem (Ben-Tal et al., 2013; Bayraksan and Love, 2015). Due to

this, ϕ-divergences have been popular in the DRO literature. There have been nu-

merous examples of ϕ-divergences being used to reformulate distributionally robust

(DR) chance-constrained programs as chance-constrained programs (Hu et al., 2013;

Yanıkoğlu and den Hertog, 2013; Jiang and Guan, 2016).

Another benefit of ϕ-divergences is that they can be used to create confidence sets and

enforce probabilistic guarantees. Ben-Tal et al. (2013) show how to create confidence

sets for the true distribution based on ϕ-divergences. This is done by taking a maxi-

mum likelihood estimate (MLE) of its parameters and using the resulting distribution
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as the nominal distribution. Duchi et al. (2021) use DRO models with ϕ-divergence

ambiguity sets to construct confidence intervals for the optimal values of a stochastic

program with an ambiguous distribution. Their intervals asymptotically achieve exact

coverage. By studying ϕ-divergence balls centred around the empirical distribution,

Lam (2019) shows that DRO problems can recover the same standard of statistical

guarantees as the central limit theorem.

In addition to these papers that consider general ϕ-divergence functions, the fact that

ϕ-divergences cover a range of distance measures allows authors to select those that

are most appropriate for their models. For example, Hanasusanto and Kuhn (2013)

used χ2-divergence ambiguity sets for a distributionally robust dynamic programming

problem. They used the χ2 divergence, in particular, because it allows the min-

max problems in the dynamic programming recursion to be reformulated as second-

order cone programs. They also chose this divergence because it does not suppress

scenarios. In other words, it does not give scenarios zero probability in the worst-case

if they have non-zero probability under the nominal distribution. The Kullback-

Leibler divergence was also extensively studied by Hu and Hong (2013), who used

it for DR chance-constrained problems. They showed that, under this divergence, if

the nominal distribution was a member of the exponential family then so was the

worst-case.

The literature we have reviewed so far concerns models that can be reformulated and

solved exactly, due to their ambiguity sets being constructed using distance measures

or moment constraints. However, there has also been significant literature studying
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general DRO models that are not formulated in this way. In general, DRO models

are semi-infinite convex programs (SCPs). They have a potentially infinite number of

constraints induced by those defining the inner objective value. Typically, iterative

algorithms are used to solve SCP models. For example, Kortanek and No (1993)

developed a cutting surface (CS) algorithm for linear SCP problems with differen-

tiable constraints. This algorithm approximates the infinite set of constraints with a

sequence of finite sets of constraints. Constraints are iteratively added to the current

set considered until stopping criteria are met. The constraint that is most violated

by the current solution is added at each iteration.

In the context of DRO, adding a constraint corresponds to finding a distribution to

add to the current ambiguity set. This is referred to as solving the distribution separa-

tion problem. Pflug and Wozabal (2007) later applied this algorithm to DRO models

for portfolio selection under general ambiguity sets. In an extension of Kortanek

and No (1993)’s algorithm, Mehrotra and Papp (2014) developed a CS algorithm

for SCP problems that allowed for non-linear cuts, and did not require differentiable

constraints. CS algorithms have since become a common approach to solving DRO

problems that are computationally expensive and do not have convenient reformula-

tions. For example, Rahimian et al. (2019) applied a CS algorithm to a DRO model

using the total variation distance. They state that the model becomes expensive to

solve to optimality when there are a large number of scenarios. Another example of

its use in the literature is given by Bansal et al. (2018), who used a CS algorithm to

solve DR knapsack and server location problems. Luo and Mehrotra (2019) also used



CHAPTER 2. DISTRIBUTIONALLY ROBUST RESOURCE PLANNING 37

a CS algorithm to solve DRO models under the Wasserstein distance.

Our work differs from the cited literature in two key ways. Firstly, we consider demand

distributions belonging to some parametric family, and enforce that the worst-case

distribution also belongs to this family. We show that the resulting model can be

reformulated as a large MILP. This model becomes slow to solve for large ambiguity

and uncertainty sets. This is due to the large amounts of computation required and

the large number of constraints. Hence, secondly, we present algorithms that make use

of the additional distributional information in order to solve the parametric model.

Among these algorithms is an optimal CS algorithm, that we will show to be fast for

small problems, but to scale poorly with the size of the ambiguity set.

We also contribute a heuristic version of this CS algorithm, that solves the distribution

separation problem at each iteration over a subset containing only the most extreme

parameters. We will show that this allows us to greatly reduce the time taken to solve

the distribution separation problem. We also show how to construct a confidence

set for the worst-case parameter without the use of ϕ-divergences. In addition, we

develop the non-parametric model and show how to reformulate it as a second-order

conic program. We also compare the results from the parametric and non-parametric

models to assess the benefit of incorporating the binomial information.

2.3 Planning Model

In this section, we introduce our planning model and discuss the different types of

ambiguity sets that we will consider. In Section 2.3.1 we provide a summary of the
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notation that will be used. Following this, in Section 2.3.2, we provide the DRO

model itself under a general ambiguity set. Finally, we then detail the parametric and

non-parametric versions of the model that will be studied in this chapter.

2.3.1 Notation and Definitions

We consider a planning horizon of T periods, which are days in our setting. The

days in the plan are denoted by t ∈ {1, . . . , T}. The inputs for the model are defined

as follows. For each day t we have capacity ct, which gives the number of jobs that

we can complete on day t. The workstack for day t is the number of jobs that are

currently due on day t, and is denoted Dt. The workstacks are known at the time of

planning. The intake for day t is denoted It. This quantity is the number of jobs that

will arrive between the time of planning and the due date t and will be due on day t.

Each It is a random variable, and its value is not realised until the end of day t. In

other words, workstack and intake jobs represent planned and unplanned/emergency

jobs in the terminology used in other problems.

The rollover for day t is the number of jobs that are due on day t but are left

incomplete at the end of day t. This quantity is denoted by Rt, which is a random

variable due to its dependence on It. Each unit of rollover on day t incurs a cost

at. The set of all potential realisations of the random variable It is denoted by It =

{0, . . . , imax
t }, and a realisation of It is denoted by it. We use bold letters to represent

the vectors of intakes, workstacks and so on. For example, the vector of workstacks

is denoted by D = (D1, . . . , DT ). The set of all realisations of the vector I is denoted
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by I. We assume that the set I is the cartesian product of the marginal sets, i.e.

I = I1 × . . . × IT . In the language of robust optimisation, I is referred to as an

uncertainty set for I. For a realisation i of the vector of intakes I, the corresponding

realisation of rollover is denoted by Ri = (Ri
1, . . . , R

i
T ).

The objective of our problem is to minimise the worst-case expected rollover cost by

pulling forward jobs. Hence, the decision vector in our problem is the pulling forward

variable, which we denote by y. Jobs can be completed no earlier thanK periods prior

to their due date. Therefore, we use yt1,t2 to denote the number of jobs pulled forward

from period t1 ∈ {2, . . . , T} to period t2 ∈ {t1 −K, . . . , t1 − 1}. This corresponds to

completing yt1,t2 additional jobs on t2 that are due on t1.

2.3.2 General Distributionally Robust Model

We now consider the distributionally robust planning model, which is defined as fol-

lows. Denote by P a general ambiguity set of intake distributions, such that every

distribution P ∈ P assigns a probability to every possible intake i ∈ I. Our model

aims to minimise the worst-case expected rollover cost by selecting the value of y.

The model is shown in (2.3.1)-(2.3.8).

min
y,R

max
P∈P

T∑
t=1

atEP (Rt) (2.3.1)

s.t.

t1−1∑
t2=max{t1−K,1}

yt1,t2 ≤ Dt1 ∀ t1 = 2, . . . , T, (2.3.2)

min{t2+K,T}∑
t1=t2+1

yt1,t2 ≤ max{ct2 −Dt2 , 0} ∀ t2 = 1, . . . , T − 1, (2.3.3)
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Ri
1 ≥ i1 +

min{1+K,T}∑
t1=2

yt1,1 − (c1 −D1) ∀ i ∈ I, (2.3.4)

Ri
t ≥ Ri

t−1 + it +

min{t+K,T}∑
t1=t+1

yt1,t −

ct −Dt +
t−1∑

t2=max{t−K,1}

yt,t2


∀ t = 2, . . . , T − 1 ∀ i ∈ I, (2.3.5)

Ri
T ≥ Ri

T−1 + iT −

cT −DT +
T−1∑

t2=max{T−K,1}

yt,t2

 ∀ i ∈ I, (2.3.6)

yt1,t2 ∈ N0 ∀ t1 = 2, . . . , T ∀ t2 = max{t1 −K, 1}, . . . , t1 − 1 (2.3.7)

Ri
t ≥ 0 ∀ t = 1, . . . , T ∀ i ∈ I. (2.3.8)

The general idea in calculating rollover in the T -day model is as follows. For a given

day t, we first compute the number of jobs to be completed on day t. To compute

this, we take the rollover from day t − 1 and day t’s intake as a baseline number of

jobs. Then we add the number of jobs pulled forward to day t, i.e.
∑min{t+K,T}

t1=t+1 yt1,t.

We then compute the capacity that can be used to complete these jobs. This is done

by taking the capacity ct and subtracting the capacity required to complete those

workstack jobs that are not pulled forward from day t, i.e. Dt −
∑t−1

t2=max{t−K,1} yt,t2 .

If the remaining capacity is enough to complete all jobs on t, then the rollover is zero.

Otherwise, the rollover is the number of jobs left incomplete.

Constraints (2.3.2) and (2.3.3) provide upper bounds on the pulling forward totals.

Constraint (2.3.2) ensures that no jobs are pulled forward if they cannot be completed

on the day to which they are moved. Constraint (2.3.3) ensures that only workstack

jobs can be pulled forward, and that a job cannot be pulled forward multiple times

in order to be pulled forward more than K days. Constraint (2.3.4) reflects that
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jobs cannot be pulled forward from day 1 and hence we only subtract those jobs

pulled forward to day 1 from its remaining capacity. We do not reduce rollover by

pulling forward from it. Similarly, constraint (2.3.6) reflects that jobs cannot be pulled

forward to the final day of the plan. Hence, we only pull forward from this day and

not to this day. For every other day, constraint (2.3.5) captures that we can pull

forward to and from said day. We therefore add and subtract jobs from its capacity

to calculate the rollover.

2.3.3 Non-parametric DRO Model

The non-parametric model is defined by ambiguity sets P containing distributions P

that are not necessarily parametric. To be specific, P can be any subset of the set of

all distributions over the set of intakes, i.e. P ⊆
{
P ∈ [0, 1]|I| :

∑|I|
j=1 Pj = 1

}
.

Phi-divergence Based Ambiguity Sets

As discussed earlier in the chapter, it is common to define P using ϕ-divergences.

Adopting similar notation to that of Bayraksan and Love (2015), suppose that P and

Q are two probability distributions. We define a ϕ-divergence dϕ for ϕ-divergence

function ϕ as:

dϕ(P ,Q) =
n∑
j=1

Qjϕ

(
Pj
Qj

)
,

where ϕ is a convex function on the non-negative reals. This function measures

the distance between P and Q. In what follows, Q will be treated as a nominal

distribution. Furthermore, we denote by ϕ∗ the conjugate of ϕ, which can be found
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via (2.3.9).

ϕ∗(s) = sup
τ≥0

{sτ − ϕ(τ)} (2.3.9)

The conjugate will be useful when finding reformulations later in the chapter. Given

a nominal distribution Q, we can define P as the set of all distributions P that lie

within some pre-prescribed distance from Q as measured by the ϕ-divergence. In

other words, we can use:

Pκ =

P ∈ [0, 1]|I| :

|I|∑
j=1

Pj = 1, dϕ(P ,Q) ≤ κ

 . (2.3.10)

As described by Ben-Tal et al. (2013), this formulation of the ambiguity set allows us

to choose κ such that P is a confidence set for the true distribution. Suppose that

the true distribution P 0 lies in a parameterised set {P θ | θ ∈ Θ}, such that the true

value of θ is θ0. Also suppose that we take N samples of intake from P 0 and take

an MLE θ̂ of θ0. Then, if we choose κ using (2.3.11), the set Pκ is an approximate

100(1− α)% confidence set for P 0 around P̂ = P θ̂.

κ =
ϕ′′(1)

2N
χ2
o,1−α. (2.3.11)

In (2.3.11), o is the dimension of Θ and χ2
o,1−α is the 100(1−α)th percentile of the χ2

distribution with o degrees of freedom.

Reformulation with Modified χ2-divergence

There are many choices for the choice of ϕ-divergence function, and some examples can

be found in the paper by Ben-Tal et al. (2013). In our model, we will use the modified

χ2-divergence as our ϕ-divergence. This uses the ϕ-divergence function ϕmχ2(τ) =
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(τ − 1)2 and is defined in (2.3.12).

dϕmχ2 (P ,Q) =
n∑
j=1

(Pj −Qj)
2

Qj

. (2.3.12)

Here, n is the number of potential values of the uncertain parameters. In our problem,

we have n = |I|. We choose this function for the following reasons. Firstly, it leads

to a convex quadratic programming (CQP) reformulation. Secondly, squared devia-

tions from the nominal distribution are represented as a proportion of the nominal

distribution’s value. This means that small deviations from the nominal distribution

can still lead to a large term in the sum in (2.3.12). When n is large, most values of

Qj will be small, and this will help identify significant deviations from small nomi-

nal values. Other choices of ϕ-divergences that lead to CQP reformulations, such as

the χ2-divergence, Hellinger distance and the Cressie-Read distance, do not have the

normalisation effect given by dividing each term by Qj.

Following Ben-Tal et al. (2013), we find the following CQP reformulation of our full

model with P = Pκ:

min
y,R,η,ν,ζ,u

{
η(κ− 1) + ν +

1

4

n∑
j=1

Qjuj

}

s.t. (2.3.2)− (2.3.8),√
4ζ2j + (η − uj)2 ≤ (η + uj) ∀ j = 1, . . . , n

ζj ≥
T∑
t=1

atR
ij

t − ν + 2η ∀ j = 1, . . . , n

ζj ≥ 0 ∀ j = 1, . . . , n.

η ≥ 0.
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Note that this model is a second-order cone program. In this formulation, ζj and

uj for j = 1, . . . , n are dummy variables defined to ensure that the model is a CQP

model. A full derivation of this reformulation can be found in Appendix A.1, along

with how to extract the worst-case distribution from its solution.

2.3.4 Parametric DRO Model

In this section, we detail a parametric version of the DRO planning model. This

is a new modelling framework for DRO problems that allows the ambiguity set to

contain only distributions that are members of the same parametric family as the

true distribution. This is useful in cases where we know beforehand which family the

true distribution lies in, because it ensures that the worst-case distribution implied

by the model is also in this family.

Implications of Parametric Ambiguity Sets

Recall from Section 2.3.3 that we can use ϕ-divergences to create confidence sets when

we know that the true distribution lies in some parametric family PΘ = {P θ | θ ∈ Θ}.

The resulting confidence set (2.3.10), however, does not only contain distributions in

this family. Therefore, there is no guarantee that the worst-case distribution will lie in

this family and hence no guarantee that it is even a distribution that could be equal to

P 0. Our methodology involves explicitly using the set PΘ in our DRO model instead,

which eliminates potential worst-case distributions that are not in the same family as

the true distribution. Suppose that we take the ambiguity set given by P = PΘ.
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The methodology in Section 2.3.3 relies on being able to represent the requirement

that P ∈ P in the constraints of the model. However, representing P ∈ PΘ in the

constraints is more challenging. In the case where PΘ represents a set of discrete para-

metric distributions, e.g. binomial or Poisson, the requirement might be represented

by:

Pj = fI(i
j | θ) for some θ ∈ Θ,

where fI is the probability mass function (PMF) of I and ij is the jth realisation of

intake. The only reasonable way that one might attempt to include this in the model

is to treat θ as a dummy variable, and replace Pj in the objective with fI(i
j | θ). How-

ever, most PMFs as functions of their parameters are either high order polynomials

(such as binomial) or include exponential functions (such as Poisson). Including them

in the model through the objective function will hence make the model un-solvable.

As an example, consider our model with independent intakes and It ∼ Bin(imax
t , p0t )

for unknown p0t for t = 1, . . . , T . The objective of the inner problem becomes:

max
p∈Θ

T∑
t=1

∑
i∈I

atR
i
t

T∏
l=1

(
imax
l

il

)
pill (1− pl)

imax
l −il . (2.3.13)

Treating this as a non-linear program, we might consider solving using the Karush-

Kuhn-Tucker (KKT) conditions. The derivative of the objective function in (2.3.13)

with respect to pt′ is:

∑
t,i

atR
i
t

(
imax
t′

it′

)(
it′p

it′−1
t′ (1− pt′)

imax
t′ −it′ − p

it′
t′ (i

max
t′ − it′)(1− pt′)

imax
t′ −it′−1

)∏
l ̸=t′

fIl(il),

for each t′ ∈ {1, . . . , T}, where fIl is the PMF of Il. Choosing a vector p such that

pt < 1 for all t and all derivatives are equal to zero is a challenging task. This would
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need to be done numerically, and hence would not result in a convenient objective

function for our outer model. Furthermore, using a ϕ-divergence to define Θ would

not result in a convenient reformulation. This would involve using an ambiguity set

for p0 of the form:

Θ = {p ∈ [0, 1]T : dϕ(p, q) ≤ κ},

where q is the success probability vector corresponding to the nominal distribution

Q. Now consider the methodology in Section 2.3.3. This methodology relies on

the objective function being separable over j (see Appendix A.1). Following the same

steps but with the objective in (2.3.13), we arrive at the following dual objective:

min
ξ≥0

{
ξ0κ+max

p≥0

T∑
t=1

(∑
i∈I

atR
i
t

T∏
l=1

fIl(il)− ξ0qtϕ

(
pt
qt

)
+ ξt(1− pt)

)}
,

with ξ = (ξ0, ξ1, . . . , ξT ). Due to the product over l inside the maxp≥0 operator (which

contains each success probability), we see that this objective is not separable over t.

Thus, the remaining steps in creating a convenient reformulation cannot be carried

out. This holds not only for independent distributions, but for any distribution where

the PMF of I depends on more than one pt.

Hence, our methodology is as follows. Instead of treating the parameter θ as a vector

of decision variables, we represent it using a discrete, finite set of potential values.

In other words, we assume that Θ is a discrete and finite set. This allows us to

represent the distributional ambiguity via a finite set of constraints that are linear

in the rollover variables. The resulting model has one additional constraint for every

θ ∈ Θ, but remains a mixed integer linear program (MILP). We detail the MILP

reformulation of the parametric model in Section 2.3.4.
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Mixed Integer Linear Programming Reformulation

To solve this model, we can reformulate it as an MILP as follows. Firstly, we replace

the set PΘ with Θ and optimise over the parameters θ directly. Since there is a

one-to-one mapping between θ and P θ, the objective becomes:

min
y,R

max
θ∈Θ

T∑
t=1

atEθ (Rt) .

Next, we define a dummy variable ϑ to represent the worst-case expected cost for

a given y. Since the set Θ is a discrete set, we can enforce the requirement that

ϑ = maxθ∈Θ
∑T

t=1 atEθ(Rt) using a set of linear constraints. Hence, the MILP refor-

mulation of the DRO model is given by:

min
y,R,ϑ

ϑ

s.t. (2.3.2)− (2.3.8),

ϑ ≥
T∑
t=1

atEθ(Rt) ∀ θ ∈ Θ.

This model can be very slow to build and solve. This is mostly due to the amount

of computation required to build the model and its constraints. The constraint for

ϑ requires us to compute the distribution P θ for every θ ∈ Θ. Due to the sizes of

Θ and I, this can be very slow. To see this, consider an example with |Θ| = 3883

distributions and |I| = 20000 potential intakes. Suppose also that the intakes are

independent. Then, for each of 3883 distributions we would need to compute a product

of T PMF values, for each of 20000 intakes. This means computing T×3883×20000 =

T × (77.66 × 106) PMF values. Furthermore, the model has T |I| rollover variables

and constraints, and |Θ| expected value constraints. This also makes the model slow
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to build and solve for large instances. For this instance with T = 5, this corresponds

to 103,878 additional constraints, when compared with the deterministic model. Our

heuristics therefore employ dimension reduction techniques to make them faster to

solve.

2.3.5 Binomial Intakes and Ambiguity Sets

As previously discussed, we will assume that the intakes in our problem are indepen-

dent binomial random variables. In other words, we assume that It ∼ Bin(imax
t , p0t )

for unknown p0t , for t = 1, . . . , T . We assume that I is provided to us prior to model

building, either by a prediction model or expert knowledge. The true set in which we

know that p0 must lie is Θbase = [0, 1]T . As detailed in Section 2.3.4, we will however

use a finite, discrete subset of Θbase as an ambiguity set for our model. We consider

a discretisation Θ′
base of Θbase of the form given in (2.3.14), where M is chosen by the

planner, and details the fineness of the discretisation.

Θ′
base =

{
m

M

∣∣∣∣∣ m = 0, . . . ,M

}T

(2.3.14)

We assume that we have access to N samples of past intake data, from which we

can take an MLE p̂ of p0. The corresponding distribution is given by P̂ , which has

mean vector î = P̂ imax. Given the MLE p̂, we consider only p ∈ Θ′
base that can be

considered close to p̂. It is common in the non-parametric DRO literature to use

ϕ-divergences to measure the distance between two distributions. The main reason

for this is that it results in convenient reformulations via dualising the inner problem.

However, since our approach does not entail dualising the inner problem, this benefit
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does not apply to us. Another reason for using ϕ-divergences is that they allow us

to create confidence sets for the true distribution. However, this is based on applying

the ϕ-divergence to the distributions themselves, not to the parameters.

We could construct a confidence set for p0 by first constructing a confidence set for

P 0 and then creating Θ by extracting the parameters of each distribution in the

confidence set. However, this would entail computing the corresponding distribution

for every p ∈ Θ′
base, which is a large computational task. Hence, we do not use ϕ-

divergences for the parametric model. We can, however, construct a confidence set

for p0 without using ϕ-divergences and without needing to compute each distribution

P p. Since p̂ is an MLE of p0 based on N samples from the true intake distribution,

by Millar (2011), for large N we have:

(p̂t − p0t ) ∼ N
(
0,
p̂t(1− p̂t)

Nimax
t

)
,

approximately. Therefore, by independence of the T different MLE’s, we have that:

T∑
t=1

Nimax
t

p̂t(1− p̂t)
(p̂t − p0t )

2 ∼ χ2
T ,

approximately. Hence, we have the following approximate 100(1−α)% confidence set

for p0 around p̂:

Θα =

{
p ∈ Θbase :

T∑
t=1

Nimax
t

(p̂t − pt)
2

p̂t(1− p̂t)
≤ χ2

T,1−α

}
. (2.3.15)

We then create a discretisation of this set for use in our model as follows:

Θ′
α = Θα ∩Θ′

base. (2.3.16)

Note that (2.3.15) may yield a different approximate confidence set to the one obtained
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using the ϕ-divergence method. This is because they are not the same set, but two

different approximations of the same set.

2.3.6 Solver-based Solution Algorithms

Suppose that Θ is a discrete set of parameters. As described in Section 2.3.4, the model

can be solved to optimality by reformulating it as an MILP. However, when Θ and I

are large, this model has a large number of constraints and decision variables. This can

make it very slow to solve. Hence, we develop three dimension reduction algorithms in

order to reduce the effects of the sizes of these sets on solution times. In this section,

we present 3 algorithms for solving the parameteric model. Firstly, we discuss two

CS algorithms. The first is an optimal CS algorithm that also scales poorly with the

size of Θ. The second is a heuristic CS algorithm that applies dimension reduction

to Θ. Following this, we describe our final algorithm, Approximate Objective (AO),

that applies dimension reduction to I.

Cutting Surface Algorithms

In this section, we describe our adaptation of the CS algorithm detailed in the liter-

ature review, which has been commonly used in the DRO literature. The algorithm

has a number of different forms, but the one that we base our adaptation on is that

from the review paper by Rahimian and Mehrotra (2019). The general idea of the

algorithm is as follows. In order to deal with the large number of constraints implied

by the ambiguity set, the algorithm uses the following steps. We start with a single-

ton set containing one distribution, and solve the problem over this ambiguity set.
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Then, for the generated pulling forward solution, we find the worst-case distribution

over the entire ambiguity set. We then add this distribution to the current subset

of the ambiguity set and then repeat the above steps. This procedure repeats until

optimality criteria are met.

In more detail, suppose that we have some initial subset Θ1= {pinit} of our set of

distributions Θ and we solve the full model with ambiguity set Θ1, to get an optimal

decision y1. Then, we find the worst-case parameter, p1 ∈ Θ, for the fixed solution

y1, and add it to our set to create a new subset Θ2 = Θ1 ∪ {p1} of Θ. We then solve

the model with ambiguity set Θ2, and repeat. We stop the algorithm when we have

reached ε-optimality, i.e. if the solution from the full problem at iteration k, yk, gives

a worst-case expected cost over Θk that is within ε/2 of the worst-case expected cost

for yk over Θ. The algorithm returns an ε-optimal solution to the DRO model in

a finite number of iterations. The issue with this version of CS is that, even if y is

fixed at yk, finding the true worst-case distribution pk can be a cumbersome task. In

our case, we can simply enumerate all distributions in Θ. Even though this is not a

difficult task, it requires a significant amount of computation due to the necessity of

calculating the distributions themselves.

From now on, we refer to the optimal CS algorithm described above as CS opt. We

will show that this algorithm suffers from poor scaling with respect to the size of Θ.

In order to reduce the computational burden, we apply dimension reduction to Θ.

Particularly, we use the simple observation that Ep(It) = imax
t pt is increasing in pt to

construct a set of extreme parameters. Intuitively, this result suggests that a higher
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success probability also leads to no-less expected rollover, due to the fact that Ri
t is

increasing in it. Hence, we construct a set of probability vectors such that at least one

value is maximised. If this is not the case, then one value can be increased and this

would cause higher expected rollover for that day. Furthermore, we also assume that

the total success probability is maximised given that one value is maximised. This is

to ensure that we take the most extreme probability vectors over all those such that

one success probability is maximised. Mathematically, we define the set of extreme

parameters as follows. Define pmax
t = maxp∈Θ pt for t = 1, . . . , T and find the set of

parameters such that one value is maximised:

Θmax
t = {p ∈ Θ : pt = pmax

t } for t = 1, . . . , T.

For each t, construct a set of the most extreme parameters in Θmax
t and take the union

of these sets to form Θext:

Θext
t = argmax

p∈Θmax
t

{
T∑
l=1

pl

}
, Θext =

T⋃
t=1

Θext
t .

In order to reduce the computation required, our heuristic CS algorithm (referred to

as CS) solves the distribution separation problem over Θext, rather than the entire

ambiguity set Θ. The general framework for both of our CS algorithms is given below,

where CS opt uses Θ̃ = Θ in step 2(b) and CS uses Θ̃ = Θext.

1. Initialise Θ1 = {pinit}, where pinit = p̂ for example.

2. For k = 1, . . . , kmax:

(a) Solve the model to optimality using ambiguity set Θk to generate solution

(yk, ϑk) where ϑk is worst-case expected cost of yk over the set Θk passed



CHAPTER 2. DISTRIBUTIONALLY ROBUST RESOURCE PLANNING 53

to the model.

(b) Solve distribution separation problem maxp∈Θ̃
∑T

t=1 atEp(Rt | y = yk) to

get solution pk:

i. For p ∈ Θ̃, calculate Cp =
∑T

t=1 atEp(Rt | y = yk).

ii. Choose pk such that Cpk = maxp∈Θ̃(Cp).

(c) If Cpk ≤ ϑk + ε
2
or pk ∈ Θk then stop and return solution (yk,pk).

(d) Else, set Θk+1 = Θk ∪ {pk} and k = k + 1.

The logic behind 2(c), where we check if pk ∈ Θk, is that calculation differences might

cause ϑk and Cpk to differ by more than ε
2
when they should be equal. Solvers use

some dimension reduction techniques when building and solving their models. This

can lead to objective values that are not the same as the ones given by the function

used in 2(b), even for the same arguments. This stopping criterion is also used in the

CS algorithms by Pflug and Wozabal (2007) and Bansal et al. (2018).

We now explain why this condition cannot cause early stopping. Firstly, assume that

p̂ is not a worst-case parameter for yk in Θk, i.e. it did not give a cost of ϑk. Since

pk is generated by the distribution separation problem, it is a worst-case parameter

for yk over the entire set Θ̃. If we also have pk ∈ Θk then we have the following

two facts. Firstly, we have Θk \ {p̂} ⊆ Θ̃ and so pk is necessarily worse than every

p ∈ Θk \ {p̂}. Secondly, pk must be worse than p̂, because otherwise p̂ would

be a worst-case parameter in Θk. Hence, pk is a worst-case parameter in Θk, i.e.

Cpk = ϑk < ϑk + ε
2
. Now suppose that p̂ is a worst-case parameter in Θk. If pk ∈ Θk
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then we must have Cpk ≤ ϑk < ϑk + ε
2
since p̂ is worse than pk. Hence, whenever

pk ∈ Θk occurs, the first stopping criterion should also be met.

Approximate Objective Algorithm

The final algorithm that we describe is named approximate objective (AO). When

solving the model to optimality, we are required to compute the distribution P p for

each p ∈ Θ. For each intake ij ∈ I we can easily compute:

max
p∈Θ

P p
j = max

p∈Θ
P(I = ij | p),

and then we can consider a new set of intakes in the model defined by:

Ĩ =

{
i ∈ I : max

p∈Θ
P p
j > β

}
where β is our minimum intake probability. By tuning β, we are removing intakes

from our set that are very unlikely. When solving the model, we are approximating

the expected value by removing some small terms. Since the intakes removed have

low probability, this approximation should be strong. To generate a solution to the

full model, we simply solve the MILP reformulation with the full set Θ of parameters

but over the reduced set Ĩ of intakes. For this chapter, we use β = 10−3 as our initial

testing showed that this value led to good improvements in computation time.

2.3.7 Example: A Two-day Problem

In order to illustrate the logic behind our algorithms, we now give an example of

their use for a two-day version of our model. Since there is only one feasible pair of

days that we can pull forward jobs between, i.e. (2, 1), there is now only one decision
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variable. We refer to this decision variable as y = y2,1. The two-day model is given

by (2.3.1)-(2.3.8) with T = 2 and K = 1.

Suppose that we have c = (30, 10), D = (5, 20), imax = (20, 20) and a = (1, 1). This

gives |I| = 212 = 441. We construct a discretisation of a 99.5% confidence set for p0

using α = 0.005, N = 10 and M = 100. This gives |Θ′
α| = 305, and we find that the

maximum values of p1 and p2 are both 0.84. This suggests that the above model has

2× 441 = 882 rollover constraints and variables, 81 expected value constraints and 2

pulling forward constraints. Hence, it has 1189 constraints and 884 decision variables.

We solve this model to optimality in 2.6 seconds, to find the optimal y to be yP = 9

and the worst-case p to be pP = (0.82, 0.82) with an expected cost of zP = 19.2.

When we solve this model with CS, we find that Θext = {(0.84, 0.79), (0.79, 0.84)} and

so CS only has to compute 2 PMFs as opposed to P and AO which have to compute

81. We initialise with Θ1 = {p̂} = {(0.75, 0.75)}. In iteration 1, CS solves the MILP

reformulation over Θ1 and finds y1 = 10. It then evaluates the expected costs under

each p ∈ Θext and finds the worst-case to be given by p1 = (0.84, 0.79). Hence, we

have Θ2 = {(0.75, 0.75), (0.84, 0.79)}. In iteration 2, CS solves the model over Θ2 and

finds y2 = 8. It finds the worst-case cost to be given by p2 = (0.79, 0.84), and hence

takes Θ3 = Θ2 ∪ {(0.79, 0.84)}. In iteration 3, CS finds y3 = 9 and p3 = (0.84, 0.79).

Since (0.84, 0.79) ∈ Θ3, the algorithm ends and returns yCS = 9 and pCS = (0.84, 0.79)

with an expected cost of zCS = 19.07. Hence, CS returned the optimal y but slightly

underestimated its worst-case cost. This is an example of where CS will be suboptimal

because pP /∈ Θext. However, CS returned its solution in 0.17 seconds, as opposed to
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P’s 2.6 seconds. Note that CS terminated in 2 iterations because |Θext| = 2 = T .

To solve this model with AO, we construct the reduced set of intakes Ĩ. In order to do

so, we compute the PMFs, which takes 2 seconds. Using β = 0.001, we find the new

set of intakes to have |Ĩ| = 150, which is a 67% cardinality reduction. Then, we solve

the MILP model over Ĩ and find the solution yAO = 9, pAO = (0.82, 0.82), meaning

that AO was optimal with respect to both y and p in this instance. However, it took

0.71 seconds in total, as opposed to CS’s 0.17 seconds.

We can also run this instance with CS opt. Doing so, CS opt’s first two iterations are

the same as CS’s. In its third iteration it finds y3 = 9 and p3 = (0.82, 0.82), whereas

CS found p3 = (0.84, 0.79). Following this, in iteration k = 4 it finds p4 = (0.82, 0.82)

and breaks since p4 ∈ Θ4, returning yCS opt = 9 and pCS opt = (0.82, 0.82). This is

the same solution as P gave. This took CS opt a total of 0.43 seconds. It finished in

twice as many iterations as CS.

2.4 Design of Computational Experiments

This section details our experiments evaluating the performance of the algorithms

described in Section 2.3.6 in comparison with the solution from the parametric DRO

model. These experiments will also allow us to compare the solutions resulting from

the parametric model (P) and the non-parametric model (NP) and the times taken to

reach optimality by each model. In this section, we discuss how the parameters for the

experiments will be chosen to ensure that they are representative of typical real-life

scenarios. To discuss experimental design, we need to define which parameters of the
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model will be varied and the values that they will take. The vector of inputs to the

model for a fixed set I of intakes and P of distributions is S = (c,D,a, T,K).

2.4.1 Parameter Hierarchy

It is helpful to consider a hierarchy of parameter choices, which is defined by:

1. (T,K) defines the difficulty of the problem in terms of the MILP itself.

2. c and D define the set of solutions that are possible for a given model with fixed

T and K. They need to be constructed for each combination of T and K to

ensure that we have a varied range of instances when it comes to pulling forward

opportunities. We create this variety by varying the number of days that have

spare capacity and are hence able to receive additional jobs. The values of c

and D used are discussed in Section 2.4.2.

3. (a) For the parametric model, I and Θ define how the uncertainty is encoded

in the model, depending on the planner’s attitude to risk. If |I| or |Θ| is

large, solving to optimality will be very slow, and we would like to use a

heuristic that is not significantly affected by these sizes. |I| is defined by

imax, and |Θ| is defined by two parameters. The initial discretisation of the

interval [0, 1] in which each pt lies is defined by M .

The maximum distance from the nominal distribution that p ∈ Θ can lie

is defined by the second parameter, N . This is the number of samples that

we take from the distribution of I in order to calculate p̂. Larger N results

in smaller distances from p̂ being allowed, and hence corresponds to a less
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risk-averse planner. For these experiments, we use 95% confidence sets, i.e.

Θ′
α from (2.3.16) with α = 0.05. From now on, we use Θ to represent Θ′

0.05.

(b) For the non-parametric model, we also use 95% confidence sets. However,

for this model we use the ϕ-divergence based set, Pκ, given in (2.3.10) with

κ defined by (2.3.11) and α = 0.05. This set is only affected by N , which

affects the maximum distance from P̂ that a distribution can lie under the

non-parametric model.

4. a will be left as the ones vector for these experiments as it has not been seen to

have an effect on solutions.

We choose T = 5 due to it being the number of days in a typical working week. We

take the maximum pulling forward window length to be K = 2. This is because

pulling forward is not enacted until the operational planning phase, where the plan-

ning horizon is very short. These choices are partly motivated by usual practices,

and also partly by the following fact. We aim to test our heuristics against optimal

solutions, and for larger T or K the model becomes very difficult to solve to opti-

mality. Note that the optimality tolerance for CS/CS opt, ε, will be set to 0.01 and

it will be run for a maximum of kmax = 10 iterations. Initial testing suggested that

these parameters are not so important, as CS and CS opt always terminated due to

a repeat parameter (i.e. pk ∈ Θk) after less than 10 iterations.
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2.4.2 Capacity and Workstacks

The factors affecting the potential solutions of a model the most are c and D, due

to the fact that they define the rollover and pulling forward opportunities. In this

section, we detail the capacities c and workstacks D used in our experiments. These

are constructed with the aim of ensuring that a variety of combinations of pulling

forward opportunities are represented by at least one (c,D) pair. We assume for this

section that the previous parameters in the hierarchy, i.e. T and K, are given. We

now define how c and D define pulling forward opportunities mathematically. Firstly,

we define the set of pairs of days under consideration for pulling forward as:

F = {(t1, t2) | t1 ∈ {2, . . . , T}, t2 ∈ {t1 −K, . . . , t1 − 1}}

and the set of pairs such that the corresponding y can feasibly be positive given c and

D as:

F+(c,D) = {(t1, t2) ∈ F | ct2 > Dt2 , Dt1 > 0} .

This is the set of all pairs of days (t1, t2) such that t2 is within pulling forward range

of t1, t2 has spare capacity and t1 has workstack jobs to be completed early. For our

experiments, we consider instances whereDt > 0 for all t ∈ {1, . . . , T}. This is because

for a short horizon of T = 5 days, it is very unlikely that any day will have a workstack

of zero. Hence, we can control |F+(c,D)| by controlling which days have spare

capacity. For example, we can set |F+(c,D)| = 3 by setting D1 < c1 and D4 < c4 and

then Dt > ct for t ∈ {2, 3, 5}. This results in F+(c,D) = {(2, 1), (3, 1), (5, 4)}.

We do this similarly for other values of |F+(c,D)|. The main effect that c and D

have on decision making is that they define the constraints on y, meaning their only



CHAPTER 2. DISTRIBUTIONALLY ROBUST RESOURCE PLANNING 60

important quality is how much pulling forward they do or do not allow. Using this

set of values for c and D we will be able to see how well our algorithms detect and

make use of opportunities for pulling forward.

2.4.3 Uncertainty and Ambiguity Sets

As a reminder, the term “uncertainty set” refers to I and “ambiguity set” refers to

Θ. We now detail the parameters used to construct these sets in our instances.

Uncertainty Sets

We assumed in Section 2.1.1 that we would be given a set I, either by expert knowl-

edge or by a prediction model. We could then extract imax from this set. However,

in these experiments, we do not have access to real intake data or expert knowledge.

Thus, it is more convenient to define imax and then use this to construct I. Since

there is a one-to-one mapping between the two, both methods achieve the same result.

We consider imax satisfying:

T∑
t=1

imax
t ≤

T∑
t=1

max{ct −Dt, 0}. (2.4.1)

This is reasonable because if the total number of jobs arriving in the system exceeds

the RHS of (2.4.1) then some intake jobs will always remain incomplete at the end of

day T , regardless of our pulling forward decision. Furthermore, we can vary the num-

ber of high-intake days, through the quantity n(imax) = |{t ∈ [T ] : imax
t > ct −Dt}|.

This corresponds to the number of days with the potential for spikes in demand.

Depending on c and D, n(imax) can range between 0 and T − 1. However, for these
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experiments we consider n(imax) ∈
{
1,
⌊
T
2

⌋
, T − 1

}
for sufficient coverage of cases.

The case of n(imax) = 1 corresponds to a one-day spike caused by an event such as

a major weather event. The case of n(imax) =
⌊
T
2

⌋
could correspond to an extended

spike lasting for multiple consecutive days, for example, a network problem causing

lots of service devices to break. The final case of n(imax) = T −1 corresponds to T −1

small spikes in intake, marking a period of consistently high intake.

Ambiguity Sets

The choice of parametric ambiguity set depends on the choice of discretisation of [0, 1]T

and also the way we in which we then reduce its size. The choice of discretisation

is defined by the parameter M , and increasing this value increases the size of the

ambiguity set. For these experiments, we considerM ∈ {5, 10, 15}. In our preliminary

testing we found that any value larger than 15 can lead to intractability when solving

the parametric model to optimality.

Both ambiguity sets are also defined by the sampling parameter N . For the purpose

of testing our models, we consider N ∈ {10, 50, 100}. Clearly, higher N leads to

better convergence to the true distribution of the MLE/ϕ-divergence, but it also

leads to much smaller ambiguity sets and typically less conservative decisions. Even

for N = 50, we obtained some singleton ambiguity sets. Typically, N would be

chosen by the planner who is in control of the sampling process. However, the results

of our testing can be used to understand the tradeoff between the accuracy of the

approximation and the conservativeness of the resulting decisions. Hence, they may

influence the value of N used by the planner. In these experiments, we will assume



CHAPTER 2. DISTRIBUTIONALLY ROBUST RESOURCE PLANNING 62

î = (0.75imax
1 , . . . , 0.75imax

T ). Hence, we will obtain p̂ = (0.75, . . . , 0.75). In practice,

p̂ would be obtained from sampling the true intake distribution. However, without

access to true intake data, we set the value somewhat arbitrarily, since it is only used

for testing purposes. If these models were used by a real planner, we would suggest

that they calculate their own MLE.

2.5 Results

We now detail the results of our experiments that we used to test the algorithms

on 279 problem instances with T = 5 and K = 2. We report the results from

all 5 algorithms in terms of times taken, pulling forward decisions and worst-case

distributions. Due to space considerations, we present some additional results in the

Appendices. We discuss the effects of workstacks on solutions in Appendix A.2.1.

We give a brief comparison of our results with those from the RO version of the

model in Appendix A.2.2. In addition, we present and test a Benders decomposition

algorithm for this problem in Appendix A.3. These experiments were run in parallel

on a computing cluster (STORM) which has 486 CPU cores. The solver used in

all instances was the Gurobi Python package, gurobipy (Gurobi Optimization, LLC,

2022). The version of gurobipy used was 9.0.1. The node used on STORM was the

Dantzig node, which runs the Linux Ubuntu 16.04.6 operating system, Python version

2.7.12, and 48 AMD Opteron 638 CPUs.
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2.5.1 Summary of Instances and Their Sizes

In Table 2.5.1, we summarise the sizes of the sets I and Θ, that formed the basis for

the constraints and variables in the model. As a reminder, we use Θ to mean Θ′
α as

defined in (2.3.16). A summary of the sizes of I is given in Table 2.5.1a. The table

shows 7 of the 31 imax values considered and the size of the resulting set I. The other

imax values considered were permutations of the values shown in the table, and hence

led to |I| values that are already listed in the table. Table 2.5.1b shows the values of

N and M used and the average size of the resulting ambiguity sets. The sizes vary

as the construction of the set also depends on imax. The instances where |Θ| = 1

correspond to instances where κ =
χ2
T,1−α

N
was too small to allow any p other than p̂

to be in the ambiguity set defined by (2.3.16).

We can see here that our choices of imax gave instances with as many distinct intakes

(and rollover vectors) as 20000, and as few as 392. The sizes of the ambiguity sets

varied between 1 and 8854, where the largest sets resulted from the smallest imax and

N values, and the largest M values. This is because the criteria for p being included

in Θ was
∑T

t=1Ni
max
t

(p̂t−pt)2
p̂t(1−p̂t) ≤ χ2

T,1−α. Clearly the LHS is increasing in N and imax
t .

Hence, larger values lead to a higher distance from the nominal distribution. Large

M leads to larger Θ because it results in a finer discretisation of [0, 1]T , and hence

more candidate p values.
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imax |I|

(1, 6, 6, 1, 1) 392

(1, 3, 3, 3, 3) 512

(2, 2, 2, 6, 2) 567

(2, 2, 8, 8, 2) 2187

(5, 5, 1, 5, 5) 2592

(1, 7, 7, 7, 7) 8192

(9, 9, 1, 9, 9) 20000

(a) Example imax values and sizes of the

associated uncertainty sets I considered.

N M Average |Θ|

100 5 1.000

100 10 1.000

100 15 16.871

50 5 1.419

50 10 14.419

50 15 93.129

10 5 14.742

10 10 504.226

10 15 4301.645

(b) Parameters defining ambiguity sets

and average size of corresponding sets.

Table 2.5.1: Summary of input parameters and corresponding set sizes

2.5.2 Optimality of Algorithms and Times Taken

Comparing results for DRO problems is not as simple as comparing final objective

values. Our optimal objective value can be written as z∗ = miny maxp f(y,p). Here,

f(y,p) is the total expected rollover cost, i.e.
∑T

t=1 atEp(Rt | y). Suppose we have

an instance where yCS = yP but pCS ̸= pP. Then, if CS gives a lower objective

value than P, it may appear to have given a better solution to the minimisation

problem. However, this means that CS did not successfully choose the worst-case

p for its chosen y. This leads to a lower objective function value but a suboptimal

solution with respect to p. Similarly, we can say that CS is suboptimal if pP = pCS
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but yCS ̸= yP and CS gave a higher objective value. Hence, both a higher and a

lower objective value can suggest suboptimality for a DRO model. Given this, we

summarise the results using 3 optimality criteria. Algorithm x ∈ {CS,CS opt,AO}

is said to be:

1. y-optimal if maxp∈Θ f(y
x,p) = z∗.

2. p-optimal for a given yx if f(yx,px) = maxp∈Θ f(y
x,p).

3. Optimal if f(yx,px) = z∗. Note that this is met is the algorithm is both

y-optimal and p-optimal.

No. (%) Optimal Sol No. (%) p-Optimal Sol No. (%) y-Optimal Sol

CS 257 (92.11%) 257 (92.11%) 272 (97.49%)

CS opt 279 (100.0%) 279 (100.0%) 279 (100.0%)

AO 223 (79.93%) 263 (94.27%) 239 (85.66%)

Table 2.5.2: Summary of optimality of heuristics

We display the number of times each algorithm was optimal, p-optimal and y-optimal

in Table 2.5.2. Table 2.5.2 shows that CS was optimal in 92% of instances, and y-

optimal in 97%. As can be expected, CS opt was optimal in every instance. AO was

only optimal in 80% of instances and y-optimal in 86% of instances. In fact, both CS

and AO were optimal in selecting p in more than 92% of instances. Unsurprisingly,

AO performs the best in this regard. This is because it solves the problem over the

full set of distributions, unlike CS. However, CS was still p-optimal in around 92% of
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instances. Closeness to optimality of the algorithms is discussed in Section 2.5.3.

A summary of the computation times of each algorithm is given in Table 2.5.3. Firstly,

the table shows average and maximum times taken over all instances. CS took around

17 seconds on average. To find the optimal solution, it took approximately 1 minute

and 50 seconds on average when using P, which is a large difference. CS opt found

the optimal solution in an average of 20 seconds, which is faster than P. This is only

3 seconds slower than CS on average. However, there are many instances with small

ambiguity sets. AO took similar times to CS; it also took around 17 seconds on

average. NP solved faster than P, but slower than CS, CS opt and AO. The fact

that NP was slower than CS opt suggests that the parametric model can be solved to

optimality faster than the non-parametric model.

AS reports the times taken to compute Θ for the parametric algorithms. This was

not included in the solution time for each algorithm, as it is a pre-computation step.

It is worth noting that the average of 6 seconds is significantly faster than extracting

Θ from the non-parametric confidence set, which can take hours. Please note that,

while the differences between the algorithms’ times may seem small, these instances

are small compared to real planning instances. We would expect the time differences

to be more pronounced when the problems are large. Furthermore, CS opt requires

significantly more memory and computing power than CS. For instances with large

ambiguity sets, it stores thousands of distributions, each of which comprises thousands

of values. CS only stores around T distributions, regardless of the size of Θ.

Since there were a large number of small instances that affected the overall averages,
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Avg. t.t. (Overall) Max t.t. (Overall) Avg. t.t. (Large) Max t.t. (Large)

P 0:01:22.85 0:19:23.5 0:07:57.99 0:19:23.5

CS 0:00:17.48 0:01:50.37 0:00:06.1 0:00:33.82

CS opt 0:00:20.17 0:02:12.09 0:00:24.74 0:01:07.84

AO 0:00:17.29 0:03:52.97 0:02:08.08 0:03:52.97

NP 0:00:25.35 0:03:26.88 0:00:07.25 0:00:44.4

AS 0:00:05.95 0:00:19.38 0:00:14.18 0:00:16.59

Table 2.5.3: Summary of times taken

Table 2.5.3 also shows average and maximum times for instances with the largest

ambiguity sets. This corresponds to the largest 10% of instances with respect to Θ or

equivalently |Θ| ≥ 1000. From these two columns, we see that CS opt took more than

4 times longer than CS on average, when Θ was large. We also see that CS opt took

34 seconds longer to solve its slowest instance than CS took for its slowest instance.

The largest time difference was 46 seconds, and this occurred when |Θ| = 831 and

|I| = 20000. This time difference was due to two main reasons. Firstly, CS never

spent more than 0.5 seconds computing PMFs, whereas CS opt took up to 22 seconds.

Hence, CS significantly reduced the amount of computation required. Secondly, CS

typically completed in many fewer iterations than CS opt. This is because its use of

Θext meant it identified a repeat parameter in fewer iterations. Based on the optimality

counts and time taken, CS is the strongest heuristic. It selected the optimal y is 97%

of instances, and did so in less time than CS opt. CS opt can be used when Θ is

small, but it will begin to solve slowly in comparison with CS when Θ is large.
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2.5.3 Performance of Algorithms in Detail

To illustrate further how well the algorithms performed, we define the following two

metrics. Note that a positive value for either of these metrics suggests suboptimal-

ity.

1. Quality of p choices. For a solution yx that was selected by an algorithm x,

where x ∈ {CS,CS opt,AO}, we calculate the worst-case expected cost over all

p ∈ Θ using brute force. We can then compare this cost with the expected cost

obtained by the algorithm, i.e. from px, the p that the algorithm selected. This

allows us to establish how close to worst-case the choices of p were. We refer to

this difference as the p-gap, and it is defined as:

gp(y
x,px) = max

p∈Θ
f(yx,p)− f(yx,px).

2. Quality of y choices. For a given solution yx from algorithm x, we compute

the worst-case expected cost using brute force, as we did when finding gp(y
x,px).

We can then compare this worst-case cost with that of the optimal y, to assess

how close yx is to optimal. This is referred to as the y-gap, and is defined as:

gy(y
x) = max

p∈Θ
f(yx,p)− z∗.

In Table 2.5.4, we summarise the average p-gaps and y-gaps of the three heuristics,

along with the average absolute percentage gaps (APGs). The p-APG was obtained

by taking the p-gap as an absolute percentage of the worst-case expected cost for the

chosen solution yx. The y-APG was obtained by taking the y-gap as an absolute

percentage of the optimal objective value.
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Avg. p-gap Avg. p-APG Avg. y-gap Avg. y-APG

CS 0.0561 0.084% 0.0058 0.0101%

CS opt 0.0000 0.0% 0.0000 0.0%

AO 0.0064 0.0065% 0.0233 0.1369%

Table 2.5.4: Summary of gaps and APGs of the heuristics

This suggests that all algorithms perform very well at choosing the worst-case p for a

fixed yx, since all had an average p-APG of less than 0.09%. AO performed the best

at selecting p, which supports the observation made from the optimality counts. CS

and AO are very good at selecting the optimal y, since they both use a solver to do

so. Of CS and AO, CS performed the best in this regard, with an average y-APG of

0.01%. The y solution CS chose had, on average, a worst-case expected cost that was

0.0058 away from the optimal objective value. AO also performed well in selecting y,

but its average y-APG was a factor of 20 larger than that of CS. Due to its optimality

in every instance, CS opt had average gaps and APGs of 0.

We also study the results broken down by the size of the set of distributions. In

order to reduce the size of the table, we present results averaged over the categories

for |Θ| given in Table 2.5.1b. We present these results in Table A.4.1, which is in

Appendix A.4.1 due to space considerations. In summary, the table suggests that CS

did not return suboptimal ps for its chosen y until the set reached the average size of

93. CS was consistent in its y-gaps across all values of |Θ|. CS’s y-APG stayed very

close to 0 in all instances. AO had larger p-gaps for larger |Θ|.
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(a) Average times taken by |Θ| (b) Average times taken by |I|

Figure 2.5.1: Average times taken by sizes of sets

Interestingly, AO’s performance in selecting y improved as |Θ| grew larger. CS opt

had zero gaps and APGs for all values of |Θ|, but its times taken did not scale as

well as CS’s and AO’s with large |Θ|. For small ambiguity sets, CS opt took similar

times to CS, but it took twice as long for the largest ambiguity sets (average size of

4301). We also plot the average times by |Θ| in Figure 2.5.1a. This plot suggests that

the algorithms that use Gurobi on the full set of distributions, i.e. P and AO, do not

scale well with |Θ| in terms of time. CS, CS opt and NP all scale much better with

|Θ| than AO and P. For CS and CS opt, this is because they only ever solve an MILP

reformulation over a small subset of Θ. For NP, this is because increasing the size of

the ambiguity set for the non-parametric model does not result in a more complex

model, it only increases κ. This plot supports our conclusion that CS opt solves in

similar times to CS when Θ is small, but takes noticeably longer for large Θ.

Finally, we can look at the performance of the algorithms by the size of the set of

intakes I. These results are shown in Table A.4.2 in Appendix A.4.2. The p-APGs

for the heuristics were not significantly affected by |I|, apart from a drop in perfor-
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mance for CS when |I| = 8192. This was likely due to other model parameters, since

there is no reason for |I| to affect the p-APG. AO also began to lose y-performance

when |I| = 8192. This is an intuitive result, because as this set gets larger AO will

remove more and more intakes. This reduces the accuracy of its approximation of the

objective function. CS does not remove intakes, which explains why its performance

was consistent. In fact, CS’s y-APG was lower than AO’s when |I| = 20000. Again,

CS opt had all zero gaps and APGs. The difference between CS and CS opt in terms

of times taken is less noticeable here. CS opt consistently took 3-5 seconds longer

than CS for all values of |I|. This indicates that |Θ| was the main factor causing

CS opt to solve slowly. We also plot the average times by |I| in Figure 2.5.1b. This

plot suggests that P does not scale well with |I|, and that AO scales very well with

|I|. CS, CS opt and NP scale better than P, but not nearly as well as AO, due to the

fact that they do not apply dimension reduction to I.

2.5.4 CS’s Suboptimal Distributions

In this section, we compare the solutions and distributions from CS with those from P.

Since CS is only limited by its performance in selecting p, we study CS’s worst-case ps

in order to find ways to improve its performance. We do not study CS’s performance

with respect to y, since if Θext contains pP then CS will return the same y as P, as

evidenced by CS opt. Hence, improving Θext is sufficient to improve CS with respect

to y and p. We do not analyse AO’s solutions, since improving its performance can

only come from tuning β.
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As shown in Table 2.5.2, CS chose the optimal p for its selected y in 92% of instances,

leaving 22 instances where it did not. This indicates that our set Θext did not in fact

contain the worst-case p in those 22 instances. To compare CS with P, we study

only instances where CS selected the same y as P, which occurred in 15 of these 22

instances. Firstly, for these 15 instances, we can confirm that pP was not contained

in the set Θext used by CS. This either occurred because no probability was at its

maximum, or because the sum of the probability vector was not maximised. We find

that one value of pPt was maximised in 13 out of 15 instances. However, in every one

of these 13 instances, the sum over the vector was not maximised. This indicates that

the main reason why CS did not return the worst-case p in every instance was because

the worst-case does not need to satisfy this condition. In general, we find that CS

both allocated a higher maximum success probability and more success probability in

total than P.

In order to see why the worst-case p does not need to satisfy the sum-maximisation

criterion, we study some examples more closely. For example, in one instance we had

pP = (0.933, 0.867, 0.867, 0.867, 0.733) and pCS = (0.933, 0.933, 0.867, 0.8, 0.867). We

see that P and CS both gave maximal probability to day 1. However, P reduced

days 2 and 5’s probabilities in order to allocate more to day 4. The resulting rollover

vectors were (0.87, 10.6, 27.34, 24.54, 41.01) for P and (0.87, 10.74, 27.47, 24.27, 41.0)

for CS. In this instance, allocating higher probability to day 4 resulted in higher day-

4 and also day-5 rollover, and more rollover in total, despite the fact that the total

probability was not maximised. Another way that CS can be suboptimal is choosing
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the wrong day to set to its maximum.

For example, in one of the 15 instances P gave pP = (0.933, 0.867, 0.8, 0.8, 0.8) and

CS gave pCS = (0.8, 0.867, 0.8, 0.867, 0.867). Here, CS set p2 to its maximum, while

P set p1 at its maximum. For this instance, the closest values of p to pP that were

in Θext were (0.933, 0.8, 0.8, 0.867, 0.933) and (0.933, 0.8, 0.8, 0.933, 0.867). These two

solutions give less expected cost than pCS, and so CS did not allocate maximal proba-

bility to day 1. Clearly the maximal cost came from allocating high probability to day

2 as well as day 1, but no such probability vectors were contained in Θext. In addition,

in two instances no value of pP was at its maximum. One example of this occurred

when pP = (0.867, 0.867, 0.867, 0.733, 0.733) and pCS = (0.8, 0.933, 0.8, 0.8, 0.8). CS

has allocated day 2 its maximum probability. However, the worst-case parameter

spread the success probability more evenly over the first 3 days.

These observations explain why CS did not always return the true worst-case p.

Clearly, the issue lies in the construction of Θext. In particular, the assumption

that the sum over the success probability vector should be maximised is not always

required. In fact, sometimes it is worse to reduce the sum in order to give high priority

days a higher success probability. In order to assess whether or not this is the case,

CS would need to compare the maximum intakes for each day in order to see where

the most rollover could be caused.
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2.5.5 Parametric vs. Non-parametric Decisions and Distri-

butions

In this section, we compare NP’s solutions and distributions with those from P. This

will allow us to assess the benefits and costs of including the parametric information

in the model. As we have seen, incorporating this information creates a model that is

larger and computationally more difficult to solve. However, it retains the information

on the family of distributions that P 0 lies in and ensures that the worst-case distri-

bution from the model is also in this family. This is something that is not guaranteed

by the non-parametric model.

Pulling Forward Decisions and Objective Values

We first study the differences in pulling forward decisions between the two models

along with their worst-case objective values. We find that the two models gave the

same pulling forward decision in 199 of the 279 instances solved. This can be stated

as NP being y-optimal with respect to the parametric model in 71% of instances. In

every one of these instances, it was only optimal to pull forward between either days 2

and 1 or not at all. The worst-case expected cost from NP was 1.21 higher than that

from P in these instances, on average. This suggests that the worst-case distribution

from NP for a fixed y is typically worse than that from P.

Figure 2.5.2a shows a scatter plot of the total amount pulled forward under each

model in each of the 279 instances. Figure 2.5.2b shows the corresponding worst-case

expected costs. The dashed line corresponds to instances where both models pulled
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(a) Amount pulled forward under P vs.

NP

(b) Worst-case expected costs under P

vs. NP

Figure 2.5.2: Scatter plots comparing P and NP’s pulling forward decisions

forward the same amount or had the same worst-case cost. The points in Figure 2.5.2a

where the decisions were different suggests that there is no definitive answer to which

model’s decision is more conservative. In 42 instances NP pulled forward more, and in

38 instances it pulled forward less. However, when NP pulled forward more than P, it

pulled forward up to 7 jobs more. When P pulled forward more, it only pulled forward

1 job more. On average over the instances where the two solutions were different, NP

pulled forward 1.24 more jobs. The overall average difference was 0.32.

This suggests that NP is generally slightly less conservative than P. However, as shown

in Figure 2.5.2b, rarely did NP attain a lower worst-case expected cost than P. The

overall average difference between P and NP’s worst-case expected costs was −1.21.

This suggests that NP’s worst-case distribution typically suggests that there will be

1.21 more jobs being expected to roll over in the worst case. This is surprising since NP

typically pulled forward more. Hence, this result indicates that NP’s less conservative

nature led to more expected rollover in the majority of these instances.
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Since NP results from relaxing the requirement that the worst-case distribution is

binomial, we can view NP as a heuristic for solving the parametric model. Hence, it

may be beneficial to study the expected cost resulting from yNP under the binomial

worst-case distribution that would be given by P, instead of the distribution given by

NP. Therefore, for each value of yNP, we compute the worst-case binomial distribution

given by a p ∈ Θ, and the associated expected cost. This allows us to compute the

objective value that yNP would attain under the parametric model. Hence, it allows us

to assess the quality of yNP in comparison with yP, as we did for our heuristics.

We can also study the difference between yNP’s worst-case cost under P and NP,

via the p-gap. This allows us to assess how the two objective functions differ for

the same y. As a reminder, for an algorithm x the p-gap is defined as gp(y
x,px) =

maxp∈Θ f(y
x,p)−f(yx,px), and the y-gap is given by gy(y

x) = maxp∈Θ f(y
x,p)−z∗.

Avg. p-gap Avg. p-APG Avg. y-gap Avg. y-APG y-opt. %

NP -1.1764 13.0095% 0.0234 0.0429% 87.1%

CS 0.0561 0.084% 0.0058 0.0101% 97.1%

Table 2.5.5: Summary of NP and CS’s gaps

The gaps for NP are summarised in Table 2.5.5, along with those from CS for com-

parison. The p-gaps show that the worst-case cost for yNP from NP was 1.18 higher

than that from P, on average. This indicates that the NP model typically overesti-

mated the worst-case cost associated with yNP. This is consistent with our previous
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observation that NP’s worst-case objective values were higher for a fixed y. In fact,

NP overestimated the worst-case cost of yNP in 248 of 279 instances (89%). The

most that NP overestimated this cost by was 3.4. These values may seem small, but

relative to the true worst-case cost they can be quite large. The largest p-APG was

165%, indicating that the worst-case cost from NP was 2.65 times that from P. These

results indicate that NP will typically give an objective value that makes a decision

look worse than it would be in reality. The y-APGs suggest that the y decisions from

NP performed similarly to that of P, under P’s objective. However, they did result in

a slight cost increase on average.

Based on the results here, we believe that CS is the strongest performing algorithm.

CS ran in less time than NP and gave solutions closer to those from P. In fact, we can

say that the NP solutions had gaps that were 4 times higher than CS’s on average.

Both average gaps were small, but CS was optimal in 92% of instances, as opposed

to 71% for NP. Furthermore, if one were to use the NP model, then they would likely

overestimate the rollover cost from their decision by approximately 13%, whereas CS

would underestimate this cost by approximately 0.084%.

Worst-case Distributions

In order to explain the differences in decisions and costs, we now study the worst-case

distributions from P and NP. There are a number of ways in which these distributions

can be different. The most obvious one is that P’s worst-case distribution is always

binomial, whereas NP’s is not. As well as this, the two approximations of the 95%

confidence set for P can be different, allowing different distances from P̂ . In fact,
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typically the confidence sets for P were larger. This indicates that the parametric sets

had better coverage.

We first study the maximum distances from P̂ allowed by each ambiguity set and the

distances attained by the parametric and non-parametric worst-case distributions, as

measured by dϕ. We find that the maximum distance allowed by P could be almost

twice that allowed by NP. The maximum distance allowed by NP was 1.22, whereas

this value was 2.32 for P. This suggests that the parametric ambiguity set can be

significantly larger than the non-parametric set. We also find that NP’s worst-case

distribution always achieved the maximum distance from P̂ . Interestingly, the same

does not apply for P. The maximum distance that P P had from P̂ was 2.00, showing

that the worst-case binomial distribution was not always as far from P̂ as it was

allowed to be. In fact, there were 106 instances where P did not reach its maximum

distance. As a result, even though the parametric ambiguity sets allowed P P to be

further from P̂ , we still find that P NP was further from P̂ on average. The fact

that NP’s solution was always on the boundary may indicate that the true worst-case

distribution was further from P̂ than was allowed by NP’s ambiguity set.

In order to compare the worst-case distributions directly, we compute a number

of summary statistics for each distribution and present their average values in Ta-

ble 2.5.6. This table also shows the percentage difference between the summary values

for the two distributions, which is calculated as 100× NP−P
P . The first two results we

show are the average distances from P̂ as measured by dϕ and by the Kullback-Leibler

Divergence (KLD). The KLD value, KLD(P x, P̂ ), can be loosely interpreted as the
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amount of surprise that would result in simulating from P x if the true distribution

were P̂ . These two rows indicate that NP was further from P̂ , on average, than P

with respect to both distance measures. The values of dϕ are quite close, but pro-

portionally the difference in KLD values is much larger. In fact, NP had 52% more

surprise than P, on average. This is likely due to the fact that P NP is not binomial,

unlike P P. Entropy also measures surprise, but with respect to the values given by

the distribution. We see that both distributions had a similar total entropy, but P

had slightly more.

P NP % Gap

dϕ(P
x, P̂ ) 0.435 0.480 10.345%

KLD(P x, P̂ ) 0.167 0.254 52.096%

Entropy 5.379 5.227 -2.826%

Total EV 16.701 17.048 2.078%

Total Variance 3.670 3.590 -2.18%

Total Skewness -4.274 -4.431 3.673%

No. Suppressed 215.556 568.178 163.587%

Table 2.5.6: Summary statistics comparing P P with P NP

We also present summaries of the total mean, variance and skewness of each distri-

bution. We see that NP had a higher total expected intake than P on average, but

less variance. This can be expected since NP can control the mean and variance sep-

arately. P, on the other hand, fixes the variance by fixing the mean. P can therefore
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have a smaller variance than P, even when the two means are the same. However, P

was typically less negatively skewed than NP. These results may explain why NP’s

worst-case costs were higher. If NP is more negatively skewed with a higher mean and

lower variance, then this suggests that more mass is allocated to the higher intakes

and less to the lower ones. Hence, expected costs will necessarily be higher.

Finally, we look at the number of intakes that were popped and suppressed by each

worst-case distribution. A distribution P x popping an intake i is defined as P(I =

i | P x) > 0 when P(I = i | P̂ ) = 0. The distribution P x suppressing i is defined

as P(I = i | P x) = 0 when P(I = i | P̂ ) > 0. Since P̂ is a binomial distribution,

technically we will never have popping as P(I = i | P̂ ) > 0 ∀ i ∈ I. We will also

never have suppressing under P, for the same reason. In addition, by Bayraksan and

Love (2015), the modified χ2-divergence cannot pop scenarios. Hence, we consider the

distributions when rounded to 6 d.p. instead. The table shows that NP popped 55%

more intakes than P on average. Both popped only a few intakes, which is consistent

with our observation that neither method can technically pop scenarios.

This is not the main cause for the difference in the distributions, however. The main

difference is due to suppressing. We see that NP suppressed 163% more intakes than

P on average. This indicates that NP’s worst-case distribution set a large number

of P̂ ’s positive values to zero. P is much more restricted in this sense, due to the

fact that P P is also binomial. This means that P cannot set any values to be exactly

zero. This difference may also explain the increased values of KLD given by NP; some

intakes that would be generated by P̂ would not be generated by P NP.
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2.6 Conclusions and Further Research

In this chapter, we presented parametric and non-parametric DRO models for a work-

force planning problem under a mixture of known and uncertain demand. We devel-

oped heuristics to solve the parametric model, due to its poor scalability. The general

conclusions that we can make from our results are as follows. The full model can be

slow to solve to optimality using the MILP reformulation, i.e. using P. CS opt solves

this model to optimality in a short time on average, but begins to solve slowly when

the ambiguity set is large.

Our heuristics, AO and CS, employ dimension reduction to the sets of intakes and

distributions respectively in order to solve the problem in significantly less time than

P. The main conclusion we make about these algorithms is that CS performs very well,

and takes a fraction of the time that P takes. However, we found that CS can fail to

select the worst-case success probability for its chosen pulling forward decision due to

its assumption that the total success probability should be maximised. We compared

the parametric and non-parametric solutions, and made a number of conclusions.

Namely, NP typically pulls forward more than P but it overestimates the worst-case

cost of a decision. Our results also suggest that the NP distributions have higher

means, lower variance and more negative skewness. They also suppress many more

intakes than P’s distributions.

The main contribution that we have made to the existing DRO literature is the new

modelling framework of parametric DRO. In real-world planning problems, incorpo-

rating distributional ambiguity often results in unreasonably slow models. Instead,
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data-driven estimates of the demand distribution or its parameters are commonly

used. However, this can lead to poor solutions when the estimates are poor. Our

methodology provides a way that parameter estimates can be utilised while also hedg-

ing against cases when they are inaccurate. It allows planners to build confidence sets

around their estimates, that can be adjusted to fit their level of risk aversion. For

example, if the planner does not have trust in their estimates then they can choose a

large confidence level in order to generate a larger and hence more risk-averse ambi-

guity set. In addition, our use of parametric distributions instead of non-parametric

ones means that the worst-case distribution from our model is more explainable,

since it can be summarised by a small number of parameters. This distribution is

also less extreme, and less surprising given the estimated distribution. Furthermore,

using parametric distributions has allowed us to create fast algorithms for solving the

planning problem. This means that planners can incorporate additional uncertainty

without having to wait long periods of time for solutions.

There are a number of natural extensions to our work which would be of further

interest from a practical viewpoint. Firstly, we have considered a simplified problem

in which each job requires one unit of capacity to complete. This is not typically the

case in real life workforce planning. Adding more varied completion times would be a

clear next step in improving this model. Secondly, the model considers the case where

there is only one skill, and is equivalent to assuming all workers can complete any

job. In some scenarios this is not the case, and the model could account for this by

considering separate demand values and decision variables for each skill. Thirdly, we



CHAPTER 2. DISTRIBUTIONALLY ROBUST RESOURCE PLANNING 83

have treated the capacity as fixed and aimed to optimise its use. In some cases, if not

all, however, capacity can be manipulated in the tactical planning phase. For example,

one can order extra units of existing resources (overtime) or hire outside resources for

a cost (contractors). These ways to manipulate capacity (planning levers) will form

the basis of some of our future research. Finally, we have assumed in this chapter that

the intakes are independent. Extending our model to account for correlated intakes

is a promising area for future work.



Chapter 3

Parametric Distributionally Robust

Optimisation Models for Budgeted

Multi-period Newsvendor

Problems

In this chapter, we consider a static, multi-period newsvendor problem under a budget

constraint. In the case where the true demand distribution is known, we develop a

heuristic algorithm to solve the problem. By comparing this algorithm with off-the-

shelf solvers, we show that it generates near-optimal solutions in a short time. We

then consider a scenario in which limited information on the demand distribution is

available. It is assumed, however, that the true demand distribution lies within some

given family of distributions and that samples can be obtained from it.

84
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We consider the cases of normal and Poisson demands. For each case, we show that

using maximum likelihood estimates in place of the true parameters can lead to poor

estimates of the true cost associated with an order quantity. Hence, we make use

of likelihood inference to develop confidence sets for the true parameters. These are

used as ambiguity sets in a distributionally robust model, where we enforce that the

worst-case distribution lies in the same family as the true distribution.

We solve these models by discretising the ambiguity set and reformulating them as

piecewise linear models. We show that these models quickly become large as the

ambiguity set grows, resulting in long computation times. To overcome this, we

propose a heuristic cutting surface algorithm that exploits theoretical properties of

the objective function to reduce the size of the ambiguity set. We illustrate that our

cutting surface algorithm solves orders of magnitude faster than the piecewise linear

model, while generating very near-optimal solutions.

3.1 Introduction

The newsvendor problem (Arrow et al., 1951) is a classical problem in operational

research and operations management. In this problem, we consider a retailer facing

the decision of how much stock to order in order to try to meet uncertain demand as

closely as possible. Based on the fact that newspapers are no longer saleable after the

period is over, in the newsvendor problem any unsold stock is either lost or sold at a

lower price. Furthermore, the newsvendor is typically penalised for missing demand.

Even in its earliest form, the newsvendor problem models a situation in which demand
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is not known exactly. However, in early papers such as that of Arrow et al. (1951), it

was typically assumed that the demand distribution was known exactly. The resulting

problem is therefore stochastic, and usually nonlinear.

In the years after its introduction, the newsvendor problem has been extended in many

ways. Two such extensions are relevant to this chapter. The first is the static multi-

period newsvendor problem (Chen et al., 2017). In this version of the problem, the

retailer must decide prior to the selling horizon on how much stock to have delivered at

the start of each period. This corresponds to cases where the retailer and the supplier

must agree on their stocking quantities beforehand, and applies to many industries.

As discussed by Chen et al. (2017), this type of ordering structure is relevant to fresh

produce industries. In these industries, due to the short shelf-lives of products, orders

cannot simply be delivered prior to the selling period and stored for its entirety. Some

products can only be stored for a short time and hence must be delivered within the

selling horizon to ensure that they do not perish before they are sold.

Furthermore, ordering in advance allows the retailer to use one period’s order for

multiple subsequent periods, if this yields a higher profit. Depending on the costs

associated with holding stock, this can be cheaper than making multiple separate

orders. Our model makes an additional extension to the model of Chen et al. (2017),

through a budget constraint. This is not common in multi-period models, due to

the added complexity this constraint brings, but it is more common in multi-product

models (Alfares and Elmorra, 2005). This constraint adds an extra level of realism,

since it is very unlikely that any retailer can spend infinite amounts of money. In this
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chapter, we develop an iterative algorithm for our model.

Another key extension of the newsvendor problem is the distributionally robust (DR)

problem. In this version of the problem, we do not assume that the distribution of

demand is known. We assume that the true distribution lies in some set, referred

to as an ambiguity set. Then the problem is to find the ordering quantity with the

highest worst-case expected profit over all distributions in this ambiguity set. Early

DR problems assumed that only some moments of the distribution, such as mean

and variance, are known and fixed. The ambiguity set then contains all distributions

whose moments are equal to these values. We refer to problems with moment-based

ambiguity sets as distribution free (DF) problems (Scarf, 1957).

The assumption that these moments are known is not always realistic, and typically

they must be estimated from sample data (Lee et al., 2021). It has been found that

poor estimation of these parameters can lead to poor estimation of costs (Rossi et al.,

2014) and bias in solutions (Siegel and Wagner, 2021). Furthermore, DF models can

lead to overly conservative solutions (Wang et al., 2016). Due to these issues, many

recent DR models considered ambiguity sets containing distributions that lie within

some pre-prescribed distance of a nominal distribution (Zhao and Guan, 2015).

Our model is different from the standard DR model in two key ways. Firstly, we only

consider parametric distributions. To be more specific, we assume that the demand

distribution lies in some parametric family, and then construct ambiguity sets that

only contain distributions that also lie in this family. Parametric distributions have

often been used in the newsvendor problem due to their ability to allow statistical
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estimation and analysis to be integrated with optimisation (Liyanage and Shanthiku-

mar, 2005; Rossi et al., 2014). Secondly, due to the pitfalls of poor cost estimation, we

do not simply assume that the estimates of these parameters are the truth. Instead,

we use maximum likelihood theory to develop confidence sets for the true parameters,

and use these as ambiguity sets. The concept of parametric distributionally robust op-

timisation (DRO) was introduced in Chapter 2, in the context of a resource planning

problem under binomial demand distributions. In this chapter, we further develop this

framework by studying a multi-period newsvendor problem under normal and Poisson

demands. This allows us to show how the methods of Chapter 2 can be applied to

both continuous and discrete demand distributions with infinite support.

The model resulting from the parametric ambiguity set does not have any convenient

reformulation. Hence, we discretise the ambiguity set and represent the inner objective

using a set of constraints. Due to the nonlinearity of the objective function, these

constraints are non-linear. For discrete distributions, these constraints are piecewise

linear, and for continuous distributions we use piecewise linear approximations of

them. One piecewise linear constraint is required for each distribution in the ambiguity

set and each period considered by the model. Hence, the model can grow very large

and become slow to solve. Therefore, inspired by Chapter 2, we develop a heuristic

cutting surface (CS) algorithm in order to solve the model in a fast time.

CS algorithms have often been used for solving non-parametric DRO problems to

ε-optimality (Mehrotra and Papp, 2014). Such CS algorithms were shown to become

slow for large parametric problems in Chapter 2. Hence, our algorithm is a heuristic
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CS algorithm that exploits knowledge of the distributional family to improve solution

times. In general, a CS algorithm iteratively solves the model over subsets of the

ambiguity set, each time adding a new distribution to the subset before solving again.

This new distribution is chosen by finding the worst-case distribution for the most

recent solution. To speed up this stage, we use theoretical properties of the objective

function to develop a set of extreme distributions from which to select the worst-

case. We will show that our heuristic CS algorithm performs very well and generates

solutions in a short time. In summary, the key contributions of this chapter are:

1. We extend the multi-period model of Chen et al. (2017) by including a budget

constraint.

2. We present an iterative solution algorithm for the multi-period model under a

budget constraint. As far as we know, there is no existing algorithm for this

problem.

3. We show that the MLE approach provides poor estimates of the cost of a given

order quantity, which can lead to predicting a profit for an order that would

result in a loss.

4. We extend the concept of parametric DRO from Chapter 2 to the newsvendor

literature. We consider both continuous and discrete random variables with

infinite support. Only binomial random variables have been studied before. In

addition, this chapter shows how the work of Chapter 2 can be extended to

models with nonlinear objective functions.
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5. We develop a fast heuristic version of the CS algorithm from the DRO literature.

The general CS algorithm is ε-optimal, but can solve slowly for large ambiguity

sets. Hence, our heuristic CS algorithm exploits properties of the distributional

family to reduce the size of the ambiguity set considered, at little cost to solution

quality. We perform extensive computational experiments to test the efficacy of

our CS algorithm.

3.2 Literature Review

Our research is based on three areas of the newsvendor literature: DR newsvendor

problems, multi-period and capacitated/budgeted newsvendor problems, and para-

metric newsvendor problems. We now review the literature corresponding to these

three variations of the problem.

3.2.1 Distributionally Robust Newsvendor Problems

The first example of the DR newsvendor problem comes from Scarf (1957). Scarf

formulated the first DF model under the assumption that only its mean and variance

are known. He optimises the worst-case cost over all distributions with this mean

and variance, proving a simple ordering rule to be optimal. The DF model has been

the subject of many papers since the work of Scarf (1957). For example, Gallego

and Moon (1993) extended this work to the multi-product and random yield models.

Moon and Choi (1995) also extended the single-period DF model to the case where

customers can balk, i.e. decide not to buy an item, after observing stock levels.
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Further extensions to the DF model come from Alfares and Elmorra (2005), who ex-

tended the work of Gallego and Moon (1993) to the case where the model includes a

shortage cost for missing demand. Ouyang and Chang (2002) extended the DF model

to incorporate uncertainty in parameters such as lost-sales and backorder rates. Later

extensions of the model incorporate addition elements such as the cost of advertis-

ing (Lee and Hsu, 2011), risk- and ambiguity-aversion (Han et al., 2014), and carbon

emissions (Liu et al., 2015; Bai and Chen, 2016). These authors were able to find

closed-form solutions using derivatives and/or KKT conditions.

DF models are commonly used due to their tractability. However, the assumptions

are sometimes unrealistic and can lead to issues with the resulting solutions. Lee

et al. (2021) discuss these issues, citing that the main reason for not using a DF

approach is that it is unrealistic to assume that any parameters of the distribution are

known exactly. In addition, the moment-based ambiguity sets used in DF models can

lead to overly conservative decisions (Wang et al., 2016). In practice, typically these

parameters must be estimated from historical data, and Lee et al. (2021) state that

maximum likelihood estimation approaches can lead to suboptimal solutions.

An example of this comes from Rossi et al. (2014), who used confidence interval anal-

ysis for the newsvendor problem under parametric distributions. Instead of singular

solutions, their method provides a discrete set of order quantities that contains the

true optimal order quantity with a given probability. They found that, even for large

samples, the costs given by the maximum likelihood estimates were inaccurate with

respect to the true cost. As far as we are aware, this is the only method so far that
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allows decision makers to hedge against uncertainty in parameters. However, it may

not be practical, since the decision maker then faces the dilemma of which solution

to choose. Since it provides a single order quantity to hedge against the worst costs,

a DR solution is therefore more convenient for a risk-averse decision maker.

In more recent literature, DR models with more complex ambiguity sets have been

developed. Where the DF model’s ambiguity set typically contains all distributions

with some of their parameters fixed at nominal values, many models have used

distance-based ambiguity sets. These sets contain all distributions that lie within

some pre-prescribed distance from the nominal, according to some distance measure.

These are common in the DRO literature, with an example distance measure being

ϕ-divergences (Bayraksan and Love, 2015). These ambiguity sets lead to problems

requiring different treatment than DF problems, and are usually solved via tractable

reformulations using Lagrangian dualisation.

One of the first examples of distance-based ambiguity sets for the newsvendor problem

was given by Zhao and Guan (2015). They used ζ-structure probability metrics, a

class of metrics containing the Wasserstein distance, to form their ambiguity sets.

Their model was reformulated as a stochastic program, and solved by an iterative

sampling algorithm. Gao and Kleywegt (2017a) studied a single-period newsvendor

problem with Wasserstein and ϕ-divergence ambiguity sets, which was solved using

a convex programming reformulation. The Wasserstein distance was also studied

by Mohajerin Esfahani and Kuhn (2018) and Lee et al. (2021), who also found that

it led to convex and linear programming reformulations.
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Our research differs from the above literature in three key ways. Firstly, we do not

assume that any parameters of the distribution are known. In order to avoid the issues

resulting from poor estimation, we instead assume that the demand distribution lies

in a known parametric family, but that its parameters are completely unknown.

Secondly, we enforce that the worst-case distribution selected by the DRO model also

lies within this family, in order to ensure that it is a reasonable candidate for the

true distribution. We enforce this via utilising the distribution’s probability mass

or density function in the objective function directly, and identifying the worst-case

parameters instead of the worst-case distribution itself. In particular, we consider nor-

mal and Poisson demands. Hence, our model considers nonlinear objective functions,

continuous distributions and discrete distributions with infinite support.

This extends the work of Chapter 2, where only binomial distributions and linear

objective functions were studied. As was true for the resource planning problem of

Chapter 2, parametric ambiguity sets do not lead to convenient reformulations. There-

fore, we solve using discretised ambiguity sets. This means that the inner objective

can be represented by a finite set of constraints. Since the number of constraints re-

quired can be very large, we use theoretical properties of the cost function to develop a

fast heuristic CS algorithm for our problem. We show that it performs very well, and

that it generates solutions in a much shorter time than solving the full model.

The final way in which our research differs is that we do not use distance measures

to build our ambiguity sets. One of the key benefits of doing this, as stated by Lee

et al. (2021), is that they allow the ambiguity sets to provide asymptotic probabilis-
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tic guarantees. In our methodology, we use maximum likelihood theory to develop

confidence sets for the true parameters of the demand distribution. This allows us to

provide ambiguity sets with the same probabilistic guarantees, without requiring the

use of distance measures.

3.2.2 Multi-period and Capacitated/Budgeted Newsvendor

Problems

A natural extension of the classical newsvendor problem of Arrow et al. (1951) is the

multi-period newsvendor problem. This incorporates either the option to make orders

at multiple periods in a planning horizon (dynamic problem), or to make orders for

multiple periods in a selling horizon prior to the horizon concerned (static problem).

The earliest multi-period problems are dynamic, where orders are made and delivered

in each period. These problems are typically treated as dynamic programs, and can

often be solved by base-stock policies (Bellman et al., 1955; Bouakiz and Sobel, 1992).

Under a base-stock policy, the order quantity for each period is chosen to bring the

stock level up to a predefined level.

Much of the literature on multi-period newsvendor problems has considered the dy-

namic formulation. Some examples include Ahmed et al. (2007), who studied the

case where the objective function is a coherent risk measure, Levi et al. (2007), who

considered the case where the demand distribution is unknown, and Altintas et al.

(2008), who considered setting discounts for a multi-period newsvendor. Later ex-

amples considered service-dependent demand (Deng et al., 2014), non-stationary (i.e.
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time-dependent) demand (Kim et al., 2015), and two-product models where the total

demand is fixed (Zhang and Yang, 2016).

Rather than dynamic, our model is static. Static multi-period models are less common

in the literature. Matsuyama (2006) considered a static problem with ordering cycles,

but mainly focused on deriving theoretical properties of the optimal profit. Other

papers on static multi-period problems typically do not include any constraints on

the order quantities, because adding these can result in much more complex KKT

conditions. Chen et al. (2017) consider a situation in which a seller sets their price

for selling to a multi-period, static newsvendor (buyer). They formulate the buyer’s

problem as a nonlinear program and solve using the KKT conditions. This solution

would be complicated by additional constraints, as we will show later. Ullah et al.

(2019) also consider a price-setting scenario, this time through a DF approach under

price-dependent demand. This model is unconstrained, and solved using first-order

conditions.

Our model extends that of Chen et al. (2017) to the case where the buyer has a

monetary budget. This adds a constraint to the model, meaning that standard KKT

solutions are not easily applicable. To the best of our knowledge, there are no optimal

algorithms in the literature for this problem. In fact, typically, multi-period models

do not have capacity or budget constraints. However, such constraints are com-

monly found in the multi-product literature. In this literature, iterative algorithms

are usually used (Lau and Lau, 1996; Abdel-Malek and Montanari, 2005; Alfares and

Elmorra, 2005). This is mainly due to the presence of non-negativity constraints in
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addition to the budget or capacity constraint. Adding Lagrange multipliers for each

non-negativity constraint can make the KKT conditions difficult to solve.

Furthermore, ignoring them can lead to negative order quantities Lau and Lau (1996).

Motivated by this, Abdel-Malek and Montanari (2005) developed an iterative algo-

rithm for the multi-product capacitated problem, based on Lagrangian relaxation.

Such algorithms are now common ways to solve capacitated problems. To solve our

multi-period problem, we adapt another iterative algorithm that was presented by Al-

fares and Elmorra (2005). This algorithm is designed to solve a multi-product problem

with a capacity constraint. It consists of first solving the KKT stationarity condition

under no constraints, and then iteratively increasing the Lagrange multiplier from

zero until the solution either becomes feasible or negative. If the solution becomes

negative, then the corresponding order quantity is set to zero and it is no longer con-

sidered. The process then begins again. This allows us to solve the problem without

ever explicitly incorporating the non-negativity constraints.

In summary, our research differs from the multi-period literature due to the presence

of the budget constraint. Due to the additional complexity caused by this constraint,

we use the KKT conditions of the problem to develop an iterative solution algorithm.

Similar to the algorithm of Alfares and Elmorra (2005) for the multi-product capac-

itated problem, our algorithm iteratively increases the Lagrange multiplier for the

budget constraint until the order quantities either become feasible or negative. If the

latter case occurs first, one order is set to zero and removed from consideration.

However, compared to the multi-product model, the multi-period model has the ad-
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ditional complexity that the optimal unconstrained order quantities depend on one

another. This makes it unclear which period’s order should be set to zero when one

becomes negative. Due to this, the proposed algorithm is not optimal in general for

our problem. However, we will show that it performs comparably with algorithms

from off-the-shelf solvers, and is even faster than these algorithms. More details can

be found in Section 3.3.2, where we present and test the algorithm.

3.2.3 Parametric Newsvendor Problems

The final area of the literature that we will review concerns parametric newsvendor

problems. Parametric demand distributions allow for two main methodologies for the

newsvendor problem. The first approach is the Bayesian approach. This consists

of first assuming some prior distribution of demand, and then updating the prior

distribution to obtain the posterior after some demand is realised. For example,

Hill (1997) and Bensoussan et al. (2009) used Bayesian approaches for estimating

newsvendor demand under uniform and exponential priors, respectively, in the case

of fully observable demand.

The case of censored demand has also been addressed in a Bayesian fashion. For

example, Chen (2010) considered a dynamic inventory problem with unobserved data,

focussing on developing heuristics and bounds based on Bayesian updating. Mersereau

(2015) uses Bayesian estimation to study the effect of inventory record inaccuracy

under censored demand. As discussed by Rossi et al. (2014), the Bayesian approach

can be inappropriate due to difficulty in selecting a prior and the infinite number
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iterations that are required to prove convergence.

The second approach is the frequentist approach. This corresponds to authors esti-

mating the parameters of the demand distribution from sample data. Early papers on

this approach did not consider integrating the estimates into the model. For example,

Nahmias (1994) studied different estimation methods for the parameters of a nor-

mal demand distribution in the situation where lost sales are not observed. Agrawal

and Smith (1996) studied estimating negative binomial demand from sample data.

Both of these studies assumed the order quantity was given. Later papers considered

incorporating frequentist estimates into the optimisation models. Liyanage and Shan-

thikumar (2005) showed that using parameter estimates in place of true parameters

can lead to suboptimal solutions. They then introduced the “operational statistics”

framework, which integrates estimation and optimisation to reduce bias.

There has also been research on which distributions should be used for newsvendor

demand. Gallego et al. (2007) compared the profits obtained from normal, lognormal,

gamma and negative binomial distributions in the case where the coefficient of vari-

ation was high. They found that the normal distribution can lead to large negative

profits, and suggested using non-negative distributions instead. Rossi et al. (2014)

proposed a methodology that combines statistical confidence interval analysis with

the newsvendor problem to reduce the effect of poor parameter estimation. They

provided confidence intervals for the true parameters of the distributions and use this

to provide confidence intervals for the true optimal cost. They argue that this avoids

the pitfalls of using maximum likelihood estimates, namely poor estimation of optimal
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costs. However, it provides multiple solutions, of which one must be selected. Finally,

Siegel and Wagner (2021) also presented a methodology to avoid said pitfalls, which

is based on an asymptotic adjustment to the estimates in order to reduce bias.

Our methodology utilises maximum likelihood theory for parametric distributions in

the newsvendor problem. Motivated by the problems that can occur from assuming

that they are the true parameters, we study the effects of assuming that parameter

estimates are the true values. We will show that this method performs similarly to

how it did for Rossi et al. (2014), namely that it leads to suboptimality and poor cost

estimates. In addition, we use multivariate confidence theory to develop confidence

sets for the true parameters. These are then used as ambiguity sets in our models.

Although our confidence sets are based on asymptotic theory, they are large for small

samples and small for large samples. This means that the model actively accounts for

small sample sizes through constructing a more conservative set.

3.3 Fixed Distribution Model and Solution

In Section 3.3.1, we present the model in the case where the demand distribution is

known. Then, in Section 3.3.2, we present and test our algorithm for solving this

problem. This algorithm will be used to benchmark the DRO methods that are the

main focus of this chapter.
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3.3.1 Model

Adapting the model by Chen et al. (2017), we assume that there are T periods for

which an order needs to be made. We denote the periods by t ∈ T = {1, . . . , T}.

The order quantity vector is denoted q = (q1, . . . , qT ), and gives the amount of stock

to order for each period t ∈ T . The demand for period t is denoted by Xt. We also

assume that the newsvendor has a total budget for expenditure of W , that limits the

amount that can be ordered in total. In practice, we do not have access to infinite

resources and hence this is a realistic addition to the model. We denote by F the

joint cumulative distribution function (CDF) of the demand vector X.

Furthermore, let It be the inventory available during period t ∈ {1, . . . , T} and assume

I0 = 0 w.l.o.g. Finally, let us define the costs for the model. Let wt be the cost of

ordering a unit of stock to sell on period t (ordering cost). We will assume that

wt ≥ wt+1 ∀ t = 1, . . . , T . This is reasonable because, as shown by Chen et al. (2017),

any optimal set of prices for the supplier satisfies this condition. Let h be the cost

of holding one unit of stock for one period (i.e. a holding cost), and let b be the cost

of one unit of unmet demand (backorder cost). Finally, let c be the price a customer

pays to purchase stock from the newsvendor (purchasing cost). Then, in each period

t the following events occur:

1. The order of size qt arrives and the supplier pays wtqt for the shipment.

2. Demand Xt is realised.

3. Inventory at end of period is calculated as It = It−1 + qt −Xt.
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4. If t ≤ T − 1 then the newsvendor receives profit cXt − hI+t − bI−t . Here I+t =

max{It, 0} is the leftover product that must be held for the following period and

I−t = max{−It, 0} is the unmet demand. This profit is the revenue from sales,

minus the total holding costs and backorder costs. It assumes that all demand

for period t is met at some point during or after period t. If it cannot be met,

this is not known until t = T , where the profit is reduced accordingly.

If t = T then the profit is cmin{XT , IT−1 + qT} − hI+T − bI−T . The first term in

this expression represents that demand in period T can only be met in period

T , since there are no subsequent periods. Hence, it can only be met if the

newsvendor has enough stock to meet it in period T .

Given this, the expected cost for an ordering decision q is given by:

CF (q) =
T∑
t=1

(
hEF [I+t ] + bEF [I−t ] + wtqt

)
− c

(
EF

[
T∑
t=1

Xt

]
− EF [I−T ]

)
,

which represents the total expected costs incurred from purchasing, holding and back-

ordering, minus any revenue made. The final term is the expected revenue made from

sales, where EF
[∑T

t=1Xt

]
is the expected total demand and EF [I−T ] is the expected

number of missed sales, which corresponds to the unmet demand in period T . Then,

the model for a fixed distribution F , referred to as MPNVP, can be written as:

min
q
CF (q) = cEF [I−T ] +

T∑
t=1

(
hEF [I+t ] + bEF [I−t ] + wtqt − cEF [Xt]

)
(3.3.1)

s.t.
T∑
t=1

wtqt ≤ W, (3.3.2)

It = It−1 + qt −Xt ∀ t = 1, . . . , T, (3.3.3)

qt ≥ 0 ∀ t = 1, . . . , T. (3.3.4)
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Constraint (3.3.2) is the budget constraint and (3.3.3) is the inventory constraint.

3.3.2 Solution Procedure

A Solution of the KKT Stationarity Condition

In order to develop a solution algorithm for this problem, we will now assume that

F represents a continuous distribution. This allows us to use the KKT conditions

to derive an algorithm. The resulting algorithm iteratively increases the Lagrange

multiplier for the budget constraint, each time generating a new solution by evaluating

the inverse CDF of the demand distribution. Since the inverse CDF of a discrete

distribution will always provide integer order quantities, the algorithm we develop

can also be applied to discrete distributions. We will show that it performs well for

both the Poisson and normal distributions.

Define a Lagrange multiplier ν for the budget constraint. Then, the Lagrangian of

MPNVP without considering the non-negativity constraints is defined as:

L(q, ν) = CF (q) + ν

(
T∑
t=1

wtqt −W

)
.

The KKT conditions for a solution q∗ to be optimal are therefore:

∂

∂qj
CF (q

∗) + νwj = 0 ∀ j = 1, . . . , T, (3.3.5)

T∑
t=1

wtq
∗
t ≤ W, (3.3.6)

ν

(
T∑
t=1

wtq
∗
t −W

)
= 0, (3.3.7)

ν ≥ 0. (3.3.8)
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Our algorithm will make use of Theorem 3.3.1, which finds a solution satisfying the

stationarity condition (3.3.5):

Theorem 3.3.1. For a given Lagrange multiplier ν, suppose that the following two

conditions hold:

1. ν ≤ b
wt−wt+1

− 1 ∀ t ∈ {1, . . . , T − 1},

2. ν ≤ b+c
wT

− 1.

and let F̃t be the CDF of
∑t

l=1Xl. Then, the solution:

q∗1 = F̃−1
1

(
b− (1 + ν)(w1 − w2)

h+ b

)
q∗t = F̃−1

t

(
b− (1 + ν)(wt − wt+1)

h+ b

)
− F̃−1

t−1

(
b− (1 + ν)(wt−1 − wt)

h+ b

)
, (2 ≤ t ≤ T − 1)

q∗T = F̃−1
T

(
b− (1 + ν)wT + c

h+ b+ c

)
− F̃−1

T−1

(
b− (1 + ν)(wT−1 − wT )

h+ b

)
.


(3.3.9)

satisfies the stationarity KKT condition (3.3.5) of MPNVP.

This theorem is proved in Appendix B.1. Even though this solution satisfies the sta-

tionarity condition of MPNVP, it may not be feasible. We also require that qt ≥ 0 ∀ t

and
∑T

t=1wtqt ≤ W . Adding Lagrange multipliers for every non-negativity constraint

results in an un-solvable set of KKT conditions, as discussed by Alfares and Elmorra

(2005); Abdel-Malek and Montanari (2005) and Lau and Lau (1996), who each studied

multi-product newsvendor models with budget constraints. Due to this, along with

the fact that relaxing non-negativity constraints can lead to negative order quantities,

the common approach among these papers has been to develop iterative algorithms

that do not require that the non-negativity constraints are enforced directly.
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An Iterative Solution Algorithm: FD

We now present our algorithm for solving MPNVP. We will refer to this algorithm as

fixed distribution (FD). Details on deriving FD can be found in Appendix B.2.1. In

essence, FD starts with ν = 0 and iteratively increases ν until either the stationarity

solution in (3.3.9) becomes feasible or an order becomes negative. If an order becomes

negative, it selects an order to set to zero and remove from consideration, and then

starts again. However, once an order has been set to zero, the solution in (3.3.9) can

no longer be used since it does not enforce this.

Let us denote by T 0 the set of days that have had their orders set to zero and have

been removed from consideration. When T 0 is non-empty, instead of using (3.3.9),

we need to generate a solution that satisfies (3.3.5) and also has qt = 0 ∀ t ∈ T 0. In

Appendix B.2.1, we show that one solution that satisfies both of these requirements

is given by q̃∗, as defined in (3.3.10).

q̃∗1 = 1{1 /∈ T 0}F̃−1
1

(
b− (1 + ν)(w1 − w2)

h+ b

)
q̃∗t = 1{t /∈ T 0}

(
F̃−1
t

(
b− (1 + ν)(wt − wt+1)

h+ b

)
−

t−1∑
l=1

q̃∗l

)
∀ t ∈ {2, . . . , T − 1}

q̃∗T = 1{T /∈ T 0}

(
F̃−1
T

(
b− (1 + ν)wT + c

h+ b+ c

)
−

T−1∑
l=1

q̃∗l

) .


(3.3.10)

Let q∗(ν) be the solution obtained from evaluating (3.3.9) with Lagrange multiplier ν.

Similarly, define q̃∗(ν) as the solution obtained from evaluating (3.3.10) with Lagrange

multiplier ν. Then, FD can be described as follows:

1. Set T 0 = {}.
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2. Take q = (max{q̃∗1(0), 0}, . . . ,max{q̃∗T (0), 0}), i.e. q̃∗(0) but setting negative

values to zero.

3. If
∑T

t=1wtqt ≤ W then go to step 7. If
∑T

t=1wtqt > W then if T 0 = {} go to

step 4 and otherwise go to step 5.

4. The budget constraint is binding. Compute upper bounds on ν, i.e.

νUBs =

{
b

wt − wt+1

− 1 ∀ t ∈ {1, . . . , T − 1}
}
∪
{
b+ c

wT
− 1

}
and set νUB = min{νUBs}. Then ν ≤ νUB ensures that the inverse CDFs are all

defined at ν. Go to step 5.

5. Starting from ν = 0, increase ν until the first occurrence of one of the following:

(a) The resulting q̃∗(ν) has q̃∗l (ν) < 0 for some l. In this case define ν∗ = ν,

set q = q̃∗(ν) and go to step 6.

(b) The resulting q̃∗(ν) has
∑T

t=1wtq̃
∗
t (ν) ≤ W . In this case go to step 7.

6. Select which day to add to T 0:

(a) For each day t ∈ T \ T 0, calculate a lower bound on the cost resulting

from setting qt = 0 and adding t to T 0. Specifically, calculate q̃∗(ν∗) with

T 0 = T 0 ∪ {t}.

(b) Select l to be the day with the lowest lower bound resulting from adding

it to T 0.

(c) Set T 0 = T 0 ∪ {l} and go to step 2.

7. Return q̃∗(ν).
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The algorithm uses a line search on [0, νUB] to find the optimal value of ν in Step

5. More details on step 5 can be found in Appendix B.2.2. The reason why FD is

only a heuristic is step 6. The idea behind step 6 is that, unlike in the multi-product

model, the order quantity that becomes negative may not be the one that should be

set to zero. This is because, in the multi-period model, setting a negative order to

zero reduces subsequent orders.

In order to select which order quantity should be set to zero, we estimate the effect

of each choice by finding a lower bound on the resulting cost. For each t ∈ T \ T 0,

we calculate this lower bound by temporarily adding t to T 0 and evaluating the cost

of the resulting q̃∗(ν). The reason for evaluating the next decision at ν∗ is as follows.

Since step 5(a) caused us to proceed to step 6, we know that a negative order occurs

before the budget constraint is met. Since period t’s order was negative, if this order is

set to zero then the budget constraint will still not be met (otherwise 5(b) would have

occurred first). Hence, the remaining orders must be reduced further, i.e. we must

have ν ≥ ν∗ if q̃∗(ν) is to meet the budget constraint. Since ν has to be increased

further to enforce the budget constraint, the cost at optimality must be higher than

the cost of q̃∗(ν). Hence, the cost of this solution gives a lower bound on the cost of

the solution where t has been added to T 0. Given all lower bounds, we then select t

with the lowest lower bound and add it to T 0.

Testing FD

In order to establish the performance of FD, we tested it on 1536 problem instances.

We obtained these by considering problems with T ∈ {2, . . . , 5}, c, h, b ∈ {1, 2},
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W ∈ {10, 25, 50}, w ∈ {(2T, 2(T − 1), . . . , 2), (1, 1
2
, . . . , 1

T
)}. In addition, we selected 2

mean vectors randomly for each T and set the standard deviation vector to be σ = µ
4

in each case. This only affects the normal experiments. Furthermore, the tolerance

for the budget constraint was either 0 or 10−6. The tuning parameter τ for the line

search used by FD was tested for τ ∈ {0.25, 0.5}. This generated 768 instances for

normal and 768 instances for Poisson demands.

Since our algorithm is a heuristic, we compare it with 3 off-the-shelf algorithms

that might be applied to solve MPNVP. The first two algorithms are Sequential

Least Squares Quadratic Programming (SLSQP) (Kraft, 1988) and Trust Constraint

(TC) Conn et al. (2000) from the Python library Scipy (Virtanen et al., 2020). For

more details on these algorithms, see Appendix B.2.3. The final algorithm is Piecewise

Linear Approximation (PLA), an algorithm that uses Gurobi (Gurobi Optimization,

LLC, 2022) to solve a piecewise linear approximation of MPNVP.

We now summarise the results of our experiments. Figure 3.3.1 shows the times taken

by each algorithm to solve MPNVP under normal and Poisson demands, with outliers

removed. Points that are more than 1.5 times the IQR above the 75th percentile or

below the 25th percentile are treated as outliers. Note that this is the case for all

boxplots in this chapter, and it is the standard metric for defining outliers in boxplots.

The plots show that FD and SLSQP are the fastest algorithms for both normal and

Poisson demands. On average, for normal demands, FD took 0.14 seconds and SLSQP

took 0.15 seconds. For Poisson demands, FD took 0.23 seconds whereas SLSQP took

0.32 seconds, on average. Hence, our results suggest that FD is the fastest algorithm
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on average.

(a) (b)

Figure 3.3.1: Boxplots summarising times taken by the 4 algorithms

To understand the performance of the algorithms, we define a percentage gap from

the best solutions as follows:

100× CF (q
a)−miny∈Y CF (q

y)

miny∈Y CF (qy)
,

where a, y ∈ Y = {FD,PLA, SLSQP,TC} represents an algorithm, and qy is the

solution returned by algorithm y. Given this definition, we summarise the gaps in

Figure 3.3.2. This plot shows that FD is typically within 2.5% of the best solution

for normal demands. SLSQP and TC perform the best here. However, for Poisson

demands, FD and PLA are the best algorithms in terms of objective value. FD had

the best objective value in 84% of Poisson instances. On average over all instances,

PLA is the best performing algorithm. It is important to mention that, while SLSQP

performs well for Poisson demands, in 678 out of 768 instances with Poisson demands,

its solution was not integer. There is no way to enforce integer variables within

this algorithm. Hence, FD and PLA have this as an advantage over SLSQP: if the

distribution is discrete, their solutions are integer.
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(a) (b) s

Figure 3.3.2: Boxplots summarising percentage optimality gaps of the 4 algorithms

The final result we would like to mention is the exceedance of the budget. One key

difference between SLSQP and TC is that TC allows us to specify a tolerance for

exceeding the budget, where SLSQP does not. We recorded the number of times each

algorithm exceeded the budget by more than the tolerance, and by how much. We

find that SLSQP exceeded the tolerance in 206 instances, with a maximum exceedance

of 6.58× 10−6. FD was the only algorithm that never exceeded the tolerance.

From these results, we can conclude four main points. Firstly, FD was the fastest

algorithm of those that we tested. Secondly, FD was typically close to the best solution

on average, and performed better than SLSQP and TC for Poisson demands. Thirdly,

SLSQP and TC do not return integer solutions for the Poisson distribution in general.

There is no way to enforce that these algorithms return integer solutions. Despite

FD being designed for continuous order quantities, when the demand is discrete, its

solution will always be integer. This is due to its solution being found from evaluating

the inverse CDF of the demand distribution. This is an important point, as when

demand is discrete the order quantity should also be. Finally, FD is the only algorithm
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that can be guaranteed not to exceed the budget constraint by more than some user-

specified tolerance.

3.4 DRO Model with Normal Demands

In this section, we describe and solve the DRO model under normal demands. We

first detail the model and ambiguity sets used in Section 3.4.1. Following this, in

Section 3.4.2, we develop a set of extreme distributions based on theoretical results

concerning the objective function. In Section 3.4.3, we use these results to develop

our CS algorithm. Finally, in Section 3.4.4, we perform extensive computational

experiments to test the MLE approach and the CS algorithm.

3.4.1 Formulation and Ambiguity Sets

The first parametric DRO model that we study is the one resulting from independent

normal demands. Suppose we have a set Θ of pairs θ = (µ,σ) such that each θ gives

a unique multivariate normal distribution. This means there is a unique CDF F for

each θ and so we can replace F with θ. Then the DRO model is:

min
q

max
θ∈Θ

Cθ(q) (3.4.1)

s.t.
T∑
t=1

wtqt ≤ W (3.4.2)

q ∈ RT
+ (3.4.3)

Let at = b+c1{t = T}+h, and let ϕ and Φ denote the PDF and CDF of the standard

normal distribution respectively. Lemma 3.4.1 allows us to rewrite the objective
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function in a more convenient form.

Lemma 3.4.1. When Xt ∼ N (µt, σ
2
t ) for t = 1, . . . , T and the Xt’s are independent,

we can rewrite Cθ(q) as:

Cθ(q) =
T∑
t=1

(atΦ(βt)− h)
t∑
l=1

(µl − ql) + atϕ(βt)

√√√√ t∑
l=1

σ2
l + qtwt − cµt

 , (3.4.4)

with βt =
∑t

l=1(µl−ql)√∑t
l=1 σ

2
l

.

The proof of Lemma 3.4.1 can be found in Appendix B.3.1. Given this formulation,

we next decide on the form that our ambiguity set Θ will take. As is common in the

DRO literature, we will use maximum likelihood estimation to derive an approximate

100(1 − α)% confidence set for the true parameter vector, which we will denote by

θ0 = (µ0,σ0). Suppose for each t = 1, . . . , T that we have access to a sample

xt = (x1t , . . . , x
N
t ) of size N from the true demand distribution N (µ0

t , (σ
0
t )

2). We

can use these samples to create MLEs of the true parameters, µ̂ = (µ̂1, . . . , µ̂T ) and

σ̂ = (σ̂1, . . . , σ̂T ). We also define θ̂ as the MLE of the true parameter vector θ0, i.e.

θ̂ = (µ̂, σ̂). It is well-known that the MLEs for normal parameters are given by:

µ̂t =
1

N

N∑
n=1

xnt , σ̂t =

√√√√ 1

N

N∑
n=1

(xnt − µ̂t)2 (t = 1, . . . , T ).

Given these estimates, we can construct an approximate confidence set using Propo-

sition 3.4.2. This result is proved in Appendix B.3.2.

Proposition 3.4.2. Suppose that Xt ∼ N (µ0
t , (σ

0
t )

2) for t = 1, . . . , T , where θ0 =

(µ0,σ0) is unknown and the Xt’s are independent. Furthermore, suppose that µ̂t and

σ̂t are MLEs obtained from N samples from the distribution of Xt, for t = 1, . . . , T .
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Then, an approximate 100(1− α)% confidence set for θ0 is given by:

Θα =

{
(µ,σ) ∈ R2T

+ :
T∑
t=1

(
N

σ̂2
t

(µ̂t − µt)
2 +

2N

σ̂2
t

(σ̂t − σt)
2

)
≤ χ2

2T,1−α

}
. (3.4.5)

In order to solve our model, we assume a discrete ambiguity set. This means that the

inner objective can be represented by a finite number of constraints. As described

in Chapter 2, parametric ambiguity sets do not yield convenient reformulations in

any other way. Hence, in this chapter, we will work with discrete subsets of the set

in (3.4.5). Since it is difficult to discretise this set directly, we will first construct a

baseline ambiguity set Θbase such that Θα ⊆ Θbase and discretise this set. Then, we

build a discretisation of Θα by taking all elements of the discretisation of Θbase that

also lie in Θα. A logical way in which to construct Θbase is as follows. The definition

of (3.4.5) implies that any (µ,σ) ∈ Θα satisfies:

µt ∈ µint
t =

µ̂t − σ̂t

√
χ2
2T,1−α

N
, µ̂t + σ̂t

√
χ2
2T,1−α

N

 , ∀ t ∈ {1, . . . , T}

σt ∈ σint
t =

σ̂t − σ̂t

√
χ2
2T,1−α

2N
, σ̂t + σ̂t

√
χ2
2T,1−α

2N

 ∀ t ∈ {1, . . . , T}.

Therefore, defining Θbase using (3.4.6), we have Θα ⊆ Θbase.

Θbase =
{
(µ,σ) : µt ∈ µint

t ∧ σt ∈ σint
t ∀ t = 1, . . . , T

}
. (3.4.6)

Let us refer to the upper and lower boundaries of the individual intervals as µlt, µ
u
t

and σlt, σ
u
t for each t = 1, . . . , T . Then, we can create discretisations of these intervals

containing M points using:

µ̃int
t =

{
µlt +m

µut − µlt
M − 1

: m = 0, . . . ,M − 1

}
∀ t ∈ T
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σ̃int
t =

{
σlt +m

σut − σlt
M − 1

: m = 0, . . . ,M − 1

}
∀ t ∈ T .

Then we can construct a discretisation of the baseline ambiguity set via:

Θ′
base =

{
(µ,σ) : µt ∈ µ̃int

t ∧ σt ∈ σ̃int
t ∀ t = 1, . . . , T

}
.

Then, a discretisation of Θα is given by Θ′
α = Θ′

base ∩Θα. This is the set that we will

use in our experiments. For the discrete ambiguity set Θ′
α, we can reformulate the

normal DRO model (3.4.1)-(3.4.3) as:

min

{
ϑ : ϑ ≤ Cθ(q) ∀ θ ∈ Θ′

α,
T∑
t=1

wtqt ≤ W, q ∈ RT
+

}
. (3.4.7)

The first constraint here is implemented in Gurobi using piecewise linear approxi-

mations. For details on the piecewise linear reformulation of this model, see Ap-

pendix B.3.3.

3.4.2 Extreme and Dominated Distributions

Depending on the size of Θ′
α, the piecewise linear model can become very slow. This is

due to the fact that one piecewise linear approximation is required for every θ ∈ Θ′
α

and every t ∈ {1, . . . , T}. The resulting model can have a significant number of

constraints. In order to generate solutions in a shorter time, we will develop a CS

algorithm. The idea of this algorithm is to iteratively solve the model on a small subset

of Θ′
α, and after each iteration generate a new distribution to add to the previous

subset. Since finding the worst-case parameter for a given q can be cumbersome

when Θ′
α is large, we will create a set Θext of extreme parameters that are close to
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the worst case. In order to create this set, we derive the following properties of the

objective function. These results are proved in Appendix B.3.4.

Theorem 3.4.3. When Xt ∼ N (µt, σ
2
t ) for t = 1, . . . , T and the Xt’s are independent,

Cθ(q) is:

1. Convex in µt for all t ∈ {1, . . . , T},

2. Increasing in σt for all t ∈ {1, . . . , T}.

Given these results, the question then arises of how to combine them in order to find

the most extreme θ values. Let us define the sets of all distinct µ and σ vectors as

M and S:

M =
{
µ ∈ RT

+ | ∃ σ ∈ RT
+ : (µ,σ) ∈ Θ′

α

}
S =

{
σ ∈ RT

+ | ∃ µ ∈ RT
+ : (µ,σ) ∈ Θ′

α

}
.

From M and S we can extract the most extreme µ’s and the most extreme σ’s

individually using Theorem 3.4.3. We first consider characterising the worst-case σ.

Since the cost function is increasing in each σt, it may seem reasonable that the

worst-case θ will have at least one σt set at its maximum. However, if one σt is at

its maximum, then the others may need to be closer to σ̂t in order for σ to remain

sufficiently close to σ̂. In other words, maximising one σt may mean reducing the

others, and this can yield a lower expected cost than if multiple standard deviations

were allowed to be moderately large. In order to account for this fact, we consider σ’s

with the largest sum. This allows us to avoid prioritising any one day in particular

and instead ensure that there is maximal total variability over all days.



CHAPTER 3. DISTRIBUTIONALLY ROBUST NEWSVENDOR MODELS 115

We now discuss the worst-case µ. Since the cost function is convex in each µt, we

will consider µ such that at least one µt is equal to its maximum or minimum value.

This is similar to the idea of maximising one σt, and therefore has the same problems.

However, it is possible that some µt’s should be maximised and others minimised.

Therefore, maximising or minimising
∑T

t=1 µt is not logical here, since it implies that

all should be maximised or all should be minimised.

In addition, it may be the case that any (µ,σ) ∈ Θ′
α that has

∑T
t=1 σt maximised does

not have any µt at its maximum or minimum. Similarly, any (µ,σ) such that some

µt is maximised or minimised may not have
∑T

t=1 σt being maximised. Therefore, in

order to construct a set of extreme parameters, we use a two-step procedure. For

each µ ∈ M we can find the σ’s with the largest sum over all θ ∈ Θ′
α whose mean is

equal to µ. This corresponds to finding the most extreme distributions for this fixed

µ. Hence, we define the set:

Θext
1 =

{
(µ,σ) ∈ Θ′

α :
T∑
t=1

σt = max
(µ,σ̃)∈Θ′

α

T∑
t=1

σ̃t

}
.

Given this set, we now eliminate pairs from Θext
1 where µ is dominated when the

corresponding σ is fixed. We can characterise this by finding the maximum and

minimum for each µt conditional on σ. Then, we can remove any pairs from Θext
1 that

do not have any µt equal to their maximum or minimum. Therefore, we define:

µmax
t (σ) = max

(µ,σ)∈Θext
1

µt, µ
min
t (σ) = min

(µ,σ)∈Θext
1

µt,

Θext
2 =

{
(µ,σ) ∈ Θext

1 | ∃t ∈ T : µt ∈ {µmin
t (σ), µmax

t (σ)}
}
.
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We can write this in a simpler form as a single set using:

Θext =

{
(µ,σ) ∈ Θ′

α

∣∣∣∣∣
(

T∑
t=1

σt = max
(µ,σ̃)∈Θ′

α

T∑
t=1

σ̃t

)
∧
(
∃t ∈ T : µt ∈ {µmin

t (σ), µmax
t (σ)}

)}
(3.4.8)

Note that this set may not contain the true worst-case θ ∈ Θ′
α, since it may be the case

that selecting a less extreme mean/standard deviation in favour of a more extreme

standard deviation/mean may lead to a worse distribution. However, in Section 3.4.4,

we will show that the worst-case in Θext is typically very close to the true worst-case

over the entire ambiguity set Θ′
α.

The size of Θ′
α can be too large for the model to be solved by PLA in a reasonable

time. In addition to constructing Θext, Theorem 3.4.3 allows us to remove some

dominated distributions that can never be the worst case. Consider two parameter

values θ1 and θ2 such that µ1 = µ2, there is at least one t such that (σ1)t > (σ2)t,

and (σ1)t ≥ (σ2)t ∀ t. Since, for a fixed µ, the objective function is increasing in each

σt, this means that θ2 is dominated by θ1. Hence, θ2 can never be a worse parameter

than θ1. Since this parameter can never be the worst-case, it can be removed from Θ′
α

and the solution to the model will not change. In our experiments, in order to reduce

the computational burden for PLA, we will remove all dominated distributions prior

to solving. This can greatly reduce the number of model constraints.

3.4.3 Cutting Surface Algorithm

We now present our CS algorithm. The idea of the algorithm is as follows. We start

with some initial singleton ambiguity set Θ1. Then, for k = 1, . . . , kmax, we solve the
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piecewise linear approximation of the DRO model in (3.4.7) over Θk to get a solution

qk. Then, we find the worst-case parameter θk for the solution qk over the set Θext

defined in (3.4.8). We then set Θk+1 = Θk∪{θk} and solve again. This process repeats

until stopping criteria are met. The CS algorithm for this problem is as follows.

1. Initialise by choosing initial set of one distribution Θ1 = {θinit} ⊆ Θ′
α, optimality

tolerance ϵ, kmax, and the gap ε between successive z points for the piecewise

linear approximation.

2. Construct set of extreme distributions Θext using (3.4.8).

3. Set k = 1. While k ≤ kmax:

(a) Solve piecewise linear approximation of the DRO model (3.4.7) using the

set Θk, to get solution (qk, θ̃).

(b) Use true objective function (3.4.4) to find objective value ϑk = Cθ̃(q
k).

(c) Using enumeration, find worst-case cost Ck = maxθ∈Θext Cθ(q
k) and worst-

case parameter θk ∈ argmaxθ∈Θext Cθ(q
k).

(d) If Ck ≤ ϑk + ϵ
2
or θk ∈ Θk then set k = kmax + 1.

(e) Else set Θk+1 = Θk ∪ {θk} and k = k + 1.

4. Return solution (qk,θk).

Note that, in step 4, CS uses the true objective function to evaluate qk and to select

a worst-case distribution for qk. Therefore, CS may give better solutions than solving

the full model using a piecewise linear approximation. Furthermore, this algorithm
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typically ends in only a few iterations. This means that the DRO model is only ever

solved over a small set of distributions, meaning that the piecewise linear models used

solve very quickly.

3.4.4 Experiments on Confidence-based Ambiguity Sets

In this section, we describe the design and results of our numerical experiments as-

sessing the performance of our methods. Firstly, we describe the experimental design

used. Following this, we study the order quantities and costs resulting from assuming

that θ0 = θ̂. Finally, we assess CS as a heuristic for solving the full DRO model.

These experiments were run in parallel on a computing cluster (STORM) which has

486 CPU cores. The solver used in all cases was the Gurobi Python package, guro-

bipy (Gurobi Optimization, LLC, 2022). The version of gurobipy used was 9.0.1. The

node used on STORM was the Tukey node, which runs the Linux Ubuntu 16.04.7

operating system, Python version 2.7.12, and 46 AMD Opteron 6238 CPUs.

Experimental Design

In this section, we describe the parameter values used in our experiments. As an

ambiguity set, we will use the discretisation Θ′
α of the confidence set (3.4.5) as de-

scribed in Section 3.4.1. The parameters used in our experiments are as follows. The

number of periods was T ∈ {2, 3, 4}. The gap for the piecewise linear approxima-

tion in Appendix B.3.3 was ε ∈ {0.1, 0.25, 0.50} and the number of points used in

the discretisation of univariate confidence intervals M ∈ {3, 5, 10}. The number of

samples taken from the true distribution was N ∈ {10, 25, 50}. The model costs
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were c, b, h ∈ {100, 200} and wt = 100(T − t + 1) for t = 1, . . . , T . The budget was

W = 4000 when T = 2, 3 and W = 8000 for T = 4. We randomly selected 3 values of

µ0 from the set {1, . . . , 20}T and 3 values of σ0 from the set {1, . . . , 10}T . These val-

ues are chosen in this way for two reasons. Firstly, selecting only 3 keeps the number

of experiments manageable. Secondly, selecting the values randomly means that we

are not biasing the results by selecting them favourably.

Note that we only select means and standard deviations such that 3σ0
t ≤ µ0

t ∀ t, to

ensure that the demand distributions are unlikely to generate negative values. We also

do not consider instances where T = 4 and M = 10. This is because in these cases

the base ambiguity sets are too large to be feasible. The reason why we useW = 8000

for T = 4 is that the optimal solution if W = 4000 is always (0, 0, 0, 40). This is not

interesting, and increasing the budget gives a wider variety of solutions. The above

inputs yield 864 instances, not including those with T = 4 and M = 10.

Performance of MLE Approaches

In this section, we assess the performance of the MLE approaches as a heuristic for

solving the model under the true distribution. In particular, we study how close to

optimality the solutions resulting from the MLE distributions are, and how well the

MLE distribution’s cost function approximates the true cost function. As a reminder,

we use the term MLE cost function to mean (3.4.4) with θ = θ̂, i.e. Cθ̂. Similarly,

we use true cost function to mean (3.4.4) with θ = θ0, i.e. Cθ0 . We ran the MLE

approaches on the 864 instances generated by the inputs from Section 3.4.4, solving

each instance with both FD and PLA.
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We present boxplots summarising the performance of the MLE approach in Fig-

ure 3.4.1. Note that, as in Section 3.3.2, boxplots are presented with outliers (points

further than 1.5IQR above the 75th percentile or below the 25th percentile) removed.

Let q̂ be the solution obtained from applying FD assuming θ = θ̂. Figure 3.4.1a

shows the absolute percentage optimality gap of q̂ when compared with the optimal q

under θ0, given by:

100×
∣∣∣∣minq Cθ0(q)− Cθ0(q̂)

minq Cθ0(q)

∣∣∣∣ .
This plot shows that q̂ is quite close to optimality under θ0. For the smallest samples,

i.e. N = 10, it typically was no further than 10% from optimal. The optimality gap

reduces as N increases. We also study the absolute percentage error (APE) of Cθ̂(q̂)

as an estimate of Cθ0(q̂), calculated as:

100×
∣∣∣∣Cθ0(q̂)− Cθ̂(q̂)

Cθ0(q̂)

∣∣∣∣ .
Figure 3.4.1b shows that the MLE distribution can result in poor estimates of the cost

of q̂. The plot shows that for N = 10, the APE can reach over 35%. The accuracy of

the estimate increases with N , but even for N = 50 we see errors of 15%.

In addition, these errors can be even more extreme than shown here, due to outliers

being removed from the plot. In one instance, the APE was as high as 15,600%.

This occurred in a 2-period instance with N = 25, and the corresponding costs were

Cθ̂(q̂) = −386.06 and Cθ0(q̂) = −2.46. In addition to this, we found that in 21

instances the MLE solution gave an order quantity that was predicted to make a

profit but ultimately resulted in a loss. In the most extreme example of this, we

found Cθ̂(q̂) = −479.12 and Cθ0(q̂) = 52.42. The lowest cost under θ0 in this instance
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(a) (b)

Figure 3.4.1: Boxplots summarising performance of FD in comparison with true op-

timal solution.

was −5.42, meaning that it was possible to make a profit, but that using the MLE

approach would have resulted in a loss. Interestingly, this happened for all values of

N and was not restricted to N = 10. We found that the MLE approach was likely to

underestimate the cost of its chosen q. This was the case in 61% of instances.

We can also confirm that these results are not simply due to the performance of FD as

a heuristic for MPNVP. We found that FD and PLA’s solutions were typically within

-2% and 1.5% of one another in terms of cost. We also found that FD sometimes gave

better solutions than PLA. In addition, we found similar results about the performance

of the MLE approach when the model was solved using PLA. Namely, the MLE cost

function predicted a profit for PLA’s solution when there would in fact be a cost in 16

instances, and it underestimated the cost of PLA’s decision in 59% of instances.

From the results shown here, we can make three key conclusions. Firstly, using

the MLE distribution will typically lead to solutions that are suboptimal, but still
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reasonably close to optimal under the true distribution. Secondly, we can conclude

that the MLE distribution can lead to poor estimates of the costs associated with a

given q. In particular, solving using the MLEs can lead to the suggestion that the

resulting decision will lead to a profit when it will actually lead to a cost. Finally, we

can conclude that using the MLE distribution is likely to lead to an underestimation

of the cost associated with the selected decision.

We can confirm that the DRO objective in (3.4.1) never predicted a profit when the

solution would actually result in a loss. For the aforementioned instance where q̂

had a predicted cost of −479.12 and an actual cost of 52.4, the cost that would be

associated with this decision under the DRO model was 156.84.

Performance of DRO Algorithms

Each algorithm was given a maximum time of four hours in which to carry out all

pre-computation and to build and solve the resulting models. By pre-computation,

we mean computing the sets Θ′
base and Θ′

α. Since this precomputation was required to

generate the inputs for both algorithms and is not technically part of either algorithm,

we do not include this in the times that we now present. Instead, we present run times,

i.e. the amount of time the algorithms ran for after all precomputation was complete,

until it either finished running or was timed out. We use the term timed out to

mean that the algorithm’s run time exceeded the time that was remaining after all

precomputation was complete. For example, if an algorithm timed out with a run time

of 1 minute, this meant that it spent 3 hours and 59 minutes in pre-computation.
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Of the 864 instances that we ran, 6 instances resulted in ambiguity sets with only

1 parameter. Hence, they were skipped. This means that we have results for 858

instances. Of these 858 instances, PLA timed out in 1. CS did not time out in any

instance. PLA took 7 minutes and 26 seconds on average, whereas CS took just 1.2

seconds. The 25% and 75% quantiles for PLA’s time taken are 0.7 seconds and 52.6

seconds. For CS, these values are 0.72 seconds and 3.3 seconds. In addition, PLA ran

for up to a maximum of 3 hours and 53 minutes, whereas CS always finished running

in less than 8 seconds. Note that PLA never ran for more than 4 hours because the

time limit accounts for pre-computation time and run time. In the above example,

the pre-computation took 7 minutes and PLA ran for 3 hours and 53 minutes. It is

worth noting that PLA’s average time is strongly affected by some large run times.

PLA took no more than 2 minutes to finish running in 79% of instances. However, it

took over 3 hours in approximately 1% of instances.

We can now look at the factors affecting the pre-computation and run times. From

our analysis, the main factor affecting PLA’s run times is M . For large M , the

base ambiguity set Θ′
base becomes very large. Therefore, Θ′

α is also large and even

constructing it can take a very long time. Table 3.4.1 summarises the times taken to

complete pre-computation, for each M . This time includes building Θ′
base, extracting

Θ′
α from this set, and reducing Θ′

α using our theoretical results. Table 3.4.1 shows that

this pre-computation takes a negligible amount of time for M ∈ {3, 5}. It also shows

a drastic increase in pre-computation times when M = 10 compared to M = 5. The

pre-computation times exceeded 4 hours in 108 instances, all of which had M = 10
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and T = 4. The maximum time taken for M = 5 was 3.14 seconds.

M Mean Std Median 75th Percentile

3 0.057 0.162 0.004 0.013

5 0.447 0.526 0.130 0.997

10 4883.919 6750.327 235.938 14402.217

Table 3.4.1: Summary of precomputation times (normal)

We now highlight the effect of M on PLA and CS’s run times. To do so, we present

boxplots of these times grouped by M in Figure 3.4.2. Figure 3.4.2a shows that PLA

begins to solve slowly for some instances whenM = 5. The maximum time that PLA

took when M = 5 was 15.5 minutes. On average, however, PLA was still relatively

fast for M = 5, taking an average of 1 minute and 21 seconds over all instances.

Figure 3.4.2a also shows that PLA’s run times were much larger for M = 10. The

average time taken by PLA forM = 10 was 28 minutes. The effect ofM on PLA’s run

times is due to the fact that largerM means larger Θ′
α and therefore more constraints

in the full model. As might have been expected, M does not significantly effect CS’s

solution times. This is due to the fact that it uses a reduced subset of Θ′
α which has

approximately the same size regardless of M .

Since large M leads to significant increases in pre-computation and solution times, it

is reasonable to wonder if selecting a larger M results in better solutions under some

metric. In order to assess the effect of M on solution quality, we analyse the cost of

PLA and CS’s solutions under the true distribution. In particular, we calculate the
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(a) (b)

Figure 3.4.2: Boxplots of the run times of (a) PLA and (b) CS by M (normal)

percentage optimality gaps of these solutions as:

100× minq Cθ0(q)− Cθ0(qy)

|minq Cθ0(q)|
, y ∈ {CS,PLA}.

Note that, since minq Cθ0(q) is calculated approximately by applying piecewise linear

approximations, it may be the case that PLA or CS’s DRO solutions yield lower

costs under θ0. Let q0 be the solution obtained from solving the model under θ0.

We provide boxplots of the percentage optimality gaps in Figure 3.4.3. Figure 3.4.3a

shows that, regardless of M , qPLA attained a cost that was typically within −6%

and 9% of the cost attained by q0. Similarly, qCS typically attained a cost that was

between −5% and 11% of the cost of q0.

Figure 3.4.3 suggests that M does not have a particularly strong effect on the quality

of the DRO solutions under θ0. This may indicate that there is no real reason to

select M = 10 as opposed to M = 3 or 5. In order to see this more clearly, we

provide some summary statistics in Table 3.4.2. Table 3.4.2 shows that PLA had

the highest average percentage optimality gap for M = 10, and lowest for M = 5.
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(a) (b)

Figure 3.4.3: Percentage optimality gaps of (a) PLA and (b) CS by M (normal)

In addition, PLA’s optimality gap had the lowest standard deviation when M = 5,

and it’s 75th percentile was lower for M = 5 than for M = 10. Therefore, taking

M = 10 drastically increases run times compared to takingM = 5 and generally does

not result in better solutions under θ0. These results suggest that M = 5 should be

preferred over M = 10 if optimality under the true distribution is of concern.

M Mean Std Median 75th Percentile

3 21.224 191.404 0.766 2.718

5 15.631 87.505 1.274 3.040

10 21.355 132.053 1.060 4.016

Table 3.4.2: Summary of optimality gaps of PLA by M (normal)

We now assess the performance of CS as a heuristic for solving the full DRO model.

This is done via comparing its objective values and returned θ values with those from

PLA. We first present the number of times that CS and PLA obtained the worst-case
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parameters for their chosen q. We present these values for PLA as well as CS since

both algorithms use a reduced ambiguity set. CS uses Θext and PLA uses Θ′
α with

dominated parameters removed. Hence, studying these results allows us to confirm

that the reduced set used by PLA contains the true worst-case parameter for each

solution. We present the optimality counts in Table 3.4.3. Note that these counts are

given only over the instances where the algorithm concerned finished running. Since

PLA timed out in one instance, it finished running in 1 less instance than CS.

CS chose the worst-case parameters for its selected q in 85% of instances. PLA chose

the worst-case parameters in every instance. This is expected, since despite the fact

that the approximate objective can lead to the wrong worst-case parameter, we use the

true objective function to generate the cost of PLA’s solution after it finishes running.

The main purpose of this is to confirm that our removal of dominated distributions

did not remove the worst-case parameter in any instance. CS failed to select the

worst-case parameters in 126 instances.

Table 3.4.3 only shows the number of times CS chose the worst-case parameters. In

order to gain a better understanding of its performance, we study two quantities:

1. Percentage θ-gap: The percentage difference between the worst-case cost for

qCS and the cost obtained under the θ returned by CS. Defined as:

100×
maxθ∈Θ′

α
Cθ(q

CS)− CθCS(qCS)

maxθ∈Θ′
α
Cθ(qCS)

.

2. Percentage q-gap: The percentage difference between the worst-case cost at-
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tained by qCS and that attained by qPLA. Defined as:

100×
maxθ∈Θ′

α
Cθ(q

PLA)−maxθ∈Θ′
α
Cθ(q

CS)

maxθ∈Θ′
α
Cθ(qPLA)

.

T CS No. CS Worst-case Count (%) PLA No. PLA Worst-case Count (%)

All 858 732 (85.31%) 857 857 (100.0%)

2 320 270 (84.38%) 320 320 (100.0%)

3 323 257 (79.57%) 322 322 (100.0%)

4 215 205 (95.35%) 215 215 (100.0%)

Table 3.4.3: Number of instances in which algorithms selected true worst case param-

eters.

Note that positive values (lower expected cost) for the θ-gap implies that CS gave a

suboptimal θ. Negative values (higher worst-case expected cost) for the q-gap imply

that CS gave a suboptimal q. Figure 3.4.4 summarises the percentage gaps using

boxplots. The first thing to notice is that the θ-gaps were so commonly zero that

everything non-zero was considered as an outlier. On average, the percentage θ-gap

was 0.045%. We see from Figure 3.4.4b that CS’s chosen q had a worst-case cost

that was very close to PLA’s, in general. The percentage optimality gaps typically

do not exceed 0.003%. The overall average percentage q-gap was −0.06%. CS even

performed better than PLA in 153 instances. Since CS can be viewed as a heuristic

for solving the full model that PLA solves, this may be unexpected. This occurs

due to one main reason. CS’s solution can have a higher worst-case cost than PLA’s
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solution under the approximate cost function used by PLA, even when the worst-case

cost of CS’s solution is lower than that of PLA’s under the true cost function.

(a) (b)

Figure 3.4.4: Boxplots of (a) percentage θ-gaps and (b) percentage q-gaps by T

From these results we can conclude 4 main points. Firstly, CS was much faster than

PLA and scales better. It never took more than 8 seconds to finish running, whereas

PLA took up to 3 hours and 53 minutes. Secondly, PLA performed better in selecting

the worst-case parameters for a fixed q. This is expected, as CS applies cardinality

reduction to the ambiguity set. CS’s returned parameters were very close to the

worst-case in terms of cost, however. Thirdly, CS was very close to optimal with

respect to its chosen q. On average, it returned solutions that are only 0.045% away

from optimal. Finally, CS performed better than PLA in some instances, due to the

inaccuracy of the piecewise linear approximation.

3.5 DRO Model with Poisson Demands

In this section, we present and solve the DRO model when the demands are Poisson

random variables. In Section 3.5.1, we give the model and describe the ambiguity
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sets used. Then, in Section 3.5.2, we describe the set of extreme parameters used by

CS. Finally, in Section 3.5.3, we test the MLE approach and our CS algorithm using

computational experiments.

3.5.1 Formulation and Ambiguity Sets

When the demands are independent Poisson random variables, i.e. Xt ∼ Pois(λ0t ) for

unknown λ0, then we have that
∑t

l=1Xl ∼ Pois
(∑t

l=1 λ
0
l

)
for t = 1, . . . , T . Since

we have θ = λ, we use λ in place of θ from hereon out. Also, we will now consider

integer decision variables, i.e. q ∈ NT
0 , since the demand is discrete. Furthermore, we

can use Lemma 3.5.1 to rewrite the objective function in a more convenient fashion.

This lemma is proved in Appendix B.4.1.

Lemma 3.5.1. Suppose that the demands are independent Poisson random variables,

i.e. Xt ∼ Pois(λt) ∀ t = 1, . . . , T . Then, for q ∈ NT
0 , the objective function Cλ(q) can

be written as:

Cλ(q) =
T∑
t=1

(
atQtF̃t(Qt)− ΛtatF̃t(Qt − 1) + (b+ c1{t = T})(Λt −Qt) + wtqt − cλt

)
,

with at = h+ b+ c1{t = T} and Λt =
∑t

l=1 λl.

Therefore, the DRO model for Poisson demands is given by:

min
q

max
λ∈Θ

Cλ(q) =
T∑
t=1

(
atQtF̃t(Qt)− ΛtatF̃t(Qt − 1) + (at − h)(Λt −Qt) + wtqt − cλt

)
(3.5.1)

s.t.
T∑
t=1

wtqt ≤ W, (3.5.2)
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qt ∈ N0 ∀ t ∈ {1, . . . , T}. (3.5.3)

Similarly to the case for normally distributed demands, we will construct confidence

sets for use as ambiguity sets. Suppose that we draw N samples xn = (xn1 , . . . , x
n
T )

from X. Then, the MLEs are given by λ̂t =
1
N

∑N
n=1 x

n
t for t = 1, . . . , T . We can

construct an approximate 100(1− α)% confidence set for λ0 using Proposition 3.5.2,

which is proved in Appendix B.4.2.

Proposition 3.5.2. Suppose that Xt ∼ Pois(λ0t ) for t ∈ {1, . . . , T} and that the Xt

are independent. Then, an approximate 100(1 − α)% confidence set for λ0 is given

by:

Θα =

{
λ ∈ RT

+ :
T∑
t=1

N

λ̂t
(λ̂t − λt)

2 ≤ χ2
T,1−α

}
. (3.5.4)

As before, we will construct a discretisation of Θα. In the Poisson case, we have that

λ ∈ Θα implies that:

λt ∈ λintt =

λ̂t −
√
χ2
T,1−αλ̂t

N
, λ̂t +

√
χ2
T,1−αλ̂t

N

 (t = 1, . . . , T ).

Therefore, if we define Θbase =
{
λ ∈ RT

+ : λt ∈ λintt ∀ t = 1, . . . , T
}
, then we have

Θα ⊆ Θbase. As before, we can discretise the intervals λintt using:

λ̃intt =

{
λlt +m

λut − λlt
M − 1

,m = 0, . . . ,M − 1

}
,

where λlt, λ
u
t are the lower and upper bounds of λintt . Hence, we can calculate a

discretisation of Θbase by taking Θ′
base = {λ ∈ RT

+ : λt ∈ λ̃intt ∀ t ∈ {1, . . . , T}}.

Finally, we can take a discretisation of the confidence set Θα by taking Θ
′
α = Θ′

base∩Θα.

This is the set used in our experiments. For the discrete ambiguity set Θ′
α, we can
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reformulate (3.5.1)-(3.5.3) as:

min

{
ϑ : ϑ ≤ Cλ(q) ∀ λ ∈ Θ′

α,

T∑
t=1

wtqt ≤ W, q ∈ NT
0

}
.

This model is implemented in Gurobi using piecewise linear constraints. For more

details on how the model is implemented, see Appendix B.4.3.

3.5.2 Extreme Distributions

As for the case of normally distributed demands, we will develop a CS algorithm that

produces solutions in a comparatively short time. In order to construct the set Θext

of extreme parameters, we will use the result in Theorem 3.5.3.

Theorem 3.5.3. Suppose that Xt ∼ Pois(λ0t ) for t ∈ {1, . . . , T} and that the Xt are

independent. Then Cλ(q) is convex in λt for each t ∈ {1, . . . , T}.

This result is proved in Appendix B.4.4. This result means that the worst-case λt will

either be the smallest in the ambiguity set or the largest (when all other λl are fixed).

Therefore, we can define a set of extreme distributions for a given Θ′
α as:

Θext =

{
λ ∈ Θ′

α

∣∣∣∣∃t ∈ {1, . . . , T} : λt ∈
{
min
θ∈Θ′

α

θt,max
θ∈Θ′

α

θt

}}
. (3.5.5)

The CS algorithm is therefore the same as the one in Section 3.4.3, but using (3.5.5)

as the set of extreme distributions and (3.5.1) as the objective function.

3.5.3 Experimental Design and Results

To test the CS algorithm on Poisson demands, we run experiments on the same inputs

as for the normal distribution. In every case, we take the value of λ0 to be equal to
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the sampled value of µ0 in the normal experiments. This allows to see the effect

on our results if the only aspect allowed to change is the distribution used. Note,

however, that we now run the tests with T = 4 and M = 10, since there is now only

one parameter per day and so the Poisson ambiguity sets are much smaller. Since the

objective function is piecewise constant between integer points, we can simply use an

ε of 1 in all instances. Hence, we run our experiments for an additional 6 randomly

selected values of λ0, in order to generate more instances.

These parameters yield 972 instances (since we now consider T = 4 and M = 10).

Note that, as in the normal case, all boxplots have outliers (points further than 1.5IQR

above the 75th percentile or below the 25th percentile) removed. These experiments

were also run on STORM, this time on the Wald node. The Wald node runs 70 Intel

Xeon E5-2699 CPUs, and also runs Python 2.7.12 and Gurobipy 9.0.1.

Performance of MLE Approaches

Firstly, as for the normal distribution, we assess the effect of solving the newsvendor

problem using the MLE distribution. We present the APE of the MLE’s cost estimate

along with the optimality gap of the MLE solution in Figure 3.5.1. This figure indi-

cates that the MLE approach is close to optimal for Poisson demands, with solutions

typically not being further than 4% from optimal. However, the cost estimates are

still not accurate. For N = 10, we can see some APEs above 25%. Even for N = 50,

we see APEs of almost 15%. In addition, this plot does not show outliers. There were

19 instances where the APE exceeded 100%, and 2 where it exceeded 10000%.
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(a) (b)

Figure 3.5.1: Boxplots summarising performance of MLE approach. Figure 3.5.1(a)

shows the optimality gap of q̂ as a solution to the model under λ0. Figure 3.5.1(b)

shows the APE of Cλ̂(q̂) as an estimate of Cλ0(q̂).

In addition, we again find instances where the MLE predicts a profit for a decision

that would actually attain a cost. This happened in 3 instances for the Poisson

distribution, as opposed to 24 for the normal distribution. We summarise these 3

instances in Table 3.5.1. This table shows the values of λ0 and λ̂ as well as the

different costs associated with the MLE solution. This table shows that, in every

instance, the DRO cost was positive. This suggests that the DRO objective would

always show the newsvendor that the solution could lead to a cost. We also found

that the MLE distribution predicted a cost when it would make a profit, although

this only happened in two instances.

Similarly to the normal case, we can confirm that the poor accuracy is not due to

FD being a heuristic for the MPNVP model. In the Poisson case, the two algorithms

are even closer to one another than in the normal case. We found that FD returned

the same solution as PLA in 921 of the 972 instances considered. In addition, the
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λ0 λ̂ FD Prediction True Cost DRO Cost

(10, 17) (8.8, 15.72) -28.62960 118.14383 177.11568

(9, 16) (8.12, 15.2) -25.11351 52.26802 130.41717

(15, 16) (14.24, 16.24) -16.40814 110.62268 264.08408

Table 3.5.1: Summary of instances where FD predicted profit but incurred a cost

solutions from the two algorithms had the same objective values in the other 51 in-

stances. Therefore, the two algorithms have exactly the same performance for Poisson

demands. Hence, the issues presented here are likely only due to the effects of treating

the MLE as the true parameter.

In conclusion, the MLE approach performs better for Poisson demands than for normal

ones, but it still has the same issues. In particular, it provides poor estimates of the

cost associated with an order quantity. It is even capable of predicting a profit when

a cost would be incurred, and vice versa. In addition, we confirmed that the DRO

solution does not do this. In fact, in these instances the DRO cost was sometimes

closer to reality than the MLE cost.

Performance of DRO Algorithms

We now present the results for the 952 instances where we solved the DRO model with

Poisson demands. The other 20 instances only had singleton ambiguity sets. We will

summarise the run times of PLA and CS, along with CS’s performance as a heuristic

for the full model. Both algorithms were given a maximum time of 4 hours to build
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and solve the models. Firstly, we found that PLA timed out in 27 instances and CS

did not time out in any instance. PLA took an average of 11 minutes and 12 seconds

to either return a solution or time out, and its maximum time was 4 hours. CS took

an average of 0.75 seconds, and its maximum time was 5.9 seconds. The 25th and

75th percentiles of PLA were 0.45 seconds and 16.84 seconds, respectively. For CS,

these values were 0.22 and 0.61 seconds. Hence, again it is clear that PLA’s average

was affected by a small number of very large run times.

For Poisson demands, the pre-computation stage was much faster. In fact, this stage

never took longer than 3 seconds. We summarise the pre-computation stage in Ta-

ble 3.5.2. This table suggests that, for Poisson demands,M does not have a significant

effect on pre-computation times. This is due to a number of reasons. Firstly, regard-

less of M , the ambiguity sets were much smaller than the normal ambiguity sets. For

M = 10, the average size of the Poisson ambiguity set was 781 as opposed to 277441

for normal demands (before reducing the set). This size difference is mainly due to

the fact that there are 2 parameters per period for normal demands as opposed to

1 for Poisson demands. In addition, the pre-computation step is faster for Poisson

demands since we do not perform the cardinality reduction step that we perform for

normal demands. This is not necessary for Poisson ambiguity sets since they are

already small, and it can take a large amount of time for normal demands.

Despite M not having much of an effect on pre-computation times, it still had a

noticeable effect on PLA’s run times. We present these times by M in Figure 3.5.2.

We can see that PLA is again greatly affected by M ; it begins to take as long as
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M Mean Std Median 75th Percentile

3 0.014 0.053 0.001 0.002

5 0.023 0.085 0.002 0.003

10 0.024 0.069 0.007 0.022

Table 3.5.2: Summary of precomputation times (Poisson)

7 minutes for M = 10. CS was also effected by M , but much less drastically. The

difference is most noticeable forM = 10, and this is the value at which both algorithms

start to solve more slowly. However, CS never took longer than 6 seconds.

(a) (b)

Figure 3.5.2: Boxplots of the run times of (a) PLA and (b) CS by M (Poisson)

In order to further inform which value of M should be used, we again study the

percentage optimality gaps of PLA’s solutions under λ0. Recall that this gap is

defined as:

100× minq Cλ0(q)− Cλ0(qPLA)

|minq Cλ0(q)|
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and let q0 be the solution obtained from solving the model under λ0 using piecewise

linear approximations. We summarise the optimality gaps of PLA in Table 3.5.3. This

table suggests that the quality of PLA’s solution w.r.t. the true distribution worsens

as M increases. This is reflected by every column present in Table 3.5.3. Since PLA’s

solution time is much larger forM = 10, if optimality under the true distribution is of

importance to the decision maker then there is no motivation to use M = 10.

M Mean Std Median 75th Percentile

3 7.060 30.897 0.856 2.944

5 9.169 34.267 1.634 4.841

10 12.474 48.967 1.778 6.205

Table 3.5.3: Summary of optimality gaps of PLA by M (Poisson)

We now present the optimality of CS with respect to λ and q. Firstly, we present the

number of times each algorithm selected the worst-case parameter for its chosen q in

Table 3.5.4. This table shows that CS selected the worst-case λ for its q in 94.2%

of instances. We will show that its other choices were very close to the worst-case,

however. PLA selected the worst-case in every instance.

The percentage λ- and q-gaps are defined as they were for the normal experiments

in Section 3.4.4, and we present summaries of these gaps in Figure 3.5.3. Firstly,

Figure 3.5.3a reflects the fact that CS’s chosen λ was very close to the true worst-case

parameter in terms of cost. The overall average λ-gap was 0.09%. The fact that CS

did not always select the true worst-case is due to the fact that Θext is constructed
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T CS No. CS Worst-case Count (%) PLA No. PLA Worst-case Count (%)

All 952 880 (92.44%) 925 925 (100.0%)

2 311 311 (100.0%) 311 311 (100.0%)

3 319 311 (97.49%) 319 319 (100.0%)

4 322 258 (80.12%) 295 295 (100.0%)

Table 3.5.4: Number of instances in which algorithms selected true worst case param-

eters.

by combining univariate results. Despite the fact that the expected cost can always

be increased by setting one λt to its minimum or maximum, this may not be possible

without changing another λl if the resulting λ is to remain a member of (3.5.4). The

cost may improve as a result of these two changes. Hence, the worst-case vectors

sometimes did not have any single parameters at their maximum or minimum.

Secondly, Figure 3.5.3b shows that CS typically selected a q with a worst-case cost

of less than 1.6× 10−4% higher than PLA’s. In fact, CS’s q had the same worst-case

expected cost as PLA’s in 796 (86%) of the 925 instances in which PLA did not time

out. The overall average q-gap was −0.02%, and the minimum value of this gap was

−3.14%. CS did not encounter much suboptimality until T = 4. In these instances,

its suboptimality was likely due to either its selection of the incorrect worst-case

parameter, solver-specific issues like Gurobi’s pre-solve model reductions, or different

starting points for Gurobi’s MILP algorithms.

From the results shown here, we can conclude two main points. Firstly, CS again
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(a) (b)

Figure 3.5.3: Boxplots of (a) percentage λ-gaps and (b) percentage q-gaps by T .

solved much faster than PLA. Secondly, it was very near optimal if not optimal, in

general. It was capable of selecting the worst-case parameter for its chosen q in the

large majority of instances, and this q was often optimal.

3.6 Conclusions and Further Work

In this chapter, we considered a static, multi-period newsvendor problem under a

budget constraint. We first developed an algorithm to solve the problem under a

known demand distribution. This was done by adapting an algorithm from the lit-

erature that was used to solve a multi-product budgeted newsvendor problem. It

entails first finding a solution to the stationarity KKT condition, and then optimising

the Lagrange multiplier until the solution becomes feasible. We tested this algorithm

against three benchmarks, and found that it is faster than all 3 of them and provides

comparable solutions in terms of expected cost.

Following this, we studied parametric distributionally robust optimisation models for

this newsvendor problem. We assumed that the newsvendor knows the family of
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distributions in which the true demand distribution lies. We showed how maximum

likelihood estimation can be used to construct a confidence-based ambiguity set for the

true parameters, and then how to build and solve the resulting distributionally robust

model for normal and Poisson demands. Due to the size of the discrete ambiguity

sets used, we developed a decomposition algorithm named CS for each family of

distributions. We did so by obtaining theoretical results about the behaviour of the

expected cost as a function of the distribution’s parameters, in order to characterise

the worst-case distribution.

We showed that the CS algorithm gave very close to optimal solutions in a matter

of seconds, for both families. We also assessed the performance of the method that

solves the fixed distribution problem assuming the maximum likelihood estimate is

the true parameter. We found that, while the solutions this yielded were not far

from optimal, the cost estimates from this model were far from accurate. In fact,

we found that there were cases where the maximum likelihood estimate suggested a

profit would be made, when in reality a cost would be incurred. We also confirmed

that, in these instances, the distributionally robust model would, in fact, make the

newsvendor aware that their order could result in a cost. Hence, using distributionally

robust models avoids these issues.

There are a number of areas for future work that would prove interesting. The most

immediate one is to extend our work to the case of dependent demands. It is common

in real-life scenarios that demand for a product over different days will be correlated.

However, this creates a much more complex model. We would like to study how this
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could be done in future, for example by specifying the full covariance matrix in the

multivariate normal case. For Poisson demands, it is less clear how this could be

done. Another area for future research is to study other demand distributions, such

as exponential or gamma. The two distributions considered here are common for

demand in the newsvendor problem, but there are many others that might be used.

Finally, we would like to improve the process used to compute the ambiguity sets.

Since CS has been shown to be very fast, the only real bottleneck of our approach is

the time taken to compute ambiguity sets. It would also be interesting to study how

this process can be further improved, potentially with parallelisation and/or faster

programming languages.



Chapter 4

Robust Markov Decision Processes

Under Parametric Transition

Distributions

This chapter considers robust Markov decision processes under parametric transition

distributions. We assume that the true transition distribution is uniquely specified by

some parametric distribution, and explicitly enforce that the worst-case distribution

from the model is uniquely specified by a distribution in the same parametric family.

After formulating the parametric robust model, we focus on developing algorithms for

carrying out the robust Bellman updates required by robust value iteration.

We first formulate the update as a linear program by discretising the ambiguity set.

Since this model scales poorly with problem size and requires large amounts of pre-

computation, we develop two additional algorithms for solving the robust Bellman

143
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update. Firstly, we present a cutting surface algorithm for solving this linear program

in a shorter time. This algorithm requires the same pre-computation, but only ever

solves the linear program over small subsets of the ambiguity set. Secondly, we present

a novel projection-based bisection search algorithm that completely eliminates the

need for discretisation and does not require any pre-computation.

We test our algorithms extensively on a dynamic multi-period newsvendor problem

under binomial and Poisson demands. In addition, we compare our methods with the

non-parametric ϕ-divergence based methods from the literature. Through extensive

computational experiments, we show that our projection-based algorithm completes

robust value iteration significantly faster than our other two parametric algorithms,

and faster than its non-parametric equivalent.

4.1 Introduction

Markov decision processes (Bellman, 1957) (MDPs) are a mathematical framework

for modelling dynamic decision making problems under uncertainty. Under the MDP

framework, at each decision epoch in a finite or infinite time horizon, a decision maker

utilises information about the current state of a system in order to select an action

that yields them a reward. The action taken can affect the next state of the system,

which is stochastically governed by a set of transition probabilities. The goal of the

decision maker is to make decisions at each epoch in order to maximise the total

(discounted) expected reward that they receive over the entire horizon.

A solution of an MDP is understood as a policy, which provides an action or a dis-
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tribution over the set of actions to be taken in each state of the system. The policy

is found prior to any decisions being made, and in practice the decision maker can

instantaneously generate their action from the policy at any given epoch. Policies

are usually found from algorithms based on dynamic programming and Bellman’s

optimality equations (Bellman, 1966), which are based around the concept of value

functions. Value functions give the expected total future reward from starting in each

state and following an optimal policy thereafter.

In classical MDPs, it is assumed that all parameters of the model (rewards, transition

probabilities, etc.) are known exactly. However, in practice it can be difficult to

determine these parameters exactly and they must often be replaced with estimates.

In addition, it has been found that replacing the true parameters with estimates

thereof can lead to policies that fail drastically when implemented, due to errors in

estimation (Le Tallec, 2007; Wiesemann et al., 2013) and that the resulting value

function estimates can have large variance and bias (Mannor et al., 2007). Due to

these issues, robust MDPs (Satia and Lave, 1973) (RMDPs) have been proposed to

explicitly represent uncertainty in model parameters. RMDPs do not assume that all

parameters are known, but that they are known to lie in some pre-determined set. The

decision maker then aims to find a policy with the best worst-case total reward over

all parameters in the set. This limits the potential hazards of poor estimation.

In the case where only the transition probabilities are not known, we refer to this set

as an ambiguity set. Ambiguity sets are designed so that the decision maker can be

confident that the true transition distribution lies within the set. There are many
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ways of constructing an ambiguity set. Early sets placed bounds on each transition

probability (Satia and Lave, 1973; Givan et al., 2000). In more recent papers, it

has become more common to bound the distance between any distribution in the set

and some nominal distribution. For example, one can use the Kullback-Leibler diver-

gence, modified χ2-divergence or L1-norms (Iyengar, 2005), or more general classes

of distance measures such as ϕ-divergence functions (Ho et al., 2022). The choice

of ambiguity set strongly affects the tractability of the resulting RMDP model. For

general ambiguity sets, it is known that RMDPs are NP-hard. However, this chapter

considers a special type of ambiguity set called s-rectangular ambiguity sets (Le Tal-

lec, 2007). Such ambiguity sets allow the transition distributions for each state to be

chosen independently of one another. The resulting RMDP is solvable in polynomial

time via robust value iteration (Wiesemann et al., 2013).

Robust value iteration starts with some initial estimate of the value function, then

iteratively updates the estimate until Bellman’s optimality equations are satisfied.

We refer to the process of finding the next value function estimate as solving a robust

Bellman update. Much of the recent RMDP literature has focused on developing

fast algorithms for solving the robust Bellman update in s-rectangular RMDPs. Due

to the fact that only the value estimates themselves (and not the optimal policies

responsible) are required to complete robust value iteration, many of these algorithms

employ simple methods like bisection search (Grand-Clément and Kroer, 2021; Ho

et al., 2022) to solve the update. Such methods allow us to compute the optimal

policy only once, after value iteration ends, as opposed to in every iteration.
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In this chapter, we will focus on developing algorithms for carrying out robust Bell-

man updates, with one key difference from the existing literature. In particular, we

will focus on RMDPs where the true state transition distribution either lies in some

parametric family or is specified by some external random variable that lies in some

parametric family (e.g. demand, service times, failure rates). In the existing RMDP

literature, transition distributions are assumed to be non-parametric, and ambiguity

sets typically contain non-parametric distributions. However, in the case where the

transition distribution is indeed parametric, non-parametric ambiguity sets necessar-

ily contain distributions that cannot be equal to the true distribution. Our models

use parametric ambiguity sets to enforce that every potential distribution in the set

lies in the same parametric family as the true distribution.

Constructing an RMDP in this fashion has a number of benefits. Firstly, it means

that we only need to find the worst-case parameters and not the entire worst-case

distribution. The worst-case parameter is typically of much smaller dimension than

the worst-case distribution, meaning that finding it can be much less cumbersome.

As such, instead of ambiguity sets for the true distribution, we use ambiguity sets for

the true parameters. Secondly, explicitly using ambiguity sets for the true parame-

ters and using the corresponding parametric distributions in the model means that

every worst-case distribution generated by the model will lie in the correct parametric

family. In addition, we can use maximum likelihood estimation to build confidence-

based ambiguity sets. Finally, parametric distributions are natural models for random

variables affecting MDP state transitions in a number of problems.
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An example of such a problem is the dynamic multi-period newsvendor problem (Arrow

et al., 1958). In newsvendor models, demand is often considered as a parametric

random variable. Newsvendor demand has been modelled as normal (Nahmias, 1994),

negative binomial (Agrawal and Smith, 1996), lognormal and gamma (Gallego et al.,

2007), and exponential (Siegel and Wagner, 2021). In addition, for such problems it

has been shown that assuming that replacing the true parameters with estimates can

lead to poor cost estimation (Rossi et al., 2014; Siegel and Wagner, 2021). Hence,

a parametric ambiguity set provides a way to hedge against parameter uncertainty

while ensuring the worst-case distribution is also parametric.

This chapter extends the concept of parametric ambiguity sets from Chapters 2 and 3,

where we studied parametric distributionally robust optimisation (DRO) models for

a resource planning problem and a newsvendor problem, into the RMDP literature.

We formulate s-rectangular parametric ambiguity sets and solve the resulting RMDP

via robust value iteration. Under such ambiguity sets, the robust Bellman update

is a parametric DRO problem. As a benchmark, we reformulate the robust Bellman

update as a linear program (LP) by discretising the ambiguity set.

Since this LP can become very slow for large problems, we develop two additional

algorithms for carrying out the update. The first is a cutting surface (Mehrotra and

Papp, 2014) (CS) algorithm that iteratively solves the LP over increasing subsets of

the ambiguity set. The second algorithm is a parametric projection-based bisection

search algorithm. This algorithm does not rely on any discretisation of the ambiguity

set, and we will show that this means that it solves the robust Bellman updates
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orders of magnitude faster than both CS and LP. In summary, the contributions of

this chapter are as follows:

1. We extend the concept of parametric ambiguity sets from Chapters 2 and 3

into the RMDP literature. Such ambiguity sets have only been used for static

DRO problems in the past. Since the DRO model used in the robust Bellman

update must be solved multiple times in an iterative fashion, the scalability of

the algorithms and computation is even more of a challenge in RMDPs.

2. We develop a fast projection-based bisection search algorithm for solving a ro-

bust Bellman-update, that does not rely on any discretisation of the parametric

ambiguity set.

3. We apply our methods to a dynamic multi-period newsvendor model under

binomial and Poisson demands. The results show that parametric robust value

iteration can be solved faster than its non-parametric equivalent.

4.2 Literature Review

4.2.1 Robust Markov Decision Processes

RMDPs are a framework for modelling MDPs with unknown parameters, which has

become common in recent years due to the fact that MDPs are extremely sensitive to

small changes in their parameters (Mannor et al., 2007). RMDPs have been studied

in the literature since the 1970s, where the first example of an RMDP used ambiguity

sets based on assigning upper and lower bounds to each transition probability in the
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set (Satia and Lave, 1973). Such ambiguity sets were common in the early RMDP

literature. Givan et al. (2000) also studied bounded parameter RMDPs, which were

solved by solving a collection of exact MDPs. Later, Bagnell et al. (2001) generalised

the concepts of RMDPs to a variety of other ambiguity sets. Their only assumption

was that the sets were convex and compact, meaning that the class they considered

covered interval ambiguity sets as a special case.

In addition, finite horizon RMDPs were also studied, bringing forth a robust version

of dynamic programming (DP) (Nilim and El Ghaoui, 2005). These authors further

developed the ambiguity sets used in RMDPs to encompass distance-based sets, such

as those based on the Kullback-Leibler divergence. Using such ambiguity sets allowed

the Bellman optimality equations to be reformulated using Lagrangian dualisation

and hence solved exactly or via bisection. Iyengar (2005) formalised these concepts

further, studying finite and infinite horizon RMDPs with a variety of ambiguity sets.

For example, they studied ambiguity sets built using the Kullback-Leibler divergence,

modified χ2-divergence and L1 norm.

Since these early papers, s-rectangular ambiguity sets have become very common in

RMDPs. An s-rectangular ambiguity set (Le Tallec, 2007) is one arising from the

situation in which the state transitions for each state are independent of one another.

Hence, the worst-case distributions for each state can be extracted independently of

one another. Solving an RMDP with an s-rectangular ambiguity set is equivalent to

finding a fixed point of the robust Bellman operator (Wiesemann et al., 2013), hence

allowing a robust value iteration algorithm to solve the infinite horizon case.
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Many recent papers have developed fast algorithms for solving the robust Bellman

updates required by robust value iteration. For example, Behzadian et al. (2021)

studied s-rectangular ambiguity sets defined by the L∞ norm. They developed a ho-

motopy method that was implemented within a bisection search algorithm for solving

the robust Bellman update. Ho et al. (2021) applied a similar concept to weighted L1

norm ambiguity sets, although they used a partial policy iteration algorithm instead of

value iteration. For ellipsoidal and Kullback-Leibler ambiguity sets, Grand-Clément

and Kroer (2021) proposed a first order method that is embedded in robust value it-

eration. Their algorithm is based on the observation that solving the robust Bellman

update is equivalent to solving S bilinear saddle point problems. Ho et al. (2022)

studied ϕ-divergence ambiguity sets, and showed that solving the update in this case

corresponds to solving a set of highly structured simplex projection problems. They

used dualisation to represent each projection problem as a univariate convex opti-

misation problem. Different to these algorithms, Derman et al. (2021) showed that

solving an s-rectangular RMDP with reward uncertainty is equivalent to solving a

regularised MDP.

In general, s-rectangular ambiguity sets are common due to the tractability of the

resulting RMDP. However, since the state transitions for different states are not always

independent, more general ambiguity sets have also been presented in the literature.

Tirinzoni et al. (2018) state that s-rectangular ambiguity sets can lead to conservative

policies, and do not facilitate knowledge transfer between states or across different

decision processes. They instead use non-rectangular ambiguity sets that bound the
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moments of state-action features, which are taken over entire MDP trajectories and

not just those for one state. These RMDPs are solved by finding the optimal policy

for a mixture of non-robust MDPs. Following a similar argument with regards to the

conservativeness of s-rectangular ambiguity sets, Goyal and Grand-Clement (2022)

develop a new class of non-rectangular ambiguity sets: factor matrix ambiguity sets.

Each distribution in such an ambiguity set is a convex combination of a set of common

feature vectors. This ambiguity set allows for the modelling of dependence across

states and for the RMDP to be efficiently solved by a hybrid value iteration-policy

improvement algorithm.

This chapter studies RMDPs with s-rectangular ambiguity sets, but with one key dif-

ference from those discussed here. We study transition distributions that are paramet-

ric, and our ambiguity sets contain only distributions that lie in the same parametric

family as the true transition distribution. This represents, for example, problems in

which the state transitions are defined by some external random variables such as

demand, and that these random variables take parametric distributions. Despite the

fact that the underlying transition distributions may be parametric, in RMDPs, am-

biguity sets always contain non-parametric distributions. However, any distribution

in the set that is not part of the same family as the true transition distribution cannot

be equal to the true distribution.

As a result of this, we formulate parametric RMDPs, where the ambiguity sets used

contain potential parameters of the transition distribution, not potential distributions.

This allows us to ensure that the worst-case distribution lies in the correct parametric
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family. We then only need to find the worst-case parameter, not the entire distribu-

tion. To solve the resulting RMDP, we present three algorithms that are used inside

a robust value iteration. The first two are based on discretising the ambiguity set of

parameters and formulating the update as an LP with one constraint for each param-

eter. The second is a fast bisection search algorithm that solves simplex projection

problems to compute the update, similar to the approach of Ho et al. (2022).

4.2.2 Newsvendor Models

The model that we will use to illustrate our methods is the newsvendor model (Arrow

et al., 1951). The newsvendor model is a classical model in inventory and operations

management that describes a retailer deciding on how much stock to purchase in order

to meet uncertain future demand as closely as possible. The newsvendor model has

the distinguishing feature that failing to meet demand in any way is penalised. If

too much stock is purchased, the newsvendor pays a holding cost in order to keep

that stock for future customers. If demand is not met by the stock purchased, the

newsvendor pays a backorder cost in order to meet the unmet demand. Due to this,

demand uncertainty and correctly modelling said uncertainty plays a strong role in

maximising profits. Since the initial model of Arrow et al. (1951), the newsvendor

model has been extended in many ways. The extension most relevant to this chapter is

the multi-period newsvendor model (Arrow et al., 1958). This is the natural extension

of the problem to the case where the newsvendor needs to meet demand in multiple

time periods, and is able to make separate orders for each.
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Although some papers study static newsvendor models (Matsuyama, 2006; Chen et al.,

2017; Ullah et al., 2019), where the newsvendor must commit to their order quantities

prior to the selling period, it is more common in the literature to consider dynamic

newsvendor models. In a dynamic newsvendor model, at the start of each period in

the horizon, the newsvendor selects their order quantity for that day. This way, they

have exact knowledge of the amount of inventory remaining at the time of ordering, as

opposed to static models where future inventory levels must be estimated beforehand

in order to estimate profits and select order quantities.

Early dynamic models were finite horizon discrete DP models where base-stock poli-

cies were optimal. An example of this comes from Bouakiz and Sobel (1992), who

considered the case where the demand random variables are independent and identi-

cally distributed with a known distribution. A continuous time version of the dynamic

model was later solved by Kogan and Lou (2003), who showed it to be equivalent to

solving a set of discrete-time problems.

Soon after its introduction, papers on the dynamic multi-period model considered

more complex situations with respect to demand behaviour and knowledge about its

distribution. Levi et al. (2007) developed policies based on only samples from the true

demand distribution, with no assumptions being made about the distribution itself.

Other extensions include models with partially observable demand (Bensoussan et al.,

2007), non-stationary demand (Kim et al., 2015) and service-dependent demand (Deng

et al., 2014). These papers illustrate the importance of accurate demand modelling in

dynamic newsvendor models, and highlight that it is very common in such problems
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for demand information to be incomplete.

Another important extension of the newsvendor problem is the distribution free (DF)

newsvendor model (Scarf, 1957). This model represents situations where the true

demand distribution is not known exactly, but some of its moments are known exactly.

The model then maximises the worst-case profit over the ambiguity set containing all

distributions with said moments. Since the work of Scarf (1957) for the single-period

single-product DF model, the DF concept has received significant attention in the

newsvendor literature. Early extensions include models with multiple products and

random yield (Gallego and Moon, 1993), balking (Moon and Choi, 1995), uncertainty

in cost parameters (Ouyang and Chang, 2002), shortage penalty costs and budget

constraints (Alfares and Elmorra, 2005).

Later models included additional complexities such as advertising and the costs thereof

(Lee and Hsu, 2011), risk- and ambiguity-aversion (Han et al., 2014) and carbon

emissions (Liu et al., 2015). Due to the fact that these models are not dynamic, they

can usually be solved by either KKT conditions or Cauchy-Schwarz bounds on the

worst-case cost. Although much less common, the DF concept has also been applied

to the multi-period model. For example, Ahmed et al. (2007) studied a DF model

arising from using coherent risk measures in the objective function. The model was

solved as a finite horizon DP, and it was shown that a base-stock policy was optimal.

Levina et al. (2010) considered a model where the only distributional information came

from aggregating the opinions of multiple experts. This work was later extended to

the case with shortage penalty costs by Zhang et al. (2017). These authors framed
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the problem as online learning with expert advice, as opposed to an MDP model. In

addition, Ullah et al. (2019) found optimal policies for static multi-period distribution

free models with moment-based ambiguity sets. As far as we are aware, Ahmed et al.

(2007) is the only example of an MDP-based DF newsvendor model.

It is clear from the literature on the DF model that newsvendor models commonly lack

distributional information, but many of the MDP models for multi-period newsvendor

problems do not account for this. With the recent advancements in RMDPs combined

with the fact that many multi-period newsvendor models are formulated as MDPs,

this problem is a highly appropriate application of our methods. Our research differs

from the existing newsvendor literature in two key ways.

Where the majority of the DF newsvendor literature focuses on the case where some

moments of the demand distribution are known, we do not make any such assump-

tion. Using DF methods usually entails estimating the moments that are assumed to

be known, but studies have found that this can lead to various complications. For

example, it has been found that this can lead to overly conservative solutions (Wang

et al., 2016), suboptimal solutions (Lee et al., 2021) and poor estimates of the true

cost function (Rossi et al., 2014). As such, our approach is closer to the more recent

papers in RMDPs (Grand-Clément and Kroer, 2021; Ho et al., 2022), who consider

distance-based ambiguity sets.

In addition, unlike these two papers, we consider parametric ambiguity sets. This

allows us to model cases where the newsvendor demand is parametric, and enforce

that the worst-case distribution lies in the same parametric family as the true demand
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distribution. As discussed earlier, it is very common to assume that demand distribu-

tions are parametric (Nahmias, 1994; Agrawal and Smith, 1996; Gallego et al., 2007;

Siegel and Wagner, 2021), but DF models do not incorporate this. Our methodology

allows parametric distributions to be used, but without the pitfalls of assuming that

parameter estimates are truth.

4.3 Modelling and Algorithms

In this section, we define our model and present the algorithms used to solve it. The

general robust formulation is presented in Section 4.3.1. The robust value iteration

algorithm is presented in Section 4.3.2. Following this, Section 4.3.3 presents ϕ-

divergence based non-parametric ambiguity sets and Section 4.3.4 details how the

resulting RMDP is solved. We detail these methods since they will act as benchmarks

for our parametric methods. In Section 4.3.5 we formulate our parametric ambiguity

sets, and in Section 4.3.6 we detail our solution algorithms.

4.3.1 General Robust Model

The RMDP we consider is formulated as follows. The state and action spaces are

defined as S = {1, . . . , S} and A = {1, . . . , A}, respectively. Decisions are made at

each epoch t ∈ T = N0. The state at time t is a random variable, denoted by St.

Similarly, we denote by at the action taken at time t. The reward for selecting action

a ∈ A when in state s ∈ S and transitioning to state s′ ∈ S is given by rs,a,s′ ∈ R+.

We denote by ∆n the probability simplex in Rn: ∆n = {P ∈ Rn
+ :
∑n

i=1 Pi = 1}.
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The distribution of the initial state S0, i.e. the state at time t = 0, is denoted by

Q ∈ ∆S. The distribution of St+1 given that action a is taken in state s at time t

is given by the unknown distribution P 0
s,a = (P 0

s,a,1, . . . , P
0
s,a,S) ∈ ∆S. Here, P 0

s,a,s′ =

P(St+1 = s′|St = s, at = a) for any t ≥ 0. Similarly, we write P 0
s to denote a

matrix where the element on the ath row and (s′)th column is P 0
s,a,s′ . Denote by

Π = (∆A)
S the set of all stationary, randomised policies. A policy π is a matrix

π = (πs,a)s∈S,a∈A ∈ Π such that πs,a gives the probability of taking action a when in

state s for each (s, a) ∈ S ×A under policy π. Denote by P ⊆ (∆S)
S×A an ambiguity

set for P 0. Each P ∈ P and π ∈ Π induce a stochastic process {(st, at)}∞t=0 on the

space (S×A)∞ of sample paths, and EP ,π refers to the expectation w.r.t. this process.

Then, the robust MDP problem is given by:

max
π∈Π

min
P∈P

EP ,π

[
∞∑
t=0

γtrst,at,st+1

∣∣∣∣S0 ∼ Q

]
, (4.3.1)

where γ ∈ (0, 1) is a discount factor. We consider s-rectangular ambiguity sets, which

are of the form:

P = P1 × . . .× Ps, Ps ⊆ (∆S)
A ∀ s ∈ S.

4.3.2 Statewise Bellman Equations and Robust Value Itera-

tion

Given an initial estimate v0s ∀ s ∈ S, robust value iteration is performed by iter-

atively updating the estimates using the robust Bellman equation (4.3.2) for n =

0, 1, . . . :

vn+1
s = max

πs∈∆A

min
Ps∈Ps

∑
a∈A

πs,a
∑
s′∈S

Ps,a,s′(rs,a,s′ + γvns′) ∀ s ∈ S. (4.3.2)
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Adapting the pseudocode by Powell (2007), this leads to the following robust value

iteration algorithm:

1. Initialise n = 0, ∆ = 0, v0 = 0, and select ε.

2. While ∆ ≥ εγ
1−2γ

:

(a) For each s ∈ S, solve (4.3.2) to find the value of vn+1
s .

(b) Set ∆ = ||vn+1 − vn|| where ||v||= maxs∈S vs.

(c) Set n = n+ 1.

3. Set v∗ = vn and let the policy that solves (4.3.2) under vn = v∗ be π∗.

4. Return π∗ and compute the optimal total reward under π∗ as
∑

s∈S Qsv
∗
s .

Step 2(a) is referred to as solving a robust Bellman update.

4.3.3 ϕ-divergence Ambiguity Sets

The most common ambiguity sets in RMDPs are non-parametric, i.e. they do not make

use of any information about the family of distributions in which the true distribution

lies. Common non-parametric ambiguity sets are distance-based (Grand-Clément and

Kroer, 2021; Ho et al., 2022). Such ambiguity sets contain only distributions that lie

within a pre-prescribed maximum distance from a nominal or estimated distribution

P̂s. In other words, a non-parametric distance-based ambiguity set is of the form

given in (4.3.3).

Ps =

{
Ps ∈ (∆A)

S :
∑
a∈A

da(Ps,a, P̂s,a) ≤ κ

}
∀ s ∈ S. (4.3.3)
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Here, da : ∆S ×∆S → R+ is a distance measure. We will consider cases where da is a

ϕ-divergence, i.e. it satisfies:

da(Ps,a, P̂s,a) =
S∑

s′=1

P̂s,a,s′ϕ

(
Ps,a,s′

P̂s,a,s′

)
,

where ϕ : R+ → R+ is a ϕ-divergence function. With different choices of ϕ, the class

of ϕ-divergences encompasses many distances measures, such as the Kullback-Leibler

divergence (KLD), χ2-divergence, and Burg entropy. As described by Ben-Tal et al.

(2013), one benefit of such ambiguity sets is that we can choose κ such that Ps is an

approximate confidence set for the true distribution.

Suppose that the true distribution for state s, P 0
s , lies in a parameterised set {P θ

s | θs ∈

Θs}, and let the true parameter be θ0
s . We will assume that only θs is required to

compute P θ
s and that P θ = (P θ

1 , . . . ,P
θ
S ) is parameterised by θ = (θ1, . . . ,θS), with

θs = (θs,a,l)a∈A,o∈{1,...,o}. Also suppose that the distributions P 0
s,a are independent.

Then, for each (s, a) ∈ S × A, P 0
s,a is a distribution parameterised by θ0

s,a. Suppose

that we take N sample transitions from each P 0
s,a and use these to create a maximum

likelihood estimate (MLE) θ̂s,a of θ0
s,a. Then, if we choose κ according to (4.3.4), the

set Ps is an approximate 100(1− α)% confidence set for P 0
s around P̂s = P θ̂

s .

κ =
ϕ′′(1)

2N
χ2
oA,1−α. (4.3.4)

In (4.3.4), χ2
oA,1−α is the 100(1−α)th percentile of the χ2 distribution with oA degrees

of freedom. The degrees of freedom used is oA since o is the number of unknown

parameters required to compute Ps,a, and so oA is the number required to compute

Ps.
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4.3.4 Solving the Robust Bellman Update

In this section, we detail the algorithms that we will use to solve the robust Bellman

update under non-parametric ambiguity sets, that will act as benchmarks for our

methods. Firstly, we describe how to reformulate the update using the conjugate of

the ϕ-divergence function. Following this, we describe the projection-based bisection

search algorithm of Ho et al. (2022).

Solution via Reformulation

The robust Bellman update problem under ϕ-divergence ambiguity sets can be refor-

mulated using the convex conjugate of a ϕ-divergence function:

ϕ∗(z) = sup
τ≥0

{zτ − ϕ(τ)}.

Using this definition, following the steps given by Ben-Tal et al. (2013), we dualise

the inner problem of (4.3.2) to arrive at the following reformulation:

max
πs∈∆A,ν,η

{
ν − ηκ−

∑
a∈A

∑
s′∈S

ηP̂s,a,s′ϕ
∗
(
νa − πs,a(rs,a,s′ + γvs′)

η

)
: ν ∈ RA, η ∈ R+

}

(4.3.5)

where νa ∈ R is the Lagrange multiplier for the constraint
∑

s′∈S Ps,a,s′ = 1 for each

a ∈ A, ν =
∑

a∈A νa and η ∈ R+ is the Lagrange multiplier for the constraint∑
a∈A da(Ps,a, P̂s,a) ≤ κ. Note that here we have written v = vn for shorthand. For

a derivation of this reformulation, see Appendix C.1.1.

The model requires different approaches for different ϕ-divergence functions, due to

the different forms that ϕ∗ can take. As an example, for the modified χ2-divergence,
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this model can be reformulated as the following convex quadratic program (CQP):

max
πs

{
ν + η(A− κ)− 1

4

∑
a∈A

∑
s′∈S

P̂s,a,s′us,a,s′

}

s.t.
√

4ζ2s,a,s′ + (η − us,a,s′)2 ≤ (η + us,a,s′) ∀ a ∈ A ∀ s′ ∈ S

ζs,a,s′ ≥ 2η + νa − πs,a(rs,a,s′ + γvs′) ∀ a ∈ A ∀ s′ ∈ S

ζs,a,s′ ≥ 0 ∀ a ∈ A ∀ s′ ∈ S∑
a∈A

πs,a = 1

πs,a ≥ 0 ∀ a ∈ A

η ≥ 0

ν ∈ RA.

(4.3.6)

We present this model since it will be used as a benchmark for testing our para-

metric methods. For more details on the derivation of this reformulation, see Ap-

pendix C.1.2.

Projection-based Bisection Search Algorithms

Model (4.3.5) can become large when A and S are large, and so it is not always rea-

sonable to solve it in every step of the value iteration algorithm. Hence, Ho et al.

(2022) presented a fast projection-based algorithm for solving the corresponding ro-

bust Bellman update. We define a simplex projection problem as follows:

P(P̂s,a; b, β) =


minPs,a da(Ps,a, P̂s,a)

s.t.
∑

s′∈S bs′Ps,a,s′ ≤ β

Ps,a ∈ ∆S

 . (4.3.7)



CHAPTER 4. ROBUST MARKOV DECISION PROCESSES 163

Where b and β are input parameters. Given this, the outline of the algorithm pre-

sented by Ho et al. (2022) is as follows. In each iteration n of the value iteration

algorithm, for each s ∈ S, the Bellman update is solved to ϵ-optimality via bisection

search on the value of vn+1
s . This is done via the following algorithm, which we will

call non-parametric bisection search (NBS):

1. Initialise ϵ and define δ = ϵκ
2A+R̄s(vn)+Aϵ

, v0s = R̄s(v
n) =

max(a,s′)∈A×S rs,a,s′

1−γ , and

v0s = maxa∈A mins′∈S {rs,a,s′ + γvns′}.

2. For each i = 0, . . . :

(a) Set β =
vis+v

i
s

2
.

(b) For each a ∈ A,

i. If P(P̂s,a; rs,a+γv
n, β) is infeasible, i.e. mins′ {rs,a,s′ + γvns′} > β, then

set da and da equal to κ+ 1 and κ+ 2 respectively. Go to step 2(c).

ii. Otherwise, solve the projection problem P(P̂s,a; rs,a + γvn, β) to δ-

optimality to obtain parameter action-wise upper and lower bounds

da, da on its objective value.

(c) Use these bounds to update vis and v
i
s:

(vi+1
s , vi+1

s ) =


(vis, β) if

∑
a∈A da ≤ κ,

(β, vis) if
∑

a∈A da > κ

]

(d) vi+1
s − vi+1

s < ϵ or κ ∈ [
∑

a∈A da,
∑

a∈A da) then go to step 3.

3. Return β =
vi+1
s +vi+1

s

2
.
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This generates the updated value estimates vn+1
s for s ∈ S. In order to understand

how (4.3.7) is used to update the bounds on vn+1
s , consider the following. Firstly,

note that the objective function of (4.3.1) is linear in πs, meaning that there exists a

deterministic optimal policy. Hence, we can replace the maximisation over πs with a

maximisation over a ∈ A (Ho et al., 2022). Therefore, applying the classical min-max

theorem we can write vn+1
s as the objective value of the following model:

minPs maxa∈A
{∑

s′∈S Ps,a,s′ (rs,a,s′ + γvns′)
}

s.t.
∑

a∈A da(Ps,a, P̂s,a) ≤ κ

Ps ∈ (∆S)
A.

(4.3.8)

Now suppose that we are in iteration i of the bisection search algorithm. Given the

current midpoint β, step 2(b) solves (4.3.7) to check whether β provides an upper or

a lower bound for vn+1
s . The way this works is as follows. When we set b = rs,a+γv

n,

we have that: ∑
s′∈S

bs′Ps,a,s′ =
∑
s′∈S

(rs,a,s′ + γvns′)Ps,a,s′ .

This expression corresponds to the long-run expected reward for taking action a

when in state s if the value function is given by vn. Therefore, solving (4.3.7)

can be seen as finding the minimum distance that Ps,a has to lie from P̂s,a in or-

der to ensure that selecting action a cannot obtain a reward higher than β. Now

suppose that the upper bounds on the objective values of (4.3.7) for each a ∈ A

satisfy
∑

a∈A da ≤ κ. Then there is a distribution Ps,a satisfying the constraints

of (4.3.8), such that
∑

s′∈S (rs,a,s′ + γvns′)Ps,a,s′ ≤ β ∀ a ∈ A. Therefore, we have that

maxa∈A
{∑

s′∈S (rs,a,s′ + γvns′)Ps,a,s′
}

≤ β. Since Ps is a feasible solution to (4.3.8),

we must have vn+1
s ≤ β. On the other hand, if

∑
a∈A da > κ then we have that any
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solution Ps satisfying the inequality
∑

s′∈S (rs,a,s′ + γvns′)Ps,a,s′ ≤ β ∀ a ∈ A does not

satisfy the constraints of (4.3.8). Therefore, any feasible solution Ps of (4.3.8) satisfies

the inequality maxa∈A
∑

s′∈S (rs,a,s′ + γvns′)Ps,a,s′ > β, meaning that vn+1
s > β.

Step 2(b)i specifies how the values should be updated if the problem is infeasible. The

logic behind this step is as follows. By Ho et al. (2022), the projection problem is

infeasible for some action a′ ∈ A if and only if mins′ {rs,a′,s′ + γvns′} > β. Suppose the

projection problem is infeasible for action a′ and let Ps ∈ (∆S)
A. Then, we have:

min
s′

{rs,a′,s′ + γvns′} > β =⇒ rs,a′,s′ + γvns′ > β ∀ s′ ∈ S

=⇒
∑
s′∈S

Ps,a′,s′ (rs,a′,s′ + γvns′) >
∑
s′∈S

Ps,a′,s′β

=⇒
∑
s′∈S

Ps,a′,s′ (rs,a′,s′ + γvns′) > β

=⇒ max
a∈A

{∑
s′∈S

Ps,a,s′ (rs,a,s′ + γvns′)

}
> β.

Therefore, every feasible solution of (4.3.8) has an objective value greater than β, and

so vn+1
s > β. Hence, the case when the projection problem is infeasible for any a ∈ A

should be treated in the same way as when
∑

a∈A da > κ. To this effect, we set each

da, da to some arbitrary numbers above κ, say κ + 1 and κ + 2. Note that the value

these bounds are set to do not matter, since all we need is that
∑

a∈A da > κ so that

β becomes a lower bound on vn+1
s .

In step 2(b)ii, the projection problem is also usually solved via bisection search, and

for some ambiguity sets defined by ϕ-divergences such as the Kullback-Leibler diver-

gence and χ2-divergence, Ho et al. (2022) showed how to solve the projection problem

efficiently. For the modified χ2-divergence, their method involves first dividing the
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projection problem into S + 1 subproblems, and then reformulating each one as a

univariate optimisation problem with at most 3 potential optimal solutions that can

be found analytically. Solving the subproblem then corresponds to evaluating each

of these potential solutions, and choosing the best of those that are feasible. Then,

the subproblems’ solutions are compared and the best one is selected. Details of this

algorithm can be found in Appendix C.2.1. Following the completion of the value it-

eration algorithm, a policy must be retrieved. Since the algorithm of Ho et al. (2022)

does not return a policy, it must be extracted from solving (4.3.5), using v = v∗.

4.3.5 Parametric Ambiguity Sets

We now present our formulation for the RMDP under parametric transition distri-

butions. Suppose that the true transition distribution P 0 is uniquely defined by the

probability mass function (PMF) and/or cumulative distribution function (CDF) of

a parametric probability distribution. In this section, we detail how our model allows

us to enforce that the worst-case distribution maintains this structure.

Formulation

Suppose that, for each (s, a) ∈ S × A, P 0
s,a is uniquely defined by the distribution

of some exogenous random variable Xs,a with support set Xs,a. Let fXs,a and FXs,a

be the PMF and CDF of Xs,a, which are parameterised by the parameter θ0
s,a =

(θ0s,a,1, . . . , θ
0
s,a,o). Assume that the current state St = s and action at = a are given.

We assume that the next state St+1 is specified by some simple, known function g of
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the exogenous random variable Xs,a:

St+1 = g(Xs,a|s, a),

which can be referred to as a transition function. In other words, for a given realisation

x of Xs,a, we can compute the next state as st+1 = g(x|s, a). We define the set of all

realisations of Xs,a that lead to St+1 = s′ as:

Xs,a(s
′) = {x ∈ Xs,a : g(x|s, a) = s′} .

Then, the transition matrix corresponding to the parameter θ0 is given by:

P 0
s,a,s′ = P(St+1 = s′|St = s, at = a)

= P(g(Xs,a|s, a) = s′)

=
∑

x∈Xs,a(s′)

fXs,a(x|θ0
s,a) ∀ s′ ∈ S.

Since g is known, in this case the value of P 0 is uniquely specified by θ0. There-

fore, the only unknown element required to find the true distribution is θ0. Hence,

given that the worst-case distribution should maintain the structure of P 0, we can

simply construct ambiguity sets for θ0. More specifically, we consider s-rectangular

parametric ambiguity sets of the form:

Θs ⊆ Ro ∀ s ∈ S, Θ = Θ1 × . . .×ΘS.

We can then reformulate the RMDP as:

max
π∈Π

min
θ∈Θ

Eθ,π

[
∞∑
t=0

γtrst,at,st+1

∣∣∣∣S0 ∼ Q

]
. (4.3.9)

Let P θ represent the transition probabilities corresponding to θ. Similarly, for any

s ∈ S and θs ∈ Θs, write P θ
s = (P θ

s,a,s′)a∈A,s′∈S . Note that, although the superscript
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for P θ
s is θ, only θs is required to compute it and by rectangularity we can obtain

P θ simply by obtaining P θ
s for all s ∈ S. Similarly, only θs,a is required to compute

P θ
s,a = (P θ

s,a,s′)s′∈S . Now, using the information about P 0’s structure, we compute P θ
s

according to:

P θ
s,a,s′ =

∑
x∈Xs,a(s′)

fXs,a(x|θs,a) ∀ (a, s′) ∈ A× S.

The parametric robust state-wise Bellman equation can then be written as:

vn+1
s = max

πs∈∆A

min
θs∈Θs

∑
a∈A

πs,a
∑
s′∈S

P θ
s,a,s′(rs,a,s′ + γvns′) ∀ s ∈ S. (4.3.10)

As discussed in Chapter 2, the non-linearities of the PMFs as functions of the param-

eters mean that above model is not readily solvable as a mathematical program if the

parameters are treated as decision variables. One way to find vn+1
s approximately is

to use a discretisation Θ′
s of the ambiguity set Θs. This allows us to reformulate the

problem in (4.3.10) as:

vn+1
s = max

πs∈∆A

{
ϑ : ϑ ≤

∑
a∈A

πs,a
∑
s′∈S

P θ
s,a,s′(rs,a,s′ + γvns′) ∀ θs ∈ Θ′

s

}
∀ s ∈ S. (4.3.11)

This problem can be solved as an LP with |Θ′
s|+ 1 constraints. Due to this, if a fine

discretisation of Θ′
s is used, this model can be very slow to solve. While this is the

approach used in parametric DRO in Chapters 2 and 3, in robust value iteration we

only need to compute vn+1
s and not the optimal policy itself. Hence, in certain cases,

no mathematical programming formulation is necessary. We will discuss this in more

detail in Section 4.3.6. However, please note that solving (4.3.11) is currently the

only way to extract the optimal policy and worst-case probabilities, to the best of our

knowledge.
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Confidence Sets for the True Parameter

We assume that we have access to N samples from the true distribution of X, i.e.

the distribution that characterises P 0. This allows us to create an MLE θ̂ of the true

parameter θ0. In addition, by standard results in maximum likelihood theory (Millar,

2011) we have: (
θ̂s,a − θ0

s,a

)T
IE
(
θ0
s,a

) (
θ̂s,a − θ0

s,a

)
∼ χ2

o

approximately, for large N . Here, IE
(
θ0
s,a

)
is the expected Fisher information ma-

trix, which is defined by (4.3.12). In (4.3.12), ℓ is the log-likelihood function for the

observed data.

IE (θs,a) =

(
−EXs,a

[
∂

∂θs,a,i∂θs,a,j
ℓ(θs,a)

])
i,j=1,...,o

. (4.3.12)

By independence of the random variables Xs,a for a ∈ A, we have that:

∑
a∈A

(
θ̂s,a − θ0

s,a

)T
IE
(
θ0
s,a

) (
θ̂s,a − θ0

s,a

)
∼ χ2

oA.

Since the two are asymptotically equivalent, we can replace IE
(
θ0
s,a

)
with IE

(
θ̂s,a

)
.

Therefore, an approximate 100(1− α)% confidence set for θs is given by:

Θα
s =

{
θs ∈ RA × Ro :

∑
a∈A

(
θ̂s,a − θs,a

)T
IE

(
θ̂s,a

)(
θ̂s,a − θs,a

)
≤ χ2

oA,1−α

}
.

In our experiments, we will use Θα
s as an ambiguity set for our parametric model, for

each s ∈ S. We will refer to a discretisation of this set as (Θα
s )

′.

4.3.6 Solving the Parametric Robust Bellman Update

It is often cited (e.g., by Ho et al. (2022)) that solving an infinite-horizon RMDP

efficiently boils down to being able to solve the robust Bellman update efficiently. In
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our parametric formulation, if we use the LP approximation, then the model that we

solve in each iteration for each state s ∈ S is the LP (4.3.11), which has |(Θα
s )

′| +1

constraints. However, depending on the fineness of the discretisation used to construct

(Θα
s )

′, this set can impose thousands of constraints on the model. Hence, (4.3.11) can

be slow to solve. For this reason, we develop two algorithms for solving the robust

Bellman update under parametric transition distributions.

A Cutting Surface Algorithm

In Chapters 2 and 3, cutting surface (CS) algorithms performed very well at solving

parametric DRO problems that are formulated using discrete ambiguity sets in the

same way as (4.3.11). Hence, we now describe the CS algorithm that we will use

for the RMDP. The idea behind the CS algorithm is as follows. Suppose we are at

iteration n of the value iteration algorithm and currently solving for state s ∈ S.

Start with some initial singleton subset Θ1
s = {θinit

s }. Solve (4.3.11) using Θs = Θ1
s

to generate a policy π1
s . Next, solve the distribution separation problem (4.3.13) with

k = 1 to find the worst-case parameter θ1
s for the policy π1

s . Set Θ
2
s = Θ1

s ∪ {θ1
s} and

repeat until stopping criteria are met.

min
θs∈(Θα

s )
′

∑
a∈A

πks,a
∑
s′∈S

P θ
s,a,s′(rs,a,s′ + γvns′) (4.3.13)

The appeal of this algorithm is that it only ever solves the approximate robust Bellman

update (4.3.11) over some small subset Θk
s of (Θα

s )
′, meaning that the LP concerned

only has |Θk
s | +1 = k+1 constraints at iteration k. Typically, in our previous research,

we found that this algorithm typically never runs for more than k = 5 iterations. A
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formal description of the algorithm for iteration n of the value iteration algorithm for

state s is given below.

1. Initialise Θ1
s = {θinit

s } for some θinit
s ∈ (Θα

s )
′ and optimality tolerance ε̄. Set

k = 1.

2. While k ≤ kmax:

(a) Solve the LP (4.3.11) using Θs = Θk
s to obtain policy πk

s , which has a

worst-case reward of R̃k over Θk
s .

(b) Evaluate the worst-case rewards:

R(πk
s |θs) =

∑
a∈A

πks,a
∑
s′∈S

P θ
s,a,s′(rs,a,s′ + γvns′) ∀ θs ∈ (Θα

s )
′,

and find θks = argmaxθs∈(Θα
s )

′ R(πk
s |θs). Set Rk = R(πk

s |θks ).

(c) If R̃k ≤ Rk + ε̄
2
or θks ∈ Θk

s then set k = kmax + 1.

3. Return πk
s with worst-case parameter θks and worst-case reward Rk.

For this chapter, this algorithm will serve as a method for solving the approximate

robust Bellman update (4.3.11). It will therefore be embedded into step 2(a) of the

robust value iteration algorithm in Section 4.3.2.

A Projection-based Algorithm for Single Parameter Distributions

The main algorithms of Ho et al. (2022) are based around solving the robust Bellman

update using bisection search. Within each iteration of the bisection algorithm, a

set of |A| simplex projection problems (4.3.7) are solved to generate the next upper

and lower bounds on the value function. The benefit of this is that the projection
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problem, in the non-parametric case with ϕ-divergence ambiguity sets, can often be

reformulated as a univariate convex optimisation problem.

Solving the projection problem P(P̂s,a; b, β) corresponds to finding the closest distri-

bution to P̂s,a that yields an objective value that is no larger than β, when action a

is taken in state s. In the case of distributions where P 0
s,a is parametrised by only one

parameter (such as when Xs,a is binomial with a fixed number of trials, or Poisson),

the parametric equivalent of this problem can be stated as:

P̃(θ̂s,a; b, β) =


minθs,a

(
θ̂s,a − θs,a

)2
IE

(
θ̂s,a

)
s.t.

∑
s′∈S bs′P

θ
s,a,s′ ≤ β

θs,a ∈ [θmin
s,a , θ

max
s,a ]

 , (4.3.14)

If
∑

s′∈S bs′P
θ̂
s,a,s′ ≤ β then the model is trivially solved by θs,a = θ̂s,a with an objec-

tive value of 0. Therefore, suppose that
∑

s′∈S bs′P
θ̂
s,a,s′ > β. Without any type of

reformulation, the model is a univariate optimisation problem that can be solved via

bisection. The only complication in solving this problem via bisection is the constraint∑
s′∈S bs′P

θ
s,a,s′ ≤ β. Note that, since I−1

E (θ̂s,a) is the asymptotic variance of the MLE

θ̂s,a, we have that IE(θ̂s,a) ≥ 0. Hence, since IE(θ̂s,a) is constant in θs,a, the objective

of (4.3.14) is equivalent to:

min
θs,a

|θ̂s,a − θs,a|.

Therefore, it is clear that the optimal solution to (4.3.14) is the closest θs,a to θ̂s,a in

terms of absolute value that satisfies
∑

s′∈S bs′P
θ
s,a,s′ ≤ β. Since

∑
s′∈S bs′P

θ̂
s,a,s′ > β,

the optimal solution must satisfy
∑

s′∈S bs′P
θ
s,a,s′ = β. To see this, observe that any

feasible solution with
∑

s′∈S bs′P
θ
s,a,s′ < β must be further left or right of θ̂s,a than a
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solution with
∑

s′∈S bs′P
θ
s,a,s′ = β. Suppose that the problem is feasible and let θmin

s,a

and θmax
s,a be global lower and upper bounds on θs,a. Then, there must be at least

one θs,a ∈ [θmin
s,a , θ

max
s,a ] such that

∑
s′∈S bs′P

θ
s,a,s′ = β. Based on this, we have three

potential scenarios as discussed below:

1. There exists a root of
∑

s′∈S bs′P
θ
s,a,s′ = β in [θmin

s,a , θ̂s,a]. Let θls,a be the closest

root of
∑

s′∈S bs′P
θ
s,a,s′ = β to θ̂s,a in the interval [θmin

s,a , θ̂s,a].

2. There exists a root of
∑

s′∈S bs′P
θ
s,a,s′ = β in [θ̂s,a, θ

max
s,a ]. Let θus,a be the closest

root of
∑

s′∈S bs′P
θ
s,a,s′ = β to θ̂s,a in the interval [θ̂s,a, θ

max
s,a ].

3. θls,a and θus,a both exist as defined above.

Solving the projection problem then amounts to finding θls,a and θus,a, and checking

which is closest to θ̂s,a. Given this, we solve our projection problem to δ-optimality

for a given s, a using the following algorithm:

1. Initialise a gap ϵ̃, the set of root containing intervals as ρ = ∅, and upper and

lower bounds on θs,a as θmin
s,a , θ

max
s,a .

2. Find interval containing closest left root:

(a) Initialise θs,a = θ̂s,a, E = β.

(b) While E ≥ β and θs,a ̸= θmin
s,a :

i. Set θs,a = max{θs,a − ϵ̃, θmin
s,a }.

ii. Compute P θ
s,a and set E =

∑
s′∈S bs′P

θ
s,a,s′ .

(c) If E ≤ β then set ρ = ρ ∪ {[θs,a, θs,a + ϵ̃]}.
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3. Find interval containing closest right root:

(a) Initialise θs,a = θ̂s,a, E = β.

(b) While E ≥ β and θs,a ̸= θmax
s,a :

i. Set θs,a = min
{
θs,a + ϵ̃, θmax

s,a

}
.

ii. Compute P θ
s,a and set E =

∑
s′∈S bs′P

θ
s,a,s′ .

(c) If E ≤ β then set ρ = ρ ∪ {[θs,a − ϵ̃, θs,a]}.

4. Carry out a bisection search in each interval in ρ to find the roots θls,a and

θus,a, stopping once the difference between the upper and lower bounds on the

objective function in the bisection interval is no larger than δ. Store the intervals[
θxs,a, θ

x

s,a

]
for x ∈ {l, u}.

5. Return the interval
[
θ∗s,a, θ

∗
s,a

]
whose midpoint is closest to θ̂s,a in terms of

absolute value.

We use an iterative procedure starting from θ̂s,a in steps 2 and 3 in order to reduce

the number of times we need to compute P θ
s,a. Since we are only interested in the

closest roots to θ̂s,a, there is no need to enumerate all intervals of width ϵ̃. Note that,

in some cases, θs,a may not have both a global lower and upper bound. For example,

if θs,a is a Poisson parameter, then it has no upper bound. However, if the solution

to the projection problem does not lie in the ambiguity set, then it is treated the

same as if the problem is infeasible. Hence, we are only interested in roots inside

the ambiguity set and so in such cases we can use the bounds from the ambiguity

set. If θs,a is a binomial parameter then we can pick θmin
s,a , θ

max
s,a either to be 0, 1 or
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min((Θα
s )

′),max((Θα
s )

′). Since we will split the interval [θmin
s,a , θ

max
s,a ] into an equal num-

ber of sub-intervals and hence each choice results in the same amount of computation,

which upper and lower bounds we pick are not of particular importance.

Given the above, we adapt the non-parametric bisection search algorithm from Sec-

tion 4.3.4 into the following parametric algorithm, which we call parametric bisec-

tion search (PBS). PBS solves the parametric robust Bellman update (4.3.10) to

ϵ̃-optimality without discretising Θα
s .

1. Initialise ϵ and δ = ϵκ
2A+R̄s(vn)+Aϵ

, v0s = R̄s(v
n) =

max(a,s′)∈A×S rs,a,s′

1−γ , and v0s =

maxa∈Amins′∈S {rs,a,s′ + γvns′}.

2. For each i = 0, . . . :

(a) Set β =
vis+v

i
s

2
.

(b) For each a ∈ A,

i. If P̄(θ̂s,a; rs,a+ γvn, β) is infeasible, i.e. mins′ {rs,a,s′ + γvns′} > β, then

set ca and ca equal to χ2
oA,1−α + 1. Go to step 2(c).

ii. Otherwise, solve the projection problem P̄(θ̂s,a; rs,a + γvn, β) to δ-

optimality to obtain parameter action-wise upper and lower bounds

ca, ca on its objective value. If projection algorithm returns no solu-

tions, set these values to χ2
oA,1−α + 1 and χ2

oA,1−α + 2, respectively.
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(c) Use these bounds to update vis and v
i
s:

(vi+1
s , vi+1

s ) =


(vis, β) if

∑
a∈A ca ≤ χ2

oA,1−α,

(β, vis) if
∑

a∈A ca > χ2
oA,1−α

(d) vi+1
s − vi+1

s < ϵ or χ2
oA,1−α ∈ [

∑
a∈A ca,

∑
a∈A ca) then go to step 3.

3. Return β =
vis+v

i
s

2
.

The logic behind this algorithm is the same as that of NBS from Section 4.3.4, but

replacing the non-parametric problems with their parametric counterparts. Given this

algorithm, we can efficiently carry out value iteration without ever needing a solver.

However, after this is complete, the optimal policy will need to be retrieved by solving

the approximate MIP reformulation (4.3.11) of the robust Bellman update. This can

be done using the cutting surface algorithm of Section 4.3.6.

4.4 A Capacitated Dynamic Multi-period Newsven-

dor Problem

As an example problem, we consider a dynamic multi-period newsvendor problem.

This version of the problem has discrete demands and actions, and a capacity limiting

the amount that can be held in inventory for any given period. In Section 4.4.1, we

describe the model in detail. Then, in Section 4.4.2, we formulate the model under

binomial demands and perform computational experiments to test our algorithms in

this case. Finally, in Section 4.4.3, we formulate the model and test our algorithms

under Poisson demands.
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4.4.1 Model

Suppose that St represents the amount of inventory in a system of some product

affected by uncertain demand. Let, at be the amount of this product to order at the

start of period t, to be sold during period t. Products are delivered immediately.

We assume that there is a capacity C for holding stock in inventory, so that S =

{0, . . . , C}. Given that action a is taken in state s, if s + a > C then any excess

product is lost as it cannot be stored. Although the newsvendor could technically order

infinite stock, they have no reason to. Hence, A = {0, . . . , C}, and so S = |S| = C+1

and A = |A| = C + 1. We assume that every unit of stock that must be held for

a period incurs a holding cost of h, and if the newsvendor runs out of stock then

they pay a stockout cost of b′. Furthermore, assume that one unit of stock sells for

c and is purchased for w < c. Let the demand for the product, Xs,a, be a random

variable whose distribution is parameterised by the unknown parameter θ0s,a for each

(s, a) ∈ S ×A. Then, given St = s and at = a, we have:

St+1 = max{0,min{s+ a, C} −Xs,a}.

For shorthand, let s̄ = min{s+ a, C} be the post-action pre-demand state. Then, we

have that g(x|s, a) = max{0, s̄− x}, and therefore:

Xs,a(s
′) =


{s̄, s̄+ 1, . . . , C − 1, C} if s′ = 0

s̄− s′ if s′ > 0.
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Therefore, the transition distribution satisfies:

P 0
s,a,s′ =


∑C

x=s̄ fXs,a(x|θ0
s,a) if s′ = 0,

fXs,a(s̄− s′|θ0
s,a) if s′ > 0.

=


1−

∑s̄−1
x=0 fXs,a(x|θ0

s,a) if s′ = 0,

fXs,a(s̄− s′|θ0
s,a) if s′ > 0.

The reward for taking action a in state s and moving to state s′ is given by the

following. Define the event of a stockout as 1{s′ = 0}. Then, the rewards are:

rs,a,s′ = cmax{s̄− s′, 0} − wa− h(s̄−max{s̄− s′, 0})− b′1{s′ = 0}. (4.4.1)

The term b′1{s′ = 0} will charge the newsvendor a flat cost of b′ whenever they miss

demand. It is more common in the newsvendor literature to incur a backorder cost

for every unit of missed demand, representing the newsvendor paying an additional

cost to meet this demand after initially not meeting it. This would involve adding

cost of b′ max{Xs,a − s̄, 0} instead of b′1{s′ = 0}. Hence, the rewards would depend

on Xs,a and we need to formulate the robust Bellman update (4.3.2) in a different

fashion. The main change would be that the distribution of Xs,a would be required

to calculate the expected rewards as opposed to simply the transition matrix. Hence,

we would replace the inner minimisation over Ps with a minimisation over candidates

P ′
s ∈ P ′

s for the true distribution of demand Xs. We would then replace the inner

expected value with respect to the next state with an expectation w.r.t. Xs,a.

Since each P ′
s,a has dimension |Xs,a|, this would remain affect solvability in the non-

parametric case for finite support demand random variables. However, since we do not
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know any moments of the distribution of Xs,a, it would result in an infinite number

of decision variables for infinite support demand random variables. This would not

affect the parametric model, however, which would still find the worst-case parameter

directly. For more details on the parametric and non-parametric reformulations in

the case of a backorder cost, see Appendix C.3.

Considering a stockout cost instead of a backorder cost means that the robust Bellman

update can be computed via an expectation over the finite set S, regardless of whether

or not Xs,a is finite. The downside of this formulation is that it can penalise the

newsvendor for meeting demand exactly. However, if this is a concern then one can

set w + h > b′ to ensure that the newsvendor would still prefer to meet demand

exactly and pay a stockout cost than to purchase too much stock and hold one item

for the following period. Also, it is important to note that shortage costs are implicitly

represented in this model via missed profits, and the newsvendor can see how much

demand was lost after the period is complete.

4.4.2 Numerical Experiments with Binomial Demands

To examine the efficacy of the algorithms described in this chapter, we now carry out

numerical experiments on the dynamic newsvendor problem. Firstly, we describe the

binomial ambiguity sets used. Then, we describe the parameters used. Following this,

we discuss the times taken by each algorithm to finish value iteration and compute

the optimal policy. Finally, we compare the parametric and non-parametric value

functions and resulting policies.
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Ambiguity Sets

Suppose that Xs,a ∼ Bin(C, p0s,a) for (s, a) ∈ S ×A, and hence:

fXs,a(x|p0s,a) =
(
C

x

)
(p0s,a)

x(1− p0s,a)
C−x (x ∈ {0, . . . , C}).

We set the number of trials as C for the following reasons. Since a binomial random

variable is bounded above by the number of trials, binomial demands might correspond

to a scenario where a restriction is placed on demand by the newsvendor. In this case,

the number of trials represents the maximum demand allowed by the newsvendor

before no more orders are allowed. The number of trials provides a way for the

newsvendor to limit the amount of unmet demand that is possible. Since any demand

above C is guaranteed to be unmet regardless of the current stock levels, it is not

reasonable for the number of trials to be set above C. This would not have any

benefit for the newsvendor or the customers.

Another logical choice for the number of trials may be min{s+ a, C}. However, this

would imply that the newsvendor would need to update the upper bound on demand

after every order, and this information would need to be conveyed to customers. In

addition, it suggests that the newsvendor is always able to meet demand exactly,

which is not a realistic modelling assumption. Also, the newsvendor would be unable

to observe how much demand was lost or if the demand met the capacity, which

is inconvenient for improving their decision-making and capacity levels. When the

maximum demand is C, the newsvendor can infer whether or not more capacity is

required from how often a demand of C occurs. Similarly, they can decide if they have

too much capacity if, for example, the demand is always less than the capacity.
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Since the number of trials is fixed, the distribution of X is uniquely parameterised by

p0 = (p0s,a)(s,a)∈S×A. In the notation of Section 4.3.5, this means that o = 1. Suppose

that we take a sample xs,a = (x1s,a, . . . , x
N
s,a) from the distribution of Xs,a for each

(s, a) ∈ S ×A. Then, the MLE p̂s,a of p0s,a is given by:

p̂s,a =

∑N
j=1 x

j
s,a

NC
∀ (s, a) ∈ S ×A.

In addition, the Fisher information (4.3.12) is given by:

IE(p̂s,a) =
NC

p̂s,a(1− p̂s,a)
.

Therefore, our approximate 100(1− α)% confidence set for p0
s is given by:

Θα
s =

{
ps ∈ [0, 1]A :

∑
a∈A

NC(ps,a − p̂s,a)
2

p̂s,a(1− p̂s,a)
≤ χ2

A,1−α

}
(4.4.2)

As discussed in Section 4.3.5, in order for the parametric robust Bellman update (4.3.10)

to be solvable so that we can generate policies, we consider discrete ambiguity sets.

Since (4.4.2) is a multivariate set, it is difficult to discretise directly. Therefore, we

will construct a set Θbase
s such that Θα

s ⊆ Θbase
s and discretise Θbase

s instead. Then,

we construct a discretisation of Θα
s by extracting all elements of Θbase

s that also lie in

Θα
s . Observe that the definition of Θα

s implies that every ps ∈ Θα
s satisfies:

ps,a ∈ pIs,a =
[
max

{
0, p̂s,a −

√
χ2
A,1−αIE(p̂s,a)

}
,min

{
1, p̂s,a +

√
χ2
A,1−αIE(p̂s,a)

}]
for all a ∈ A. Therefore, defining:

Θbase
s = pIs,1 × . . .× pIs,A,

we have Θα
s ⊆ Θbase

s . Furthermore, define pls,a and p
u
s,a as the lower and upper bounds

of pIs,a for each (s, a) ∈ S×A. We can then find discretisations of each pIs,a containing
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M points as follows:

p̃Is,a =

{
pls,a +m

pus,a − pls,a
M − 1

}
.

Then, a discretisation of Θbase
s is given by (Θbase

s )′ = p̃Is,1 × . . . × p̃Is,A. Finally, a

discretisation of Θα
s is given by (Θα

s )
′ = (Θbase

s )′ ∩Θα
s .

Experimental Design

We now detail the experiments used to test our algorithms on the dynamic newsvendor

problem. The parameters used were as follows. We considered w, h, b′, c ∈ {1, 5, 10}

such that w > c. The capacities we considered we C ∈ {1, 2, 3, 7, 9, 14}. This leads

to |S| = |A| ∈ {2, 3, 4, 8, 10, 15}. We used a discount parameter of γ = 0.5 in all

cases. For each algorithm, the value iteration algorithm was run for a maximum of

nmax = 1000 iterations. With regard to ambiguity sets, we always used α = 0.05, the

discretisation parameter was M ∈ {3, 5, 10} and we took N ∈ {10, 50} samples to

create the MLEs. Each algorithm was given a maximum time of 4 hours to complete

value iteration and find the optimal policy after value iteration ended.

In addition, the parametric algorithms were given a maximum of 4 hours to complete

their precomputation, i.e. computing the discrete ambiguity set and corresponding

transition probabilities. Note that this is not required for solving value iteration with

PBS, but it is required to compute the optimal policy after value iteration ends. If

an algorithm ran for 4 hours and the model was not solved, then the algorithm is

said to have timed out for this instance. Both the parametric and non-parametric

models used 100(1 − α)% confidence sets as ambiguity sets. The parametric model
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used (4.4.2) or a discretisation thereof, and the non-parametric model used (4.3.3)

where κ is defined by (2.3.11). In addition, we used a value iteration tolerance of

ε = 10−6 and we initialised the value functions as v0 = 0. In PBS, we used a gap of

ϵ̃ = 0.01 with (θmin
s,a , θ

max
s,a ) = (0, 1) for all (s, a) ∈ S ×A. Finally, the bisection search

tolerance used for PBS and NBS was ϵ = 10−7.

The above inputs generated 810 instances. We ran value iteration on each instance

using 5 different algorithms, where each one is defined by how it solves each robust

Bellman update. The algorithms and how they solve the update are as follows:

1. PBS: solve the parametric update (4.3.10) directly using the parametric projection-

based bisection search algorithm of Section 4.3.6.

2. CS: the cutting surface algorithm of Section 4.3.6.

3. LP: use Gurobi to solve the approximate LP reformulation (4.3.11) of the para-

metric update (4.3.10).

4. QP: use Gurobi to solve the CQP reformulation (4.3.6) of the non-parametric

update (4.3.2).

5. NBS: solve the non-parametric update (4.3.2) using the non-parametric projection-

based bisection search algorithm of Section 4.3.4.

Value iteration was run until either nmax iterations had been completed, 4 hours of

run time had been used, or the algorithm converged. After value iteration ended, for

LP, CS and QP the policy was returned. For PBS, the policy was extracted using CS.

For NBS, the policy was extracted using QP.
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Times Taken

In this section, we summarise the times taken by the algorithms. We first present the

number of times that each algorithm timed out. Firstly, LP and CS timed out while

running value iteration 56 and 54 times respectively. No other algorithm timed out

while running value iteration. Secondly, although PBS never timed out while running

value iteration, CS timed out twice while computing the optimal policy for PBS’s

value functions. As we will show, PBS is a fast algorithm in itself, and these timeouts

are a result of the slowness of CS in instances with large ambiguity sets.

Due to the above result, we present the times taken to run value iteration separately

from the times taken to compute the policy. Table 4.4.1 summarises the amount of

time that each algorithm spent running value iteration. This table shows that PBS

took 31 seconds on average to finish value iteration, while CS took 17 minutes 30 sec-

onds and LP took 26 minutes. It is therefore clear that PBS results in greatly reduced

times to complete value iteration compared to these solver-based algorithms.

CS also saves approximately 12 minutes per iteration compared with LP on average.

Note that LP and CS’s average times per iteration are large because, when they

timed out, they usually timed out after only one iteration. In addition, NBS took

43 seconds on average to complete value iteration, which is 33% slower than PBS.

On average, NBS is much faster than its solver-based equivalent QP, which took

over 6 minutes on average to finish value iteration. However, it is important to note

that QP led to convergence issues in our experiments. While all other algorithms

always finished value iteration in around 31 iterations, when using QP, value iteration
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failed to converge in 378 instances. This was likely due to Gurobi being unable to

provide precise enough optimal objective values. In addition, QP was also the fastest

algorithm per iteration, and was only slow overall due to value iteration’s failure to

converge when using this algorithm.

Algorithm Mean Time Max Time Mean Time Per Iteration

PBS 0:00:31.09 0:04:29.37 0:00:01.07

CS 0:17:30.90 4:00:00 0:04:25.77

LP 0:26:00.73 4:00:00 0:16:20.66

QP 0:06:16.24 0:55:59.19 0:00:00.41

NBS 0:00:43.52 0:09:21.02 0:00:01.48

Table 4.4.1: Summary of times taken to run value iteration (binomial)

It is clear from this table that CS and LP can both become very slow. The main

reason for this is M , the parameter defining the fineness of the discretisation of Θα
s

used by the parametric solver-based algorithms. We confirm this with Figure 4.4.1,

which shows boxplots of CS and LP’s value iteration run times by M . Figures 4.4.1a

and 4.4.1b show that both CS and LP scale poorly with M in terms of value iteration

run times. However, the effect of M is not particularly noticeable until M = 10. CS

scales better than LP, but it still becomes slow for instances with large M or large C.

Please note that, unlike the CS algorithms of Chapters 2 and 3, this CS algorithm is

the optimal version which finds the worst-case parameter over the entire ambiguity

set in every iteration. This explains why it does not offer the same level of time
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savings when compared with LP as the CS algorithms of Chapters 2 and 3.

(a) (b)

Figure 4.4.1: Boxplots of value iteration run times of (a) CS and (b) LP, by M .

Since PBS and NBS do not rely on a discrete ambiguity set, their value iteration

times are not affected by M . Therefore, the main parameter affecting their value

iteration times is C. We present boxplots of PBS and NBS’s value iteration times

by C in Figure 4.4.2. Figures 4.4.2b and 4.4.2b show similar increases in times as

C increases, but it is clear that PBS generally scaled better with C than NBS. For

C = 14, PBS typically took no longer than 250 seconds to complete value iteration,

while NBS typically took no longer than 450 seconds. On the other hand, NBS was

slightly faster than PBS for small C. The reason for the difference in scaling is likely

because NBS solves S+1 = C+2 sub-problems in order to solve a projection problem,

whereas PBS always carries out a 3-step procedure to solve its projection problems.

Hence, the number of steps involved in solving a projection problem increases with C

for NBS, but not for PBS.

Although PBS was faster than NBS in running value iteration, it generally took

longer for the parametric optimal policy to be computed in the parametric case than
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(a) (b)

Figure 4.4.2: Boxplots of value iteration run times of (a) PBS and (b) NBS, by C

(binomial).

the non-parametric. This is because computing the policy is not part of PBS, and

so CS had to be used for this. On average, it took 8 minutes 27 seconds for CS

to compute the policy for PBS’s value function, and only 0.43 for QP to compute

NBS’s. However, the parametric average is greatly affected by a small selection of

very slow instances. Figure 4.4.3a shows a boxplot of the times taken to compute the

policy for PBS and NBS’s value functions after value iteration ended. Note that this

boxplot does not show outliers, which are defined as any data that are further than 1.5

times the interquartile range above the 75th percentile or below the 25th percentile.

Figure 4.4.3 shows that while the average time to compute the policy for PBS’s values

was 8 minutes 27 seconds, the median time was only 0.128 seconds. The 25th and

75th percentiles of the time taken to compute the parametric policy are 0.0325 and

1.34 seconds.

Figure 4.4.3b explains why the average time to compute the policy for PBS was large.

In particular, it shows that this starts to take a very long time when M = 10. This
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(a) (b)

Figure 4.4.3: Boxplots of times taken to compute optimal policy for (a) both BS

algorithms and (b) PBS by M (binomial).

parameter defines the fineness of the discretisation of Θα
s used by CS when computing

the policy. Since PBS uses Θα
s directly in value iteration, this parameter does not

affect its value iteration run times. Hence, the slow times to compute a policy for PBS

are a reflection on CS’s scaling with respect to M , not PBS’s. This can be confirmed

by comparing Figure 4.4.3b with Figure 4.4.1a, and observing that the exact same

pattern is present in both. Due to this, it is a downside that PBS does not provide an

optimal policy. The same applies to NBS, but since QP is faster than CS in generating

a policy, the effect is not so severe. Comparing the times taken to compute optimal

policies is therefore not comparing the run times of PBS and NBS, but comparing the

run times of CS and QP.

Comparison of Value Functions, Distributions and Policies

In this section, we compare the values, policies and worst-case transition distributions

from the 5 algorithms tested. We first discuss the effect of the discretisation of Θα
s

on the value functions from LP and CS. Following this, we compare the outputs from
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PBS and NBS in order to assess the benefits of incorporating additional distributional

information into the model.

Let vy be the value function generated by running value iteration with algorithm y ∈

Y = {PBS,CS,LP,QP,NBS}. Similarly, define πy as the policy and P y as the worst-

case transition distribution from using algorithm y in the value iteration algorithm.

Then, we can summarise the differences between LP’s approximate value functions

and PBS’s optimal value functions via Figure 4.4.4. Figures 4.4.4a and 4.4.4b show

boxplots of the mean difference between vLP and vPBS over all instances where LP did

not time out, by C andM , respectively. The mean differences are calculated as:

1

|S|
∑
s∈S

(
vPBS
s − vLPs

)
. (4.4.3)

We see from Figure 4.4.4a that the average difference between vPBS and vLP was

always negative, with the magnitude of the difference growing larger as C increases.

This means that LP’s value function estimates are higher than PBS’s optimal values.

This is intuitive, since LP uses a discrete subset of Θα
s and therefore cannot find the

true worst-case parameter for any given π, in general. Therefore, LP’s value function

estimates overestimate the worst-case reward for a given policy. As is reflected in

Figure 4.4.4b, the two value functions get closer as M increases, with average dif-

ferences that are less than 2.5 in absolute value for M = 10. These plots suggest

two results. Firstly, the effect of the discretisation increases as C increases. In other

words, for larger C, the value function estimates resulting from the discrete approx-

imations are less accurate. Secondly, the value function estimates resulting from the

discretised ambiguity set appear to converge to their optimal values over the complete
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(not discretised) ambiguity set.

(a) (b)

Figure 4.4.4: Boxplots of mean difference between vLP and vPBS by (a) C and (b) M

(binomial).

We also compare the values from NBS with those from PBS in Figure 4.4.5. The

quantities plotted here are the mean differences between vPBS and vNBS:

1

|S|
∑
s∈S

(
vPBS
s − vNBS

s

)
.

Figure 4.4.5 shows that the value functions were generally quite close. The smallest

and largest mean difference between vPBS and vNBS were −2.24 and 1.56 respectively.

However, there is a clear pattern in the value function differences as C increases. For

small C, Figure 4.4.5 shows that vNBS and vPBS were very close, with vPBS’s mean

value (taken over s) being slightly higher. However, as C increases past 3 we see a

clear pattern of vNBS’s mean value becoming larger than vPBS’s. The magnitude of

this difference grows as C increases. This indicates that the worst-case distributions

resulting from the parametric ambiguity set can be worse than those from the non-

parametric set, i.e. they can lead to lower worst-case rewards.



CHAPTER 4. ROBUST MARKOV DECISION PROCESSES 191

Figure 4.4.5: Boxplot of mean difference between vNBS and vPBS by C (binomial).

This result can be explained by differences between the parametric and non-parametric

ambiguity sets. Recall that the non-parametric ambiguity set Ps is defined as con-

taining all distributions Ps that satisfy the inequality
∑

a∈A dϕ

(
Ps,a, P̂s,a

)
≤ κ. In

contrast, the parametric ambiguity set Θα
s is defined using an inequality restricting

the distance from θ̂s that θs can take. This does not restrict the distance from P̂s

that the parametric worst-case can take in the same way as the non-parametric am-

biguity set does. To understand this, we evaluate maxs∈S
∑

a∈A dϕ

(
P y
s,a, P̂s,a

)
for

y ∈ {PBS,NBS}, for every instance solved.

We provide boxplots of these values in Figure 4.4.6. Figure 4.4.6 shows that, for

every value of C, the parametric worst-case distribution was allowed to be further

from P̂s than the non-parametric worst-case. As C increases, difference between the

maximum distances for the parametric and non-parametric worst-case distributions

increases, explaining why the value functions are more different for large C. This

happens since larger C occurs when A is larger, meaning the LHS of the inequality

defining (Θα
s )

′ is a sum of more terms, and since χ2
oA,1−α is increasing in A.
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(a) (b)

Figure 4.4.6: Boxplots of maxs∈S
∑

a∈A dϕ

(
P y
s,a, P̂s,a

)
for (a) y = PBS and (b) y =

NBS (binomial).

In general, this means that a distribution being binomial may lead to its inclusion in

the parametric confidence set even though it is further from P̂ than any distribution in

the non-parametric confidence set. Similarly, distributions that are not binomial need

to be much closer to P̂ in order to be considered as candidates for the true distribution.

The result in Figure 4.4.6 suggests that, for this problem, the parametric ambiguity

sets are more risk-averse. It is worth noting, however, that NBS’s values being slightly

higher on average does not necessarily mean that more long-run reward would be

obtained under the non-parametric model. This depends on the initial distribution

Q. For example, studying the value functions we see that vPBS
0 ≥ vNBS

0 was true in

66% of instances, vPBS
1 ≥ vNBS

1 was true in 65% of instances, and vPBS
2 ≥ vNBS

2 was

true in 50.4% of the instances with C ≥ 2. If the initial distribution satisfied, for

example, Qs > 0 only for s ≤ 2, then the non-parametric approach would typically

not achieve more long-term expected reward.

We now compare the policies from PBS and NBS. The first characteristic we study
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is determinism. In these experiments, we find that PBS’s optimal policy was deter-

ministic in 42% of instances. NBS’s policy was deterministic in 16% of instances.

This indicates that the parametric model is more likely to yield deterministic policies

than the non-parametric model. In addition, we studied the expected actions for each

state in order to determine how conservative each model is. Specifically, we calcu-

lated
∑

a∈A aπ
y
s,a for each s, for y ∈ {PBS,NBS} for every instance that we solved.

Generally speaking, the expected actions under PBS and NBS were similar.

However, we found two main results. Firstly, when the inventory level s is below

13, PBS will typically purchase slightly more stock. For the very smallest states,

PBS only ordered between 5% and 6% more stock than NBS. However, for s = 10

and s = 11 PBS ordered 31% and 24% more respectively. Secondly, when the stock

level is high, i.e. 13 or 14, NBS will typically purchase more stock. This was most

noticeable for s = 14, where NBS ordered 38% more than PBS on average. From this,

we can conclude that PBS’s policies are typically less conservative for the majority of

states, but that NBSs’s are slightly less conservative for the largest 2 states.

It may seem odd that either algorithm makes positive orders when s = C = 14

since any stock above C is lost. This occurs due to differences in the worst-case

distributions for different actions. For example, when in state C it may be the case

that ordering a non-zero amount of stock leads to a much higher worst-case probability

of then transitioning to state zero (and hence selling all stock). For example, this may

happen when p̂C,a is much larger for a > 0 than for a = 0, which can occur simply

due to sampling variation. In some cases, spending some additional multiple of w
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to purchase stock that would then be wasted actually results in a higher expected

reward due to the fact that the newsvendor is then much more likely to sell all of

their stock. Since NBS ordered more in the higher states, clearly this was of more

benefit under NBS’s worst-case distributions than PBS’s. If this is not something that

the newsvendor would like to allow, the policy can always be constrained to enforce

that πs,a = 0 for all a ∈ A such that s+ a > C.

4.4.3 Numerical Experiments with Poisson Demands

We now carry out the same experiments as in Section 4.4.2, but where Xs,a ∼

Pois(λ0s,a) for (s, a) ∈ S × A. Firstly, we formulate the Poisson ambiguity sets. Fol-

lowing this, we describe the results of our experiments.

Ambiguity Sets

Suppose that Xs,a ∼ Pois(λ0s,a) for (s, a) ∈ S ×A, and therefore:

fXs,a(x|λ0s,a) =
(λ0s,a)

x exp(−λ0s,a)
x!

(x ∈ N0).

The distribution of X is uniquely parameterised by λ0 = (λ0s,a)(s,a)∈S×A. Similarly

to in Section 4.4.2, we have o = 1 and suppose that we take the sample xs,a =

(x1s,a, . . . , x
N
s,a) from Xs,a for each (s, a) ∈ S ×A. Then, the MLE λ̂s,a of λ0s,a is given

by:

λ̂s,a =

∑N
j=1 x

j
s,a

N
∀ (s, a) ∈ S ×A.

The Fisher information (4.3.12) is now given by:

IE(λ̂s,a) =
N

λ̂s,a
.
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Hence, an approximate 100(1 − α)% confidence set for λ0
s (for large N) is given

by:

Θα
s =

{
λs ∈ RA

+ :
∑
a∈A

N(λs,a − λ̂s,a)
2

λ̂s,a
≤ χ2

A,1−α

}
. (4.4.4)

As in Section 4.4.2, we will construct a discretisation of Θα
s by creating a set Θbase

s

with Θα
s ⊆ Θbase

s and discretising this set. Then, we extract elements of this discrete

set that also lie in Θα
s . The definition of Θα

s implies that every λs ∈ Θα
s satisfies:

λs,a ∈ λIs,a =

max

0, λ̂s,a −

√
χ2
A,1−αλ̂s,a

N

 , λ̂s,a +

√
χ2
A,1−αλ̂s,a

N


for all a ∈ A. Hence, we define Θbase

s = λIs,1 × . . . × λIs,A and we have Θα
s ⊆ Θbase

s .

Furthermore, define λls,a and λus,a as the lower and upper bounds of λIs,a for each

(s, a) ∈ S × A. We calculate the following discretisations of each λIs,a, containing M

points, as follows:

λ̃Is,a =

{
λls,a +m

λus,a − λls,a
M − 1

}
.

Then, a discretisation of Θbase
s is given by (Θbase

s )′ = λ̃Is,1 × . . . × λ̃Is,A. Finally, a

discretisation of Θα
s is given by (Θα

s )
′ = (Θbase

s )′ ∩Θα
s .

Experimental Design

All of the main parameters for these experiments are the same as in Section 4.4.2. The

only differences are with respect to the parameters used in the parametric bisection

search algorithm of Section 4.3.6. We again use θmin
s,a = 0 for all (s, a) ∈ S × A, but

since λs,a is technically not bounded from above, there is no obvious value for θmax
s,a .

However, since any root of
∑

s′∈S P
θ
s,a,s′bs′ = β that has λs,a > λus,a cannot be an

element of a λ that lies in the ambiguity set, we set θmax
s,a = λus,a for all (s, a) ∈ S ×A.
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Since this creates a wider range for the potential roots than for the binomial case, we

set ϵ̃ =
θmax
s,a −θmin

s,a

100
. This ensures that the same number of intervals are used here as in

the binomial case, where we used ϵ̃ = 0.01
(
= 1−0

100

)
.

Times Taken

We now present the results of our experiments for Poisson demands. Of the 810 in-

stances ran, we found that LP and CS timed out in 54. CS also timed out while finding

PBS’s optimal policy in 2 instances. PBS never timed out during value iteration. QP

and NBS did not time out in any instance, but QP again resulted in convergence

issues. When using QP to solve the Bellman updates, value iteration failed to con-

verge in 384 instances. Table 4.4.2 summarises the times taken to run value iteration.

Similar results to the binomial case can be found here, with PBS being faster than

NBS, CS being slightly faster than LP, and QP being fast per iteration.

Algorithm Mean Time Max Time Mean Time Per Iteration

PBS 0:00:24.44 0:03:59.44 0:00:00.85

CS 0:17:26.57 4:00:00 0:04:20.96

LP 0:23:45.70 4:00:00 0:16:16.30

QP 0:05:37.69 0:58:13.20 0:00:00.38

NBS 0:00:42.01 0:10:52.69 0:00:01.45

Table 4.4.2: Summary of times taken to run value iteration (Poisson)

Figure 4.4.7 compares the value iteration run times of PBS and NBS more closely. It
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shows that, while NBS was slightly faster for small C, PBS scales much better with

large C. For C = 14, PBS typically took no more than 3 minutes to finish value

iteration. However, NBS took up to 10 minutes.

(a) (b)

Figure 4.4.7: Boxplots of value iteration run times of (a) PBS and (b) NBS, by C

(Poisson).

While PBS is fast at finding the optimal values, it also took much longer to find a

policy after running value iteration with PBS than with NBS. However, as before,

this is due to CS being slow for large instances, and has nothing to do with PBS

itself. On average, it took 8 minutes and 13 seconds for CS to find a policy for PBS’s

values, as opposed to 0.38 seconds for QP to compute the policy for NBS. However,

the parametric times were skewed by large instances; the median time to compute the

policy for PBS was 0.14 seconds.

Figure 4.4.8 shows boxplots of the times taken to find the policy for PBS’s and NBS’s

values. While Figure 4.4.8a suggests that the speeds were similar for PBS and NBS’s

values for the majority of instances, Figure 4.4.8b show the drastic times taken under

the parametric model for M = 10. As before, this is due to CS’s slowness, not PBS’s.
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(a) (b)

Figure 4.4.8: Boxplots of times taken to compute optimal policy for (a) both BS

algorithms and (b) PBS by M (Poisson).

It is likely that if PBS were to be used in practice, a heuristic algorithm could be used

in CS’s place that would drastically speed up these times.

Comparison of Value Functions, Distributions and Policies

We now compare the outputs from the parametric and non-parametric models. Firstly,

we compare the value functions from PBS with those from LP and NBS. Boxplots

comparing these values are shown in Figure 4.4.9. As a reminder, these plots show

1
|S|
∑

s∈S
(
vPBS
s − vys

)
for y ∈ {LP,NBS}. Figure 4.4.9a shows the convergence of LP’s

values to PBS’s as M increases.

As for the binomial model, we see that LP’s values are always higher, and they grow

closer to PBS’s on average asM increases. In addition, Figure 4.4.9b shows that PBS

and NBS’s values are similar for small C, but NBS’s values are typically higher than

PBS’s for large C. In order to confirm that the same property of the ambiguity sets is

responsible for this as for the binomial model, we plot the maximum distances from

P̂s attained by P PBS
s and P NBS

s in Figure 4.4.10. This plot again suggests that the
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(a) (b)

Figure 4.4.9: Boxplots of mean difference between vPBS and (a) vLP by M and (b)

vNBS by C (Poisson).

parametric worst-case distributions are much further from P̂s.

(a) (b)

Figure 4.4.10: Boxplots of maxs∈S
∑

a∈A dϕ

(
P y
s,a, P̂s,a

)
for (a) y = PBS and (b)

y = NBS (Poisson).

Finally, we compare the policies from the PBS and NBS. Similarly to the binomial

model, we find that PBS’s policies were more often deterministic. Specifically, 32% of

PBS’s policies were deterministic where only 14% of NBS’s were. In addition, we also

find that the parametric policies were slightly less conservative in terms of purchasing,

for most states. However, for the largest 2 states, i.e. s = 13, 14, the non-parametric
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policies were less conservative. NBS’s polices ordered 30% more stock in these final

two states than PBS’s, whereas PBS’s policies ordered between 5% and 25% more in

the lower states.

4.5 Conclusions and Further Research

In this chapter, we studied robust Markov decision processes under parametric tran-

sition distributions. We focused on robust value iteration for s-rectangular ambiguity

sets in particular. Based on a fast projection-based bisection search algorithm found

in the literature for robust MDPs with ϕ-divergence ambiguity sets, we created a

projection-based bisection algorithm for the parametric model in the case where the

transition distribution is parametrised by one parameter. We also presented two other

algorithms for solving the robust Bellman update, a linear programming algorithm and

a cutting surface algorithm. These algorithms both discretise the ambiguity set for the

true parameter in order to create a linear programming reformulation of the robust

Bellman update. In addition, we showed how to use maximum likelihood estimation

to create confidence sets for use as ambiguity sets in the parametric model.

In order to test our algorithms, we presented a dynamic multi-period newsvendor

model and applied them to it. In particular, we carried out numerical experiments on

the case where the demands in the newsvendor problem are binomial and Poisson. In

both cases, we solved the non-parametric model in addition to the parametric model,

in order to compare run times and solutions. We found 2 main results.

Firstly, our parametric bisection search algorithm was very fast at finishing value
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iteration. In fact, it was faster than its non-parametric equivalent and offered sig-

nificant time savings in comparison with the linear programming and cutting surface

algorithms. This is due to the fact that the bisection algorithm does not rely on any

discretisation of the ambiguity set, and hence does not need to carry out the large

amount of pre-computation required by the solver-based algorithms. However, since

our bisection algorithm does not return an optimal policy, one of the two solver-based

algorithms had to be used to generate the policy after value iteration ended. This

meant that using the parametric model sometimes resulted in large overall run times,

since CS and LP scale poorly with the size of the ambiguity set.

Secondly, comparing the solutions from the parametric and non-parametric models,

we found that the non-parametric value functions were typically higher than the

parametric ones on average. This was due to the result that the parametric confidence

sets allowed the corresponding worst-case distribution to be much further from the

nominal distribution than was allowed by the non-parametric set. However, we also

found that the parametric policies were less conservative than the non-parametric, for

all states apart from the largest two.

There are two main directions for future research arising from this chapter. The most

obvious direction is with regards to computing the optimal policy. Since both of

our solver-based algorithms were very slow at this, it would be beneficial to find a

faster way to extract the policy once our bisection algorithm finishes value iteration.

Another potential area for further research is with regards to discretisation. As was

the case in Chapters 2 and 3, discretisation of the ambiguity set is required to create
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a linear programming model that approximates the true problem. This means that

the transition matrices for every parameter in the ambiguity set must be computed

prior to building the model, and also that the resulting model becomes very large for

large ambiguity sets. Hence, we would like to study ways in which to circumvent the

need for discretisation and reduce overall solution times.



Chapter 5

Conclusions and Further

Research

In this chapter, we conclude the thesis. In Section 5.1, we summarise the contributions

and findings of the thesis. Following this, in Section 5.2, we discuss potential areas

for future research.

5.1 Contributions and Findings

This thesis has made a number of key contributions to the fields of optimisation

under uncertainty and resource/inventory planning. The first major contribution is

the parametric DRO framework introduced in Chapter 2. When the true distribution

is parametric, our framework maintains this information by constructing ambiguity

sets for the true distribution’s parameters and only considering distributions lying in

203
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the same parametric family as the true distribution. The PMF or PDF of this family

is used directly in the objective function. The parametric DRO framework provides

an intuitive way for parameter estimates and our uncertainty in these estimates to be

included in optimisation models. For example, we showed how to construct confidence

sets for the true parameters and use them as ambiguity sets in parametric DRO

models. This hedges against the effects of inaccurate estimation and insufficient data,

such as suboptimal solutions and poor estimates of the cost of a given solution.

The first application of the parametric DRO framework in this thesis was the resource

planning problem of Chapter 2. For this problem, we developed the model under

binomial intake random variables. This model became very large and slow to solve to

optimality for large ambiguity sets. This led us to our second main contribution: a

novel heuristic cutting surface algorithm for parametric DRO models. Cutting surface

algorithms are known in the literature. However, our cutting surface algorithm uses

theoretical properties of the objective function in order to construct a small set of

extreme parameters in which to search for the worst-case parameter. We showed that

our cutting surface algorithm offered significant improvements in solution time over

solving the full DRO model, while losing a negligible amount of solution quality.

In Chapter 2, we also provided detailed comparisons of the parametric DRO solutions

with the standard non-parametric solutions obtained from ϕ-divergence ambiguity

sets. We found three main results. Firstly, the parametric model can be solved

via our optimal cutting surface algorithm faster than the non-parametric model can

be solved to optimality via Lagrangian reformulation. Secondly, the non-parametric
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model was slightly less conservative than the parametric model; it pulled forward

slightly more jobs on average. Finally, we found that the non-parametric model

overestimated the worst-case costs associated with a given decision. This indicated

that the non-parametric worst-case distributions were more extreme.

The model of Chapter 2 was a mixed integer linear program, and the distributions

considered were finite and discrete. In Chapter 3, we extended the parametric DRO

framework to problems with non-linear objective functions under either continuous or

discrete random variables with infinite support. Specifically, we considered a multi-

period budgeted newsvendor problem under normal and Poisson demands. In the case

where the demand distribution was known, we developed a fast heuristic algorithm

for the newsvendor problem. We tested the method that uses MLEs in place of

the true parameters. While the solutions were quite near to optimal under the true

distribution, this method resulted in poor estimates of the cost of a given decision. In

some cases, it even predicted a profit for a solution that would result in a loss.

For the DRO models, we used piecewise linear approximations and constraints in

our implementation in order to use standard solvers to generate solutions. Since

the random variables for this problem had infinite support, it was no longer possible

to calculate the entire distribution as we did for the binomial random variables in

Chapter 2. Instead, we derived alternate expressions for the objective functions in

terms of the PMFs/PDFs and CDFs of the parametric families. This allowed us to

prove theoretical results about them as functions of the distribution’s parameters.

Using this information, we developed and tested two new versions of the heuristic
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cutting surface algorithm of Chapter 2 and again showed that they provide very near-

optimal solutions in a negligible amount of time.

The final contributions of this thesis were presented in Chapter 4, where we introduced

the parametric RMDP framework. This extends the parametric DRO framework into

the dynamic decision making space, where the MDP has an uncertain parametric

transition matrix. We focused on s-rectangular ambiguity sets since then the RMDP

can be solved in polynomial time via robust value iteration. For solving a robust

Bellman update, we developed and tested a selection of algorithms.

The standout algorithm from Chapter 4 was our bisection search algorithm, PBS,

which solves a robust Bellman update to ϵ-optimality via a bisection search using the

solution of a set of parametric projection problems to update the current bounds on

the value function. PBS has the unique characteristic that it does not rely on dis-

cretisation of the ambiguity set, unlike our other parametric algorithms. Testing our

algorithms on a dynamic newsvendor model under binomial and Poisson demands, we

found that PBS solved robust value iteration faster than its non-parametric equivalent

and significantly faster than our other parametric algorithms.

5.2 Further Research

There are a number of areas for further research that would improve the applicability

and practicality of our methods. This section provides details on these areas and how

they might be implemented.
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5.2.1 Solving Without Discrete Approximations

The main drawback of the PDRO approaches developed in this thesis is discretisation.

Since the objective functions are often non-linear in the distribution’s parameters,

discretisation is employed to help reformulate the innner problem and create a model

that is solvable as an LP or MILP. While it ultimately achieves this goal, it leads to

many issues in terms of computation. Firstly, a large amount of pre-computation is

often required in order to build the model prior to solving. Secondly, the resulting

model can be very slow to solve due to the large number of constraints imposed by

the discrete ambiguity set. Finally, using a discretised ambiguity set means we are

only ever approximating the true PDRO model.

For these reasons, the most important direction for future research is to develop

new ways to solve PDRO models without the need for discretisation. Since we have

established in Chapter 2 that dualisation of the inner problem does not result in

a solvable model, the most logical way to solve the PDRO model (1.3.1) without

discretisation is to treat the entire model or the inner problem as a semi-infinite

program (SIP). Model (1.3.1) can be written as:

min
x,ϑ

ϑ (5.2.1)

s.t. Eθ [h(x,Y )]− ϑ ≤ 0 ∀ θ ∈ Θ (5.2.2)

x ∈ X . (5.2.3)

Given this SIP formulation, there are a number of methods that may be applicable

depending on the problem type. Hettich and Kortanek (1993) detail a number of
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methodologies for solving SIP models. The first set of approaches is based around

representing the feasible region with only finitely many constraints. The simplest way

to do this is using a discrete approximation of the set, as we have done in this thesis.

The second methodology suggested by Hettich and Kortanek (1993) considers a class

of SIP problems where the feasible region in a neighbourhood of a feasible point can

be equivalently represented by a finite set of constraints.

This method essentially reduces to solving the distribution separation problem (5.2.4)

and then solving the model over a finite discrete set of constraints based on the

solutions obtained.

min
θ∈Θ

Eθ[h(x,Y )]. (5.2.4)

Due to this, it is similar to the cutting surface algorithm of Mehrotra and Papp

(2014), which was initially developed for SIP problems. In order to use the algorithms

of Hettich and Kortanek (1993) or Mehrotra and Papp (2014) to solve (1.3.1), we

would need to solve (5.2.4) directly instead of via discretisation as we have done in

our approximate CS algorithms. In general, (5.2.4) will be non-linear and its objective

function will be a high-order polynomial or contain logarithms or exponential terms.

Therefore, it will generally not be solvable as a quadratic or conic program.

In order to select a methodology for solving (5.2.4), we would need to further de-

termine the theoretical properties of Eθ[h(x,Y )]. The first property we should look

for is convexity. If Eθ[h(x,Y )] is convex in θ then we may use algorithms designed

for non-linear convex optimisation problems with inequality constraints, such as in-

terior point methods (Potra and Wright, 2000). Since we have been able to establish
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some univariate monotonicity and convexity results in this thesis, we believe that it

is likely that the objective function is convex in θ. If it is not, however, we may

need to develop decomposition algorithms (Grothey, 2001; Floudas et al., 1989) that

decompose the problem into a sequence of NLP and MILP problems in a search for

global optima.

Since the algorithms of Mehrotra and Papp (2014) and Hettich and Kortanek (1993)

require solving (5.2.4), finding a strong and fast methodology to solve this problem

would be our first step in solving (1.3.1) without discretisation. If the algorithm is

slow, or (5.2.4) is too difficult to solve (e.g. due to nonconvexity), we would look

to other SIP methods to solve the model in (5.2.1)-(5.2.3). For example, for convex

models, López and Still (2007) provide a number of methods based on KKT conditions

in addition to numerical methods based on reduction, similar to those of Hettich and

Kortanek (1993). The field of non-convex SIPs is relatively new, but reviews such as

that of Djelassi et al. (2021) provide descriptions of a number of methods that we may

test for our problems, such as overestimation, relaxation and interval methods.

5.2.2 The Pre-computation Bottleneck

If we continue to solve our models using discretisation, we might consider improving

our methodology by reducing the effect of discretisation on overall run times. Our

general approach to parametric DRO and RMDP models in this thesis has been to

first discretise the ambiguity set and then represent the inner objective function via

a set of expected value constraints. This methodology leads to a large amount of
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pre-computation. Discretising the ambiguity set is a process that consists of three

steps. Firstly, we create a large superset of the ambiguity set. Secondly, we discretise

this superset. Finally, we extract elements of the ambiguity set from the discretised

superset. This final step is cumbersome, since it entails checking whether each ele-

ment of the discretised superset satisfies the inequality defining the ambiguity set. In

addition, in some cases the discretised superset can be so large that it cannot be held

in memory. Once the discretised ambiguity set is obtained, for discrete distributions

we then need to compute a large number of PMF values for each parameter in the

ambiguity set in order to build the expected value constraints.

Since the models do not take a significant amount of time to solve with our algorithms

but the pre-computation is always required (except from for PBS in robust value it-

eration), the pre-computation presents a significant bottleneck in terms of the total

build and run time. The preferred solution to this problem would be to eliminate the

need for discretisation, hence eliminating all pre-computation. However, for paramet-

ric DRO models we are not aware of any other way to create a solvable model. For

RMDPs, while it is possible to run robust value iteration without carrying out the

precomputation (as evidenced by PBS), it is still required in order to generate the

optimal policy. Therefore, the most realistic solution to this bottlenecking problem is

to reduce the time that it takes to carry out precomputation.

Since the pre-computation only consists of simple arithmetic operations, the most

obvious first step in speeding this step up is to use a faster programming language. All

experiments in this thesis were run exclusively in Python, but a language such as C++
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may be more appropriate for carrying out pre-computation. In addition, improving

the way in which we discretise the superset of our ambiguity set may help reduce the

bottleneck. In this thesis, we discretised the superset by dividing intervals into sets

containing a fixed number of equally spaced points. We found that the bottleneck was

only severe for the finest discretisations. However, since the worst-case parameters

are often those furthest from the MLEs, it may be the case that the fineness of the

discretisation does not significantly impact decisions. If so, a smaller ambiguity set

can be used without much effect on the model’s output. Further research is required

to determine whether or not this is the case.

In addition, the brute-force approach that we have used to construct the discrete

ambiguity set from the discrete superset can likely be improved. Checking every pa-

rameter in the discrete superset necessarily leads to a large number of parameters

that are not elements of the ambiguity set. In order to reduce the amount of param-

eters that need to be checked, we could employ a more sophisticated approach. For

example, once we find a parameter that is not an element of the ambiguity set, we

can construct the set of all parameters that are the same as this one apart from one

element. Members of this set do not need to be checked if their corresponding element

is further from its MLE than the one that we have just checked, since this means it

cannot be a member of the ambiguity set. Not checking these parameters may save a

large amount of computation time.

It may also be possible to speed up the computation of PMFs. For example, we

might consider saving some common PMF values into a lookup table so that they do
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not need to be computed during model building. This could either be done prior to

running any code, or on-the-fly so that if this PMF value is required again then it

does not have to be re-computed.

5.2.3 Dependent Demand Random Variables

In the multi-period models of Chapters 2 and 3, we assumed that the demand random

variables for each period were independent of one another. In practice, however,

this is not always the case. For example, in the context of demand, it is common

for seasonality to exist, meaning that demands for the same day or same month

in different weeks or years are often correlated with one another. When the joint

distribution of demands can be assumed to be known, incorporating this type of

dependence is quite straight forward.

Many methodologies exist for incorporating partial or complete correlation informa-

tion into DRO models outside of the PDRO framework. Moment-based ambiguity

sets provide a natural way to incorporate this information. While early moment-based

models only specified marginal moments (Bertsimas et al., 2004), more recent models

allow for an entire covariance matrix to be specifed in the ambiguity set (Natara-

jan et al., 2011). Natarajan et al. (2011) solve their model via semidefinite relax-

ations, and even provide details of how the method can be extended to account for

scenarios where the mean vector and moment matrix are not known exactly. The

semi-parametric models discussed in Section 1.3.1 also provide a way to specify cor-

relation information in the model’s ambiguity sets. Ahipasaoglu et al. (2019) further
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develop this area by presenting semi-parametric models specifying partial correlation

information that can be solved in polynomial time. In addition, recent papers have

incorporated correlation information in Wasserstein ambiguity sets and used duality

to create reformulations (Gao and Kleywegt, 2017b; Wang et al., 2018).

While the above methods incorporate correlation information, they still do not main-

tain the family in which the true distribution was assumed to lie. It is not yet clear how

correlation information can be incorporated into our PDRO models. The main diffi-

culty in extending in this direction is that the joint distribution of a set of parametric

random variables generally cannot be computed from only the marginal parameters

and covariance matrix. This makes it impossible to calculate the objective function

in the same way as we have done in this thesis. As a starting point for this type of

extension, it is likely that we would therefore consider multivariate normal demands,

where computing the joint distribution from this information is possible.

Under multivariate normal demands, a number of possibilities exist. Firstly, we might

consider assuming that the covariance matrix is fixed and known. We would then use

the covariance matrix directly in computing the objective function via the PDF, and

in the confidence set via the Fisher information matrix. It is worth noting that this

complicates the discretisation of the confidence set, since the inequality defining it

is no longer separable over the individual parameters. A new methodology for dis-

cretising the confidence set would therefore be required. When the covariance matrix

is assumed unknown, the problem becomes more complex. One way to incorporate

this into our model is to treat it as an unknown parameter in the same way as we
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did for µ. We could then take MLEs of the covariance matrix and include it in the

confidence set via the Fisher information matrix. This would again mean that a new

discretisation method would be required, however.

In other cases such as Poisson or binomial marginals, it is not possible to compute the

joint distribution based on only the marginals and covariance matrix. In such cases,

we may wish to apply marginal distribution models with parametric marginals given

by the MLE parameters, for example by applying the methods proposed by Chen et al.

(2022) for linear DRO models. This would ensure that the worst-case distribution’s

marginals lie in the required family without assuming independence. However, it

should only be used if the MLEs can be believed to be accurate. Another option

is to attempt to combine PDRO with other methodologies in order to achieve the

required result. Since PDRO generates worst-case marginals under the independence

assumption, there may be scope to develop methods that use PDRO’s marginals as

inputs to marginal distribution models. This would be a heuristic procedure, and

should be compared with the first method discussed in this paragraph.

5.2.4 Extensions to More Complex MDPs

The RMDPs that we considered in Chapter 4 were arguably the simplest kind: finite

state and action space, infinite horizon MDPs with s-rectangular ambiguity sets.

There are a number of extensions that could be made to these MDPs to ensure that

they are more widely applicable. The first extension is to consider state-dependent

action spaces. This is often much more realistic than assuming that the same set of
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actions can be taken in each state. For example, in Chapter 4, we found that the

policies for our RMDPs were ordering amounts of stock that would take them above

the capacity of the newsvendor. In practice, however, this might not be allowed, since

the newsvendor would lose all stock above the capacity. Therefore, the newsvendor

would likely restrict their actions to those that do not take their stock above the

capacity, given the current inventory level.

In addition, it would be interesting to extend our methods for RMDPs into finite

horizon models. These are often more realistic in practice, and would provide dynamic

alternatives to the problems studied in Chapters 2 and 3. For finite horizon problems,

robust backward dynamic programming algorithms would be applied instead of robust

value iteration. Each robust dynamic programming iteration would be similar to an

iteration of robust value iteration, but solving the RMDP may require more iterations

due to the enumerative nature of backward dynamic programming. It is therefore

possible that more adjustments would need to be made to our methods to ensure

that they scale well enough to be used within robust dynamic programming. Further

extensions that we would like to make is to consider models with continuous state and

action spaces, or consider other families of distributions in our robust models.
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Appendix A

Distributionally Robust Resource

Planning Under Binomial Demand

Intakes

A.1 Derivation of CQP Reformulation of Non-parametric

Model

A.1.1 General Reformulation

For a ϕ-divergence ambiguity set with nominal distribution Q, we can write the inner

problem of the DRO model (2.3.1)-(2.3.1) as:

max
P

T∑
t=1

atEP (Rt)

217
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s.t. Pj ≥ 0 ∀ j = 1, . . . , n

n∑
j=1

Pj = 1

dϕ(P ,Q) ≤ κ.

The Lagrangian of this model is given by:

L(P , η, ν) =
T∑
t=1

n∑
j=1

PjatR
ij

t + η (κ− dϕ(P ,Q)) + ν

(
1−

n∑
j=1

Pj

)
.

The objective function of the dual problem is therefore:

g(η, ν) = sup
P≥0

L(P , η, ν).

Since κ > 0 and dϕ(Q,Q) = 0 < κ whereQ is a feasible choice of distribution, Slater’s

condition holds. Since the primal is concave, we have strong duality. We can hence

write the objective of the dual of the inner problem as:

min
η≥0,ν

g(η, ν) = min
η≥0,ν

sup
P≥0

{
T∑
t=1

n∑
j=1

PjatR
ij

t + η (κ− dϕ(P ,Q)) + ν

(
1−

n∑
j=1

Pj

)}

(A.1.1)

= min
η≥0,ν

{
ηκ+ ν + sup

P≥0

(
n∑
j=1

Pj

T∑
t=1

atR
ij

t − ηdϕ(P ,Q)− ν

n∑
j=1

Pj

)}

(A.1.2)

= min
η≥0,ν

{
ηκ+ ν + sup

P≥0

(
n∑
j=1

Pj

T∑
t=1

atR
ij

t − η

n∑
j=1

Qjϕ

(
Pj
Qj

)
− ν

n∑
j=1

Pj

)}

(A.1.3)

= min
η≥0,ν

{
ηκ+ ν +

n∑
j=1

sup
Pj≥0

(
Pj

T∑
t=1

atR
ij

t − ηQjϕ

(
Pj
Qj

)
− νPj

)}

(A.1.4)
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= min
η≥0,ν

{
ηκ+ ν +

n∑
j=1

sup
Pj≥0

(
Pj

(
T∑
t=1

atR
ij

t − ν

)
− ηQjϕ

(
Pj
Qj

))}

(A.1.5)

= min
η≥0,ν

{
ηκ+ ν + η

n∑
j=1

Qj sup
rj≥0

(
rj
Rij

t − ν

η
− ϕ (rj)

)}
(A.1.6)

= min
η≥0,ν

{
ηκ+ ν + η

n∑
j=1

Qj sup
rj≥0

(rjsj − ϕ (rj))

}
(A.1.7)

= min
η≥0,ν

{
ηκ+ ν + η

n∑
j=1

Qjϕ
∗(sj)

}
, (A.1.8)

where sj =
∑T

t=1 atR
ij

t −ν
η

and rj =
Pj

Qj
. Note that we can replace the sum of maxima

with a maximum of sums in (A.1.6) because the objective is separable over j. Finally,

we require the dual feasibility constraint:

sj ≤
(
lim
τ→∞

ϕ(τ)

τ

)
∀ j = 1, . . . , n.

This ensures that ϕ∗ does not grow to infinity. Consider ϕ∗(sj) = supτ≥0{sjτ −ϕ(τ)}.

If ϕ(τ)
τ

→ ∞ as τ → ∞ then this constraint can be removed. If not, i.e. limτ→∞
ϕ(τ)
τ

=

s̄ < ∞, then for s > s̄ we have ϕ∗(s) = ∞. Note that, according to the definition

given by Ben-Tal et al. (2013), we have 0ϕ∗(s/0) := (0ϕ∗)(s), which is zero if s ≤ 0

and +∞ if s > 0. Therefore, combining with the outer problem, we have:

min
y,R,η,ν

{
ηκ+ ν + η

n∑
j=1

Qjϕ
∗(sj)

}
,

s.t. (2.3.1)− (2.3.8)

η ≥ 0

T∑
t=1

atR
ij

t − ν ≤ η

(
lim
τ→∞

ϕ(τ)

τ

)
∀ j = 1, . . . , n.
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A.1.2 Modified χ2-divergence

Recall (2.3.12), which states that for a modified χ2-divergence, we have:

dmχ2(P ,Q) =
n∑
j=1

(Pj −Qj)
2

Qj

.

Reformulation

The conjugate of ϕmχ2 is given by:

ϕ∗
mχ2(s) =


−1 if s < −2

s+ s2

4
if s ≥ −2

= max
{s
2
+ 1, 0

}2

− 1.

Using ϕ∗ to represent ϕ∗
mχ2 for shorthand, we can expand ϕ∗(sj) in order to write:

ηϕ∗(sj) = η

(
max

{sj
2
+ 1, 0

}2

− 1

)
= ηmax

{∑T
t=1 atR

ij

t − ν

2η
+ 1, 0

}2

− η

=
1

4η
max

{
T∑
t=1

atR
ij

t − ν + 2η, 0

}2

− η.

In order to define ϕ∗(sj) using convex quadratic constraints, we first need to remove

the max operator from this expression. Hence, we define a dummy variable ζj to

represent the value of max
{∑T

t=1 atR
ij

t − ν + 2η, 0
}
. We enforce ζ’s value via (A.1.9)

and (A.1.10).

ζj ≥
T∑
t=1

atR
ij

t − ν + 2η ∀ j = 1, . . . , n (A.1.9)

ζj ≥ 0 ∀ j = 1, . . . , n. (A.1.10)
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Then, we can define another dummy variable uj =
ζ2j
η
= 4ηϕ∗(sj) + η. We enforce the

value of uj using a conic quadratic constraint as follows:

uj ≥
ζ2j
η

ηuj ≥ ζ2j

(η + uj)
2 − (η − uj)

2 ≥ 4ζ2j ,√
4ζ2j + (η − uj)2 ≤ (η + uj).

Hence, with dummy variables ζj, uj for j = 1, . . . , n, we can reformulate our inner

problem as:

min
η≥0,ν,ζ,u

{
η(κ− 1) + ν +

1

4

n∑
j=1

Qjuj

}
(A.1.11)

√
4ζ2j + (η − uj)2 ≤ (η + uj) ∀ j = 1, . . . , n (A.1.12)

ζj ≥
T∑
t=1

atR
ij

t − ν + 2η ∀ j = 1, . . . , n (A.1.13)

ζj ≥ 0 ∀ j = 1, . . . , n. (A.1.14)

η ≥ 0. (A.1.15)

Therefore, combining with the outer model, we have:

min
y,R,η,ν,ζ,u

{
η(κ− 1) + ν +

1

4

n∑
j=1

Qjuj

}
, (A.1.16)

s.t. (2.3.1)− (2.3.8), (A.1.17)

(A.1.12)− (A.1.15). (A.1.18)

Note that, in the objective function, the −η comes from the fact that ηϕ∗(sj) =

1
4
uj − η.
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Extracting Worst-case Distributions

In order to find the worst-case distribution, we must extract it from the optimal values

of η, ν, ζ,u. Denote the optimal solution of (A.1.16)-(A.1.18) by (y∗,R∗, η∗, ν∗, ζ∗,u∗).

As discussed by Bayraksan and Love (2015), the worst-case distribution P ∗ satis-

fies:

P ∗
j

Qj

∈ ∂ϕ∗(s∗j),
n∑
j=1

Qjϕ

(
P ∗
j

Qj

)
≤ κ,

n∑
j=1

P ∗
j = 1.

Here, the notation ∂f(x) is the set of subgradients of f at x. Suppose that η∗ > 0 so

that s∗j is defined. By Bayraksan and Love (2015), if ϕ∗ is differentiable then (ϕ∗)′(s∗j)

is a subgradient. This is true in our case, with (ϕ∗)′(s) = max
{
1 + s

2
, 0
}
. This

derivative is non-negative, and hence always gives a feasible solution for P ∗
j by taking

P ∗
j = Qj(ϕ

∗)′(s∗j) when η∗ > 0. In our experiments we only ever observed η∗ > 0

and hence Qj(ϕ
∗)′(s∗j) always gave a solution. For more detail on how to extract the

solution when η∗ = 0, see Bayraksan and Love (2015).

A.2 Further Analysis of Results

A.2.1 The Effect of Workstacks on Solutions

In our experiments, we used only one value of the capacity c but varied the workstacks

D to give a variety of possibilities for pulling forward. This was based on the number

of pairs between which pulling forward was possible, i.e. |F+(c,D)| from Section 2.4.2.

We give some examples of the values of c −D and the corresponding |F+(c,D)| in

Table A.2.1.
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c−D |F+(c,D)|

(8, -15, -15, 8, -15) 3

(8, -15, 8, 8, 8) 5

(8, 8, 8, 8, 8) 7

Table A.2.1: Examples of c−D values and corresponding number of pairs

Any more pairs than 7 is not possible for T = 5 and K = 2. We present a summary

of the results broken down by |F+(c,D)| in Table A.2.2. This table shows three

quantities: the average time taken by each algorithm, the average gaps and the average

number of pairs of days which had a positive pulling forward decision. The table shows

that we did not have any more non-zero decisions than 1, from any algorithm, until

|F+(c,D)| reached its maximum value of 7. Days 1 and 2 were typically prioritised for

rollover reduction via pulling forward in these cases. This is because jobs due on these

days have the potential to roll over the most times. However, when |F+(c,D)| = 7,

we see between 1 and 6 pairs of days having a non-zero pulling forward decision.

The APGs are also shown in Table A.2.2. From this, we can see a number of results.

Firstly, we see that the average time taken by each algorithm apart from AO was

increasing in |F+(c,D)|. This can be expected, since more feasible pairs leads to a

more complex feasible region. Furthermore, AO performed the worse in selecting y

as |F+(c,D)| increases. This is likely because reducing the set of intakes leads to

less accurate approximations of the expected rollover. Interestingly, CS did not suffer

from the same issue. In fact, for |F+(c,D)| = 7, CS had an average y-APG of 0.0%
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Avg. p-APG Avg. y-APG Avg. t.t. (Avg., Max) Non-zeros

|F+(c,D)| Count Alg.

3 189 opt 0.0% 0.0% 0:01:00.38 (1.0, 1)

CS 0.0415% 0.0029% 0:00:07.58 (1.0, 1)

CS opt 0.0% 0.0% 0:00:09.75 (1.0, 1)

AO 0.0084% 0.0059% 0:00:24.74 (1.0, 1)

NP - - 0:00:02.62 (1.0, 1)

5 45 opt 0.0% 0.0% 0:02:12.72 (1.0, 1)

CS 0.3465% 0.0506% 0:00:25.62 (1.0, 1)

CS opt 0.0% 0.0% 0:00:29.35 (1.0, 1)

AO 0.0052% 0.2903% 0:00:19.04 (1.0, 1)

NP - - 0:00:32.2 (1.0, 1)

7 45 opt 0.0% 0.0% 0:02:44.25 (2.0, 4)

CS 0.0% 0.0% 0:01:27.85 (2.0, 4)

CS opt 0.0% 0.0% 0:01:31.68 (2.0, 4)

AO 0.0% 0.5332% 0:00:21.16 (2.0, 4)

NP - - 0:01:53.93 (2.8, 6)

Table A.2.2: Results by |F+(c,D)|.
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and for all values of |F+(c,D)| this value was below 0.051%. This is because CS does

not employ dimension reduction to the set of intakes like AO does.

As might be expected, there is no clear pattern in the p-APGs. For AO and CS, this

value was highest when |F+(c,D)| = 5 and lowest when |F+(c,D)| = 7. Finally,

the final column shows the average and maximum numbers of pairs (t1, t2) that had

yt1,t2 > 0 under each algorithm. The results for |F+(c,D)| = 7 suggest that NP’s

solution was slightly less conservative than P ’s solution on average. We study this

in more detail in Section 2.5.5. Interestingly, NP took almost as long as P in these

instances. CS opt again had all zero gaps and APGs, and its times taken were no

more affected by |F+(c,D)| than the times taken by CS.

A.2.2 Comparison with Robust Optimisation Solutions

In this section, we compare the DRO decisions and objectives with those resulting

from the robust optimisation (RO) version of the model. The RO model is obtained

by replacing the inner objective with the maximisation of the total rollover cost over

all intake vectors. The first result that we find is that the intake vector responsible for

the worst-case cost for the chosen y value was always imax. This shows that the RO

model can be solved simply by assuming that all intakes take their maximum values

at all times. As well as this, the RO model pulled forward less than the DRO model

in 227 (82%) of our 279 instances. The RO solution also had a higher cost than the

DRO solution in 269 (97%) of instances. This can be expected due to the way that

their objective functions differ. These two facts support our claim that the RO model
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is more conservative than the DRO model.

We present some more detailed results in Table A.2.3. This table compares the objec-

tive values, pulling forward decisions and times taken from the three models. Firstly,

note that RO took around 16 seconds on average. RO also pulled forward less than

DRO. Specifically, it pulled forward 1.3 jobs less than DRO, on average. Also, DRO

pulled forward a maximum of 8 jobs whereas RO only pulled forward a maximum of 7

jobs. Furthermore, the objective values from RO were significantly higher than DRO.

Comparing the RO objective with the DRO objective, we see that RO’s objective

values were around 9.5 higher than DRO’s on average. This corresponds to almost a

200% increase in objective value. The y-gap and y-APGs assess the expected costs

from RO’s decisions when evaluated by DRO’s objective function. This suggests that

RO’s decisions would result in around 2 more jobs being expected to roll over in the

worst case than DRO’s solution.

As already noted, RO is equivalent to the deterministic model under the assumption

that I = imax with probability 1. The results from this model are shown in the “RO

det.” column. This shows that this model took 0.01 seconds to build and solve, on

average. Hence, our results indicate that the inclusion of the rollover constraints for

the RO model led to around a 16 second increase in solution time for each instance.

The inclusion of the expected value constraints for the DRO model resulted in over 1

minute of additional solution time in each instance. Table A.2.3 also shows that RO

had an objective value that was three times larger than DRO’s, on average.

From the results presented here, we can conclude three main results. Firstly, RO is
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RO Det. RO DRO

Avg. Obj. Gap 9.499 9.499 0

Avg. % Obj. Gap 199.662% 199.662% 0%

Avg. y-gap 1.851 1.851 0

Avg. y-APG 2.616% 2.616% 0%

Avg.
∑

t1,t2
yt1,t2 4 4 5.308

Max.
∑

t1,t2
yt1,t2 7 7 8

Avg. t.t. 0:00:00.01 0:00:15.89 0:01:22.85

Table A.2.3: Comparison of results from RO model with DRO solutions

more conservative than DRO for this problem, since it pulled forward fewer jobs on

average. Secondly, RO results in significantly higher costs for the same y decision.

However, the third conclusion is that RO is much faster than DRO. This indicates

that the main factor affecting solution times for DRO is the inclusion of the expected

value constraints.

A.3 A Benders Decomposition Approach

Our CS opt algorithm can be viewed as a specialised Benders decomposition (Benders,

1962) approach that solves the distribution separation problem as a residual problem.

However, it does not require us to create the dual of the distribution separation

problem, and in our case we can simply solve this problem by enumeration. For

comparison, we now present a classical Benders decomposition approach in order to
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explain why CS opt is preferred.

A.3.1 Residual Problem and its Dual

We create the Benders residual problem by taking y as the master problem variable

and R, ϑ as the subproblem variables. This is because the model’s complexity comes

from R and ϑ, not y. For a fixed y = ȳ, the residual problem can be written as:

min
R,ϑ

ϑ,

s.t. Ri
1 ≥ i1 +

min{1+K,T}∑
t1=2

yt1,1 − (c1 −D1) ∀ i ∈ I

Ri
t −Ri

t−1 ≥ it +

min{t+K,T}∑
t1=t+1

yt1,t −

ct −Dt +
t−1∑

t2=max{t−K,1}

yt,t2


∀ t = 2, . . . , T − 1 ∀ i ∈ I,

Ri
T −Ri

T−1 ≥ iT −

cT −DT +
T−1∑

t2=max{T−K,1}

yt,t2

 ∀ i ∈ I,

ϑ−
T∑
t=1

at
∑
i∈I

P(I = i|p)Ri
t ≥ 0 ∀ p ∈ Θ.

This model has m = T |I|+|Θ| constraints. Hence, we have dual variables Uj,t for

j = 1, . . . , |I| and t = 1, . . . , T , and Ve for e = 1, . . . , |Θ|. The model has T |I|+1

variables, and so we have T |I|+1 constraints in the dual. The dual is given by:

max
U ,V

T∑
t=1

n∑
j=1

bj,t(ȳ)Uj,t +

|Θ|∑
e=1

b̃e(ȳ)Ve (A.3.1)

s.t. Uj,1 − Uj,2 −
|Θ|∑
e=1

a1P(I = ij|pe)Ve ≤ 0 ∀ j = 1, . . . , |I|, (A.3.2)

Uj,t − Uj,t+1 −
|Θ|∑
e=1

atP(I = ij|pe)Ve ≤ 0 ∀ j = 1, . . . , |I| ∀ t = 2, . . . , T − 1,

(A.3.3)
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Uj,T −
|Θ|∑
e=1

aTP(I = ij|pe)Ve ≤ 0 ∀ j = 1, . . . , |I|, (A.3.4)

|Θ|∑
e=1

Ve ≤ 1, (A.3.5)

U ,V ≥ 0, (A.3.6)

where bj,t(ȳ) and b̃e(ȳ) are defined as:

bj,1(ȳ) = i1 +

min{1+K,T}∑
t1=2

ȳt1,1 − (c1 −D1) ∀ i ∈ I

bj,t(ȳ) = it +

min{t+K,T}∑
t1=t+1

ȳt1,t −

ct −Dt +
t−1∑

t2=max{t−K,1}

ȳt,t2


∀ t = 2, . . . , T − 1 ∀ i ∈ I,

bj,T (ȳ) = iT −

cT −DT +
T−1∑

t2=max{T−K,1}

ȳt,t2

 ∀ i ∈ I,

b̃e(ȳ) = 0 ∀ e = 1, . . . , |Θ|.

A.3.2 Benders Decomposition Algorithm

Our Benders decompositon algorithm is as follows.

1. Initialise ε, LB = −∞, UB = ∞. Set feasible region for ξ as Ξ = R+. Set

feasible region for y as Y , where y ∈ Y indicates that y is feasible for the model

in (2.3.1)-(2.3.8).

2. While UB − LB > ε:

(a) Solve master problem:

min
ξ∈Ξ,y∈Y

ξ
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to get a solution ȳ and objective value ξM.

(b) Set LB = ξM.

(c) Solve Benders subproblem (A.3.1)-(A.3.6) with y = ȳ to get a solution Ū ,

V̄ with objective ξS.

(d) If subproblem is unbounded, add feasibility cut:

T∑
t=1

n∑
j=1

bj,t(y)Uj,t +

|Θ|∑
e=1

b̃e(y)Ve ≤ 0

to Y .

(e) If subproblem is optimal, add optimality cut:

ξ ≥
T∑
t=1

n∑
j=1

bj,t(y)Uj,t +

|Θ|∑
e=1

b̃e(y)Ve

to Ξ.

(f) If ξS < UB then set UB = ξS.

3. Find index of binding t constraint from the subproblem and use this to find

worst-case p.

4. Return y, p.

In the following section we will show that this approach is slow compared with

CS opt.

A.3.3 Results

We tested the Benders algorithm on each of our 279 instances, for ε ∈ {0.01, 10−6, 10−8}.

We present the results in Table A.3.1. From these results, it is clear that ε = 10−8
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was required for y optimality. However, with this ε, the Benders algorithm took al-

most 6 minutes to solve, on average. In one instance, the algorithm timed out as it

took longer than 4 hours. In comparison with CS opt, which takes approximately 17

seconds on average, this version of Benders decomposition is very slow.

ε Avg. p-gap Avg. p-APG Avg. y-gap Avg. y-APG Avg. t.t. Max t.t.

1e-08 0.0 0.0% -0.0000 0.0% 0:05:57.798 4:00:05.011

1e-06 0.0 0.0% 0.0029 0.0% 0:04:42.6717 1:24:55.625

1e-02 0.0 0.0% 0.0141 10.1984% 0:04:36.6348 1:21:58.415

Table A.3.1: Results of Benders algorithm

A.4 Large Results Tables

A.4.1 Results by |Θ|

(N,M) Avg. |Θ| Count Algorithm Avg. p-APG Avg. y-APG Avg. t.t.

(100, 10) 1.000 62 P 0.0% 0.0% 0:00:14.57

CS 0.0% 0.0% 0:00:16

CS opt 0.0% 0.0% 0:00:15.81

AO 0.0% 0.248% 0:00:01.32

NP - - 0:00:25.58

(50, 5) 1.419 31 P 0.0% 0.0% 0:00:15.11

CS 0.0% 0.0% 0:00:16.53

CS opt 0.0% 0.0% 0:00:16.46
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AO 0.0% 0.248% 0:00:01.35

NP - - 0:00:27.13

(50, 10) 14.419 31 P 0.0% 0.0% 0:00:14.23

CS 0.0% 0.0% 0:00:15.05

CS opt 0.0% 0.0% 0:00:15.42

AO 0.0% 0.248% 0:00:01.4

NP - - 0:00:25.22

(10, 5) 14.742 31 P 0.0% 0.0% 0:00:16.14

CS 0.0% 0.0% 0:00:18.97

CS opt 0.0% 0.0% 0:00:19.42

AO 0.0% 0.0004% 0:00:01.76

NP - - 0:00:24.66

(100, 15) 16.871 31 P 0.0% 0.0% 0:00:16.24

CS 0.0% 0.0% 0:00:16.48

CS opt 0.0% 0.0% 0:00:16.5

AO 0.0452% 0.2391% 0:00:01.57

NP - - 0:00:26.12

(50, 15) 93.129 31 P 0.0% 0.0% 0:00:24.51

CS 0.5029% 0.0734% 0:00:20.8

CS opt 0.0% 0.0% 0:00:19.9

AO 0.0105% 0.0% 0:00:02.9

NP - - 0:00:27.16

(10, 10) 504.226 31 P 0.0% 0.0% 0:00:59.36
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CS 0.0339% 0.0% 0:00:17.85

CS opt 0.0% 0.0% 0:00:19.76

AO 0.0% 0.0% 0:00:12.77

NP - - 0:00:23.47

(10, 15) 4301.645 31 P 0.0% 0.0% 0:09:30.88

CS 0.219% 0.0176% 0:00:19.66

CS opt 0.0% 0.0% 0:00:42.47

AO 0.0031% 0.0% 0:02:11.27

NP - - 0:00:23.22

Table A.4.1: Summary of results and times taken by N and M . Referred to in

Section 2.5.3.

A.4.2 Results by |I|

|I| Count Algorithm Avg. p-APG Avg. y-APG Avg. t.t.

392 27 P 0.0% 0.0% 0:00:33.63

CS 0.0234% 0.0% 0:00:06.37

CS˙opt 0.0% 0.0% 0:00:08.01

AO 0.002% 0.0% 0:00:23.53

NP - - 0:00:00.84

512 45 P 0.0% 0.0% 0:00:31.88

CS 0.0952% 0.0024% 0:00:06.54

CS˙opt 0.0% 0.0% 0:00:08.05
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AO 0.0% 0.0% 0:00:20.86

NP - - 0:00:00.78

567 45 P 0.0% 0.0% 0:00:37.09

CS 0.0572% 0.0107% 0:00:06.61

CS˙opt 0.0% 0.0% 0:00:08.28

AO 0.0116% 0.0% 0:00:25.75

NP - - 0:00:00.98

2187 27 P 0.0% 0.0% 0:01:42.9

CS 0.0536% 0.0% 0:00:08.72

CS˙opt 0.0% 0.0% 0:00:11.69

AO 0.0259% 0.0005% 0:00:25.93

NP - - 0:00:04.25

2592 45 P 0.0% 0.0% 0:01:42

CS 0.0043% 0.0% 0:00:09.69

CS˙opt 0.0% 0.0% 0:00:12.82

AO 0.0061% 0.0246% 0:00:26.58

NP - - 0:00:06.18

8192 45 P 0.0% 0.0% 0:02:12.72

CS 0.3465% 0.0506% 0:00:25.62

CS˙opt 0.0% 0.0% 0:00:29.35

AO 0.0052% 0.2903% 0:00:19.04
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NP - - 0:00:32.2

20000 45 P 0.0% 0.0% 0:02:44.25

CS 0.0% 0.0% 0:01:27.85

CS˙opt 0.0% 0.0% 0:01:31.68

AO 0.0% 0.5332% 0:00:21.16

NP - - 0:01:53.93

Table A.4.2: Summary of results and times taken by size of I. Referred to in Sec-

tion 2.5.3.

A.5 Tables of Notation

A.5.1 General Model Notation

Notation Meaning

T Number of days in a plan

K Maximum number of days a job can be pulled forward

t, t1, t2 A day in the plan, value in {1, . . . , T}

yt1,t2 Number of jobs to pull forward from day t1 ∈ {2, . . . , T} to

t2 ∈ {max t1 −K, 1, . . . , t1 − 1}.

Rt Number of jobs to roll over from day t to t+ 1.

at Cost of a job rolling over from day t to t+ 1.

ct Number of hours of capacity available on day t.
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Dt Number of jobs currently due on day t.

N0 Set of non-negative integers.

It Random variable representing number of jobs arriving be-

tween the time of planning and day t that will be due on

day t (intake).

it Realisation of It.

Ri Realisation of R = (R1, . . . , RT ) corresponding to realisa-

tion i of I.

It Set of all possible realisations of It.

I Set of all possible realisations of the vector of intakes I.

P General ambiguity set constaining distributions of intake.

P A discrete probability distribution over the set of intakes I.

Q Nominal distribution of intake.

imax
t The maximum value It can take.

pt A variable representing success probability parameter of the

binomial distribution of intake It.

p0t True success probability of intake It.

p̂t MLE of p0t taken from N samples of It.

P p Binomial distribution of intake with success probability pa-

rameter p.

P̂ MLE of distribution resulting from p = p̂.
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PΘ Set of all probability distributions P that are binomial with

a value p ∈ Θ.

Θ Set of vectors p obtained from a distribution P in PΘ.

Θα 100(1− α)% confidence set for p0 around the MLE P̂ .

Θ′
α A discretisation of Θα.

Table A.5.1: General model notation from Section 2.3.

A.5.2 Non-parametric Model Notation

Notation Meaning

ϕ ϕ-divergence function.

dϕ ϕ-divergence measure resulting from ϕ-divergence function

ϕ.

ϕ∗ Conjugate of ϕ-divergence function ϕ.

ϕmχ2 ϕ-divergence function for modified χ2 distance.

χ2
o,1−α 100(1 − α)% percentile of χ2 distribution with o degrees of

freedom.

Pκ Non-parametric confidence set for true distribution P 0.

η, ν Lagrange multipliers for SQP reformulation of NP model.

uj, ζj, sj Dummy variables used to reformulate NP model.

κ Maximum distance, measured by dϕ, from Q that P can be

under the non-parametric model.
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∂f(x) Set of subgradients of a function f at a point x.

·∗ Optimal value of · under the non-parametric model, for · ∈

{R, s,P ,y, ν, η}.

Table A.5.2: Notation used in the non-parametric model in Section 2.3.3

A.5.3 CS/CS opt/AO Notation

Notation Meaning

k Index for the iteration of CS/CS opt algorithm that we are

currently carrying out.

pmax
t Maximum value that pt takes over p ∈ Θ.

Θmax
t Set of p parameters such that pt is maximised.

Θext Set of extreme parameters used by CS.

Θ̃ General ambiguity set used by CS algorithms. Θ̃ = Θ for

CS opt and Θ̃ = Θext for CS.

kmax Maximum number of iterations of CS/CS opt algorithm al-

lowed to run.

Θk Current subset of Θ being used at iteration k of CS/CS opt.

yk Pulling forward decision generated by solving outer problem

at iteration k of CS/CS opt.

pk Probability vector generated by solving distribution separa-

tion problem at iteration k of CS/CS opt.

ε Optimality tolerance of CS/CS opt algorithm.
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ϑk Objective value of problem obtained by solving outer prob-

lem at iteration k of CS.

β Minimum probability an intake must have of occurring in

order to be used in the AO algorithm.

Ĩ Set of intakes with probability of occurring higher than β.

Table A.5.3: Notation used in CS/AO Algorithms (Section 2.3.6)

A.5.4 Input Parameter and Results Notation

Notation Meaning

F Set of pairs of days between which pulling forward is allowed.

F+(c,D) Set of pairs of days between which pulling forward is feasible

given c and D.

n(imax) Number of days with maximum intake higher than remain-

ing capacity given imax, c, and D.

M Number of values each probability in p can take in our dis-

cretised ambiguity set.

î MLE of mean intake vector.

κ Maximum distance from P̂ we allow P to be under NP,

measured by the chosen ϕ-divergence.

Table A.5.4: Input parameter notation used in Section 2.4



APPENDIX A. DISTRIBUTIONALLY ROBUST RESOURCE PLANNING 240

Notation Meaning

f(y,p) Shorthand for expected rollover cost given pulling forward

decision y and distribution parameter p.

x An algorithm, namely in {S&S,CS,AO}.

yx,px y,p solution obtained by algorithm x.

gp(y
x,px) p-gap of algorithm x’s solution. The difference between the

worst-case expected cost for yx and the expected cost ob-

tained by the algorithm.

z∗ Overall optimal objective value.

gp(y
x) y-gap. Difference between worst-case expected cost for yx

over all distributions and the overall optimal objective value.

Table A.5.5: Results analysis notation from Section 2.5



Appendix B

Parametric Distributionally Robust

Optimisation Models for Budgeted

Multi-period Newsvendor

Problems

B.1 Proof of Theorem 3.3.1

Proof. To prove this theorem, we need to differentiate the objective function. To do

so, firstly we evaluate the expected values. For ease of notation, let Qt =
∑t

l=1 ql and

Yt =
∑t

l=1Xl. Then, F̃t and f̃t are the CDF and PDF of Yt. In addition, we have:

EF
[
I+t
]
= EF [max(It, 0)]

241
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= P(It ≥ 0)EF (It|It ≥ 0)

= P(Yt ≤ Qt)EF (Qt − Yt|Yt ≤ Qt)

= F̃t (Qt)
[
Qt − EF̃t

(Yt|Yt ≤ Qt)
]

where F̃t and f̃t are the CDF and PDF of Yt. Now note that we have:

∂F̃t (Qt)

∂qj
=


f̃t (Qt) if j ≤ t,

0 otherwise

.

To differentiate the expected values we need the following. Firstly, the random vari-

able Yt|Yt ≤ Qt is Yt truncated above at Qt. Therefore, the PDF of this random

variable is:

f̄t(u) =


f̃t(u)

F̃t(Qt)
if u ≤ Qt

0 otherwise

and therefore:

EF̃t
(Yt|Yt ≤ Qt) =

∫ ∞

−∞
uf̄t(u)du =

∫ Qt

−∞ uf̃t(u)du

F̃t (Qt)
.

This means that:

EF [I+t ] = F̃t (Qt)

[
Qt −

∫ Qt

−∞ uf̃t(u)du

F̃t (Qt)

]

= F̃t (Qt)Qt −
∫ Qt

−∞
uf̃t(u)du.

Applying the second fundamental theorem of calculus and the chain rule we find that:

∂

∂qj

∫ Qt

−∞
uf̃t(u)du =

∂

∂qj

[∫ uf̃t(u)du

] ∣∣∣∣∣
u=Qt

− lim
v→−∞

[∫
uf̃t(u)du

] ∣∣∣∣∣
u=v


=

∂

∂qj

[∫
uf̃t(u)du

] ∣∣∣∣∣
u=Qt
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=
(
Qt × f̃t (Qt)

)
× ∂

∂qj
Qt

= Qt × f̃t (Qt)

for j ≤ t and 0 otherwise. Therefore:

∂

∂qj
EF [I+t ] = f̃t (Qt)Qt + F̃t (Qt)− f̃t (Qt)Qt

= F̃t (Qt) .

for j ≤ t and 0 otherwise. Similarly, we can find that:

EF
[
I−t
]
= EF [max(−It, 0)]

= −P(It ≤ 0)EF (It|It ≤ 0)

=
(
F̃t (Qt)− 1

)
Qt +

∫ ∞

Qt

uf̃t(u)du.

Applying the same calculus as before, we find:

∂

∂qj

∫ ∞

Qt

uf̃t(u)du = −Qt × f̃t (Qt) .

Hence:

∂

∂qj
EF [I−t ] = f̃t (Qt)Qt +

(
F̃t (Qt)− 1

)
−Qt × f̃t (Qt)

= F̃t (Qt)− 1

for j ≤ t, 0 otherwise. Hence, we have:

∂

∂qj
CF (q) = c

(
F̃T (QT )− 1

)
+

T∑
t=j

[
(h+ b)F̃t (Qt)− b

]
+ wj

=
T∑
t=j

[
(h+ b+ c1{t = T})F̃t (Qt)− b

]
+ wj − c.
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Note that this means that the stationarity condition (3.3.5) is equivalent to:

T∑
t=j

[
(h+ b+ c1{t = T})F̃t (Q∗

t )− b
]
= c− (1 + ν)wj ∀ j = 1, . . . , T.

Now, assume that q∗ is as given in (3.3.9). Then, by condition 1. and 2. in Theo-

rem 3.3.1, we have:

b− (1 + ν)(wt − wt+1)

h+ b
≥ 0 ∀ t ∈ {1, . . . , T − 1}, (B.1.1)

b+ c− (1 + ν)wt
h+ c+ b

≥ 0, (B.1.2)

and since wt − wt+1 ≥ 0, we also have:

b− (1 + ν)(wt − wt+1)

h+ b
≤ b

h+ b
≤ 1 ∀ t ∈ {1, . . . , T − 1},

b+ c− (1 + ν)wT
h+ c+ b

≤ b+ c

h+ b+ c
≤ 1.

Hence, the left hand sides of (B.1.1) and (B.1.2) lie between 0 and 1, meaning the

inverse CDFs are defined at these points. Hence, q∗ is well-defined. Now, note that

we have:

t∑
l=1

q∗l =


F̃−1
t

(
b−(1+ν)(wt−wt+1)

h+b

)
if t < T,

F̃−1
T

(
b−(1+ν)wT+c

h+b+c

)
if t = T.

Substituting (3.3.9) in to the Lagrangian’s derivative, we get:

∂

∂qj
L(q∗, ν) =

T−1∑
t=j

[b− (1 + ν)(wt − wt+1)− b] + [b− (1 + ν)wT + c− b]− c+ (1 + ν)wj

=
T−1∑
t=j

[(1 + ν)(wt+1 − wt)]− (1 + ν)wT + (1 + ν)wj

= (1 + ν)(wT − wj)− (1 + ν)(wT − wj)

= 0.

Hence, the stationarity condition is satisfied.
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B.2 Details on FD and its Benchmarks

B.2.1 Deriving FD

The general idea of our algorithm is similar to the multi-product algorithm of Alfares

and Elmorra (2005). A high-level outline of their algorithm is as follows:

1. Set ν = 0 (i.e. no budget constraint) and solve using KKT conditions, setting

negative order quantities to zero.

2. If budget constraint is met then go to step 5. Else go to step 3.

3. Starting from ν = 0 increase ν until the first occurrence of either of the following:

(a) An order quantity becomes negative. Go to step 4.

(b) Budget constraint met. Go to step 5.

4. Set the negative order quantity to zero, remove from the set of products and go

to step 1.

5. Return solution.

In essence, we solve with no constraints, and increase the Lagrange multiplier ν (e.g.,

by line search) until either the solution becomes feasible, or one order quantity be-

comes negative. If an order quantity becomes negative, we remove the corresponding

product from consideration and start again. The main difference between our model

and that of Alfares and Elmorra (2005) is the structure of the optimal KKT solution

that results from the inventory tracking. Their solution is of the form:

ql = F−1(Pl) ∀ l ∈ {1, . . . , L},
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for some CDF F and probability Pl. This means that the optimal unconstrained

orders for different items are independent. However, our solution is of the form:

q∗t = F̃−1
t (Pt)− F̃−1

t−1(Pt−1), (B.2.1)

where the subtraction of F̃−1
t−1(Pt−1) is done to ensure that

t∑
l=1

q∗l = F̃−1
t (Pt). (B.2.2)

This relation holding true is what ensures that our KKT conditions are met. In the

algorithm of Alfares and Elmorra (2005), when an item is removed and set to zero,

this is because its marginal profit has become negative. Therefore, if we continue

to increase ν then this value will become negative and stay negative. We can apply

similar logic to our problem, with one slight difference. When Alfares and Elmorra

set one variable to zero, the other variables can be found via their respective formulas

and the corresponding derivatives will still be zero. However, if we set q∗t−1 = 0 then

the value of q∗t from (B.2.1) will not give (B.2.2). In fact, q∗t−1 being zero gives:

t∑
l=1

q∗l =
t−2∑
l=1

q∗l + q∗t

= F̃−1
t−2(Pt−2) + (F̃−1

t (Pt)− F̃−1
t−1(Pt−1)).

In order to satisfy (B.2.2), the optimal value of q∗t becomes F̃−1
t (Pt) − F̃−1

t−2(Pt−2).

Hence, when we remove a day from the set of days, we need to adjust the remaining

orders as well. Suppose we have a set T 0 of days that have been set to zero per-

manently. Then, when re-calculating our next solution we use q = q̃∗, where q̃∗ is

defined by (3.3.10). This solution subtracts the sum of all previous orders from each

order to ensure that (B.2.2) holds.
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B.2.2 FD’s Line Search Algorithm

The line search algorithm inside FD works as follows:

1. Initialise ν = 0, select scaling parameter τ ∈ (0, 1), stepsize δ, minimum stepsize

δmin, budget tolerance ε̃.

2. Set q′ = q = q̃∗(ν), if
∑T

t=1 qt ≤ W then set done = True, else set done =

False.

3. While not done:

(a) While ν + δ > νUB:

i. δ = τδ.

ii. δmin = min{δ, δmin}.

(b) Set ν ′ = ν + δ, q′ = q̃∗(ν ′):

i. If either
∑T

t=1wtq
′
t > W or δ = δmin, then set ν = ν ′.

ii. Otherwise, define δ′ = τδ. If δ′ ≤ δmin then set δmin = δ. Otherwise

set δ = δ′ and q′ = q.

(c) If either
(
|
∑T

t=1 q
′
t −W | ≤ ε̃ and q′t ≥ 0 ∀ t ∈ T

)
or min q′ < 0, set done =

True.

The idea of the algorithm is as follows. We first evaluate q̃∗(0) and if this solution

is feasible, we return this solution. If not, we know that ν needs to be increased in

order to either make the solution feasible or make an order quantity negative. Step 3

therefore increases ν until one of these situations occurs.
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Step 3(a) reduces δ until ν ′ = ν + δ < νUB if this does not hold already. This is to

ensure that we can get arbitrarily close to νUB in order to find the first negative or

feasible order. Then, in step 3(b), we evaluate the order quantities for ν ′ = ν + δ.

If the new solution q′ does not satisfy the budget constraint, then we move to 3(c)

and check whether any orders are negative. If there is a negative order, we know

that this occurs before the budget constraint is met, so the algorithm ends. If there

are no negative orders, we know that ν has to be increased further and we go to

3(a). If
∑T

t=1wtq
′
t ≤ W in 3(b)i, then we have found a solution that satisfies the

budget constraint. Therefore, we need to decide if this is the first such solution, or if

a smaller ν can be found that also achieves this. If δ = δmin (which is 10−100 in our

experiments), then it is very unlikely that this is not the first solution that satisfies

the budget constraint. Hence, we move to 3(c). If, on the other hand, δ > δmin, then

it is possible that we have skipped over the first solution that satisfies the budget

constraint. Hence, we reduce δ in step 3(b)ii. This means that, if we need to go back

to 3(a), our next solution will be closer to the first solution that satisfies the budget

constraint.

B.2.3 FD’s Benchmark Algorithms

The algorithms that we compare FD with are described in more detail as follows:

1. SLSQP: Sequential Least Squares Quadratic Programming (Kraft, 1988). This

is an algorithm that can be found in Python’s baseline package for scientific

computing, Scipy (Virtanen et al., 2020). The algorithm is a line search algo-
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rithm, where at each iteration the next search direction is chosen by solving a

quadratic programming relaxation of the problem’s Lagrangian. The algorithm

ends when the gradient of the true objective function is sufficiently small at the

candidate solution.

2. TC: Trust Constraint (Conn et al., 2000). This is a trust region algorithm

that can be found in Scipy. Trust region algorithms are similar to line search

algorithms, but where the next solution is generated by solving an approximate

version of the model over a region where the approximation is “trusted”. In each

iteration, the ratio of the improvement in the true objective function versus the

approximate objective function is used to determine whether the region should

be enlarged or reduced. The algorithm ends when the gradient of the true

objective function is sufficiently small at the candidate solution.

3. PLA: Piecewise Linear Approximation. This entails using a piecewise linear ap-

proximation to the objective function, allowing it to be solved by Gurobi (Gurobi

Optimization, LLC, 2022).

B.3 Appendix for Normally Distributed Demands

B.3.1 Proof of Lemma 3.4.1

Proof. Again, let Qt =
∑t

l=1 ql and Yt =
∑t

l=1Xl. Since the Xt’s are independent

normal, random variables, we have:

Yt ∼ N

(
t∑
l=1

µl,

t∑
l=1

σ2
l

)
,
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Furthermore, since It = Qt − Yt, we have:

It ∼ N

(
Qt −

t∑
l=1

µl,
t∑
l=1

σ2
l

)
∀ t = 1, . . . , T,

Furthermore, It|It ≥ 0 is a normal random variable truncated below at 0. Therefore,

by Barr and Sherrill (1999), we have:

Eθ(It|It ≥ 0) =

(
Qt −

t∑
l=1

µl

)
+

ϕ(βt)

1− Φ(βt)

√√√√ t∑
l=1

σ2
l ,

where

βt =
0− Eθ(It)√
Varθ(It)

=

∑t
l=1 µl −Qt√∑t

l=1 σ
2
l

.

Therefore, we have:

Eθ[I
+
t ] = P(It ≥ 0)Eθ[It|It ≥ 0]

= P(Yt ≤ Qt)Eθ[It|It ≥ 0]

= Φ(−βt)

(Qt −
t∑
l=1

µl

)
+

ϕ(βt)

1− Φ(βt)

√√√√ t∑
l=1

σ2
t


= Φ(−βt)

(
Qt −

t∑
l=1

µl

)
+ ϕ(βt)

√√√√ t∑
l=1

σ2
l ,

Similarly, we have:

Eθ[I
−
t ] = Eθ[max{−It, 0}]

= P(−It ≥ 0)Eθ[−It|−It ≥ 0]

= Φ(βt)

−

(
Qt −

t∑
l=1

µl

)
+

√√√√ t∑
l=1

σ2
l

ϕ(−βt)
1− Φ(−βt)


= Φ(βt)

(
t∑
l=1

µl −Qt

)
+ ϕ(βt)

√√√√ t∑
l=1

σ2
l ,
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This means we can write the objective function as:

Cθ(q) =
T∑
t=1

h
Φ(−βt)(Qt −

t∑
l=1

µl

)
+ ϕ(βt)

√√√√ t∑
l=1

σ2
l


+(b+ c1{t = T})

Φ(βt)( t∑
l=1

µl −Qt

)
+ ϕ(βt)

√√√√ t∑
l=1

σ2
l

+ wtqt − cµt


=

T∑
t=1

{
(h(Φ(βt)− 1) + (b+ c1{t = T})Φ(βt))

(
t∑
l=1

µl −Qt

)

+(h+ b+ c1{t = T})ϕ(βt)

√√√√ t∑
l=1

σ2
l + wtqt − cµt


=

T∑
t=1

{
((b+ c1{t = T}+ h)Φ(βt)− h)

(
t∑
l=1

µl −Qt

)

+(h+ b+ c1{t = T})ϕ(βt)

√√√√ t∑
l=1

σ2
l + wtqt − cµt


or

Cθ(q) =
T∑
t=1

(atΦ(βt)− h)
t∑
l=1

µl −Qt + atϕ(βt)

√√√√ t∑
l=1

σ2
l + qtwt − cµt

 .

Here 1{t = T} is 1 if t = T and 0 otherwise, and at = b+ c1{t = T}+ h.

B.3.2 Proof of Proposition 3.4.2

Proof. The likelihood function for the data is:

L(x|θ) =
N∏
n=1

fX(x|θ)

=
N∏
n=1

T∏
t=1

1

σt
√
2π

exp

(
− 1

2σ2
t

(xnt − µt)
2

)

∝

(
T∏
t=1

(σt)
−1

)N

× exp

(
−

N∑
n=1

T∑
t=1

1

2σ2
t

(xnt − µt)
2

)
.
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The log-likelihood is:

ℓ(θ) = −N
T∑
t=1

log(σt)−
N∑
n=1

T∑
t=1

1

2σ2
t

(xnt − µt)
2.

Taking derivatives, we find:

∂ℓ(θ)

∂µt
=

1

σ2
t

N∑
n=1

(xnt − µt)

∂ℓ(θ)

∂σt
= −N

σt
+

1

σ3
t

N∑
n=1

(xnt − µt)
2

∂2ℓ(θ)

∂µt∂σt
= − 2

σ3
t

N∑
n=1

(xnt − µt)

∂2ℓ(θ)

∂µ2
t

= −N

σ2
t

∂2ℓ(θ)

∂σt∂µt
= − 2

σ3
t

N∑
n=1

(xnt − µt)

∂2ℓ(θ)

∂σ2
t

=
N

σ2
t

− 3

σ4
t

N∑
n=1

(xnt − µt)
2,

and all other second partial derivatives are zero. As expected, this yields the MLEs:

µ̂t =
1

N

N∑
n=1

xnt

σ̂t =

√√√√ 1

N

N∑
n=1

(xnt − µ̂t)2.

The expected values of the non-zero second derivatives are given by:

Eθ

(
∂2ℓ(θ)

∂µt∂σt

)
= 0

Eθ

(
∂2ℓ(θ)

∂µ2
t

)
= −N

σ2
t

Eθ

(
∂2ℓ(θ)

∂σt∂µt

)
= 0

Eθ

(
∂2ℓ(θ)

∂σ2
t

)
=

−2N

σ2
t

.
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Therefore, the Fisher information matrix is given by:

IE(θ) =



N
σ2
1

0 . . . . . . . . . . . . . . . 0

0 N
σ2
2

0 . . . . . . . . . . . . 0

...
. . .

...

0 . . . 0 N
σ2
T

0 . . . . . . 0

0 . . . . . . 0 2N
σ2
1

0 . . . 0

0 . . . . . . . . . 0 2N
σ2
2

. . . 0

...
. . .

...

0 . . . . . . . . . . . . . . . 0 2N
σ2
T


Hence, by standard results in maximum likelihood theory (see e.g. Millar (2011)), we

have that (for large N):

θ̂ − θ0 ∼ N
(
0, I−1

E (θ0)
)
,

which is asymptotically equivalent to:

θ̂ − θ0 ∼ N
(
0, I−1

E (θ̂)
)
.

Therefore, for large N we have:

(θ̂ − θ0)IE(θ̂)(θ̂ − θ0)T ∼ χ2
2T .

In other words:

T∑
t=1

(
N

σ̂2
t

(
µ̂t − µ0

t

)2
+

2N

σ̂2
t

(
σ̂t − σ0

t

)2) ∼ χ2
2T .

Thus, we can create an approximate 100(1− α)% confidence set for θ0 using:

Θα =

{
(µ,σ) ∈ R2T :

T∑
t=1

(
N

σ̂2
t

(µ̂t − µt)
2 +

2N

σ̂2
t

(σ̂t − σt)
2

)
≤ χ2

2T,1−α

}
.
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B.3.3 Piecewise Linear Approximation of DRO Model

Since the objective function (3.4.4) is nonlinear, and also not quadratic, we use a

piecewise linear approximation (PLA) of the problem to solve it. In order to create a

PLA of the model, we must define a PLA of the entire non-linear part of the objective

function. Firstly, for i = 1, . . . , |Θ′
α| define βit =

∑t
l=1(µ

i
l−ql)√∑t

l=1(σ
i
l )

2
, where θi is the ith element

of Θ′
α. Let git(β

i
t) be the non-linear part of the objective function for day t, under

parameter θi ∈ Θ′
α. Then, g

i
t can be written as

git(β
i
t) =

√√√√ t∑
l=1

(σil)
2
{
(atΦ(β

i
t)− h)βit + atϕ(β

i
t)
}
, ∀ t = 1, . . . , T ∀ i = 1, . . . , |Θ′

α|.

In order to define a piecewise linear approximation of git, we need to define a set of

points Zi,t =
{
zi,t1 , . . . , z

i,t
J

}
such that zi,t1 ≤ βit ≤ zi,tJ ∀ q. In our experiments, we will

assume that these points are equally spaced, i.e. zi,tj = zi,tj−1 + ε, where ε is referred to

as a gap. Since βit =
∑t

l=1(µ
i
l−ql)√∑t

l=1(σ
i
l )

2
, we have:

(βit)
min :=

∑t
l=1

(
µil − W

wl

)
√∑t

l=1(σ
i
l)

2

≤ βit ≤
∑t

l=1 µ
i
l√∑t

l=1(σ
i
l)

2

=: (βit)
max

for each i = 1, . . . , |Θ′
α| and t = 1, . . . , T . The first inequality is due to two reasons.

Firstly, the maximum value ql can take is when all other orders are zero. Secondly,

this means that the budget constraint becomes wlql ≤ W i.e. ql ≤ W
wl
. The second

inequality is true since ql ≥ 0 ∀ l. We can therefore define Zi,t as follows:

Zi,t =

{
(βit)

min + jε : j = 0, . . . ,

⌊
(βit)

max − (βit)
min

ε

⌋}
.

The reason for having a different range for each (i, t) pair is that if we were to use

only one, this would be the largest range of all of the individual ranges. Having one
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for each pair allows us to reduce the number of points in total that are used to define

the piecewise linear model. Given the sets Zi,t, a piecewise linear approximation of git

is given by:

Gi
t(β

i
t) =

βit − zi,tj+1

zi,tj − zi,tj+1

git(z
i,t
j ) +

βit − zi,tj

zi,tj+1 − zi,tj
gt(z

i,t
j+1),

where j ∈ {1, . . . , J − 1} is chosen such that βit ∈ [zj, zj+1]. Given this, we can

construct a piecewise linear approximation of the DRO model via the following.

Firstly, create dual-indexed dummy decision variables β̃ = (β̃it)i∈{1,...,|Θ′
α|},t∈T and

g̃ = (g̃it)i∈{1,...,|Θ′
α|},t∈T such that an index i corresponds to the value of the variables

when the distribution is given by θi ∈ Θ′
α. Secondly, define a dummy variable θ to

represent the worst-case cost. Then, our piecewise linear model is given by:

min
q,g̃,β̃,ϑ

ϑ (B.3.1)

s.t. ϑ ≥
T∑
t=1

{
g̃it + qtwt − cµit

}
∀ i = 1, . . . , |Θ′

α| (B.3.2)

T∑
t=1

wtqt ≤ W, (B.3.3)

g̃it = Gi
t(β̃

i
t) ∀ t ∈ T , ∀ i = 1, . . . , |Θ′

α| (B.3.4)

β̃it =

∑t
l=1(µ

i
l − ql)√∑t

l=1(σ
i
l)

2

∀ t ∈ T , ∀ i = 1, . . . , |Θ′
α| (B.3.5)

qt ≥ 0 ∀ t ∈ T . (B.3.6)

Our numerical experiments are conducted using Gurobi and (B.3.1)-(B.3.6) is pre-

sented for reproducibility when using this solver. Here, (B.3.5) ensures that β̃it = βit .

We do not technically need a dummy variable for βit as it is linear in the ql, but

Gurobi requires the PLA function Gt to be evaluated at a decision variable. Then,
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(B.3.4) ensures that g̃it is equal to the PLA of gt evaluated at the dummy variable β̃it .

Constraint (B.3.2) ensures that the value of ϑ returned by the model is equal to the

worst-case expected cost for the chosen q.

B.3.4 Proof of Theorem 3.4.3

Proof. In order to differentiate the objective function, we first differentiate the various

terms. Let j ∈ {1, . . . , T}. Then µj and σj appear in the tth term of the sum for each

t ≥ j. In fact, recalling that βt =
−

∑t
l=1(ql−µl)√∑t

l=1 σ
2
l

, we have

∂βt
∂µj

=


0 if j > t,

1√∑t
l=1 σ

2
l

, if j ≤ t.

∂βt
∂σj

=


0 if j > t,

∑t
l=1(ql−µl)

σj(
∑t

l=1 σ
2
l )

3
2

if j ≤ t.

Using the chain rule, we then find that:

∂Φ(βt)

∂µj
=

ϕ(βt)√∑t
l=1 σ

2
l

∂Φ(βt)

∂σj
=

∑t
l=1(ql − µl)

σj
(∑t

l=1 σ
2
l

) 3
2

ϕ(βt)

=
−βt

σj
∑t

l=1 σ
2
l

ϕ(βt)

for j ≤ t. Furthermore, we have:

∂ϕ(βt)

∂µj
=

1√∑t
l=1 σ

2
l

(−βtϕ(βt))

∂ϕ(βt)

∂σj
=

−βt
σj
∑t

l=1 σ
2
l

(−βtϕ(βt))
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=
1

σj
∑t

l=1 σ
2
l

β2
t ϕ(βt)

Now, we can differentiate the objective as given in Lemma 3.4.1 to find:

∂Cθ(q)

∂µj
=

T∑
t=j

(atΦ(βt)− h) + at
ϕ(βt)√∑t

l=1 σ
2
l

t∑
l=1

(µl − ql)− at
βtϕ(βt)√∑t

l=1 σ
2
l

√√√√ t∑
l=1

σ2
l − c


and we can simplify this to:

∂Cθ(q)

∂µj
=

T∑
t=j

−h+ at

Φ(βt) +
ϕ(βt)√∑t

l=1 σ
2
l

t∑
l=1

(µl − ql)

− atβtϕ(βt)− c


=

T∑
t=j

{−h+ at (Φ(βt) + βtϕ(βt))− atβtϕ(βt)− c}

=
T∑
t=j

{atΦ(βt)− h− c}

Furthermore, with Σt =
√∑t

l=1 σ
2
l we have:

∂2Cθ(q)

∂µ2
j

=
T∑
t=j

at
ϕ(βt)

Σt

≥ 0

i.e. the objective is convex in each µj. We also have:

∂Cθ(q)

∂σj
=

T∑
t=j

at
(

−βtϕ(βt)
σj
∑t

l=1 σ
2
l

) t∑
l=1

(µl − ql) +
atϕ(βt)σj√∑t

l=1 σ
2
l

+ at

√√√√ t∑
l=1

σ2
l

α2
tϕ(βt)

σj
∑t

l=1 σ
2
l


=

T∑
t=j

at
 −α2

tϕ(βt)

σj

√∑t
l=1 σ

2
l

+
atϕ(βt)σj√∑t

l=1 σ
2
l

+ at
α2
tϕ(βt)

σj

√∑t
l=1 σ

2
l


=

T∑
t=j

atϕ(βt)σj√∑t
l=1 σ

2
l

≥ 0 ∀ j ∈ T .

Hence, Cθ(q) is increasing in σj for all j ∈ T .
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B.4 Appendix for Poisson Demands

B.4.1 Proof of Lemma 3.5.1

Proof. In order to evaluate the objective function, we need to evaluate Eλ[I
+
t ] and

Eλ[I
−
t ]. Recall that:

Eλ[I
+
t ] = Eλ[max{It, 0}]

Eλ[I
−
t ] = Eλ[max{−It, 0}]

where It =
∑t

l=1(qt − Xt), P(It ≥ 0) = P
(∑t

l=1Xl ≤
∑t

l=1 ql
)
and Eλ[It|It ≥ 0] =∑t

l=1 ql − Eλ[
∑t

l=1Xl|
∑t

l=1Xl ≤
∑t

l=1 ql]. To simplify notation, let us define Qt =∑t
l=1 ql and Λt =

∑t
l=1 λl. Now, we can calculate the expected values as follows:

Eλ[max{It, 0}] = Eλ

[
max

{
Qt −

t∑
l=1

Xl, 0

}]

=
∞∑
x=0

max{Qt − x, 0}f̃t(x)

=

Qt∑
x=0

(Qt − x)f̃t(x)

= QtF̃t(Qt)−
Qt∑
x=0

x
(Λt)

x exp (−Λt)

(x)!

= QtF̃t(Qt)−
Qt∑
x=1

(Λt)
x exp (−Λt)

(x− 1)!

= QtF̃t(Qt)− Λt

Qt∑
x=1

(Λt)
x−1 exp (−Λt)

(x− 1)!

= QtF̃t(Qt)− ΛtF̃t(Qt − 1),

where f̃t and F̃t are the PMF and CDF of
∑t

l=1Xl. Similarly, we have:

Eλ[max{−It, 0}] =
∞∑
x=0

max{x−Qt, 0}f̃t(x)
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=
∞∑

x=Qt+1

(x−Qt)f̃t(x)

= −Qt(1− F̃t(Qt)) +
∞∑

x=Qt+1

x
(Λt)

x exp (−Λt)

(x)!

= −Qt(1− F̃t(Qt)) + Λt −
Qt∑
x=0

x
(Λt)

x exp (−Λt)

(x)!

= −Qt(1− F̃t(Qt)) + Λt −
Qt∑
x=1

(Λt)
x exp (−Λt)

(x− 1)!

= −Qt(1− F̃t(Qt)) + Λt(1− F̃t(Qt − 1)).

This gives the following objective function (with at = b+ c1{t = T}+ h):

Cλ(q) = cEλ[I
−
T ] +

T∑
t=1

(hEλ[I
+
t ] + bEλ[I

−
t ] + wtqt − cEλ[Xt])

=
T∑
t=1

(hEλ[I
+
t ] + (b+ c1{t = T})Eλ[I

−
t ] + wtqt − cEλ[Xt])

=
T∑
t=1

(
h(QtF̃t(Qt)− ΛtF̃t(Qt − 1)) + (b+ c1{t = T})(−Qt(1− F̃t(Qt))

+Λt(1− F̃t(Qt − 1))) + wtqt − cλt

)
=

T∑
t=1

(
atQtF̃t(Qt)− ΛtatF̃t(Qt − 1) + (b+ c1{t = T})(Λt −Qt) + wtqt − cλt

)
,

as required.

B.4.2 Proof of Proposition 3.5.2

Proof. By standard results in maximum likelihood estimation (Millar, 2011), for large

N we have the approximate result that:

λ̂t ∼ N
(
λ0t ,

λ0t
N

)
,
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or equivalently:

λ̂t ∼ N

(
λ0t ,

λ̂t
N

)
.

Now, by independence of the T MLEs, we have the approximate result that:

T∑
t=1

N

λ̂t
(λ̂t − λ0t )

2 ≤ χ2
T .

Hence, we can calculate an approximate 100(1− α)% confidence set for λ0 using:

Θα =

{
λ ∈ RT

+ :
T∑
t=1

N

λ̂t
(λ̂t − λ0t )

2 ≤ χ2
T,1−α

}
.

B.4.3 Piecewise Linear DRO Model

Note that, for Poisson demands, the objective function is already piecewise linear.

The Poisson CDF F̃t is piecewise constant and hence piecewise linear. In addition,

the non-linear term QtF̃t(Qt) is piecewise linear, since F̃t(Qt) is piecewise constant.

Since F̃t(Qt) is constant on the interval [Qt, Qt + 1) for any Qt ∈ N0, the objective

function is linear in these intervals. Therefore, we only need to consider ε = 1 as

the gap between points for this model, and in addition the piecewise linear objective

function is not approximate.

We now present the piecewise linear model formulation, for reproducibility when using

Gurobi. Despite the fact that the cost function is already piecewise linear, we still

use Gurobi’s piecewise linear constraints in order to formulate the model. In order to

do so, define λi as the ith element of Θ′
α and define:

Di
t(Q) = atQF̃

i
t (Q)− ΛitatF̃

i
t (Q− 1) + (b+ c1{t = T})(Λit −Q) + wtQ− cλit
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for each i = 1, . . . |Θ′
α| and t = 1, . . . , T , where F̃ i

t is the CDF of
∑t

l=1Xl under λ
i.

To define the piecewise linear constraint in Gurobi, we need a set U t = {ut1, . . . , utJ ′}

for each t ∈ T such that ut1 ≤ Qt ≤ utJ ′ holds for any q. Since Qt =
∑t

l=1 ql, it is easy

to see that:

0 ≤ Qt ≤
t∑
l=1

W

wl
∀ t = 1, . . . , T.

Hence, we take U t =
{
0, 1, . . . ,

∑t
l=1

W
wl

}
as our points for each t. Then, the model

can be formulated using:

min
q,Q,d,ϑ

ϑ

s.t. ϑ ≥
T∑
t=1

dit ∀ i = 1, . . . , |Θ′
α|,

Qt =
t∑
l=1

qt ∀ t = 1, . . . , T,

dit = Di
t(Qt), ∀ i = 1, . . . , |Θ′

α| ∀ t = 1, . . . , T

T∑
t=1

wtqt ≤ W

qt ∈ N0 ∀ t = 1, . . . , T.

B.4.4 Proof of Theorem 3.5.3

Proof. In order to differentiate Cλ(q), we first differentiate the Poisson CDF to find

that:

∂F̃t(Qt)

∂λj
=

∂

∂λj

(
Qt∑
x=0

exp (−Λt) (Λt)
x

x!

)

=

Qt∑
x=0

− exp (−Λt) (Λt)
x + exp (−Λt)x (Λt)

x−1

x!
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=

Qt∑
x=1

exp (−Λt) (Λt)
x−1

(x− 1)!
−

Qt∑
x=0

exp (−Λt) (Λt)
x

x!

=

Qt−1∑
x=0

exp (−Λt) (Λt)
x

x!
−

Qt∑
x=0

exp (−Λt) (Λt)
x

x!

= F̃t(Qt − 1)− F̃t(Qt)

= −f̃t(Qt)

for j ≤ t. Similarly,

∂F̃t(Qt − 1)

∂λj
= −f̃t(Qt − 1) (j ≤ t).

Hence, using the expression given in Lemma 3.5.1, we have:

∂Cλ(q)

∂λj
=

T∑
t=j

(
−atQtf̃t(Qt) + Λtatf̃t(Qt − 1)− atF̃t(Qt − 1) + (at − h)− c

)
(B.4.1)

=
T∑
t=j

(
−atF̃t(Qt − 1) + (at − h)− c

)
(B.4.2)

where (B.4.2) is true because:

Qtf̃t(Qt) = Qt
exp(−Λt)(Λt)

Qt

Qt!

=
exp(−Λt)(Λt)

Qt

(Qt − 1)!

= Λtf̃t(Qt − 1).

Differentiating again, we find:

∂2Cλ(q)

∂λ2j
=

T∑
t=j

atf̃t(Qt − 1)

≥ 0 ∀ j = 1, . . . , T.

Therefore, the objective function is convex in λj for each j.



Appendix C

Robust Markov Decision Processes

Under Parametric Transition

Distributions

C.1 Derivation of Reformulation of Robust Bell-

man Update

C.1.1 General Reformulation

The inner problem of (4.3.2) can be written as:

min
Ps

∑
a∈A

πs,a
∑
s′∈S

Ps,a,s′Bs,a,s′

s.t.
∑
a∈A

da(Ps,a, P̂s,a) ≤ κ

263
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∑
s′∈S

Ps,a,s′ = 1 ∀ a ∈ A,

with Bs,a = rs,a + γv and v = vn. The Lagrangian of this problem is given by:

L(π,ν, η) =
∑
a∈A

πs,a
∑
s′∈S

Ps,a,s′Bs,a,s′ + η

(∑
a∈A

da(Ps,a, P̂s,a)− κ

)
+
∑
a∈A

νa

(
1−

∑
s′∈S

Ps,a,s′

)

= −κη + ν +
∑
a∈A

∑
s′∈S

[
πs,aPs,a,s′Bs,a,s′ + ηP̂s,a,s′ϕ

(
Ps,a,s′

P̂s,a,s′

)
− νaPs,a,s′

]
,

with ν =
∑

a∈A νa. Therefore, the objective of the dual of the inner problem is given

by:

g(ν, η) = inf
Ps≥0

{
−κη + ν +

∑
a∈A

∑
s′∈S

[
πs,aPs,a,s′Bs,a,s′ + ηP̂s,a,s′ϕ

(
Ps,a,s′

P̂s,a,s′

)
− νaPs,a,s′

]}

= −κη + ν +
∑
a∈A

∑
s′∈S

inf
Ps,a,s′≥0

{
πs,aPs,a,s′Bs,a,s′ + ηP̂s,a,s′ϕ

(
Ps,a,s′

P̂s,a,s′

)
− νaPs,a,s′

}

= −κη + ν +
∑
a∈A

∑
s′∈S

ηP̂s,a,s′ inf
Ps,a,s′≥0

{
Ps,a,s′

P̂s,a,s′

πs,aBs,a,s′

η
+ ϕ

(
Ps,a,s′

P̂s,a,s′

)
− νa

η

Ps,a,s′

P̂s,a,s′

}

= −κη + ν +
∑
a∈A

∑
s′∈S

ηP̂s,a,s′ inf
Ps,a,s′≥0

{
Ps,a,s′

P̂s,a,s′

πs,aBs,a,s′ − νa
η

+ ϕ

(
Ps,a,s′

P̂s,a,s′

)}

= −κη + ν −
∑
a∈A

∑
s′∈S

ηP̂s,a,s′ sup
Ps,a,s′≥0

{
Ps,a,s′

P̂s,a,s′

νa − πs,aBs,a,s′

η
− ϕ

(
Ps,a,s′

P̂s,a,s′

)}

= −κη + ν −
∑
a∈A

∑
s′∈S

ηP̂s,a,s′ϕ
∗
(
νa − πs,aBs,a,s′

η

)
.

Here, we used inf(A) = − sup(−A) for any set A in order to replace inf with sup.

Therefore, the dual of the inner problem is given by:

max
η,ν

{
−κη + ν −

∑
a∈A

∑
s′∈S

ηP̂s,a,s′ϕ
∗
(
νa − πs,aBs,a,s′

η

)
: η ∈ R+,ν ∈ RA

}
.

Combining with the outer problem, our reformulation is given by:

max
πs,η,ν

{
−κη + ν −

∑
a∈A

∑
s′∈S

ηP̂s,a,s′ϕ
∗
(
νa − πs,aBs,a,s′

η

)}
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s.t.
∑
a∈A

πs,a = 1

πs,a ≥ 0 ∀ (s, a) ∈ S ×A

η ∈ R+,ν ∈ RA.

C.1.2 Reformulation for Modified χ2-divergence

For the modified χ2-divergence, we have:

ϕ∗(z) = max
{
1 +

z

2
, 0
}2

− 1.

Hence, we have:

ηϕ∗
(
νa − πs,aBs,a,s′

η

)
= ηmax

{
1 +

νa − πs,aBs,a,s′

2η
, 0

}2

− η

=
1

4η
max {2η + νa − πs,aBs,a,s′ , 0}2 − η.

We can reformulate this using conic quadratic constraints as follows. Firstly, define

the dummy variables ζs,a,s′ for a ∈ A and s′ ∈ S using the following constraints:

ζs,a,s′ ≥ 2η + νa − πs,aBs,a,s′ ∀ a ∈ A ∀ s′ ∈ S

ζs,a,s′ ≥ 0 ∀ a ∈ A ∀ s′ ∈ S.

Now define dummy variables us,a,s′ ∀ a ∈ A ∀ s′ ∈ S using:

us,a,s′ ≥
ζ2s,a,s′

η

which is equivalently represented by:

√
4ζ2s,a,s′ + (η − us,a,s′)2 ≤ (η + us,a,s′).
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Then, at optimality we will have ηϕ∗
(
νa−πs,aBs,a,s′

η

)
= 1

4
us,a,s′−η. Therefore, the CQP

reformulation of (4.3.2) is given by:

max
πs

{
ν + η(A− κ)− 1

4

∑
a∈A

∑
s′∈S

P̂s,a,s′us,a,s′

}

s.t.
√

4ζ2s,a,s′ + (η − us,a,s′)2 ≤ (η + us,a,s′) ∀ a ∈ A ∀ s′ ∈ S

ζs,a,s′ ≥ 2η + νa − πs,aBs,a,s′ ∀ a ∈ A ∀ s′ ∈ S

ζs,a,s′ ≥ 0 ∀ a ∈ A ∀ s′ ∈ S

us,a,s′ ≥ 0 ∀ a ∈ A ∀ s′ ∈ S∑
a∈A

πs,a = 1

πs,a ≥ 0 ∀ a ∈ A

η ≥ 0

ν ∈ RA.

Note that the term Aη comes from
∑

a∈A
∑

s′∈S P̂s,a,s′η = Aη.

C.2 Solving Modified χ2-divergence Projection Prob-

lems

Since we focus on the modified χ2-divergence in this paper, we will describe the

method for this distance only.
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C.2.1 Solution by Sorting and Subproblems

The method used by Ho et al. (2022) consists of the following steps. Firstly, use

Lagrangian duality to reformulate the projection problem (4.3.7) as:

max
ξ,ψ

− βξ + ψ −
∑
s′∈S

P̂s,a,s′ϕ
∗(−ξbs′ + ψ)

s.t. ξ ∈ R+, ψ ∈ R.

Then, recalling that ϕ∗(z) = max
{
1 + z

2
, 0
}2 − 1, we wish to eliminate the max

operator in order to make the model tractable. In order to do so, we observe that at

optimality, we necessarily have that ϕ∗(−ξbs′ +ψ) = −1 holds for exactly Ŝ values of

s′, for some Ŝ ∈ {0, . . . , S}. In order to find the optimal solution, we can therefore

solve the model resulting from enforcing each value of Ŝ explicitly, and select the

solution with the best objective value. In order to do so, w.l.o.g. we sort the elements

of b so that they are non-increasing. Then, for each Ŝ ∈ {0, . . . , S} we create a

subproblem of the reformulated projection problem by constraining ξ, ψ to enforce

that ϕ∗(−ξbs′ + ψ) = −1 for each s′ ∈ {1, . . . , Ŝ}. The final term in the objective

function becomes:

−
∑
s′∈S

P̂s,a,s′ϕ
∗(−ξbs′ + ψ) =

Ŝ∑
s′=1

P̂s,a,s′ −
S∑

s′=Ŝ+1

P̂s,a,s′

((
1 +

−ξbs′ + ψ

2

)2

− 1

)

=
Ŝ∑

s′=1

P̂s,a,s′ −
S∑

s′=Ŝ+1

P̂s,a,s′

(
(−ξbs′ + ψ) +

(−ξbs′ + ψ)2

4

)
.

Therefore, the subproblem is given by (C.2.1)-(C.2.4).

max
ξ,ψ

− βξ + ψ +
Ŝ∑

s′=1

P̂s,a,s′ −
S∑

s′=Ŝ+1

P̂s,a,s′

(
(−ξbs′ + ψ) +

(−ξbs′ + ψ)2

4

)
(C.2.1)

s.t. − ξbs′ + ψ ≤ −2 ∀ s′ ∈ {1, . . . , Ŝ} (C.2.2)



APPENDIX C. ROBUST MARKOV DECISION PROCESSES 268

− ξbs′ + ψ ≥ −2 ∀ s′ ∈ {Ŝ + 1, . . . , S} (C.2.3)

ξ ∈ R+, ψ ∈ R. (C.2.4)

Note that for Ŝ = 0, constraint (C.2.2) is redundant and can be removed. Similarly,

for Ŝ = S, constraint (C.2.3) can be removed. Given this formulation, the solution of

the subproblem is obtained from solving at most 3 problems, each with an analytical

solution. By Ho et al. (2022), for a fixed Ŝ and ξ, the solution of this subproblem in

ψ is given by:

ψ∗ =



−2 + ξbŜ+1 if H(ξ) ≤ −2 + ξbŜ+1

−2 + ξbŜ if H(ξ) ≥ −2 + ξbŜ

H(ξ) otherwise,

(C.2.5)

where

H(ξ) =
2
∑Ŝ

s′=1 P̂s,a,s′ + ξ
∑S

s′=Ŝ+1 bs′P̂s,a,s′∑S
s′=Ŝ+1 P̂s,a,s′

.

For some border cases, we do not need to solve the problem in all 3 of these cases. In

particular, we have the following special cases:

1. Ŝ = 0. In this case, the second case is not defined as bŜ does not exist.

2. Ŝ = S − 1. In this case we have:

H(ξ) =
2
∑S−1

s′=1 P̂s,a,s′ + ξbSP̂s,a,S

P̂s,a,S

=
2(1− P̂s,a,S)

P̂s,a,S
+ bSξ

=
2

P̂s,a,S
+ (−2 + bSξ)

> −2 + ξbS
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= −2 + ξbŜ+1.

Hence, the first case in (C.2.5) is impossible. In addition, for Ŝ = S − 1 the

problem becomes:

max
ξ,ψ

− βξ + ψ +
S−1∑
s′=1

P̂s,a,s′ − P̂s,a,S

(
(−ξbS + ψ) +

(−ξbS + ψ)2

4

)

s.t. − ξbs′ + ψ ≤ −2 ∀ s′ ∈ {1, . . . , S − 1}

− ξbS + ψ ≥ −2

ξ ∈ R+, ψ ∈ R.

In the third case of (C.2.5), we have ψ = 2

P̂s,a,S
+(−2+bSξ) and so the objective

function is given by:

−βξ + 2

P̂s,a,S
+ (−2 + bSξ)− P̂s,a,S

( 2

P̂s,a,S
− 2

)
+

1

4

(
2

P̂s,a,S
− 2

)2
 .

Therefore, the derivative of the objective function is (bS − β)ξ ≤ 0 ∀ ξ ≥ 0,

since β ≥ min b = bS. Hence, ξ should be set at zero if it is unconstrained.

3. Ŝ = S. In this case, the problem becomes (C.2.6)-(C.2.8):

max
ξ,ψ

− βξ + ψ + 1 (C.2.6)

s.t. − ξbs′ + ψ ≤ −2 ∀ s′ ∈ {1, . . . , S} (C.2.7)

ξ ∈ R+, ψ ∈ R. (C.2.8)

Constraint (C.2.7) implies that ψ ≤ ξbS − 2. Since the objective is increasing in

ψ, this means ψ∗ = −2 + ξbS. Hence, the second case in (C.2.5) is guaranteed.

Furthermore, the objective is given by max ξ(bS − β)− 1. Since the assumption
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made by Ho et al. (2022) is that min b ≤ β and bS = min b, the objective is

decreasing in ξ and so the optimal solution is (ξ∗, ψ∗) = (0,−2). The optimal

objective value is −1.

Now, in each case defined by (C.2.5), the problem can be reformulated as a univariate

program with one constraint. In the first case, Ho et al. (2022) show that the model

becomes:

max
ξ

−βξ + ξbŜ+1 − 2 +
Ŝ∑

s′=1

P̂s,a,s′ −
S∑

s′=Ŝ+1

P̂s,a,s′

(
(−ξbs′ + ξbŜ+1 − 2) +

(−ξbs′ + ξbŜ+1 − 2)2

4

)
s.t. ξ ≥ 2

 S∑
s′=Ŝ+1

(bŜ+1 − bs′)P̂s,a,s

−1

.

Differentiating the objective function, we find that it’s derivative is given by:

−β + bŜ+1 −
S∑

s′=Ŝ+1

P̂s,a,s′

(
bŜ+1 − bs′ +

1

2
(bŜ+1 − bs′)(−ξbs′ + ξbŜ+1 − 2)

)
.

which can be written as:

−β + bŜ+1 −
S∑

s′=Ŝ+1

P̂s,a,s′ξ
(
bŜ+1 − bs′

)2
.

which means the globally optimal ξ is given by:

ξ∗1 =
−β + bŜ+1∑S

s′=Ŝ+1 P̂s,a,s′
(
bŜ+1 − bs′

)2 .
In the second case, it is easy to see that ξ∗2 is obtained by replacing bŜ+1 with bŜ. The

model is therefore:

max
ξ

−βξ + ξbŜ − 2 +
Ŝ∑

s′=1

P̂s,a,s′ −
S∑

s′=Ŝ+1

P̂s,a,s′

(
(−ξbs′ + ξbŜ − 2) +

(−ξbs′ + ξbŜ − 2)2

4

)
s.t. ξ ≤ 2

 S∑
s′=Ŝ+1

(bŜ − bs′)P̂s,a,s

−1

.
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The corresponding globally optimal solution is given by:

ξ∗2 =
−β + bŜ∑S

s′=Ŝ+1 P̂s,a,s′ (bŜ − bs′)
2
.

In the final case, we note that:

H ′(ξ) =

∑S
s′=Ŝ+1 bs′P̂s,a,s′∑S
s′=Ŝ+1 P̂s,a,s′

.

The model then becomes:

max
ξ

−βξ +H(ξ) +
Ŝ∑

s′=1

P̂s,a,s′ −
S∑

s′=Ŝ+1

P̂s,a,s′

(
(−ξbs′ +H(ξ)) +

(−ξbs′ +H(ξ))2

4

)
(C.2.9)

s.t. ξ ≤ 2

 S∑
s′=Ŝ+1

(bŜ+1 − bs′)P̂s,a,s

−1

(C.2.10)

ξ ≥ 2

 S∑
s′=Ŝ+1

(bŜ − bs′)P̂s,a,s

−1

(C.2.11)

The derivative of the objective is given by:

−β +H ′(ξ)−
S∑

s′=Ŝ+1

P̂s,a,s′

(
H ′(ξ)− bs′ +

1

2
(H ′(ξ)− bs′)(−ξbs′ +H(ξ))

)
.

From the same steps as for the first case, this leads to:

ξ∗3 =
−β +H ′(ξ)∑S

s′=Ŝ+1 P̂s,a,s′ (H
′(ξ)− bs′)

2
.

Then solving the problem in each case corresponds to checking if the optimal ξ lies

within the allowed range, and selecting one of the bounds if it does not.
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C.2.2 Reformulation of Projection Problem

As shown by Ho et al. (2022), a general projection problem can be reformulated

as:

max
ψ,ξ

− βξ + ψ −
∑
s′∈S

P̂s,a,s′ϕ
∗(−ξbs′ + ψ)

s.t. ξ ∈ R+, ψ ∈ R.

For the modified χ2-divergence, we have ϕ∗(z) = max
{
1 + z

2
, 0
}2 − 1, or equivalently

ϕ∗(z) = 1
4
max {z + 2, 0}2 − 1. Hence, we can represent ϕ∗(−ξbs′ + ψ) via:

ζs′ ≥ −ξbs′ + ψ + 2 ∀ s′ ∈ S

ζs′ ≥ 0 ∀ s′ ∈ S

us′ ≥
1

4
ζ2s′ ∀ s′ ∈ S.

Then, the model becomes:

max
ξ,ψ,ζ,u

− βξ + ψ −
∑
s′∈S

P̂s,a,s′(us′ − 1)

s.t. ζs′ ≥ −ξbs′ + ψ + 2 ∀ s′ ∈ S

us′ ≥
1

4
ζ2s′ ∀ s′ ∈ S

ζs′ ≥ 0 ∀ s′ ∈ S

ξ ∈ R+, ψ ∈ R.
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C.3 A Newsvendor Model Incorporating Backo-

rder Costs

Suppose that action a is taken when in state s and assume that b′ now represents a

backorder cost per unit of unmet demand. For a given realisation x of the demand

random variable Xs,a, we define the one-period reward incorporating backorder costs

as:

r′s,a,x = cmin{x, s̄} − wa− h(s̄−min{x, s̄})− b′max{x− s̄, 0}.

In addition, let P ′
s,a =

(
P ′
s,a,x

)
x∈Xs,a

represent a (non-parametric) candidate for the

distribution of Xs,a. We can then formulate the non-parametric robust Bellman up-

date as:

vn+1
s = max

πs∈∆A

min
P ′

s∈P ′
s

∑
a∈A

πs,a
∑
x∈Xs,a

P ′
s,a,x

(
r′s,a,x + γvng(x|s,a)

)
∀ s ∈ S, (C.3.1)

where P ′
s is an ambiguity set for the true distribution of Xs,a (not the true transition

distribution). This set can be defined using ϕ-divergences as follows:

P ′
s =

{
P ′
s ∈ ∆|Xs,1| × . . .×∆|Xs,A| :

∑
a∈A

da(P
′
s,a, P̂

′
s,a) ≤ κ

}
,

where P̂ ′
s,a =

(
fXs,a(x|θ̂)

)
x∈Xs,a

, for example. Similarly, we can formulate the para-

metric update problem as:

vn+1
s = max

πs∈∆A

min
θs∈Θs

∑
a∈A

πs,a
∑
x∈Xs,a

fXs,a(x|θs,a)
(
r′s,a,x + γvng(x|s,a)

)
∀ s ∈ S.

In these formulations, we could simplify the terms relating to backorder costs as

follows:

∑
x∈Xs,a

P ′
s,a,xmax {x− s̄, 0} =

|Xs,a|∑
x=s̄+1

P ′
s,a,x(x− s̄) (C.3.2)
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∑
x∈Xs,a

fXs,a(x|θs,a)max {x− s̄, 0} =

|Xs,a|∑
x=s̄+1

fXs,a(x|θs,a)(x− s̄). (C.3.3)

If we have infinite support demands, i.e. |Xs,a| = ∞, then this implies that an in-

finite number of decision variables are required for the non-parametric model. This

means that a completely different treatment is required. In many cases, however, the

parametric expression can be further simplified. For example, if the demand random

variable is Xs,a ∼ Pois(λs,a), then we have:

|Xs,a|∑
x=s̄

fXs,a(x|θs,a)(x− s̄) =
∞∑

x=s̄+1

λxs,a exp(−λs,a)
x!

(x− s̄)

= λs,a

∞∑
x=s̄+1

λx−1
s,a exp(−λs,a)

(x− 1)!
− s̄

(
1−

s̄∑
x=0

λxs,a exp(−λs,a)
x!

)

= λs,a

∞∑
x=s̄

λxs,a exp(−λs,a)
x!

− s̄
(
1− FXs,a(s̄|λs,a)

)
= λs,a

(
1− FXs,a(s̄− 1|λs,a)

)
− s̄

(
1− FXs,a(s̄|λs,a)

)
,

which only involves finite sums. Without incorporating further information on the true

distribution of Xs,a such as its moments, the expression in (C.3.2) cannot be simplified

further. The infinite number of variables required means that the algorithms in this

paper are not applicable to the robust Bellman update problem in (C.3.1).
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