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Abstract

In this thesis, the construction of a specific family of linear functionals with support on a
closed embedding ¢ : R < M upon a manifold is discussed. The construction is performed
in a purely coordinate free fashion, based on the De Rham push-forward approach and
generalised to define "tensorial currents" called "multipoles". Several geometrical and
algebraic properties are investigated and two main useful classes of non-trivial coordinate
representations are compared and related to the choices of some extra structures on the
manifold (i.e. affine connection, foliation, adapted atlas, adapted frames). It is shown
that in general, the transformation rules are not given by the action of the linear group,
unless some information upon the "transverse" directions with respect to the closed em-
bedding is provided. It is shown how the multipoles are the geometrical objects naturally
arising when some specific one parameter families of compact support tensor fields are
expanded asymptotically around the closed embedding. In case a one parameter family
satisfies also an extra condition (i.e. self similarity) it is shown how to recover the well
known standard definition of "moments", opening the door to a new completely covari-
ant and coordinate free meaning of the concept of "multipole expansion" of functions
and tensor field upon the differential manifolds. It is shown how these linear functionals
admit a coordinates representation coinciding with the moments commonly defined to
perform the Pole-Dipole approximation of an Energy-Momentum Tensor field in General
Relativity, and when a Levi Civita connection is assumed on a pseudo-Riemmanian man-
ifold, the first two multipoles related to an Energy Momentum tensor field expansion can
easily satisfy the well known Mathisson-Papapetrou-Dixon equation. Since the proposed
method of construction of the multipoles does not rely on a specific metric or a specific
affine connection, a generalisation of the Pole-Dipole approximation for a non metric
connection is easily achieved, casting the Mathisson-Papapetrou-Dixon equation in pres-
ence of a non null torsion. Because of this, there is hence the possibility to interpret the
test particles and test charges within the Relativistic Theories (possibly beyond General
Relativity) just as the multipole approximation of the regular sources of the interaction
fields, with a new clear geometrical background.
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Introduction

It has been several decades since Schwartz’s theory of Distributions began to play a
fundamental role in Science, thank to the ability to formalise rigorously some intuitions
subtending fundamental mathematical concepts like Green functions, Laplace and Fourier
transforms or integration and derivation of non-regular functions.

Concerning the Physics, in Continuum Classical Mechanics, Statistical Mechanics and
Classical Field Theory as well as in Quantum Mechanics and Quantum Field theory, the
distributions are essential mathematical tools with which, sooner or later, it is required
to deal with. In Classical Electrodynamics, the only way to obtain the correct solution to
the Maxwell’s Equations for an electromagnetic field generated by point-like charges (the
poles) without excluding the region where the charges are located, is to model the sources
using non regular Schwartz distributions (i.e. the Dirac delta) and since the Maxwell’s
Equations are linear, it is possible to prove how the Electromagnetic Field of an arbitrary
regular source admits a weak approximation in terms of a (possibly infinite) superposition
of elementary Electromagnetic Fields generated by several poles spread appropriately in
the space (multipole expansion).

Therefore in Classical Electromagnetism, the distributions provide a formal tool to
describe the point-like sources and interpret them just as an ideal approximation of realis-
tic regular sources when their size is beyond the scale fixed for the theory. The very same
conclusion can be achieved within the Classical theory of Gravitation, where the point-
like masses generating the Gravitational Field are interpreted as an ideal approximation
of massive extended objects.

So, because of these aspects, the distributions seem to be the natural way to express
classical point-like particles within the Classical Field Theories.

However, despite the many successful applications of the Schwartz’s distributions in
several branches of the Physics, their use in Relativistic Theories like General Relativity
(GR) is still quite problematic.

In fact, even if the technology of the multipole expansion is massively and success-
fully used within perturbative approaches to find extraordinary important relativistic
predictions such as weak lensing or gravitational waves radiation, the distributions are
still basically used just as tools in order to find an approximation for the local coordi-
nate expression of the geometrical objects encoding the physical information expressed in
some fixed local charts, perhaps even after performing a non-covariant post-Newtonian
approximation procedure or a non-general covariant linearisation.

In contrast with the Classical Theories, since one of the most stringent paradigm char-
acterising the Relativistic Theories prescribes the mathematical objects carrying physical
information must not depend at all on the choices made by the observers to map the
events of the spacetime, it is clear that, in this perspective, usually the distributions are
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no more than a very powerful analysis tool, unable to carry true physical information and
describe relativistic physical objects accordingly to a true full relativistic framework.

However, a very specific exception is provided by the attempt to approximate the
motion of a free falling "spinning" extended object in Standard General Relativity. This
approach, commonly known as the "Pole-Dipole approximation", despite its complicated
intricacies, is able to provide a covariant method to characterise the motion of an ex-
tended "test" body with two tensor fields called Spin and Momentum, defined upon an
appropriate worldline commonly interpreted as the trajectory of the object [1][2][3].

During the steps required to define the pole-dipole it is clear how the distributions
definitely play a role defining the coordinate local expression of the Spin and the Momen-
tum, but once again it is quite obscure if they are just mathematical tools to analyse local
expressions for the Energy-Momentum tensor fields or are themselves the local expression
of some more fundamental hidden geometrical object, maybe with a physical relevance
(L2 31[41151(6]17).

So usually the distributions are just relegated to a shady gray zone, and it is preferred
to focusing mainly on the terms that at fixed local coordinate system determine the action
of these functionals, fixing step by step several constraints on them, in order to obtain
something that can be possibly manipulated and interpreted a posteriori with physical
considerations.|6][8][9][10][11]

This approach hides definitely non negligible potential risks, because it is almost
impossible to distinguish clearly which assumptions made on the distributions are de-
pending on the chosen physical model and which constraints, independently from the
physics, must be fixed to obtain a well defined mathematical objects (linear functionals)
with no caveats. Furthermore it is very obscure to understand, even at fixed physical
model, which assumptions are just mere choices induced by usual customs and which
constraints are essential to preserve the self-consistency of the theory.[7] [12] [9] [10]

Probably this is one of the main reasons that still prevents a massive methodical
asymptotic approach (possibly to higher orders) to the dynamics within the relativis-
tic theory beyond General Relativity or even when in General Relativity, other field of
interactions are added to the model.[10]

Aimed by the purpose of mitigating this problem, in this work a new intrinsic geo-
metrical covariant definition of a specific family of global continuous linear functionals
acting on the smooth compact support tensor fields is given. These geometrical objects,
very closely related to the De Rham currents [13] [14], provide a generalisation of the
Schwartz distribution on the differential manifolds, formalising the intuitive concept of
"distributional tensor fields". We will see how these linear functionals are able to approx-
imate some specific one parameter families of regular compact support tensor fields and
how one of their possible local coordinate representation coincides exactly with the usual
definition of the moments of the local scalar fields characterising the coordinate expres-
sion of a regular compact support tensor field. Because of this strong correspondence,
these specific kind of functionals are then simply called "multipoles".

Within this framework, we will see how the well known "Pole-Dipole" approximation
of the Energy Momentum tensor related to an extended body in General Relativity
admits a completely covariant and coordinate free geometrical interpretation in terms
of this kind of linear functional. Thence in this perspective it is potentially allowed
to interpret a point-like spinning free falling test particle as a first order multipole with
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support on a worldline which is packing, in a purely intrinsic coordinate free fashion, some
relevant physical information concerning the first order approximation of the dynamics
of an extended free falling object.

Since the proposed approach to the multipoles does not assume any specific metric or
affine connection, we are able in principle to cast the pole and pole-dipole approximation
even for a non fixed metric background and without assuming any a-priori constraints on
the affine connection (i.e. Levi Civita connection).

In this perpective, the role played by the "transverse Dixon vector field" in order to
fix the uniqueness [1][2][3] of the moments is shown to be one of the infinite possible
method to establish a one to one relationship between the considered linear functionals
and a specific set of tensor fields, so it is just a matter of choice to split the geometrical
information carried by the multipoles. On the other hand the symmetry conditions
usually imposed on the covariant derivatives has a much more deep nature, linked directly
with the coordinate free definition of the multipoles [1][2][3].

To show the mathematical generality of these approach, the dynamical equation con-
straining the multipoles related to the first order asymptotic expansion of a compactly
supported Energy Momentum tensor field for a non negligible torsion contribution is
given, showing that in principle the torsion affects just the dynamics beyond the trivial
order finding very similar result as shown in [9] [10] [14] [15].

However, even if the generalised Mathisson-Papapetrou-Dixon equation for the pole-
dipole approximation for non torsion-less spaces is achieved, we would like to stress that
one should consider this work just as a methodological introduction to the problem of
interpreting geometrically the multipoles and the moments within relativistic models,
rather than a concrete physical proposal, since no consideration about the physical in-
terpretation and the physical aspects are made. Furthermore the relevant problem of
back-reactions and divergences is completely ignored at this stage, and it must be deeply
analysed separately in case one decides to promote the multipoles to be true physical
sources for the interaction fields, rather than just an asymptotic intrinsic approximation
of them.

Outline

In the beginning of the first chapter a brief review of the standard R-linear operations
upon tensor fields on differential manifolds is given, offering to the reader the possibility
to become confident with the slightly different tensorial notation needed to play smoothly
with the multipoles. The following section fixes some fundamental lemmas characterising
the properties of higher order derivations upon tensor fields strongly needed to investigate
multipoles coordinate expressions later.

The second chapter introduces the concept of R-linear functionals acting on the class
of smooth test tensor fields upon a differential manifold. The given definition is very
general and despite the nice algebraic structure inherited naturally from the operations
defined upon the tensor fields, the set of these linear functionals is extremely wide and
it contains also a lot of pathological objects. This is not a concern, since the purpose
of this chapter is to show the reader that, in principle, it is possible to translate all the
operations upon tensor fields directly on the functionals, just relying on the definition of



the action of such functionals on the test tensor fields.

In the third chapter, putting together the statements achieved previously, we will pro-
vide a general coordinate-free definition for two very specific subset of R-linear functionals
acting on the test tensor fields, named in order "Ellis set of multipoles" and "Dixon set of
multipoles". These definitions are both strongly founded on the closed embedding con-
cept as well as the De Rham push-forward concept, representing a natural generalisation
of it. The general properties of rank, support and order of both this kind of multipole are
discussed as well as how they are affected by the standard operations on functionals. It
is shown how, the two sets coming from the two very different definitions given at the be-
ginning, in practice each set is contained in the other set, so it is possible to conclude that
the Ellis multipoles definition is completely equivalent to the Dixon multipole definition
and the set of the multipoles is unique. Considering this, the two main local coordinates
representation induced by the two equivalent definition are provided. Closing the chapter
some considerations on the algebraic structure of C*°(R)-module of the set of multipoles
are discussed.

The fourth chapter and fifth chapter are completely dedicated to the investigation of
the Ellis local representation of multipoles and the Dixon local representation of mul-
tipoles, respectively. It is shown how both local representations are affected by severe
issues when pursuing the attempt to associate uniquely a multipole to its local coordi-
nate expression called "moments". In general there are infinite ways to work around this
problem and all of them provides pros and cons. In these chapters several approaches to
the uniqueness problem of the moments are investigated and their transformation rules
are analysed when a change in the atlas of the manifold is performed.

In chapter four, using the Ellis local representation we are able to interpret the multi-
poles as the coefficients of an asymptotic expansion approximating a specific one param-
eter family of compactly supported tensor fields when the one parameter family tends to
zero. In the very special case the one parameter family satisfies also the self-similarity
condition, the moments induced by the Ellis representation coincide exactly with the stan-
dard usual definition of multipole moments of the coordinates expression for a specific
tensor field belonging to the given family.

In chapter five using the Dixon local representation, it is proven how the "moments"
coincides with the moments definition given by Dixon and widely use in General Rela-
tivity to perform the Pole-Dipole approximation. Despite the Ellis case, it is shown that
the Dixon moments can be associated to a n-tuple of tensor fields with support on the
image of the embedding, opening the door to possible interpretations about the physical
information encoded inside the Dixon moments.

In the sixth chapter, we will show a specific application of the multipoles in Rela-
tivistic Theories reproducing the free falling particle dynamics directly imposing on the
multipoles the same condition that must be satisfied by the Energy Momentum tensor
(i.e. divergenceless and symmetry) inspired by the correspondence between multipoles
and regular fields previously discussed. Assuming the Levi Civita connection it is shown
how an order 0 multipole (a monopole) is able to reproduce the dynamics of a free falling
particle and an order 1 multipole (a dipole) satisfies the Mathisson-Papapetrou-Dixon
equations. Since no assumption upon the relation between metric and connection is
needed, in the second part of the sixth chapter the generalised Mathisson-Papapetrou-
Dixon equations are provided in case of non Levi Civita connection. It is interesting to
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notice that the contribution of the torsion affects the dynamics of the multipoles starting
just from the first order, without any influence on the dynamics of the monopoles.

In the last chapter all the fundamental statements are recollected and some final
comments concerning the nature of the multipoles and possible applications in Relativistic
Theories are discussed. Some aspects of this work have been published in [20]
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Chapter 1

R-linear Operations on Smooth Tensor
Fields

1.1 (C*°(M)-linear operations on tensor fields

In this chapter we are going to analyse several operations that can be performed upon the
space of the smooth tensor fields. Some of them are standard, others are not so popular
but fundamental to achieving the definition of the linear functionals we are interested
in. All of them are needed to guarantee a correct approach to the multipoles as we
will see in the next chapters. Because of this we decide to start from scratch, making
explicit all we know about operations on tensor fields taking account of the slightly
different notation defined in the appendix, required to face easily the multipoles. A lot
of interesting properties for these operations are made explicit, some of them are very
well known, others are quite specific and not so commonly used. However even if the
approach can seem pedantic or even sterile, all the relevant properties of the multipoles
are inherited directly from the behaviour of the many operations defined on the tensor
fields on which they can act. We will work in a purely coordinate-free fashion as much as
possible, in order to understand the intrinsic nature of the objects we are dealing with,
independently with respect to the local coordinate charts chosen on the manifold. For
any problem concerning the notation or the fundamental concepts related to the theory
of bundles and tangent tensors, the reader is suggested to check the appendices.

1.1.1 Introductory comments concerning the notation related to
the lists of objects

Considering we are going to massively manipulate indices and lists related to the coordi-
nate expression of tensors and multipoles, a clear multi-index notation is required. A full
explanation of it is given in the appendix. However we will briefly summarise some aspects
of it. Let us consider N7 the set of all non-null natural numbers. Given a,b € N|a < b we
denote with [a,b] = {z € N|a < x < b} a generic interval. Given aset U and [ € NT, a list
I of elements in U with length [ is a function [ : [a, a+[{—1] — U. Hence a list is isomorphic
to an indexed n-tuple of elements in U. We can use the standard round bracket notation
(Uq, ---Uqri—1) to denote the indexed n-tuples I = {(u(p), p) |u(p) € U,Vu € [a,a+1—1]}.
The letter p is called index and it points uniquely to an element inside the list, therefore



given a list I we can denote uniquely an element of it by just specifying the name of the
list and the corresponding index. Given a list I we can define a sub-list J a subset of
such that it is a list. For instance given the list (t3, t4, t5, ts, t7, ts) a good sub-list is given
by (t4,ts,t6). A natural generalisation of a list is the multi-indexed list. Given a set U
and [ € N, a multi-indexed list I of elements in U is a function

I:]ar, a0 + 1 — 1] x [ag,a0 + 1o — 1] X ... X [an,an + 1, — 1] = U (1.1.1)

Hence a generic multi-indexed list can be written as:

I = {(U(M17u27 "'a/‘Ln)a (:U’lnu% 7:“71)) | U(MI)M% nun) € valul € [ai7ai + lz - 1]}

There are several different lists and multi-indexed list in our work, all of them are used
for different purposes. Often it is mandatory to face lists of lists, lists of indices or lists
with unfixed length. There is no way to single out just one specific notation for the lists
adapted to all the needs in a satisfactory way. We decided to be pragmatic, prioritising
the attempt to make the operations and manipulations on tensors and multipoles as
easy as possible. A list of natural numbers starting from 1 and ending at a € N7 is
denoted by a. Hence accordingly to this notation @ = (1, ...,a). A list of natural numbers
starting from a € N* and ending in b € N*,b > a is denoted by b\ @ The length of
the list is just b — a. By convention the empty list can be denoted both by 0. This is
compatible with the previous notation in fact @ \ @ = 0 = @. Accordingly to this, when
it is convenient, a list (ug,...,u,) of elements in U, can be denoted just with ugz. For
list starting not from 1 for instance (g1, Ugr2, ---, Up—1, Up) We use the following notation
up 4. By convention a list as ug is the empty list as well as ugg. In our work we are
going to use just specific multi-indexed lists. As stated before a multi-indexed list can be
interpreted just as a list in which each element is singled out by a list of indices rather
than just one index. Therefore a compact notation for the list of indices is required. The
lists of indices by convention start from a number greater that 0 making the counting
of the of indices more intuitive, hence it could be something like (11411, flas2---, fo—1, [b)-
To express it in a compact way also for a list of indices of unfixed length we decided to
use this notation (g1, ..., tp) = Ip\a accordingly with the previous notation set up for
the list of natural numbers. The most common lists of indices start from 1 and end in a,
making the notation very easy: (p1, ..., fta) = ftz. By convention the list ug is the empty
list as well as pg\q.

1.1.2 Intrinsic definition for C°(M)-linear operations on tensor
fields

Considering the fact in this work we are going to use mainly local and global fields
on manifolds, we decided to denote them using the very same notation indicating the
tangent tensor. If talking about tangent tensors at a point, expressions as T* mean a



multi-indexed list of numbers, here T} means a multi-indexed list of fields. Concerning
the tangent geometrical object at a point (i.e tangent tensors and tangent vectors), we
can interpret them just as a restriction of a field to a point on the manifold, using the
standard notation accordingly, therefore no ambiguity raises from this change. In case
the reader is not familiar with this, one can consult the section concerning the notations
in the appendix. As it is showed in the appendix, rank p,q tensor fields are defined
to be the sections of the bundle TPM, but they can be naturally interpreted as the
module of F(M)-linear maps sending n-tuples of vector and covectors fields into F(M).
Let us forget temporarily the tensor bundle structure existing on a manifold and let us
investigate the tensor fields just from the algebraic perspective.

Definition 1: Given U C M, the set of all scalar fields f : U — R is denoted by F(U)

Definition 2: Given U C M, a local tensor field T on U with rank p,q € N is a map:

T (XPTyT* M) x (xTyTM) — F(U) (1.1.2)

such that it is multilinear: Vi € [1,p], V5 € [1,q], Yf1, f2, 1,92 € F(U), Vo, €
LyT M, Yw,u € U'yT M

T(w -t f104+915, Uﬁa faw + gau, vy 5 ) = (1.1.3)
=fifoT(w 1o, WPV , V5=, W, vg\3) + 1927 (W' 1 a, w\ U515 U, V) + (1.1.4)
+g1foT (W, B, WPV, VI, W, U\ 5) + 19T (w1, B, 0P ' v Up\7) (1.1.5)

If U = M then T is called global tensor field.

Definition 3: The set of all local tensor fields with rank p, ¢ defined on the open set
U is denoted by I'yT? M. The set of all global tensor fields with rank p, g is denoted
by L'y TP M.

All the discussions here concerning the tensor fields are done without specifying the
domain U unless some specific constraints on the domains are required. However when a
tensor is applied to vector fields and covector fields, we implicitly assume that they share
the same domain U (or at least the domain of the tensor field is included in the domain of
the arguments) unless the action is not defined. All the C'*°(M )-linear operations defined
for the smooth tensor fields can be defined in the same way in case the considered fields
are not smooth, but this cannot be done anymore for the differential operations defined
in the following sections, therefore from here, unless explicitly specified, we are going to
consider just global smooth tensor fields acting on smooth vector and covector fields. In



this particular case we have that the smooth tensor fields are:

T: (XPTyT*M) x (XTyTM) — C*(U) (1.1.6)

Inspired by the approach to the tangent tensors at a point, we can try to replicate on
['TP M the same algebraic structures and operations defined for the tangent tensors:

Definition 4: Given two tensor fields 7', S € I'TY, M we define a sum of tensor fields
the map + : I'TPM x I'TPM — I'TP M such that:

[T+ S|(a?,vg) = T(aP,v7) + S(aP,vg) , VaP € XPTT*M | Yoz € xTTM  (1.1.7)

Definition 5: Given a tensor field 7' € T'TP M and a scalar field f € C°°(M) we define
a multiplication by a scalar field the map - : C°(M) x I'TP M — I'T? M such that:

[fT)(a?,vq) = fIT(aP,v5)] , VaP € XPTT*M , Yoz € XITTM ,Vf € C®(M) (1.1.8)

Property 1: The algebraic structure (I'TPM, +, -) satisfies all the requirements to be a
module on the ring (C*°(M), +, -). Furthermore it is a finitely generated C*°(M) module.
The null tensor field is by definition identified with the null map 0 € TP M such that

0(aP,v5) =0 , VaP € XPTiM | Yoz € XT, M (1.1.9)

In general there is no way to build a global basis for the whole module. This is deeply
related with the topology of the manifold on which the fields are defined (i.e. parallelizable
manifolds) and must be investigated with the bundle technology.

The algebraic operations defined above are enough to endow (77 ,M) with a linear
structure that characterises it as a module, but these are not the only useful operations we
are able to define on tensor fields. The standard multiplication of functions defined on the
ring C*°(M), induces another very important binary operation called tensor product. The
definition of tensor product of sections on vector bundles is very abstract, it can be given
in a very general way and it is deeply rooted in the bundles theory, but it is beyond our
purposes to analyse in detail how it is possible to establish general canonical isomorphism
and correspondences between algebraic structures on bundles. Again we settle here to
give a simplistic definition of tensor product that is very effective for achieve our purposes.



Definition 6: Given two tensor fields T' € I'T lfM and S € FT;”,/M we define a tensor
product of tensor fields the map ® : I'TPM x I‘T;i/M — FT;ZZ?IM such that:

[T ® S](a®, B, vg, ug ) = T(a?, vg)S(ﬂﬁ/, uz) (1.1.10)

VaP € xXPTT*M , Yoz € XTTM , VB7 € xPTT*M , Yug € xTTM  (1.1.11)

Considering the tensor fields are multi-linear maps, they must act on n-tuples of vector
and covector fields. Therefore we have a natural action of the group of permutations on
I'T? M induced by the permutations on the n-tuples of vector and covector fields.

Definition 7: Let I and J be two of permutations of p and ¢ elements respectively. Let
Pr and P; be their representations, acting respectively on the n-tuples o € xPT'T*M
and vz € xXI'T, M as following:

I(aP) = (1) (1.1.12)
J(aF) = (vp,() (1.1.13)

Given a tensor field T € I'T? M we define a braiding map the map ol T JM — TP M
such that

[0 T](?,vq) = T(I(aP), J (v)) = T(a™P, vp, q)) (1.1.14)

Of course anyone is free to choose its own notation to express the permutation [
and J, however we decided to use the standard cycle decomposition because it offers
a direct representation of the action upon the list of indices related to the coordinate
representation of the tensors. It is very interesting to notice how the action of tensor
fields upon vector fields and covector fields induces canonically an action of vector fields
and covectors fields on the tensors fields:

Definition 8: Given a tensor field 7" € I'TPM, with ¢ > 1 we define a contraction
with a vector field the map o : I'TM x I'T?M — I'T; | such that

[usT) (P, v=) = T(oP, u,v;7) (1.1.15)

Given a tensor T' € I'T? M, with p > 1 we define a contraction with a covector field



the map ': I'T"M X I'TPM — FTg’*lM such that:

BT)(0" vg=r) = T(B, 0P, v5=y) (1.1.16)

q—1

The definition of internal contraction can still be provided but, since in general T'M
and T*M does not admit any global frame, it is much more tricky. Luckily we can account
on the existence of a smooth partition of unity.

Definition 9: Let be T'M and T*M respectively, the tangent and cotangent bundles of
a differential manifold M. Let be A = (U;, ¢;) an atlas on M, we know that it induces a
local trivialisation of 7'M denoted by (U; x R™) via the existence of a bunch of m C'*(M)-
linearly independent smooth local sections (ej),) such that e(j), : U — 73/ (U;). Let (1)
be a smooth partition of the unity subordinate to (U;). Given a tensor T' € TF M, with

p,q > 1 we define an internal contraction the map ¢ : TP M — Tf:ll:BM such that:

[ET) (0P vgmr) = > g T(el, o ey, 1) (1.1.17)
UjG.A

Property 2: One can prove that, even if the definition is given for a fixed local charts
and basis, the internal contraction of a tensor field is a tensor field, furthermore this
operation preserves globally the sections and it does not depend on the choice of local
basis and local coordinates on the manifold.

Proof. Given T' € I'T' M, Let us suppose to have two different trivialisation of T'M de-
noted by (U, t(;)) and (Uj, t(;)) induced by the local frames (e,(;)) and (e,(;)) respectively.
For each U; € A let us define a set of local sections e(;), (e(;2T) : U; — i (U;) C

TfffM Let U;; = U; N U; be the overlaps, then Vo € Uj;:

e(j),f(e“ A1) = (1.1.18)

1 =B o 1 .
:T<66)7 a? 17 E(j )V —1)\w = AZ|xA,LL\zT(€(z)7 a? 17 65(7')7 Z‘q—l)

- = (1.1.19)

= €(i)u—'(€ﬁ-)—'T) (l.l.Q())

=05 T(eGy, o ep(i), vmn)l, = Tefyy, 0", o vg=1)

x

Therfore the local sections e(;), ' (ef;)-T") : Uy — 7 (Uj) C qu:fM satisfy the compati-
bility conditions and they can be glued toghether to define a global section. Furthermore



we have that Vx € U;,VU; € A:

[iT](apil’ Z i T( ] ar~t e(J)M’Uq Dl = (1.1.21)
UjeA

= D Tl o e, v, = (1.1.22)
J | w€supp(ih;)

= D Ty 0P e ) = (1.1.23)
J | x€supp(i;)

=T (e, €y & *1,6(1');“ lhq_l)bc Z Yjl, = T(eé)’al’*lye(i)w1,q7_1)|x = (1.1.24)

J | z€supp(ih;)
=e@u (e(-T) (1.1.25)
]

So we must conclude that [¢7] is a true global section that does not depend on the
choice of frame.

Since I'TPM is a C°°(M) module, it is natural to define the C°°(M)-linear maps
acting on them.

Definition 10: Given two tensor fields 7' € I'TP M and S € FTgM we define a C°(M)-
linear map £ : I'TPM — FTgM such that:

L(fT+gS)=fL(T)+gL(S) , Vf,geC*(M) (1.1.26)

It is very interesting and useful to notice that there is an isomorphism between the
linear maps on tensors fields and the tensor fields themselves. In general the existence
of this isomorphism strongly depends on the facts that the two tensor spaces admits the
same trivialisation. In general there is no way to interpret the linear maps as tensors
when two different trivialisation are chosen. This aspect is crucial during the study of
the totally antisymmetric tensors, leading to the concept of "tensor density". Let TP M

and TgM be two bundles, and Lin(p, q,p',¢') = {L: TTPM — FTp/M} be the space of

the linear maps, there always exists a unique tensor field L € I'T| 5:5 M such that:

L(T) = [i]PH[cPT)P(T ® L) (1.1.27)

T’H—p

. AP :
therefore Lin(p, q,p’,q') is isomorphic to I'T’\/

M as a vector space and we can perform



on them all the operation defined on tensors. The proof will be provided in the following
section because extra structures are needed.

Property 3: The sum, multiplication by a scalar, tensor product, braiding maps, con-
tractions and internal contractions are all C*°(M)-linear maps. Furthermore all of them
are smooth.

Proof. The sum and the multiplication by scalar are trivially C*°(M)-linear by definition.
The tensor product is C*°(M)-linear due to its definition and by the distributivity of the
multiplication with respect to the sum. The braiding map is C°° (M )-linear because of the
commutativity of the sum and the multiplication, the contraction are linear by definition
as well as the internal contraction that is a sum of contractions. The smoothness can
be easily checked by fixing local smooth frames and analysing the local expression of the
operations provided in the following section. O

1.1.3 Pull-back and push-forward of tensor fields

When one has two manifolds and a smooth map between them there is a canonical
natural way to transport back and forward tangent structures between them called pull-
back and push-forward. In the appendix the way to transport back and forward tangent
structures at a single point of the manifold is defined. Here we will see how it is possible
to transport also whole sections of the tangent, cotangent and tangent tensor bundles.
There are some different way to interpret the pull-back and push-forward, some of them
are very sophisticated involving functor and categories theory. Once again we prefer
being pragmatic and we settle here to provide an operational definition of pull-back and
push-forward of tensor fields without investigating in detail all the properties in terms of
maps between categories. Let us recall the definition of pull-back and push-forward of
functions. Let M and N be two manifolds and ¢ : U C M — V C N is a local generic
map between them. We define the pull-back of functions as the map ¢* : F(V) — F(U)
such that:

o*(f)=fod , VfeF(V) (1.1.28)

Let us stress again that any function can be pulled back along any map. On the contrary,
this is not the case for the push-forward. Given a function on M there is no general
way to define a function on N. For pushing forward functions, one has to either restrict
functions or restrict maps. If ¢ : U C M — V C N is a local invertible map then we can
define the push-forward of functions as the map ¢, : F(U) — F(V) such that:

o.(f)=foo™" |, VfeFU) (1.1.29)



It is trivial to check that for an invertible map ¢ the push-forward is just the inverse map
of the pull-back, furthermore ¢* = (¢~ 1),

Definition 11: Let be M and N two manifolds with the respective tangent bundles
(TM, M, 1y, R™) and (TN, N, 7y,R"). Let ¢ : U C M — V C N such that V = ¢(U)
be a local smooth map between them. We define the push-forward of local vector
fields the map ¢, : I'yT'M — I'yT'N such that:

[0 (W)](f) = v(¢™(f)) =v(fo) , YvelyTM,VfeC*(V) (1.1.30)

Since ¢ is smooth then ¢, (v) is well defined and if v is smooth obviously ¢,(v) must be
smooth as well.

Let us stress that any vector field can be pushed forward along any smooth map. On
the contrary, this is not the case for the pull-back.

Definition 12: Let M and N be two manifolds with the respective tangent bundles
(TM, M, 1, R™) and (TN, N, 7y,R"). Let ¢ : U C M — V C N such that V = ¢(U)
be a diffeomorphism between them. We define the pull-back of local vector fields the
map ¢* : I'yvI'N — I'yT'M such that:

[0*(W)](f) = v(du(f)) =v(fog™") , YwelyTN,VfeC™U) (1.1.31)

Since ¢ is a diffeomorphism then ¢*(v) is well defined and if v is smooth obviously ¢*(v)
must be smooth as well.

Again for an invertible map ¢ the push-forward is just the inverse map of the pull-back,
furthermore ¢, = (¢~1)*.

Definition 13: Let M and N be two manifolds with the respective cotangent bundles
(T*M, M, 75, R™) and (T*N,N,7n,R™). Let ¢ : U C M -V C N |V = ¢(U) be a
local smooth map between them. We define the pull-back of local covector fields the
map ¢* : I'yI'N — I'yT'M such that:

[0 (a)](v) = a(pu(v)) , YvelyTM,Vael'yT*N (1.1.32)

Since ¢ is smooth then ¢*(«) is well defined and if « is smooth obviously ¢*(«) must be
smooth as well.



Let us stress once again that any covector field can be pulled back along any smooth
map but this is not the case for the push-forward.

Definition 14: Let be M and N two manifolds with the respective cotangent bundles
(T*M, M,y ,R™) and (T*N, N, 75,R™). Let ¢ : U C M — V C N|V = ¢(U) be alocal
diffeomorphism between them. We define the push-forward of local covector fields
the map ¢y : 'yT'M — I'yT*M such that:

[Px()](v) = a(¢*(v)) = (¢, (v)) , YveTlyTN,VaelyT*M (1.1.33)

Since ¢ is smooth then ¢, («) is well defined and if « is smooth obviously ¢,(«) must be
smooth as well.

Again for an invertible map ¢ the push-forward is just the inverse map of the pull-back,
and the relation ¢* = (¢ 1), can be easily checked.

Definition 15: Let be M and N two manifolds and ¢ : U C M — V C N be a local
smooth map between them. Let x € U a point, then we define the push-forward of
covariant tensor fields the map ¢, : I'yTPM — I'yyTPN such that:

(6. (T))(a?) = T([¢*()]P) , Vaf € xPTyT*N , VT € TyT*M (1.1.34)

In the same way we define a pull-back of contravariant tensors fields the map
¢* : I'vITyN — I'yT, M such that:

0*(T)|(vg) = T([6(v)]lg) , Vog € xPTy TN, VT € TyT,N (1.1.35)

Definition 16: Let be M and N two manifolds and ¢ : U C M — V C N be a local
diffeomorphism between them. Let x € U a point, then we define the pull-back of
covariant tensor fields the map ¢, : I'vTPN — I'yTP M such that:

[ (D7) = T([6x()]F) = T([¢7"(@)]) . VoP € x'TyT"M , VT € TyI’N

(1.1.36)

In the same way we define a push-forward of contravariant tensor fields at x the
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map ¢* : I'yT,M — I'yT,N such that:

(6.(T))(v) = T(16* (0)]g) = T((6~,@)P) . Veg € x’TYTN, VT € DyT,M (1.1.37)

Definition 17: Let be M and N two manifolds and ¢ : U C M — V C N be a local
diffeomorphism between them. Let x € U a point, then we define the push-forward
of tensor fields the map ¢, : TyTPM — T'yTPN such that VaP € xPT'yT*N , Vo7 €
XyTN , VT € I'yTY M:

[0 (D)])(0”,vg) = T([0" ()], ([¢"(v)]g) = T([¢" ()], [o7". (v)]q) (1.1.38)

In the same way we define a pull-back of tensor fields the map ¢* : I'vITN — Ty TP M
such that Vo? € xPT'yT*M , Vw7 € xTyTM , VT € T'yTPN:

[ (D))", vg) = T([6.()]7, [94(v)]g) = T([¢™" ()], [$x(v)]g) (1.1.39)

Property 4: One can easily check from the given definition of pull-back and push-
forward of vectors, covectors and tensors are all R-linear, hence the linear structures on
the vector spaces are preserved. Furthermore since the pull-back and push-forwards are
R-linear maps between finite dimensional vector spaces, due to theorems of standard
linear algebra, we know that fixing two basis on T, M and T, /N they can be expressed by
matrices. Since ¢ : U C M — V C N is a diffeomorphism it is trivial to check from the
definition that

¢P* o by = P 0" =1id (1.1.40)

therefore the pull-back is the inverse of the push-forward and vice-versa.

1.1.4 Local expressions for C*°(M)-linear operations on tensor
fields

Since at fixed frame there is a one to one smooth relation between a tensor and its local
expression, we can ask ourselves how the operations defined in the previous section affect
the local expression of a tensors field. This is very useful because it allows us to single out
for each operation defined above, the rules to manipulate directly the local expressions and
to check local properties i.e. the smoothness. Finding the local expression manipulation
rules can be performed easily given a smooth local frame and proceeding as it was done
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before in the case of tangent tensors. We have to remark that, since 'y TP M is a F(U)-
linear module, the multi-indexed list of coefficients are not just real number but belongs
to F(U). If the tensor field is smooth then its local expression is a multi-indexed list
of C*(U) functions. Let us suppose we have an open set U on which is defined a local
smooth frame (e, ® €"7) € ['yTPM that fixes a local trivialisation of the vector bundle
TP M.

1. Sum:

(T + S)yr = [T+ Sl en,) =T (", e,,) + S(e7,e,) =Ty + Spr - (1.1.41)

lﬁ
Example: (g + 1) (7) = g (@) + by (2)

2. Multiplication by a scalar field:

(fT)r = [[TI(e, e,) = - [T(e"7, e0,)] = fT)P (1.1.42)

Example: (fg),.(z) = f(x)gu(2)

3. Tensor product:

(T X S)’Z:;‘;/ = [T X S](GME eaﬁ/, eyq, 65@,) = T(e“ﬁ’ qu)S(eaﬁ/’ 666’) = T#;S;‘;/
(1.1.43)

Example: (¢ ® h)uwas(x) = g (x)has(2)

4. Braiding:

(o) T)z(z) = [o3T)(e47, e,) () = T(e"1® ey, N(x) =Top' D () (1.1.44)

VP;(@)

Example: (0(12)g)w(9€) = Gyu()
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5. Contractions:

(UJT)‘,jfTl = [ T](e", e, ) =T(e", v, ey ) =T (", €0, €0 ) = v IET

(@ T),2 " = [ T (e, ev,) = T(a, €T e, ) = a®T (e, €71, eq, €, ) = a®T, "t

(1.1.46)
Example: (v.g),(x) = v"g,.(x)
6. Internal contraction:
(Z'T)“;1 T, e, ) =T (e, "7 T, eq, €, ) = Tjﬁg (1.1.47)

Example: (i Tor),(z) = Tor},(x)

Lemma 1: Let TPM and Tp/M be two tangent tensor bundles, and Lin(p,q,p’,q') =
{£:1r. M — Tp M} be the space of the linear map between them. There always exists
an unique tensor L € FTq+p M such that:

L(T) = [i(]PH[c P 1P(T @ L) (1.1.48)
therefore Lin(p, q,p’,q’) is isomorphic to I'T] 5:5 M as a module and we can perform on

them all the operation defined on tensor fields.

Proof. Let us fix a trivialisation (U;, t(;)) on T'M fixing the local smooth frames e,;), and

let us induce from it the local trivialisation on T};M and on T (f,/M . Then for each U; we
can write :

Considering the definition of £ and since at fixed indices ;1 and v we have a tensor, we
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; vg vg ap/ Pz ap .
can write L£(e) ® e,;0)) = [/j(e(i) ® euﬁ(i))]ﬁﬁl €a (i) ® €. Where [L(e)? ew) ® €uy (2)))] is a

multi-indexed list of functions in F(U;). Hence defining the functions:

2

ZZZ (@) = [Lled @ ey (x) . Ve el (1.1.50)

we can recast the expression as follow:

v Ve fe Bt P

L(T)= Ti”(l)ﬁ(e(f) ® eu,(i)) Tff’(l) [L(eq) ® 6%(@'))]5;, €a(i) ® €y = (1.1.51)

_pkp o Yaop A _ kp 7 Yaoy ' By
=Tl Ly o ® €5 = Thg Litel iy oty ® €] (1.1.52)

On the other hand we have that on U; the following holds:
[i]PH[o Pt g PP (L @ T) = (1.1.53)
. B

={[i]P* [U(p+q+q )J(p+q+p,)](p+q)(L ® T)}Bq/(‘ Cay (i) ® €y = (1.1.54)

T oy ® €y (1.1.55)

/

={[i]P*1[cPT(T & L)}(e(g ’eﬁa'(i)) €a (i) ® e(iq) = L7 7/,11,( 0

/
So, via a linear combination, we can define a local section of T 515, M for each U; such
that:

By
GR
(1.1.56)

Q1 Vg Uy B L v
Ly iy Cap(i) ® €nyti) @ e @ € = [L{e(f @ €], Cay i) ® €yti) @ € @€

Due to the linearity of the map it is very easy to check that given another trivialisation
(Uj, t¢;)) of TM, on the overlap U;; = U; N U; the following holds:

%a/

. pHq q Byt 1 - ~
[{]PT Pt (T & L) = Tﬁ(l)[/%ﬁi/(,) Cay (i) D € = (1.1.57)

. Ve Ot/ o5 /(Zj
=Ty Lot o) ® €0 = A N R i Kot

My Aﬂ*’ ﬁ*/
vg(§) " 1pBy (5) 1) By Tqu(i)Lpﬁ;(j) Cagi (i) @ €(3)

(1.1.58)
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Therefore we can conclude that the transition functions are:

0{

L T = N7 A ATy AT L (1.1.59)

By 15 (4) pw(i) " By (i7) Y (i5) ™ ppog (5)

and we can state that this can be interpreted as the local expression of a global section
L e FT;fi;i,M . To prove the relation is an isomorphism of modules one should prove that
the sum and multiplication by scalar are preserved. This can be trivially verified from the
definition of L, £ and the trivialisation induced by the choice of the smooth frame. Let
us remark that the existence of this isomorphism strongly depends on the facts that the
two tensor spaces admits the same trivialisation. In general there is no way to interpret
the linear maps as tensors when another trivialisation is chosen. We will see that this
aspect can is crucial when we will define the basis of the totally anti-symmetric tensor.
As we previously said, concerning the pull-back and the push-forward it is extremely easy
to show that the action of the pull-back and the push-forward upon the local coordinate
expression can be expressed by a matrix called the "Jacobian" matrix related to the
transformation. O

1.2 Differential operators acting on tensor fields and
their properties

As we will see later the multipoles are founded on the concept of derivations upon the test
tensor fields. Considering that, a relevant section of the introductory chapter must be
dedicated to their investigation. Once again since we want to achieve an analysis of the
multipoles, we are not interested here in a complete review of the differential operators
on tensor fields. We are going to focus ourselves mainly on their algebraic properties and
on their coordinate expressions.

1.2.1 Definitions

Given a manifold M endowed with an atlas (U;, ¢(;)), let us consider the tangent tensor
bundle TP M and a section T' € I'TPM. We know that at fixed trivialisation (Uj, ti)) we

can induce local representatives of the tensor field denoted by Ty’; ?i) :U; — R™"™ such
that:

T“f. () =T(e", ey (i), (1.2.1)

q

If T' is a smooth section, by definition the local expression Tlf; 5(1)(@ must be a multi-index
list of smooth functions. Therefore using the coordinate ;) it is possible to define a new
list of functions T“ 7 R™ — R™" usually called the the coordinates of the local
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expression, such that:

A

TP (I) = [T"5 o gp(;)l](:(:’é)) (1.2.2)

vg (1) va (i)

and Tli; 5@) must be a multi-indexed list of smooth maps from R™ to R™" so they can
be differentiated in a standard way. Considering this it is natural to ask ourselves if
it is possible to define intrinsic global differential operators on tensor fields such that
coordinate expressions of the local expression are closely related to the standard differ-
ential operators defined on maps R™ to R™ ™. If this was possible one can say that
the information about the differentiable property of the sections in I'TP M does not de-
pend on trivialisation or coordinates but it is purely geometrical information encoded
eventually, at fixed trivialisation, inside the derivatives of the local expression of tensor
fields. Several different approach can be pursued to reach this goal. The most common
consist in fixing the trivialisation in defining some differential operations that map the
coordinates of local expressions into coordinates of local expressions, then checking if the
compatibility condition is satisfied. Another very elegant approach focused on the very
geometrical perspective, defines specific flows of diffeomorphisms on 77 M (i.e parallel
transport, pull-back and push-forward) such that they act naturally on the sections as
derivations. In this work we are not going to follow one of these two paths. Considering
our purposes we prefer to focus directly on the operative aspects of the the differential
operators, defining them by imposing intrinsically the constraints concerning how they
can act on the smooth sections in I'T? M. Then using the definitions and the properties,
we will provide the local expression of these operators. Let us just remark that at this
stage all the considered fields must be smooth.

Definition 18: Given a manifold M, let TM and TPM be the tangent and tangent
tensor bundles respectively. We define the Lie derivative of tensor field the map

L:TTM x TTPM :— I'TPM (1.2.3)

such that:

1. it satisfies the R-linearity in the first and second arguments, VA, u € R, VT, S €
I'TPM, Vv, u € I'TM :

L,(AT + pS) = ALy(T) + Ly (S) (1.2.4)
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2. it satisfies the Leibniz rule with respect to the tensor product, VT, S € T'TP M, Vv €
'’ M:

L(T®S)=L,(T)® S +T ® Ly(5) (1.2.6)

3. it satisfies the Leibniz rule with respect to the multiplication by a scalar, VI €
LTPM,Vv,u € T'TM , Vf € C*(M)

Lu(fT) = Lo(f)T + fL.(T) (1.2.7)

4. it satisfies the Leibniz rule with respect to both contractions, V1" € I'T? M, Vv, u €
I'TM , Yo e TT"M

Lo(usT) = Ly(u)s T + us Ly (T) (1.2.8)

L,(a"T)=Ly(a)"T + ™ L,(T) (1.2.9)

5. it satisfies the Jacobi Identity V1" € T'TP M, Vv,u € T'TM

[Lus LoJ(T) = Ly (T) (1.2.10)

6. it commutes with the internal contraction V1" € I'TP M, Vu € I'T'M

iLy(T) = Ly(iT) (1.2.11)

17



7. it commutes with the braiding maps VI' € I'T? M, Vu € I'T'M

oL L (T) = L,(o'T) (1.2.12)

8. it satisfies the rule for scalar fields V1" € I'TPM,Vu € I'TM, Vf € C*(M):

Ly(f) = v(f) = d[f](v) (1.2.13)

9. it satisfies the rule for vector fields L,(u) = [v,u] , Yu € I'TM

Property 5: Let us notice that the Lie Derivative satisfies all the properties needed to
be a well defined derivation on the C"*°-module of the smooth tensor fields.

The Lie derivative is a very nice and useful operator, it has a very important geomet-
rical meaning deeply rooted in the concept of the flow of diffeomorphisms of the manifold
M in itself. Although this perspective is very interesting and powerful, especially to
model and express how the flows of transformations on the basis act naturally on the
sections of I M via the pull-back and push-forward functor of bundles, this definition
is all we need for the purpose of this work. The Lie derivatives play an essential role in
the definition of the symmetries of geometrical and physical objects, but unfortunately
an exhaustive show of these very important concepts cannot be provided properly in this
work, because it would be out of the main topic. We suggest the casual reader to have
a look to the book [21], to get familiar with the concepts of smooth bundle morphisms,
pull-back and push-forward of structures and symmetries. The Lie Derivative is not the
only derivation which can be defined. In contrast with the Lie derivative which does
not require any structure other than the differentiable structure of M, introducing an
extra structure called "affine connection", it is possible to define another derivation on
the tensor fields.

Definition 19: Given a manifold M let T'M and T?M be the tangent and the tangent
tensor bundles respectively. We define the Covariant derivative of tensor field the
map

V:ITM x I'TPM — TP M (1.2.14)

such that:

1. it satisfies the R-linearity in the second argument, VA, un € R, VT, S € I'T? M, Vv €
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I'T'M

V(AT + uS) = AVo(T) + puV,(S) (1.2.15)

2. it satisfies the C°°(M)-linearity in the first argument, Vf,g € C*(M) , VI €
TP M, Vv, u € TTM :

VpusgulT) = FVL(T) + gVu(S) (1.2.16)

3. it satisfies the Leibniz rule with respect to the tensor product, VT, S € T'TP M, Vv €
'’ M:

Vo(T®S) = Vo(T)® S +T & Vy(S) (1.2.17)

4. it satisfies the Leibniz rule with respect to multiplication by a scalar, VI' € T'TP M, Vv, u €
I'TM ,NVfeC®M)

Vo(fT) = V()T + fVu(T) (1.2.18)

5. it satisfies the Leibniz rule with respect to both contractions, VI' € I'TP M, Vv, u €
I'TM, Ya e I'T*M

Vo(usT) =Vy(u)s T +usV,(T) (1.2.19)

Vo (a1T) = V(@) T+ a V,(T) (1.2.20

DO
[\
@)
=

6. it commutes with the internal contraction VI' € I'TPM,Vu € I'T'M

iVu(T) = V,(iT) (1.2.

DO
DO
—_
SN—
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7. it commutes with the braiding maps VI' € I'T? M, Vu € I'T'M

oV (T) =V, (aiT) (1.2.22)

8. it satisfies the rule for scalar fields V1" € I'TPM,Vu € I'TM, Vf € C*(M):

Vo(f) = v(f) = d[f](v) (1.2.23)

In contrast with the Lie Derivative, because of the C'*°(M)-linearity in the first term,
we can interpret V in different way with respect to the previous definition. The new
interpretation will be very useful to define the multipoles. Given a tensor field 7', let us
consider V(T') : I'TM — I'TPM defined as:

[V(T)(a?, u,v5) = [Vo(T)](a”, vg) (1.2.24)

Since V,(T) is C*°(M)-linear in the first argument, we must conclude that V(T') is a

C*°-multilinear map in all its arguments therefore V(T') € I'T}’,; M. Furthermore from

the properties of the covariant derivative one can prove that it must be a smooth tensor
field since 7" is smooth. Considering this we induce another definition of V:

Definition 20: Given a manifold M let T'M and T?M be the tangent and the tangent
tensor bundles respectively. We define the covariant differential as the map

V:ITPM — TTP M (1.2.25)

such that:

u V(T) =V, (T) Yu e TTM (1.2.

[\
[\
(@)
Nl

where V,(T') satisfies all the properties defining the covariant derivative.

Definition 21: Given a manifold M let T7 M (with p > 1) be the tangent tensor bundle.
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We define the divergence as the map

div : TTPM — TP ' M (1.2.27)

such that:

div(T) = i[V(T)] (1.2.28)

Definition 22: Given a manifold M let T'M and T?M be the tangent and the tangent
tensor bundles respectively. We define recursively the k-th covariant differential as
the map

VF:TTPM — TP M (1.2.29)
such that:
VUT)=T , VT e€Tl’M (1.2.30)
(1.2.31)
V(T)=V(T) , VI e€Tl’M (1.2.32)
and
VET)=V(V¥Y(T) , VI'eT’M , VkeN' (1.2.33)

Definition 23: Given a manifold M let T'M and T?M be the tangent and the tangent
tensor bundles respectively. We define recursively the k-th covariant derivative the
map

VP x*TTM x TTPM — TTP M (1.2.34)
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such that:
VFWF, T) = VFA(T) = upee o, SVH(T) VT € TPM,Vk € N* (1.2.35)

Definition 24: Given a manifold M let TM and TPM (with p > k) be the tangent and
tangent tensor bundles respectively. We define recursively the k-th divergence the map

div: TTPM — TTP*M (1.2.36)
such that:
div'(T) = div(T) (1.2.37)
and
div®(T) = div(div*(T)) (1.2.38)

By convention div® = id

Definition 25: From the higher order covariant derivatives we can extract two useful
differential operators. Let be { K} with i € [1, k!] the set of all the possible permutations
upon k elements:

Vi : TTPM — T'T},

!
1 1 0 «
(h+qM  such that V](“)(T) = E ox, {V*(T)} (1.2.39)
i=1

k!
1 ,
Vi TTPM =TT, M such that  V{(T) = o > (—1) g {VHT)} (1.2.40)
Ti=1
where #(K;) is the sign of the permutation K
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These two operators will be extremely useful later, when casting one of the two defi-
nition of the multipoles.

1.2.2 Fundamental properties

In this subsection we are going to list and prove a lot of useful properties concerning the
derivations defined above. These will be widely used in the analysis of the multipoles.

Property 6: The covariant differential V commutes with respect to the braiding map o
but it does not commute with all the other braiding maps as ¢, in particular it commutes
with just braiding map of permutation such that J(1) = 1. In other words it commutes
just if the braiding map acts without touching the first argument.

Proof. 1t is enough to notice that the covariant derivative commutes with both braiding
maps to write

[0V T) (o, u,vg) = [VT) (TP u,v5) = V, T(a"® 47) = (1.2.41)
=o' [V T)(a?,vg) = [Vu(o'T)](aP,vg) = V(a'T) (P, u, vg) (1.2.42)

[0,V T)(aP, vg41) = [0,VT(aP, 01, v.1) = VTP, vp,0), Vp,@anyy) = (1.2:43)
= Yy, 0 TP 0 1) (1.2.44)

If P;(1) =1 then vp,1) = v; then we have that:

[UJVT] (Oéﬁ7 ’Uﬁ) = VUPJ(l)T<aPI(T7)7 vPJ(ﬁ\T))) — vvlT(OéPI(TJ), UPJ(m\T))) - <l245)
= 0y [Vo, (D), vgm1) = [V (05T (@, vgma) = [V(esT)] (e, vggr) (1.2.46)

Property 7: The covariant differential satisfies:

1. the "generalised Leibniz" rule with respect to the product ®:

V(T®S)=V(T)® S+ o:1(T @ V(S)) (1.2.47)
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2. a "generalised Leibniz" rule with respect to the contraction with covector fields ™

V(aT) = i(oan[V(a) ® T]) + o V(T) (1.2.48)

3. a "generalised Leibniz" rule with respect to the contraction with vector fields

V(viT) = i(0a2)[V(v) @ T]) + va(oagyV(T)) (1.2.49)

Proof. Given T and S arbitrary tensor fields, let v and « be a vector and a covector field
respectively, therefore

1. using the definitions and the properties of the covariant derivatives:

ulVITe8S)=V,(T®S)=V,(T)®@S+T®V,(S5) = (1.2.50)
=[u V()] @S+ T @ uisV(S)] = (1.2.51)
=ua[V(T) ® S| + uslo5(T @ V(9))] = (1.2.52)
=u [V(T)® S +o,7(T®V(S))] , VuelTM (1.2.53)

2. in the same way we can prove:
usV( @) =V, (aT) =V () (T) + a 'V, (T) = (1.2.54)
=uo{i(oqy[V(a) @ T))} + us{a'V(T)} = (1.2.55)
=ulli(oay[V(a) @ T]) +a'V(T)] , YuelTM (1.2.56)

3. as well as:

usV(viT) =V (viT) = V,(0)3(T) + vaV,(T) = (1.2.57)
:u_l{i(a(lg) V(v)®T])} + UJ{U_IO'(IQ)V(T)} = (1.2.58)
:UJ[?:(O'@Q) [V(U) & T]) + UJU(lQ)V(T)] s Yue I''M (1259)
O
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Property 8: The covariant differential V does not commute with the internal contrac-
tion. In particular we have that given 7" € I'TP M.

V(iT) = iloay V(T)] (1.2.60)
On the other hand using the definition of the covariant derivative we can state that:
W(usV(T)) = (usV (iT)) (1.2.61)
Proof. Considering the properties of the covariant derivatives:

iV (T)) = i(Vo(T)) = Vo (iT) = (usV(iT)) (1.2.62)

Combining the properties above with the definition of ¢ we can prove trivially the thesis.

O
Property 9: The covariant divergence satisfies the following rule
div(v@T) =div(v) @ T + V,(T) (1.2.63)
Proof.
divlveT)=i(VeeT))=i(Vu) T +ve V(T)) = (1.2.64)
=i(V(v)@T+i(ve V(T)) =div(v) @ T + V,(T) (1.2.65)
O

In contrast to the higher order differentials and divergences, the higher order covariant
derivatives are not merely the composition of lower order covariant derivatives.

VE(T) (P, uz, vg) # Vi (. Vo, (T)) (P, vg) (1.2.66)
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In fact the second term is not a C°°(M)-multi-linear in the w;.

Property 10: From the d