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Abstract

This thesis contributes to the �eld of multivariate extremes. The work has been

motivated by an application in oceanography to assess safety and reliability of o�shore

structures, vessels, and platforms, but we remark that the contents of the thesis are

designed to be more generally applicable to other environmental or even �nancial

applications.

The model that forms the foundation for this work is the conditional extremes

model (He�ernan and Tawn, 2004) in which the extremes of a multivariate random

variable are modelled by conditioning on one of the variables being extreme. This

model is called the He�ernan-Tawn model and it is one of the most �exible models

for modelling extremes of multivariate random variables.

We design a mixture model for signi�cant wave height conditional on large wave

periods in the North Sea by extending the He�ernan-Tawn model. Our extension

helps with understanding the distribution of responses to o�shore facilities or vessels

that are dominated by resonance frequencies. A mixture model is necessary here

because two types of waves are recorded in the North Sea: swell waves and wind sea

waves; both of these can be associated to large wave periods.

We calculate extremal properties of a model that is widely used by engineers

in oceanographical applications. This model has a simple interpretation but is not

motivated by extreme value theory. This led to the development of a mathematical

toolset to calculate extremal characteristics for conditional models in general. This in

turn allowed us to prove a new restriction on the space of the He�ernan-Tawn model

parameters.

Finally, we model the joint temporal evolution of oceanographic variables using
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an extension of the He�ernan-Tawn model to increase the understanding of what a

10, 000 year event would look like. This led to a generic formulation of a multivariate

extremes temporal model.
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Chapter 1

Introduction

1.1 Motivation

Extreme events are the hot topic of today. Quite literally actually. At the time of

writing of this thesis, record temperatures are being observed in Canada, the Nether-

lands, Latvia, and elsewhere in the world. The modelling of such extreme events in

a statistical sense is important for many reasons related to safety, reliability and risk

management. Although modelling temperature extremes is not directly the topic of

this thesis, it does show how extreme events can have a direct impact on our daily

lives.

When I introduce the topic of my Ph.D., I always try to visualize what it is like

from the perspective of a manager on an o�shore platform somewhere in some sea

or ocean. For the manager, it is helpful to have an understanding of the risk whilst

their employees are living and working on this structure. If the weather forecast is

predicting a 10, 000 year storm to arrive next weekend, should the manager advise

the workers to be evacuated or is the platform safe enough to withstand such extreme

events. What about a 1, 000 year storm? Of course, the life of workers is the most

important aspect of the work; on the other hand, from a business perspective, it is

also very important to assess whether an o�shore structure or vessels are built well

enough to withstand such extreme events both from the perspective of the company

and its insurers. This motivates the main aspect of the work in my thesis: modelling

1
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oceanographic extremes, i.e., what does the ocean look like during the most extreme

storms, with applications related to risk assessment. Answering the question `how safe

is it?' is not only crucial from a practical point of view, it is also very interesting from

a statistical point of view because of the sheer complexity of the ocean environment.

To emphasize the importance of work in this area, we remark that there are numer-

ous examples of o�shore facility disasters in the past. Often, such events are caused by

accidents and negligence (e.g., the explosions on the Piper Alpha oil platform in 1988

and the Deepwater Horizon in 2010) but many are also caused by extreme weather

events (e.g., the capsizing of the Alexander L Kielland in 1980 and the collision of the

Usumacinta jack-up rig with the Kab-101 in 2007); the latter of these causes being

the focus of this thesis. Modelling such extreme weather events and relating them to

facility failures is far from trivial. For example, it is not necessarily the case that the

period of highest average waves in a storm also contains the largest wave that causes

the most damage. Moreover, a combination of simultaneously extreme waves, winds,

currents, etc, during a storm could have more of an impact to a structure than when

one considers only the highest wave of a storm with its associate winds and current

speeds.

In a statistical framework, the safety question translates to the calculation of

failure probabilities. For an o�shore structure, we de�ne a generic long-term response

variable X and a region A such that X ∈ A is equivalent to a failure. We are

interested in calculating probabilities of the form P(X ∈ A) such that risk can be

assessed accurately and o�shore facilities can potentially be reinforced to re�ect a

company's policy. The procedure of calculating such procedures consists of 5 steps.

1. The modelling of the long-term ocean environment E: a multivariate random

variable that consists of summary statistics that summarize the state of the

ocean.

2. The modelling of the short-term ocean environment E∗ conditional on E. This

process consists of upscaling the summary statistics to estimate wave heights

conditional on the average wave height, associated wave periods, wind gusts,
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etc.

3. The modelling of the short-term responsesX∗ conditional on E∗. For example, if

we know the height of a wave and its period, we can calculate the wave steepness

and subsequently calculate the e�ect of this single wave on a vessel.

4. The modelling of the long-term responses X conditional on X∗, for example, the

total impact of a storm on an o�shore facility which can be either cumulative

in nature or it can involve taking a maximum over a time period.

5. The calculation of failure probabilities P(X ∈ A) by integrating out the four

hierarchical models for: X|X∗, X∗|E∗, E∗|E and E, respectively.

All �ve of these steps are important and deserve an equal amount of attention. In

this thesis, however, we only focus on the �rst step: the modelling of the long-term

ocean environment E. The main reason for this is that the other steps involve physical

models. The key statistical problem lies in the �rst step with this requiring research

development in the area of extreme value theory.

Some components of E that I will be using in my thesis are the following three-

hourly summary statistics: signi�cant wave height, peak wave period, wind speed,

wave direction and wind direction. Signi�cant wave height HS summarizes the ampli-

tude of the surface elevation as the average wave height of 1/3 of the highest measured

waves; the peak wave period Tp is de�ned as the wave period that generates the most

energy; wind speed Ws is the average wind speed over the measured time interval;

�nally, the wave direction ΘH and wind direction ΘW are also averages of the wave

and wind direction over the time period. Other features of the ocean environment

that are usually part of E but will not be used in this thesis are current speeds at

an array of depths, surge, surface pressure, precipitation, temperature, tides, etc. See

Holthuijsen (2010) for more details on de�nitions of such oceanographic variables.

Because a failure, i.e., X ∈ A, due to a weather event is generally unlikely -

or at least designed to be unlikely - the failure associated weather events must be

extremely unlikely as well. The modelling of such extreme weather events is at the
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heart of this thesis. We note that this should de�nitely not be attempted using simple

statistical methods - like linear regression or principal component analyses - because

one learns that extrapolation beyond the observed data is a no-go in the �eld of

statistics. However, in our case reliable records only go back for about 100 years

at best, whereas companies usually aim to design facilities to only break down to a

1, 000 year storm - an observation that would be so extreme that it probably has not

been observed before. Given a structure, can we additionally say if it can survive a

10, 000 year storm? If not, how can we improve or design such a structure to survive

these type of extreme events? Standard statistical theory fails but the questions need

answers.

The research �eld of probability and statistics that currently is receiving a lot of

attention that does try to model such rare events is the �eld of extreme value theory. In

short, extreme value theory methods are applicable to model tails of distributions and

can assign probabilities to events never observed before. Because such extrapolation

is risky from a modelling point of view, the arguments for any of these methods

need to be solid. In fact, almost all univariate extreme value theory methods are

derived from asymptotic probabilistic theory. So that these methods that model tails

of distributions at least have a theoretical foundation to rely on.

In my Ph.D., extreme weather events are the main player, and such events are too

complex to summarize with a single univariate random variable. Thus, multivariate

extreme value approaches are needed for tackling the problems posed in this thesis.

Such modelling techniques are much more complex than its univariate counterparts,

because one cannot derive a parametric form for the extremes of any type of distri-

bution - something that is possible for univariate random variables. So, for modelling

purposes, one would need to assume a sub-class of possible limits. In the literature

review, many of these methods are discussed. One of these methods, the �exible

conditional extremes approach from He�ernan and Tawn (2004), in particular will be

used as a building block for my newly developed methodology.

During my Ph.D. I can proudly look back on the following three major accom-

plishments. The �rst is the description of a bivariate mixture model for conditional
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extremes. For this model, we have introduced two inference techniques - one of these

is based on quantile regression which is similar to the inference method from Liu and

Tawn (2014), and the other one is based on likelihoods which can straightforwardly be

extended to model multivariate mixtures with dimension greater than 2. The impact

of this work is that we now can model the dependence between signi�cant wave height

HS and peak wave period Tp more accurately.

The second is a signi�cant contribution to linking asymptotic theory with condi-

tional models. We recognized that conditional models are used a lot in practice, e.g.,

Haver and Winterstein (2009) for modelling oceanographic variables. These models

are usually applied without a proper understanding of what assumption such models

make on the extremes: including assumptions on marginal extremes and/or extremal

dependence. This is not surprising since the mathematics that link these two is far

from trivial. Our major contribution is the development of a set of mathematical

tools to make these calculations feasible.

Finally, our third addition to the �eld is the description of a temporal model for

the extremes of multivariate random variables. We are not aware of anyone who has

tried this before, and thus this is a completely new addition to the �eld of extremes. In

our oceanographic application, a description for the temporal evolution of the ocean

environment is important for risk assessment that is related to response variables that

are cumulative of nature: for example, the cumulative damage of waves from a 10, 000

year storm onto a structure. Nota bene, this work does not just have an impact on

oceanographic applications but can also be applied to a wide variety of extreme value

applications: for example, a joint statistical risk analysis of river gauges data due to

simultaneous snow melt and precipitation, a risk analysis of persistent heat waves at

multiple locations, etc.

1.2 Thesis outline

In this project, we tackle three interesting extreme value related challenges.

In Chapter 2, we present an overview of the �eld of extreme value theory. This
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includes a thorough overview of extremes for univariate random variables, stationary

processes and multivariate random variables.

In Chapter 3, we present an extreme value mixture model that is applied to mod-

elling signi�cant wave height and wave period at a location in the northern North

Sea. For this very spe�cic application, there exist at least two latent processes that

describe the dependence between signi�cant wave height and wave period: swell waves

and wind sea waves. We recognize that standard statistical methods for modelling

bivariate extremes are likely to fail to give reliable inferences in such cases. More

generally, we consider situations in which the observed dependence at extreme levels

is a mixture of a possibly unknown number of much simpler bivariate distributions.

For such structures, we demonstrate the limitations of existing methods and propose

two new methods: an extension of the He�ernan�Tawn conditional extreme value

model to allow for mixtures and an extremal quantile-regression approach. The two

methods are examined in a simulation study and then applied to our oceanographic

application. Finally, we discuss extensions including a subasymptotic version of the

proposed model, which has the potential to give more e�cient results by incorporating

data that are less extreme. Both new methods outperform existing approaches when

mixtures are present.

In Chapter 4, we present work on the extremes of conditionally speci�ed models.

Such models are often used to describe complex multivariate data because of their

simple interpretation. However, without practitioners being aware, these conditional

models assume implicit structures on the extremes. Until now, we are not aware of

any methodology for calculating extremal characteristics of conditional models since

the copula and marginals are not expressed in closed forms. We consider bivariate

conditional models that specify the distribution of X and the distribution of Y con-

ditional on X. We provide tools to quantify implicit assumptions on the extremes

of this class of models. In particular, these tools allow us to approximate the dis-

tribution of the tail of Y and the coe�cient of asymptotic independence η in closed

forms. We apply these methods to a widely used conditional model for wave height

and wave period. Moreover, we introduce a new condition on the parameter space
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for the conditional extremes model of He�ernan and Tawn (2004), and prove that the

conditional extremes model does not agree with η, when η < 1.

In Chapter 5, we develop two models for the temporal evolution of extreme events

of multivariate kth order Markov processes. The foundation of our methodology lies

in the conditional extremes model of He�ernan and Tawn (2004), and it naturally ex-

tends the work of Winter and Tawn (2016, 2017) and Tendijck et al. (2019) to include

multivariate random variables. We use cross-validation-type techniques to develop

a model order selection procedure, and we test our models on two-dimensional met-

ocean data with directional covariates for a location in the northern North Sea. We

conclude that the newly-developed models perform better than a baseline historical-

matching methodology for these data.

In Chapter 5, we give a summary of my main contributions to this thesis and we

discuss further research opportunities.



Chapter 2

Literature review

2.1 Overview

In this chapter, an overview of the �eld of extreme value theory is presented. Sec-

tion 2.2 introduces univariate extreme value theory for which two ideologies are de-

tailed: peaks-over-threshold and block maxima. These ideologies were initially pre-

sented under the assumption of independent random variables. In Section 2.3, we

discuss how the results change when instead of independent random variables, a sta-

tionary random process is considered. Both previous methods lay the foundation for

complex multivariate extreme value theory methods in Section 2.4.

2.2 Univariate extreme value theory

Univariate extreme value theory lays the foundation of all multivariate extreme value

theory methods. So, understanding how to model the extremes of univariate dis-

tributions is necessary before one can even think about more complex multivariate

applications. In this section, we explore the extremes of a univariate random vari-

able X with distribution function F that has right-upper end point x∗ := sup{x ∈

R : F (x) < 1} ∈ R ∪ {∞}. To that end, let X1, X2, . . . be an independent and

identically distributed (iid) sequence of random variables with the same distribution

function F , and assume that data {x1, x2, . . . } associated to this process are available.

8
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There are two common methodologies for modelling the extremes of X: (i) block

maxima, which model max{X1, . . . , Xn} as n tends to in�nity; and (ii) peaks-over-

threshold, which models X|X > u as u tends to in�nity. In Figure 2.2.1, these two

univariate extreme value approaches are visualised. In this section, we will discuss

the main theoretical results for both of these methods.
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Figure 2.2.1: Two univariate approaches for modelling extremes: Left, block maxima;

right, peaks-over-threshold. The starred points correspond to the maxima of the

blocks (left) and the data above the threshold (right).

2.2.1 Block maxima

The block maxima approach evolves around modelling the maximum

Mn := max{X1, . . . , Xn}, n ∈ N

as n tends to in�nity. Before we get into modelling Mn, we remark that any theory

developed for maxima can be applied to minima as well by applying the relation

min{X1, . . . , Xn} = −max{−X1, . . . ,−Xn}.

We now work out

lim
n→∞

P(Mn ≤ x) = lim
n→∞

F (x)n =

 0 for x < x∗

1 for x ≥ x∗.

(2.2.1)

This shows that Mn converges to x∗ in probability. In Theorem 2.2.1, we present

exactly how Mn converges to x∗.
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Asymptotic theory on the convergence of Mn to x
∗ has been developed in (Fisher

and Tippett, 1928), (Gnedenko, 1943) and (de Haan, 1970).

Theorem 2.2.1. Let Xi be an i.i.d. sequence of random variables and de�ne Mn :=

max{X1, . . . , Xn} for each n ∈ N. If there exists a non-degenerate random variable

G and constants an > 0 and bn ∈ R such that

Mn − bn
an

D−→ G (2.2.2)

holds, then G must be a generalised extreme value (GEV) random variable with shape

ξ ∈ R, location µ ∈ R and scale σ > 0:

P (G ≤ x) =

 exp
(
−(1 + ξz)−1/ξ

)
, ξ 6= 0

exp(− exp(−z)), ξ = 0

for 1 + ξz > 0

with z = (x−µ)/σ, and for 1 + ξz ≤ 0, P(G ≤ x) = 0 when ξ > 0, and P(G ≤ x) = 1

when ξ < 0.

If we additionally assume that the distribution function F is known and that X

has a density f which is di�erentiable near the upper-end point x∗, then Smith (1987)

has shown that we can pick an = 1/(nf(bn)) and bn = F−1(1−1/n) in Theorem 2.2.1.

With these choices, the rescaled maximum converges in distribution to a generalised

extreme value distribution with shape ξ ∈ R, location µ = 0 and scale σ = 1.

2.2.2 Peaks-over-threshold

A di�erent method to model univariate extremes is the peaks-over-threshold which

aims at modelling X|X > u when u tends to x∗ from below. Similar to block maxima,

we scale X|X > u cleverly such that in the limit the scaled version converges in

distribution to a non-degenerate random variable.

Theorem 2.2.2 (Theorem 7. in Pickands (1975)). Let X be a random variable.

If Theorem 2.2.1 is applicable to a sequence of iid copies of X, then there exists a

continuous function c(u) > 0 such that

X − u
c(u)

∣∣∣∣ (X > u)
D−→ V (2.2.3)
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as u tends to x∗ from below, where V is generalised Pareto with shape ξ ∈ R and scale

σ > 0:

P (V ≤ x) =


1− (1 + ξx/σ)−1/ξ for (x > 0, ξ > 0) or (x < −σ/ξ, ξ < 0)

1 for (x > −σ/ξ, ξ < 0)

0 otherwise.

2.2.3 Relating block-maxima to peaks-over-threshold

The peaks-over-threshold and block maxima approaches are closely related. In par-

ticular, the parameter ξ in Theorem 2.2.1 is the same as the parameter ξ in Theo-

rem 2.2.2. We show this here. De�ne D as the domain of G, and let x ∈ D then

P (G ≤ x) = lim
n→∞

F (anx+ bn)n = exp
(

lim
n→∞

n logF (anx+ bn)
)

= exp
(

lim
n→∞

n · [F (anx+ bn)− 1]
)
.

The limit inside the exponent must exist. Next, let v ∈ D such that x > v, then we

can use this as follows:

− logP (G ≤ x)

− logP (G ≤ v)
=

limn→∞ n · [1− F (anx+ bn)]

limn→∞ n · [1− F (anv + bn)]
= lim

n→∞

1− F (anx+ bn)

1− F (anv + bn)

= lim
n→∞

P (X − (anv + bn) > an(x− v) | X > anv + bn)

= lim
n→∞

P

(
X − un
c(un)

> x− v | X > un

)
with un = anv + bn and c(un) := an. We note that the right-hand side takes on

the same form as in limit (2.2.3) and the left-hand side is exactly in the form of a

generalised Pareto distribution with shape ξ and scale σv := σ + ξ(v − µ):

− logP (G ≤ x)

− logP (G ≤ v)
=

(
1 + ξ(x− µ)/σ

1 + ξ(v − µ)/σ

)−1/ξ

= (1 + ξ(x− v)/σv)
−1/ξ .

So, the parameter ξ ∈ R, which parameterizes the heaviness of the tails of the limiting

distributions of G and V , appears in both block maxima and peaks-over-threshold.

This parameter is called the extreme value index, and historically three extreme value

classes of distributions have been de�ned based on the value of ξ
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1. ξ > 0: The Fréchet class for distributions of maxima or Pareto class for dis-

tributions of exceedances. Random variables that belong to this limiting class

have a heavy tail such that moments of order (1/ξ) and greater do not exist.

2. ξ = 0: The Gumbel class for distributions of maxima or exponential class for

distributions of exceedances. Random variables that are associated with ξ = 0

have either a �nite or in�nite upper-endpoint. In either case, all moments always

exist.

3. ξ < 0: The reverse-Weibull class for distributions of maxima, there is no name

for this class associated to distributions of exceedances. Random variables that

have this limiting form have a �nite upper-endpoint. For example, when ξ = −1,

the generalised Pareto distribution is the uniform distribution on [0, σ].

Because this thesis will be centred around applications rather than theoretical results,

we shall not compare these methods here via their limiting results because they will

not be relevant to the rest of the thesis. For the interested reader, we refer to Cai

et al. (2013); Ferreira and de Haan (2015); Dombry and Ferreira (2019).

2.2.4 Practical choices for inference

We do not have in�nite resources and for practical applications we do not know the

distribution function F (and density f) in advance. So, to infer the extremal behaviour

of an iid random process given a �nite set of data {x1, . . . , xn}, we need to discuss

some practical choices.

First and foremost, block maxima and peaks-over-threshold are based on limiting

relations. So to infer the extremal behaviour of a univariate random variable using

either of these methods, we need to assume that limits (2.2.2) and (2.2.3) hold exactly

at some �nite level. For block maxima, this implies that we must assume there

exists an m ∈ N such that Mm := max{X1, . . . , Xm} has a generalised extreme

value distribution with shape ξ ∈ R, location µ∗ := amµ + bm ∈ R and scale σ∗1 :=

amσ. For peaks-over-threshold, we must assume that there exists a v ∈ R such that

(X1 − v)|X1 > v has a generalised Pareto distribution with shape ξ ∈ R and scale
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σ∗2 := σc(v). Although, am, bm, c(v), µ, σ are not known, the unknown µ∗, σ∗1, σ
∗
2 can

be directly inferred as the unknown parameters of the models.

So, to assess the heaviness of the tail ofX or equivalently perform inference on ξ, we

must additionally perform inference on m or v. In literature, methods that infer m in

practice have not been addressed extensively because: (i) literature on block maxima

for iid processes focuses mainly on asymptotic results, and hardly addresses a �nite

case because one would for example have to bound the level of model misspeci�cation;

(ii) in many applications, one cannot really compare multiple choices for m. For

example, for weather related data, yearly maxima is either appropriate or it's not,

one can usually not make the blocks slightly larger or smaller in these cases. Methods

that infer v on the other hand have been addressed extensively.The most common

ones are: (i) rules of thumb: for example, the 10% rule (DuMouchel, 1983), or the

square-root rule (Ferreira et al., 2003), or the empirical rule (Loretan and Phillips,

1994); (ii) graphical methods: for example, mean residual life plots, threshold stability

plots, quantile or return level plots (Davison and Smith, 1990; Coles et al., 2001); (iii)

automated methods, which do not rely on the subjectivity of a researcher (Hall, 1990;

Gomes and Oliveira, 2001); (iv) composite models, which model both the tail and bulk

of the distribution simultaneously (Tancredi et al., 2006); (v) theoretically motivated

methods Hall and Weissman (1997); Ferreira et al. (2003); (vi) test statistics based

on goodness-of-�t methods (Northrop and Coleman, 2014; Wadsworth, 2016). For

an interested reader, we refer to Scarrott and MacDonald (2012) who present a very

clean overview of di�erent methods.

In all of the above, apart from the composite models, it is suggested to perform

inference in a two-step fashion: First select m (v), then perform inference conditional

on m (v). We now present some inference procedures for block maxima and peak-

over-threshold separately.

Block maxima We assume that m is known and for easiness of presentation we

assume that B := n/m ∈ N. Next, split up the data into B blocks where the ith

block consists of observations {xB·(i−1)+1, . . . , xB·i}. To infer, the distribution of Mm,

we can now make use of B observations - the maxima of each block - that are assumed
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to follow a generalised extreme value distribution. The parameters of the GEV can be

estimated using any preferred method of inference: for example, maximum-likelihood,

probability-weighted moments or Bayesian type methods.

Two other inference methods for the block maxima approach have recently been

considered in literature: sliding block maxima (SBM) (Bücher and Segers, 2018)

and all block maxima (ABM) (Oorschot and Zhou, 2020). In SBM, the data are

split up into n −m blocks where the ith block contains observations {xi, . . . , xi+m}.

In ABM, the data are split up into
(
n−m
B

)
blocks. In both of these methods, the

maxima of the blocks can no longer be considered independent. However, the quasi-

maximum likelihood estimate which is obtained by assuming that the observations

are independent is still valid and even has lower asymptotic variance than the original

block maxima approach.

Peaks-over-thresholdWe assume that v is known, then the observations {xi : xi >

v} are approximated with a generalised Pareto distribution. Estimates of the param-

eters of this distribution can be obtained with your favourite method of inference, eg

maximum likelihood, probability weighted moments or Bayesian type methods.

We remark more on the di�erences in the next section where we discard the indepen-

dence assumption and instead consider a stationary random process.

2.3 Univariate extremes for stationary processes

In environmental applications, nearly any real physical process does not produce in-

dependent observations. Because the theory in the previous section has been set up

for independent random variables only, it is important to understand how exactly the

discarding of the independence assumption changes the theory. So, now let us assume

that X1, X2, . . . are generated from a stationary random process. We note that for

non-stationary processes, one can remove non-stationarity using standard statistical

techniques and subsequently apply extreme value theory to the stationary residual

process, see for example Eastoe and Tawn (2009). Below, we comment on intuition
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that will be discussed more rigorously in the next subsections.

Under the assumption that temporal dependence decreases to 0 when time between

random variables increases, the block maxima approach is still expected to be asymp-

tically valid since the temporal dependence in block maxima vanishes. Thus, they can

be considered independent as long as the block size tends to in�nity. However, the

dependence within a block cannot be ignored; so that it is not necessarily trivial how

to calculate quantiles of the marginal distribution of the Xi when we assume that the

maxima of n consecutive observations follow a GEV distribution. Moreover, in any

application we cannot have block sizes growing to in�nity due to �nite resources.

For the peaks-over-threshold method, it is easier to understand that the method

is still valid since we only consider the distribution of X|X > u. However, the

conditional sample does not consist of independent realisations.

2.3.1 Block maxima for stationary processes

Mathematically, the concept of approximate independence for block maxima has been

de�ned in Leadbetter et al. (1983) as the D(un) condition. We do not give the exact

statement of this condition here because it is not relevant for understanding the theory,

however, we do like to remark that it is exactly what one expects: it de�nes `near'

independence by bounding the di�erence of the joint distribution function of a random

process and the product of the marginal distribution functions.

To relate the stationary case to the independence case, they de�ne the extremal

index θ > 0 of a stationary random process as follows. Firstly, let the stationary

sequenceX1, X2, . . . satisfy theD(un) condition and let X̃1, X̃2, . . . be the iid sequence

with the same marginal distribution as our original stationary random process, and

assume that when M̃n := max{X̃1, . . . , X̃n} is scaled as (M̃n − bn)/an, we have

lim
n→∞

P

(
M̃n − an

bn
≤ x

)
= P (G ≤ x)

for a generalised extreme value random variable G with shape ξ, location 0, and scale

1. Next, they assume that for each x ∈ R, P ((Mn − an)/bn ≤ x) converges as n tends

to in�nity, and then they derive that this implies there must exist a θ ∈ (0, 1] such
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that for each x ∈ R,

lim
n→∞

P

(
Mn − an

bn
≤ x

)
= P (G ≤ x)θ

holds. Then, θ is the extremal index of the stationary random process. It is then

quite straightforward to see that for ãn = anθ
ξ and b̃n = bn − an(1 − θξ)/ξ, we must

have

lim
n→∞

P

(
Mn − ãn

b̃n
≤ x

)
= P (G ≤ x).

This shows that asymptotically the maximum of a stationary random process that

satis�es the D(un) condition also has a generalised extreme value distribution. So,

the block maxima approach is still valid. We do remark that to estimate the marginal

distribution using the block maxima approach, one needs to estimate θ.

2.3.2 Peaks-over-threshold for stationary processes

As mentioned before, observations from the sample {xi : xi > u} from the stationary

process are generated from the same marginal distribution as if there was no tem-

poral dependence. However, when there is temporal dependence, then obviously the

exceedances are not independent. This needs to be taken into account in inference.

First of all, we note that probability weigthed moment estimators are applicable to

temporally dependent data; so this type of estimation method is still perfectly valid

in this case. Secondly we note that for evaluating likelihoods. one needs to make

a modelling assumption for the dependence structure, which will not be the simple

product as in the iid case since the density no longer factorizes. However, one could

potentially assume that the density factorizes and maximize the product over the

parameter space. This estimator is called the quasi-maximum likelihood estimator

(Lee and Hansen, 1994).

A di�erent way of modelling peaks-over-threshold to the data is by applying the

methodology to cluster maxima only. Under similar conditions as in Section 2.3.1,

the basic peaks-over-threshold model yields clustered Poisson processes when applied

to a stationary time-series. So, Davison and Smith (1990) conclude that the asymp-

totic methodology still must hold when applied to cluster maxima only, see also Sec-
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tion 2.3.5. Eastoe and Tawn (2012) discuss the implications of this assumption when

the limiting theory is applied at �nite thresholds.

2.3.3 Comparing peaks-over-threshold and block maxima for

stationary processes

Similar to Section 2.2.3, we compare here peaks-over-threshold with block maxima

approach but now for stationary processes. As described above, both methods are

still applicable as described above. However, the di�erences between the methods are

more signi�cant compared to the iid case.

In estimating high quantiles of the marginal distribution, the peaks-over-threshold

method is preferred over the block maxima approach. This is because for peaks-over-

threshold, we can use a plug-in estimator that is directly derived from the generalised

Pareto �t. To use block maxima to do the same, we additionally requires an esti-

mator of the extremal index θ which induces more variability to estimates of these

quantiles. We can see the latter as follows. Assume we have estimated Mn with a

GEV distribution that has the following parameters: location ãn ∈ R, scale b̃n > 0

and shape ξ ∈ R, then we must have that

P(X1 ≤ x) = P
(
Mn ≤ ãn + b̃n

x− ãnθ−ξ

b̃n + ãn(θ−ξ − 1)/ξ

)1/n

where the latter is the distribution function of a GEV random variable with location

ãn, scale b̃n and shape ξ. This expression can now be inverted to get an estimator of

large quantiles of the marginal of X1 in terms of ãn, b̃n, ξ, and θ.

The opposite is true for estimating large return periods for annual maxima. The

block maxima approach is directly applicable, whereas peaks-over-threshold can only

be used to estimate return levels if additionally the extremal index is estimated; or,

in case the method is applied to cluster maxima only, an estimate for the rate of

occurrence of clusters is required.
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2.3.4 The extremal index

The extremal index of a stationary process as de�ned in Section 2.3.1 gives inter-

esting information on the extremal behaviour of the process. Here, we discuss an

interpretation for θ, and how we can estimate it.

First of all, if θ = 1, then extreme events cannot occur consecutively. So, asymp-

totically, it does not matter for modelling the extremes if one forgets that the process

does not consist of independent observations. In practical applications, however, Eas-

toe and Tawn (2012) show that this assumption is not necessarily correct at �nite

levels, and discuss the behaviour of the sub-asymptotic version of the extremal index

θ(x,m) := P(max{X2, . . . , Xm} < x | X1 > x) (2.3.1)

for large levels x ∈ R and run length m ∈ N. On the other hand, if θ < 1 then

extreme events will occur together.

There exist a couple of very �ne interpretations of the extremal index θ. Hsing

et al. (1988) showed that the extremal index θ is equal to the reciprocal of the mean

size of an extreme cluster, and O'Brien et al. (1987) shows that the extremal index

can be interpreted as the probability of an extreme value being the last extreme value

of a cluster.

Next, we describe two estimators for θ: the blocks estimator and the runs estima-

tor. Some other types of estimators do exist (Ferro and Segers, 2003; Hsing, 1993) but

we do not consider these to be either relevant for the thesis or necessary to understand

the broader aspects of the �eld of extreme value theory.

The blocks estimator for the extremal index, see Smith and Weissman (1994), is

derived as follows. Let u ∈ R be some high threshold and let Nu be equal to the

number of times Xi for 1 ≤ i ≤ n exceeded u. Next, split up the data up into k blocks

of length n/k, and de�ne Zu as the number of blocks for which the maximum of the

random process exceeds u. The blocks estimator is now de�ned as θ̂u := Zu/Nu.

The runs estimator is de�ned as follows. Let u ∈ R be some high threshold and

let Nu be the same as in the blocks estimator. Next, set Wi equal to 1 if Xi > u

and 0 otherwise and let r > 0 be such that temporal dependence at distance r can
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be approximated to have vanished. Finally, set Z∗u :=
∑n

i=1Wi

∏r
j=1(1 − Wi+j) as

the number of last exceedances of extremal clusters with a cluster deemed to have

�nished when there are r consecutive values of Xi below u. The runs estimator of the

extremal index is now de�ned as

θ̃ := Z∗/N. (2.3.2)

2.3.5 Extremal clusters

Before, we mentioned the idea that cluster maxima in Section 2.3.2 are approximately

independent, and peaks-over-threshold can be applied to these cluster maxima. This

idea has been formalized in Ferro and Segers (2003). In their work, they de�ne an

extremal cluster of a stationary process for a threshold and a separation parameter m

such that exceedances of this threshold that are separated withm−1 consecutive non-

exceedances can be considered approximately independent. Ledford and Tawn (2003)

additionally de�ne diagnostics for assessing this independence assumption between

clusters, and they cover within-cluster dependence by bounding the subasymptotic

extremal index in equation (2.3.1) from above and below using the coe�cient of

asymptotic independence, see Section 2.4.2.

2.4 Multivariate extreme value theory

In Section 2.2, we considered univariate iid random variables X1, X2, . . . . In this

section, we assume d-dimensional data {xi : i = 1, . . . , n} with xi := (xi1, . . . , xid)

that are generated from multivariate iid random variables Xi = (Xi1, . . . , Xid) for

i = 1, . . . , n.

The �rst di�culty of modelling multivariate extremes compared to univariate ex-

tremes is that there exists no natural ordering on Rd for d ≥ 2, and thus it is less

clear how to de�ne an extreme event. Barnett (1976) provides a number of options for

ordering d-dimensional observations of which the following two are commonly used in

modelling extremes: (i) marginal ordering; and (ii) reduced aggregate ordering.
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The marginal ordering approach looks at models for component-wise maxima of

a sample, see Section 2.4.3, and under reduced aggregate ordering, one applies a

function that maps Rd onto R transforming the multivariate ordering problem to the

univariate setting, see Coles and Tawn (1994) for examples. In Section 3.2.1, we

discuss a di�erent methodology that does not require ordering methods because it

models a multivariate vector conditional on one component being large.

The second di�culty of modelling multivariate extremes is the vast array of pos-

sibilities of combinations of random variables with varying levels of dependence. To

get an intuition for one of the di�culties, see Figure 2.4.1. In this plot, we show

data that are simulated from three distributions with the same dependence model

but on di�erent margins. From inspection, it is not obvious that the dependence of

the data is exactly the same across all three random samples; that is because marginal

e�ects dominate our interpretation of dependence. It is for this reason that in multi-

variate extremes, we always model our multivariate data with the following two-step

approach: (i) model each of the marginals using univariate extreme value theory,

and using the probability integral transform these marginals onto standard margins

- which can be uniform, exponential, Laplace, Gumbel, Fréchet, etc; (ii) model the

remaining dependence with parsimonious distributions.

In Section 2.4.1, we present the theory of copulas which will prove to be useful

in multivariate extremes by providing a mathematical framework for combining the

two steps mentioned above. In Section 2.4.2, we de�ne functionals that quantify the

level of statistical dependence in the extremes, and in Section 2.4.5, we model the

asymptotic shapes of samples generated from multivariate distributions.

2.4.1 Copula theory

Sklar's theorem (Sklar, 1959) forms the foundation for the theory of copulas: a sta-

tistical framework that can be used to model complex dependence models.

Theorem 2.4.1 (Sklar (1959)). Consider a d-dimensional distribution function F

with marginals F1, . . . , Fd. Then there exists a copula CU with uniform margins such
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Figure 2.4.1: Data simulated from three multivariate distributions, each with the

same dependence model (Gaussian) but with di�erent marginals: standard uniform,

standard Gumbel and standard Laplace (from left to right).

that

F (x1, . . . , xd) = CU(F1(x1), . . . , Fd(xd))

for all x = (x1, . . . , xd) ∈ Rd. Moreover, if Fi are continuous for all i = 1, . . . , d, then

CU is unique.

In Sklar's theorem, the copula CU always has standard uniform margins. Because

the extremes of CU will cluster at the boundaries of the unit cube, we extend the

de�nition of a �copula� to include multivariate distributions with di�erent marginals

- as long as it is the same marginal distribution for each component. Copulas with

Gumbel margins CG (He�ernan and Tawn, 2004) and standard Laplace margins CL

(Keef et al., 2013), for example, are de�ned by combining the above theorem and the

probability integral transform. Copula CG satis�es

F (x1, . . . , xd) = CG {h[F1(x1)], . . . , h[Fd(xd)]} . (2.4.1)

with h(u) = − log(− log u) for u ∈ (0, 1), and for copula CL, equation (2.4.1) holds

with h(u) = −sgn(u − 1/2) log[1 − 2|u − 1/2|]. In most of our applications, we use

Laplace margins because it allows for identical treatment of both positive and negative

dependence across components due to its symmetry, however, di�erent parts of the

theory are presented for di�erent marginals when this simpli�es our presentation. For

an overview of the �eld of copulas, see Joe (1997).
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2.4.2 Extremal dependence

We consider two di�erent types of extremal dependence for multivariate random vari-

ables: asymptotic dependence (AD) and asymptotic independence (AI). In particular,

for AD (AI) models, the asymptotic conditional probability χ ∈ [0, 1] that all compo-

nents of the random variable are extreme together given that one variable is extreme

is greater than 0 (equal to 0). Joe (1997) de�nes this concept in the bivariate case as

follows.

De�nition 2.4.2. Let (X1, X2) be a bivariate random vector such that X1
D
= X2 holds.

The coe�cient of extremal dependence χ = χ({1, 2}) is de�ned as

χ := lim
x↑x∗

P (X2 > x | X1 > x),

provided this limit exists, where x∗ := sup{x : P(X1 < x) < 1} is the right end-point

of the marginal distribution.

So, χ is equal to the asymptotic probability of one component being extreme

conditional on that the other is extreme as well. Wadsworth and Tawn (2013) extend

De�nition 2.4.2 to random variables X = (X1, . . . , Xd) of a higher dimension d > 2.

De�nition 2.4.3. Let (X1, . . . , Xd) be a multivariate random vector with identically

distributed components. De�ne x∗ := sup{x : P(X1 < x) < 1} as the right end-point

of the marginal distribution, and let S be the power set of {1, . . . , d}. For each set

S = {s1, . . . , sk} ∈ S, we de�ne χ = χ(S) as

χ := lim
x↑x∗

P (Xs2 > x, . . . , Xsk > x | Xs1 > x),

provided this limit exists.

It is now natural to introduce the concept of strong and weak joint tail dependence

(Wadsworth and Tawn, 2013), and consequently asymptotic dependence and asymp-

totic independence.

De�nition 2.4.4. Let (X1, . . . , Xd) be a multivariate random vector with iden-

tically distributed components. Let S be the power set of {1, . . . , d}, and let S =
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{s1, . . . , sk} ∈ S. Then, we say that the random vector (Xs1 , . . . , Xsk) has strong

joint tail dependence if and only if χ(S) > 0. On the other hand, if χ(S) = 0, then

we say that this random vector has weak joint tail dependence. If S = {i, j}, then we

use the terminology asymptotically dependent and asymptotically independent, respec-

tively.

The concept of asymptotic dependence cannot be compared with generic dependence.

In particular, there exist strongly correlated asymptotically independent random vari-

ables, like the bivariate Gaussian with correlation ρ < 1 (Sibuya, 1959). In this case,

the coe�cient of extremal dependence χ = 0 does not re�ect the relative strength

of dependence in the extremes. Ledford and Tawn (1996) noticed this and de�ned

the coe�cient of tail dependence η ∈ (0, 1] for asymptotically independent random

variables as follows

De�nition 2.4.5. Let (X1, X2) be a bivariate random vector such that X1, X2 have

standard Fréchet margins. Assume there exists a slowly varying function L : R →

R>0, i.e., for z > 0, L(xz)/L(x)→ 1 as x→∞ for z > 0, such that

P (X1 > x, X2 > x) = L(x)x−1/η (2.4.2)

holds. Then η = η({1, 2}) is termed the coe�cient of tail dependence.

First, we note that if X1 and X2 are asymptotically dependent, then η = 1, and

χ = limx→∞ L(x). Next, if X1 and X2 are independent, then η = 0.5 and L(x) ∼ 1

as x→∞. Finally, if X1 and X2 are identically distributed but do not have standard

Fréchet marginals, then η is de�ned as follows. First, de�ne

η(x) :=
logP(X1 > x)

logP(X1 > x, X2 > x)
.

Then, η := limx↑x∗ η(x) with x∗ := sup{x : P(X1 < x) < 1} the right upper end-point

of the marginal distribution of X1.

Wadsworth and Tawn (2013) extend the de�nition of η for bivariate random vari-

ables to a d-dimensional variant for (X1, . . . , Xd) by adapting equation (2.4.2) to

P(X1 > x, . . . , Xd > x) = L(x)x−1/η
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for a slowly varying function L. In this case, independence between all components

yields η = 1/d.

There exist many more multivariate extremal dependence measures besides χ and

η. However, in our work, χ and η are the most relevant, and these will be coming

back in main parts of the thesis. For a broaded overview, we also introduce two

extremal dependence measures that we will not end up using. For a random vector

X = (X1, . . . , Xd) with unit-exponential margins, Wadsworth and Tawn (2013) de�ne

the angular dependence coe�cient λ(ω) for ω = (ω1, . . . , ωd) such that ω1+· · ·+ωd = 1

as follows for v > 0:

P (X > ωv) = L(ev;ω)e−λ(ω)v,

where L(t;ω) is regularly varying at in�nity with order 0 as function of t for each

�xed ω. The measures λ and η are linked via

η = d · λ(1/d, . . . , 1/d).

So, the angular dependence coe�cient λ is a direct extension of η that includes the

dependence of components in di�erent directions other than the diagonal.

Simpson et al. (2020) de�ne the regular variation coe�cient τC(δ) for δ ∈ [0, 1]

and C ⊆ {1, . . . , d} for a multivariate random vector X = (X1, . . . , Xd) on Pareto

margins. This coe�cient measures the extremal dependence when simultaneously Xi

is large for i ∈ C (strong joint tail depedence: χ(C) > 0) and Xj is small for j 6∈ C

(weak joint tail dependence: χ(C ∪ {j}) = 0 for j 6∈ C). They de�ne the coe�cient

by assuming that fx,y(t) := P
(
mini∈C Xi > xt, maxj 6∈C Xj ≤ ytδ

)
for x, y > 0 as a

function of t is regularly varying at in�nity. They de�ne τC(δ) = −1/k where k is

equal to the order at which fx,y is regularly varying.

2.4.3 Component-wise maxima

The simplest method for modelling multivariate extremes is to order data or ran-

dom variables marginally, i.e., Mn,i = maxj=1,...,nXij and investigate the behaviour of
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(Mn,1, . . . ,Mn,d). It should be noted that observations of these component-wise max-

ima do not per se coincide with actual observations, when the maxima in di�erent

components do not occur simultaneously.

Similar to the univariate case, we apply an appropriate component-wise scaling

such that Theorem 2.2.1 holds for all marginal components individually. So, we

assume that for i = 1, . . . , d there exist constants ani > 0, bni ∈ R such that(
Mn,1 − bn1

an1

, . . . ,
Mn,d − bnd

and

)
D−→ G, (2.4.3)

for a non-degenerate random variable G. The class of distributions that can occur

in limit (2.4.3) are de�ned as the multivariate extreme value distributions. Unlike

in the univariate case, there is no analytic form for each distribution function within

this class. Nonetheless, it is still possible to specify some theoretical properties of

such multivariate extreme value distributions, and to give examples of parametric

submodels.

For example, a straightforward argument shows that G = (G1, . . . , Gd) needs to

be max-stable, i.e., for each i = 1, . . . , d, k ≥ 1, there exist αki > 0 and βki ∈ R such

that for all (x1, . . . , xd) ∈ Rd,

P (αk1x1 + βk1 ≤ G1, . . . , αkdxd + βkd ≤ Gd)
k = P(G1 ≤ x1, . . . , Gd ≤ xd).

So, each marginal Gi of G for 1 ≤ i ≤ d must have a generalised extreme value

distribution. This means that if X has an extreme value distribution, then limit

(2.4.3) holds with equality for any n ∈ N. This in turn implies that any distribution

function of an extreme value distribution must have GEV marginals and must be

in�nitely max-divisible (Balkema and Resnick, 1977).

Now assume that X has standard Fréchet margins. Following Pickands (1981), we

rewrite the distribution function FG of an extreme value distribution G as follows

FG(x) = exp{−V (x)}

for x ∈ D := {x ∈ Rd : FG(x) ≥ 0} and some function V : Rd → R≥0 ∪ {∞}.

This function V will be referred to as the exponent measure, and its properties are

discussed below.
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The �rst result related to the exponent measure V is that any function V implies

that FG is an extreme value distribution if and only if it satis�es the following condi-

tions (de Haan and Resnick, 1977): (i) The function V needs to be homogeneous of

order −1, i.e., V (cx) = V (x)/c for any c > 0 and x ∈ D; (ii) V needs to take on the

form

V (x) = d

∫
Sd−1

max
i=1,...,d

(
wi
xi

)
dH(w)

with H a distribution function on

Sd−1 =

{
w ∈ [0, 1]d :

d∑
i=1

wi = 1

}
that satis�es

d

∫
Sd−1

wi dH(w) = 1

for i = 1, . . . , d, which ensures that the margins of FG are standard Fréchet. In

literature, H is commonly referred to as the spectral measure.

Examples of extreme value distributions

We present two examples of extreme value distributions. The �rst example is the

multivariate extreme value distribution on exponential margins with a logistic depen-

dence model that is parameterised with α ∈ (0, 1] (Gumbel, 1960). The exponent

measure V of this model is de�ned as

V (x) :=

(
d∑
i=1

x
−1/α
i

)α

, (2.4.4)

where x = (x1, . . . , xd) with xi > 0, i = 1, . . . , d, and a parameter α ∈ (0, 1] which

represents the amount of dependence within the model. More speci�cally, α = 1 cor-

responds to the case of complete independence and α ↓ 0 yields perfect dependence. A

sample from the bivariate version of this model with parameter α = 0.5 and standard

Gumbel margins is plotted in Figure 2.4.2 (left).

Tawn (1988, 1990) extend the dependence model (2.4.4) to a more general asym-

metric logistic dependence structure. The exponent measure V of their model is

V (x) =
∑

C∈S\∅

(∑
i∈C

(
θi,C
xi

)1/αC
)αC

xi > 0, i = 1, . . . , d, (2.4.5)
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where S is the power set of {1, . . . , d}. The parameters αC , θi,C with C ∈ S and i ∈ C

of this model must satisfy the following constraints: for all C ∈ S , i ∈ C, αC ∈ (0, 1],

θi,C ∈ [0, 1], and
∑

C∈S θi,C = 1. Moreover, for identi�ability reasons, αC = 1 if

C contains one element. A sample from the bivariate version of this model with

parameters
(
θ1,{1}, θ2,{2}, θ1,{1,2}, θ2,{1,2}, α{1,2}

)
= (0.5, 0.5, 0.5, 0.5, 0.5) and Gumbel

margins is plotted in Figure 2.4.2 (right). This set of parameters yields a mixture

between two logistic models, one with dependence and one with independence.

For more examples of parametric multivariate extreme value distributions, see

Galambos (1994); Hüsler and Reiss (1989); Joe (1990); Cooley and Thibaud (2019).
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Figure 2.4.2: Bivariate extreme value distributions on Gumbel margins. 100, 000 ob-

servations from the logistic model (left) with parameter α = 0.5 and from the asym-

metric logistic model (right) on with parameters
(
θ1,{1}, θ2,{2}, θ1,{1,2}, θ2,{1,2}, α{1,2}

)
=

(0.5, 0.5, 0.5, 0.5, 0.5).

2.4.4 Conditional extremes

We introduce the conditional extreme value model of He�ernan and Tawn (2004),

henceforth denoted the HT model. Their model is widely studied and applied to

extrapolate multivariate models. It is a limit model and its form is motivated by

derived limiting forms from numerous theoretical examples.

Let X = (X1, . . . , Xd) be a random vector with standard Laplace margins (Keef

et al., 2013) and assume that its joint density exists. De�ne

X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xd)
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for all i = 1, . . . , d. Next, assume that for each i = 1, . . . , d there exist functions

a|i : R → Rd−1, b|i : R → Rd−1
>0 and a distribution function H|i on Rd−1 that is

non-degenerate in each margin such that for all z ∈ Rd−1 the following limits

lim
u→∞

P
(
X−i − a|i(Xi)

b|i(Xi)
≤ z, Xi − u > x | Xi > u

)
and

H|i(z) = lim
x→∞

P
(
X−i − a|i(x)

b|i(x)
≤ z | Xi = x

)
(2.4.6)

exist. This implies, according to l'Hôpital's rule, that for x > 0

lim
u→∞

P
(
X−i − a|i(Xi)

b|i(Xi)
≤ z, Xi − u > x | Xi > u

)
= H|i(z) exp(−x). (2.4.7)

The latter in turn has the interpretation that as u→∞, (X−i − a|i(Xi))/b|i(Xi) and

(Xi − u) are independent conditional on Xi > u, and are distributed as H|i and a

standard exponential, respectively.

To apply the HT model, we assume that limit (4.4.1) holds exactly above some

high threshold u∗ > 0 so that for u > u∗:

P
(
X−i − a|i(Xi)

b|i(Xi)
≤ z, Xi − u > x | Xi > u

)
= H|i(z) exp(−x). (2.4.8)

The functions a|i and b|i are usually parameterised with a|i(x) = α|ix and b|i(x) = xβ|i ,

where α|i ∈ [−1, 1]d−1 and β|i ∈ (−∞, 1) satisfy the Keef et al. (2013) conditions.

These constraints are there to ensure that in equation (2.4.8) the marginals of X−i do

not contradict with the initial requirement that X−i has standard Laplace margins.

These parametrisations are suitable for most generic cases but in general they can be

anything as long as they satisfy some regularity conditions detailed in (He�ernan and

Resnick, 2007).

A slightly di�erent parameterization b|i(x) = 1 + {a|i(x)}β|i was considered in

Wadsworth and Tawn (2013). This parameterization was motivated by the following

example. Let (X, Y ) be a bivariate random vector with exponential margins that are

linked with a Gaussian copula with correlation parameter ρ ∈ [0, 1). Using the earlier

parameterization of the conditional extremes model, we must have a|i(x) = ρ2x and

b|i(x) =
√
x when ρ > 0, and a|i(x) = 0, b|i(x) = 1 when ρ = 0. They remarked
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that the function b|i as function of ρ is not continuous at 0. This discontinuity is

solved with using the alternative parameterization b|i(x) = 1 + {a|i(x)}β|i . In our

applications, however, the Keef et al. (2013) parameterizations are su�cient.

Simple interpretations of the parameters α|i := (α1|i, . . . , αi−1|i, αi+1|i, . . . , αd|i)

and β|i := (β1|i, . . . , βi−1|i, βi+1|i, . . . βd|i) are as follows:

Case 1: (αj|i, βj|i) = (1, 0) implies thatXj andXi are asymptotically dependent

for i 6= j.

Case 2: αj|i < 1 implies that Xj and Xi are asymptotically independent for

i 6= j.

Case 3: βj|i > 0 implies that the variability between Xj and Xi grows as Xi

grows.

Case 4: 0 < αj|i < 1 (respectively, −1 < αj|i < 0) implies positive (negative)

association between Xj and Xi for i 6= j.

For an example of how this model can capture certain dependency structures, see

Figure 2.4.3 where data are simulated from the HT model with α|1 = 0.5, β|1 ∈

{−0.5, 0, 0.5}, and u = 3. We note that for environmental applications βj|i < 0 is

unrealistic as it would imply that the uncertainty in the dependence of the most

extreme events is zero. So, the restriction βj|i ≥ 0 can be considered, see for example

Tawn et al. (2018).

Inference

We present inference for the HT model for bivariate data D = {(xi, yi) : i = 1, . . . , n},

and comment on the di�erences for d-dimensional data.

The �rst step in the inference procedure involves around choosing a threshold u

and a conditioning variable. The choice of conditioning variable is usually a modelling

assumption, and the choice of the threshold u can be justi�ed with parameter stability

diagnostics. In this example, we condition on the �rst component and assume that
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Figure 2.4.3: A sample of size 10.000 from the HT model on Laplace margins with

α = 0.5, u = 3, and from left to right β = −0.5, 0, 0.5 given that the �rst component

X1 > 3 of X. Moreover, we show the conditional mean (red); and the 2.5% and 97.5%

conditional quantiles (red dashed).

we know u. We de�ne I := {i : xi > u} as the indices of exceedances of u by the

�rst component.

In the second step, we calculate the likelihood of the model. We note that it

is not possible to evaluate the likelihood without imposing any constraints on the

residual distribution H|1. We follow the approach of He�ernan and Tawn (2004) who

propose to temporarily assume that the residual distribution Z|1 is Gaussian with

unknown mean µ2|1 and unknown variance σ2
2|1. Under this assumption, we evaluate

the log-likelihood l as follows:

l
(
α2|1, β2|1, µ2|1, σ

2
2|1;D

)
= −|I |

2
log(2πσ2

2|1)−
∑
i∈I

(
yi − α2|1xi − µ2|1x

β2|1
i

)2

2σ2
2|1x

2β2|1
i

,

where |I | is the cardinality of I . It is now straightforward to infer the four pa-

rameters of the model under either frequentist or Bayesian ideologies. Denote with

(α̂2|1, β̂2|1, µ̂2|1, σ̂
2
2|1) our estimates of the parameters of the HT model conditional on

data D. We now discard the Gaussianity assumption on the residual distribution and

its distribution is estimated with a kernel density of the observations {zi : i ∈ I},

where

zi :=
yi − α̂2|1xi − µ̂2|1x

β̂2|1√
σ̂2

2|1x
β̂2|i
i

.

For higher dimensional HT models, inference is performed separately for each pair

(αj|i, βj|i) but is otherwise identical to the above. The only real di�erence in the infer-

ence procedure is the estimation of the multivariate residual distribution. He�ernan
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and Tawn (2004) propose to non-parametrically estimate the multivariate residual

distribution. However, when d is large, there might not be enough observations for a

non-parametric estimate to perform well due to the curse of dimensionality, and we

might need to resort to (semi) parametric estimates: Lugrin et al. (2016) assume a

mixture of Gaussian distributions, Towe et al. (2016) assume a Gaussian copula but es-

timate the marginals non-parametrically, and Wadsworth and Tawn (2022); Shooter

et al. (2021); Richards et al. (2021) assume a Gaussian process with delta-Laplace

margins.

2.4.5 Limit sets

In this section, we model the extremes of a random vector Z = (Z1, . . . , Zd) with

density fZ and distribution function FZ by considering the geometrical shape of a

sample from this random variable of size n where n tends to in�nity. We �rst give

some intuition and after we present the underlying theory.

For ease of presentation, we assume that each component Zj of Z has a standard

exponential distribution - which if not arising naturally can be achieved with the

probability integral transform. Let Z1,Z2, . . . be a sequence of independent and

identically distributed random variables with distribution function FZ. For each i ≥ 1,

we write Zi := (Zi1, . . . , Zid). In this section, we present recent work that links features

of the multivariate extremes of Z with the geometrical properties of the random shape

of {Zi : i = 1, . . . , n} as n tends to in�nity.

Without any scalings, the random shape converges onto the set {z ∈ Rd : fZ(z) >

0}. However, the question of the limiting random shape can be more revealing about

the extremal dependence structure when for each n ≥ 1, Zi is scaled with rn := log n.

This choice of scaling is made because max{Zij/rn : i = 1, . . . , n} converges in

probability to 1 for each j = 1, . . . , d, which implies that when we mathematically

de�ne the limit of the random shape of the n-sample point cloud Nn := {Zi/rn : i =

1, . . . , n}, then it must be a subset of [0, 1]d and for each component, its component-
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wise maxima must be equal to 1: for each j = 1, . . . , d

P (max{Zij : i = 1, . . . , n} ≤ z log n) = (1− exp {−z log n})n

as n→∞−→


1 for z > 1,

exp{−1} for z = 1,

0 for 0 ≤ z < 1.

Mathematically, we de�ne convergence of an n-sample point cloud onto a set as

follows.

De�nition 2.4.6 (Nolde (2014)). Let DL ⊂ Rd be compact. We say that the n-sample

point cloud Nn converges onto DL if and only if the following two conditions hold.

1. For any open set U ⊃ DL, we have that

lim
n→∞

P

(
n∑
i=1

1(Zi/rn 6∈ U) > 0

)
= 0.

2. For any ε > 0, m ≥ 1, p ∈ DL, we have that

lim
n→∞

P

{
n∑
i=1

1(Zi/rn ∈ p + εB) ≥ m

}
= 1

where B denotes the unit Euclidean ball in Rd.

DL is called the limit set of Nn.

In De�nition 2.4.6, Condition 1 ensures that as n→∞, no members of Nn are outside

any open set that is slightly bigger than the limit set. Condition 2. states that for

each p ∈ DL, the number of points that are distance ε > 0 away from p grows to

in�nity when n tends to in�nity, so that the limit set is densely �lled.

Limit sets can take on a variety of di�erent forms. In line with Nolde (2014), we

only consider `nice' limit sets, which are de�ned by asserting that the interior of each

nice limit set DL ⊆ Rd can be represented by a continuous gauge function gDL that

is homogeneous of order 1 - so gDL(tx) = tgDL(x) for all x ∈ Rd, t ∈ R - as follows:

the interior of DL is equal to {x ∈ Rd : gDL(x) < 1}.

Under these assumptions, it is straightforward to calculate the gauge function of

the limit set of Z with the following result.



CHAPTER 2. LITERATURE REVIEW 33

Theorem 2.4.7 (Nolde (2014); Simpson (2019)). Let Z1,Z2, . . . be i.i.d. random

vectors on Rd with a continuous density f on standard exponential margins. Suppose

now there exists a function g̃ on Rd
>0 such that

− log f(tu)

t
→ g̃(u), t→∞, u ∈ Rd

>0,

then Nn converges onto a limit set DL whose gauge function is given by gDL = g̃.

So one can evaluate the gauge function of the limit set if the density is known. A

particularly interesting property of the gauge function, is that it is straightforward to

evaluate the coe�cient of tail dependence η:

Theorem 2.4.8 (Theorem 2.1 in Nolde (2014)). Let Z1,Z2, . . . be i.i.d. Rd-valued

random vectors with a continuous density f on standard exponential margins. Assume

that the n-sample point cloud Nn converges onto a limit set DL with gauge function

gDL. Then, the coe�cient of tail dependence η of Z1 is given by

η = min{x > 0 : DL ∩ (x,∞)d = ∅}

Nolde and Wadsworth (2021) show that extremal dependence measures λ(ω),

τC(δ) and the HT model parameters α and β can be evaluated for random variables

using the gauge function of their limit sets.

Example

Let X be a random variable on standard exponential margins that are linked with a

d-dimensional Gaussian copula that has correlation matrix R = (Rij)
d
i,j=1. Then, it

can be shown that the gauge function g of the limit set of X is given by

g(x) =: lim
t→∞

− log f(tx1, . . . , txd)

t
=
√
x′R−1

√
x, for x ≥ 0,

where
√
x = (

√
x1, . . . ,

√
xd). In particular, if d = 2 and ρ = R21 = R12, then the

gauge function simpli�es to

g(x, y) =
(
1− ρ2

)−1
(x+ y − 2ρ

√
xy) .
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In this case, the limit set DL of the n-sample point cloud is given by {(x, y) ∈ [0,∞)2 :

g(x, y) ≤ 1}. An analytical description of the equality g(x, y) = 1 can be solved ana-

lytically by isolating the square-root and solving a quadratic equation. The solution

x(y, ρ) is given by

x = ρ2(2y − 1)− y + 1± 2ρ
√

(1− ρ2)(1− y)y. (2.4.9)

For increased intuition, we plot a sample of size n from a bivariate Gaussian copula

with correlation parameter ρ = 0.5 and exponential margins that is scaled with log n

in Figure 2.4.4. The boundary of the limit set {(x, y) ∈ [0,∞)2 : g(x, y) = 1} is

plotted in red. As the sample size is �nite and the density is positive everywhere

on [0,∞)2, it is clear that there is a chance with probability greater than 0 that the

boundary of the limit set is exceeded. This is also observed for exactly 4 observations

in this speci�c simulation. Finally, from the shape of the limit set, it is straightforward

to derive that η = 0.75 (= (1 + ρ)/2).

Figure 2.4.4: The n-sample point cloud Nn with (X, Y ) following a Gaussian copula

with exponential margins. The contour in red is the set of (x, y) for which g(x, y) =

1 holds, where g is the gauge function of the limit set, see equation (2.4.9). The

coe�cient of tail dependence η is visualised graphically using the blue block in the

top-right.



Chapter 3

Modelling the extremes of bivariate

mixtures

3.1 Introduction

The dependence between multivariate response variables is often driven by their co-

dependence on one or more underlying driving processes. For example, the strength

of the relationship between wind speed and wave height depends on a combination

of wind direction, land shadows, atmospheric pressure systems and their underlying

driving processes. Often these driving processes are either unknown or unobserved,

or both. If the driving processes are known, the interaction between them is likely

to be highly non-linear and without speci�c knowledge of the physical processes that

drive the response, the dependence structure can look highly complex. Consequently,

building parsimonious statistical models that capture well the complex, multi-layered

data generating mechanisms is di�cult. One possible form of a complex dependence

structure occurs when the joint distribution is a mixture of two or more simpler jointly

distributed random variables. Such situations are the focus of this paper since the

limiting assumptions of standard multivariate extreme value theory do not hold at

non-asymptotic levels for problems of this type.

We are motivated by an oceanographic application with complex extremal depen-

dence structures. In the design of o�shore facilities it is crucial - both for safety and

35
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Figure 3.1.1: Signi�cant wave height HS and wave period T2 from a northern North

Sea location. Black dots: data for 1957 - 2018; red dots: corresponding storm peak

data.

reliability reasons - to protect against the most extreme storms. Hence, it is necessary

that the extremal dependence structures between the multiple physical hazards that

may co-occur during a storm are well understood. We consider a synthetic response

variable (Ross et al., 2020) that is a function of signi�cant wave height HS and wave

period T2, illustrative of the response of �oating o�shore structures to wave loading.

In particular, these synthetic response variables increase with increasing HS and for

T2 approaching a resonance frequency. The de�nitions of HS and T2 are given in

Holthuijsen (2010).

We consider (T2, HS) data from a location in the northern North Sea, see Fig-

ure 3.1.1. There are two di�erent types of waves present - swell waves (relatively

large wave period compared to signi�cant wave height) and wind-generated waves

(relatively small wave period compared to signi�cant wave height). These correspond

to waves generated on a large spatio-temporal scale and local wind-generated waves,

respectively. Without expert knowledge, we are unable to identify which wave type

each observation corresponds to. We propose and test two novel methods to make in-

ference on data for which the dependence structure arises in this way, and for which it

is either non-trivial or impossible to identify the process from which each observation

has been generated.

It is standard practice in multivariate extreme value analysis to assume that ob-
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servations are drawn from a common distribution and to use limit theory as a basis

for extrapolation to give estimates on the probability of rare events. Traditionally,

separate classes of extreme value models have been developed for bivariate data that

exhibit either asymptotic dependence or asymptotic independence, see Coles et al.

(1999) for an overview. Two random variables X and Y are asymptotically depen-

dent if the probability that they are both large is of the same magnitude as when one

is large, i.e., when

χ := lim
p↑1

P(Y > F−1
Y (p)|X > F−1

X (p))

exists and is such that χ > 0, where FX and FY denote the distribution functions

of X and Y . If this limiting quantity χ = 0, we say that the variables are asymp-

totically independent. In a multivariate setting, it is possible that some subsets of

variables are asymptotically dependent and others are asymptotically independent but

not completely independent, see for example Simpson et al. (2020). Many extreme

value methods, for instance Coles and Tawn (1994), Joe (1994), Capéraà et al. (1997),

Naveau et al. (2009), and Genest and Segers (2009) are based on the assumption of

multivariate regular variation. This means that they cannot model the distribution

well for parts where some variables are large and others are not. He�ernan and Tawn

(2004) introduced a more �exible conditional extremes model which can handle this

situation. In particular, in the bivariate case their model provides a description for

Y |X (X|Y ) in the region where X (Y ) is large. More precisely, when X and Y are

transformed marginally to follow standard Laplace distributions this model takes on

the form of heteroscedastic regression, the parameters of which are estimated using

only observations for which X (Y ) is large, see e.g. Keef et al. (2013).

However, despite the �exibility of the He�ernan-Tawn model, the �vanilla� ver-

sion does not provide good estimates when the data consists of non-trivial mixture

structures such as that shown in Figure 3.1.1, in which we can see that signi�cant

wave height conditional on wave period grows in two di�erent ways as wave period

increases. Sometimes both variables are relatively large (wind-generated waves) at the

same time, but at other times only signi�cant wave period is high and wave height

takes on more moderate values (swell waves). As will be seen in Section 3.2.2, this
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is an indication that the vanilla He�ernan-Tawn model is not likely to be suitable in

practice.

Our proposed solution to this limitation is a mixture formulation of the He�ernan-

Tawn model which assumes that, after a suitable transformation, Y |X can be captured

by a mixture of K = 1, 2, 3, . . . regressions each associated with a di�erent probability

weighting. Whilst we take K to be unknown, it will not be treated as a parameter,

rather we use model selection methods to select the most appropriate value for K, and

do not account for its uncertainty subsequently. A second method comprising a novel

quantile-regression-based mixture approach is also developed. This uses the same

parametric form for the conditional quantiles as proposed in the mixture formulation

of the He�ernan-Tawn model. It di�ers from the He�ernan-Tawn mixture formulation

mainly in the sense that it is more �exible due to its semi-parametric nature. We

�nd that for bivariate data both methods show similar performance in estimating

probabilities of extreme sets, i.e., P((X, Y ) ∈ A) where A is extreme in X or Y or

both, with the uncertainty assessed through the use of a semi-parametric bootstrap.

The main advantage of the quantile-regression approach is that it leads to more stable

�ts, i.e., it gives more consistent results for small sample sizes. However, unlike

the mixture formulation of the He�ernan-Tawn model, it does not extend naturally

beyond bivariate data. We also discuss a subasymptotic version of the He�ernan-Tawn

mixture model motivated by a theoretical example where the mixture probabilities

vary with the level of extremity. However, we �nd that this model does not perform

better in modelling the dependence structure of (T2, HS) than the He�ernan-Tawn

mixture model.

It is worth noting that mixture models have previously been used for multivariate

extremes. Boldi and Davison (2007) focus on a mixture of asymptotically depen-

dent variables. Simpson et al. (2020), Chiapino et al. (2019), Engelke and Ivanovs

(2020) investigate d-dimensional random variables and describe how to estimate on

which of 2d − 1 subsets the limiting spectral measure has mass. If we let d = 2 and

condition on one variable being large, the resulting two subsets correspond to asymp-

totic dependence and asymptotic independence. So, when one mixture component
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is asymptotically dependent and one asymptotically independent, there are strong

similarities between the problem here and that considered by these authors, although

only Simpson et al. (2020) consider the form of the asymptotic independence term in

the mixture. However, none of the existing work considers the situation with two or

more di�erent levels of asymptotic independence.

The paper is organised as follows. In Section 2, the current conditional extremes

modelling framework and its extension incorporating mixture structures are discussed.

Section 3 introduces the two inference methods that exploit the framework from Sec-

tion 2. A subasymptotic version of the conditional extremes mixture model is dis-

cussed in Section 4. Finally, the oceanographic application is presented in Section 5.

To conserve space, a simulation study and other supporting information is found in

Appendix B. Code and data are published at

https://github.com/stantendijck/HTMixtureModel.

3.2 Framework

3.2.1 He�ernan-Tawn model

Let (X, Y ) be a real-valued bivariate random vector on standard Laplace margins. If

(X, Y ) do not follow such marginal distributions, transformation to standard Laplace

margins is achieved using the probability integral transform (Keef et al., 2013). The

He�ernan-Tawn (HT) model (He�ernan and Tawn, 2004) extrapolates the joint dis-

tribution of (X, Y ) to the region of the sample space where either one, or both, of the

variables is extreme. Without loss of generality, we present the model for the case in

which X is extreme; the full bivariate model requires an equivalent de�nition for the

case of Y being extreme.

The underlying principle for the model is that there exist parameters α and β with

|α| ≤ 1, β < 1 such that the normalisation

Zx :=
Y − αX
Xβ

∣∣∣{X = x} (3.2.1)

of the conditional random variable Y |{X = x}, converges in distribution to a non-
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degenerate random variable Z with distribution function G(z) as x → ∞. Under

assumptions relating to convergence and existence of joint densities, He�ernan and

Resnick (2007), Resnick and Zeber (2014), Wadsworth et al. (2017) show that this

implies that in the limit the random variables Z andX−u are independent conditional

on X > u, i.e., for x > 0 and z ∈ R,

lim
u→∞

P
(
Y − αX
Xβ

≤ z, X − u > x | X > u

)
= G(z)e−x. (3.2.2)

To ensure identi�ability of α and β, Keef et al. (2013) impose the condition that

limz→∞G(z) = 1, i.e., no mass of Z is at {+∞} but there can be mass at {−∞}.

They also impose additional constraints on α and β such that the implied distribution

of Y is not inconsistent with its marginal distribution. We call these the Keef et al.

constraints.

Inference is performed by assuming that the limiting relation (3.2.2) holds above

a �nite threshold level u. Speci�cally,

Y |(X > u)
D
= αX +Xβ(µ+ σZ̃), (3.2.3)

where
D
= represents equality in distribution, Z̃ is the standardised residual random

variable, i.e., Z̃ = (Z−µ)/σ, with µ the mean of Z and σ > 0 the standard deviation.

The model parameters α and β are typically inferred via assuming that the distri-

bution of Z is Gaussian. The four HT parameters (α, β, µ, σ) can now be estimated

using any method of statistical inference. Conditional on the estimated parameters,

the distribution of the residual random variable is then estimated non-parametrically

using the empirical distribution of Zx when x > u. Finally, u is chosen as low as

possible such that estimates for HT parameters are approximately unchanged at any

higher threshold (an analogy of univariate threshold stability plots) whilst ensuring

that X and Z are independent given X > u.

Simple interpretations of the parameters α and β exist: (i) (α, β) = (1, 0) implies

asymptotic dependence between X and Y with χ =
∫∞

0
(1 − G(−t)) exp(−t) dt; (ii)

α < 1 implies asymptotic independence between X and Y ; (iii) β > 0 implies that the

variability betweenX and Y grows asX grows; (iv) 0 < α < 1 (or−1 < α < 0) implies
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positive (or negative) association between X and Y . In environmental applications,

β < 0 is unrealistic, as this imposes that all the quantiles of Y conditional on X = u

converge to the same value as u grows to in�nity, so we restrict 0 ≤ β < 1.

We explore a variant of the He�ernan-Tawn model, which is more �exible than the

HT model and in some theoretical examples improves the convergence rates to limit

(2), see Lugrin et al. (2021). Previously, we assumed that relation (3.2.3) holds for

some �nite level u. However, it is possible that for u <∞, inference can be improved

if we adjust the model form. To that end, we rede�ne Zx from equation (3.2.1) to

Zx :=
Y − αX − γ(X)

Xβ
|{X = x}. (3.2.4)

By taking γ : R → R to be a function such that γ(x) = o(xβ) for β ≥ 0 as x → ∞,

this is equivalent to the HT model in the limit as x→∞. For reasons of parsimony,

we take γ(x) = γ ∈ R, and so introduce an intercept in the mean component of the

HT regression model, which is identi�able if β > 0.

3.2.2 Extreme value distribution with asymmetric logistic de-

pendence structure

We now give an example of a simple bivariate distribution for which the HT model

is inadequate, i.e., it has limit limz→−∞G(z) 6= 0. Here, di�erent choices for α and

β also lead to non-degenerate G(z) but with limz→∞G(z) 6= 1. The �ndings from

this example motivate our developments in Section 3.2.3. Let (XA, YA) denote a

random variable on Laplace margins following a bivariate extreme value copula with

an asymmetric logistic dependence structure (Tawn, 1988). This distribution has

parameters θ1, θ2 ∈ (0, 1), κ ∈ (0, 1), and distribution function

P (XA ≤ x, YA ≤ y) = exp
{
−θ1tx − θ2ty −

[
((1− θ1)tx)

1/κ + ((1− θ2)ty)
1/κ
]κ}
(3.2.5)

where tx := log 2− log(2− exp(−x)) for x ≥ 0 and tx := log 2− x for x < 0, with ty

similarly de�ned.

In Figure 3.2.1, data simulated from this distribution, conditional on XA > 2 with

θ1 = θ2 = κ = 0.5, show two arms centred on y = x and y = 0 for di�erent conditional
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quantiles. The heterogeneity in the two arms results in two possibly non-degenerate

HT limits (Papastathopoulos et al., 2017), each of which fully captures the behaviour

around one arm whilst treating the behaviour around the other as degenerate. The

�rst limit models the upper arm, and has (α, β) = (1, 0) and non-degenerate G(z)

G(z) = θ1 + (1− θ1) ·

[
1 +

(
1− θ2

1− θ1

)1/κ

· exp
(
−z
κ

)]κ−1

, z ∈ R.

Note that G(z) puts weight θ1 on {−∞}. The second limit corresponds to the lower

arm with (α, β) = (0, 0) and G(z) = θ1e
−tz for z ∈ R, which puts weight 1 − θ1 on

{+∞}.

Applying the HT model to this joint distribution directly results in poor extrap-

olations because at any �nite level the normalised random variable Z cannot capture

the two di�erent growth rates. Figure 3.2.1 (right) illustrates simulated data and

implied conditional quantiles from the model we develop in Section 3.3 when �tted

to the data shown in Figure 3.2.1 (left). The implied conditional quantiles capture

the true behaviour of the top and bottom quantiles well (matching the true gradients

of 1 and 0 respectively) but with a less clear distinction between the two mixture

components than for the true process. This analysis may be improved by picking a

di�erent threshold.

3.2.3 He�ernan-Tawn mixture model

The He�ernan-Tawn model is applicable to the example from Section 3.2.2 with

limz→−∞G(z) 6= 0. However, no model is imposed for the part of the distribution

that corresponds to G at {−∞}. This may not be a problem if our interest lies

in characteristing combinations of maximum X with associated maximum Y but it

might be that the other part of the distribution also corresponds to extreme scenarios.

For example, in the case of HS versus T2, there might be wave periods corresponding

to one or more marine structural resonance frequencies which is of greater interest

than the maximum wave period. Motivated by these considerations, we introduce

the He�ernan-Tawn mixture (HTM) model to better characterise distributions such

as the one discussed in Section 3.2.2, conditional on one of the variables being large.
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Figure 3.2.1: (Left) Data simulated from model (3.2.5), conditional on XA > 2 with

θ1 = θ2 = κ = 0.5 including true conditional quantile functions; (Right) Data sim-

ulated from the inferred model (3.2.7), �tted to the data in the left plot, with an

identical sample size, including the implied conditional quantile functions.

We allow for multiple parameter combinations such that all possible non-degenerate

residual distributions are captured simultaneously.

Let K ≥ 1 be an integer and let (X, Y ) have standard Laplace margins such that

the joint distribution is a mixture of K copulas. We assume that for x > u, where u

is large,

F (x, y) =
K∑
k=1

pkFk(x, y), (3.2.6)

where F is the cumulative distribution function of (X, Y ) and for all k, Fk is a dis-

tribution function on Laplace margins, pk ∈ (0, 1], and
∑K

k=1 pk = 1. We also assume

that each Fk has a copula formulation such that the associated limit (3.2.2) holds for

a single pair (αk, βk) with residual distribution Gk placing no mass at {−∞,+∞}.

Thus the asymmetric logistic copula (3.2.5) cannot be Fk. As we assume the dis-

tributional form (3.2.6) only for x > u, this condition holds for standard mixture

distributions, but can apply for more complex models which, when in an extremal

state (i.e., X > u), approximate to a mixture form.

Central to the HTMmodel is the assumption that the HTmodel, with the intercept

extension proposed in equation (3.2.4) is applicable to Fk, with parameters γk ∈ R,

αk ∈ [−1, 1], 0 ≤ βk < 1, µk ∈ R and σk > 0, for all k. Using the notation of
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equation (3.2.3), we de�ne the K component HTM model as

Y |(X > u)
D
= γk + αkX +Xβk(µk + σkZ̃k), with probability pk, k = 1, . . . , K,

(3.2.7)

for large u, where Z̃k, which only exists with probability pk, follows a non-degenerate

distribution for each k. Moreover, we assume that Z̃k is independent of both X and

Z̃k̃ for k 6= k̃. We further impose that E[Z̃k] = 0 and Var (Z̃k) = 1, which implies

that the distribution function of Zk := µk + σkZ̃k does not put mass at {±∞}. For

identi�ability reasons, αk > αk′ for all pairs k > k′. A model formulation which

allows αk = αk′ (k 6= k′) is discussed in Appendix B.5.2. We impose the Keef et al.

constraints on all pairs (αk, βk) separately. For k = 1, . . . , K, αk and βk are such that

for x > 0 and z ∈ R

lim
u→∞

P
(
Y − γk − αkX

Xβk
≤ z, X − u > x | X > u

)
= Gk(z)e−x,

where

Gk(z) :=
k−1∑
i=1

pi + pk ·Hk(z)

with the convention
∑0

i=1 pi := 0, and Hk is the distribution function of Zk, so Gk

has mass
∑k−1

i=1 pi at {−∞} and
∑K

i=k+1 pi at {+∞}.

The He�ernan-Tawn model is a special case of this model with K = 1. Distri-

bution (3.2.5) corresponds to the case K = 2 with (α1, β1, p1, α2, β2, p2) = (1, 0, 1 −

θ1, 0, 0, θ1). When K = 2 other classes of distributions that fall into this mixture for-

mulation with (α1, β1, α2, β2) = (1, 0, 0, 0) are bivariate max-stable distributions with

some mass of the spectral measure on the boundaries of the simplex, and max-linear

models (de Haan and Ferreira, 2007, Chapter 6) where di�erent innovation variables

control each marginal variable.

3.2.4 The quantile-regression model

Quantile-regression is used to model the inverse of the distribution function of Y

conditional on X = x, i.e., to �nd qτ (x) := F−1
Y |X=x(τ) for some non-exceedance



CHAPTER 3. MODELLING THE EXTREMES OF BIVARIATE MIXTURES 45

probability τ ∈ (0, 1) over a range of x. It is common practice to de�ne a parametric

class of functions

{qτ : R→ R : qτ (x) := q(x|ωτ ), ωτ = (ωτ1, . . . , ωτp) ∈ Ω ⊆ Rp}

with p ≥ 1 parameters in the parameter space Ω. We are interested in a parametric

form for q(· | ωτ ). Motivated by the HT mixture model (3.2.7), we employ the model

q(x|ωτ ) = γ(τ) + α(τ)x+ ζτx
β(τ), (3.2.8)

where ωτ = (α(τ), β(τ), γ(τ), ζτ ) such that (α(τ), β(τ)) ∈ [−1, 1] × [0, 1) satisfy the

Keef et al. (2013) constraints, γ(τ), ζτ ∈ R, and ζτ is a one-to-one function of quantiles

of all residual distributions Zk, k = 1, . . . , K, i.e.,

ζτ := H−1

max{k: τ≤
∑k
i=1 pi}

(
ζτ −

∑k−1
i=1 pi

pk

)
,

where we de�ne
∑0

i=1 pi = 0.

Let (X, Y ) be a bivariate random variable following model (3.2.7) and de�ne Yk,

k = 1, . . . , K, as the random variable representing the kth mixture component of the

model, i.e., Yk|(X > u)
D
= γk + αkX +Xβ(µk + σkZ̃k). Furthermore, assume Yk ⊥ Yk′

for k 6= k′. Then

lim
u→∞

P(Y1 < Y2 < · · · < YK | X > u) = 1, (3.2.9)

i.e., the mixture components separate completely in the limit, and as u→∞, we get

that the parameter functions γ(τ), α(τ) and β(τ) in equation (3.2.8) are piecewise

constant in τ . More precisely, γ(τ) = γk for
∑k−1

i=1 pi < τ ≤
∑k

i=1 pi; α(τ) and β(τ)

behave similarly. The parameter function ζτ is an increasing function of τ within each

interval of τ where γ(τ), α(τ) and β(τ) remain constant.

To consider multiple conditional quantiles jointly, let m ∈ N and 0 < τ1 < · · · <

τm < 1 be m non-exceedance probabilities. We assume that the vector conditional

quantile function (qτ1(x), . . . , qτm(x)) belongs to the following parametric class of func-

tions{
(qτ1 , . . . , qτm) : R→ Rm : qτi(x) = q(x|ωτi) for i = 1, . . . ,m,

(ωτ1 , . . . ,ωτm) ∈ Ωm ⊆ Rpm
}
,
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where Ωm is the parameter space, not necessarily equal to the Cartesian product Ωm.

In particular, we consider models with ωτ = (ϕ, ζτ ) where ϕ is common across ωτ ′

for all τ ′ and ζτ is speci�c to a particular τ . As an illustration, consider model (3.2.7)

with K = 1, then ϕ = (γ1, α1, β1) and ζτ = F−1
Z1

(τ) where FZ1 is the distribution

function of the residuals Z1.

3.3 Inference

3.3.1 The He�ernan-Tawn mixture model

We focus our discussion on �tting the HTM model given a known number of mixture

components K. Inference for K and accounting for its uncertainty are generic in

mixture modelling and a reversible jump MCMC mixture model could be applied, see

Richardson and Green (1997). Instead, we adapt a simple pseudo-Bayesian inference

approach. As the focus of this paper is on the extremal dependence structure, we �rst

estimate the marginal distributions and ignore the marignal uncertainty subsequently.

We describe a heuristic to select K, and also examine the sensitivity of inferences to

this selection. We then proceed to make inferences using standard Bayesian methods.

Consequently, unlike in reversible jump MCMC mixture models, we do not account

for uncertainty in K in subsequent inference. Details of outline code for inference

for model parameters and for the probabilities of extreme events are given in Ap-

pendix B.1-B.2.

For ease of notation, we de�ne θ(k) = (γk, αk, βk, µk, σk, pk) to be the vector of

parameters of component 1 ≤ k ≤ K and θ = (θ(1), . . . ,θ(K)) the vector containing all

parameters of the model. Henceforth, we assume that we have data {(xi, yi) : xi > u}

of size n generated by model (3.2.7) for some K << n. Moreover, we assume that

αi < αj for i < j.

In mixture modelling, it is common to introduce a latent random variable J ∈

{1, 2, . . . , K} denoting the mixture component associated with the random pair (X, Y ).

In performing Bayesian inference, we need to calculate the likelihood of parameters

given the data. So, we need to make a computationally convenient assumption on
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the HTM residual distributions Zk, k = 1, . . . , K. We follow the same arguments

as He�ernan and Tawn (2004), and assume for parameter estimation purposes that

all residual distributions are Gaussian, i.e., Z̃k ∼ N (0, 1) for all k = 1, . . . , K. This

technique based on a (false) assumption is equivalent to estimating equations meth-

ods, which are known to yield asymptotically consistent estimators (Zeger and Liang,

1986). We stress that the Gaussian assumption is discarded once θ is estimated. So,

we get for k = 1, . . . , K

P (J = k|X = x, Y = y,θ) := Pk

(
x, y|θ(k)

)/ K∑
κ=1

Pκ

(
x, y|θ(κ)

)
, (3.3.1)

where J = k is the event that random variable (X, Y ) is drawn from component k,

where

Pk

(
x, y|θ(k)

)
=

1

σkxβk
√

2π
exp

{
−
(
y − γk − αkx− µkxβk

)2

2σ2
kx

2βk

}
.

We can now simulate index J = ji for each observation (xi, yi) using equation (3.3.1),

and calculate the augmented log-likelihood l(a) via

l(a) (θ|{(xi, yi, ji)}ni=1) =
K∑
k=1

lk

(
θ(k)|{(xi, yi, ji)}ni=1

)
,

where the log-likehood lk for data from mixture component k is given by

lk

(
θ(k)|{(xi, yi, ji)}ni=1

)
=

n∑
i=1

1{ji = k} · logPk

(
xi, yi | θ(k)

)
,

if σk > 0 and (αk, βk) satisfy the Keef et al. constraints (Keef et al., 2013), otherwise

lk = −∞. Since we now have an expression for the likelihood, we can infer the

parameters of the model. In particular, we use an adaptive MCMC algorithm similar

to Roberts and Rosenthal (2009). In this algorithm, we do not estimate the mixture

probability parameters pk since estimates can be inferred from the estimates of the

remaining parameters. A uniform prior over the whole parameter space is used to

illustrate performance with no expert knowledge. Other prior choices may be more

appropriate for some applications, see Section 3.3.2.

For each draw θ̂ from the MCMC chain, we simulate {ji}ni=1 each with probabil-

ity (3.3.1), and de�ne the residuals of the kth component ẑki := (yi − γ̂k − α̂kxi)/xβ̂ki
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for all 1 ≤ i ≤ n, 1 ≤ k ≤ K with ji = k. The distribution function Hk(z), de-

�ned in Section 3.2.3, is now estimated using the empirical distribution function of

{ẑki : 1 ≤ i ≤ n with ji = k} and p̂k := nk/n, where nk denotes the number of obser-

vations allocated to component k. Appendix B.2 details estimation of probabilities of

extreme sets for this model.

Selecting an optimal value of K is challenging. In simulation studies discussed

in Appendix B.6-B.7, rather than attempt to �x K, we explore the sensitivity of

our inference to the value of K. If an estimate of K were required, we suggest the

following two-step heuristic: (i) �t the model as described above with K = 1; (ii) The

number of modes of the residual distribution conditional on X > v for some v > u is

our heuristic estimator for K. We use v > u since the mixture components might not

yet have separated at u. Simulations show that when the αis are relatively distinct,

this technique is reasonable.

3.3.2 Incorporating prior probability on asymptotic depen-

dence

Placing a uniform prior over the parameter space (Section 3.3.1) implies that the

posterior does not put positive weight on the class of models corresponding to asymp-

totic dependence (i.e., αK = 1). This is because the subset of the parameter space

which corresponds to asymptotic dependence is a null set with respect to the uniform

prior. Hence, this procedure consistently under-estimates the risk of extreme events

occuring together, see the simulation study in Appendix B.7 and discussion in Coles

and Pauli (2002).

Here, we show how to sample from the posterior distribution of the parameters of

the He�ernan-Tawn mixture model using a prior which puts mass on both asymptotic

dependence and asymptotic independence. We will not discuss how to calculate the

likelihood given a set of parameters as this is similar to before. Instead, we focus on

making good MCMC proposals and calculating the MCMC acceptance probability

when the prior puts a positive mass at the event {αK = 1}. For brevitity, we consider
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model (3.2.7) with K = 1.

We de�ne the priors of the parameters γ1, β1, µ1 and σ1 to be the (improper)

uniform distribution on the parameter space with independent components. Let δ be

the Dirac delta function, then the density function of the prior on α1 is

fω(x) = ω · δ(1− x) +
1− ω

2
· 1{−1 ≤ x < 1},

i.e., the prior is a mixture which puts weight ω ∈ [0, 1] on {α1 = 1} and weight (1−ω)

on a uniform(−1,1), similar to that in Coles and Pauli (2002).

We choose a Metropolis-Hastings Gaussian random walk update for the parameters

γ1, β1, µ1 and σ1 with some �xed standard deviation h. We specify the proposal

distribution for α1 at iteration t with current value α
(t)
1 to be given by min{1, α(t)

1 +

hZ} for standard Gaussian distribution Z such that there is a positive probability

of proposing the asymptotic dependent model. The proposal density g(·|α(t)
1 ) is thus

given by

g(x|α(t)
1 ) :=

(
1− Φ

(
1− α(t)

1

h

))
· δ(1− x) +

1

h
ϕ

(
x− α(t)

1

h

)
for x ∈ R, where ϕ and Φ are the density and distribution function, respectively, of a

standard Gaussian. The Metropolis-Hastings acceptance ratio αMH given a proposal

θ(t+1) can now be derived using standard techniques, see Appendix B.5.1.

3.3.3 Inference for the quantile-regression model

We consider two data generating frameworks, namely models (3.2.3) and (3.2.7), and

we show how to use quantile-regression techniques to infer the parameters without

distributional assumptions. In Section 3.2.4, we parameterised the conditional quan-

tile function qτ via the parameter vector ωτ . First consider a single value of τ , then

ωτ may be inferred as

ω̂τ := argminωτ∈Ω

{
n∑
i=1

ρτ (yi − q(xi|ωτ ))

}
, (3.3.2)

where the check function ρτ : R → R is de�ned as ρτ (z) = z (τ − 1{z < 0}), see

Koenker and Hallock (2001) and Koenker (2005). The check function is locally linear

hence the estimator is robust to outliers.
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Now let m ∈ N and 0 < τ1 < · · · < τm < 1. We infer conditional quantile functions

qτj , j = 1, . . . ,m, jointly using

ω̂ = argmin(ωτ1 ,...,ωτm )∈Ωm

m∑
j=1

cj

n∑
i=1

ρτj(yi − q(xi | ωτj)) (3.3.3)

for weights cj > 0 speci�ed by the user, see Bondell et al. (2010). We apply the

methodology to equidistant τj on the range [τ1, τm] ⊂ (0, 1), for which it is natural to

let cj := 1 for all j = 1, . . . ,m. If τj are not equidistant, then the choice for the weights

cj can be adjusted to re�ect this. If the parameter space Ωm was equal to the Cartesian

product of the marginal parameter spaces Ωm, then the joint estimation procedure

would be equivalent to applying equation (3.3.2) separately for each quantile. We

only consider models with ωτ = (ϕ, ζτ ) where ϕ is common across ωτ ′ for all τ
′ and

ζτ is speci�c to τ .

Now we have jointly estimated conditional quantiles qτ1(x), . . . , qτm(x) for �xed

quantile levels τi for i = 1, . . . ,m, we give an estimator for qτ (x) for any τ ∈ (0, 1) \

{τ1, . . . , τm}. To do this, we only need to estimate ζτ since ϕ̂ is already available. We

estimate ζτ by

ζ̂τ := argminζ∈R

{
n∑
i=1

ρτ (yi − q(xi|(ϕ̂, ζ))) : (ϕ̂, ζ) ∈ Ω

}
(3.3.4)

and so q̂τ (x) := q(x|(ϕ̂, ζ̂τ )) for qτ (x).

The above framework requires adjustment for inferring mixture model (3.2.7) when

the mixture probabilities are unknown. We discuss this forK = 2 but it generalises for

general K. For τ1 < · · · < τm, we de�ne m0 as the index for which τm0 < p1 < τm0+1,

where p1 is the mixture probability corresponding to the �rst component, and separate

our presentation into cases where m0 is known (falsely) and unknown.

If m0 is known, the parameters (ωτ1 , . . . ,ωτm) of the quantile-regression model

are:

ωτj = ωτj(m0) =

 (γ1, α1, β1, ζ
1
τj

) if j ≤ m0,

(γ2, α2, β2, ζ
2
τj

) if j > m0,

(3.3.5)

where the parameters ζkτj increase over j for k = 1, 2. The parametric form (3.2.8)

is used for q(x | ωτ ). To improve stability of parameter estimates, we constrain the
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medians of Z1 and Z2 to be equal to 0. To impose this constraint, we �x ζ1
τj

= 0 if

τj = P̂1/2 and ζ2
τj

= 0 if τj = (1 + P̂1)/2, where P̂1 = (τm0 + τm0+1)/2 is a crude

estimator for p1.

When m0 is unknown, its natural estimator m̂0 minimizes (3.3.3) over m0, i.e.,

m̂0 := argmin
k=1,...,m−1

{
min

(ωτ1 (k), ..., ωτm (k))∈Ωm

m∑
j=1

cj

n∑
i=1

ρτj(yi − q(xi | ωτj(k)))

}
,

where ωτj(k) is as in equation (3.3.5). The optimisation is over a set of m − 1

possibilities with a non-convex objective function. The estimated parameters of the

model for m̂0 are denoted by ω̂m̂0 = (γ̂1, α̂1, β̂1, γ̂2, α̂2, β̂2, ζ̂
1
τ1
, . . . , ζ̂1

τm̂0
, ζ̂2
τm̂0+1

, . . . , ζ̂2
τm),

where each of (ζ̂1
τ1
, . . . , ζ̂1

τm̂0
) and (ζ̂2

τm̂0+1
, . . . , ζ̂2

τm) are increasing. Estimation of p1 and

probabilities of extreme sets under this model are discussed in Appendix B.5.4. As

speci�ed by our approach, inferred conditional quantile functions within a mixture

component are increasing in τ , since ζτj have to be ordered. However, this is not

necessarily true across di�erent components.

In �tting the model we have chosen not to impose the condition that the inferred

conditional quantile functions are increasing in τ for each x for the following reasons.

Simulation studies showed that conditional quantile functions usually do not cross if

there is little to no overlap of the di�erent components. When they do cross, the

intersection is near the threshold u and not at large values. Hence, if non-crossing is

of interest, this can be achieved by increasing the threshold su�ciently. The trade-

o� is that less data will be used for inference and the variance of the estimates will

increase. Moreover, if there exists a signi�cant amount of overlap, then requiring

quantile-functions to not cross whilst also requiring that they take on the form in

equation (3.2.8), can result in arbitrarily large biases.

3.4 A subasymptotic conditional mixture model

The extension of the HT model developed in Section 3.2.3 assumes that mixture

probabilities on the conditional distribution Y |X are constant with respect to X,

when X takes an extreme value. This model adds signi�cant �exibility over the HT
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model, however, it does not include the case where the mixture probabilities pk(x),

k = 1, . . . , K are varying with level x. In particular, if there exists a component k

with pk(x) → 0 as x → ∞, then for model (3.2.7) to �t well, the threshold u needs

to be raised until pk(x) ≈ 0 for x > u. This is potentially very ine�cient, given

the subsequent loss of data to �t the model. So, here we extend model (3.2.7) to a

non-standard subasymptotic version of the He�ernan-Tawn mixture model, where the

mixture probabilities change with the level of extremity of X.

We are motivated by the following theoretical example. Let, λ > 1, 0 < t < 1 and

B ∼ Bernoulli(p), X ∼

Exp(1) if B = 0,

Exp(λ) if B = 1,

Y ∼

 tX if B = 0,

λX if B = 1,

(3.4.1)

where Exp(λ) denotes the Exponential distribution with rate λ. Next, we de�ne

XL = F−1
L (FX(X)) and YL = F−1

L (FY (Y )), where F−1
L is the inverse cumulative

distribution function of a standard Laplace, FX and FY are the distribution functions

of X and Y . Calculations in Appendix B.4 show that for large XL,

YL | XL
D
=

 tXL + [t log(2(1− p))− log(2p)] with prob. 1− pλ
2λ−1(1−p)λ · e

−(λ−1)XL

λXL + [λ log(2(1− p))− log(2p)] with prob. pλ
2λ−1(1−p)λ · e

−(λ−1)XL .

Thus, for α2 in model (3.2.7), α2 = λ > 1, but for x > 0, p2(x) = pλ
2λ−1(1−p)λ ·e

−(λ−1)x →

0 as x→∞ with α2 = 1− limx→∞ log(p2(x))/x, which is explained by Theorem 3.4.1

below.

Note that we cannot model the distribution of (XL, YL) well under the framework

of model (3.2.7). We extend model (3.2.7) by allowing pk to be a function of X, i.e.,

Y |(X > u)
D
= γk + αkX +Xβk(µk + σkZ̃k), with probability pk(X), k = 1, . . . , K,

(3.4.2)

where α1 < · · · < αK . In contrast with the He�ernan-Tawn mixture model, there

could exist 2 ≤ k0 ≤ K such that αk0−1 < 1 < αk0 , as illustrated in the motivating

example, where k0 = K = 2. This model is equivalent to (3.2.7) if pk(x) is constant for

all x > u and k = 1, . . . , K, but it is di�erent for generic pk(x). With this new model

form, we capture non-constant mixture probability. It is not trivial to determine
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the valid parameter space of this new model, however, Theorem 3.4.1 provides some

insight.

Theorem 3.4.1. To ensure that model (3.4.2) for Y |(X > u) does not contradict with

Y having a standard Laplace marginal distribution, for all k = 1, . . . , K we require

|αk| ≤ lim inf
x→∞

(
− log pk(x)

x

)
+ 1.

The proof can be found in Appendix A.1. If K = 2 and p2(x) = e−(c−1)x for c ≥ 1,

this result implies that a necessary condition is α2 ≤ c. So α2 can be larger than 1 as

long as it is less than c. More generally, we consider the class of parametric functions

pk(x) =
akx

bke−ckx∑K
j=1 ajx

bje−cjx
, (3.4.3)

where ak > 0, bk ∈ R and ck ≥ 0 for all k = 1, . . . , K. For identi�ability reasons,

we de�ne ck for k = 1, . . . , K such that min{ck : k = 1, . . . , K} = 0 without loss

of generality. We consider this class of parametric functions for pk(x) to be �exible

as it satis�es the following four properties: (i) model (3.2.7) is a special case when

ak = pk, bk = 0 and ck = 0 for all k = 1, . . . , K; (ii) model (3.4.1) is also a special

case with a1 = 1, b1 = 0, c1 = 0, a2 = pλ/(2λ−1(1 − p)λ), b2 = 0, and c2 = (λ − 1);

(iii) Theorem 3.4.1 yields

|αk| ≤ lim inf
x→∞

− log
(
akx

bke−ckx
)
− log

(∑K
j=1 ajx

bje−cjx
)

x

+ 1 = ck + 1

for all 1 ≤ k ≤ K. So, |αk| can be larger than 1; (iv) de�ne J := {j = 1, . . . , K : cj =

0}, and J̃ := {j ∈ J : bj = max{bi : i ∈ J }}, then model (3.4.2) is asymptotically

equivalent to (3.2.7) with K = |J̃ | and pj = aj/
∑

i∈J̃ ai for i ∈ J̃ as u→∞.

3.5 Oceanographic data analysis

We investigate the oceanographical variables T2 and HS from the NORA10 hindcast

dataset of Reistad et al. (2011). These variables are 3 hourly summary statistics that

characterise the ocean environment; T2 is the wave period and HS the signi�cant wave
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height. We apply the methods introduced above to data from a site in the northern

North Sea, see e.g. Figure 1. from Konzen et al. (2021). This site is scienti�cally

interesting as it displays seasonal and directional variability in the ocean environment.

To avoid issues with temporal and directional dependence in the observed data, we

preprocess the data by combining an established peak-picking method of Randell et al.

(2015) and keeping observations that are associated with storms originating from the

Atlantic ocean, see Appendix B.3. This method is used to identify a subset of storm

peak observations of HS and associated values of T2 which are approximately tempo-

rally independent. The main idea behind this method is the underlying assumption

that consecutive storms are independent events. From the preprocessing, we reduce

176, 765 observations recorded over the period 1957 − 2018 to 1597, and we denote

the observations corresponding to signi�cant wave height and wave period with the

labels HS,peak and T2,ass, respectively. Figure 3.1.1 shows a scatter plot of the original

and storm peak samples.

Figure 3.1.1 shows that conditional on T2, HS either takes on relatively small

or relatively large values, whereas intermediate values are rare suggesting a mixture

model with at least two components. We compare 4 mixture models applied to these

data: the HT(K) and QR(K) models with K = 1 and K = 2. We de�ne QR(K) and

HT(K) to be abbreviations that correspond to the �ts of the HTM model using the

quantile-regression model and the He�ernan-Tawn mixture model, respectively, with

a �xed number K of components.

We also consider two intuitive �partitioning� methods that accommodate the mix-

ture structure by partitioning the data into swell waves and wind-generated waves.

We allocate observations to either component using wave steepness, a quantity propor-

tional to HS,peak/T
2
2,ass. This approach is physically well-motivated and often adopted

by ocean engineering practitioners. Observations with steepnesses below a thresh-

old value are allocated to the swell component, the remainder to the wind-generated

component. For our data, the marginal distribution of steepness is bimodal, the lower

mode corresponding to swell and the upper to wind-generated waves. It is therefore

natural to choose the threshold as the value that lies between the modes and has a
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minimal kernel density. After partitioning, we �t single component models to swell

and wind wave subsamples using the quantile-regression and He�ernan-Tawn mod-

els. We denote these models as Part-QR(1) and Part-HT(1), respectively. Finally,

the joint distribution is given by a mixture of the two inferred single component dis-

tributions, with mixture weights determined empirically. Here, the context of the

data allows us to undertake this method of partitioning. In general, this method is

application dependent and requires expert knowledge.

Since the models introduced in this paper assume data on standard Laplace mar-

gins, we transform the data to standard Laplace scale using standard extreme value

techniques (Coles and Tawn, 1994). Speci�cally, we proceed as follows: (i) select a

marginal threshold; (ii) below the threshold, transform using the empirical probability

integral transform; (iii) above the threshold, use the generalised Pareto distribution.

Here we take the 70% quantiles of the marginal distributions of T2,ass and HS,peak al-

though the �tted generalised Pareto distribution was found not to be overly sensitive

to the choice of threshold. Both estimated generalised Pareto shape parameters were

negative, implying �nite upper endpoints of the marginal distributions of T2,ass (95%

con�dence interval [15.4s, 21.3s]) and HS,peak (95% con�dence interval [16.8m, 24.4m])

for our data. We also took a threshold u for the HT model as the 80% quantile of

the standard Laplace distribution. Inferences were found to be relatively insensitive

with respect to this choice. Similarly to the simulation studies, we set γk = 0 for all

k = 1, . . . , K in the HT mixture model. For trace plots of the model �ts, we refer to

Appendix B.3.2.

We �x the originally �tted marginal models to avoid introducing further marginal

uncertainty into inferences considering dependence. The uncertainty within the pro-

cedures is estimated via the following semi-parametric bootstrap procedure. We simu-

late a dataset of the same size as the original data using the inferred HT(2) model, see

Appendix B.2.1 for details. Next, we �t the HT(K) and QR(K) models for di�erent

values ofK and estimate the distribution of the response variable by simulating a large

number of observations from the inferred models. Then, we transform the generated

sample to original margins using the original inferred �xed marginal models.
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Figure 3.5.1: Estimates p̂2(x) (left) and Part-p̂2(x) (right) of p2(x) for the data. 95%

con�dence bounds are visualized with dashed lines.

One of the assumptions of the HTM model is that the mixture probability is

constant as a function of the conditioning random variable although Section 3.4 shows

this need not be the case. So, we design a goodness-of-�t diagnostic, see Figure 3.5.1,

in which we plot estimates for the mixture probability p2 as function of x. Both

estimators in this plot are calculated using a sliding window approach with a �xed

number of 30 observations per sliding window. The estimator p̂2(x) is de�ned as the

average of the allocation probabilities, see equation (3.3.1), over its corresponding

bin. Additionally, we plot Part-p̂2(x), estimated under the partitioning method, for

which allocation to groups is deterministic. Finally, we obtain con�dence bounds for

both estimators using a semi-parametric bootstrap. From Figure 3.5.1, we argue that

both estimators provide enough evidence to assume that the true mixture probability

is constant as a function of x for x > u. Moreover, there is no evidence to assume

that limx→∞ p2(x) = 0. Hence, the HTM model should be a reasonable approach in

modelling the dependence structure of signi�cant wave height and wave period, and

there is no need to use the subasymptotic extension of the HTM model.

We compare the di�erent model �ts via the inferred joint distribution functions

and the distributions of synthetic structure response variable R, illustrative of the

response of �oating o�shore structures to wave loading, considered by Ross et al.
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Model α̂ β̂

HT(1) 0.42 (0.03, 0.69) 0.39 (0.23, 0.53)

HT1(2) 0.39 (0.16, 0.62) 0.05 (0.00, 0.25)

HT2(2) 0.84 (0.21, 0.96) 0.24 (0.12, 0.58)

Part-HT(1)-Sea 0.74 (0.53, 0.85) 0.40 (0.31, 0.52)

Part-HT(1)-Swell 0.77 (0.24, 0.97) 0.13 (0.01, 0.45)

Table 3.5.1: Posterior median parameter estimates for the �tted HT(K) (K = 1, 2)

and Part-HT(1) models including 95% credible intervals. We write HTi(2) to denote

the ith component of the HT(2) model, where i ∈ {1, 2}.

(2020),

R :=
aHS,peak

1 + b(T2,ass − c)2
, (3.5.1)

where a, b and c are structure-speci�c parameters with c being a resonant frequency.

We take one response variable that is parameterised using equation (3.5.1) with

(a, b, c) = (2, 1, 16). This choice corresponds to structural responses with resonant

frequencies in the near and far tail of the distribution of wave period.

Results are summarised in Figures 3.5.2 and 3.5.3 and parameter estimates are

given in Tables 3.5.1 and 3.5.2.

In Figure 3.5.2, we plot the inferred joint probabilities, see Appendix B.2 for

details, for each rectangle on a discrete grid of rectangles covering the (T2,ass, HS,peak)

domain [12, 16.5] × [3.1, 15.1]. The partitioning methods, QR(2) and HT(2) models

generate similar estimates showing two distinct arms in the dependency structure with

increasing T2,ass. In contrast, the HT(1) and QR(1) models do not capture the mixture

structure as well. However, closer inspection of the HT(1) and QR(1) estimates also

provides evidence for two arms in the dependency structure. This is due to the fact

that the corresponding residual distributions are bimodal, itself suggesting the need

for a two component mixture model, i.e., K ≥ 2, see the end of Section 3.3.1.

We plot the results of the analysis for R in Figure 3.5.3. The top left corner gives

estimated return levels using the 6 inference methods. The remaining panels show the
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Model γ̂ α̂ β̂

QR(1) 0.69 ( 0.37, 1.07) 0.56 (0.31, 0.75) 0.48 (0.31, 0.55)

QR1(2) 0.16 (−0.99, 1.03) 0.25 (0.10, 0.59) 0.00 (0.00, 0.45)

QR2(2) 0.90 ( 0.68, 1.19) 0.85 (0.55, 1.00) 0.24 (0.00, 0.46)

Part-QR(1)-Sea 0.27 ( 0.08, 0.46) 0.81 (0.70, 0.95) 0.36 (0.11, 0.47)

Part-QR(1)-Swell −0.09 (−0.58, 0.49) 0.91 (0.54, 1.00) 0.16 (0.00, 0.43)

Table 3.5.2: Parameter estimates for the �tted QR(K) (K = 1, 2) and Part-QR(1)

models including 95% con�dence intervals calculated via bootstrap. We write QRi(2)

to denote the ith component of the QR(2) model, where i ∈ {1, 2}.

semi-parametric bootstrap uncertainty of these estimates. We note that for a return

period less than 1, 000, 000 years, the one component models estimate a smaller return

level of the response R compared to the two component models; and higher return level

for a larger return period. Moreover, the one component models tend to have wider

con�dence bounds. Finally, the grey curve (representing the distribution calculated

using the data-generating HT(2) model) lies within the 95% con�dence bounds of all

of the methods.

From Tables 3.5.1 and 3.5.2, we note that the parameter estimates for the HT(K)

and QR(K) models are similar across the di�erent methods. The con�dence intervals

tend to be wider for the one component models which is explained by a combination

of model misspeci�cation and the Keef et al. constraints. The model parameters for

the Part-QR(1) and Part-HT(1) models are signi�cantly di�erent from the QR(2) and

HT(2) models. This is an expected feature due to the separate marginal transforma-

tions of the partitioned dataset. These parameter estimates for α and γ are strongly

negatively correlated, so representations to obtain orthogonality of these parameters

may be helpful.

We conclude that the two component models should be used when applicable since

the con�dence bounds on the return level estimates are tighter. There seems to be

little di�erence between QR(2) and HT(2), hence either could be used. The estimates

that are generated using the partitioning methods, especially Part-QR(1), have an
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Figure 3.5.2: Estimates of probabilities of extreme sets on original margins using

models: QR(1) (top left), HT(1) (top right), the partitioning method using two QR(1)

models (middle left), the partitioning model using two HT(1) models (middle right),

QR(2) (bottom left), and HT(2) (bottom right). Axis labels and scales are identical.

even smaller variance when compared to QR(2). However, the partitioning methods

rely on considerable prior understanding of the underlying physical processes.
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Figure 3.5.3: Top left: return level estimates of the synthetic response R in years

using 6 approaches to inference. Other panels: uncertainty analysis for all six methods,

similar to Figure 3.5.2. The solid lines are median estimates of the bootstrap ensemble

and the dashed lines are the 2.5% and 97.5% quantiles. The light grey line shows the

originally inferred HT(2) model and is common across all subplots. Axes are identical

over plots.



Chapter 4

Extremal characteristics of

conditional models

4.1 Introduction

Extreme value theory is a topic of growing interest because of its many important

applications in for example risk management (Embrechts et al., 1999) or ocean engi-

neering (Castillo et al., 2005). For instance, in the design or assessment of o�shore fa-

cilities it is crucial to understand the distribution of extreme sea states. Such extreme

sea states are quanti�ed in terms of extreme wave heights, wave periods possibly asso-

ciated with resonant frequencies, and extreme wind speeds. In risk management, it is

important to identify which stocks are likely to su�er extreme losses simultaneously,

and to which extent this might happen. In general, we need to use well-estabilished

extreme value methods to model such events. Traditionally, such multivariate ex-

treme value methods are composed of marginal models and a dependence copula,

each having parametric forms for the tails.

In other areas of statistics, however, it is common to use conditional models for

multidimensional data. Intuitively, this is the most sensible approach. We observe

X that partially explains Y . So, we de�ne a model for X and a model for Y con-

ditional on X. There exist many examples in the literature of models within this

conditional framework with applications in extremes, e.g., the conditional extreme

61
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value model (He�ernan and Tawn, 2004; Fougeres and Soulier, 2012), the Weibull-log

normal distribution (Haver and Winterstein, 2009, henceforth the Haver-Winterstein

distribution), and hierarchical models (Eastoe, 2019). Although conditional mod-

els are easy to interpret, it can be rather di�cult to study the extremes of both Y

and (X, Y ) within this class. Recently, Engelke and Hitz (2020) developed graphical

models for extremes. However, we do not know of any literature that links existing

conditional models directly to extremal dependence measures.

There are two extremal dependence measures that are key in identifying and mea-

suring the degree of asymptotic dependence or asymptotic independence (Coles et al.,

1999). Identifying the correct asymptotic dependence class is important since extrap-

olation of models from di�erent classes is di�erent. To de�ne asymptotic dependence,

we �rst de�ne χ ∈ [0, 1], with

χ := lim
p↑1

χ(p) := lim
p↑1

P
{
Y > F−1

Y (p) | X > F−1
X (p)

}
, (4.1.1)

assuming this limit exists, where FX and FY denote the marginal distribution func-

tions of X and Y . We say that these random variables are asymptotically dependent

if χ > 0, i.e., when the joint probability that both random variables are large is of

the same magnitude as when one is large. If the coe�cient of asymptotic dependence

χ = 0, we say that the variables are asymptotically independent. In this case, χ does

not give us information on the level of asymptotic independence. So, we additionally

de�ne the coe�cient of asymptotic independence η ∈ (0, 1] (Ledford and Tawn, 1996).

This coe�cient describes the rate of decay to zero of the joint exceedance probability

P{X > F−1
X (p), Y > F−1

Y (p)} as p tends to 1. More speci�cally, η is de�ned to satisfy

P
{
X > F−1

X [FE(u)] , Y > F−1
Y [FE(u)]

}
∼ L (eu) e−u/η (4.1.2)

as u → ∞, where FE(u) = 1 − exp(−u) is the distribution function of a standard

exponential, and where L is a slowly varying function. Here, we write f(x) ∼ g(x)

as x→∞ when f(x)/g(x)→ 1 as x→∞. We rewrite de�nition (4.1.2) as

η := lim
p↑1

η(p) := lim
p↑1

log(1− p)
log [(1− p)χ(p)]

. (4.1.3)
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If the variables are asymptotically dependent, then η = 1; if the variables are asymp-

totically independent, then η ∈ (0, 1) or η = 1 and L(u)→ 0 as u→∞.

Evaluating χ for a bivariate random variable (X, Y ) is relatively straightforward.

First, de�ne for each z ∈ R,

H(z) := lim
p↑1

P
(

log

(
1− FX(X)

1− FY (Y )

)
> z

∣∣∣ FX(X) > p

)
.

Although this formulation looks complex, it is simply an analogue of the spectral

measure (Engelke and Hitz, 2020) in Fréchet margins but here it is expressed as a

representation in exponential margins, see Section 4.4. We then apply the dominated

convergence theorem to get

χ =

∫ ∞
0

H(−x)e−x dx.

In particular, χ > 0 if and only if limz→−∞H(z) > 0.

Additionally calculating η is straightforward for distributions when the joint distri-

bution function is speci�ed parametrically, e.g., a bivariate extreme value distribution

(Ledford and Tawn, 1996), or when the joint density function is speci�ed paramet-

rically (Nolde and Wadsworth, 2021), e.g., a multivariate normal distribution. In

this paper, we consider models speci�ed within the conditional framework. For these

cases, it is hard to calculate η analytically, and numerical estimation can be di�cult

since convergence of η(p) to η can be exceptionally slow. We set up methodology to

calculate η in closed form within this framework and demonstrate the techniques on

two widely used examples speci�ed below. We support these limiting results using

numerical integration.

First, we consider the model described in Haver and Winterstein (2009), used to

explain the dependence between extreme signi�cant wave height and their associated

wave periods. Secondly, we investigate the model of He�ernan and Tawn (2004). This

is a conditional model which describes the distribution of Y | X for large X, where

both X and Y are on standard margins. As the He�ernan-Tawn model focusses

on normalising the distribution of Y |X = x as x → ∞ to give a non-degenerate

limit, it asymptotically focusses on a di�erent aspect of the joint distribution to the
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events which determine η, i.e., {X > x, Y > x} as x → ∞, when the variables are

asymptotically independent. As a consequence, it seems reasonable to expect that the

upper tail of Y |X = x for large x does not give η. We will show by giving an example

that there exist distributions that share the same He�ernan-Tawn normalization but

do not share the same η. More theoretical examples, like Y := XβZ and Y := |Z||X|

where Z is some random variable independent of X, can be found in Appendix D.5.

The layout of the article is as follows. In Section 4.2, we demonstrate novel

techniques for calculating the coe�cient of asymptotic independence η and illustrate

the techniques with some examples. In Sections 4.3 and 4.4, we apply these techniques

to the Haver-Winterstein model and the He�ernan-Tawn model, respectively. Proofs

are found in Appendix C-D.

4.2 Methodology

4.2.1 Motivation

We aim to investigate the extremal properties of the bivariate distribution of (X, Y ),

for which the distribution of X and the distribution of Y | X are speci�ed. In

particular, we aim to investigate the tail of the distribution of Y and joint extremes

of X and Y via the coe�cient of asymptotic independence η. Deriving such extremal

quantities in closed form within this class is not trivial. In this section, we provide a

set of tools, derived from the Laplace approximation, to calculate such properties for

any conditional model.

First, we consider the tail of the distribution of Y . Because the distributions of X

and Y | X are speci�ed, it is natural to write

1− FY (y) := P(Y > y) =

∫ ∞
−∞

P(Y > y | X = x)fX(x) dx,

where fX is the density of X. In general, this integral is analytically intractable. In

Section 4.2.2, we present the tools with which we can derive the asymptotic properties

of this integral as y tends to the upper end point of the distribution of Y .
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To derive the coe�cient of asymptotic independence, we additionally need the

inverse distribution F−1
Y (p) for values of p close to 1, and

P(X > F−1
X (p), Y > F−1

Y (p)) =

∫ ∞
F−1
X (p)

P(Y > F−1
Y (p) | X = x)fX(x) dx.

This integral is also intractable in general; the tools from Section 4.2.2 can again be

applied to derive the asymptotic decay to 0 as p tends to 1.

4.2.2 Extension to the Laplace approximation

Here we present our theory to calculate asymptotic rates of decay of integrals, that

can be used to compute extremal properties, such as η, of conditional models. We �rst

recall the Laplace approximation, a technique commonly used in Bayesian inference

for approximating intractable integrals. This asymptotic approximation forms the

basis of our main result. We then state that result, and illustrate key di�erences with

the Laplace approximation by comparing examples.

Proposition 4.2.1 (Laplace approximation). Let a < b. Suppose g : [a, b] → R is

twice continuously di�erentiable and assume there exists a unique x∗ ∈ (a, b) such that

g(x∗) = maxx∈[a,b] g(x) and g′′(x∗) < 0. Then∫ b

a

eng(x)−ng(x∗) dx ·
√
n(−g′′(x∗)) ∼

√
2π

as n→∞.

The main disadvantage of the Laplace approximation is that it can only be used to

approximate integrals where the integrands are of the form f(x)n, where f(x) = eg(x) is

a positive function. However, we are interested in calculating integrals with integrand

fn(x) = egn(x), for some sequence of functions {gn}n∈N. Now we extend the Laplace

approximation under the assumptions that: (i) the analogue x∗n of x∗ is allowed to

depend on n; (ii) x∗n can be equal to either a or b; (iii) g′′n(x∗n) does not need to be

negative.

Proposition 4.2.2. Let I ⊆ R be connected with non-zero Lebesgue mass, k0 ≥ 1

an integer, and gn ∈ Ck0(I) a sequence of real-valued (at least) k0-times continuously
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di�erentiable functions de�ned on I. For 1 ≤ i ≤ k0, we de�ne g
(i)
n as the ith derivative

of gn. We assume that for all n ∈ N, there exists a unique x∗n ∈ I such that gn(x∗n) >

gn(x) for all x ∈ I \ {x∗n}. Moreover, we assume that k0 is the smallest integer

such that g
(k0)
n (x∗n) < 0 and limn→∞ g

(i)
n (x∗n)[−g(k0)

n (x∗n)]−i/k0 = 0 for all 1 ≤ i < k0.

Additionally, assume that there exists a δ > 0 for which there exists an ε > 0 such

that for all |x| < δ

lim
n→∞

g
(k0)
n

{
x∗n + x

[
−g(k0)

n (x∗n)
]− 1

k0

}
g

(k0)
n (x∗n)

< 1 + ε.

Then, there exists N ∈ N such that for n > N , there exists a constant C1 > 0 such

that ∫
I

egn(x)−gn(x∗n) dx ·
[
−g(k0)

n (x∗n)
] 1
k0 ≥ C1.

The proof of Proposition 4.2.2 can be found in Appendix C.1. One disadvantage of

our extension is that it only gives an asymptotic lower bound. In many practical

applications, an upper bound can be found directly. For example, in Section 4.3, we

can use inequality (4.3.5).

Functions for which Proposition 4.2.2 is applicable include functions gn with a

single mode x∗n that are approximated well with a Taylor expansion of some order

on a large enough neighbourhood of the mode. For example, for gn(x) = −|x|p with

p ∈ R, the proposition is applicable if and only if p ∈ Z≥2. We specify further that

the �rst set of assumptions ensures that the k0th order Taylor approximation of gn

around x∗n has at most two signi�cant terms (the 0th and the k0th term) by setting a

limit on the size of the ith terms in this Taylor approximation, where 1 ≤ i ≤ k0 − 1.

The second set of assumptions de�nes if the Taylor approximation is good enough on

a neighbourhood of x∗n, see the second example in Section 4.2.3

4.2.3 Examples

We demonstrate the use of Proposition 4.2.2 in three cases. Firstly, let gn(x) = −nxm

for n ∈ N, m ∈ Z≥1 and I = [0,∞). It is then valid to apply Proposition 4.2.2 with
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x∗n = 0 and k0 = m. Applying the proposition yields a constant C1 > 0 such that for

su�ciently large n,

n
1
m

∫ ∞
0

e−nx
m

dx ≥ C1.

We remark that C1 is not exactly the same as in Proposition 4.2.2 as it has absorbed

some constants that do not depend on n from the left hand side. This lower bound

is tight for each m ≥ 1. We verify this by using the variable transformation y = nxm

to give

n
1
m

∫ ∞
0

e−nx
m

dx =
1

m

∫ ∞
0

y
1
m
−1e−y dy = Γ

(
1

m
+ 1

)
.

After recognizing that the integral over [0,∞) is equal to half of the integral over R,

we see that Proposition 4.2.1 is applicable only when m = 2. In this case, Proposi-

tion 4.2.1 additionally gives as n→∞∫ ∞
0

e−nx
2

dx =
1

2

∫ ∞
−∞

e−nx
2

dx ∼
√
π

2
√
n
.

Secondly, let gn(x) = −x − nx2 and I = [0,∞). Now Proposition 4.2.1 is not ap-

plicable since no function g(x) exists for which gn(x) = ng(x) holds. Note that

Proposition 4.2.2 is also not applicable with k0 = 1, since x∗n has to be equal to 0 and

for x 6= 0

lim
n→∞

g′n (0 + x · n)

g′n(0)
= lim

n→∞
1 + 2n2x =∞,

contradicting one of the assumptions. Proposition 4.2.2 is applicable with k0 = 2,

yielding a constant C2 > 0 such that for su�ciently large n,

√
n

∫ ∞
−∞

e−x−nx
2

dx ≥ C2.

Similar to our �rst example, this lower bound is tight since we can also directly

calculate as n→∞

√
n

∫ ∞
−∞

e−x−nx
2

dx =
√
n

∫ ∞
−∞

e−n(x+ 1
2n)

2
+ 1

4n dx ∼
√
π.

Finally, let αn > 0, βn > 0 for n ∈ N and assume lim inf αn > 0. De�ne gn(x) =

αn log x − βnx. Using an argument similar to that in the second example, we see
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that Proposition 4.2.1 is not applicable. However Proposition 4.2.2 is applicable with

k0 = 2, yielding a constant C3 > 0 such that for su�ciently large n,

α
−αn− 1

2
n βαn+1

n eαn
∫ ∞

0

xαne−βnx dx ≥ C3.

This bound is also tight, which can be seen from recognizing the density of a gamma

distribution in the expression above, and applying limit results for the gamma func-

tion.

4.3 Haver-Winterstein model

Haver and Winterstein (2009) introduce the Haver-Winterstein (HW) distribution for

signi�cant wave height HS and wave period Tp in the North Sea. Their model is set up

in the conditional framework: they specify a class of distributions for HS and a class

of distributions for Tp | HS. Variations of this approach have been widely applied

in ocean engineering with over 150 citations, 25 of which correspond to 2021, see for

example Drago et al. (2013). However we are not aware of any literature quantifying

χ and η in closed form for the HW distribution; we now show how to calculate these.

For easiness of notation, let X = Tp and Y = HS. The marginal distribution of

the HW is formulated as

fX(x) =


1√

2παx
exp

{
− (log x−θ)2

2α2

}
, for 0 < x ≤ u,

k
λk
xk−1 exp

{
−
(
x
λ

)k}
, for x > u.

(4.3.1)

where u, α, k, λ > 0 and θ ∈ R. In particular, the parameters are constrained such

that fX is continuous at u and integrates to 1. Secondly, they take Y | X to be

conditionally log-normal

fY |X(y | x) =
1√

2πσ(x)y
exp

{
−(log y − µ(x))2

2σ(x)2

}
, for x, y > 0, (4.3.2)

where µ(x) := µ0 + µ1x
µ2 and σ(x) := [σ0 + σ1 exp(−σ2x)]1/2 with µ0 ∈ R,

µ1, µ2, σ0, σ1, σ2 > 0.

Model-based parameter estimates (Haver and Winterstein, 2009) from data ob-

served in the northern North Sea are given in Appendix D.2.1. For ease of presen-

tation, we make two assumptions about the parameter space of the HW distribution
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that are consistent with parameter estimates (µ̂2, k̂) = (0.225, 1.55) from Haver and

Winterstein (2009). Speci�cally, we make the following restrictions: 0 < µ2 < 0.5 and

2µ2 < k. These assumptions reduce the number of cases to be considered signi�cantly

whilst including realistic domains for the parameters as considered by practitioners.

We now show how to use Proposition 4.2.2 to calculate the extremal dependence

measures χ and η for the bivariate random vector (X, Y ) distributed according to the

HW distribution in the restricted parameter space. Calculation of η is split into two

steps. In the �rst step, we calculate the distribution function FY of Y and in the

second we evaluate the rate of decay of joint probabilities P{X > F−1
X [FE(u)], Y >

F−1
Y [FE(u)]} as u tends to in�nity.

We have

P(Y > y) =

∫ ∞
0

P(Y > y | X = x)fX(x) dx =

∫ ∞
0

Φ

(
log y − µ(x)

σ(x)

)
fX(x) dx,

(4.3.3)

where Φ is the survival function of a standard Gaussian. This integral is analytically

intractable but we can calculate its limiting leading order behaviour as y → ∞ in

closed form. Proposition 4.2.2 gives a lower bound and an upper bound of the same

order as the lower bound is then found directly. For ease of notation, we denote the

integrand by

gy(x) := Φ

(
log y − µ(x)

σ(x)

)
fX(x) (4.3.4)

for x > 0. In Figure 4.3.1, we plot gy for various values of y. From the �gure, we note

that gy has two local maxima for su�iciently large y. These are x∗y, which converges

to zero, and x∗∗y , which diverges to in�nity. This observation implies that we cannot

apply Proposition 4.2.2 directly in this case. We therefore proceed as follows: (i)

calculate x∗y and x
∗∗
y ; (ii) partition the interval of integration into intervals I1 and I2,

where x∗y ∈ I1 and x∗∗y ∈ I2, such that the conditions of Proposition 4.2.2 hold for

both intervals, and then apply the proposition on each interval; (iii) combine the two

lower bounds found to get a lower bound for integral (4.3.3); (iv) derive a limiting

upper bound for integral (4.3.3) of the same order as the lower bound.
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Figure 4.3.1: The function log gy from equation (4.3.4) for y = 10, 20, 30, 40, 50, 100

with parameters as reported in Haver and Winterstein (2009), see Appendix D.2.1.

In Appendix D.3.1-D.3.2, we derive that as y →∞

x∗y ∼
(

σ1σ2 · log y

2µ1µ2(σ0 + σ1)

)− 1
1−µ2

and x∗∗y ∼
(
λkµ1µ2 · log y

kσ0

) 1
k−µ2

,

where in the calculation of x∗y we use 0 < µ2 < 0.5. From Figure 4.3.1, we rec-

ognize that gy(x
∗
y) > gy(x

∗∗
y ) as y → ∞. We show that this holds analytically in

Appendix D.3.3 when 2µ2 < k. We now apply Proposition 4.2.2 and �nd that k0 = 2

is appropriate. The proposition then gives a lower bound for integral (4.3.3) around

x∗y as y →∞ of

P(Y > y) ≥ exp

{
− log2 y

2(σ0 + σ1)
+O(log y)

}
.

Finally, since gy(x
∗
y) > gy(x

∗∗
y ), it is straightforward to show as y →∞ that

P(Y > y) ≤ exp

{
− log2 y

2(σ0 + σ1)
+O(log y)

}
using the inequality

P(Y > y | X = x)fX(x) ≤ gy(x
∗
y)1{x ∈ [0, x∗∗y ]}+ fX(x)1{x > x∗∗y }. (4.3.5)

We now can calculate η and show that χ = 0. To that end, we �rst need to calculate

the inverse probability integral transform, transforming Y to standard exponential

margins; i.e., we need F−1
Y [FE(u)]. Next, we need to evaluate the asymptotic be-

haviour of P{Y > F−1
Y [FE(u)], X > F−1

X [FE(u)]} as u → ∞. To evaluate F−1
Y ◦ FE,
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we �rst calculate for y →∞

F−1
E (FY (y)) = − log(1− FY (y)) =

log2 y

2(σ0 + σ1)
+O(log y).

We invert this expression by solving F−1
E (FY (y)) = u for log y. This yields log y =√

2(σ0 + σ1)u + O(1) as u → ∞. We can now write down an asymptotic expression

for χ(u) as u→∞

χ(u) := P
{
F−1
E [FY (Y )] > u, F−1

E [FX(X)] > u
}

= P
{

log Y >
√

2(σ0 + σ1)u+O(1), (X/λ)k > u
}

=

∫ ∞
λu1/k

Φ

(√
2(σ0 + σ1)u+O(1)− µ(x)

σ(x)
| X = x

)
· kx

k−1

λk
exp

{
−
(x
λ

)k}
dx.

In Appendix D.3.4, we show that Proposition 4.2.2 is applicable for this integral with

k0 = 1 and x∗u = λu1/k. Moreover, we derive directly an upper bound of the same

order, obtaining

χ(u) = exp

{
−
(

2 +
σ1

σ0

)
u+O

(
u1/2+µ2/k

)}
as u→∞. Hence, χ = 0 and

η =

(
2 +

σ1

σ0

)−1

.

In particular, for the parameter estimates from Haver and Winterstein (2009), the

value of η ∈ (0, 1/2) implies that the distribution exhibits negative asymptotic inde-

pendence (Ledford and Tawn, 1996). This contrasts with the positive correlation of

the Haver-Winterstein distribution, which might lead practitioners to assume falsely

that the positive correlation also exists in the extremes of the Haver-Winterstein

model; this is far from the truth.

What we learn from our work is not necessarily that the Haver-Winterstein model

should not be used - we can derive this conclusion in many simpler ways than with this

paper. Instead, we can use this example to understand how a conditional model makes

complex assumptions on the dependence structure: imposing a positive correlation

overall but a highly negative correlation in the extremes.
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4.4 He�ernan-Tawn model

In multivariate extreme value theory, the conditional extreme value model of He�ernan

and Tawn (2004), henceforth denoted the HT model, is widely studied and applied

to extrapolate multivariate data. The HT model has been cited over 600 times, and

is applied e.g. in oceanography (Ross et al., 2020), �nance (Hilal et al., 2011), and

spatio-temporal extremes (Simpson and Wadsworth, 2021). The HT model is a limit

model and its form is motivated by derived limiting forms from numerous theoretical

examples.

Let (X, Y ) be a bivariate random variable with standard Laplace margins (Keef

et al., 2013) and assume that its joint density exists. Next, assume there exist pa-

rameters α ∈ [−1, 1], β < 1 and a non-degenerate distribution function H such that

for x > 0, and for all z ∈ R the following limits

lim
u→∞

P
(
Y − αX
Xβ

≤ z, X − u > x | X > u

)
and

H(z) = lim
x→∞

P
(
Y − αx
xβ

≤ z | X = x

)
(4.4.1)

exist. This implies, according to l'Hopital's rule, that

lim
u→∞

P
(
Y − αX
Xβ

≤ z, X − u > x | X > u

)
= H(z) exp(−x). (4.4.2)

The latter in turn has the interpretation that as u→∞, (Y − αX)X−β and (X − u)

are independent conditional on X > u, and are distributed as H and as a unit expo-

nential, respectively. As is common practice in extreme value theory, the limit results

are assumed to hold above some high threshold. So here, the HT model assumes that

the corresponding limiting family in (4.4.1) holds exactly at a �nite level u and beyond.

Now, if we additionally assume that a u > 0 exists such that for all x > u

P(Y > y | X = x) = H

(
y − αx
xβ

)
(4.4.3)

holds for all y ∈ R where H = 1−H is some non-degenerate survival function. Then,

we say that (X, Y ) is modelled with the exact version of the HT model.
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In this case study, we assume that (X, Y ) is modelled with the exact version of the

HT model with the additional assumption that α, β ∈ [0, 1). We consider two cases

for H, corresponding to �nite and in�nite upper end points. If H has a �nite upper

end point zH , calculations for η are trivial. Indeed, when X = x, Y cannot be larger

than αx+ xβzH . Thus, as u→∞, Y > u implies X > u/α + o(u). So, as u→∞

P(X > u, Y > u) ∼ P
{
X > u,X > u/α +O(uβ)

}
∼ P

{
X > u/α +O(uβ)

}
= exp

{
−u/α +O(uβ)

}
.

Therefore, η = α when α > 0 and otherwise does not exist.

Now assume that H has an in�nite upper end point. To make calculations

tractable, we parameterise H as

H (z) = exp
{
−γzδ + o

(
zδ
)}

1{z > 0}+ 1{z ≤ 0} (4.4.4)

for γ > 0, δ ≥ 1. For simplicity, we do not consider potential negative arguments

for H since the precise form of its lower tail is not relevant to the current work.

Parameterisation (4.4.4) covers most non-trivial light-tailed cases for the upper tail

including Gaussian, Weibull and exponential tails; see examples in He�ernan and

Tawn (2004). It is also the tail model of the delta-Laplace (generalised Gaussian)

distribution used in the spatial conditional extremes model from Wadsworth and

Tawn (2022). Moreover if the tail of H is heavier than that of the exponential, Y

cannot possibly follow a standard Laplace distribution. This links to the restricton

δ ≥ 1. For illustration, we set o(zδ) = 0 in equation (4.4.4). The resulting Weibull

survival function is a suitable choice for H, since it has an extreme value tail index of

0, but a varying tail thickness controlled by δ.

Proposition 4.4.1. If (X, Y ) follows distribution (4.4.3) with H as in (4.4.4) with

o(zδ) = 0, then δ ≥ (1− β)−1.

The proof of Proposition 4.4.1 is found in Appendix C.1. Following similar arguments

to those used in the proof of Proposition 4.4.1, we calculate η for any combination
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α β γ δ η

(0, 1) [0, 1) (0,∞) ((1− β)−1,∞) α

(0, 1) (0, 1) (0,∞) (1− β)−1
(
γ(1−αc)δ
cδ−1 + c

)−1

(0, 1) 0 (1/α,∞) 1 α

(0, 1) 0 (0, 1/α] 1 1/(γ + 1− γα)

0 (0, 1) (0,∞) ((1− β)−1,∞) Not de�ned

0 (0, 1) (0, (1− β)/β] (1− β)−1 1/(γ + 1)

0 (0, 1) [(1− β)/β,∞) (1− β)−1 γ−1/δ(δ − 1)1−1/δ/δ

Table 4.4.1: Values of η for model (4.4.3) with H as in (4.4.4) for di�erent ranges

of parameter combinations, where c = max{1, c0} ∈ [1, 1/α) for c0 given in equa-

tion (4.4.5).

Figure 4.4.1: Visualisation of c0 from equation (4.4.5) for γ = 1, 1.5, 2, 5 and

δ = (1 − β)−1. The region corresponding to c0 ∈ (0, 1) is shown in red; the region

corresponding to c0 ∈ (1, 1/α) is shown in green.

of the parameters (α, β, δ, γ) in their speci�ed parameter space. We collect results

in Table 4.4.1. In Appendix D.4, we only give details of the η calculations when

α, β ∈ (0, 1), γ > 0 and δ = (1−β)−1. For the other �ve cases in Table 4.4.1, we state

results without proof. In particular, the argument underpinning the η calculation

when δ > (1 − β)−1 is similar to the argument used when H has a �nite upper end

point. In this case, η = α when α > 0 and when α = 0, η is not de�ned.

In Table 4.4.1, it is convenient to refer to c = max{1, c0} ∈ [1, 1/α) where c0 ∈

(0, 1/α) satis�es

γ(1− αc0)δ−1 (δ − 1 + αc0) = cδ0. (4.4.5)
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Figure 4.4.2: The value of η as a function of α, β and γ with δ = (1− β)−1 from the

HT model (4.4.3) and (4.4.4).

To give some intuition on the value of c, in Figure 4.4.1 we sketch the region of the

parameter space corresponding to c = 1 (in red) for di�erent values of γ. Finally

in Figure 4.4.2 we visualise η for a set of di�erent parameter combinations with δ =

(1− β)−1.

We note the following interesting �ndings. The parameter η is non-decreasing

with increasing α and with increasing β. Parameter combinations (α, β, γ, δ) exist for

which α, β > 0 but η < 0.5. Hence, there are cases for which Y increases with X

but the extremes of (X, Y ) are negatively associated as measured by η (Ledford and

Tawn, 1996).

Finally we note that the He�ernan-Tawn model is not η invariant, i.e., there exist

models that asymptotically follow the same conditional He�ernan-Tawn representa-

tion but have di�erent η. We illustrate this result below with an example, but �rst

we comment on its implications. Our �nding implies that if X and Y are asymptoti-

cally independent, then there do not exist asymptotically consistent He�ernan-Tawn

model-based estimators for probabilities P(Y > X > v) and P(X > v, Y > v) where

v is large. This in turn provides an interesting insight in the lack of self-consistency

of the He�ernan-Tawn model with regard to the choice of conditioning variable, see

Liu and Tawn (2014).

To illustrate our claim, we consider two bivariate random variables (X, Y ) and

(XHT , YHT ). Let (X, Y ) follow an inverted bivariate extreme value distribution with

a logistic dependence structure (Ledford and Tawn, 1996) on Laplace margins with



CHAPTER 4. EXTREMAL CHARACTERISTICS OF CONDITIONALMODELS76

parameter ξ ∈ (0, 1], such that

P(X > x, Y > y) = exp
{
−
[
t1/ξx + t1/ξy

]ξ}
, (4.4.6)

where tx := log 2 − log[2 − exp(x)] for x < 0 and tx := log 2 + x for x > 0, with ty

similarly de�ned. It is straightforward to derive that in the limit, the He�ernan-Tawn

model (4.4.3) is applicable to (X, Y ) with H as in equation (4.4.4) and o(zδ) = 0.

Speci�cally,

lim
x→∞

P
(
Y Xξ−1 > z | X = x

)
= exp

(
−ξz1/ξ

)
.

Now let (XHT , YHT ) be distributed following the exact version of the HT model as-

sociated with (X, Y ). That is, for XHT < u, we have (XHT , YHT ) = (X, Y ), and for

XHT ≥ u, XHT − u is a standard exponential and YHT | XHT follows model (4.4.3)

with H as in (4.4.4) with parameters (α, β, γ, δ) = (0, 1− ξ, ξ, 1/ξ) and o(zδ) = 0.

In this case γ < (1− β)/β, and Table 4.4.1 implies that the coe�cient of asymptotic

independence ηHT of (XHT , YHT ) is equal to 1/(ξ + 1). In contrast, it is straightfor-

ward to derive directly from de�nition (4.4.6) that η of (X, Y ) is equal to 2−ξ. Hence

ηHT 6= η when ξ ∈ (0, 1).

Finally we illustrate numerically the di�erences between η, ηHT and their �nite

level counterparts η(p) and ηHT (p) for p ∈ (0, 1). For de�niteness, we let (X, Y ) follow

distribution (4.4.6) with ξ = 0.35. We simulate a sample {(xi, yi) : i = 1, . . . , n} of

size n = 10, 000. First we empirically estimate η(p) from equation (4.1.3) for p ∈ (0, 1)

and calculate pointwise 95% con�dence intervals using the binomial distribution. Next

we note that η(p) = η for p ∈ (0.5, 1). Finally we calculate the corresponding ηHT (p)

for p near 1 using numerical integration.

Results are shown in Figure 4.4.3. Left and right hand plots are the same except for

the scale of the x-axis, illustrating the behaviour of ηHT (p) for p near 1. Reassuringly,

the true η of the underlying model (red dashed) falls within the 95% con�dence interval

for its empirical counterpart η̂(p) (blue). Further, ηHT (p) (black dashed) converges to

ηHT (green dashed). We note that ηHT (p) varies as a function of p and only seems to

asymptote for p > 1− exp(−50)/2 ≈ 1− 9.6 · 10−23. Finally, since ηHT < η, we would

expect that ηHT (p) would underestimate η, but it turns out this is only the case for
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Figure 4.4.3: Coe�cients of asymptotic independence η (red dashed) for distribu-

tion (4.4.6) with ξ = 0.35, and the corresponding value for the exact limiting HT

model ηHT (green dashed), and its �nite level counterpart ηHT (p) (black dashed).

Empirical estimates η̂(p) for a sample of size 10, 000 with pointwise con�dence inter-

vals are shown in blue. Left and right hand panels are the same except for the scale

of the x-axis, set on the right to illustrate the behaviour of ηHT (p) for p near 1.

p > 1− exp(−7.5)/2 ≈ 0.9997.
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Chapter 5

Extreme excursion of multivariate

processes

5.1 Introduction

Farmers, stock brokers and sailors have one thing in common: they or their businesses

are most heavily a�ected by extreme events like droughts and rainfall, stock market

crashes, or extreme winds and waves, respectively. Understanding the statistical

behaviour of such events as a whole is crucial for risk analyses. To make this more

precise, if we let (Xt)t∈Z be a d-dimensional random process of interest, then we seek

to model excursions of the process into a set E ⊂ Rd, i.e., the behaviour of

{Xi : i = a, . . . , b; Xi ∈ E; Xa−1,Xb+1 6∈ E}, (5.1.1)

where E is associated with extreme events of X. Moreover, we assume that the

random process consists of multiple components that can be extreme. To solve this

task, we assume that the multivariate random process is a realisation of a kth order

Markov chain.

We use extreme value theory, a sub�eld of statistics, to characterise excursions.

There is considerable recent attention to this area in the literature, but most of

extreme value theory for stationary Markov chains dates back over 20 years. Rootzén

(1988) and Perfekt (1997) develop limiting results for univariate Markov chains and

78
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multivariate Markov chains, respectively. Smith (1992) calculates the extremal index

(Leadbetter et al., 1983) for a univariate Markov chain and Smith et al. (1997) use

parametric bivariate transition distributions to model the extremes of a univariate �rst

order Markov process. Finally, Yun (2000) develops asymptotic theory for functionals

of univariate kth order Markov extreme events. All of these papers derive their results

under the assumption of asymptotic dependence (Joe, 1997), i.e., for a stationary

process (Xt)t∈Z satisfying suitable long-range mixing conditions, they derive their

results under the assumption that for any lag l = 1, 2, . . .

lim
u→x∗

P(Xt+l > u|Xt > u) > 0

where x∗ is the right upper end point of the distribution of Xt. This early work

doesn't consider what happens when asymptotic independence is present, i.e., when

this limiting probability converges to 0 for some l. The �rst paper which considers

such processes is Bortot and Tawn (1998) who assume at �rst order Markov model,

with Ledford and Tawn (2003) considering a general framework for the modelling of

asymptotic independent processes, with key recent probabilistic developments given

by Papastathopoulos et al. (2017) and Papastathopoulos and Tawn (2020).

Randell et al. (2015) speculate that a statistical model for the evolution of (multi-

variate) storm trajectories would be a valuable enhancement of current methodology.

The �rst statistical work the current authors are aware of, that de�nes a model for

the distribution of all observations during an excursion is Winter and Tawn (2016),

who assume a univariate �rst order Markov process exhibiting either asymptotic inde-

pendence or asymptotic dependence across lags. Winter and Tawn (2017) extend this

work to include kth order Markov processes with k > 1. Finally, Tendijck et al. (2019)

extend this latest model to a kth order univariate Markov process with a directional

covariate. We remark that their work cannot be considered to model the extremes of

bivariate Markov processes since the associated directional covariate cannot be con-

sidered to take on extreme values. An honourable mention goes to Feld et al. (2015)

who use a sophisticated covariate model for the most extreme observation (the most

extreme value of the dominant variable) in an excursion, combined with a baseline
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historical-matching approach for the intra-excursion trajectory; see also Section 5.3.2

in which we discuss a version of this model to our case study. Finally, we mention well-

established literature on multivariate time series, e.g., Tiao and Tsay (1989), which

is not directly applicable to modelling environmental extremes because such models

are only designed to model typical behaviours. Financial time-series models, e.g.,

Bauwens et al. (2006), are also not applicable because these are speci�cally tailored

to model �nancial data with tail switching during extreme events (Bortot and Coles,

2003).

In this work, we present a natural extension to Tendijck et al. (2019) by de�ning

two multivariate kth order Markov models that exhibit both asymptotic

(in)dependence across variables and/or at some lags. The work is motivated by our

case study in which we model excursions of meteorological-oceanographic (met-ocean)

data: signi�cant wave height, wind speed, and their associated directions, for a loca-

tion in the northern North Sea.

We use the following set up. Assume that at each time t ∈ Z, the distribution

of the d-dimensional random variable Xt is stationary through time; that is, Xt has

the same distribution as some X = (X1, . . . , Xd) with distribution function FX. For

1 ≤ j ≤ d, write FXj as the jth marginal distribution of FX. The distribution

functions FXj are unknown and must be estimated. For extreme arguments, we use

univariate extreme value theory to motivate a class of parametric tail forms. More

precisely, we assume that for each 1 ≤ j ≤ d, the excesses tail above some high level

uj ∈ R of the marginal distribution FXj are approximated with a generalised Pareto

distribution (Davison and Smith, 1990). For non-extreme arguments x < uj of the

function FXj , an empirical model usually su�ces.

In multivariate extreme value theory, it is common to consider the marginals

and the dependence of random variables separately, such that the usually-dominant

marginal e�ect does not in�uence the modelling of a possibly complex dependence

structure. So given the marginal models as discussed above, we transform the ran-

dom process (Xt)t∈Z onto standard Laplace margins (Yt)t∈Z using the transformation:

Xj 7→ Yj := F−1
L (FXj(Xj)), where F

−1
L is the inverse of the standard Laplace distribu-
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tion function. Here the choice of Laplace margins is made to allow for the modelling

of potential negative dependence at certain lags or components (Keef et al., 2013).

For multivariate random processes, there are uncountably many ways of de�ning

an extreme event. In our case study, we take the met-ocean variable signi�cant wave

height HS as the excursion-de�ning component. We follow Winter and Tawn (2017)

and Tendijck et al. (2019) in adopting the conditional extremes model of He�ernan

and Tawn (2004), see also Section 5.3.1, as the foundation of our approach. Without

loss of generality, we �rst de�ne the component X1 of X as the de�ning variable for

the extreme events. So, we set our excursion set E = Eu := (F−1
X1
{FL(u)},∞)×Rd−1

for some high threshold u ∈ R and rewrite our de�nition of an excursion as

{Yi : i = a, . . . , b; Yi,1 > u;Ya−1,1 ≤ u, Yb+1,1 ≤ u} (5.1.2)

for a, b ∈ Z, indices for the start and the end time points of the excursion, respectively.

In shorthand, the excursion is then Ya:b. We remark that in this de�nition, we accept

that multiple excursions can occur close together in time, and thus these cannot

be considered independent. The reason for this choice is that imposing a minimal

separation of excursions would complicate the modelling signi�cantly. We recognize

that this is a feature of the current approach which can be improved.

The remaining part of this paper is organised as follows. In Section 5.2, we present

our strategy for modelling excursions by de�ning time intervals corresponding to so-

called peak, pre-peak and post-peak periods. In Section 5.3.1, we introduce the condi-

tional extremes model, and in Section 5.3.2 we present a baseline historical-matching

model. In Sections 5.3.3-5.3.4, we de�ne two novel kth order Markov models for the

evolution of the multivariate time-series during the pre-peak and post-peak periods.

Combined with the conditional extremes model from Section 5.3.1 for the period of

the peak, we obtain two models for extreme excursions. In Section 5.4, we apply

the two introduced Markov models to met-ocean data for a location in the northern

North Sea. We compare the model performance with the baseline historical-matching

approach by assessing their respective performance in estimating the tails of the dis-

tributions of complex structure variables (Coles and Tawn, 1994), corresponding to
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approximations of the response of hypothetical o�shore or coastal facilities to extreme

met-ocean environments. We �nd that in general the new models are preferred.

5.2 Modelling strategy

To model excursions as in de�nition (5.1.2), two types of approaches have been pro-

posed in the literature of univariate extremes: a forward model (Rootzén, 1988) and

a peak model (Smith et al., 1997). Both of these are two-step approaches by nature.

The forward model �rst describes the distribution of a random exceedance Yt > u

with a univariate extremes model and a conditional model for the distribution of

Yt+j|(Yt+i−1 = yt+j−2 i = 1, . . . , j) where yt+j−2 > u for any j ≥ 1. Even though

this approach does not directly model the univariate equivalent of excursions in equa-

tion (5.1.2) (because the �rst exceedance of an excursion does not have the same

distribution as a random exceedance), estimates of some extremal properties of the

process (Yt)t≥1, such as the extremal index (Leadbetter et al., 1983), can still be ob-

tained by allowing the excursion threshold to be signi�cantly lower than the cluster

threshold used in extremal index estimators. Notably, Winter and Tawn (2016, 2017)

use the forward approach in their work.

The peak model, on the other hand, does model excursions as de�ned here. This

method relies on a univariate extremes model for the largest observation of an excur-

sion, e.g., Eastoe and Tawn (2012), and a conditional model for observations before

and after the excursion maximum. Winter and Tawn (2016) use this approach for

their �rst order model but not for their kth order model (Winter and Tawn, 2017).

They avoid this method explicitly because of di�culties that arise in preserving model

characteristics in forward and backward simulations near the excursion maximum (i.e.,

the time point at which the de�ning variate X1 achieves its maximum value during

the excursion).

Tendijck et al. (2019) use the peak method, but they do not address the issues

associated with forward and backward simulation under the method. Because the

excursion maximum is usually the most important observation of an excursion for risk
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assessments, we also use the peak method in the current work, but with consideration

of backward and forward models. We separate the modelling of excursions into three

stages: the modelling of the period of the peak, and the modelling of the pre-peak

and post-peak periods; see Figure 5.2.1 in which the three time periods are illustrated

for k = 3. Without loss of generality, let t = 0 be the time point at which the �rst

component Yt,1 takes its maximum value within an excursion such that Y0,1 > u for

the threshold u. The period of the peak Pk0 of an excursion of a kth order model is

then de�ned as the set of 2k − 1 observations: Pk0 := {Yt : −(k − 1) ≤ t ≤ k − 1}

with Y0,1 > u. The pre-peak Ppre and post-peak Ppost periods are de�ned as the sets

of observations that include the excursion maximum and the observations before and

after, respectively:

Ppre := {Yt : t′ ≤ t ≤ 0, with t′ = min{s < 0 : min
i=s,...,0

{Yi,1} > u}}

and

Ppost := {Yt : 0 ≤ t ≤ t′, with t′ = max{s > 0 : min
i=0,...,s

{Yi,1} > u}},

so each of them intersects with Pk0 . We remark that the length of Pk0 can be longer

or shorter than the length of an excursion if the excursion ends within the period of

the peak. We choose to de�ne the period Pk0 in this manner so that the pre-peak and

post-peak parts of the excursion are both initialized with k observations.

We then model an excursion as follows: (i) we model the excursion maximum

Y0,1 using a generalised Pareto distribution; (ii) we model the period of the peak Pk0
conditional on the storm maximum Y0,1 using the model described in Section 5.3.1;

(iii-a) if minj=1,...,k−1 Yj,1 < u (minj=1,...,k−1 Y−j,1 < u), then the period Ppost (Ppre) of

the excursion has ended; (iii-b) if minj=1,...,k−1 Yj,1 ≥ u (minj=1,...,k−1 Y−j,1 ≥ u), then

the remaining part of the excursion is modelled with our time-series models from

Sections 5.3.3-5.3.4 until there exist a j1, j2 > 0 such that Yj1,1 < u and Y−j2,1 < u.

In the next sections, we discuss forwards models that are applicable to model the

post-peak period Ppost. We model the pre-peak period Ppre using the forwards models

applied to (Y−t)t∈Z (with potentially di�erent parameters, although these would be the
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same if the process was time reversible). Importantly, we do not impose consistency

in the forwards and backwards models to yield a kth order Markov chain, e.g., in

the case of asymptotic dependent Markov chains the precise dependence conditions

between the forward and backward hidden tail chains are given by Janÿen and Segers

(2014). We make this choice for two reasons: (i) for environmental applications, such

as in this work, the pre-peak and post-peak period have di�erent distributions, see

for example the asymmetry in Figure 5.4.5. (ii) the assumption of kth order Markov

is an approximation for the process that generates our data. Thus, imposing forward

and backward consistency for a kth order Markov chain is likely to yield worse results

for our application. So, we consider the violating of this assumption to yield more

�exible descriptions of excursions as a bene�t more than a limitation.
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Figure 5.2.1: Illustration of the periods of the peak, pre-peak, and post-peak periods

for two excursions from a Markov model with order k = 3.
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5.3 The models

5.3.1 Model 0: The conditional extremes model

We introduce the conditional extreme value model of He�ernan and Tawn (2004),

henceforth denoted the HT model, with notation speci�c to modelling the period of

the peak Pk0 . The HT model is widely studied and applied to extrapolate tails of mul-

tivariate distributions, e.g., in oceanography (Ross et al., 2020), �nance (Hilal et al.,

2011), spatio-temporal extremes (Simpson and Wadsworth, 2021), and multivariate

spatial extremes (Shooter et al., 2022). The HT model is a limit model and its form

was originally motivated by deriving possible limiting forms for numerous theoretical

examples.

Let

Y−(k−1):(k−1) :=


Y−(k−1),1 · · · Y−(k−1),d

...
...

Yk−1,1 · · · Yk−1,d


be a random matrix on R(2k−1)×d with standard Laplace margins (Keef et al., 2013).

We de�ne Y as Y−(k−1):(k−1) without the (k, 1)th element Y0,1. Additionally, we

assume that the joint density of Y−(k−1):(k−1) exists. For ease of presentation, we

use this notation more general, i.e., we de�ne the irregular matrix x ∈ R(2k−1)d−1 as

follows:

x =



x−k+1,1 x−k+1,2 · · · x−k+1,d

...
...

...

x−1,1 x−1,2 · · · x−1,d

x0,2 · · · x0,d

x1,1 x1,2 · · · x1,d

...
...

...

xk−1,1 xk−1,2 · · · xk−1,d


,

that is, x does not contain the (k, 1)th element. Equivalently, one could write x =

x−(k,1) for x ∈ R(2k−1)×d.

The conditional extremes model for Y conditional on Y0,1 assumes that irregular
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parameter matrices α ∈ [−1, 1](2k−1)d−1, β ∈ (−∞, 1)(2k−1)d−1 and a distribution func-

tion H with non-degenerate marginals on R(2k−1)d−1 (the space of irregular matrices)

exist, such that for all irregular matrices z ∈ R(2k−1)d−1 the limit

H(z) = lim
y→∞

P
(
Yi,j − αi,jy

yβi,j
≤ zi,j ∀ (i, j) ∈ I | Y0,1 = y

)
(5.3.1)

exists, where I :=
(
{−(k − 1), . . . , (k − 1)} × {1, . . . , d}

)
\ {(0, 1)} and where αi,j,

βi,j and zi,j are the (i, j)th elements of α, β and z, respectively. Limit (5.3.1) implies,

according to l'Hopital's rule, that for y > 0, z ∈ R(2k−1)d−1

lim
u→∞

P

(
Y −αY0,1

Y
β

0,1

≤ z, Y0,1 − u > y | Y0,1 > u

)
= H(z) exp(−y), (5.3.2)

assuming component-wise operations. Limit (5.3.2) in turn has the interpretation

that as u tends to in�nity, (Y−αY0,1)Y
−β

0,1 and (Y0,1−u) are independent conditional

on Y0,1 > u, and are distributed as H and a standard exponential, respectively.

In practice, we exploit these results by assuming they hold exactly above some high

�nite threshold u > 0. So, we approximate the conditional distribution of Y|Y0,1 = y

for y > u, y ∈ R(2k−1)d−1 as

P(Y ≤ y | Y0,1 = y) = H

(
y −αy
yβ

)
, (5.3.3)

and we assume independence of (Y − αY0,1)Y
−β

0,1 and Y0,1. There is no �nite dimen-

sional parametric form for H, so non-parametric methods are typically applied. How-

ever, we remark that there are applications of the conditional extreme value model

where the copula H is assumed to be Gaussian (Towe et al., 2019) or a Bayesian

semi-parametric model is used (Lugrin et al., 2016). For inference, see Section 5.3.5.

5.3.2 Model 1: Historical-Matching

An empirical method for simulating excursions is described in Feld et al. (2015) and

termed historical-matching (HM) in this work. They model trajectories of signi�cant

wave height, wave direction, season and wave period during extreme events. The key

assumption they make is that storm trajectory (or excursion) pro�les are not inde-

pendent of storm maximum conditions. This approach serves as our baseline method
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for the simulation of storm trajectories of signi�cant wave height, wind speed, wave

direction and wind direction, and is compared against our proposed Markov models

in Sections 5.3.3-5.3.4. Speci�cally, the HM approach is a composition of four models:

(i) a model for storm maximum wave direction; (ii) a model for storm maximum sig-

ni�cant wave height conditional on storm maximum wave direction; (iii) a model that

selects at random a historical storm trajectory with similar storm maximum charac-

teristics to that simulated; (iv) a model that adjusts the historical storm trajectory

by matching storm maximum characteristics of simulated and historical storms.

For step (i), we simply sample at random from the observed wave directions associ-

ated with storm maximum signi�cant wave height (excursion maximum). In step (ii),

storm maximum signi�cant wave height are modelled as generalised Pareto distribu-

tions conditional on the sampled storm maximum wave direction using a generalised

additive model with the parameters as B-splines conditional on directional covariates

(Chavez-Demoulin and Davison, 2005). In step (iii), we use a distance measure to

calculate the dissimilarity between pairs of storm maximum signi�cant wave heights

and storm maximum wave directions for simulated and historical trajectories. Here,

we use the heuristic recommended by Feld et al. (2015) ensuring that a di�erence of

5 degrees in storm maximum wave direction corresponds to the same dissimilarity as

0.5m of di�erence in storm maximum signi�cant wave height; one of the closest 20

matching storms is then selected at random for associated with the simulated storm

maximum. In step (iv), we match the variables of the chosen historical trajectory

as follows: (a) the historical signi�cant wave height series are multiplied by the ratio

of the simulated maximum signi�cant wave height to the maximum of the historical

signi�cant wave height; (b) the historical wave directions are shifted such that the

storm maximum wave directions of simulated and historical trajectories coincide; (c)

the associated historical wind directions are rotated in the exact same way as wave

direction; (d) for the full set of historical storm maxima, storm maximum associated

wind speed WM
s (namely the value of wind speed at the time point corresponding to

the storm maximum event) conditional on storm maximum signi�cant wave height
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HM
S is described using linear regression with parameters β0, β1 ∈ R, σ > 0:

WM
s |HM

S = β0 + β1H
M
S + σε

with ε standard normal; (e) wind speed for the selected historical trajectory is scaled

linearly such that it agrees with the storm maximum associated wind speed from (d).

Perhaps the main de�ciencies of the HM approach are that for levels beyond

that observed in historical excursions, it does not provide a means for modelling

the extremal temporal dependence characteristics of excursions, and the extremal

dependence between di�erent components of the time-series, and does not provide a

natural framework for the assessment of model �t or uncertainty propagation.

5.3.3 Model 2: Multivariate Markov Extremal Model

For ease of presentation, we present the multivariate Markov extremal model (MMEM)

of order k only for a two-dimensional time-series (Yt)t∈Z such that Yt = (Yt,1, Yt,2) in

the notation of Section 5.1, i.e., Yt has standard Laplace margins. We only describe

a forwards model that is applicable to the post-peak period Ppost. As mentioned in

Section 5.2, we apply a di�erent forwards MMEM model to (Y−t)t∈Z to yield the

backwards model for the pre-peak period Ppre. Concisely put, the MMEM exploits

the HT model to estimate the distribution for Yt+k conditional on (Yt, . . . ,Yt+k−1)

when Yt,1 > u for a large threshold u > 0. Similar to in Section 5.3.1, for each t ∈ Z,

we de�ne x̃t ∈ Rk × Rk+1 to be an irregular matrix with k + 1 rows and 2 columns

without the element that is on the �rst row and �rst column:

x̃t =


xt,2

xt+1,1 xt+1,2

...
...

xt+k,1 xt+k,2

 .

Then, we assume that for a large threshold u > 0, there exist parameters α̃0 ∈

[−1, 1]k× [−1, 1]k+1, β̃0 ∈ (−∞, 1)k× (−∞, 1)k, and a residual random variable ε̃t on

Rk × Rk+1 with non-degenerate marginals such that for t ∈ Z

Ỹt|(Yt,1 > u) = α̃0Yt,1 + Y
β̃0
t,1 ε̃t.
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Similar to Winter and Tawn (2017), for t ∈ Z, j ≥ 1 when Yt+j,1 > u, we then get

[Yt+k+j,1 Yt+k+j,2]|(Yt+j:t+k+j−1, Yt+j,1 > u) = [αk,1, αk,2]Yt+j,1 + Y
[βk,1, βk,2]
t+j,1 · εCk,1:2,

where εCk,1:2 is short-hand notation for [εk,1, εk,2] conditional on (ε1:k−1,1, ε0:k−1,2). For

inference, we refer to Section 5.3.5.

5.3.4 Model 3: extremal vector autoregression

Here, we introduce extremal vector autoregression (EVAR) for the extremes of the

process (Yt)t≥1. This model combines the HT model with a vector autoregression

model for the joint evolution of the time-series at large levels. Here we focus on

the post-peak period, but note that the pre-peak period is modelled with MMEM

in the same spirit as EVAR. We de�ne an EVAR model of order k with parameters

Φ(i) ∈ Rd × Rd for i = 1, . . . , k and B ∈ (−∞, 1)d as follows

Yt+k|(Yt, . . . ,Yt+k−1) =
k∑
i=1

Φ(i)Yt+k−i + yBεt, (5.3.4)

with Yt,1 = y for y > u, where u > 0 is a large threshold and εt is a d-dimensional

multivariate random variable that has non-degenerate margins and is independent of

(Yt, . . . ,Yt+k−1). Usually for a vector autoregressive model, parameter constraints

would be imposed so that the resulting process is stationary. In the current extreme

value context, stationarity is not of concern to us, since (i) we reject trajectories that

exceed the excursion maximum, and (ii) we stop the process once the �rst component

dips below a threshold. We de�ne EVAR0 as a special case of EVAR corresponding

to B = 0. EVAR0 therefore has clear similarities with a regular vector autoregressive

model (Tiao and Box, 1981), yet we emphasise that there is considerable di�erence

between the two, since (i) the parameters of EVAR0 do not need to yield a stationary

process; (ii) the parameters of EVAR0 are estimated using only extreme observations.

To estimate the EVAR model, we adopt the same approach as that used to estimate

the HT model, see Section 5.3.5. As explained in Appendix E.1, the resulting param-

eter estimators Φ̂(i) are highly correlated, and a reparameterisation is introduced to

reduce the correlation.
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For practical applications, an advantage of EVAR over MMEM is a lower dimen-

sion of the residual distribution when k > 1: d and kd, respectively. So, the estimates

of the residual distribution are less a�ected by the sparsity of high dimensional ap-

plications. As a consequence, a drawback of EVAR is that it might oversimplify a

complex dependence.

5.3.5 Inference for conditional models

We discuss inference for models 0, 2 and 3 with parameter vector θ. We discuss

these together because they can be summarized in the same form. Speci�cally, let

W = (W1, . . . ,Wd) be a d-dimensional random variable and assume that for some

high threshold u > 0,

W2:d|(W1 > u) = g1(W1;θ) + g2(W1;θ)ε. (5.3.5)

for some parametric functions g1( · ;θ) : R → Rd−1 and g2( · ;θ) : R → Rd−1
>0 , where

for x ∈ R,

g1(x,θ) := (g1,2(x,θ), . . . , g1,d(x,θ)) and g2(x,θ) := (g2,2(x,θ), . . . , g2,d(x,θ)),

and where ε = (ε1, . . . , εd) is a d-dimensional multivariate random variable that is

non-degenerate in each margin and that is independent of W1. As an example, for

MMEM, g1,j(x) = αjx for some αj and g2,j(x) = xβj for some βj.

Next, assume that we have n observations D := {w1, . . . ,wn} of the conditional

random variable W|W1 > u, where wi = (wi1, . . . , wid) with wi1 > u for i = 1, . . . , n.

We then infer θ by calculating the likelihood of model (5.3.5) by temporarily assuming

that the ε has a multivariate normal distribution with unknown mean µ = (µ2, . . . , µd)

and unknown diagonal covariance matrix Σ = σ2I where σ2 = (σ2
2, . . . , σ

2
d). These

assumptions imply that the mean and the variance of ε are estimated simultaneously

with the model parameters. The likelihood L ≡ L(θ,µ,σ;D) is then evaluated as

L =
n∏
i=1

d∏
j=2

1√
2πσjg2,j(wi1;θ)

exp

{
− 1

2σ2
j

(
wij − g1,j(wi1)− µjg2,j(wi1;θ)

g2,j(wi1;θ)

)2
}
.
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Finally, the parametric assumption on the distribution of ε is discarded and estimated

conditional on the parametric estimate θ̂ for θ, with a kernel density ĥ := ĥ1:d using

the `observations' {εi : i = 1, . . . , n} where εi = (εi2, . . . , εid) and

εij :=
wij − ĝ1,j(w1; θ̂)

ĝ2,j(w1; θ̂)

for i = 1, . . . , n, j = 2, . . . , d.

In case of models 2 and 3, we additionally require estimates for the density

of a conditional random variable ε1:l|l+1:d = (ε1, . . . , εl)|(εl+1, . . . , εd) for some l ∈

{1, . . . , d − 1}. Given the same set of observations as above, we estimate its condi-

tional density h1:l|l+1:d as follows

ĥ1:l|l+1:d(ε1, . . . , εl|εl+1, . . . , εd) =
ĥ1:d(ε1, . . . , εd)

ĥl+1:d(εl+1, . . . , εd)

where the right-hand side is estimated using kernel densities similar to ĥ1:d.

5.4 Case Study - Met-Ocean in the Northern North

Sea

We apply MMEM, EVAR and HM to characterise excursions of signi�cant wave height

HS and wind speedWs with directional covariates for a location in the northern North

Sea. Our goal is to estimate predictive models for the joint evolution of HS and Ws

time-series conditional on HS being large whilst keeping the model complexity as

simple as possible.

In Section 5.4.1, we describe the available met-ocean data. In Section 5.4.2, we

outline a model for the evolution of storm direction that is needed for simulation under

our time-series models. In Section 5.4.3, we introduce structure variable responses

that approximate �uid drag loading on a marine structure such as a wind turbine,

or coastal defence. Finally, in Section 5.4.4, we compare the predictive performance

of MMEM and EVAR for di�erent orders of the associated Markov models relative

to that of the HM method in terms of estimating structure variables for withheld

intervals of time-series.
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5.4.1 Data

We have 53 years of hindcast data

D := {(HS,i,Ws,i, θ
H
i , θ

W
i ) : i ∈ T },

consisting of time-series for four three-hourly met-ocean summary statistics at a

location in the northern North Sea (Reistad et al., 2009): signi�cant wave height

(HS,i in metres), wind speed (Ws,i in metres per second), wave direction (θHi in de-

grees) and wind direction (θWi in degrees) for each i ∈ T . To use MMEM and

EVAR, we transform signi�cant wave height and wind speed onto Laplace marginals:

HS,i|θHi 7→ HL
S,i and Ws,i|θWi 7→ W L

s,i using directional marginal extreme value models

(Chavez-Demoulin and Davison, 2005), but ignoring seasonal covariates. This part of

the analysis has been reported on numerous occasions, see for example Randell et al.

(2015). Because the marginal transformation includes direction as a covariate and

because direction is not constant during an excursion, we also establish a model for

the directional evolution of excursions in order to transform them between standard

and original margins, see Section 5.4.2.

Let DL be the collection of the transformed data

DL := {(HL
S,i,W

L
s,i, θ

H
i , θ

W
i ) : i ∈ T }.

To de�ne excursions in DL, we set the excursion threshold u equal to the 95% per-

centile of a standard Laplace distribution, i.e., u ≈ 2.3. This choice yields 1, 467

observations of extreme excursions Eu.

Figure 5.4.1 shows four intervals of the time-series chosen to contain the 100%,

95%, 90% and 85% sample percentile of signi�cant wave height on original margins.

We additionally show the associated time-series on standard Laplace margins with

its directional covariates. From this �gure, we observe typical pro�les centred around

extreme events. First, as expected, we note a large dependence of HS andWs on both

original and standard margins. Moreover, we observe that the variables associated

to signi�cant wave height, i.e., HS, H
L
S and θH , are much smoother than their wind

speed counterparts. Additionally, the directional covariates θH and θW centre around

each other with no large deviations of each other during extreme events.
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In Figure 5.4.2, we visualize the (cross) dependence of key Laplace-scale variables

HL
S andWL

s at time lags up to lag 4. In this �gure, we observe the complex dependence

structure of the bivariate time-series of signi�cant wave height and wind speed on

Laplace margins. As expected, we observe (slow) convergence to an independent

variable model as lag increases. Most notably, we observe a similar level of dependence

of (HL
S,t,W

L
s,t+4) and (WL

s,t,W
L
s,t+4).

In Figure 5.4.3, we plot (cross) correlation functions for these variables, and also

for the change in directional covariates at various lags in terms of hours, recalling that

a lag of 1 in time stamps is equal to a three hours in real time. These show that the

dependence of (HL
S,t, H

L
S,t+τ ) decays relatively slowly as τ grows to in�nity, and that

indeed the cross dependence between (HL
S,t,W

L
s,t+τ ) is larger than the dependence of

(WL
s,t,W

L
s,t+τ ) for large τ . Finally, the correlation plot of the change in directional

covariates on the right shows that a �rst order model for these covariates is appro-

priate since the correlations nearly vanish at lag 2 or 6 hours. In this case, the cross

dependence is hardly di�erent from zero.

5.4.2 Directional Model

We model wave direction θHi in a similar fashion as Tendijck et al. (2019). Let I ⊂ T

be the set of indices of the original data that correspond to all observations of any

excursion. Next, let {d(θHi+1, θ
H
i ) : i ∈ I} be the set of changes in wave directions,

where d(θ, θ′) = (θ − θ′ + 180; mod 360) − 180 ∈ [−180, 180) denotes the circular

di�erence of θ and θ′ in degrees. We remark here that in our application, the set of

changes in wave directions during excursions do not contain values close to −180 or

180. In particular, all of the observed changes centre around 0.

For i ∈ I , we transform observations d(θHi+1, θ
H
i ) 7→ δi := Φ−1(F̂ (d(θHi+1, θ

H
i )))

on Gaussian margins, where F̂ denotes the empirical distribution function of the set

of changes in wave directions. Assume that {δi : i ∈ I} are realisations of the

random variable ∆. We estimate the following autoregressive model for ∆t of order
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Figure 5.4.1: Intervals of oceanographic time-series: (top) key variables: signi�cant

wave height HS,i and wind speed Ws,i on original margins; (middle) on Laplace mar-

gins; (bottom) covariates: wave direction θHi and wind direction θWi . The four columns

correspond to time periods that contain the 100%, 95%, 90% and 85% empirical per-

centiles of HS,i, respectively.
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Figure 5.4.2: Matrix plot of observed HL
S,i and W

L
s,i at various time lags up to lag 4

including cross dependece.
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Figure 5.4.3: Estimated correlation and cross-correlation at various time lags of: (left)

the key variables on Laplace margins: HL
S,i andW

L
s,i; (right) the covariates: delta wave

direction ∆θHi := θHi+1−θHi mod 360, delta wind direction ∆θWi := θWi+1−θWi mod 360

and γi, see de�nition (5.4.2).
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p1 = 1, 2, 3, . . . with parameters ϕH
j ∈ R for j = 1, . . . , p1 as

∆t =

p1∑
j=1

ϕH
j ∆t−j + ζ(HS,t)εt, (5.4.1)

where εt is a standard Gaussian random variable, and standard error ζ(h) is given by

ζ2(h) = λ1 + λ2 exp(−λ3h)

with λj′ > 0 for j′ = 1, 2, 3, see Tendijck et al. (2019). In particular, the standard

error ζ(h) decays as h grows due to the signi�cantly larger amounts of energy needed

to change the direction of large waves compared to small waves. The parameters of

this model are inferred with maximum likelihood, and as opposed to the inference

discussed in Section 5.3.5, we do not reject the assumption that εt is a standard

Gaussian. In practice, we use p1 = 1 in line with Tendijck et al. (2019).

Given model (5.4.1) for θHt , we propose the following model for wind direction θWt

conditional on wave direction θHt :

θWt = θHt + γt mod 360, (5.4.2)

where γt is a zero-mean stationary AR(p2) process, i.e., there exist parameters ϕW
j ∈

R, 1 ≤ j ≤ p2, and a non-degenerate residual distribution ε̃t independent of γt−j for

j ≥ 1, such that

γt =

p2∑
j=1

ϕW
j γt−j + ε̃t

and such that the polynomial 1 −
∑p2

j=1 ϕ
W
j z

j has roots outside the unit circle. The

model parameters and the distribution of ε̃t are inferred as described in Section 5.3.5

conditional on the model order p2, which is selected by investigating the correlation

function in Figure 5.4.3 and an unpublished �gure of the partial autocorrelation func-

tion of γt. In our application, we conclude that p2 = 1 is su�cient.

5.4.3 Response variable

To measure the practical impact of extreme met-ocean excursions, we de�ne structure

response variables for a simple hypothetical o�shore facility. We consider a platform



CHAPTER 5. EXTREME EXCURSION OF MULTIVARIATE PROCESSES 97

in the form of a unit cube standing above the water, supported by thin rigid legs,

with vertical cube faces aligned with cardinal directions. Only wave and wind impact

on the cube itself is of interest to us, and we neglect the e�ects of swell, surge, tide,

etc., and potential climate non-stationarity. For simplicity, we assume that when

HS < h, for some threshold h > 0, the wave impact on the structure is negligible,

and structural response is dominated by wind. When HS ≥ h, we assume that wave

impact increases cubically with HS and quadratically with Ws. Hence, see Morison

et al. (1950) and Ma and Swan (2020) for supporting literature, the impact of an

extreme excursion on the facility is de�ned by the instantaneous response variable R

R(HS,Ws, θ
H , θW ; c, h) =

 c · I2
W (Ws, θ

H − θW ) if HS < h,

c · I2
W (Ws, θ

H − θW ) + A(θH) · (HS − h) ·H2
S if HS ≥ h,

where IW : R>0×[−180, 180)→ R is the inline wind-speed, see below, A : [−180, 180)→

[1,
√

2] is the exposed cross-sectional area of the cube, see below, and the parameter

c > 0 is speci�ed such that both signi�cant wave height and wind speed have an

approximately equal contribution to the largest values of R.

The exposed cross sectional area A(θ) ∈ [1,
√

2] of the cube is given by

A(θH) := 1/ cos([(θH + 45; mod 90)− 45] · π/180),

for a given wave direction θ. The inline wind-speed IW is the component of the wind

speed in the direction of the wave and is given by

IW (Ws, θ
H − θW ) = Ws cos((θH − θW ) · π/180).

To simplify notation, we write Ri(c, h) := R(HS,i,Ws,i, θ
H
i , θ

W
i ; c, h) for i ∈ T .

To de�ne a structure response for a complete excursion Eu, we write

Eu := {(HS,i,Ws,i,Θ
H
i ,Θ

W
i ) : a ≤ i ≤ b}

for some a < b such that for a threshold u > 0 (on Laplace margins) HL
S,i > u for

a ≤ i ≤ b and HL
S,a−1, H

L
S,b+1 ≤ u. Next, let i∗ := i∗(Eu) be the time of the excursion

maximum, i.e., HS,i∗ is the maximum of HS,i over Eu.



CHAPTER 5. EXTREME EXCURSION OF MULTIVARIATE PROCESSES 98

We de�ne two natural structure response variables representing the maximum

impact of an excursion max{a≤i≤b}Ri(c, h), and the cumulative impact of an excursion∑
{a≤i≤b}Ri(c, h), respectively. For our application, we consider slight alterations

Rmax(c, h, Eu) and Rsum(c, h, Eu)

Rmax(c, h, Eu) := max
{a≤i≤b, |i−i∗|>2}

Ri(c, h), Rsum(c, h, Eu) :=
∑

{a≤i≤b, |i−i∗|>2}

Ri(c, h),

i.e., we consider versions that do not depend directly on the characteristics of the

excursion near the excursion maximum. This choice is made only to exaggerate the

dependence of the structure variables on the pre-peak and post-peak periods compared

to the period of the peak, and hence the importance of estimating good models for

the pre-peak and post-peak periods using MMEM or EVAR. Moreover, we de�ne

Rmax(c, h) and Rsum(c, h) as the random variables of the structure responses related

to random excursions.

5.4.4 Model comparisons

Here, we use our time-series models to characterise extreme excursions for the met-

ocean data of Section 5.4.1 with structure responses Rmax and Rsum. First, we describe

our model comparison procedure, and then, assess model performance using a visual

diagnostic.

To compare MMEM and EVAR with each other and with HM, we take a similar

approach to Gandy et al. (2022). We select at random 25% of the observed excursions

for our training sample; the remaining 75% forms our test sample. We calculate

performance statistics, which we derive below, by averaging over 50 such random

partitions of the sample.

For training, we �t EVAR, EVAR0 and MMEM with model orders k = 1, 2, . . . , 6.

The �tting of these 18 models is a two-stage procedure. In the �rst part, we �t

(six) conditional extremes models for the period of the peak Pk0 for each k. In the

second part, we �t 2 · 18 = 36 models to the pre-peak Ppre and post-peak Ppost

periods. For each of the 18 models and HM, we simulate 20, 000 excursions, calculate

structure response variables Rmax and Rsum, and compare distributions of simulated
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structure response variables with those corresponding to the withheld test data. This

is achieved by de�ning a distance function D that measures the level of di�erence in

tails of distribution functions. We select 20 equidistant percentiles p1, . . . , p20 ranging

from 97% to 99.9% corresponding to moderately extreme to very extreme levels with

respect to the (smaller) training sample but not too extreme for the (larger) withheld

data. Mathematically, we de�ne distance D of distribution functions FM (of model

M) and FE (an empirical distribution function) as the mean absolute relative error

over these percentiles, i.e.,

D(FM , FE; p1, . . . , p20) =
1

20

20∑
j=1

∣∣∣∣F−1
E (pj)− F−1

M (pj)

F−1
E (pj)

∣∣∣∣ .
We remark that in the above de�nition, we never divide by zero because we only

calculate D to measure the distance of the distributions of positive random variables.

In Figure 5.4.4, we show the results for the 50 random partitions of the original

sample by plotting the average distance D (with 80% con�dence intervals) of each

model together with HM for four di�erent structure response variables corresponding

to two choices of c and h for each of Rmax and Rsum. Note that similar studies for other

values of c and h for Rmax and Rsum were examined, and general �ndings are consistent

with those illustrated in Figure 5.4.4. For readability, we omit the con�dence bands

for EVAR0 since the di�erence with EVAR is minimal. Our model selection procedure

now involves selecting the model that yields the smallest average dissimilarity distance

D whilst keeping the model order as low as possible.

We make a number of observations. For the Rmax response, EVAR and MMEM

clearly outperform HM whatever order of the Markov chain is taken for k = 1, . . . , 6.

However, for the Rsum response, high order (e.g., k = 4, 5, 6) EVAR and MMEM are

necessary to be competitive with HM. We observe also that performance of EVAR

and MMEM does not signi�cantly improve or worsen for k > 4. This �nding is

further supported with an unpublished study with Markov model orders of k ≤ 10.

On our measures of �t, large values for k do not induce over�tting. For this response,

model performance for MMEM is relatively insensitive to the choice of model order

k, whereas for EVAR, a model order of at least k = 4 is necessary for competitive
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performance. This said, illustration of excursions in Appendix F demonstrate that

MMEM with k = 1 does not explain the variability of the pre-peak and post-peak

periods well. Finally, we remark that for di�erent choices of c and h, we obtain broadly

the same type of results.

By looking at the average relative errors in Rmax and Rsum of our proposed selection

of methods, we conclude that a third order MMEM and a fourth order EVAR are

competitive models within their class. Since these models have similar performance,

we prefer EVAR(4) over MMEM(3) because of its simpler two-dimensional residual

distribution.
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Figure 5.4.4: Average mean relative errors of HM, EVAR, EVAR0 and MMEM

(dashed/dotted) and 80% con�dence regions (shaded) for estimating the distribu-

tion of structure responses using 25% of data for training and 75% of data for testing.

For details, see the text.

Next, we �t the models to D and illustrate model characteristics for EVAR(4)

in Figure 5.4.5. We plot simulated excursions of EVAR(4) such that the excursion
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maximum signi�cant wave height takes on values between 11.5m and 12.5m (left) and

we visually compare these with observed excursions for the same interval of excursion

maxima (middle). On the right, we summarize simulated and observed excursions

in terms of the median, the 10% and 90% percentiles. Finally, in the bottom panel

we plot the survival probability for an excursion relative to the time of the excursion

maximum, conditional on the excursion maximum taking a value between 11.5m and

12.5m, i.e., we plot

P
(

min{HL
S,i : i = min(0, τ), . . . ,max(0, τ)} > u

∣∣∣ HS,0 ∈ [11.5, 12.5]
)

(5.4.3)

for τ ∈ Z. In Appendix F, we produce analogous plots for each of the 18 models

considered and HM. We observe that EVAR(4) characterizes the period of the peak,

and also the pre-peak and post-peak periods of the excursion well. Moreover, EVAR(4)

also reproduces the observed excursion survival probability.

5.5 Conclusion

In this paper, we provide models for extreme excursions of multivariate time-series.

Excursions are characterized by a three-stage modelling procedure for the period of

the peak, the pre-peak and the post-peak periods. We model the period of the peak

using the conditional extremes framework (He�ernan and Tawn, 2004), and for the

pre-peak and post-peak periods, we de�ne two classes of time-series models: MMEM,

motivated by the Markov extremal model of Winter and Tawn (2017); and EVAR, an

extreme-value extension of a vector autoregressive model. We compare these excursion

models with a baseline historical-matching method, motivated by Feld et al. (2015).

We �nd that the excursion models are at least competitive with historical-matching

and often outperform it in the estimation of the tail of a range of notional structure

response variables for a met-ocean application in the northern North Sea.

Statistical modelling of extreme excursions of multivariate time-series is di�cult

as it requires the estimation of complex model forms. MMEM requires the estima-

tion of the conditional distribution of high-dimensional residual random variables and
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Figure 5.4.5: Excursions of HS and Ws from EVAR(4) model (left; black), and data

(middle; right) on original margins such that storm peak signi�cant wave height is

in [11.5, 12.5]; (right) summaries of the data (black) and EVAR(4) (red) excursions:

median (solid), and the 10% and 90% quantiles (dashed). In the bottom panel, we

plot survival probabilities for observed (black) and EVAR(4) (red) excursions relative

to the time of the excursion maximum, see equation (5.4.3).
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EVAR is highly parameterized. Nevertheless, for realistically sized directional sam-

ples of signi�cant wave height and wind speed time-series, we found that MMEM(3)

and EVAR(4) perform well. Even when the empirical historical-matching procedure

is competitive, adoption of an excursion model is advantageous because it allows for

rigorous uncertainty quanti�cation. We expect that our excursion models are applica-

ble more generally, e.g., for the modelling of higher-dimensional met-ocean data and

spatial �elds.



Chapter 6

Conclusions and further work

In this chapter, we look back on the conclusions we draw from this thesis and sum-

marize how our work �ts into the broader scope of the �eld of met-ocean inference

as described in the Introduction. Moreover, we also point out directions for further

work.

We recall that in the Introduction we speci�ed a �ve-step statistical procedure for

estimating the distribution of extreme responses to o�shore structures corresponding

to extreme weather events. Step 1 involved estimating the distribution of the long-

term met-ocean environment, and steps two to �ve convert this information into

distributions on responses of o�shore structures. The overall goal of the thesis was to

answer questions that arise for the modelling procedures in step 1.

In Chapter 3, we propose an extension to the conditional extremes model (He�er-

nan and Tawn, 2004) such that it is appropriate to be applied to bivariate mixture

distributions. This extension was motivated by a very speci�c element of step 1: the

understanding of the dependence of the joint distribution of signi�cant wave height

and wave period for large wave periods. Modelling this part of the distribution could

be relevant to applications where resonance frequencies occur at rare large wave pe-

riods.

For the bivariate mixtures extension, we describe two methods of inference. The

�rst one is a novel approach for inference relying on estimating model parameters

104
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using quantile regression. The problem of this method, however, is that it cannot

be extended to higher dimensions in the absence of a theory on multivariate quantile

regression. On the other hand, the second method for performing inference - which is

derived by using likelihoods - does extend naturally to higher dimensions. Either way

both of these methods work reasonably well when considering the two-dimensional

application.

There are a variety of ways how one can extend this work into further research.

For example, one can consider generic multivariate applications for mixture distribu-

tions. For example a model for wind speed and signi�cant wave height conditional

on wave period requires a three-dimensional mixture model with at least two mixture

components. Some of the many challenges that need to be taken into account when

the multivariate extension of this model is applied:

� Model misspeci�cation can play a more signi�cant role.

� Subasymptotic models might be necessary to use when the number of mixture

components is large and, thus, smaller thresholds need to be used to keep enough

data per mixture component for reliable inference.

� Data sparsity of higher dimensional applications needs to be addressed: what

are the practical limits of this model in higher dimensions?

� The proposed procedure to select the number of mixture components would need

to be reassessed: can we comfortably estimate the number of modes of a (d−1)-

dimensional residual distribution? Do these estimates actually correspond to the

actual number of mixture components in applications where we use synthetic

data?

A di�erent but also useful way to extend on the work is by exploring the subasymp-

totic variant of the mixture model as discussed in Section 3.4, in which the mixture

probability is a function of the conditioning variable. In particular, from a theoretical

point of view it is interesting to derive bounds on the β-parameters for the mixture

components that are associated with a mixture probability function that tends to 0
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when the conditioning variable gets closer to its upper end point. On the other hand,

from a practical point of view, we remark that the quantile regression based inference

methodology is probably not applicable for estimating these subasymptotic variants

- and if they are applicable, i.e., when parametric assumptions on the residual distri-

bution and the mixture probability function are made, then the quantile regression

methodology gives up its bene�cial non-parametric nature whilst keeping its overly

complicated form. We believe that a suitable adjustment to the likelihood approach

can be made for estimating simultaneously a parametric mixture probability function

and the mixture model parameters; for example by using penalized likelihoods. How-

ever, further work would be needed to assess what works here, both in theory and in

practice.

In Chapter 4, we contribute to the �eld of multivariate extreme value theory by

providing a mathematical toolset for calculating extremal properties of conditional

models. This work is important for increasing the understanding of a researcher or

engineer on the extremal assumptions that (conditional) models make. In particular,

this understanding is valuable for models which are currently being used for modelling

step 1, e.g., Haver and Winterstein (2009). We remark here that our theoretical work

does not just limit itself to conditional models but is generally applicable to calculate

the rate of convergence of analytically intractable integrals. So, other extreme value

applications could potentially be found, but we didn't search for those in this work.

There are many possibilities for extending the current work. The most obvious one

is to add a corollary to Proposition 4.2.2 which would be more speci�c to calculating

extremal properties of conditional models. We recall that we use a very general gn

in the theorem, whereas we only apply the theorem to a survival function multiplied

with a density function. So, it is natural to search for a more speci�c result in terms of

the survival and density function. A second possibility is to include di�erent extremal

characteristics of conditional models like τC or λ, see Section 2.4.2.

Another possibility for extending the work is to explore subasymptotic extreme

value characteristics of conditional models. For example, the curve η(p) for p close to

1 contains more information about the distribution than the limiting quantity η, and
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thus it would be interesting to consider the di�erence of two models: for example,

one that agrees with η(p) for p ∈ [0, 1− 10−6], and another one that agrees only with

the limit η. From a di�erent point of view, can we develop conditional models that

agree with empirical estimations of η(p)? We remark that theory from Chapter 4,

is only applicable to calculate limiting values, and thus this would mean that either

subasymptotic models need to be derived or one would instead need to focus on

numerical methods.

Finally, the current work lends itself to be extended to higher dimensions rela-

tively well. However, we do remark that creating generic theory for applications with

dimension d > 2 becomes increasingly harder because of the vast variety of depen-

dence models to consider: e.g., multivariate He�ernan-Tawn, graphical models with

conditional independence (Engelke and Hitz, 2020), vine copula dependence models

(Simpson et al., 2021), and more.

In Chapter 5, we address one of the main open problems in met-ocean variables:

there is a need for a parsimonious multivariate temporal model that has a foundation

in extreme value theory to describe the temporal evolution of a storm. So, we extend

the He�ernan-Tawn model to obtain a temporal model that does exactly that.

There are many further research opportunities that build on the research of this

chapter. The most apparent one is to extend the case study to include additional

oceanographic variables at the same location, include multiple variables at di�erent

locations, or rede�ne a cluster by requiring, for example, that signi�cant wave height

exceeds some threshold at least one of the considered locations.

When extending the models spatially, it might be more realistic to make smoothing

assumptions - in space - on the parameters of the models. Moreover, assumptions

on the dependence structure of higher dimensional residual distributions need to be

assessed. Can we use kernel density estimates or do we need to assume parametric

marginals and/or parametric copula models?

A di�erent extension to this work is to �nd asymptotic arguments for or against

the extremal vector autoregression (EVAR) model introduced in Chapter 5. Currently

EVAR does not have a strong theoretical foundation but is a merger of two widely
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used models: vector autoregression - widely used in time-series applications - combined

with the He�ernan-Tawn model - widely used in multivariate extremes applications.

Another extension would merge the mixture modelling ideas of Chapter 3 with

the temporal extremes model such that a statistical model can be developed for the

evolution of signi�cant wave height and wave period during extreme events. This leads

to some interesting questions: for example, at a given time step and some historical

observations, can we estimate the probability that the next observation is part of a

di�erent mixture component than the previous?

The three novel methodological chapters in this thesis merely answer some of the

statistical questions about met-ocean variables that arise in step 1. With this respect,

many more questions can still be asked and answered. However, we do believe that

a suitable extension of Chapter 5 yields a solution to solving step 1 of the procedure

for modelling large return values induced by extreme met-ocean conditions.

We do note that such an extension is still far away from being accomplished since

models for many features would still need to be developed, assessed, and/or combined

with each other. We list some of these:

� a model for the period of down-time relating to observations below a threshold

and the size of such observations;

� a seasonal model that allows storms to be simulated at di�erent times of the

year;

� a temporal model for the multivariate extreme events with dimension d > 2;

� a non-stationary model for the time-series that incorporates climate change.

Moreover, the ideal model would additionally be able to use e�cient methods for

estimation of large return periods. Finally, the models in steps 2 to 5 need to be

combined with the ideal model for step 1 such that uncertainty in estimating large

return periods and their joint dependencies is propagated properly to yield sensible

conclusions.
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Appendix to Chapter 3

A.1 Proof of Theorem 3.4.1

Let X, Y ∼ Laplace(1). We consider the following simpli�ed version of model (3.4.2)

Y |X ∼ αkX, with probability pk(X) (A.1.1)

with 0 ≤ αk < αk′ for all 1 ≤ k ≤ k′ ≤ K, and where pk : R → [0, 1] are functions

such that for all x,
∑K

k=1 pk(x) = 1. We will �nd a necessary condition on αk given pk

such that the model formulation for Y does not contradict the assumption that Y is

marginally distributed as a standard Laplace random variable. We need 2·P(Y > y) =

e−y for all y > 0 as this implies that for all u ∈ R and y > 0, P(Y > y,X > u) ≤ 1
2
e−y.

Using the simpli�ed model (A.1.1), we simplify this probability as follows

P(Y >y,X > u) =
K∑
k=1

P(X > max{y/αk, u}, J = k)

=
K∑
k=1

∫ ∞
max{y/αk,u}

P(J = k|X = x)fX(x) dx

=
1

2

K∑
k=1

∫ ∞
max{y/αk,u}

pk(x)e−x dx

=
1

2
e−max(y/α1,u) +

1

2

K∑
k=2

∫ max{y/αk−1,u}

max{y/αk,u}

(
K∑
i=k

pi(x)

)
e−x dx, (A.1.2)

from writing p1(x) = 1−
∑K

i=2 pi(x). We note that if αk ≤ 1 for all 1 ≤ k ≤ K, then

by bounding pk(x) ≤ 1, we get P(Y > y,X > u) ≤ e−y/2. Moreover, if α1 > 1, then
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we trivially have P(Y > y,X > u) ≥ e−y/2. We will assume from here onwards that

we have an index 1 ≤ j < K such that α1 < α2 < · · · < αj ≤ 1 < αj+1 < · · · < αK .

We are now in a position to prove the theorem by contradiction. To that end,

assume that there exists an 1 ≤ i0 ≤ K such that

αi0 = lim inf
x→∞

− log pi0(x)

x
+ 1 + ε (A.1.3)

for some ε > 0. Note that this expression excludes i0 ≤ j as lim infx→∞−
log pi0 (x)

x
+1+

ε > 1. Hence, we deduce that i0 > j. Now, de�ne Ai0(x) = pi0(x)e(αi0−1)x. Equation

(A.1.3) implies

lim inf
x→∞

Ai0(x) = lim inf
x→∞

pi0(x)e

(
−

log pi0
(x)

x
+1+ε−1

)
x

= lim inf
x→∞

eεx =∞.

Hence, there exists an x′ such that for all x > x′, Ai0(x) > αi0 . For y > aK max{x′, u},

we get that equation (A.1.2) simpli�es as follows

P(Y > y,X > u) =
1

2
e−y/α1 +

1

2

K∑
k=2

∫ y/αk−1

y/αk

(
K∑
i=k

pi(x)

)
e−x dx

≥ 1

2
e−y/α1 +

1

2

i0∑
k=2

∫ y/αk−1

y/αk

(
K∑
i=k

pi(x)

)
e−x dx

≥ 1

2
e−y/α1 +

1

2

i0∑
k=2

∫ y/αk−1

y/αk

pi0(x)e−x dx

=
1

2
e−y/α1 +

1

2

i0∑
k=2

∫ y/αk−1

y/αk

(
Ai0(x)e−(αi0−1)x

)
e−x dx

>
1

2
e−y/α1 +

1

2

∫ y/α1

y/αi0

αi0e
−αi0x dx

=
1

2

(
e−y/α1 − e−αi0 ·y/α1

)
+

1

2
e−y,

where in the last line we used that Ai0(x) > αi0 and
⋃i0
k=2

[
y
αk
, y
αk−1

]
=
[
y
αi0
, y
α1

]
.

Since αi0 > 1 there exists a y′ > max{αKx′, αKu} such that for all y > y′, we have

e−y/α1 − e−αi0 ·y/α1 > 0. Then for all y > y′ and u ∈ R, P(Y > y,X > u) > 1
2
e−y.

Thus, lim infx→∞Ai0(x) > αi0 contradicts with the marginal distribution of Y . We

conclude that for all i ≥ j + 1, we need to have lim infx→∞ pi(x)e(αi−1)x ≤ αi. So,

αi ≤ lim inf
x→∞

− log pi(x)− logαi
x

+ 1 = lim inf
x→∞

− log pi(x)

x
+ 1.

A symmetrical argument gives the same bound for −αi, concluding the proof.
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Supplementary Information to

Chapter 3

This document contains details corresponding to the main paper and is organised as

follows. In Section B.1, we present a pseudo code algorithm for �tting the HT mixture

model. In Section B.2, we describe how one can estimate probability measures using

the two methods, HT(K) and QR(K), introduced in the main paper. In particular,

one can �nd how one simulates observations from both models. Section B.3.1 contains

details on preprocessing of oceanographical data to gain a sample without temporal

dependence and directional dependence. Section B.3.2 shows trace plots of MCMC

chains of the models �tted to the data. Calculations with respect to the example in

Section 2.4 from the main paper are shown in Section B.4. In Section B.5, we discuss

additional details that are highlighted throughout the main paper. Finally, we give

a summary of the simulation study in Section B.6. The raw simulation study results

are found in Section B.7.

B.1 Pseudo code for the HT mixture model

We present the pseudo-code for the pseudo-Bayesian inference procedure as described

in Section 3.1 of the main paper in Algorithm 1.

Here, B represents the length of the MCMC chain, and A is the minimal amount
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of burn-in before we start the adaptive MCMC procedure, which updates the stepsize

for more e�cient steps in the MCMC, see Roberts and Rosenthal (2009). Moreover,

instead of recalculating σ2
θ := σ2

θ;b = Var (θ1:b−1), we update this value in an online

fashion by using the following equations

µθ;b = µθ;b−1 +
1

b
(θb−1 − µθ;b) and σ2

θ;b =
b− 1

b
σ2
θ;b−1 +

b− 1

b2
(θb−1 − µθ;b−1)2.

We then follow Roberts and Rosenthal (2009) and simulate θb from a linear combina-

tion of two normals. The shape of the �rst normal will be in line with the real shape

of the posterior distribution. The second normal ensures mixing. Finally, we allocate

data to a mixture component k at random using the probabilities that are calculated

using equation (10).
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Data: (xi, yi), i from 1 to n

Initialization;

Transform data to Laplace margins;

for b = 1 : B do

if b > A then

for k = 1 : K, θ = [αk, βk, µk, σk] do

Update σ2
θ = Var (θ1:b−1);

Simulate θb from a linear combination of a

N
(
θb−1, 2.382/(4K) · σ2

p

)
with weight 0.95 and N (θb−1, 0.052)

with weight 0.05.

end

else

Simulate θb from a N (θb−1, 0.052).

end

for k = 1 : K do

for θ = [αk, βk, µk, σk] do

Allocate data to a mixture component k using equation (10) where

the model parameters are given by the previously accepted

parameters and the current proposed θ;

Compute the augmented log-llikelihood of component k;

Accept parameter θ using the Metropolis-Hastings acceptance

ratio;

end

end

end

Algorithm 1: HT mixture model implementation in pseudo-code.
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B.2 Estimating probability measures of extreme sets

B.2.1 Using the He�ernan-Tawn mixture model

Let S ⊆ R2 be a measurable set that is extreme inX and for which we want to estimate

the probability P((X, Y ) ∈ S). We de�ne the following key properties of the set S:

(i) the lower bound of S in the x-dimension xSl := inf{x ∈ R : ∃y ∈ R : (x, y) ∈ S},

which is assumed to be large in the Laplace domain; (ii) the upper bound of S in

the x-dimension xSu := sup{x ∈ R : ∃y ∈ R : (x, y) ∈ S} with 0 < xSl < xSu ≤ ∞;

and (iii) the slice of the set S given the x-component Y S(x) := {y ∈ R : (x, y) ∈ S}

for xSl < x < xSu . Using the HTM model formulation, we estimate P((X, Y ) ∈ S |

θ) conditional on the HTM model parameters θ, by conditioning on X = x and

integrating over [xSl , x
S
u ], i.e., with

K∑
k=1

p̂k

∫ xSu

xSl

(
1

nk

n∑
i=1

1

{
γ̂k + α̂kx+ xβ̂k ẑki ∈ Y S(x), ji = k

})
fX(x) dx, (B.2.1)

where fX(x) = exp(−|x|)/2 is the density of a standard Laplace distribution. The

contribution per component is calculated by integrating out the conditioning random

variable. In this formula, we sum over the K mixture components weighting the

contribution of each component k by their respective estimated mixture probabilities

p̂k. Finally, we use the empirical estimator

P̂(Y ∈ Y S(x), J = k|X = x,θ) :=
1

nk

n∑
i=1

1

{
γ̂k + α̂kx+ xβ̂k ẑki ∈ Y S(x), ji = k

}
.

Equation (B.2.1) suggests two estimators: one that uses numerical integration and

one that uses stochastic integration, both of which induce negligible errors compared

to the model estimation uncertainty. We use stochastic integration since it is compu-

tationally cheaper than its numerical counterpart.

We simulate a suitably large number M of observations of (X, Y )|(xSl < X < xSu).

The proportion of this sample that fall into the set S is our estimator of P((X, Y ) ∈

S | xSl < X < xSu). Using the binomial distribution, we can estimate the variance of

this estimator with respect to the size of M . We choose M large enough such that

the estimator is suitably precise. This algorithm has a relatively short computational
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time as the value of M does not need to be excessively large since we can directly get

a realisation of the conditional random variable X|(xSl < X < xSu).

To simulateM observations from the model, we �rst sample a mixture component

1 ≤ k ≤ K with probability p̂k. Next, we simulate a realisation U of a standard

uniform distribution, and calculate

x̃ = xSl − log
(
1− u(1− exp(xSl − xSu))

)
(B.2.2)

to simulate from a standard Exponential random variable, truncated between xSl

and xSu . Finally, we draw z(k) independently of x̃ from the residual distribution of

component k by resampling residuals, and calculate

ỹ = γ̂k + α̂kx̃+ x̃β̂kz(k). (B.2.3)

Using this simulation procedure, we generate a sample {(x̃i, ỹi) : i = 1, . . . ,M} from

the model conditional on xSl < X < xSu . This simulation methodology is summarised

in pseudo code in Algorithm 2. The estimation of the probability measure of the set

S conditional on xSl < X < xSu is now given by

P̂((X, Y ) ∈ S|θ, xSl < X < xSu) :=
1

M

M∑
j=1

1 {(x̃j, ỹj) ∈ S} .

This equation implies the following unconditional estimator

P̂((X, Y ) ∈ S|θ) = P̂((X, Y ) ∈ S|θ, xSl < X < xSu) · 1

2

(
e−x

S
l − e−xSu

)
, (B.2.4)

as the marginal distribution of X is standard Laplace.
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Data: (xi, yi), i from 1 to n

Initialisation;

Simulate N realisations x̂i, i = 1, . . . , N , from the marginal distribution of X,

or from X|(xl < X < xu) for some xl < xu, see equation (B.2.2);

for i = 1 : N do

Simulate a random index of the MCMC chain after burn-in;

Extract the parameters at this index;

Calculate residuals, allocate residuals randomly using equation (10), and

empirically calculate allocation probabilities given the allocated residuals;

Simulate which component to draw from and empirically sample from the

residuals allocated to this component;

Calculate the associated value ŷi using equation (B.2.3);

end

Algorithm 2: Pseudo code for simulating N observations from the He�ernan-

Tawn mixture model with K components.

Note that using the generated MCMC chain, we have a sample {θb : b =

B0, . . . , B} from the posterior distribution for θ, where B is the number of iterations

of the MCMC chain and B0 < B is the burn-in of the adaptive MCMC algorithm.

Now, we obtain a sample from the posterior distribution of the probability measure

of the set S by {
P̂((X, Y ) ∈ S|θb, xSl < X < xSu) : b = B0, . . . , B

}
.

Randomness throughout the MCMC chain in the simulation of P̂ can be avoided

through appropriate �xing of the random seed.

B.2.2 Using the quantile-regression model

We focus on estimating P((X, Y ) ∈ S | ω) using the quantile-regression model �t

where S is as in Section B.2.1. We discuss two methods: one based on numerical

calculation and one based on a combination of numerical calculation and simulation.

It is not straightforward to numerically estimate P((X, Y ) ∈ S | ω) within the

quantile-regression formulation since S can have a complicated shape. However, it is
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straightforward to estimate probabilities of sets of the form {(x, y) ∈ R2 : l < x <

u, q̂τ (x) < y < q̂τ ′(x)} for l < u and 0 ≤ τ < τ ′ ≤ 1. For l > 0

P(l < X < u, q̂τ (X) < Y < q̂τ ′(X)) ≈ τ ′ − τ
2
· (exp(−l)− exp(−u)) , (B.2.5)

where this approximation would be exact if we used the true value of qτ (x) and qτ ′(x)

instead of their corresponding estimators. We use the smoothed estimator q̂τ (x) as

in Section B.5.5. The key of the numerical approach is to approximate the set S as a

disjoint union of sets of the form (B.2.5). Let ε > 0 and N ∈ N and de�ne

S̃ :=
N⋃
i=1

{(x, y) ∈ R2 : ai < x < bi, q̂ci(X) < Y < q̂di(X)}.

for a real-valued sequences (ai, bi, ci, di)
N
i=1. We can always �nd a real-valued sequence

(ai, bi, ci, di)
N
i=1 = (ai(ω), bi(ω), ci(ω), di(ω))Ni=1 such that S̃ as de�ned above is the

union of disjoint sets and

P
(

(X, Y ) ∈ S4 S̃ | ω
)
< ε,

where A4B := (A \B)∪ (B \A) denotes the symmetric di�erence between the sets

A and B. This means we could approximate the set S with the disjoint union of sets

for which we can estimate the measures using equation (B.2.5) to any level of desired

precision relative to the probability measure. In particular, if S when transformed to

uniform margins is a convex set, then we can choose bi = ai+1 and di = ci+1 for all i.

For any desired level of numerical precision, we estimate

P̂((X, Y ) ∈ S | ω) :=
N∑
i=1

di − ci
2
· (exp(−ai)− exp(−bi)). (B.2.6)

It is unclear how uncertainty propagates in equation (B.2.5) and there is no rule of

thumb to inform grid spacing to ensure a given level of precision. Our unreported

simulation studies show that using a relatively �ne grid, i.e., N ≈ 1000, does not

require long computation times and that the numerical error is overshadowed by the

model uncertainty.

We can also use a simulation based method as opposed to the numerical method

described above. Using the same notation as before, we de�ne xSl and xSu , and we let
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M be a large number. Then for any 1 ≤ j ≤ M , we simulate x̃j from a standard

exponential truncated between xSl and xSu as described in Section B.2.1. Finally,

sample u from a standard uniform distribution and calculate ỹj = q̂u(x̃j | ω) using

the quantile calibration method from Section B.5.5. This simulation methodology is

summarised in pseudo code in Algorithm 3. We note that this calculation is quick as

it only involves optimising a function once in a one-dimensional space. The estimation

of the probability measure of the set S conditional on xSl < X < xSu is now given by

P̂((X, Y ) ∈ S | xSl < X < xSu ,ω) :=
1

M

M∑
j=1

1 {(x̃j, ỹj) ∈ S} .

Similar to before, this implies an unconditional estimator P̂((X, Y ) ∈ S | ω).

Data: (xi, yi), i from 1 to n

Initialisation;

Perform quantile calibration as detailed in Section B.5.5;

Simulate N realisations x̂i, i = 1, . . . , N , from the marginal distribution of X,

or from X|(xl < X < xu) for some xl < xu, see equation (B.2.2);

for i = 1 : N do

Simulate u ∈ (0, 1) uniformly;

Use the calibrated quantile functions to �nd q̂u(· | ω);

Calculate ŷi = q̂u(x̂i | ω).

end

Algorithm 3: Pseudo code for simulating N observations from the quantile-

regression model with K components with parameters ω.

B.3 Data analysis

B.3.1 Preprocessing

Removing temporal dependence

The peak-picking method consists of three steps: (i) separate the observations into

temporal clusters, such that for any observation within the cluster there exists at

least one observation, recorded within 24 hours, with an HS value larger than the



APPENDIX B. SUPPLEMENTARY INFORMATION TO CHAPTER 3 119

empirical 70% quantile of the marginal distribution of HS; (ii) collect per cluster the

maximal valueHS,peak ofHS, the associated wave period T2,ass and wave directionDass

corresponding to the same occurence time as HS,peak; (iii) delete the observations for

which direction Dass is outside [182 deg, 266 deg]. This procedure reduces the 176, 765

observations recorded over the period 1957− 2018 to 1597. See Figure 1 in the main

paper for a scatter plot of the data and the storm peak sample.

Removing directional dependence

Wave directionality has a signi�cant in�uence on the marginal behaviour ofHS and T2.

Eg, in the northern North Sea, extreme sea states rarely occur for directions that are

associated with the land shadows of Norway, the British Isles or mainland Europe. At

our location, the land shadows of Norway and the open Atlantic Ocean are the main

directional covariates for explaining the directional variability in the data. For our

application, we do not aim to model this directional variability. We split up the data

into two directional sectors corresponding to the two main directional covariates. For

our applications, we only consider storm peak values with associated wave directions

corresponding to the Atlantic Ocean as they generally correspond to more extreme

sea states.

B.3.2 He�ernan-Tawn mixture model �ts

To show that the MCMC chains converged and mix well, we show trace plots of the

MCMC chains for the He�ernan-Tawn mixture models �tted to the application, see

Figures B.3.1-B.3.2. We show these in response to one of the referees.

B.4 Calculations for example from Section 4.

Recall the following set-up for λ > 1, 0 < t < 1.

B ∼ Bernoulli(p), X ∼

Exp(1) if B = 0,

Exp(λ) if B = 1,

Y ∼

 tX if B = 0,

λX if B = 1.

(B.4.1)
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Figure B.3.1: Trace plots of the HT(1) model �t (left) and the HT(2) model �t (right)

to data from the application in the main paper. In the �gure on the right, the black

trace plot corresponds to the sea waves component of the HT(2) model, and the red

trace plot corresponds to the swell waves component of the HT(2) model.
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Figure B.3.2: Trace plots of the Part-HT(1) model �t to data from the application in

the main paper. (left) sea waves component, (right) swell waves component.
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We transform X and Y to Laplace scale using the probability integral transform, i.e.,

XL = F−1
L (FX(X)) (and similarly for Y ), where FL is the cumulative distribution

function of a standard Laplace distribution, and FX is the distribution function of X.

We investigate the conditional distribution of YL|XL = xL for large values of xL.

We �rst calculate the distribution functions of B | X = x, X and Y evaluated at

large values. We get as x→∞

P(B = 1|X = x) =
P(X = x | B = 1)P(B = 1)

P(X = x | B = 1)P(B = 1) + P(X = x | B = 0)P(B = 0)

=
pλe−λx

pλe−λx + (1− p)e−x
∼ pλ

1− p
· e−(λ−1)x,

P(X > x) ∼ (1− p)e−x as x→∞ and

P(Y > y) = P(B = 0)P(tX > y|B = 0) + P(B = 1)P(λX > y|B = 1)

= (1− p)e−y/t + pe−y ∼ pe−y

as y →∞. Hence, as X →∞ we get that

XL = F−1
L (FX(X)) = −sign(FX(X)− 1/2) log(1− 2|FX(X)− 1/2|)

∼ − log(2− 2FX(X)) ∼ − log(2(1− p)e−X) = X − log(2(1− p)).

Similarly, YL ∼ Y − log(2p) as Y →∞. Moreover,

P(B = 1 | XL = xL) ∼ pλ

1− p
· e−(λ−1)(xL+log(2(1−p))) =

pλ

2λ−1(1− p)λ
· e−(λ−1)xL .

Finally, we get that for large XL

YL | XL ∼

 tXL + [t log(2(1− p))− log(2p)] with prob. 1− pλ
2λ−1(1−p)λ · e

−(λ−1)XL

λXL + [λ log(2(1− p))− log(2p)] with prob. pλ
2λ−1(1−p)λ · e

−(λ−1)XL .
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B.5 Further details on the models

B.5.1 The Metropolis-acceptance probability from Section 3.2.

The Metropolis-Hastings acceptance ratio αMH given proposal

θ(t+1) = (γ
(t+1)
1 , α

(t+1)
1 , β

(t+1)
1 , µ

(t+1)
1 , σ

(t+1)
1 ) is given by

αMH(θ(t),θ(t+1)) =



L(θ(t+1);x)

L(θ(t);x)
if (α

(t)
1 6= 1, α

(t+1)
1 6= 1)

or (α
(t)
1 = 1, α

(t+1)
1 = 1)

L(θ(t+1);x)

L(θ(t);x)
· (1−ω)/2

ω
· 1−Φ

(
[1−α(t+1)

1 ]/h
)

ϕ
(

[α
(t+1)
1 −1]/h

)
/h

if α
(t)
1 = 1, α

(t+1)
1 6= 1

L(θ(t+1);x)

L(θ(t);x)
· ω

(1−ω)/2
· ϕ
(

[α
(t)
1 −1]/h

)
/h

1−Φ
(

[1−α(t)
1 ]/h

) if α
(t)
1 6= 1, α

(t+1)
1 = 1

with candidate acceptance probability p = min{1, αMH(θ(t),θ(t+1))}. This follows

straightforwardly from the de�nition of g(·|α(t)
1 ).

B.5.2 Model (7) when αk = αk′ for k 6= k′

If we allow αk = αk′ for k 6= k′ in model (7), then some key details change. We list

two of them here concisely. (i) For model identi�ability, we impose the constraint

that αk = αk′ for k < k′ implies βk < βk′ . Note that if βk = βk′ , then the model is

equivalent to a model with a smaller value for K and the respective residual distri-

bution is a mixture of Zk and Zk′ with Zk arising with probability pk/(pk + p′k). (ii)

The distribution Gk as de�ned earlier similarly puts mass pk on R \ {0}. However, it

puts a di�erent amount of mass at {+∞}, {−∞} and 0 as before. More precisely, let

I = {i 6= k : αi = αk} = {i1, . . . , ij} and write qk = P(µk+σkZ̃k ≤ 0) = 1−qk. Then,

Gk(z) puts weight: pk+1qk+1 + · · ·+ pijqij + pij+1 + · · ·+ pK on {+∞}; pi1 + · · ·+ pk−1

on {0}; and p1 + · · ·+ pi1−1 + pk+1qk+1 + · · ·+ pijqij on {−∞}.
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B.5.3 Quantile-regression model where K > 2

The quantile-regression model extends naturally to K > 2 mixture components.

Though, a naive extension of the method from Section 3.3.3. requires optimising

over a space of size O(mK−1), which becomes infeasible for relatively large values of

K. However, through an adapted implementation, the computational complexity can

be reduced to O(m2) as long as we do not impose a non-crossing contraint. This

reduction is achieved by estimation for all subsequences ωτi:τj = (ωτi ,ωτi+1
, . . . ,ωτj)

where 1 ≤ i ≤ j ≤ m using K = 1. In any of these sub-problems, we optimise over

a (4 + j − i) dimensional space. We save the results of these sub problems in the

m × m matrix M = (Mi:j)
m
i,j=1, where Mi:j contains all information that is related

to the �t of the one-component HTM model where the sequence of quantile levels is

given by (τi, . . . , τj), e.g., the parameters of the �t are stored in this location, and

where Mi:j = ∅ for j < i.

A model �t withK mixture components now consists of a path of lengthK starting

in the top row of M and ending in the rightmost column. The restriction of the path

through the matrix is that you have to move from column j to row j + 1 and you are

not allowed to visit elements of the matrix that are equal to the empty set. As an

example, a general path might look like

Mi1+1:i2 →Mi2+1:i3 →Mi3+1:i4 → · · · →MiK+1:iK+1

where i1 = 0, iK+1 = m, and ij+1 > ij for all j. The best �t can now be found by

�nding the path that minimizes equation (12). To that end, it is su�ciently quick to

evaluate all possible sequences.

In practice, it is a sensible assumption to only allow subsequences in the above

such that ij+1 ≥ ij + l for all j and some l > 1, i.e., when we expect the mixture

probability pk for k = 1, 2, . . . , K to be at least of size min{τi+l−1−τi : i = 1, . . . ,m+

1 − l}. This assumption requires less computation time as more elements of the

matrix structure above are considered empty. Additionally, this assumption makes

the inference procedure less sensitive to boundary problems.
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B.5.4 Estimating the mixture probabilities using the quantile-

regression model

Here, we discuss how to estimate p1 in Section 3.3.3. The estimator p̂1 for p1 is derived

from the property that the quantile function qp1(x), which is at the boundary between

the two mixture components, should equally likely belong to either component of the

model �t. With this in mind, we de�ne the estimator p̂1 for the mixture probability

p1 as

p̂1 := solve
p∈[τm̂0

,τm̂0+1]

{
n∑
i=1

ρp(yi − q(xi|γ̂1, α̂1, β̂1, ζ̂
1
p )) =

n∑
i=1

ρp(yi − q(xi | γ̂2, α̂2, β̂2, ζ̂
2
p ))

}
(B.5.1)

where ζ̂kp for k = 1, 2 is de�ned as

ζ̂kp = argminζ∈R

{
n∑
i=1

ρp(yi − q(xi|γ̂k, α̂k, β̂k, ζ))

}
.

B.5.5 Quantile calibration

The conditional quantile function qτ (x) of the underlying model (7) is a continuous

function of τ on (0, 1) when K = 1. The estimator q̂τ (x) for τ ∈ (0, 1) obtained from

the grid {τ1, . . . , τm} using equation (13), however, does not satisfy this property.

Here, we describe modi�ed smooth estimators for qτ (x).

We demonstrate the discontinuous nature of q̂τ (x) in the following simpli�ed case.

Let x1 < x2 < x3 be three observations and let qτ (x) := qτ . The estimator q̂τ (x) as

de�ned above is now not continuous as a function of τ and is given by

q̂τ (x) = x11{τ ∈ (0, 1/3)}+ x21{τ ∈ (1/3, 2/3)}+ x31{τ ∈ (2/3, 1)}.

We note that for τ ∈ {1/3, 2/3}, the estimator is not well-de�ned as the objective func-

tion in equation (11) takes on the same value for any qτ in [x1, x2], [x2, x3], respectively.

Although less obvious, it can be veri�ed using simulations that this phenomenon also

holds when qτ (x) takes on di�erent parametric forms.

Suppose that we have used the following non-exceedance probabilties τj = 0.05j

for j = 1, . . . , 19 to �t model (13). In practice, we then estimate q̂τ (x) on a �ner grid
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τ ∈ G, e.g., G := {0.001, 0.002, . . . , 0.999} using equation (13), and linearly interpolate

q̂τ (x) for τ 6∈ G. We now produce smooth estimators for qτ (x) and τ ∈ (0, 1) by

applying the following two techniques: one to the body of the residual distribution, i.e.,

τ ∈ [ql, qu], and the other to the tails. For τ ∈ [ql, qu], we smooth q̂τ (x) using a third

order increasing spline from the SLM-shape language modelling toolbox (D'Errico,

2020). For values of τ corresponding to the upper [qu, 1) quantiles of the residual

distribution, we �t a generalised Pareto distribution (Pickands, 1975) that minimises

the Anderson-Darling test statistic∫
[qu,1)

(F̃ (z)− F̂Z(z))2

F̂Z(z)(1− F̂Z(z))
dF̂Z(z),

where F̃ (z) = 1− (1 + ξ(z − µZ)/σZ)
−1/ξ
+ for z > µZ is the distribution function of a

generalised Pareto and F̂Z(z) = ζ̂F̂Z(z) is estimated using quantile-regression. A similar

approach is applied to the lower tail. We use this extrapolation technique to both

reduce variability in estimates for τ near 0 and 1 and allow for extrapolations beyond

the data that do not contradict standard univariate extreme value assumptions.

Parameter estimation via minimisation of the Anderson-Darling test statistic is

appropriate since likelihood inference would require a data sample which, in this

case, is not available. The commonly used Kolmogorov-Smirnov and Cramer-Rao

test statistics were felt to be unsuitable since both put an emphasis on the body of

the distribution at the expense of the tail whereas the Anderson-Darling test statistic

does not have that property.

B.6 Simulation Study

B.6.1 Set-up

We test the model performance of the He�ernan-Tawn mixture and quantile-regression

models on data generated from six di�erent distributions, by comparing estimated

probabilities of extreme sets. We consider the following bivariate distributions on

Laplace margins, see Table B.6.1: (A) the bivariate extreme value distribution with a

logistic dependence structure, i.e., a special case of the distribution from equation (5);
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(B-D) the bivariate extreme value distribution with an asymmetric logistic dependence

structure, i.e., the distribution from equation (5); (E) a bivariate Gaussian copula; (F)

a model which is a maxima-mixture of distributions (A) and (C) as in Simpson et al.

(2020). Distributions (A) and (E) are described well using the vanilla HT model since

the residual distributions do not put weight on {±∞} and there are no mixtures

present. Distributions (B-D) and (F) on the other hand fall into the HTM model

framework with K = 2 components.

For the simulations, we draw 5000 observations from the distributions, and use the

90% empirical quantile as the HT modelling threshold u, giving 500 observations with

which to make inference for the conditional extremal models. We �t the two models

for a number of K ≥ 1 and replicate this procedure 500 times. For the method based

on quantile-regression, we choose τi = 0.05i for i = 1, . . . , 19 which was was found to

give stable results without requiring long computational times.

We set γk = 0 for all k = 1, . . . , K in the He�ernan-Tawn mixture model. Theoret-

ically, performance should be improved upon letting γk 6= 0. However, the correlation

between the HT parameters in the MCMC chain is increased signi�cantly by adding

the parameter γk. In particular, the HT parameters αk, µk and γk become near to

unidenti�able. This problem can be solved by reparameterising the regression to for

example γk+αk(X−X̄)+µk(X
β−(X̄)β)+σkX

βZ̃i. In the quantile-regression model,

we impose that the median of the residual distribution is 0. We could in a similar

manner impose here that µk = 0 to avoid a similar problem. There is hardly any

practical di�erence in assuming µk = 0 compared to γk = 0.

We test model performance by studying the sets in the simulation study of Hef-

fernan and Tawn (2004). The di�erence is that they estimate the sets given the

probability measure and we estimate the probaility measure given the sets. More pre-

cisely, we test the performance by comparing estimates of P((X, Y ) ∈ SDi ) for i = 1, 2

where SDi is de�ned as follows

SD1 (p) := (vD(p),∞)× (vD(p),∞) and SD2 (p, q) := (rD(p, q),∞)× (−∞, wD(p, q)),
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I.D. Name Model parameters He�ernan-Tawn parameters

(A) Logistic η = 0.5, θ = (0, 0) K = 1, α = 1, β = 0

(B) Asymmetric Logistic η = 0.5, θ = (0.5, 0.5) K = 2, α = (0, 1), β = (0, 0)

(C) Asymmetric Logistic η = 0.5, θ = (0.25, 0.5) K = 2, α = (0, 1), β = (0, 0)

(D) Asymmetric Logistic η = 0.5, θ = (0.75, 0.5) K = 2, α = (0, 1), β = (0, 0)

(E) Bivariate Gaussian ρ = 0.5 K = 1, α = 0.25, β = 0.5

(F) Mixture of E and A (p = 0.5) ρ = 0.5, ξ = 0.5 K = 2, α = (0.25, 1), β = (0.5, 0)

Table B.6.1: List of distributions used in the simulation study. The marginals of all

distributions are standard Laplace.

where vD(p) ∈ R is de�ned such that

P(X > vD(p), Y > vD(p)) = p (B.6.1)

and rD(p, q), wD(p, q) ∈ R are de�ned such that

P(X > rD(p, q)) =
p

q
and P(X > rD(p, q), Y < wD(r, q)) = p. (B.6.2)

Here D denotes the distribution of (X, Y ). The set of rectangles under investigation

for distribution D ∈ {(A), . . . , (F )} is given by

SD =
{
S ⊆ R2 : S = SD1 (p) for p ∈ P or S = SD2 (p, q) for (p, q) ∈ P ×Q

}
,

where P = {10−4, 10−6, 10−8} and Q = {0.2, 0.5, 0.8}. This gives 12 rectangles per

distribution. The HTM model returns a posterior distribution and the quantile-

regression model gives a point estimate. To make the two methods comparable, we

use only the posterior medians of the probability measures from the HTM model.

We de�ne QR(K) and HT(K) to be abbreviations that correspond to the �ts of

the HTM model using the quantile-regression model and the He�ernan-Tawn mixture

model, respectively, with a �xed number K of components. We write upper case K

for the choice of the number of components K in the inference procedures, and we

introduce K0 as the true number of components.



APPENDIX B. SUPPLEMENTARY INFORMATION TO CHAPTER 3 128

B.6.2 Results and conclusions

We present a summary of the raw results in Table B.6.2, and we provide the entire

list of raw results in the Section B.7. To explain the results in the table, we introduce

the following notation. Denote r = 500 as the number of replications and let for

1 ≤ i ≤ r, p̂S,D,i denote the ith estimate of the probability measure of S given the

data that are generated using distribution D. Moreover, denote F̂pS,D as the empirical

distribution function of the sample {p̂S,D,i : 1 ≤ i ≤ r}. Now, we de�ne the two

summary performance measures ND and RD, which are reported in the table. The

�rst

ND := #{S ∈ SD : F̂−1
pS,D

(0.025) ≤ P(S) ≤ F̂−1
pS,D

(0.975)} (B.6.3)

is an integer between 0 and 12 and represents how often the the true value lies between

the 2.5% and 97.5% percentiles of the estimates. The second number

RD :=
1

12

∑
S∈SD

√√√√ r∑
i=1

(
p̂S,D,i − P(X ∈ S|X ∼ D))

P(X ∈ S | X ∼ D)

)2

(B.6.4)

is the average relative root mean square of the methods, averaged over SD. As

an illustrative example, we also provide boxplots of the ensemble of estimates for

distribution (F) and rectangle R
(F)
2 (10−8, 0.5), see Figure B.6.1. Because there is no

reason to assume normality of the ensemble, the upper and lower whiskers are given

by the 2.5% and 97.5% empirical ensemble quantiles.

From the tables, we note that the models with K ≥ 2 outperform the model

with K = 1 signi�cantly, where K0 ≥ 2. The HT(K) and QR(K) models with

K ≥ 2 perform comparably across method and K, but HT(K) has slightly poorer

performance overall. In particular, for increasing K ≥ 2 there is a slight decrease

in level of performance of the HT(K) model. This is not the case for the QR(K)

models. The main di�erence between QR(K) and the HT(K) is the width of the

con�dence intervals. The con�dence intervals for QR(K) tend to be slightly larger

than for HT(K) such that often the true value is contained within this interval,

which is not always the case for HT(K). We conclude that the quantile-regression

model is performing well in all scenarios so long as the number of components is not
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Distribution Method K

1 2 3

(A) QR (12; 0.41) (12; 0.36) (12; 0.36)

HT (1; 0.67) (0; 0.65) (0; 0.68)

(B) QR (3; 0.52) (12; 0.35) (12; 0.33)

HT (3; 0.54) (9; 0.35) (6; 0.36)

(C) QR (0; 0.64) (9; 0.43) (12; 0.39)

HT (0; 0.71) (3; 0.44) (3; 0.44)

(D) QR (8; 0.56) (12; 0.43) (12; 0.40)

HT (4; 0.55) (6; 0.51) (8; 0.37)

(E) QR (12; 0.46) (12; 0.71) (12; 0.80)

HT (12; 0.44) (12; 0.49) (12; 0.53)

(F) QR (3; 0.58) (12; 0.35) (12; 0.31)

HT (1; 0.63) (6; 0.38) (6; 0.35)

Table B.6.2: Summary performance of the simulation studies. Each element in the

table corresponds to a method, HT or QR, with k components applied to distribution

D ∈ {(A), . . . , (F )}. The value in each cell is given by (ND; RD), see equations

(B.6.3) and (B.6.4).
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Figure B.6.1: Boxplots of the estimates for the probability corresponding to the rect-

angle S
(F)
2 (10−8, 0.5) = (17.0,∞)×(−∞, 13.2) of distribution (F). QR(K) and HT(K)

are abbreviations for the estimates generated by the quantile-regression model and

the He�ernan-Tawn mixture model with K components.

underestimated.

In the case of distributions (A), (B), (C), (D) and (F), the true HTM model is

an asymptotically dependent model, i.e., αK0 = 1 and the parameters lie thus on

the boundary of the parameter space, see Table B.6.1. It appears that for these

types of distributions the He�ernan-Tawn mixture model consistently underestimates

the probability measures of sets of the form R1(p) because a uniform prior over the

parameter space puts 0 weight on the asymptotically dependent case. The quantile-

regression model, however, does have a chance of classifying asymptotically dependent

models but since it theoretically cannot over-estimate, the model also consistently

underestimates albeit to a smaller extent.

If there is a reason to believe that the asymptotic dependent model is the true

model, then we can incorporate this information into the prior, as in Section 3.2.

We have tested the adjusted version of the method where we allow for positive prior

mass on asymptotic dependence on distributions (A) and (E), capturing a model

exhibiting asymptotic dependence and asymptotic independence, respectively. Initial
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simulations indicate that this method improves signi�cantly on the original method for

Distribution (A), i.e., where α1 is equal to one. Moreover, the new method performs

only slightly worse for Distribution (E), i.e., where α1 is not equal to one.

In more detail, let K = 1 and set ω1 = 0 and ω2 = 0.5, i.e., we set the prior

probability P(α1 = 1) equal to 0 and 0.5, respectively. In our simulations, we simulate

and compute the posterior of α1. We repeat this 1000 times to get a good estimate for

average performance. From the results, we found that the average MSE of α̂1 using

ω1 for distribution (A) is estimated to be 0.008(±0.0003) and with ω2 it is estimated

to be 0.002(±0.0002). For distribution (E), the average MSE using ω1 is estimated

to be around 0.04(±0.0009), whereas the average MSE under the model with ω2 is

equal to 0.07(±0.004). Hence, in this case we improve our results with a factor of 5

when the data exhibits asymptotic dependence and the results worsen with a factor

of 2 when the data does not exhibit asymptotic dependence.

These results show that the choice of prior can positively in�uence estimates. We

assert that using a uniform prior over the parameter space is a good choice as long

as asymptotic dependence is not appropriate. However, if one is uncertain about the

asymptotic nature of the data, then we suggest the use of a prior which puts mass

on the asymptotic dependence model as well as a uniformly distributed mass on the

parameter space corresponding to asymptotic independence. The question arises of

how to choose an optimal balance here, i.e., how do we choose the prior probability ω

of asymptotic dependence. Further research is needed to provide a sensible answer but

we believe that in practice, an optimal value can be found by applying the methods

for di�erent ω's.
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B.7 Raw simulation study results

We present the raw results of each distribution and give a concise summary of the

results. The tables used within this section all use the same notation. In the tables, we

give estimates of the measures of SD1 (p), expressed as a fraction of p, for di�erent values

of p and distributions D ∈ {(A), (B), (C), (D), (E), (F )}. Here QR(K) and HT(K)

are abbreviations for the estimates generated by the quantile-regression model and

the He�ernan-Tawn mixture model with K components. Boldface indicates whether

or not the true value, which is always 1, is captured within the error bounds. Boldface

with an asterisk is used to indicate the best-performing model for the corresponding

p, i.e., for which the root mean squared error is minimal.

B.7.1 Distribution (A)

For this distribution, the 1 component model is the true limit model. However, it

turns out that the 2 component quantile-regression model is dominant in the results

although it is similar to the 1 component quantile-regression model. We note that

the HT(K) models for K ≥ 1 consistently underestimate the probabilities in the �rst

table and overestimate in the second table. This bias is there because the true HT

parameters lie on the boundary of the parameter space.

Distribution Method Median, (2.5 and 97.5 percentiles) for di�erent values of p

p = 10−4 p = 10−6 p = 10−8

(A) QR(1) 0.850.850.85 (0.59, 1.09)(0.59, 1.09)(0.59, 1.09) 0.720.720.72 (0.35, 1.08)(0.35, 1.08)(0.35, 1.08) 0.590.590.59 (0.21, 1.08)(0.21, 1.08)(0.21, 1.08)

QR(2) 0.890.890.89∗ (0.63, 1.08)(0.63, 1.08)(0.63, 1.08)∗ 0.800.800.80∗ (0.41, 1.07)(0.41, 1.07)(0.41, 1.07)∗ 0.720.720.72∗ (0.24, 1.06)(0.24, 1.06)(0.24, 1.06)∗

QR(3) 0.890.890.89 (0.62, 1.10)(0.62, 1.10)(0.62, 1.10) 0.810.810.81 (0.38, 1.10)(0.38, 1.10)(0.38, 1.10) 0.730.730.73 (0.23, 1.09)(0.23, 1.09)(0.23, 1.09)

HT(1) 0.68 (0.42, 0.92) 0.46 (0.18, 0.81) 0.29 (0.07, 0.71)

HT(2) 0.66 (0.50, 0.85) 0.49 (0.30, 0.71) 0.37 (0.17, 0.59)

HT(3) 0.64 (0.49, 0.80) 0.46 (0.29, 0.65) 0.34 (0.18, 0.52)
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Distribution Method Median, (2.5 and 97.5 percentiles) for di�erent values of p

q
p = 10−4 p = 10−6 p = 10−8

(A) QR(1) 0.2 1.181.181.18 (0.70, 1.89)(0.70, 1.89)(0.70, 1.89) 1.551.551.55 (0.70, 2.83)(0.70, 2.83)(0.70, 2.83) 1.951.951.95 (0.70, 3.59)(0.70, 3.59)(0.70, 3.59)

QR(1) 0.5 1.161.161.16 (0.91, 1.44)(0.91, 1.44)(0.91, 1.44) 1.311.311.31 (0.92, 1.67)(0.92, 1.67)(0.92, 1.67) 1.441.441.44 (0.92, 1.81)(0.92, 1.81)(0.92, 1.81)

QR(1) 0.8 1.061.061.06 (0.98, 1.14)(0.98, 1.14)(0.98, 1.14) 1.101.101.10 (0.98, 1.19)(0.98, 1.19)(0.98, 1.19) 1.131.131.13 (0.98, 1.22)(0.98, 1.22)(0.98, 1.22)

QR(2) 0.2 1.261.261.26∗ (0.75, 1.86)(0.75, 1.86)(0.75, 1.86)∗ 1.571.571.57 (0.79, 2.63)(0.79, 2.63)(0.79, 2.63) 1.811.811.81∗ (0.83, 3.31)(0.83, 3.31)(0.83, 3.31)∗

QR(2) 0.5 1.121.121.12∗ (0.92, 1.40)(0.92, 1.40)(0.92, 1.40)∗ 1.211.211.21∗ (0.93, 1.61)(0.93, 1.61)(0.93, 1.61)∗ 1.301.301.30∗ (0.93, 1.78)(0.93, 1.78)(0.93, 1.78)∗

QR(2) 0.8 1.041.041.04∗ (0.98, 1.13)(0.98, 1.13)(0.98, 1.13)∗ 1.071.071.07∗ (0.98, 1.18)(0.98, 1.18)(0.98, 1.18)∗ 1.091.091.09∗ (0.98, 1.21)(0.98, 1.21)(0.98, 1.21)∗

QR(3) 0.2 1.271.271.27 (0.74, 1.85)(0.74, 1.85)(0.74, 1.85) 1.591.591.59∗ (0.78, 2.59)(0.78, 2.59)(0.78, 2.59)∗ 1.841.841.84 (0.80, 3.42)(0.80, 3.42)(0.80, 3.42)

QR(3) 0.5 1.111.111.11 (0.88, 1.42)(0.88, 1.42)(0.88, 1.42) 1.201.201.20 (0.89, 1.65)(0.89, 1.65)(0.89, 1.65) 1.291.291.29 (0.90, 1.79)(0.90, 1.79)(0.90, 1.79)

QR(3) 0.8 1.041.041.04 (0.97, 1.14)(0.97, 1.14)(0.97, 1.14) 1.061.061.06 (0.97, 1.20)(0.97, 1.20)(0.97, 1.20) 1.081.081.08 (0.97, 1.22)(0.97, 1.22)(0.97, 1.22)

HT(1) 0.2 1.521.521.52 (0.96, 2.38)(0.96, 2.38)(0.96, 2.38) 2.31 (1.26, 3.64) 3.05 (1.53, 4.40)

HT(1) 0.5 1.35 (1.10, 1.60) 1.57 (1.22, 1.83) 1.73 (1.33, 1.94)

HT(1) 0.8 1.12 (1.04, 1.18) 1.17 (1.08, 1.22) 1.20 (1.11, 1.24)

HT(2) 0.2 1.68 (1.12, 2.33) 2.43 (1.60, 3.13) 2.91 (2.07, 3.80)

HT(2) 0.5 1.36 (1.17, 1.53) 1.54 (1.32, 1.73) 1.66 (1.45, 1.85)

HT(2) 0.8 1.12 (1.07, 1.17) 1.16 (1.11, 1.21) 1.19 (1.14, 1.22)

HT(3) 0.2 1.80 (1.30, 2.27) 2.52 (1.86, 3.15) 3.08 (2.30, 3.76)

HT(3) 0.5 1.39 (1.22, 1.54) 1.57 (1.38, 1.73) 1.69 (1.51, 1.84)

HT(3) 0.8 1.13 (1.08, 1.17) 1.17 (1.12, 1.20) 1.19 (1.15, 1.22)
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B.7.2 Distribution (B)

For this distribution, the 2 component model is the true limit model. We note that the

2 and 3 component models perform similarly. Peculiarly, the 1 component models do

a good job in estimating SD2 (p, 0.5). This is the case because the mixture probability

is exactly 0.5. Hence, for q < 0.5, SD2 (p, q) is over-estimated, and for q > 0.5, it is

under-estimated using these models. In general, this clearly shows that the multi-

component models are the clear winners here. However, both methods do struggle

with the extreme sets as the true HT modelling parameters lie on the boundary of

the parameter space.

Distribution Method Median, (2.5 and 97.5 percentiles) for di�erent values of p

p = 10−4 p = 10−6 p = 10−8

QR(1) 0.26 (0.09, 0.56) 0.07 (0.01, 0.28) 0.02 (0.00, 0.13)

QR(2) 0.730.730.73 (0.32, 1.19)(0.32, 1.19)(0.32, 1.19) 0.460.460.46 (0.10, 1.19)(0.10, 1.19)(0.10, 1.19) 0.270.270.27 (0.03, 1.17)(0.03, 1.17)(0.03, 1.17)

QR(3) 0.790.790.79 (0.36, 1.18)(0.36, 1.18)(0.36, 1.18) 0.570.570.57 (0.12, 1.15)(0.12, 1.15)(0.12, 1.15) 0.400.400.40 (0.04, 1.15)(0.04, 1.15)(0.04, 1.15)

HT(1) 0.18 (0.06, 0.39) 0.03 (0.01, 0.14) 0.01 (0.00, 0.04)

HT(2) 0.76 (0.38, 0.94) 0.58∗0.58∗0.58∗ (0.15, 0.82)∗(0.15, 0.82)∗(0.15, 0.82)∗ 0.43 (0.05, 0.71)

HT(3) 0.64 (0.35, 0.82) 0.44 (0.12, 0.66) 0.29 (0.04, 0.54)
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Distribution Method Median, (2.5 and 97.5 percentiles) for di�erent values of p

q
p = 10−4 p = 10−6 p = 10−8

QR(1) 0.2 0.39 (0.12, 0.57) 0.23 (0.02, 0.52) 0.13 (0.00, 0.47)

QR(1) 0.5 1.031.031.03 (0.65, 1.25)(0.65, 1.25)(0.65, 1.25) 1.091.091.09 (0.54, 1.43)(0.54, 1.43)(0.54, 1.43) 1.131.131.13 (0.45, 1.58)(0.45, 1.58)(0.45, 1.58)

QR(1) 0.8 1.19 (1.09, 1.23) 1.23 (1.16, 1.25) 1.24 (1.19, 1.25)

QR(2) 0.2 0.480.480.48 (0.27, 1.47)(0.27, 1.47)(0.27, 1.47) 0.430.430.43 (0.14, 1.68)(0.14, 1.68)(0.14, 1.68) 0.410.410.41 (0.06, 1.83)(0.06, 1.83)(0.06, 1.83)

QR(2) 0.5 0.930.930.93 (0.68, 1.21)(0.68, 1.21)(0.68, 1.21) 0.960.960.96 (0.71, 1.23)(0.71, 1.23)(0.71, 1.23) 0.970.970.97 (0.73, 1.25)(0.73, 1.25)(0.73, 1.25)

QR(2) 0.8 1.03∗1.03∗1.03∗ (0.88, 1.19)∗(0.88, 1.19)∗(0.88, 1.19)∗ 1.101.101.10 (0.93, 1.23)(0.93, 1.23)(0.93, 1.23) 1.151.151.15 (0.94, 1.24)(0.94, 1.24)(0.94, 1.24)

QR(3) 0.2 0.590.590.59 (0.26, 1.54)(0.26, 1.54)(0.26, 1.54) 0.490.490.49 (0.03, 1.82)(0.03, 1.82)(0.03, 1.82) 0.450.450.45 (0.00, 2.02)(0.00, 2.02)(0.00, 2.02)

QR(3) 0.5 0.930.930.93 (0.65, 1.21)(0.65, 1.21)(0.65, 1.21) 0.950.950.95 (0.66, 1.25)(0.66, 1.25)(0.66, 1.25) 0.970.970.97 (0.67, 1.30)(0.67, 1.30)(0.67, 1.30)

QR(3) 0.8 1.041.041.04 (0.87, 1.19)(0.87, 1.19)(0.87, 1.19) 1.091.091.09 (0.90, 1.23)(0.90, 1.23)(0.90, 1.23) 1.141.141.14 (0.92, 1.24)(0.92, 1.24)(0.92, 1.24)

HT(1) 0.2 0.48 (0.18, 0.98) 0.27 (0.04, 0.86) 0.16 (0.01, 0.78)

HT(1) 0.5 1.131.131.13 (0.80, 1.39)(0.80, 1.39)(0.80, 1.39) 1.231.231.23 (0.73, 1.62)(0.73, 1.62)(0.73, 1.62) 1.311.311.31 (0.64, 1.77)(0.64, 1.77)(0.64, 1.77)

HT(1) 0.8 1.22 (1.18, 1.24) 1.24 (1.23, 1.25) 1.25 (1.24, 1.25)

HT(2) 0.2 1.221.221.22 (0.39, 2.09)(0.39, 2.09)(0.39, 2.09) 1.471.471.47 (0.15, 2.45)(0.15, 2.45)(0.15, 2.45) 1.681.681.68 (0.05, 2.55)(0.05, 2.55)(0.05, 2.55)

HT(2) 0.5 1.01∗1.01∗1.01∗ (0.93, 1.09)∗(0.93, 1.09)∗(0.93, 1.09)∗ 1.01∗1.01∗1.01∗ (0.95, 1.07)∗(0.95, 1.07)∗(0.95, 1.07)∗ 1.01∗1.01∗1.01∗ (0.95, 1.08)∗(0.95, 1.08)∗(0.95, 1.08)∗

HT(2) 0.8 1.09 (1.03, 1.19) 1.13 (1.07, 1.23) 1.17 (1.09, 1.24)

HT(3) 0.2 1.131.131.13 (0.41, 1.82)(0.41, 1.82)(0.41, 1.82) 1.291.291.29 (0.25, 2.08)(0.25, 2.08)(0.25, 2.08) 1.441.441.44 (0.17, 2.11)(0.17, 2.11)(0.17, 2.11)

HT(3) 0.5 1.141.141.14 (0.85, 1.31)(0.85, 1.31)(0.85, 1.31) 1.191.191.19 (0.78, 1.33)(0.78, 1.33)(0.78, 1.33) 1.221.221.22 (0.73, 1.33)(0.73, 1.33)(0.73, 1.33)

HT(3) 0.8 1.12 (1.07, 1.20) 1.17 (1.11, 1.23) 1.20 (1.14, 1.24)
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B.7.3 Distribution (C)

For this distribution, the 2 component model is the true model. We see that the

quantile-regression model with either 2 or 3 components dominate the results. The

HT(K) models again underperform because the true parameters lie on the boundary.

The same holds true for the quantile-regression model albeit less apparent. The only

sets where the He�ernan-Tawn mixture model has good results is for sets of the form

R2(p, 0.2), which is not much a�ected by the parameters that are on the boundary.

Distribution Method Median, (2.5 and 97.5 percentiles) for di�erent values of p

p = 10−4 p = 10−6 p = 10−8

(C) QR(1) 0.48 (0.20, 0.87) 0.21 (0.05, 0.63) 0.09 (0.02, 0.46)

QR(2) 0.710.710.71∗ (0.36, 1.10)(0.36, 1.10)(0.36, 1.10)∗ 0.460.460.46∗ (0.13, 1.04)(0.13, 1.04)(0.13, 1.04)∗ 0.30 (0.05, 0.98)

QR(3) 0.770.770.77 (0.37, 1.12)(0.37, 1.12)(0.37, 1.12) 0.570.570.57 (0.13, 1.07)(0.13, 1.07)(0.13, 1.07) 0.410.410.41∗ (0.04, 1.07)(0.04, 1.07)(0.04, 1.07)∗

HT(1) 0.23 (0.09, 0.50) 0.06 (0.01, 0.25) 0.02 (0.01, 0.12)

HT(2) 0.61 (0.41, 0.74) 0.46 (0.21, 0.62) 0.36 (0.11, 0.54)

HT(3) 0.58 (0.36, 0.77) 0.39 (0.17, 0.62) 0.27 (0.08, 0.49)
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Distribution Method Median, (2.5 and 97.5 percentiles) for di�erent values of p

q
p = 10−4 p = 10−6 p = 10−8

(C) QR(1) 0.2 0.14 (0.03, 0.45) 0.02 (0.00, 0.17) 0.00 (0.00, 0.08)

QR(1) 0.5 1.47 (1.09, 1.77) 1.75 (1.30, 1.94) 1.89 (1.48, 1.98)

QR(1) 0.8 1.16 (1.05, 1.22) 1.21 (1.11, 1.24) 1.23 (1.15, 1.25)

QR(2) 0.2 0.590.590.59∗ (0.22, 1.21)(0.22, 1.21)(0.22, 1.21)∗ 0.350.350.35∗ (0.04, 1.13)(0.04, 1.13)(0.04, 1.13)∗ 0.25 (0.01, 1.00)

QR(2) 0.5 1.191.191.19 (0.89, 1.53)(0.89, 1.53)(0.89, 1.53) 1.441.441.44 (0.93, 1.81)(0.93, 1.81)(0.93, 1.81) 1.631.631.63∗ (0.98, 1.91)(0.98, 1.91)(0.98, 1.91)∗

QR(2) 0.8 1.071.071.07∗ (0.96, 1.17)(0.96, 1.17)(0.96, 1.17)∗ 1.131.131.13∗ (0.99, 1.22)(0.99, 1.22)(0.99, 1.22)∗ 1.17 (1.01, 1.24)

QR(3) 0.2 0.660.660.66 (0.22, 1.39)(0.22, 1.39)(0.22, 1.39) 0.430.430.43 (0.02, 1.32)(0.02, 1.32)(0.02, 1.32) 0.300.300.30∗ (0.00, 1.31)(0.00, 1.31)(0.00, 1.31)∗

QR(3) 0.5 1.161.161.16∗ (0.88, 1.52)(0.88, 1.52)(0.88, 1.52)∗ 1.341.341.34∗ (0.93, 1.80)(0.93, 1.80)(0.93, 1.80)∗ 1.491.491.49 (0.96, 1.93)(0.96, 1.93)(0.96, 1.93)

QR(3) 0.8 1.051.051.05 (0.95, 1.18)(0.95, 1.18)(0.95, 1.18) 1.111.111.11 (0.96, 1.22)(0.96, 1.22)(0.96, 1.22) 1.151.151.15∗ (0.97, 1.24)(0.97, 1.24)(0.97, 1.24)∗

HT(1) 0.2 0.27 (0.07, 0.76) 0.07 (0.00, 0.45) 0.02 (0.00, 0.29)

HT(1) 0.5 1.73 (1.43, 1.90) 1.93 (1.71, 1.98) 1.98 (1.86, 2.00)

HT(1) 0.8 1.21 (1.15, 1.24) 1.24 (1.20, 1.25) 1.25 (1.23, 1.25)

HT(2) 0.2 0.780.780.78 (0.18, 1.70)(0.18, 1.70)(0.18, 1.70) 0.500.500.50 (0.02, 1.93)(0.02, 1.93)(0.02, 1.93) 0.330.330.33 (0.00, 2.07)(0.00, 2.07)(0.00, 2.07)

HT(2) 0.5 1.33 (1.22, 1.51) 1.45 (1.32, 1.71) 1.56 (1.39, 1.84)

HT(2) 0.8 1.12 (1.08, 1.18) 1.16 (1.11, 1.21) 1.18 (1.13, 1.23)

HT(3) 0.2 1.001.001.00 (0.31, 1.58)(0.31, 1.58)(0.31, 1.58) 0.930.930.93 (0.09, 1.62)(0.09, 1.62)(0.09, 1.62) 0.900.900.90 (0.02, 1.64)(0.02, 1.64)(0.02, 1.64)

HT(3) 0.5 1.36 (1.17, 1.55) 1.53 (1.32, 1.77) 1.65 (1.45, 1.89)

HT(3) 0.8 1.13 (1.08, 1.19) 1.17 (1.12, 1.22) 1.20 (1.15, 1.24)
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B.7.4 Distribution (D)

For this distribution we see the same performance as for distribution (C). The di�er-

ence that the HTM model also performs well now for sets of the form R2(p, 0.5). This

is because of the di�erent parameter choice in the distribution such that the estimates

for these sets are also less a�ected by the boundary problem.

Distribution Method Median, (2.5 and 97.5 percentiles) for di�erent values of p

p = 10−4 p = 10−6 p = 10−8

(D) QR(1) 0.28 (0.04, 0.57) 0.05 (0.00, 0.21) 0.01 (0.00, 0.07)

QR(2) 0.840.840.84 (0.28, 1.40)(0.28, 1.40)(0.28, 1.40) 0.540.540.54 (0.05, 1.38)(0.05, 1.38)(0.05, 1.38) 0.300.300.30 (0.01, 1.38)(0.01, 1.38)(0.01, 1.38)

QR(3) 0.870.870.87 (0.33, 1.37)(0.33, 1.37)(0.33, 1.37) 0.650.650.65∗ (0.07, 1.35)(0.07, 1.35)(0.07, 1.35)∗ 0.440.440.44∗ (0.02, 1.35)(0.02, 1.35)(0.02, 1.35)∗

HT(1) 0.23 (0.06, 0.48) 0.03 (0.00, 0.14) 0.01 (0.00, 0.04)

HT(2) 0.39 (0.11, 0.98) 0.09 (0.01, 0.70) 0.02 (0.00, 0.45)

HT(3) 0.820.820.82∗ (0.20, 1.15)(0.20, 1.15)(0.20, 1.15)∗ 0.51 (0.04, 0.98) 0.28 (0.00, 0.82)



APPENDIX B. SUPPLEMENTARY INFORMATION TO CHAPTER 3 139

Distribution Method Median, (2.5 and 97.5 percentiles) for di�erent values of p

q
p = 10−4 p = 10−6 p = 10−8

(D) QR(1) 0.2 0.380.380.38 (0.08, 1.67)(0.08, 1.67)(0.08, 1.67) 0.420.420.42 (0.24, 1.95)(0.24, 1.95)(0.24, 1.95) 0.460.460.46 (0.26, 2.15)(0.26, 2.15)(0.26, 2.15)

QR(1) 0.5 0.450.450.45 (0.34, 1.10)(0.34, 1.10)(0.34, 1.10) 0.420.420.42 (0.22, 1.14)(0.22, 1.14)(0.22, 1.14) 0.390.390.39 (0.16, 1.17)(0.16, 1.17)(0.16, 1.17)

QR(1) 0.8 1.061.061.06 (0.90, 1.23)(0.90, 1.23)(0.90, 1.23) 1.141.141.14∗ (0.97, 1.24)(0.97, 1.24)(0.97, 1.24)∗ 1.17 (1.01, 1.25)

QR(2) 0.2 0.730.730.73 (0.11, 1.71)(0.11, 1.71)(0.11, 1.71) 0.650.650.65 (0.12, 2.30)(0.12, 2.30)(0.12, 2.30) 0.600.600.60 (0.09, 2.73)(0.09, 2.73)(0.09, 2.73)

QR(2) 0.5 0.740.740.74 (0.40, 1.23)(0.40, 1.23)(0.40, 1.23) 0.640.640.64 (0.25, 1.37)(0.25, 1.37)(0.25, 1.37) 0.580.580.58 (0.11, 1.44)(0.11, 1.44)(0.11, 1.44)

QR(2) 0.8 1.011.011.01 (0.72, 1.20)(0.72, 1.20)(0.72, 1.20) 1.091.091.09 (0.77, 1.24)(0.77, 1.24)(0.77, 1.24) 1.151.151.15 (0.81, 1.25)(0.81, 1.25)(0.81, 1.25)

QR(3) 0.2 0.820.820.82 (0.23, 1.67)(0.23, 1.67)(0.23, 1.67) 0.720.720.72 (0.03, 2.35)(0.03, 2.35)(0.03, 2.35) 0.650.650.65 (0.00, 2.92)(0.00, 2.92)(0.00, 2.92)

QR(3) 0.5 0.870.870.87 (0.44, 1.29)(0.44, 1.29)(0.44, 1.29) 0.780.780.78 (0.17, 1.37)(0.17, 1.37)(0.17, 1.37) 0.710.710.71 (0.04, 1.45)(0.04, 1.45)(0.04, 1.45)

QR(3) 0.8 1.011.011.01 (0.78, 1.17)(0.78, 1.17)(0.78, 1.17) 1.061.061.06 (0.83, 1.23)(0.83, 1.23)(0.83, 1.23) 1.111.111.11∗ (0.85, 1.25)(0.85, 1.25)(0.85, 1.25)∗

HT(1) 0.2 0.780.780.78∗ (0.39, 1.44)(0.39, 1.44)(0.39, 1.44)∗ 0.600.600.60∗ (0.20, 1.55)(0.20, 1.55)(0.20, 1.55)∗ 0.480.480.48∗ (0.10, 1.70)(0.10, 1.70)(0.10, 1.70)∗

HT(1) 0.5 0.56 (0.28, 0.99) 0.39 (0.12, 1.00) 0.290.290.29 (0.07, 1.02)(0.07, 1.02)(0.07, 1.02)

HT(1) 0.8 1.22 (1.16, 1.25) 1.24 (1.23, 1.25) 1.25 (1.24, 1.25)

HT(2) 0.2 1.141.141.14 (0.32, 2.21)(0.32, 2.21)(0.32, 2.21) 1.621.621.62 (0.20, 2.62)(0.20, 2.62)(0.20, 2.62) 2.072.072.07 (0.12, 2.66)(0.12, 2.66)(0.12, 2.66)

HT(2) 0.5 1.001.001.00∗ (0.65, 1.22)(0.65, 1.22)(0.65, 1.22)∗ 1.001.001.00∗ (0.44, 1.20)(0.44, 1.20)(0.44, 1.20)∗ 1.001.001.00∗ (0.32, 1.20)(0.32, 1.20)(0.32, 1.20)∗

HT(2) 0.8 1.18 (1.02, 1.24) 1.23 (1.09, 1.25) 1.25 (1.14, 1.25)

HT(3) 0.2 1.101.101.10 (0.46, 1.75)(0.46, 1.75)(0.46, 1.75) 1.341.341.34 (0.32, 2.18)(0.32, 2.18)(0.32, 2.18) 1.531.531.53 (0.25, 2.35)(0.25, 2.35)(0.25, 2.35)

HT(3) 0.5 0.900.900.90 (0.58, 1.24)(0.58, 1.24)(0.58, 1.24) 0.790.790.79 (0.49, 1.27)(0.49, 1.27)(0.49, 1.27) 0.730.730.73 (0.41, 1.30)(0.41, 1.30)(0.41, 1.30)

HT(3) 0.8 1.061.061.06∗ (0.97, 1.22)(0.97, 1.22)(0.97, 1.22)∗ 1.13 (1.01, 1.24) 1.18 (1.04, 1.25)
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B.7.5 Distribution (E)

For this distribution, the 1 component model is the truth and the parameters lie in

the interior of the parameter space. However, we know that the convergence of this

model to the He�ernan-Tawn model is relatively slow. However, this doesn't seem to

be a problem within the results. The 1 component models dominate the results and

all models have an acceptable performance.

Distribution Method Median, (2.5 and 97.5 percentiles) for di�erent values of p

p = 10−4 p = 10−6 p = 10−8

QR(1) 1.011.011.01 (0.33, 1.68)(0.33, 1.68)(0.33, 1.68) 1.031.031.03 (0.07, 2.79)(0.07, 2.79)(0.07, 2.79) 1.101.101.10 (0.00, 4.73)(0.00, 4.73)(0.00, 4.73)

QR(2) 1.051.051.05 (0.08, 2.22)(0.08, 2.22)(0.08, 2.22) 1.071.071.07 (0.00, 5.10)(0.00, 5.10)(0.00, 5.10) 1.161.161.16 (0.00, 10.78)(0.00, 10.78)(0.00, 10.78)

QR(3) 1.061.061.06 (0.03, 2.29)(0.03, 2.29)(0.03, 2.29) 1.071.071.07 (0.00, 5.67)(0.00, 5.67)(0.00, 5.67) 1.151.151.15 (0.00, 17.99)(0.00, 17.99)(0.00, 17.99)

HT(1) 0.860.860.86∗ (0.28, 1.49)(0.28, 1.49)(0.28, 1.49)∗ 0.730.730.73∗ (0.01, 2.16)(0.01, 2.16)(0.01, 2.16)∗ 0.720.720.72∗ (0.00, 3.51)(0.00, 3.51)(0.00, 3.51)∗

HT(2) 0.940.940.94 (0.26, 2.01)(0.26, 2.01)(0.26, 2.01) 0.750.750.75 (0.01, 3.30)(0.01, 3.30)(0.01, 3.30) 0.590.590.59 (0.00, 5.34)(0.00, 5.34)(0.00, 5.34)

HT(3) 1.021.021.02 (0.27, 2.04)(0.27, 2.04)(0.27, 2.04) 0.980.980.98 (0.03, 4.02)(0.03, 4.02)(0.03, 4.02) 0.820.820.82 (0.00, 7.57)(0.00, 7.57)(0.00, 7.57)
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Distribution Method Median, (2.5 and 97.5 percentiles) for di�erent values of p

q
p = 10−4 p = 10−6 p = 10−8

QR(1) 0.2 0.700.700.70∗ (0.25, 1.42)(0.25, 1.42)(0.25, 1.42)∗ 0.480.480.48∗ (0.08, 1.58)(0.08, 1.58)(0.08, 1.58)∗ 0.330.330.33∗ (0.03, 1.73)(0.03, 1.73)(0.03, 1.73)∗

QR(1) 0.5 0.950.950.95 (0.57, 1.32)(0.57, 1.32)(0.57, 1.32) 0.890.890.89 (0.32, 1.45)(0.32, 1.45)(0.32, 1.45) 0.820.820.82 (0.15, 1.53)(0.15, 1.53)(0.15, 1.53)

QR(1) 0.8 1.001.001.00 (0.84, 1.14)(0.84, 1.14)(0.84, 1.14) 0.990.990.99∗ (0.75, 1.18)(0.75, 1.18)(0.75, 1.18)∗ 0.980.980.98 (0.65, 1.20)(0.65, 1.20)(0.65, 1.20)

QR(2) 0.2 0.880.880.88 (0.29, 1.58)(0.29, 1.58)(0.29, 1.58) 0.750.750.75 (0.07, 1.91)(0.07, 1.91)(0.07, 1.91) 0.650.650.65 (0.01, 2.17)(0.01, 2.17)(0.01, 2.17)

QR(2) 0.5 0.960.960.96 (0.59, 1.37)(0.59, 1.37)(0.59, 1.37) 0.930.930.93 (0.42, 1.51)(0.42, 1.51)(0.42, 1.51) 0.900.900.90 (0.28, 1.60)(0.28, 1.60)(0.28, 1.60)

QR(2) 0.8 0.980.980.98 (0.76, 1.17)(0.76, 1.17)(0.76, 1.17) 0.950.950.95 (0.64, 1.21)(0.64, 1.21)(0.64, 1.21) 0.920.920.92 (0.56, 1.23)(0.56, 1.23)(0.56, 1.23)

QR(3) 0.2 0.920.920.92 (0.28, 1.60)(0.28, 1.60)(0.28, 1.60) 0.870.870.87 (0.03, 1.93)(0.03, 1.93)(0.03, 1.93) 0.830.830.83 (0.00, 2.14)(0.00, 2.14)(0.00, 2.14)

QR(3) 0.5 0.950.950.95 (0.62, 1.38)(0.62, 1.38)(0.62, 1.38) 0.920.920.92 (0.44, 1.52)(0.44, 1.52)(0.44, 1.52) 0.890.890.89 (0.32, 1.60)(0.32, 1.60)(0.32, 1.60)

QR(3) 0.8 0.970.970.97 (0.76, 1.18)(0.76, 1.18)(0.76, 1.18) 0.950.950.95 (0.67, 1.22)(0.67, 1.22)(0.67, 1.22) 0.910.910.91 (0.60, 1.23)(0.60, 1.23)(0.60, 1.23)

HT(1) 0.2 0.610.610.61 (0.18, 1.45)(0.18, 1.45)(0.18, 1.45) 0.370.370.37 (0.04, 1.64)(0.04, 1.64)(0.04, 1.64) 0.240.240.24 (0.01, 1.87)(0.01, 1.87)(0.01, 1.87)

HT(1) 0.5 0.940.940.94 (0.52, 1.32)(0.52, 1.32)(0.52, 1.32) 0.870.870.87 (0.22, 1.46)(0.22, 1.46)(0.22, 1.46) 0.780.780.78 (0.07, 1.57)(0.07, 1.57)(0.07, 1.57)

HT(1) 0.8 1.021.021.02∗ (0.87, 1.16)(0.87, 1.16)(0.87, 1.16)∗ 1.021.021.02 (0.75, 1.20)(0.75, 1.20)(0.75, 1.20) 1.021.021.02 (0.64, 1.21)(0.64, 1.21)(0.64, 1.21)

HT(2) 0.2 0.970.970.97 (0.34, 1.89)(0.34, 1.89)(0.34, 1.89) 1.041.041.04 (0.15, 2.48)(0.15, 2.48)(0.15, 2.48) 1.121.121.12 (0.07, 2.60)(0.07, 2.60)(0.07, 2.60)

HT(2) 0.5 1.011.011.01 (0.65, 1.28)(0.65, 1.28)(0.65, 1.28) 1.011.011.01 (0.49, 1.30)(0.49, 1.30)(0.49, 1.30) 1.011.011.01 (0.39, 1.33)(0.39, 1.33)(0.39, 1.33)

HT(2) 0.8 0.940.940.94 (0.74, 1.14)(0.74, 1.14)(0.74, 1.14) 0.860.860.86 (0.65, 1.16)(0.65, 1.16)(0.65, 1.16) 0.790.790.79 (0.62, 1.17)(0.62, 1.17)(0.62, 1.17)

HT(3) 0.2 1.201.201.20 (0.43, 1.84)(0.43, 1.84)(0.43, 1.84) 1.471.471.47 (0.32, 2.11)(0.32, 2.11)(0.32, 2.11) 1.611.611.61 (0.23, 2.32)(0.23, 2.32)(0.23, 2.32)

HT(3) 0.5 0.940.940.94∗ (0.69, 1.30)(0.69, 1.30)(0.69, 1.30)∗ 0.900.900.90∗ (0.64, 1.34)(0.64, 1.34)(0.64, 1.34)∗ 0.870.870.87∗ (0.59, 1.34)(0.59, 1.34)(0.59, 1.34)∗

HT(3) 0.8 0.930.930.93 (0.76, 1.10)(0.76, 1.10)(0.76, 1.10) 0.860.860.86 (0.67, 1.10)(0.67, 1.10)(0.67, 1.10) 0.840.840.84∗ (0.54, 1.08)(0.54, 1.08)(0.54, 1.08)∗
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B.7.6 Distribution (F)

For this distribution, the two component model is the true model. This distribution

is relatively hard to model given there is a lot of overlap at the �nite levels that we

used. However, QR(2) does a very good job and provides estimates close to the true

value. The HT(2) underestimates

Distribution Method Median, (2.5 and 97.5 percentiles) for di�erent values of p

p = 10−4 p = 10−6 p = 10−8

QR(1) 0.42 (0.18, 0.80) 0.14 (0.04, 0.44) 0.05 (0.01, 0.23)

QR(2) 0.760.760.76 (0.37, 1.26)(0.37, 1.26)(0.37, 1.26) 0.450.450.45 (0.11, 1.24)(0.11, 1.24)(0.11, 1.24) 0.260.260.26 (0.03, 1.17)(0.03, 1.17)(0.03, 1.17)

QR(3) 0.820.820.82 (0.37, 1.27)(0.37, 1.27)(0.37, 1.27) 0.570.570.57 (0.09, 1.28)(0.09, 1.28)(0.09, 1.28) 0.360.360.36 (0.02, 1.26)(0.02, 1.26)(0.02, 1.26)

HT(1) 0.30 (0.12, 0.54) 0.08 (0.02, 0.22) 0.02 (0.01, 0.09)

HT(2) 0.69 (0.31, 0.95) 0.44 (0.08, 0.80) 0.26 (0.02, 0.64)

HT(3) 0.67 (0.37, 0.94) 0.42 (0.13, 0.72) 0.26 (0.04, 0.55)
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Distribution Method Median, (2.5 and 97.5 percentiles) for di�erent values of p

q
p = 10−4 p = 10−6 p = 10−8

QR(1) 0.2 0.26 (0.05, 0.85) 0.07 (0.00, 0.56) 0.02 (0.00, 0.38)

QR(1) 0.5 1.251.251.25 (0.86, 1.62)(0.86, 1.62)(0.86, 1.62) 1.461.461.46 (0.88, 1.85)(0.88, 1.85)(0.88, 1.85) 1.621.621.62 (0.92, 1.93)(0.92, 1.93)(0.92, 1.93)

QR(1) 0.8 1.18 (1.09, 1.22) 1.22 (1.16, 1.24) 1.24 (1.21, 1.25)

QR(2) 0.2 0.740.740.74 (0.27, 1.39)(0.27, 1.39)(0.27, 1.39) 0.550.550.55 (0.09, 1.56)(0.09, 1.56)(0.09, 1.56) 0.440.440.44 (0.04, 1.69)(0.04, 1.69)(0.04, 1.69)

QR(2) 0.5 0.980.980.98 (0.73, 1.32)(0.73, 1.32)(0.73, 1.32) 0.990.990.99 (0.69, 1.42)(0.69, 1.42)(0.69, 1.42) 0.990.990.99 (0.66, 1.55)(0.66, 1.55)(0.66, 1.55)

QR(2) 0.8 1.091.091.09 (0.93, 1.19)(0.93, 1.19)(0.93, 1.19) 1.161.161.16 (0.95, 1.23)(0.95, 1.23)(0.95, 1.23) 1.201.201.20 (0.98, 1.24)(0.98, 1.24)(0.98, 1.24)

QR(3) 0.2 0.860.860.86 (0.31, 1.52)(0.31, 1.52)(0.31, 1.52) 0.750.750.75 (0.12, 1.69)(0.12, 1.69)(0.12, 1.69) 0.690.690.69 (0.03, 1.83)(0.03, 1.83)(0.03, 1.83)

QR(3) 0.5 1.031.031.03 (0.77, 1.33)(0.77, 1.33)(0.77, 1.33) 1.071.071.07 (0.76, 1.44)(0.76, 1.44)(0.76, 1.44) 1.091.091.09 (0.75, 1.50)(0.75, 1.50)(0.75, 1.50)

QR(3) 0.8 1.07∗1.07∗1.07∗ (0.92, 1.19)∗(0.92, 1.19)∗(0.92, 1.19)∗ 1.141.141.14 (0.92, 1.24)(0.92, 1.24)(0.92, 1.24) 1.181.181.18 (0.93, 1.25)(0.93, 1.25)(0.93, 1.25)

HT(1) 0.2 0.350.350.35 (0.08, 1.03)(0.08, 1.03)(0.08, 1.03) 0.13 (0.01, 0.94) 0.05 (0.00, 0.81)

HT(1) 0.5 1.40 (1.06, 1.69) 1.67 (1.21, 1.91) 1.82 (1.34, 1.97)

HT(1) 0.8 1.20 (1.15, 1.23) 1.24 (1.21, 1.25) 1.24 (1.23, 1.25)

HT(2) 0.2 1.121.121.12 (0.39, 2.06)(0.39, 2.06)(0.39, 2.06) 1.271.271.27 (0.20, 2.40)(0.20, 2.40)(0.20, 2.40) 1.431.431.43 (0.08, 2.47)(0.08, 2.47)(0.08, 2.47)

HT(2) 0.5 1.111.111.11 (0.99, 1.35)(0.99, 1.35)(0.99, 1.35) 1.08∗1.08∗1.08∗ (0.98, 1.49)∗(0.98, 1.49)∗(0.98, 1.49)∗ 1.06∗1.06∗1.06∗ (0.98, 1.59)∗(0.98, 1.59)∗(0.98, 1.59)∗

HT(2) 0.8 1.11 (1.03, 1.20) 1.17 (1.07, 1.24) 1.20 (1.12, 1.25)

HT(3) 0.2 1.141.141.14 (0.51, 1.74)(0.51, 1.74)(0.51, 1.74) 1.301.301.30 (0.30, 1.80)(0.30, 1.80)(0.30, 1.80) 1.421.421.42 (0.19, 1.83)(0.19, 1.83)(0.19, 1.83)

HT(3) 0.5 1.081.081.08 (0.86, 1.36)(0.86, 1.36)(0.86, 1.36) 1.161.161.16 (0.84, 1.45)(0.84, 1.45)(0.84, 1.45) 1.221.221.22 (0.83, 1.49)(0.83, 1.49)(0.83, 1.49)

HT(3) 0.8 1.12 (1.05, 1.20) 1.17 (1.10, 1.23) 1.20 (1.14, 1.24)



Appendix C

Appendix to Chapter 4

C.1 Proofs

Proof of Proposition 4.2.2. We prove that for su�ciently large n, there exists a

constant C1 > 0 such that

In :=

∫
I

egn(x)−gn(x∗n) dx ·
(
−g(k0)

n (x∗n)
) 1
k0 ≥ C1.

To bound In from below, we �rst simplify its expression by applying the variable

transformation y = tn(x) := (x− x∗n)
(
−g(k0)

n (x∗n)
)1/k0

and de�ning

hn(y) := gn

(
x∗n + y

(
−g(k0)

n (x∗n)
)− 1

k0

)
, for y ∈ I ′n := {tn(x) : x ∈ I} .

Then, the integral In becomes

In =

∫
I′n

ehn(y)−hn(0) dy.

We note that for all n ∈ N, we have 0 ∈ I ′n, hn ∈ Ck0(I ′n), and hn(0) > hn(y) for all

y ∈ I ′n \ {0}. Moreover, we have for y ∈ I ′n, i = 1, . . . , k0,

h(i)
n (y) = g(i)

n

(
x∗n + y

(
−g(k0)

n (x∗n)
)−1/k

)
·
(
−g(k0)

n (x∗n)
)−i/k0

.

Hence, h
(k0)
n (0) = −1 and limn→∞ h

(i)
n (0) = 0 for all 1 ≤ i < k0. Using Taylor's

theorem, there exists a function ξ(y) taking on a value between 0 and y such that

hn(y)− hn(0) =

k0−1∑
i=1

yi

i!
h(i)
n (0) +

yk0

k0!
h(k0)
n (ξ(y)).

144
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Let ε̃ > 0. Because limn→∞ h
(i)
n (0) = 0 for all i < k0, we can �nd an N0 ≡ N0(ε̃) ∈ N

such that for all n > N0, we have maxi=1,...,k0−1 |h(i)
n (0)| < ε̃. Moreover, from the

assumptions of the proposition, we can �nd a δ > 0 and associated ε > 0 and N1 ≡

N1(δ) ∈ N such that for all n > N1, h
(k0)
n (y) > −(1 + ε) for y ∈ (−δ, δ) ∩ I ′n. For

n > max{N0, N1},

hn(y)− hn(0) > −|y|ε̃− |y|
2

2!
ε̃− · · · − |y|k0−1

(k0 − 1)!
ε̃− (1 + ε)|y|k0

k0!
> −ε̃eδ − (1 + ε)|y|k0

k0!

for y ∈ (−δ, δ) ∩ I ′n. Hence, we derive a lower bound

In ≥ e−ε̃e
δ

∫
I′n∩(−δ,δ)

e
− (1+ε)|y|k0

k0! dy =: C1.

From the connectedness of I and 0 ∈ I ′n, we conclude that I ′n ∩ (−δ, δ) has positive

mass under the Lebesgue measure. Hence, C1 ∈ (0,∞). �

Proof of Proposition 4.4.1. Let (X, Y ) be a random vector such that X and Y both

have standard Laplace margins. Moreover, assume that there exist −1 ≤ α ≤ 1,

0 ≤ β < 1 and u > 0 such that for x > u

P(Y > y | X = x) = H

(
y − αx
xβ

)
holds for all y ∈ R with

H (z) = exp(−γzδ)1{z > 0}+ 1{z ≤ 0},

where γ, δ > 0. Now, let Z be a random variable that is independent of X and have

survival function H. We derive that δ ≥ (1− β)−1 must hold. Since Y is distributed

as a standard Laplace, we have for y > 0

exp(−y)

2
= P(αX +XβZ ≥ y, X ≥ u) + P(Y ≥ y, X < u)

≥ P(αX +XβZ ≥ y, X ≥ u) ≥ P(XβZ ≥ y, X ≥ u)

=

∫ ∞
u

P
(
Z ≥ y

xβ

)
fX(x) dx =

1

2

∫ ∞
u

exp

(
−γy

δ

xβδ
− x
)

dx =: Ĩy.

We will show that 2 exp(y)Ĩy > 1 for su�ciently large y, if δ < (1 − β)−1, which

thus would contradict with the marginal distribution of Y . This result holds trivially
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for β = 0. So, for now, we let β > 0. We will prove this asymptotic inequality by

applying Proposition 4.2.2, with k0 = 2, to bound Ĩy from below.

First de�ne I := [u,∞) as the integration domain, and

gy(x) := exp

(
−γy

δ

xβδ
− x
)
1{x ∈ I}, and hy(x) :=

(
−γy

δ

xβδ
− x
)
1{x ∈ I}.

Next we �nd the mode x∗y of gy(x). We assume that x∗y lies in the interior of I such

that h′y(x
∗
y) = 0, which implies that βδγyδ(x∗y)

−βδ−1 = 1. So, x∗y = (βδγ)
1

βδ+1 y
δ

βδ+1 ,

which lies in the interior of I for su�ciently large y. We now compute

gy(x
∗
y) = exp

(
− γyδ

(x∗y)
βδ
− x∗y

)
= exp

(
−Ay

δ
βδ+1

)
with A := γ (βδγ)−

βδ
βδ+1 + (βδγ)

1
βδ+1 . Secondly,

h′′y(x
∗
y) = −βδ(βδ + 1)(x∗y)

−βδ−2γyδ = −(βδ + 1) (βδγ)−
1

βδ+1 y−
δ

βδ+1 .

Using these expressions, we check that the assumptions from Proposition 4.2.2 with

k0 = 2 are satis�ed. First, note that h′y(x
∗
y)(−h′′y(x∗y))−1/2 = 0. Next let C > 0 and

|x| ≤ C, then

lim
y→∞

h′′y

(
x∗y + x√

−h′′y (x∗y)

)
h′′y(x

∗
y)

= lim
y→∞

−βδ(βδ + 1)

(βδγ)
1

βδ+1 y
δ

βδ+1 + x√
(βδ+1)(βδγ)

− 1
βδ+1 y

− δ
βδ+1

−βδ−2

γyδ

−(βδ + 1) (βδγ)−
1

βδ+1 y−
δ

βδ+1

= lim
y→∞

y δ
βδ+1 + x√

(βδ+1)(βδγ)
1

βδ+1 y
− δ
βδ+1

−βδ−2

yδ

y−
δ

βδ+1

= lim
y→∞

1 +
x√

(βδ + 1) (βδγ)
1

βδ+1 y
δ

βδ+1

−βδ−2

= 1,

which is su�cient to show that for each x̃, Proposition 4.2.2 is applicable with k0 = 2

on interval Ix̃ :=

[
x∗y − x̃√

−h′′y (x∗y)
, x∗y + x̃√

−h′′y (x∗y)

]
. Hence for each x̃, there exists a
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constant C1(x̃) > 0 such that for su�ciently large y,

y−
δ/2
βδ+1 exp

(
Ay

δ
βδ+1

)
· Ĩy ≥ y−

δ/2
βδ+1 exp

(
Ay

δ
βδ+1

)
·
∫
Ix̃

gy(x) dx

=
C1(x̃) (βδγ)

1
2(βδ+1)

√
βδ + 1

.

Using the inequality 2 exp(y)Ĩy ≤ 1, we must have

y−
δ/2
βδ+1 exp

(
Ay

δ
βδ+1

)
· 1

2
exp(−y) ≥ C1(x̃) (βδγ)

1
2(βδ+1)

√
βδ + 1

(C.1.1)

for su�ciently large y. Since 0 ≤ β < 1, we note that if δ < (1 − β)−1 then inequal-

ity (C.1.1) does not hold. So, we derive that δ ≥ (1− β)−1. �
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Supplementary Information to

Chapter 4

D.1 Introduction

We give an overview of the content in the Supplementary Material. In Section D.2.1,

we give parameter estimates of the Haver-Winterstein (HW) distribution as referred

to in Section 4.3. In Sections D.3-D.3.4, we give the details of the calculations that

support the arguments in Section 4.3. Finally, in Section D.4 one can �nd the math-

ematical derivations of the results stated in of Section 4.4.

D.2 Supplementary Material

D.2.1 HW model parameters

See Table D.2.1.

D.3 Details on calculations for the HW distribution

Let (X, Y ) follow the HW model, see Section 4.3, with 0 < µ2 < 0.5 and 2µ2 < k. The

goal is to calculate the asymptotic behaviour of joint probabilities P(X > F−1
X (p), Y >

148
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Parameter α θ u k λ

0.573 0.893 3.803 1.550 2.908

Parameter µ0 µ1 µ2 σ0 σ1 σ2

1.134 0.892 0.225 0.005 0.120 0.455

Table D.2.1: Parameter estimates of the joint probability density function of signi�-

cant wave height HS (m) and wave period Tp (s) for the Northern North Sea (Haver

and Winterstein, 2009).

F−1
Y (p)) when p tends to 1 where FX and FY denote the distribution functions of the

random variables X and Y , respectively. First, we evaluate the distribution function

of Y at large values such that we can calculate F−1
Y (p). After, we compute joint

probabilities, like P(XE > u, YE > u), whereXE and YE denoteX and Y , respectively,

on exponential margins, i.e., XE = − log(1− FX(X)) and YE = − log(1− FY (Y )).

We write down an analytical expression for the survival function F Y of Y

F Y (y) := P(Y > y) =

∫ ∞
0

Φ

(
log y − µ(x)

σ(x)

)
fX(x) dx (D.3.1)

where µ(x) and σ(x) are de�ned in the main paper. We remark that we need to

evaluate F Y at large y. To that end, we denote py(x) := (log y− µ(x))/σ(x), and the

integrand

gy(x) := Φ (py(x)) fX(x). (D.3.2)

As seen in Figure 4.3.1, the integrand gy has two local maxima for y large enough.

Hence, Proposition 4.2.2 is not directly applicable. However, we can use the propo-

sition to indirectly prove a lower bound for the intergal (D.3.1). Next, it is straight-

forward to �nd an upper bound for the integral with the same rate of decay as the

proven lower bound.

We adopt the following set of steps: (a) we prove that there exist (at least) two

local maxima x∗y and x∗∗y , and �nd expressions for both. If there are more then x∗y

is the one with the smallest argument, and x∗∗y is the one with the second smallest

argument; (b) we show that we can apply part of Proposition 4.2.2 to the smaller of

the two local maxima, which gives a lower bound for the integral; (c) we de�ne an
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upperbound g̃y for the integrand gy, compute the integral of g̃y, and show that this

integral has the same rate of decay as the lower bound; (d) �nally, we combine the

results to get an asymptotic expression for F Y (y) as y →∞.

We need to start by working out the expressions for the local maxima. We do

this by considering all possible options, which yields �ve (types of) local extrema

0 < x0 < x1 < x2 < x3 < x4 < ∞ that satisfy the following: (i) as y → ∞,

py(x0)→∞ holds and x0 → 0; (ii) as y →∞, py(x1)→∞ holds and x1 → c ∈ (0,∞);

(iii) as y → ∞, py(x2) → ∞ holds and x2 → ∞; (iv) as y → ∞, py(x3) → c ∈ R

holds and x3 → ∞; (v) as y → ∞, py(x4) → −∞ ∈ R holds and x4 → ∞. It

is straightforward to show that x3 and x4 cannot exist. However, this argument is

unnecessary for the purpose of this section.

Finally, we calculate F Y (y) using Proposition 4.2.2. In particular, we will get

a lower bound by applying Proposition 4.2.2 around the local maximum x0 and we

derive an upper bound directly.

D.3.1 Finding local extrema

We consider cases (i), (ii) and (iii). These cases have in common that py(x∗) → ∞

for x∗ ∈ {x0, x1, x2}. We will write x∗ rather than either x0, x1, x2 to not distinguish

between arguments that are applicable to all three cases. To �nd an expression for

x∗ in closed form, we de�ne hy(x) := log gy(x) and we solve h′y(x∗) = 0. First, we

calculate h′y(x),

h′y(x) =
d

dx

(
log Φ (py(x)) + log fX(x)

)
=
−ϕ (py(x))

Φ (py(x))
· p′y(x) +

f ′X(x)

fX(x)
.

Since py(x∗) → ∞, we can simplify this expression by using Mills' ratio, which says

that
Φ(x)

ϕ(x)
=

1

x
− 1

x3
+O(x−5)
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as x → ∞, which implies ϕ(x)/Φ(x) = x + x−1 + O(x−3) as x → ∞. Moreover, we

can write

p′y(x) =
d

dx

(
log y − µ(x)

σ(x)

)
= −(log y − µ(x)) · σ

′(x)

σ(x)2
− µ′(x)

σ(x)

= −py(x) · σ
′(x)

σ(x)
− µ′(x)

σ(x)
.

So,

h′y(x∗) = −
(
py(x∗) +

1

py(x∗)
+O

(
py(x∗)

−3
))
·
(
−py(x∗) ·

σ′(x∗)

σ(x∗)
− µ′(x∗)

σ(x∗)

)
+
f ′X(x∗)

fX(x∗)

= py(x∗)
2 · σ

′(x∗)

σ(x∗)
+ py(x∗) ·

µ′(x∗)

σ(x∗)
+
σ′(x∗)

σ(x∗)
+

µ′(x∗)

py(x∗)σ(x∗)

+O

(
σ′(x∗)

py(x∗)2σ(x∗)
+

µ′(x∗)

py(x∗)3σ(x∗)

)
+
f ′X(x∗)

fX(x∗)

as y → ∞. We now �ll in the parametric forms for µ and σ. We can then simplify

this expression to

h′y(x∗) =
(log y − µ0 − µ1x

µ2
∗ )2 · −1

2
σ1σ2 exp (−σ2x∗) (σ0 + σ1 exp(−σ2x∗))

−1/2

(σ0 + σ1 exp(−σ2x∗))3/2

+
(log y − µ0 − µ1x

µ2
∗ )µ1µ2x

µ2−1
∗

σ0 + σ1 exp(−σ2x∗)

−
1
2
σ1σ2 exp(−σ2x∗)(σ0 + σ1 exp(−σ2x∗))

−1/2

(σ0 + σ1 exp(−σ2x∗))1/2

+
µ1µ2x

µ2−1
∗

log y − µ0 − µ1x
µ2
∗

+O

(
xµ2−1
∗

(log y − µ0 − µ1x
µ2
∗ )3

+
exp(−σ2x∗)

(log y − µ0 − µ1x
µ2
∗ )2

)
+
f ′X(x∗)

fX(x∗)

=− (log y − µ0 − µ1x
µ2
∗ )2 · σ1σ2 exp (−σ2x∗)

2(σ0 + σ1 exp(−σ2x∗))2

+
(log y − µ0 − µ1x

µ2
∗ )µ1µ2x

µ2−1
∗

σ0 + σ1 exp(−σ2x∗)
− σ1σ2 exp(−σ2x∗)

2(σ0 + σ1 exp(−σ2x∗))

+
µ1µ2x

µ2−1
∗

log y − µ0 − µ1x
µ2
∗

+O

(
xµ2−1
∗

(log y − µ0 − µ1x
µ2
∗ )3

+
exp(−σ2x∗)

(log y − µ0 − µ1x
µ2
∗ )2

)
+
f ′X(x∗)

fX(x∗)
.
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Since, h′y(x∗) = 0 for all y, we can let y →∞, to further simplify

0 = lim
y→∞

h′y(x∗)

= lim
y→∞

(
− log2 y · σ1σ2 exp(−σ2x∗)

2(σ0 + σ1 exp(−σ2x∗))2

+ log y ·
(

(µ0 + µ1x
µ2
∗ )σ1σ2 exp (−σ2x∗)

(σ0 + σ1 exp(−σ2x∗))2
+

µ1µ2x
µ2−1
∗

σ0 + σ1 exp(−σ2x∗)

)
− (µ0 + µ1x

µ2
∗ )µ1µ2x

µ2−1
∗

σ0 + σ1 exp(−σ2x∗)
− σ1σ2 exp(−σ2x∗)

2(σ0 + σ1 exp(−σ2x∗))

− (µ0 + µ1x
µ2
∗ )2 · σ1σ2 exp (−σ2x∗)

2(σ0 + σ1 exp(−σ2x∗))2
+

µ1µ2x
µ2−1
∗

log y − µ0 − µ1x
µ2
∗

+
f ′X(x∗)

fX(x∗)

)
.

(D.3.3)

We now split up the analysis into the three cases: (i) x∗ = x0 → 0; (ii) x∗ = x1 →

c ∈ (0,∞); (iii) x∗ = x2 →∞.

Case (i): x∗ = x0 → 0

In this case, there must exist a y′ > 0 such that for all y > y′, x0(y) < u. So, let

y > y′, then
f ′X(x0)

fX(x0)
= − log x0 − θ

x0α2
− 1

x0

.

Filling in x∗ = x0 simpli�es equation (D.3.3) to

lim
y→∞

(
− log2 y · σ1σ2

2(σ0 + σ1)2
+ log y ·

(
µ0σ1σ2

(σ0 + σ1)2
+
µ1µ2x

µ2−1
0

σ0 + σ1

)
− µ0µ1µ2x

µ2−1
0

σ0 + σ1

− σ1σ2

2(σ0 + σ1)
− µ2

0σ1σ2

2(σ0 + σ1)2
+
µ1µ2x

µ2−1
0

log y
− log x0 − θ

x0α2
− 1

x0

)
= 0.

(D.3.4)

Because 0 < µ2 < 0.5, the dominating terms within this limit are of the order log2(y)

and log y · xµ2−1
0 . Indeed, (log x0)/x0 is dominated by both of these terms since, we

must eventually have x2µ2−2
0 > (log x0)/x0. So x0 must satisfy as y →∞

− log y · σ1σ2

2(σ0 + σ1)
+ log y · µ1µ2 · xµ2−1

0 = O

(
log x0

x0 log y

)
.

Finally, we derive the following asymptotic expression for x0 as y →∞

x0 =

(
σ1σ2

2µ1µ2(σ0 + σ1)

)− 1
1−µ2
· (log y)

− 1
1−µ2 +O

(
log−2(y)

)
. (D.3.5)
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We will later show that h′′y(x0) < 0. So, indeed x0 corresponds to a local maximum.

Case (ii): x∗ = x1 → c ∈ (0,∞)

In this case, equation (D.3.3) is equivalent to

lim
y→∞
−c1 log2 y + c2 log y − c3 = 0

where

0 < c1 =
σ1σ2 exp(−σ2c)

2(σ0 + σ1 exp(−σ2c))2

0 < c2 =
(µ0 + µ1c

µ2)σ1σ2 exp (−σ2c)

(σ0 + σ1 exp(−σ2c))2
+

µ1µ2c
µ2−1

σ0 + σ1 exp(−σ2c)

0 < c3 =
(µ0 + µ1c

µ2)µ1µ2c
µ2−1

σ0 + σ1 exp(−σ2c)
+

σ1σ2 exp(−σ2x∗)

2(σ0 + σ1 exp(−σ2x∗))

+
(µ0 + µ1c

µ2)2 · σ1σ2 exp (−σ2c)

2(σ0 + σ1 exp(−σ2c))2
+

µ1µ2c
µ2−1

log y − µ0 − µ1cµ2
− f ′X(c)

fX(c)
.

We can now clearly see that equation (D.3.3) cannot be valid under this assumption.

We conclude that x1 does not exist.

Case (iii): x∗ = x2 →∞

Finally, let x∗ = x2 → ∞. In this case, there must exist a y′′ > 0 such that for all

y > y′′, x0(y) > u. So, let y > y′′, then

f ′X(x0)

fX(x0)
=
k − 1

x∗
− kxk−1

∗
λk

.

Now, equation (D.3.3) is equivalent to

lim
y→∞

(
− log2 y · σ1σ2 exp(−σ2x2)

2σ2
0

+ log y ·
(

(µ0 + µ1x
µ2
2 )σ1σ2 exp (−σ2x2)

σ2
0

+
µ1µ2x

µ2−1
2

σ0

)
− (µ0 + µ1x

µ2
2 )µ1µ2x

µ2−1
2

σ0

− σ1σ2 exp(−σ2x2)

2σ0

− (µ0 + µ1x
µ2
2 )2 · σ1σ2 exp (−σ2x2)

2σ2
0

+
µ1µ2x

µ2−1
2

log y − µ0 − µ1x
µ2
2

+
k − 1

x2

− kxk−1
2

λk

)
= 0.

(D.3.6)
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The dominating terms in equation (D.3.6) are of the order log2 y, log y · xµ2−1
2 and

xk−1
2 . So, we can simplify equation (D.3.6) to

lim
y→∞
− log2 y · σ1σ2 exp(−σ2x2)

2σ2
0

+ log y · µ1µ2x
µ2−1
2

σ0

− kxk−1
2

λk
= 0. (D.3.7)

We note that the �rst and third terms have a negative sign, and the second has a

positive sign. We note that we cannot simplify this further without considering the fol-

lowing two options as y →∞: (a) exp(−σ2x2) log2 y � xk−1
2 ; (b) exp(−σ2x2) log2 y �

xk−1
2 . Both of these cases will yield a solution to equation (D.3.7) which we call x2a

and x2b respectively.

Case (iii-a): x∗ = x2a →∞ and exp(−σ2x2a) log2 y � xk−1
2a

We derive from equation (D.3.7) that x2a must satisfy as y →∞

− log y · σ1σ2

2σ0

exp(−σ2x2a) + µ1µ2x
µ2−1
2a = O

(
xk−1

2a

log y

)
.

So, x2a must satisfy as y →∞

xµ2−1
2a exp(σ2x2a) = log y ·

(
σ1σ2

2σ0µ1µ2

+O

(
xk−1

2a

exp(−σ2x2a) log2 y

))
.

Finally, we derive the following asymptotic expression for x2a as y →∞

x2a =
log log y

σ2

+O(log log log y). (D.3.8)

Case (iii-b): x∗ = x2b →∞ and exp(−σ2x2a) log2 y � xk−1
2a

We derive from equation (D.3.7) that x2b must satisfy as y →∞

log y · µ1µ2

σ0

− kxk−µ22

λk
= O

(
log2 y exp(−σ2x2)x1−µ2

2

)
.

So, x2b must satisfy as y →∞

x2b =

(
λkµ1µ2

kσ0

) 1
k−µ2
· (log y)

1
k−µ2 +O

(
(log y)

1
k−µ2

− k−2µ2
k−µ2

)
. (D.3.9)
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D.3.2 Identi�ying local maxima and local minima

In the previous section, we have found expressions for local extrema, see

equations (D.3.5), (D.3.8) and (D.3.9). In this section, we will show by using the

second derivative h′′y that x0 and x2b correspond to local maxima and that x2a corre-

sponds to a local minimum.

We calculated before

h′y(x) =
−ϕ (py(x))

Φ (py(x))
· p′y(x) +

f ′X(x)

fX(x)
.

So,

h′′y(x) = −
ϕ (py(x))2 p′y(x)2

Φ (py(x))2 −
ϕ′ (py(x)) p′y(x)2

Φ (py(x))
−
ϕ (py(x)) p′′y(x)

Φ (py(x))
− f ′X(x)2

fX(x)2
+
f ′′X(x)

fX(x)
.

We can simplify h′′y(x∗) for x∗ ∈ {x0, x2a, x2b} as y → ∞ by using the identities

ϕ(py(x∗))/Φ(py(x∗)) ∼ py(x∗) + py(x∗)
−1 as y → ∞ and ϕ′(x) = −xϕ(x). We get as

y →∞

h′′y(x∗) ∼ −
(
py(x∗) +

1

py(x∗)

)2

p′y(x∗)
2 +

(
py(x∗) +

1

py(x∗)

)
py(x∗)p

′
y(x∗)

2

−
(
py(x∗) +

1

py(x∗)

)
p′′y(x∗)−

f ′X(x∗)
2

fX(x∗)2
+
f ′′X(x∗)

fX(x∗)

∼ −p′y(x∗)2 −
p′y(x∗)

2

py(x∗)2
− py(x∗)p′′y(x∗)−

p′′y(x∗)

py(x∗)
− f ′X(x∗)

2

fX(x∗)2
+
f ′′X(x∗)

fX(x∗)

∼ −p′y(x∗)2 − py(x∗)p′′y(x∗)−
f ′X(x∗)

2

fX(x∗)2
+
f ′′X(x∗)

fX(x∗)
.

We work out p′y(x)2 and p′′y(x) in terms of py(x)

p′y(x)2 =

(
−py(x) · σ

′(x)

σ(x)
− µ′(x)

σ(x)

)2

= py(x)2 · σ
′(x)2

σ(x)2
+ py(x) · 2σ′(x)µ′(x)

σ(x)2
+
µ′(x)2

σ(x)2

and

p′′y(x) =
d2

dx2

(
log y − µ(x)

σ(x)

)
= −µ

′′(x)

σ(x)
+ 2 · µ

′(x)σ′(x)

σ(x)2
+ (log y − µ(x)) ·

(
2σ′(x)2

σ(x)3
− σ′′(x)

σ(x)2

)
= py(x) ·

(
2σ′(x)2

σ(x)2
− σ′′(x)

σ(x)

)
+ 2 · µ

′(x)σ′(x)

σ(x)2
− µ′′(x)

σ(x)
.
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So, as y →∞

h′′y(x∗) ∼ −py(x∗)2 · σ
′(x∗)

2

σ(x∗)2
− py(x∗) ·

2σ′(x∗)µ
′(x∗)

σ(x∗)2
− µ′(x∗)

2

σ(x∗)2

− py(x∗)
(
py(x∗) ·

(
2σ′(x∗)

2

σ(x∗)2
− σ′′(x∗)

σ(x∗)

)
+ 2 · µ

′(x∗)σ
′(x∗)

σ(x∗)2
− µ′′(x∗)

σ(x∗)

)
− f ′X(x∗)

2

fX(x∗)2
+
f ′′X(x∗)

fX(x∗)

∼ −py(x∗)2 ·
(

3σ′(x∗)
2

σ(x∗)2
− σ′′(x∗)

σ(x∗)

)
− py(x∗)

(
4µ′(x∗)σ

′(x∗)

σ(x∗)2
− µ′′(x∗)

σ(x∗)

)
− µ′(x∗)

2

σ(x∗)2
− f ′X(x∗)

2

fX(x∗)2
+
f ′′X(x∗)

fX(x∗)
.

For x = x0, we have

µ′(x0) = µ1µ2x
µ2−1
0 ,

µ′′(x0) = −µ1µ2(1− µ2)xµ2−2
0 ,

σ(x0) ∼
√
σ0 + σ1,

σ′(x0) ∼ −σ1σ2/(2
√
σ0 + σ1),

σ′′(x0) ∼ σ2
1σ

2
2/(4(σ0 + σ1)3/2), and

py(x0) ∼ log y/
√
σ0 + σ1.

So,

h′′y(x0) ∼ − log2 y

σ0 + σ1

·
(

3σ2
1σ

2
2

4(σ0 + σ1)2
− σ2

1σ
2
2

4(σ0 + σ1)2

)
+

log y√
σ0 + σ1

(
2µ1µ2x

µ2−1
0 · σ1σ2

(σ0 + σ1)3/2
− µ1µ2(1− µ2)xµ2−2

0√
σ0 + σ1

)
− µ2

1µ
2
2x

2µ2−2
0

σ0 + σ1

+
1

x2
0

+
log x0 − θ
x2

0α
2
− 1

x2
0α

2

∼ − σ2
1σ

2
2

2(σ0 + σ1)3
· log2 y − µ1µ2(1− µ2)

σ0 + σ1

· log y · xµ2−2
0

− µ2
1µ

2
2

σ0 + σ1

· x2µ2−2
0 +

1

x2
0

+
log x0 − θ
x2

0α
2
− 1

x2
0α

2
.

We combine this result with equation (D.3.5), to get

h′′y(x0) ∼ −µ1µ2(1− µ2)

σ0 + σ1

· log y · xµ2−2
0 ∼ −C (log y)

2+ 1
1−µ2

with

C =
µ1µ2(1− µ2)

σ0 + σ1

·
(

σ1σ2

2µ1µ2(σ0 + σ1)

)1+ 1
1−µ2

.
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We conclude that h′′y(x0) < 0 and that indeed x0 corresponds to a local maximum.

For x = x2∗ with ∗ = a, b, we have

µ′(x2∗) = µ1µ2x
µ2−1
2∗ ,

µ′′(x2∗) = −µ1µ2(1− µ2)xµ2−2
2∗ ,

σ(x2∗) ∼
√
σ0,

σ′(x2∗) ∼ −σ1σ2/(2
√
σ0) · exp(−σ2x2∗),

σ′′(x2∗) ∼ σ1σ
2
2/(2
√
σ0) · exp(−σ2x2∗), and

py(x2b) ∼ log y/
√
σ0.

So,

h′′y(x2∗) ∼ −
log2 y

σ0

·
(

3σ2
1σ

2
2 · exp(−2σ2x2∗)

4σ2
0

− σ1σ
2
2 · exp(−σ2x2∗)

2σ0

)
+

log y
√
σ0

(
2µ1µ2x

µ2−1
2∗ · σ1σ2 exp(−σ2x2∗)

σ
3/2
0

− µ1µ2(1− µ2)xµ2−2
2∗√

σ0

)

− µ2
1µ

2
2x

2µ2−2
2∗

σ0

− k − 1

x2
2∗
− k(k − 1)xk−2

2∗
λk

.

For x2∗ = x2a, we simplify

h′′y(x2a) ∼
σ1σ

2
2

2σ2
0

· log2 y · exp(−σ2x2a)

which con�rms that x2a corresponds to a local minimum. Finally, for x2∗ = x2b, we

simplify

h′′y(x2b) ∼ −
µ1µ2(1− µ2)xµ2−2

2b

σ0

· log y − k(k − 1)xk−2
2b

λk

∼ −

µ1µ2(1− µ2)
(
λkµ1µ2
kσ0

) µ2−2
k−µ2

σ0

+
k(k − 1)

(
λkµ1µ2
kσ0

) k−2
k−µ2

λk

 (log y)
k−2
k−µ2

∼ −
(
µ1µ2(1− µ2)

σ0

kσ0

λkµ1µ2

+
k(k − 1)

λk

)
·
(
λkµ1µ2

kσ0

) k−2
k−µ2

(log y)
k−2
k−µ2

∼ − k

λk
(k − µ2) ·

(
λkµ1µ2

kσ0

) k−2
k−µ2

(log y)
k−2
k−µ2 .

Finally, it is clear to see that h′′y(x2b) < 0 which con�rms that x2b is a local maximum.
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D.3.3 Calculating the survival function of Y

We will apply Proposition 4.2.2 to gy from equation (D.3.2), where we �nd that k0 = 2

and x∗y = x0(y). This gives us a lower bound for F Y (y) as y → ∞. We start with

evaluating gy(x0) and after, we check the smoothness assumption of the proposition

for k0 = 2. Finally, we derive an upper bound that is of the same order as the lower

bound. Hence, we can combine the lower and upper bound to get an estimate for the

rate of convergence to 0 of F Y (y).

Before, we evaluate gy(x0) and h′′y(x0), we �rst simplify py(x0) and py(x0) as y →

∞. We have

py(x0) =
log y√
σ0 + σ1

− µ0√
σ0 + σ1

+O
(

(log y)
− µ2

1−µ2

)
and

1

py(x0)
=

√
σ0 + σ1

log y
+O

(
(log y)

−2− µ2
1−µ2

)
=

√
σ0 + σ1

log y
+O

(
(log y)−2

)
.

So,

gy(x0) = ϕ

(
log y − µ(x0)

σ(x0)

)
·

(
σ(x0)

log y − µ(x0)
+O

((
σ(x0)

log y − µ(x0)

)3
))

fX(x0)

=
1√
2π

exp

{
−1

2

(
log y − µ(x0)

σ(x0)

)2
}

·

(
σ(x0)

log y − µ(x0)
+O

((
σ(x0)

log y − µ(x0)

)3
))

exp
{
− (log x0−θ)2

2α2

}
√

2πx0α

=

√
σ0 + σ1

2πα
exp

{
−1

2

(
log y√
σ0 + σ1

− µ0√
σ0 + σ1

+O
(

(log y)
− µ2

1−µ2

))2
}

·
1

log y
+O ((log y)−2)(

σ1σ2
2µ1µ2(σ0+σ1)

)− 1
1−µ2 · (log y)

− 1
1−µ2 +O

(
log−2(y)

)

· exp

−
(

log

[(
σ1σ2

2µ1µ2(σ0+σ1)

)− 1
1−µ2 · (log y)

− 1
1−µ2 +O

(
log−2(y)

)]
− θ
)2

2α2


= exp

{
− 1

2(σ0 + σ1)

(
log2 y − 2µ0 log y +O

(
(log y)

1−2µ2
1−µ2

))}
.
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Next, we check the assumptions of Proposition 4.2.2. First, we clearly have

h′y(x0)(−h′′y(x0))−1/2 = 0. Secondly, we have one clearly dominating term in the

second derivative of hy near x0, so it is enough to show that

lim
y→∞

h′′y

(
x0 + x√

−h′′y (x0)

)
h′′y(x0)

= lim
x→0

py

(
x0 + x√

−h′′y (x0)

)
py(x0)

·
µ′′
(
x0 + x√

−h′′y (x0)

)
µ′′ (x0)

· σ(x0)

σ

(
x0 + x√

−h′′y (x0)

)
is equal to 1 for any �xed x. Since (−h′′y(x0))−1/2 � x0 as y → ∞ and since py and

σ are di�erentiable at 0 = limy→∞ x0, it is clear that the �rst and third term of the

equation above tend to 1. Since µ′′(0) does not exist, we would need to work out the

term involving the second derivative of µ more carefully. We get

µ′′
(
x0 + x√

−h′′y (x0)

)
µ′′ (x0)

=

1 +
x

x0

√
−h′′y(x0)

µ2−2

. (D.3.10)

We note that x0

√
−h′′y(x0) is asymptotically equal to a constant times (log y)

1−2µ2
2−2µ2 .

Since µ2 < 0.5, the second term within the brackets in equation (D.3.10) tends to 0

when y →∞. This yields that the right hand side of equation (D.3.10) converges to

1 as y → ∞. This is enough to show the smoothness assumption of the proposition.

We get that for any �xed x̃ > 0, there exists a constant C1(x̃) such that∫ ∞
0

gy(x) dx ≥
∫ x0+ x̃√

−h′′y (x0)

x0− x̃√
−h′′y (x0)

gy(x) dx

≥ C1(x̃)gy(x0) · 1√
−h′′y(x0)

(as y →∞) = exp

{
− 1

2(σ0 + σ1)

[
log2 y − 2µ0 log y +O

(
(log y)

1−2µ2
1−µ2

)]}
.

(D.3.11)

Next, we evaluate gy(x2b) but �rst we work out

py(x2b) =
log y
√
σ0

+O
(

(log y)
µ2

k−µ2

)
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and
1

py(x0)
=

√
σ0

log y
+O

(
(log y)

−2+
µ2

k−µ2

)
.

So,

gy(x2b) = ϕ

(
log y − µ(x2b)

σ(x2b)

)(
σ(x2b)

log y − µ(x2b)
+O

(
σ(x2b)

3

(log y − µ(x2b))3

))
fX(x2b)

= ϕ

(
log y
√
σ0

+O
(

(log y)
µ2

k−µ2

))
·
√
σ0

log y
·
(

1 +O
(

(log y)
−1+

µ2
k−µ2

))
· k
λk

(
λkµ1µ2

kσ0

) k−1
k−µ2

(log y)
k−1
k−µ2

(
1 +O

(
(log y)

− k−2µ2
k−µ2

))

· exp

−
(
σ1λkµ1µ2

kσ2
0

) k
k−µ2 (log y)

k
k−µ2

λk

(
1 +O((log y)

− k−2µ2
k−µ2

)
= exp

{
− 1

2σ0

log2(y) +O
(

(log y)
k

k−µ2

)}
.

In particular, we �nd that gy(x0) > gy(x2b) for y large enough. We have now all tools

available to �nd an upperbound that gives the result directly,

gy(x) ≤ g̃y(x) :=

max{gy(x) : x ∈ [0, x2]} for 0 ≤ x ≤ x2,

fX(x) for x > x2.

Since gy(x2b) ≤ gy(x0) for y large enough, we have derived that the maximum over

the interval [0, x2] is attained at x0. We here note that we do not need to show that

x3 and x4 cannot exist as per de�nition, as they would clearly need to be larger than

x2 if they exist. So, as y →∞∫ ∞
0

gy(x) dx ≤
∫ x2b

0

gy(x0) dx+

∫ ∞
x2b

fX(x) dx = x2bgy(x0) + FX(x2b)

=

(
λkµ1µ2

kσ0

) 1
k−µ2 (

1 +O
(

(log y)
− k−2µ2
k−µ2

))
(log y)

1
k−µ2 (D.3.12)

· exp

{
− 1

2(σ0 + σ1)

[
log2 y − 2µ0 log y +O

(
(log y)

1−2µ2
1−µ2

)]}
+ exp

{
−λ−k

(
λkµ1µ2

kσ0

) k
k−µ2

(log y)
k

k−µ2

[
1 +O

(
(log y)

− k−2µ2
k−µ2

)]}

= exp

{
− 1

2(σ0 + σ1)

[
log2 y − 2µ0 log y +O

(
(log y)

1−2µ2
1−µ2

)]}
. (D.3.13)
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Now, combining equation (D.3.11) and equation (D.3.13), yields as y →∞

P(Y > y) =

∫ ∞
0

gy(x) dx = exp

{
− 1

2(σ0 + σ1)

[
log2 y − 2µ0 log y +O

(
(log y)

1−2µ2
1−µ2

)]}
.

D.3.4 Calculating η

We use the previous work to transform Y to YE on standard exponential margins.

Thus

YE = F−1
E (FY (Y )) = − log(1− FY (Y ))

= − log

(
exp

{
− 1

2(σ0 + σ1)

[
log2 Y − 2µ0 log Y +O

(
(log Y )

1−2µ2
1−µ2

)]})
=

1

2(σ0 + σ1)

(
log2 Y − 2µ0 log Y +O

(
(log Y )

1−2µ2
1−µ2

))
.

So, the function T that transforms log Y to YE is given by

T (y) =
y2

2(σ0 + σ1)
− µ0y

σ0 + σ1

+O
(
y

1−2µ2
1−µ2

)
,

as y → ∞. In calculating the extremal dependence measures, we need to solve

T (y) = u for large y. We get

T−1(u) =
√

2(σ0 + σ1)u+O(1)

as u → ∞. We write down a formula for χ = limu→∞ P(YE > u | (X/λ)k > u) as

u→∞

P(YE > u | (X/λ)k > u) = eu
∫ ∞
λu1/k

P(T (log Y ) > u | X = x)fX(x) dx

= eu
∫ ∞
λu1/k

P(log Y > T−1(u) | X = x)fX(x) dx

= eu
∫ ∞
λu1/k

Φ

(
T−1(u)− µ(x)

σ(x)
| X = x

)
· kx

k−1

λk
exp

{
−
(x
λ

)k}
dx.

In particular, we have for I = [λu1/k, λ(2 + σ1/σ0)1/k]

P(YE > u | (X/λ)k > u) (D.3.14)

> eu
∫
I

Φ

(
T−1(u)− µ(x)

σ(x)
| X = x

)
· kx

k−1

λk
exp

{
−
(x
λ

)k}
dx. (D.3.15)
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For ease of presentation, we de�ne pu(x) = [T−1(u) − µ(x)]/σ(x). Similar to the

previous section, we de�ne gu as the integrand and hu := log gu as the log of the

integrand, both are speci�ed only on the integration domain I. For x in the integration

domain, we have

hu(x) := log
(
Φ(pu(x))fX(x)

)
.

We apply Proposition 4.2.2 to bound integral (D.3.14) from below. In particular, we

�rst need to �nd the mode of hu over the integration domain. Let xu be a sequence

such that for each u, xu lies in the integration domain. So, then we can write x =

Cuu
1/k + o(u1/k) for some bounded set of constants Cu ∈ [λ, λ(2 + σ1/σ0)]. We have

h′u(x) = −ϕ(pu(x))

Φ(pu(x))
· p′u(x)− k − 1

x
− kxk−1

λk

=
ϕ(pu(x))

Φ(pu(x))
·
(
pu(x) · σ

′(x)

σ(x)
+
µ′(x)

σ(x)

)
− k − 1

x
− kxk−1

λk
.

Since, pu(x) ∼
√

2(1 + σ1/σ0)u→∞ as u→∞, we simplify

h′u(x) ∼

√
2

(
1 +

σ1

σ0

)
u ·

(√
2

(
1 +

σ1

σ0

)
u · −σ1σ2e

−σ2(Cuu1/k+o(u1/k))

2σ0

+
µ1µ2

(
Cuu

1/k + o(u1/k)
)µ2−1

√
σ0

)

− k − 1

Cuu1/k + o(u1/k)
−
k
(
Cuu

1/k + o(u1/k)
)k−1

λk
.

∼ −kC
k−1
u u1−1/k

λk
.

In particular, we derive that h′u(x) < 0 as u → ∞. So, the maximum of hu over

the integration domain must be attained at the boundary and hence is given by

x0 = λu1/k. In particular, we get h′u(x0) ∼ −ku1−1/k/λ. We now will show that we

can apply Proposition 4.2.2 with k0 = 1. We have, as u→∞,

hu(λu
1/k) = −1

2
log(2π)− 1

2
pu(λu

1/k)2 − log pu(λu
1/k) + log fX(λu1/k)

= −1

2
log(2π)− 1

2

(
T−1(u)− µ(λu1/k)

σ(λu1/k)

)2

− log

(
T−1(u)− µ(λu1/k)

σ(λu1/k)

)
+ log

(
ku(k−1)/k

λ

)
− u

= −
(

2 +
σ1

σ0

)
u+O

(
u1/2+µ2/k

)
.
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Next, we check the smoothness assumption of Proposition 4.2.2 with k0 = 1. Let

δ > 0 and 0 ≤ x ≤ δ. It is now enough to show that the limit of u to in�nity of the

following expression tends to 1. We have

lim
u→∞

h′u

(
λu1/k + x

−h′u(λu1/k)

)
h′u(λu

1/k)
= lim

u→∞

(
λu1/k + λx

ku1−1/k

)k−1

u(k−1)/k
= lim

u→∞

(
λ+

λx

k

)k−1

= 1.

This is enough to show the smoothness assumption of Proposition 4.2.2 with k0 = 1.

We conclude that for each x̃, there exists a constant C1(x̃) such that∫ ∞
λu1/k

gu(x) dx ≥
∫ λu1/k+ x̃

−h′u(x0)

λu1/k
gu(x) dx ≥ C1(x̃)gu(λu

1/k) · 1

−h′u(λu1/k)

(as u→∞)
= e

−
(

2+
σ1
σ0

)
u+O

(
u

1
2+

µ2
k

)
. (D.3.16)

To get an upper bound, we use the following crude upper bound g̃u for gu,

gu(x) ≤ g̃u(x) :=

 gu(λu
1/k) for λu1/k ≤ x ≤ λ

(
2 + σ1

σ0

)1/k

u1/k,

fX(x) for x > λ
(

2 + σ1
σ0

)1/k

u1/k.

We get as u→∞,∫ ∞
λu1/k

gu(x) dx ≤

(
λ

(
2 +

σ1

σ0

)1/k

u1/k − λu1/k

)
gu(λu

1/k) (D.3.17)

+ FX

(
λ

(
2 +

σ1

σ0

)1/k

u1/k

)

= exp

(
−
(

2 +
σ1

σ0

)
u+O

(
u1/2+µ2/k

))
+ exp

(
−
(

2 +
σ1

σ0

)
u

)
= exp

(
−
(

2 +
σ1

σ0

)
u+O

(
u1/2+µ2/k

))
. (D.3.18)

Combining equations (D.3.16) and (D.3.18), we get

P(YE > u | (X/λ)k > u) =

∫ ∞
λu1/k

gu(x) dx = exp

(
−
(

2 +
σ1

σ0

)
u+O

(
u1/2+µ2/k

))
as u→∞. From this expression, it is straightforward to see that ξ = 0 and

η−1 = 2 +
σ1

σ0

.
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D.4 Details on Calculations for the Exact HT model

D.4.1 Introduction

Assume model (4.4.3) for random vector (X, Y ) with H as in equation (4.4.4). We

recall that (X, Y ) is a random vector such that X and Y both have standard Laplace

margins. Moreover,there exist 0 ≤ α ≤ 1, β < 1 and u > 0 such that for x > u

P(Y > y | X = x) = H

(
y − αx
xβ

)
,

holds for all y ∈ R with

H (z) = exp(−γzδ)1{z > 0}+ 1{z ≤ 0}

for γ > 0 and δ ≥ (1 − β)−1. In this section, we work out the value for η when

0 < α < 1, β > 0 and δ = (1− β)−1. The other cases are signi�cantly easier to work

out and the results of these cases are stated in the main paper.

D.4.2 Calculating η

We write

P(Y > u,X > u) =

∫ ∞
u

H

(
u− αx
xβ

)
fX(x) dx

=
1

2

∫ u/α

u

exp

(
−γ
(
u− αx
xβ

)δ
− x

)
dx+

1

2

∫ ∞
u/α

exp(−x) dx

=
1

2

∫ u/α

u

exp

(
−γ
(
u− αx
xβ

)δ
− x

)
dx+

1

2
exp

(
−u
α

)
.

In general, we cannot evaluate the �rst integral in closed form for �nite u. However,

we can bound it from below using Proposition 4.2.2. A bound from above can again

be found directly. We de�ne the integration domain I = [u, u/α],

gu(x) := exp

(
−γ
(
u− αx
xβ

)δ
− x

)

for x ∈ I and hu := log gu on I. We now need to determine whether or not the mode

x0 := x0(u) of the integrand gu over the integration domain I lies on the boundary of
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I or in the interior of I. We assume that x0 lies in the interior of I, then we have

0 = h′u(x0) = γδ

(
u− αx0

xβ0

)δ−1

·
(
α

xβ0
+

(u− αx0)β

xβ+1
0

)
− 1

= γδβ(u− αx0)δx−βδ−1
0 + γδα(u− αx0)δ−1x−βδ0 − 1

= γδβ(u− αx0)δx−δ0 + γδα(u− αx0)δ−1x−δ+1
0 − 1

and we derive that

β(u− αx0)δ + α(u− αx0)δ−1x0 =
1

γδ
xδ0. (D.4.1)

Since, we work under the premise that x0 ∈ (u, u/α), we are only interested in �nding

solutions that satisfy x0 = c̃u + o(u) as u → ∞ for some c̃ ∈ [1, 1/α], otherwise the

mode of hu is found at the boundary of the integration domain at u. We try x0 = cu

with c ∈ (0,∞) in equation (D.4.1), and we derive that this is an exact solution if c

solves

0 = γδ
(
β(1− αc)δ + αc(1− αc)δ−1

)
− cδ = γ(1− αc)δ−1 (δ − 1 + αc)− cδ. (D.4.2)

Since the right hand side is a continuous function of c for c ∈ [0, 1/α], we show by

the intermediate value theorem that c ∈ (0, 1/α) by inserting c = 0 and c = 1/α and

comparing signs of the right hand side of equation (D.4.2). Indeed, for c = 0, we have

that

γ(1− αc)δ−1 (δ − 1 + αc)− cδ = γ(δ − 1) > 0

and for c = 1/α, we have that

γ(1− αc)δ−1 (δ − 1 + αc)− cδ = −α−δ < 0.

We recall that we are only interested in the value for c if c ∈ (1, 1/α). Hence, let c = 1

in the right hand side of equation (D.4.2) to give

γδ
(
β(1− αc)δ + αc(1− αc)δ−1

)
− cδ = γ(1− α)δ−1 ((δ − 1) (1− α) + δα)− 1

= γ(1− α)δ−1(δ − 1 + α)− 1

which is negative if and only if γ(1 − α)δ−1(δ − 1 + α) < 1. We conclude that

c ∈ (0, 1) if and only if γ(1 − α)δ−1(δ − 1 + α) < 1 and c ∈ [1, 1/α) if and only
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if γ(1 − α)δ−1(δ − 1 + α) ≥ 1. We term these cases as Case (2a) and Case (2b),

respectively. In Case (2b), x0 lies in the interior of the integration domain I for large

enough u, and in Case (2a), the mode over the integration domain I is found at u on

the boundary.

We work out gu(x0) for both Case (2a) and (2b),

gu(x0) = exp

{
−γ
(
u− αx0

xβ0

)δ
− x0

}

= exp

{
−γ
(
u− α(cu+ o(u))

(cu+ o(u))β

)δ
− cu+ o(u)

}

= exp

{
−γuδ−βδ (1− αc+ o(1))δ

cβδ + o(1))
− cu+ o(u)

}
= exp

{
−
(
γ(1− αc)δ

cβδ
+ c

)
u+ o(u)

}
.

Next, we work out h′u(x0) in Case (2a)

h′u(x0) = γδβ(u− αu)δu−βδ−1 + γδα(u− αu)δ−1u−βδ − 1

= γ(1− α)δ−1 (δ − 1 + α)− 1.

By de�nition of Case (2a), we have that h′u(x0) < 0. Let C > 0 and |x| ≤ C, then as

u→∞

h′u

(
x0 −

x

h′u(x0)

)
= γδβ

(
u− α

(
x0 +

x

−h′u(x0)

))δ (
x0 +

x

−h′u(x0)

)−βδ−1

+ γδα

(
u− α

(
x0 +

x

−h′u(x0)

))δ−1(
x0 +

x

−h′u(x0)

)−βδ
− 1

= γδβ

(
u− αu− xα

1− γ(1− α)δ−1 (δ − 1 + α)

)δ
·
(
u+

x

1− γ(1− α)δ−1 (δ − 1 + α)

)−βδ−1

+ γδα

(
u− αu− xα

1− γ(1− α)δ−1 (δ − 1 + α)

)δ−1

·
(
u+

x

1− γ(1− α)δ−1 (δ − 1 + α)

)−βδ
− 1

= γδβ
(
uδ(1− α)δ +O

(
uδ−1

)) (
u−βδ−1 +O

(
u−βδ−2

))
+ γδα

(
uδ−1(1− α)δ−1 +O

(
uδ−2

)) (
u−βδ +O

(
u−βδ−1

))
− 1

= h′u(x0) +O
(
uδ−2−βδ) .
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So,

lim
u→∞

h′u

(
x0 + x

−h′u(x0)

)
h′u(x0)

= 1,

which is enough to show the smoothness assumption of Proposition 4.2.2 with k0 = 1.

We get that for any �xed x̃ > 0 there exist a C1(x̃) > 0 such that

P(X > u, Y > u) =

∫ u/α

u

gu(x) dx+
1

2
exp

{
−u
α

}
≥ 1

2

∫ x0+ x̃
−h′u(x0)

x0− x̃
−h′u(x0)

gu(x) dx+
1

2
exp

{
−u
α

}
≥ 1

2
C1(x̃)gu(x0) · 1

−h′u(x0)
+

1

2
exp

{
−u
α

}
≥ 1

2
C1(x̃) exp

{
−
(
γ(1− α)δ + 1

)
u+ o(u)

}
· 1

1− γ(1− α)δ−1 (δ − 1 + α)
+

1

2
exp

{
−u
α

}
= exp

{
−
(
γ(1− α)δ + 1

)
u+ o(u)

}
.

In the last step we used that γ(1−α)δ + 1 < 1/α holds, which can be directly derived

from the assumptions corresponding to Case (2b). Similarly to before, we can �nd an

upper bound rather straightforwardly using the following upperbound for gu(x)

gu(x) ≤ g̃u(x) :=

 gu(x0) for u ≤ x ≤ u/α,

fX(x) for x > u/α.

So,

P(X > u, Y > u) =

∫ u/α

u

gu(x) dx+
1

2
exp

{
−u
α

}
≤ u

(
1

α
− 1

)
gu(x0) +

1

2
exp

{
−u
α

}
= u

(
1

α
− 1

)
exp

{
−
(
γ(1− α)δ + 1

)
u+ o(u)

}
+

1

2
exp

{
−u
α

}
= exp

{
−
(
γ(1− α)δ + 1

)
u+ o(u)

}
.

We conclude that

P(X > u, Y > u) = exp
{
−
(
γ(1− α)δ + 1

)
u+ o(u)

}
,
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χ = 0 and

η =
(
γ(1− α)δ + 1

)−1
.

For Case (2a), we work out h′′u(x0) as u→∞

h′′u(x0) = −α2γδ(δ − 1)(u− αx0)δ−2x−βδ0 − 2αβγδ2(u− αx0)δ−1x−βδ−1
0

− βδ(βδ + 1)γ(u− αx0)δx−βδ−2
0

= −α2γδ(δ − 1)(u− α(cu+ o(u)))δ−2(cu+ o(u))−βδ

− 2αβγδ2(u− α(cu+ o(u)))δ−1(cu+ o(u))−βδ−1

− βδ(βδ + 1)γ(u− α(cu+ o(u)))δ(cu+ o(u))−βδ−2

= −
[
α2γδ(δ − 1)(1− αc)δ−2c−βδ + 2αβγδ2(1− αc)δ−1c−βδ−1

+ βδ(βδ + 1)γ(1− αc)δc−βδ−2
]
uδ−2−βδ + o

(
uδ−2−βδ)

= −βδ2γc−βδ−2(1− αc)δ−2
(
α2c2 + 2α(1− αc)c+ (1− αc)2

)
u−1 + o

(
u−1
)

= −βδ2γc−βδ−2(1− αc)δ−2u−1 + o
(
u−1
)

= −δ(δ − 1)γc−δ−1(1− αc)δ−2u−1 + o
(
u−1
)
.

Now, let C > 0 and |x| ≤ C, then we have x0 + x(−h′′u(x0))−1/2 = cu+ o(u). So,

h′′u

(
x0 +

x√
−h′′u(x0)

)
= h′′u (cu+ o(u)) .

So,

lim
u→∞

h′′u

(
x0 + x√

−h′′u(x0)

)
h′′u(x0)

= lim
u→∞

−δ(δ − 1)γc−δ−1(1− αc)δ−2u−1(1 + o(1))

−δ(δ − 1)γc−δ−1(1− αc)δ−2u−1(1 + o(1))
= 1,

which is enough to show the smoothness assumption of Proposition 4.2.2 with k0 = 1.

We get that for any �xed x̃ > 0 there exist a C1(x̃) > 0 such that as u→∞

P(X > u, Y > u) =

∫ u/α

u

gu(x) dx+
1

2
exp

{
−u
α

}
≥ 1

2

∫ x0+ x̃
−h′u(x0)

x0− x̃
−h′u(x0)

gu(x) dx

≥ 1

2
C1(x̃)gu(x0) · 1

−h′u(x0)

= exp

{
−
(
γ(1− αc)δ

cδ−1
+ c

)
u+ o(u)

}
.
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Similarly to before, we can �nd an upper bound rather straightforwardly,

P(X > u, Y > u) =

∫ u/α

u

gu(x) dx+
1

2
exp

{
−u
α

}
≤ u

(
1

α
− 1

)
gu(x0) +

1

2
exp

{
−u
α

}
= u

(
1

α
− 1

)
exp

{
−
(
γ(1− αc)δ

cβδ
+ c

)
u+ o(u)

}
+

1

2
exp

{
−u
α

}
= exp

{
−
(
γ(1− αc)δ

cδ−1
+ c

)
u+ o(u)

}
.

So,

P(X > u, Y > u) = exp

{
−
(
γ(1− αc)δ

cβδ
+ c

)
u+ o(u)

}
,

and we conclude that χ = 0 and

η =

(
γ(1− αc)δ

cδ−1
+ c

)−1

.

D.5 Supplementary examples

Here, we state without proof a list of results that I derived during the Ph.D. using

Proposition 4.2.2.

Result 1: Let X1 be a random variable with a standard Laplace distribution, and

let Z1 be a random variable with a standard normal distribution. If we now de�ne

Y1 := |Z1||X1|, then

logP(Y1 > y) ∼ − 2 log y

log2(log y)

as y →∞. Moreover, χ(X1, Y1) = 0 and η(X1, Y1) = 1.

Result 2: Let X2 be a random variable with a standard Laplace distribution, and

let Z2 be a random variable with a standard normal distribution. If we now de�ne

Y2 := Xb
2Z2 for some b > 0, then

logP(Y2 > y) ∼ −1

2
b−

2b
2b+1 (1 + 2b) y22b+ 1.

If we apply the He�ernan-Tawn model to Y2 on Laplace margins conditional on X2,

we obtain α = 0 and β = 2b
2b+1

.
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Result 3: Let X3 be a random variable with a standard Laplace distribution, and

let Z3 be a random variable with a standard normal distribution. If we now de�ne

Y3 := eX3Z3, then

logP(Y > y) ∼ − log y

If we apply the He�ernan-Tawn model to Y3 on Laplace margins conditional on X3,

we obtain α = 1 and β = 0.



Appendix E

Appendix to Chapter 5

E.1 Reparameterization of EVAR

As opposed to inference for vector autoregression models, we cannot estimate the

EVAR parameters by least squares due to the presence Y B
t,1 term. Instead, we ap-

ply the inference methodology as discussed in Section 5.3.5. Not surprisingly, the

parameter estimates Φ̂(i) for i = 1, . . . , k are highly intercorrelated because of the

linear dependence between the components of Yt−1, . . . ,Yt−k. Reparameterization to

reduce the correlation between parameter estimators is therefore attractive.

To reparameterize the model, we proceed as follows. First, we assume that the

conditional extremes model is applicable to Yt−i,j conditional on Yt−k,1 for each i =

0, . . . , k and j = 1, . . . , d apart from (i, j) = (k, 1), i.e., there exist parameters αi,j ∈

[−1, 1] and βi,j < 1 such that

lim
y→∞

P
(
Yt−i,j − αi,jy

yβi,j
≤ x

∣∣∣ Yt−k,1 = y

)
= Hi,j(x)

whereHi,j is a non-degenerate distribution function. Following the EVARmodel (5.3.4),

we now must have

Yt+k,1 = Φ
(1)
1,1Yt+k−1,1 + · · ·+ Φ

(1)
d,1Yt+k−1,d + · · ·+ Φ

(k)
1,1Yt,1 + · · ·+ Φ

(k)
d,1Yt,d + Y B1

t,1 εt,1

=
(

Φ
(1)
1,1αk−1,1 + · · ·+ Φ

(1)
d,1αk−1,d + · · ·+ Φ

(k)
1,1 + · · ·+ Φ

(k)
d,1α0,d

)
Yt,1 + op(Yt,1)

conditional on Yt,1 > v as v tends to in�nity. On the other hand, we have Yt+k,1|(Yt,1 >

171
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v) = αk,1Yt,1 + op(Yt,1). So,

αk,1 = Φ
(1)
1,1αk−1,1 + · · ·+ Φ

(1)
d,1αk−1,d + · · ·+ Φ

(k)
1,1 · 1 + · · ·+ Φ

(k)
d,1α0,d,

which explains the collinearity of the estimators. We now propose the following repa-

rameterization (B, Φ̃(1), . . . , Φ̃(k)). For each 1 ≤ l ≤ d, we acquire Φ̃
(k−i)
j,l , i.e., the

(j, l)th element of Φ̃(k−i), inductively with 0 ≤ i ≤ k − 1, 1 ≤ j ≤ d.

Φ
(k−i)
j,l =


α̂k,l + Φ̃

(k)
1,l , for i = 0, j = 1

−Φ̃
(k−i)
j−1,l α̂i,j−1/α̂i,j + Φ̃

(k−i)
j,l , for i = 0, . . . , k − 1, j = 2, . . . , d, cond. on Φ̃

(k−i)
1,l

−Φ̃
(k−i+1)
d,l α̂i−1,d/α̂i,1 + Φ̃

(k−i)
1,l , for i = 1, . . . , k − 1, j = 1 conditional on Φ̃

(k−i+1)
d,l .

where α̂i,j is the maximum likelihood estimate for αi,j. Under this reparametrization,

estimators of Φ̃
(i)
j,k are less correlated, which is validated in unreported experiments

that compares the dependence of the original parameters and the reparameterized

parameters using adaptive MCMC methodology (Roberts and Rosenthal, 2009).
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Supplementary Information to

Chapter 5

F.1 Introduction

In this document, we provide the interested reader with supporting �gures to our case

study. In these �gures, we plot the diagnostics of each of the 18 considered models and

the baseline historical-matching method when applied to met-ocean data. We plot

simulated excursions such that the excursion maximum signi�cant wave height takes

on values between 11.5 and 12.5 (left) and we visually compare these with observed

excursions (middle). On the right panels, we show summaries of the simulated and

observed trajectories by plotting the median, and the 10% and 90% percentiles of

the set of excursions. Finally, in the bottom panel we plot the probability that an

excursion has not ended as function of hours relative to the peak conditional on the

excursion maximum signi�cant wave height taking on a value between 11.5 and 12.5.
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Figure F.1.1: EVAR(1)
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Figure F.1.2: EVAR(2)
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Figure F.1.3: EVAR(3)
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Figure F.1.4: EVAR(4)
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Figure F.1.5: EVAR(5)
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Figure F.1.6: EVAR(6)
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Figure F.1.7: MMEM(1)
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Figure F.1.8: MMEM(2)
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Figure F.1.9: MMEM(3)
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Figure F.1.10: MMEM(4)
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Figure F.1.11: MMEM(5)
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Figure F.1.12: MMEM(6)
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Figure F.1.13: HM
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