Potential of New Sustainable Green Geopolymer Metal Composite (GGMC) Material as Mould Insert for Rapid Tooling (RT) in Injection Moulding Process

Yin, Allice Tan Mun and Rahim, Shayfull Zamree Bin Abd and Abdullah, Mohd Mustafa Al Bakri and Nabiałek, Marcin and Abdellah, Abdellah El-hadj and Rennie, Allan and Tahir, Muhammad Faheem Mohd and Titu, Aurel Mihail (2023) Potential of New Sustainable Green Geopolymer Metal Composite (GGMC) Material as Mould Insert for Rapid Tooling (RT) in Injection Moulding Process. Materials, 16 (4): 1724. ISSN 1996-1944

[thumbnail of materials-16-01724]
Text (materials-16-01724)
materials_16_01724.pdf - Published Version
Available under License Creative Commons Attribution.

Download (2MB)

Abstract

The investigation of mould inserts in the injection moulding process using metal epoxy composite (MEC) with pure metal filler particles is gaining popularity among researchers. Therefore, to attain zero emissions, the idea of recycling metal waste from industries and workshops must be investigated (waste free) because metal recycling conserves natural resources while requiring less energy to manufacture new products than virgin raw materials would. The utilisation of metal scrap for rapid tooling (RT) in the injection moulding industry is a fascinating and potentially viable approach. On the other hand, epoxy that can endure high temperatures (>220 °C) is challenging to find and expensive. Meanwhile, industrial scrap from coal-fired power plants can be a precursor to creating geopolymer materials with desired physical and mechanical qualities for RT applications. One intriguing attribute of geopolymer is its ability to endure temperatures up to 1000 °C. Nonetheless, geopolymer has a higher compressive strength of 60–80 MPa (8700–11,600 psi) than epoxy (68.95 MPa) (10,000 psi). Aside from its low cost, geopolymer offers superior resilience to harsh environments and high compressive and flexural strength. This research aims to investigate the possibility of generating a new sustainable material by integrating several types of metals in green geopolymer metal composite (GGMC) mould inserts for RT in the injection moulding process. It is necessary to examine and investigate the optimal formulation of GGMC as mould inserts for RT in the injection moulding process. With less expensive and more ecologically friendly components, the GGMC is expected to be a superior choice as a mould insert for RT. This research substantially impacts environmental preservation, cost reduction, and maintaining and sustaining the metal waste management system. As a result of the lower cost of recycled metals, sectors such as mouldmaking and machining will profit the most.

Item Type:
Journal Article
Journal or Publication Title:
Materials
Uncontrolled Keywords:
Research Output Funding/yes_externally_funded
Subjects:
?? rapid toolinggeopolymer metal compositeadditive manufacturinginjection moulding processyes - externally fundednogeneral materials sciencematerials science(all) ??
ID Code:
187034
Deposited By:
Deposited On:
20 Feb 2023 15:00
Refereed?:
Yes
Published?:
Published
Last Modified:
28 Aug 2024 00:27