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Abstract 

The regeneration and conservation of semi-natural grasslands is considered 

important to land managers such as Natural England, especially grasslands protected 

by legislation such as UK Biodiversity Action Plan (BAP) priority habitats or Sites of 

Special Scientific Interest (SSSI). Monitoring the condition of these grasslands is 

necessary, but conventional methods of measuring grassland condition are time 

consuming and limited in their spatial coverage. This thesis tested the hypothesis that 

remote sensing (RS) techniques can provide a cost- and time-effective solution to 

grassland condition monitoring. 

This thesis used partial least squares regression (PLSR) to explore the relationship 

between grassland spectral reflectance and the mass or % cover of a range of 

condition-related grassland variables plus a metric (an average and equally weighted 

measure of whether the CSM criteria were sufficiently met referred to as CSM-

condition) representing condition as defined in the UK by the Common Standards 

Monitoring. The relationship between grassland variables and CSM-condition was 

also assessed. Each study differed with the grasslands targeted, the seasons when 

data were collected and the devices deployed. The first study was conducted on a 

range of different grassland types, the second study was conducted on chalk 

grasslands of differing levels of improvement across three seasons (spring, summer 

and autumn) and the third study was conducted on these same chalk grasslands but 

using data from three different spectral devices collected during the summer. All three 

studies were conducted at patch level (1m2) with the third study including the 

extrapolated predictions from trained statistical models to field level (200x1m) using 

spectral data from a CROPSCAN MSR 16R hand-held device. All three studies used 

spectral data from a CROPSCAN MSR 16R hand-held device and the third study 

included the analysis of spectral data from a Spectral Vista Corporation (SVC) HR-

1024i hand-held device and a Rikola camera mounted on an uncrewed aerial vehicle 

(UAV). 

The results suggest that some of the condition-related variables considered in this 

thesis are predicted with reasonable accuracy and precision at patch level, but 

producing reliable results requires a sufficient quantity of data to train the statistical 

models (at least 30 quadrats of samples in the context of this thesis) especially if the 

results are to be extrapolated to field level as additional data are required for the 

external validation of the results. When analysing data collected at patch level during 
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the summer; the mass of bryophytes, dead material and graminoids plus the % cover 

of forbs can be predicted to a moderate level of accuracy when analysing data from 

all seven grasslands. When analysing data from all Parsonage Down NNR 

grasslands; the mass of bryophytes, the % cover of live material, % cover-based 

live:dead ratio and CSM-condition could be predicted to a high level of accuracy. 

Moisture content plus the % cover of dead material, forbs and gram:forb ratio were all 

predicted to a moderate level of accuracy as well as CSM-condition predicted by 

grassland variable values. When using data from all Ingleborough NNR grasslands; 

the % cover of forbs and biomass plus the mass of bryophytes, dead material and 

live material could be predicted to a moderate level of accuracy. 

When using patch level data collected across three seasons; the % cover of dead 

material, live material and live:dead ratio plus the mass of graminoids could be 

predicted when using three seasons of data collected on one grassland, or for all 

three Parsonage grasslands, to at least a moderate level of accuracy although some 

models trained with % cover data had a high accuracy. Forbs (mass and % cover) 

plus the mass of gram:forb ratio, live material and live:dead ratio could be predicted 

to at least a moderate level of accuracy for some grasslands. When using data from 

all grasslands collected in one season to predict grassland variables; the mass of a 

range of grassland variables could be predicted to a moderate level of accuracy for 

the spring and autumn months but not when using % cover data. When the use of 

data from three different spectral devices were compared to see which produced the 

most accurate models; using CROPSCAN and SVC data produced similar results, 

with slightly stronger results from the CROPSCAN, but using data from the Rikola 

camera produced weaker results. When the results of trained PLSR models were 

extrapolated to field level, the projected predicted grassland variable values from 

models trained with CROPSCAN MSR 16R data looked promising but the results 

have not been externally validated using a separate data set. 

Variable importance in projection (VIP) was used to establish which spectral bands 

are most important for predicting each grassland variable plus CSM-condition and 

which grassland variables are most important in predicting CSM-condition. It was 

generally found that the upper parts of the spectral range of each device (NIR and 

SWIR) were the most crucial for predicting grassland variables, with the red edge 

(647nm) and particular visible bands (470nm) also having some importance. When 

grassland variables were used to predict CSM-condition, which variables were most 

important depended on whether the grassland variable was mass-based or % cover-
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based. When using mass data; graminoid:forb ratio mass and live:dead ratio mass 

were consistently important across grasslands and seasons with biomass, 

graminoid:bryophyte mass and moisture content having importance for particular 

grasslands and seasons. When using % cover data; forbs cover, graminoids cover 

and live:dead ratio cover were consistently important across grasslands and seasons 

with dead material cover and live material cover having importance for particular 

grasslands and seasons. 

This thesis also explored which grassland variables could be predicted most 

consistently by calculating coefficient of variance (CV) on data collected across 

grasslands, seasons and/or using different spectral devices. Overall, these results 

suggest that none of the grassland variables considered in this thesis can be 

consistently predicted strongly across all the different grasslands or seasons 

considered in this thesis. When using % cover variable data; forbs cover and 

live:dead ratio cover produced relatively consistent results across grasslands, 

seasons and when using data from different spectral devices while bryophytes cover, 

graminoids cover and gram:forb ratio cover were consistent under some specific 

circumstances. When using mass data; moisture content stands out as relatively 

consistent compared to other variables across grasslands, seasons and when using 

different spectral devices. When using CROPSCAN MSR 16R spectral data as 

predictors, live material mass and live:dead ratio mass plus biomass produced 

relatively consistent results. Dead material mass produced relatively consistent 

results when using different devices as predictors, but not when using data collected 

over different seasons.
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data, where rankings >95% are considered significant for the actual model fit.
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Chapter 1 - Introduction 

1.1. Background 

A report by the Food and Agricultural Organisation highlights the global extent of 

grasslands and their socio-economic importance. For example, an estimated one 

billion people depend on livestock as a source of income and food including 

approximately 70% of the world’s rural poor (Neely et al., 2009). Despite their 

importance; grasslands face encroachment, degradation and fragmentation due to 

increasing population, urbanisation and industrial development (Reid et al., 2005). 

Grasslands are also subject to degradation or loss through overgrazing, intensive 

management practices and climate change (Ali et al., 2016; Bullock et al., 2011; 

Möckel et al., 2014; Neely et al., 2009). Grassland degradation results in reduced 

ecosystem services, increased carbon emissions, increased soil erosion, increased 

fertiliser use, increased likelihood of eutrophication of adjacent water bodies and 

biodiversity loss (Bullock et al., 2011; Dusseux et al., 2014; Möckel et al., 2014; Neely 

et al., 2009; Smith et al., 2009; Smith et al., 2016). 

Although the loss in extent of semi-natural grasslands has slowed over the last ten 

years in the UK, agricultural improvement since 1945 has resulted in the loss of 

approximately 90% of semi-natural grasslands. This loss, primarily attributed to 

agricultural improvement through arable crop planting or fertiliser use, has caused a 

reduction in the wide range of ecological and recreational services that grasslands 

offer. Relative to agriculturally improved land, the services that semi-natural 

grasslands offer include reduced emissions of methane and nitrous oxide, improved 

effectiveness as a carbon sink, improved water infiltration and storage plus improved 

species richness with the ecosystem services that increased biodiversity offers. As 

part of the effort to preserve these ecosystem services, 2% of UK grassland areas 

were designated a Biodiversity Action Plan (BAP) priority habitat for their high 

biodiversity (Bullock et al., 2011) which has since been encompassed in the UK Post-

2010 Biodiversity Framework (JNCC and DEFRA 2012). 

For the purpose of facilitating grassland regeneration and conservation, this research 

was conducted within the context of providing landowners with a framework (Xu and 

Guo, 2015) to create spatial-temporal data analysis projections that provide cost- and 

https://paperpile.com/c/ZBS61j/VOkf/?prefix=Neely%20et%20al.&noauthor=1
https://paperpile.com/c/ZBS61j/OyQW/?prefix=Reid%20et%20al.&noauthor=1
https://paperpile.com/c/ZBS61j/KTsc+GwSW+VOkf+4SeRz/?noauthor=0,0,1,0&prefix=,,Neely%20et%20al.,
https://paperpile.com/c/ZBS61j/KTsc+GwSW+VOkf+4SeRz/?noauthor=0,0,1,0&prefix=,,Neely%20et%20al.,
https://paperpile.com/c/ZBS61j/GwSW+4SeRz+7WkN+gtno+VOkf+yHpA/?noauthor=0,0,0,0,1,0&prefix=,,,,Neely%20et%20al.,
https://paperpile.com/c/ZBS61j/GwSW+4SeRz+7WkN+gtno+VOkf+yHpA/?noauthor=0,0,0,0,1,0&prefix=,,,,Neely%20et%20al.,
https://paperpile.com/c/ZBS61j/GwSW
https://paperpile.com/c/ZBS61j/8DuB/?prefix=JNCC%20and%20DEFRA&noauthor=1
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time-effective grassland condition information. Such a framework would provide 

landowners with the means to identify impending land management issues and 

facilitate effective intervention. In addition, improved condition monitoring is 

considered particularly important in the UK, especially if predictions that farmlands 

will need to be worked more intensely and/or sustainably in the future become reality 

(Baulcombe et al., 2009; Garnett and Godfray, 2012; Godfray and Garnett, 2014; 

Pywell et al., 2015). There are few studies that directly attempt to understand how RS 

of grassland condition on semi-natural grasslands can be achieved as they often 

focus on experimental and/or relatively structurally homogeneous grasslands. 

 

1.2. Research aims 

The primary aim of this research is to assess the link between condition-related 

grassland variables (including a metric referred to as CSM-condition, explained in 

Section 3.4.1) with grassland spectral reflectance through field and drone spectro-

radiometry at a range of spatial-temporal scales. Focussing on semi-natural 

grasslands within the UK, this work addressed the following questions: 

• Can grassland variables form the basis for remotely sensed based 

approaches to monitoring grassland condition? Which grassland variables are 

the most suitable and are they suitable for all different types of grasslands? 

• How do changes in season affect our ability to determine grassland condition 

using remote sensing? 

• Is it possible to upscale the condition measures developed through field 

radiometry from patch level (1m2) to field level (200x1m) using data collected 

with a UAV? 

Related to these are the following detailed questions: 

• Can partial least squares regression (PLSR) models trained using spectral 

reflectance data predict grassland variables or CSM-condition with an 

acceptable level of accuracy? Can CSM-condition be predicted with an 

acceptable level of accuracy using grassland variable data? 

• Will choosing mass or % cover data collected on grassland variables impact 

on the relationship between grassland variables and spectral reflectance? 



Chapter 1 – Introduction 

3 
 

• Do we need access to reflectance recorded across the full spectrum (i.e. 

including SWIR spectral values), instead of across the visible and near-

infrared (NIR) spectrum to successfully monitor grassland condition using 

remote sensing? 

• Does the choice of radiometry instruments affect the relationship between 

grassland variables and reflectance? 

• Which spectral reflectance bands are the strongest predictors of each 

grassland variable and CSM-condition? 

  

1.3. Thesis structure 

This thesis is presented according to the requirements to attain a PhD at Lancaster 

University and consists of eight chapters. Chapter 1 (this chapter) introduces the 

thesis, including the research context and research aims. Chapter 2 provides a 

literature review that encompasses many approaches to establishing grassland 

condition, both conventional and by using RS methods. Chapter 3 describes and 

discusses the research methodology. This includes a detailed description of sampling 

strategy and the analytical processes applied to captured data sets. 

There are three main chapters to this thesis which have been summarised in Figure 

1.1, all of which explore particular aspects of the RS of grassland condition. Chapter 

4 investigates the ability to predict condition-related grassland variables on seven 

semi-natural grasslands; three grasslands at Parsonage Down NNR and four 

grasslands at Ingleborough NNR using data collected in summer. This work directly 

addresses issues around conducting RS studies of grassland condition on a range of 

different types of structurally heterogeneous semi-natural grasslands. Chapter 5 

investigates the relationship between reflectance and condition-related grassland 

variables across the growing seasons, focussing on the three sites at Parsonage 

Down NNR. This work directly addresses questions regarding which time of the year 

is most effective for collecting data to calibrate a PLSR model that will have the most 

predictive power, or whether calibrating a PLSR with data from three seasons gives it 

more predictive power than using data collected from just one season. The results of 

Chapters 4 and 5 raised questions about the importance of different regions of the 

EM spectrum in predicting grassland variables. Chapter 6 investigates the value of 

SWIR data by comparing the predictive power of different PLSR models trained with 
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reflectance spectra from three different spectral devices that collect spectral data in 

slightly different spectral regions, numbers of bands and resolution. As this research 

would only be useful to landowners if results could be upscaled to field level, Chapter 

6 also explores the ability of PLSR models trained with data collected at patch level 

(1m2) to predict grassland variable values at field level (200x1m). Chapter 7 

discusses the results presented in the previous three chapters. Chapter 8 

summarises the main findings of the thesis.  

 

Figure 1.1: Schematic of the attributes of each of the main chapters of this thesis, 

highlighting how the thesis chapters are different from each other.
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Chapter 2 - Literature Review 

2.1. The conventional approach to measuring 

grassland condition in situ 

The term “grassland condition” has multiple interpretations, which will influence the 

metrics used to define it. For land managers such as commercial farmers, grassland 

condition may refer to grassland productivity, grass nutrient content or the number of 

grazing animals that can be supported (Badgery et al., 2020; Bullock et al., 2011; 

Marsett et al., 2006; Schils et al., 2013). A report by Schils et al. (2013) explains that 

a range of destructive and non-destructive methods (including RS techniques) can be 

used to quantify grassland productivity. Broadly speaking; conventional methods of 

productivity measurements focusses on dry matter yield, grassland density or just 

grassland height. Grassland productivity can also be indirectly quantified by 

quantifying animal products or the number of grazing animals e.g. by quantifying 

fodder milk units or fodder units intensive beef production. Other studies may use 

linked grassland variables such as biomass to estimate productivity. For example, Ni 

(2004) used destructive sampling to estimate biomass and then used modelling 

techniques to estimate net primary productivity (using biomass and other variables 

such as climate) on a range of grasslands in northern China. Fliervoet (1987) used 

grass cuttings to establish biomass and leaf area index on fifteen different grassland 

types in Holland. These grasslands were then divided into four different levels of 

productivity using data collected on leaf size and inclination in a principal components 

analysis. Bai et al. (2001) used grass cuttings, ruler measurements of grass height, % 

cover estimates of grassland variables and % cover estimates of species abundance 

to quantify multiple grassland variables and then used these variables to examine the 

relationship between biodiversity, productivity and herbivory. First, species biomass 

data were used to quantify grassland condition (i.e. in terms of productivity). Then, 

the link between condition and the height, mass and/or % cover of the following 

grassland variables was assessed using canonical correspondence analysis (CCA): 

biomass, live material, graminoids, forbs, bryophytes, dead material and bare soil. 

One conclusion of the study was that an increase in quantity in all of these variables 

except the bryophyte-based variables and bare soil was linked with better grassland 

condition i.e. better productivity. 

https://paperpile.com/c/BtFFzw/XcKB+bnMI+UDKZ+sWzO
https://paperpile.com/c/BtFFzw/XcKB+bnMI+UDKZ+sWzO
https://paperpile.com/c/BtFFzw/VN69/?noauthor=1
https://paperpile.com/c/BtFFzw/VN69/?noauthor=1
https://paperpile.com/c/BtFFzw/UwrG/?noauthor=1
https://paperpile.com/c/BtFFzw/UwrG/?noauthor=1
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Other land managers, particularly those who have a legal obligation to protect or 

improve the ecosystem service (ES) value of the grasslands that they manage, may 

instead consider grassland condition from this perspective (Bullock et al., 2011). ES 

is broadly defined as a range of goods and services provided by nature and these 

services can be categorised as provisioning services (e.g. food), regulating services 

(e.g. flood control), cultural services (e.g. recreation) or supporting services (i.e. 

supports the other three categories e.g. nutrient cycling) (Lamarque et al., 2011). 

Studies within this broad remit and differing interpretations of ES usually focus on a 

specific aspect of ES (Plantureux et al., 2016) the main ones being according to a 

review by Rodríguez-Ortega et al. (2014); gene pool protection (including 

biodiversity), grassland aesthetic value (i.e. cultural) and climate regulation (including 

carbon sequestration). Zhao et al. (2020) stated that carbon sequestration, 

preventing water erosion of the soil and above-ground biomass (productivity) are the 

most frequently mentioned ES in the 380 papers and 32 book chapters that were 

reviewed but 33 different ES were mentioned at least once. 

Some authors linked different ES by showing that some ES can have a positive 

impact on others i.e. complementarity. Tilman et al. (2006) conducted a decade-long 

study on experimental grasslands and found that ecosystem stability (and therefore 

the provision of ecosystem services including productivity) improved with increased 

biodiversity. Craven et al. (2016) conducted a meta-analysis using data collected on 

16 grasslands across North America and Europe to assess whether more biodiverse 

grasslands are more resilient to the negative effects of fertilisation and drought 

regarding their ecosystem service value. This study was conducted in the context that 

greater biodiversity increases the functioning of ecosystems. It was found that the 

positive effects of biodiversity on above-ground productivity are robust to the effects 

of fertilisation and drought. Reich et al. (2012), using two experimental grasslands for 

data collection including the Cedar Creek experiment used by Tilman et al. (2006), 

found that the negative impact of biodiversity loss on biomass and productivity 

becomes greater over time. 

In the EU, some areas that provide ecosystem services such as biodiversity, 

aesthetic or recreational value are chosen to become part of the Natura 2000 network 

of conservation sites. This includes some types of grasslands which can be 

designated as special areas of conservation (SACs) and as special protection areas 

(SPAs) if threatened bird species inhabit them. For example, grasslands labelled as 

"(6210) semi-natural dry grasslands and scrubland facies on calcareous substrates 

https://paperpile.com/c/BtFFzw/bnMI
https://paperpile.com/c/BtFFzw/bnMI
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(Festuco-Brometalia)" are a part of the Natura 2000 network because of their 

relatively high plant biodiversity, their recreational value and also because of their 

protected bird and Orchid species. Each classification of grassland has a system of 

conservation and monitoring specific to it, which takes into consideration the biggest 

threats to those grasslands. For example, some of the biggest threats to the 

aforementioned Festuco-Brometalia grasslands are related to natural afforestation 

and therefore a focal point of the overall strategy for monitoring and conservation is 

the prevention of shrub species from succeeding over grass species.  Monitoring of 

these grasslands to ensure that the management strategy is working focuses on plant 

species counts, although these species counts can be expanded to include insect 

and bird species (Calaciura and Spinelli, 2008; Silva et al. 2008).  

Within the context of ES in the UK, the conventional approach to monitoring 

grassland condition is detailed in the Common Standards Monitoring (CSM) guidance 

with National Vegetation Classification (NVC) standards being provided for each 

classified grassland type. The NVC standards recommend identifying grassland 

communities primarily using species abundance data and information on 

environmental variables. CSM guidance discusses the use of a number of generic 

primary and secondary attributes (or criteria), plus some criteria specific to each NVC 

grassland type, as a means of establishing grassland condition. Primary attributes 

refer to characteristics chosen for community identification whilst secondary attributes 

relate to sward structure; height, litter and bare ground. Secondary attributes are 

highly variable and easily reversible through cutting or grazing and are therefore 

considered less reliable than primary attributes (JNCC, 2004; 2006). 

The primary attributes consist of grass:herb ratio (a.k.a. graminoid:forb ratio), 

grassland extent, positive and negative indicator species plus other indicators of local 

distinctiveness (i.e. transitional zonation and rare species). Diversity and productivity 

are considered too time consuming to be regularly or effectively monitored, hence 

indicator species are chosen as primary attributes (JNCC, 2004). Noss (1990) 

warned that focusing on indicator species alone may prevent the discovery of some 

environmental trends, which may explain why CSM guidance also includes other 

criteria such as environmental variables. Grasslands that do not meet the criteria 

specific to their NVC category are considered to be in unfavourable condition (JNCC, 

2004; 2006). 

Although the studies discussed in this section generally did not use RS techniques, 

they provide evidence that there is a link between some ecosystem services such as 

https://paperpile.com/c/BtFFzw/To2Q+Nl53
https://paperpile.com/c/BtFFzw/To2Q/?prefix=JNCC%2C&noauthor=1
https://paperpile.com/c/BtFFzw/To2Q+Nl53
https://paperpile.com/c/BtFFzw/To2Q+Nl53
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biomass, productivity and biodiversity. A RS of grassland condition study still requires 

some data gathering on condition-related grassland variables which requires a 

fieldwork campaign (see Figure 2.1) even if collecting these data is time consuming 

and limited in its spatial coverage. Furthermore, the CSM guidelines make 

assumptions about which criteria best reflect grassland condition and how effective 

they are at capturing changes in condition over space and time.  

 

 

Figure 2.1: Conventional grassland data being collected on a quadrat at Over Pasture 

(Ingleborough NNR). 

 

2.2. Remote sensing platforms used in 

grassland condition studies 

Studies investigating the use of RS for grassland condition primarily used devices 

mounted on UAVs or satellites, sometimes in conjunction with hand-held devices and 

destructive samples, with relatively few studies exclusively using hand-held devices 
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or using devices mounted on crewed aircraft. The wide variety of devices deployed is 

reflected in the range of spatial scales used in these studies, which ranged from leaf 

level to regional level. There are also several considerations to make when deploying 

spectral devices. Readings can be taken at nadir only (e.g. Schile et al., 2013) or 

multiple directions (e.g. Cole et al., 2014). Some devices have a dual field of view, 

where readings can be taken of incoming radiation as well as the target. These 

devices can display or utilise downwelling illumination readings, making it easier to 

make an informed decision on whether the illumination is adequate for RS data 

collection, and may automatically calculate reflectance values of the target based on 

downwelling illumination. Readings taken in low illumination conditions can lead to a 

reduced signal to noise ratio, especially in the SWIR part of the spectrum (Roelofsen 

et al., 2014) and electro-optical satellite imagery can be obscured by clouds. 

Therefore, it is common practice to collect data with spectral devices in clear sky 

conditions and within two hours of solar maximum (e.g. Guo et al., 2005; Yao et al., 

2013) as solar zenith angle can have an impact on results (Ishihara et al., 2015) or to 

choose satellite imagery with as little cloud cover as possible. Even when spectral 

data are collected in clear sky conditions, short-term changes in irradiance and 

atmospheric conditions will affect the observed spectral data. The only way to 

account for this is by converting readings into reflectance. This requires concurrent 

observations of downwelling (i.e. irradiance) and upwelling radiation (i.e. reflected 

radiance) or measurements taken intermittently between the target (i.e. vegetation) 

and a reference calibration panel (Dusseux et al., 2014). Drone or crewed aircraft 

imagery collected across areas which include reference panels placed on the ground, 

and collected in conjunction with other ground-based spectral devices, can achieve 

the same purpose. 

Within the context of grassland condition, each device and supporting platform has 

advantages and disadvantages relative to others when taking into consideration 

important aspects such as spatial resolution, spatial coverage and spectral 

information. Table 2.1 summarises the comparison between the main types of 

platforms used to support spectral devices; the main types of platforms being hand-

held, uncrewed aerial vehicles (UAVs), crewed aircraft and satellites.  There is an 

overlap in some metrics between platforms e.g. the most expensive and heaviest 

hand-held devices (e.g.  ASD FieldSpec Pro) can be more expensive and heavier 

than the cheapest and lightest drones (e.g. DJI Parrot), and the most expensive and 

heaviest aircraft (e.g. NASA Ikhana drone) can be more expensive and heavier than 

the cheapest and lightest satellites (e.g. Dove nanosatellites by Planet Labs Inc.). 

https://paperpile.com/c/BtFFzw/qkFg
https://paperpile.com/c/BtFFzw/qkFg
https://paperpile.com/c/BtFFzw/QQTf
https://paperpile.com/c/BtFFzw/QQTf
https://paperpile.com/c/BtFFzw/XbHe
https://paperpile.com/c/BtFFzw/XbHe
https://paperpile.com/c/BtFFzw/XbHe
https://paperpile.com/c/BtFFzw/Q9vn+IeTa
https://paperpile.com/c/BtFFzw/Q9vn+IeTa
https://paperpile.com/c/BtFFzw/Q9vn+IeTa
https://paperpile.com/c/BtFFzw/dTbf
https://paperpile.com/c/BtFFzw/dTbf
https://paperpile.com/c/BtFFzw/wRJX
https://paperpile.com/c/BtFFzw/wRJX
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Table 2.1: Overview of widely available RS platforms  1 

System No of 

spectral 

bands 

Spatial 

resolution 

Repeat frequency Spatial coverage Flight 

time 

Portability Government 

regulations 

Size of team Platform 

cost 

Image cost 

to customer 

Satellite Few-multi 

spectral 

RGB, NIR, 

SWIR, TIR 

Low to very 

high (km - 

cm) 

1-16 days, determined by 

satellite orbit and 

constellation number 

From global to user 

defined ~10,000 km2 

areas 

Years N/A N/A Very high Very high Free to very 

high 

Crewed 

aircraft 

Few-

hyperspectral 

RGB, NIR, 

SWIR 

 

High 

(meters) 

Single or more repeat visits 

determined by user 

< 10,000 km2 Hours Low High High High-very 

high 

Free to high 

UAS  Few-multi 

spectral  

RGB & NIR 

High-very 

high (m-cm) 

Single or more repeat visits 

determined by user 

meters-hectares Minutes

-hours 

Low-high High Low-high Low-high Free to high 

Hand-held  Few-

hyperspectral 

RGB, NIR,  

SWIR 

High-very 

high (m-cm) 

Single or more repeat visits 

determined by user 

Samples of <5m2 N/A High Low Low Low-med N/A 
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Relative to other platforms; the strongest advantages of using hand-held devices are 

their portability and, in the case of devices such as the Analytical Spectral Device 

FieldSpec Pro (referred to as ASD from now on), their ability to collect hyperspectral 

data along a relatively wider range of the electromagnetic (EM) spectrum. One of the 

biggest disadvantages of hand-held devices is their reduced spatial coverage over 

most UAVs, aircraft or satellite imagery as they can only take spot measurements. 

Anderson and Gaston (2013) and Von Beuren et al. (2015) explored the advantages 

and disadvantages of UAV data collection compared to other platforms. Despite small 

drone-mounted cameras having less functionality e.g. data collection on fewer 

wavelengths, they are much more flexible to deploy making it easier to collect data at 

a higher spatial-temporal resolution than crewed aircraft or satellites. UAV platforms 

are also becoming more cost effective and therefore more accessible. Spatial 

coverage, which varies subject to the size of the UAV (Anderson and Gaston, 2013), 

is improved when compared to using hand-held devices but not when compared to 

crewed aircraft (except for the largest UAVs or satellite imagery). UAV-mounted 

multi-spectral cameras are generally limited to the visible and NIR part of the EM 

spectrum and are expensive. Although aircraft have the advantage of rapidly 

collecting hyperspectral imagery over a relatively large area, crewed aircraft have 

much greater asset, maintenance and storage costs plus asset deployment is more 

challenging. Furthermore, with the exception of the largest UAVs and satellites, a 

greater quantity and expertise of crew is required for operations. Satellite mounted 

sensors can collect relatively large swaths of imagery anywhere on Earth including 

regions that may be inaccessible due to terrain or conflict (Geerken et al., 2005). 

Also, some optical sensors cover a relatively wide region of the EM spectrum (e.g. 

Landsat-8 covers VIS to TIR range of EM spectrum) although satellites generally use 

broader bands than hand-held devices. Furthermore, satellite imagery from 

government-owned satellites are often made freely and easily accessible to the 

general public but access to commercial imagery can be costly. Satellite data 

generally have a low spectral and spatial resolution compared to data from hand-held 

devices and drone-mounted cameras (Lillesand et al., 2015) and the number of 

available spectral bands is predetermined and limited when compared to 

hyperspectral hand-held devices and UAV-mounted multi spectral devices. 

 

https://paperpile.com/c/BtFFzw/82SR/?noauthor=1
https://paperpile.com/c/BtFFzw/82SR/?noauthor=1
https://paperpile.com/c/BtFFzw/1zxN/?noauthor=1
https://paperpile.com/c/BtFFzw/1zxN/?noauthor=1
https://paperpile.com/c/BtFFzw/82SR/?noauthor=1
https://paperpile.com/c/BtFFzw/82SR/?noauthor=1
https://paperpile.com/c/BtFFzw/rkFz
https://paperpile.com/c/BtFFzw/rkFz
https://paperpile.com/c/BtFFzw/KloA/?prefix=Lillesand%20et%20al.&noauthor=1
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2.2.1. Field radiometry (hand-held spectral devices) 

Field radiometry studies that use hand-held devices have been used in proof of 

concept studies plus these data are often used for the purpose of calibrating or 

evaluating satellite, aircraft or UAV derived data products. Within the context of 

vegetation condition studies, hand-held devices (e.g. CROPSCAN MSR 16R or ASD 

FieldSpec Pro) have been used to collect reflectance data on different vegetation 

types (e.g. Dusseux et al., 2014), bare soil and litter (Asner et al., 2000) or lichens 

and exposed rock (Veen et al., 2006). Data may be collected on target patches in the 

field or on samples in a laboratory e.g. leaf cuttings (e.g. Asner, 1998). Within the 

context of grassland condition studies, spectral data from hand-held devices have 

been collected for calibration purposes or to utilise as predictors of above ground 

biomass (Psomas et al., 2011), biochemical variables (e.g. nitrogen content) ( 

Roelofsen et al. 2014; Polley et al. 2022), vegetation indices (e.g. Yang and Guo, 

2014) or a combination of at least some of the aforementioned categories of variables 

(Asner, 1998; Asner et al., 2000). 

Relative to each other; hand-held devices can also offer very different spectral 

ranges, spectral coverage, spatial coverage and portability. Hyperspectral devices 

such as the ASD provide superior spectral range (350-2500nm), spectral coverage 

(data collected on most wavelengths in this range) and spectral resolution 

(bandwidths of 3nm) but are expensive. On the other hand, data collection with a 

CROPSCAN MSR 16R is easy relative to devices such as the ASD FieldSpec Pro 

and SVC HR-1024i as these devices need regular calibration whilst the CROPSCAN 

MSR 16R collects upwelling and downwelling radiation simultaneously. Furthermore, 

the CROPSCAN MSR 16R is relatively lightweight, portable and robust with a longer 

battery life making it relatively quick and easy to collect data in the field. 

  

2.2.2. Uncrewed Aerial Vehicles (UAV) and crewed aircraft 

remote sensing 

Anderson and Gaston (2013) described the four main categories of UAV platform 

which are primarily delineated by size: large UAVs (payload ~200-1100kg), medium 

(payload ~50kg), small and mini (payload ~5-30kg), and micro and nano (payload 

<5kg). Larger UAVs have the advantages of being able to carry a larger payload, fly 

to a higher altitude and have a longer flight time. On the other hand, larger drones 

https://paperpile.com/c/BtFFzw/wRJX
https://paperpile.com/c/BtFFzw/GfW0
https://paperpile.com/c/BtFFzw/lELw
https://paperpile.com/c/BtFFzw/SINT
https://paperpile.com/c/BtFFzw/2WPl
https://paperpile.com/c/BtFFzw/STxU+qkFg
https://paperpile.com/c/BtFFzw/STxU+qkFg
https://paperpile.com/c/BtFFzw/RBaY
https://paperpile.com/c/BtFFzw/RBaY
https://paperpile.com/c/BtFFzw/SINT+GfW0
https://paperpile.com/c/BtFFzw/82SR/?noauthor=1
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have higher running and setup costs. Larger drones also have greater logistical 

challenges such as asset storage and operation (Anderson and Gaston, 2013). The 

same advantages and disadvantages of using a large UAV also applies to using 

crewed aircraft. 

 

 

Figure 2.2: A custom-built Matrice 600 UAV being prepared for launch at Scar Close 

Moss at Ingleborough NNR. 

 

UAV-mounted sensors are being utilised for environmental monitoring in a wide 

variety of applications including grassland condition (see review by Salamí et al., 

2014). UAV RS of grassland condition studies usually focus on particular grassland 

variables (particularly biomass, e.g. Capolupo et al. (2015)) but can include 

biochemical variables (e.g. Polley et al. 2022) and species composition (e.g. Lu et al., 

2009) which usually includes the deployment of small rotary drones (<10kg). Small 

drone platforms are becoming increasingly popular in RS studies.  Although UAV 

based RS studies have become more commonplace since 2015, replacing crewed 

aircraft-based RS studies, organisations such as the Natural Environment Research 

Council Airborne Research Facility (NERC-ARF) and National Aeronautics and 

Space Administration (NASA) have been operating for decades (since 1971 in the 

https://paperpile.com/c/BtFFzw/82SR
https://paperpile.com/c/BtFFzw/xHsy
https://paperpile.com/c/BtFFzw/xHsy
https://paperpile.com/c/BtFFzw/xHsy
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case of NASA and 1983 in the case of NERC-ARF) and currently still deploy aircraft-

mounted hyperspectral sensors for environmental monitoring. These aircraft have 

been utilised for a wide range of Earth Science related studies including studies on 

grassland condition such as studies on grassland species diversity in relation to 

invasive species (Gholizadeh et al., 2019), estimating LAI on grasslands (Atzberger 

et al., 2015; Punalekar et al. 2018), predicting equivalent water thickness on different 

vegetation types (e.g. Li et al. 2008) and studies encompassing multiple structural 

and biochemical grassland variables (Schweiger et al., 2017). Asner et al. (1998, 

2000) conducted aircraft RS studies on semi-arid grasslands, shrublands and 

transition zones (succeeding from grasslands to shrublands) to attribute vegetation 

variables with the variation of wavelengths in the 400-2500nm spectral region. 

 

2.2.3. Satellite remote sensing 

Satellite imagery has been used in a wide range of applications which includes   

vegetation condition monitoring and specifically the monitoring of grassland condition.  

Some of the earliest remote sensing studies (Jordan, 1969) used vegetation indices 

derived from satellite data with coarse spatial and spectral resolution relative to 

satellite data available today. Satellite sensors with a relatively low spatial resolution, 

such as the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra 

and Aqua satellite platforms, often have the advantage of a relatively high temporal 

resolution (e.g. MODIS collects data with a spatial resolution of 250m-1000m for 36 

spectral bands, depending on wavelength, and a revisit rate of 1-2 days) 

(Maccherone, 2021) and are freely available online. Various studies utilised 

vegetation indices, where these indices were in some way related to grassland 

condition, from MODIS satellite products. Wang et al. (2020) and Xu et al. (2013) 

calculated NDVI from calibrated radiance values for their studies which focused on 

estimating grassland productivity. Lyu et al. (2020) used NDVI and EVI satellite 

products provided by NASA to assess grassland degradation in their study, where 

their methodology linked both productivity and ES to grassland degradation. Gao et 

al. (2006) also focused their study on grassland degradation, but instead used three 

different NDVI-derived satellite products; MODIS NDVI 10-day product, Advanced 

Very High Resolution Radiometer (AVHRR) 10-day product and Satellite Pour 

l'Observation de la Terre (SPOT)-Vegetation 10-day composite NDVI product. Other 

studies used other satellite products to establish grassland productivity. For example, 

https://paperpile.com/c/BtFFzw/gbhE
https://paperpile.com/c/BtFFzw/kYWp
https://paperpile.com/c/BtFFzw/GfW0/?noauthor=1
https://paperpile.com/c/BtFFzw/GfW0/?noauthor=1
https://paperpile.com/c/BtFFzw/9Uoj
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Zhao et al (2014) used MODIS eight-day net photosynthesis and gross primary 

productivity (GPP) satellite products in their above ground biomass estimate study.   

In contrast, satellites can also have a relatively high spatial resolution at the expense 

of temporal resolution unless they form part of a large satellite constellation such as 

Skysat satellites (Planet Labs, 2021). For example, Sentinel-2 is a two constellation 

satellite system that collects data on the VIS-SWIR parts of the EM spectrum with a 

spatial resolution of 10-60m (depending on wavelength) and revisit rate of ~5 days 

whilst Landsat-8 is a one constellation satellite that collects data on the VIS-TIR parts 

of the EM spectrum with a spatial resolution of 15-100m (also depending on 

wavelength) and a revisit rate of 16 days. Gu and Wylie (2015) estimated grassland 

productivity for central Nebraska at a 30m scale using two satellite products; 30-m 

Landsat 8 Level 1T (terrain-corrected) imagery and the 250m MODIS NDVI product. 

Xu et al (2014) used Landsat-8 OLI imagery and Landsat-7 Enhanced Thematic 

Mapper Plus imagery in their study to estimate the dead material component of 

grasslands in Grasslands National Park, Canada.  

It is important that the resolution of satellite imagery is appropriate to the study being 

conducted. A spatial resolution of 10-300m may be adequate for an effective study of 

large rangeland areas or homogeneous grasslands, but could be too coarse for 

studying the condition of fragmented or structurally heterogeneous grasslands 

(examples of different levels of structural heterogeneity provided in Figure 2.3) (Ali et 

al., 2016; Dabrowska – Zielinska et al., 2015; Lausch et al., 2016) or for a species-

focused RS of grassland condition study (e.g. Wang et al. 2018a). For example, 

alkaline grasslands that exist within base rich flushes could only be distinguished 

from surrounding acid grassland by using high resolution imagery as they are less 

than 10m wide (Smart, S. pers. comm. 12th December 2016). Resolution that is too 

coarse can lead to irregularities with ground truthing when averaging of in-situ data is 

required during up-scaling (Ali et al., 2016; Dabrowska – Zielinska et al., 2015; 

Lausch et al., 2016). Alternatively, higher resolution satellite data (such as sub-meter 

resolution imagery from commercial Pleiades satellites) can provide solutions related 

to low spatial resolution (e.g. Mirik and Ansley) but access to these images can be 

expensive and will also have a lower temporal resolution (Ali et al., 2016; Chopping et 

al., 2008). Commercial satellite companies such as Planet Labs seek to overcome 

the issue of spatial vs. temporal resolution by launching large constellations of 

relatively small and inexpensive satellites referred to as “microsatellites” or 

“nanosatellites” (Planet Labs, 2021). It should also be noted that a lack of data 

https://paperpile.com/c/BtFFzw/Uz83+XefQ+RdM3
https://paperpile.com/c/BtFFzw/Uz83+XefQ+RdM3
https://paperpile.com/c/BtFFzw/Uz83+XefQ+RdM3
https://paperpile.com/c/BtFFzw/Uz83+XefQ+RdM3
https://paperpile.com/c/BtFFzw/Uz83+l50E
https://paperpile.com/c/BtFFzw/Uz83+l50E
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collected with other spectral devices within the study area specifically for the purpose 

of validation may still mean a relatively high amount of error in the results of a RS 

study (Loew et al., 2017). 

 

 

Figure 2.3: Grasslands representing a gradient of structural heterogeneity from 

simple to complex: a) monoculture grassland, b) semi-improved grassland (Top Cow 

Pasture, Ingleborough NNR), c) semi-improved calcareous grassland (100 Acre, 

Parsonage NNR), d) semi-natural calcareous grassland (Castle Down, Parsonage 

NNR), e) semi-natural limestone pavement grassland (Scar Close Moss, 

https://paperpile.com/c/BtFFzw/Sszu
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Ingleborough NNR), f) semi-natural acid mire grassland (Scar Close Moss, 

Ingleborough NNR). 

 

2.3. Remote sensing approaches for grassland 

condition-related variables 

Many approaches have been taken to monitor grassland condition using remote 

sensing techniques, targeting a wide range of condition-related variables and using 

various analytical techniques. A grassland condition study may compare the results 

of predicting multiple condition-related variables (e.g. Kahmen and Poschlod, 2008; 

Schweiger et al., 2017) or focus on specific variables (e.g. Pasolli et al., 2015). Some 

focussed on capturing the process of habitat degradation through land use change 

(Boyle et al., 2014), others on species diversity or invasive species (Boyle et al., 

2014; Lausch et al., 2018), grassland variables such as biomass (e.g. Schweiger et 

al., 2017) or through the use of at least one of many metrics referred to as spectral 

traits by Lausch et al. (2018). To predict these variables, the full of spectral data 

collected by at least one spectral device may be used in analysis. Alternatively, 

specific bands or a combination of bands may be used to predict condition-related 

variables instead (e.g. Davidson et al., 2006). 

Some studies used grassland variables or “spectral traits” to correlate, predict or 

validate other grassland variables or spectral traits. For example; Wylie et al. (2002) 

used a combination of destructive samples and spectral data to make modelled 

estimates of FAPAR as well as LAI and biomass for the North American Great Plains 

region, then assessed the relationship of these metrics with NDVI. Destructive 

samples and multispectral data collected with a CROPSCAN MSR 16R were used to 

derive FAPAR, LAI and biomass, then these metrics were regressed against NDVI 

which was projected for the region using spectral data from the Landsat Thematic 

Mapper. Wylie et al. (2002) found that there was a strong correlation between NDVI 

and all three metrics (R2 >0.9) showing that they have a strong relationship. 

The rest of this chapter further explores the wide variety of RS of grassland condition 

studies that have been conducted so far focussing on the metrics that are most 

commonly used: 

https://paperpile.com/c/BtFFzw/Xq0s+kYWp
https://paperpile.com/c/BtFFzw/Xq0s+kYWp
https://paperpile.com/c/BtFFzw/bY70
https://paperpile.com/c/BtFFzw/fnfc
https://paperpile.com/c/BtFFzw/fnfc+0hU1
https://paperpile.com/c/BtFFzw/fnfc+0hU1
https://paperpile.com/c/BtFFzw/kYWp
https://paperpile.com/c/BtFFzw/kYWp
https://paperpile.com/c/BtFFzw/0hU1/?noauthor=1
https://paperpile.com/c/BtFFzw/t61T
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• Biomass, height and % cover 

• Leaf area index (LAI), plant area index (PAI) and green area index (GAI) 

•  Fraction of absorbed photosynthetically active radiation (FAPAR) 

•  Normalised difference vegetation index (NDVI) 

• Specific leaf area (SLA) 

• Leaf dry matter content (LDMC)   

• Leaf water content (LWC) 

• Dead matter and bare ground 

• Species richness, indicator species and invasive species 

• Biochemical variables 

 

Table 2.2: Specifies the number of papers discussed in Section 2.3 (with total number 

of references for each section in parentheses) and also some characteristics of those 

papers, such as which RS platforms were used and whether the metric in question 

was used as a predictor or response in models. Note that multiple spectral devices 

are often used in RS studies, in particular data from at least one hand-held device 

and at least one airborne device (UAV, aircraft or satellite). Also note that some 

studies used a metric as a response variable and as a predictor of other metrics. 

Metrics Number of 

references 

Hand-

held 

UAS Crewed 

aircraft 

Satellite Predictor Response 

Biomass, 

height and 

% cover 

5 (17) 3 1 0 4 0 5 

LAI, PAI 

and GAI 

6 (22) 5 0 1 4 0 5 

FAPAR 4 (6) 3 0 0 2 0 3 

NDVI 6 (12) 1 0 0 6 6 0 
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SLA 3 (12) 2 0 0 1 3 0 

LDMC 3 (10) 1 2 1 1 0 3 

LWC 3 (3) 2 0 0 2 0 3 

Dead matter 

and bare 

ground 

3 (14) 2 0 0 3 0 3 

Species 

richness, 

indicator 

species and 

invasive 

species 

5 (10) 2 1 3 1 1 4 

Biochemical 

variables 

4 (9) 4 2 1 0 0 4 

 

2.3.1. Biomass, height and % vegetation cover  

Many studies have focused on or incorporated biomass, grass height and/or other 

productivity measures into their study to establish grassland condition with respect to 

ecosystem services (e.g. Homolová et al., 2014) or grassland productivity (Bullock et 

al., 2011; Schils et al., 2013) and have used one of these grassland variables to help 

determine another. For example, productivity can be determined by weighing 

destructive samples taken from a defined area which is then combined with grass 

height measurements to derive biomass (Bai et al., 2001; Psomas et al., 2011). 

Alternatively, the mass of destructive samples from a defined area alone is used (e.g. 

Schweiger et al., 2017).  

https://paperpile.com/c/BtFFzw/6u2x
https://paperpile.com/c/BtFFzw/XcKB+bnMI
https://paperpile.com/c/BtFFzw/XcKB+bnMI
https://paperpile.com/c/BtFFzw/UwrG+2WPl
https://paperpile.com/c/BtFFzw/kYWp
https://paperpile.com/c/BtFFzw/kYWp
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Changes in biomass can be related to the degradation of grassland condition and  

associated socio-economic and ecological impacts (Gao et al., 2006; JNCC, 2004; 

Lyu et al., 2020; Psomas et al., 2011). Changes in grassland variables related to 

biomass such as % vegetation cover and height can also be related to reduced 

condition. Grass height can be an indicator of degradation (Spagnuolo et al., 2020), 

undergrazing or overgrazing, all of which negatively impact biodiversity (JNCC, 2004; 

2006). The % cover of graminoids and forbs, plus the associated graminoid:forb ratio, 

are grassland variables that are related to biomass as a greater % cover of these 

variables means more biomass. Changes in the cover of graminoid species may 

impact on bryophyte species (Ingerpuu et al., 2005) which are linked to good 

condition for some grassland types (JNCC, 2004). Few RS studies of grassland 

condition have separated graminoid from forb biomass, but Schweiger et al. (2017) 

used PLSR to predict these variables plus a range of other grassland variables using 

airborne imaging spectroscopy data as predictors. The PLSR models produced R2  

results of >0.5 but model performance deteriorated to R2 <0.2 after external 

validation. Grazing regime (Bai et al., 2001), soil depth, slope and aspect all also 

have an influence on biomass quantity (Harzé et al., 2016). 

Most studies of biomass were conducted at field or regional level; although data 

collected by satellites or aircraft are often used, an increasing number of studies are 

conducted using data collected by a UAV. Tucker et al. (1985) used 1km and 4km 

resolution data from NOAA-6 and NOAA-7 plus ground measurements with a hand-

held radiometer and grass clippings to establish the biomass of an area of grassland 

in the Senegalese Sahel. Zhao et al. (2014) estimated the biomass of the Xilingol 

grassland using MODIS eight-day PSNnet (net photosynthesis) 1km resolution 

product and destructive samples collected at 1205 field survey data points for months 

of July and August for the years 2005-2012. Four different regression analyses, each 

using a different function, were used to predict biomass using the PSNnet values as 

predictors and the mass of grass cuttings as a response. All four regression models 

produced R2 values of 0.55-0.65. Psomas et al. (2011) collected biomass samples 

and spectral data, using a field spectro-radiometer (i.e. ASD), on grasslands that 

represented a moisture gradient. These data sets were utilised to predict above-

ground biomass at patch level (1m2), then the results were upscaled using either VIs 

as predictors in ordinary least squares regression or using selected bands used as 

predictors in multiple linear regression using hyperspectral data collected by the 

Hyperion EO-1 satellite. The strongest models for predicting biomass at patch level 

used selected (by branch-and-bound variable searching algorithm) combinations of 

https://paperpile.com/c/BtFFzw/2WPl+WA1c0+To2Q+SaEr
https://paperpile.com/c/BtFFzw/2WPl+WA1c0+To2Q+SaEr
https://paperpile.com/c/BtFFzw/UOlw
https://paperpile.com/c/BtFFzw/To2Q+Nl53
https://paperpile.com/c/BtFFzw/To2Q+Nl53
https://paperpile.com/c/BtFFzw/DTr7f
https://paperpile.com/c/BtFFzw/To2Q
https://paperpile.com/c/BtFFzw/kYWp/?noauthor=1
https://paperpile.com/c/BtFFzw/UwrG
https://paperpile.com/c/BtFFzw/KSNU
https://paperpile.com/c/BtFFzw/LEW5/?noauthor=1
https://paperpile.com/c/BtFFzw/YGGj/?noauthor=1
https://paperpile.com/c/BtFFzw/2WPl/?noauthor=1
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bands in multiple linear regression which produced R2 values of 0.51-0.86. Marcett et 

al. (2006) used Landsat 30m resolution imagery (plus ground truthing using a LI-COR 

LAI-2000 hand-held device) to quantify biomass, height and vegetation cover for 

managed rangelands in the USA. Vegetation cover was established using the Soil 

Adjusted Total Vegetation Index (SATVI), plus biomass and height were estimated 

using a near infrared (NIR) band although the authors believe that a high forb cover 

(30%) reduced the accuracy of the results. Capolupo et al. (2015) also targeted a 

wider range of grassland variables when they compared the results of PLSR and 

multiple vegetation indices (VI) to establish which was best in estimating biochemical 

and structural grassland variables. UAV-acquired hyperspectral images were 

collected over two seasons (in May and October) on experimental grassland plots 

near Kleve, Germany. The results for using VIs as predictors in linear regression 

models produced R2 results <0.5 for all grassland variables. Using spectral data 

collected for one season in PLSR produced R2 results =>0.7 for grass height and 

fresh matter yield. The predictive power of the PLSR models increased when data 

from two seasons were used in the same model, where the results of predicting most 

grassland variables were >0.7, with all three structural variables (height, fresh matter 

yield and dry matter yield) being more strongly predicted with R2 results >0.8. 

 

2.3.2. Leaf area index (LAI), plant area index (PAI) and green 

area index (GAI) 

A review by Weiss et al. (2004) has covered how LAI is defined, the theoretical 

background behind the RS approach to measuring LAI and the reasons for using LAI 

in a grassland condition study. Shen et al. (2014) covers a range of methods and also 

reasons for measuring LAI. Because of the extensive information provided in these 

reviews, only a summary of LAI is provided in this thesis. The way that leaf area 

index (LAI) is defined, measured and and/or calculated has changed over time. LAI is 

traditionally defined as leaf area density over canopy height but can also be defined 

as half the total developed area of leaves per unit ground horizontal surface area 

(Weiss et al., 2004). LAI is a popular choice for grassland condition RS studies 

because LAI (plus leaf angle distribution and leaf water content) is considered to be 

one of the dominant controls on canopy reflectance data for dense canopies (Asner, 

1998; Roelofsen et al., 2015).   

https://paperpile.com/c/BtFFzw/UDKZ/?noauthor=1
https://paperpile.com/c/BtFFzw/nlwv/?noauthor=1
https://paperpile.com/c/BtFFzw/aHTF
https://paperpile.com/c/BtFFzw/SINT+71lk
https://paperpile.com/c/BtFFzw/SINT+71lk
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LAI is related to canopy biomass, grassland density, stress (in the context of LAI, this 

refers to increased bare ground), growth or productivity, grassland structural 

heterogeneity (a proxy for biodiversity), management practices (Dusseux et al., 2014; 

Haboudane et al., 2004; He et al., 2007; Möckel et al., 2014; Yang and Guo, 2014; 

Zhang et al., 2020) and water content (Davidson et al., 2006; Sibanda et al., 2019). 

Because of this, other important calculations linked to grassland condition can be 

derived from LAI. For example, Anderson et al. (2004) stated that there is a linear 

relationship between LAI and vegetation water content and Davidson et al. (2006) 

utilised LAI when calculating canopy level equivalent water thickness (EWT). 

In situ approaches of capturing LAI during data collection are summarised by Weiss 

et al. (2004) and a range of traditional and RS methods of data collection are 

discussed by Shen et al. (2014). Destructive methods for measuring LAI, such as the 

conveyor belt method (where LAI is derived by scanning individual leaves placed on 

a conveyor belt), is time-consuming which results in small sample sizes (Roelofsen et 

al., 2014). This has encouraged the use of RS techniques to measure LAI (Shen et 

al. 2014; Weiss et al., 2004).   

Remote-sensing grassland condition studies have used hand-held devices and/or 

satellite data to estimate LAI (Shen et al. 2014) and have also renamed and/or 

redefined LAI as plant area index (PAI) (Asner et al., 2000) or green area index (GAI) 

(Pasolli et al., 2015). When collecting RS data on the ground using handheld devices, 

many studies used a LAI-2000 (LICOR, Lincoln, NE) Plant Canopy Analyser to 

estimate LAI or PAI (Haboudane et al., 2004; He et al., 2007; He and Guo, 2006). 

Grassland LAI studies have also measured GAI of alpine grasslands using a Li-3100 

portable leaf area meter (Pasolli et al., 2015) and measured grassland LAI using a 

combination of destructive sampling and an AT leaf area meter (Curran and 

Williamson, 1987).  

Many studies that used LAI also utilised satellite products to conduct large-scale 

studies, where destructive samples and/or RS data collected at ground level were 

used for ground-truthing. Pasolli et al. (2015) estimated LAI using Moderate 

Resolution Imaging Spectroradiometer (MODIS) satellite imagery (with ground truth 

data from a Li-3100 LICOR hand-held device) for mountain grasslands in the Alps. 

The accuracy of these measurements (RMSE accuracy of 1.68 m2) was considered 

by the authors to be an improvement on previous studies in such difficult terrain, this 

improvement was attributed to customised MODIS data and an improved algorithm. 

He and Guo (2006) used SPOT-4 data and ground measurements using a LICOR 

https://paperpile.com/c/BtFFzw/wRJX+dpwU+RBaY+OMcr+elfM+b00h
https://paperpile.com/c/BtFFzw/wRJX+dpwU+RBaY+OMcr+elfM+b00h
https://paperpile.com/c/BtFFzw/wRJX+dpwU+RBaY+OMcr+elfM+b00h
https://paperpile.com/c/BtFFzw/yLeO/?noauthor=1
https://paperpile.com/c/BtFFzw/t61T/?noauthor=1
https://paperpile.com/c/BtFFzw/aHTF/?noauthor=1
https://paperpile.com/c/BtFFzw/4Wd6/?noauthor=1
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https://paperpile.com/c/BtFFzw/XbHe
https://paperpile.com/c/BtFFzw/XbHe
https://paperpile.com/c/BtFFzw/aHTF
https://paperpile.com/c/BtFFzw/aHTF
https://paperpile.com/c/BtFFzw/4Wd6/?noauthor=1
https://paperpile.com/c/BtFFzw/GfW0
https://paperpile.com/c/BtFFzw/bY70
https://paperpile.com/c/BtFFzw/elfM+ffFE+OMcr
https://paperpile.com/c/BtFFzw/bY70
https://paperpile.com/c/BtFFzw/YUyw
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LAI-2000 hand-held device to map the LAI of mixed prairie grasslands in Grasslands 

National Park, Canada. It was found that adjusted transformed soil-adjusted 

vegetation index (ATSAVI) was best for estimating LAI for mixed grasslands. ATSAVI 

was also found to be the best predictor of LAI on semi-arid environments of low 

vegetation cover by He et al. (2007). These studies defined ATSAVI is defined as: 

 

            𝐴𝑇𝑆𝐴𝑉𝐼 =  
𝑎(𝜌𝑁𝐼𝑅−𝑎𝜌𝑅𝑒𝑑−𝑏)

𝑎𝜌𝑁𝐼𝑅+ 𝜌𝑅𝑒𝑑−𝑎𝑏+𝑋(1+𝑎2)
, 𝑋 = 0.08       (eq. 2.2) 

 

Atzberger et al. (2015) compared four different approaches for estimating grassland 

LAI; two statistical modelling methods (predictive equations and VIs, referred to as 

PEre-adjust and vegetation index respectively) and two radiative transfer models 

(RTM) inversion methods (one based on look-up-tables and one based on predictive 

equations). Data were collected in-situ through destructive sampling and by using a 

LAI-2000 hand-held device, plus hyperspectral data were collected using the HyMap 

aircraft. All methods produced R2 values of 0.75-0.91, but it was stated that the 

accuracy and robustness of the statistical models decreases when fewer samples are 

used for calibration. Punalekar et al. (2018) combined in-situ LAI (collected with a 

LAI-2000 hand-held device) and field spectro-radiometry (SVC HR 2024i) to calibrate 

an inverted PROSAIL radiative transfer model to estimate LAI and biomass from 10m 

Sentinel-2 satellite data on a mixture of pasture and experimental grasslands. 

Ordinary least squares (OLS) regression produced R2 results between observed and 

predicted LAI values ranging from 0.61-0.87 across three different grasslands. 

Schweider et al. (2020) compared the ability of a soil-leaf-canopy radiative transfer 

model and random forest regression to predict biomass and LAI using Sentinel-2 

imagery with field measurements taken using an ASD FieldSpec-2 spectroradiometer 

hand-held device. Biomass was estimated with a mean R2 of 52% (44-66%) and 

nRMSE of 17% (14-22%). LAI models performed with a mean R2 of 0.62 (0.44-0.81) 

and nRMSE of 23% with the two modelling producing similar results. 

There are direct and indirect methods of establishing grassland LAI and each has 

practical issues (Shen et al. 2014). Although non-destructive data collection using a 

hand-held spectral device is more time-efficient than destructive sampling, it has 

been shown that there is variability in optical LAI measurements taken on the same 

https://paperpile.com/c/BtFFzw/OMcr/?noauthor=1
https://paperpile.com/c/BtFFzw/bSNp/?noauthor=1


Chapter 2 – Literature Review 
 

24 
 

samples plus non-destructive sampling underestimates LAI (He et al., 2007; He and 

Guo, 2006). He et al. (2007) compared the accuracy of two different hand-held 

instruments (LAI 2000 and AccuPAR) with destructive sampling for estimating LAI. 

He et al. (2007) showed that the lower the LAI of four grassland communities studied, 

the greater the underestimated percentage of LAI values collected using RS devices 

relative to destructive sampling.  

He et al. (2007) suggested that this underestimation was due to three reasons. 

Firstly, placing a sensor onto grass disturbs it resulting in higher incident light deeper 

in the canopy and therefore an underestimation of leaf interception and LAI. 

Secondly, the instruments calculate LAI using absorbed radiation to establish the 

amount of light intercepted by the canopy, ignoring leaf transmission scattering and 

all second-order radiative effects in three-dimensional space. The aforementioned 

issues are referred to as radiative error and are believed to contribute to an 

underestimation of LAI. Lastly, the measurements are calculated based on an 

assumption that there is a random distribution of foliage which may not be true of 

some grassland patches. 

This underestimation appears to be inconsistent in the literature and therefore cannot 

be corrected to match destructive sampling. Furthermore, it would not be practical to 

use a RS technique to collect data on heavily grazed grasslands which have blades 

that are shorter than the instrument height (Gerard, F. pers. comm. 12th June 2017). 

This explains why LAI estimation studies have been carried out on croplands (Bacour 

et al., 2002; Haboudane et al., 2004), prairies (He et al., 2007; He and Guo, 2006) 

and woodlands (e.g. Chen et al., 1997) which have relatively tall vegetation. 

 

2.3.3. Fraction of absorbed photosynthetically active radiation 

(FAPAR) 

The fraction of absorbed photosynthetically active radiation (FAPAR) refers to the 

absorbed fraction of the photosynthetically active radiation (PAR) part of the EM 

spectrum (i.e. 400-700nm) (Asner et al. 1998). Spectral data can be used to calculate 

FAPAR, but satellite products such as the MODIS LAI/FPAR product can be 

downloaded with this metric already calculated for the user. Aside from being used as 

a metric in estimating variables related to vegetation condition such as net primary 

productivity and greenness, FAPAR is also used as a parameter in climatological 
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(because it is associated with the carbon cycle) and ecological models (Tao et al. 

2016). 

Olofsson and Eklundh (2007) exploited the relationship between FAPAR and NDVI 

by using NDVI to model FAPAR for various sites in the Scandinavian region which 

had a mixed cover of trees, shrubs and grass species. NDVI came from MODIS 

satellite data and the modelled FAPAR was validated against ground measurements. 

For all sites, the RMSE of mean (%) ranged from 0.33% to 31% with an average of 

6.9%. Rossini et al. (2014) used a range of VIs and PAR as variables in their models 

to derive gross primary productivity (GPP) on sub-alpine grasslands. The models had 

relative root mean square deviation (rRMSD %) values ranging from just under 20% 

to over 50%. Schile et al. (2013) estimated the FAPAR on Californian wetlands with a 

high % cover of dead material, where FAPAR was used as a proxy for productivity. A 

range of unspecified VIs were calculated using data collected at different depths of 

the vegetation with a ASD FieldSpec Pro and used as independent variables in 

pairwise correlation of FAPAR. The dependent variable (FAPAR) was calculated from 

incoming and transmitted photosynthetically active radiation measurements taken in 

the field at three different levels (heights) of the vegetation. The findings suggested 

that a high % dead material cover had a negative impact on the strength of 

correlation between VIs and FAPAR, plus the structure of wetlands (i.e. very tall 

vegetation) make capturing grassland variable data difficult. Another drawback to 

using FAPAR as a condition metric is that FAPAR satellite products have low spatial 

resolution (300m or 1km). Some studies overcame this by calculating FAPAR 

themselves using higher resolution satellite imagery. 

 

2.3.4. Normalised difference vegetation index (NDVI) 

Normalised difference vegetation index (NDVI) is a measure of the difference 

between two spectral bands collected on a given space, one wavelength from the red 

region of the spectrum and another from the NIR region (Tucker, 1979). Exactly 

which wavelengths are chosen, and how wide the bandwidths are, depends on the 

spectral device used for data collection. NDVI can be calculated as: 

 

       (NIR −  RED) / (NIR +  RED)    (eq. 2.1) 

 

https://paperpile.com/c/BtFFzw/qkFg/?noauthor=1
https://paperpile.com/c/BtFFzw/xmgo


Chapter 2 – Literature Review 
 

26 
 

NDVI is considered to be related to grassland condition as NDVI has been linked to 

LAI, biomass, FAPAR and GPP which are used as proxies of condition (Chapungu et 

al., 2020; Chen et al., 2009; Corbane et al., 2013; Gu and Wylie, 2015; Wang et al., 

2020). This link has been utilised in land use classification studies (Corbane et al., 

2013; Geerken et al., 2005) and cutting/grazing regime studies (Halabuk et al., 2015). 

NDVI is almost always calculated at regional scale using satellite products for 

vegetation condition monitoring. Satellite products came from a range of satellites, 

but the most popular satellite product for most of the studies that focused on using 

NDVI and on grassland condition utilised Moderate Resolution Imaging 

Spectroradiometer (MODIS) satellite imagery or the vegetation index 16-day global 

NDVI product derived from MODIS imagery (e.g. Halabuk et al., 2015; Xu et al., 

2013). 

Many studies that used NDVI as a grassland condition-related metric utilised satellite 

products to conduct large-scale studies. Xu et al. (2013) calculated NDVI from 

MODIS imagery acquired during the May-September period for the years 2003-2008 

to use as a proxy to map productivity for all grasslands in China, broken down by 

region. Productivity was used as a proxy for grassland condition, where relatively 

higher productivity was considered to demonstrate good condition. Gu and Wylie 

(2015) also used a MODIS NDVI satellite product (250-m MODIS GSN where GSN 

refers to growing season NDVI) where NDVI was used as a proxy to map 

productivity, but this time for Nebraska (USA). Gu and Wylie (2015) then used 30-m 

Landsat thematic mapper (TM) data to downscale their productivity map. Piecewise 

regression showed a strong correlation between predicted GSN and actual GSN (r = 

0.97, average error = 0.026). On the other hand, some studies found that NDVI was a 

weak predictor of biomass. Chen et al. (2009) attempted to estimate biomass on 

alpine meadows in China by using a range of narrowband VIs (including NDVI) as 

predictors in a PLSR model. The strongest PLSR model (R2 = 0.27) was produced by 

using NDVI calculated using 746nm and 755nm wavelengths. Psomas et al. (2011) 

tested the ability of a range of VIs (including NDVI) and selected bands to predict 

biomass at patch level (1m2) using ASD data (unlike the previous three studies 

discussed in this section which did not use any ground truthing), before upscaling the 

results. Although the patch level results, using four variants of NDVI, produced R2 

values 0.51-0.65, using selected combinations of individual bands in multiple linear 

regressions produced higher R2 values of 0.51-0.86. 
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Using NDVI is particularly disadvantageous when calculated on grasslands with a 

relatively high % cover of litter. Xu et al. (2014) explored the relationship between 

NDVI and dead material cover to investigate how changes in dead material alter the 

relationship of total biomass and NDVI using destructive samples and Landsat 

imagery. Positive/negative relationships between total biomass and NDVI only 

existed where dead material consisted of <20% or >80% of total cover. Guo et al. 

(2005) showed how dead litter complicates analyses (e.g. using VIs as predictors in 

models) not designed for heterogeneous landscapes such as mixed prairie 

grasslands. It was found that NDVI is not suitable for biomass estimation whilst leaf 

area index (LAI) had stronger results although LAI could only explain 59.8% variation 

of total biomass. LAI was able to explain 81.5% of variation of plant moisture content 

(absolute difference between wet and dry biomass in this case) compared to 53.2% 

for NDVI. The study site included grazed and non-grazed sites, but the percentage of 

dead material and exact nature of grazing was not specified. 

 

2.3.5. Specific leaf area (SLA) 

Specific leaf area (SLA) is the one-sided area of a fresh leaf divided by its dry mass, 

where the lamina (leaf blade) is used for area measurements of grass samples which 

are usually oven-dried at 60-80oc for 48-72 hours (e.g. Molinari and D’Antonio, 2014) 

then weighed to ascertain dry mass. SLA has been used in previous traditional and 

RS of grassland condition studies as a lower SLA can be an indicator of reduced 

grass moisture or nutrients (Harzé et al., 2016, Liu et al. 2017) and can also be used 

to calculate other metrics related to grassland condition (Ferreira et al., 2011; He et 

al., 2007). For example, He et al. (2007) calculated LAI from SLA and Ferreira et al. 

(2011) used SLA and biomass values derived from destructive sampling to establish 

equivalent water thickness (EWT). Liu et al. (2017) calculated SLA for four dominant 

grassland genera in Northern China. They also linked SLA to condition-related 

variables such as nitrogen content and also related soil and climatic variables such 

as soil nutrient content, mean annual precipitation and mean annual temperature. 

One disadvantage of this approach is that data collection can be time-consuming as 

the leaf area of individual grass blades have to be measured using leaf area 

measuring software or a ruler (e.g. Harzé et al., 2016) meaning that either proxies are 

used or only a small sample set is collected (e.g. Roelofsen et al., 2014; Wellstein et 

al. 2017). Proxies and databases have been used to represent SLA in some studies 
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(e.g. Möckel et al., 2014) to avoid time-consuming data collection. Furthermore, some 

studies suggest that the variability of SLA within each grassland and between 

different grasslands is relatively high compared to some other spectral traits (Firn et 

al., 2019; Harzé et al., 2016). 

Another disadvantage is that other variables are more effective and practical for 

establishing grassland condition than SLA. Roelofsen et al. (2014) found that specific 

leaf area and nutrient-related variables (N and P content) was poorly predicted from 

any spectral data whilst leaf dry matter content was more strongly correlated with 

spectral data. Smart et al. (2017) found that Leaf Dry Matter Content (LDMC) 

predicted above-ground net primary productivity (aNPP) better than SLA and could 

be measured in situ in a more time-effective manner. Pakeman et al. (2011) tested 

whether LDMC, SLA or three biochemical variables (C, N and C:N) could be used to 

train a linear regression or exponential model to predict grassland litter 

decomposition. It was found that LDMC was the best predictor, although models 

trained using LDMC still had weak predictive power (best result of R2 = 0.334). 

 

2.3.6. Leaf dry matter content (LDMC) 

Leaf dry matter content (LDMC) is defined as the ratio of leaf dry mass to fresh mass 

(Garnier et al., 2001) and like SLA, is related to productivity (Ali et al., 2019; Smart et 

al., 2017).  LDMC can be calculated by weighing vegetation leaves acquired from 

destructive sampling before and after oven-drying (Garnier et al. 2001). LDMC has 

been linked to other condition-related grassland variables such as biomass (Polley et 

al. 2020) and nitrogen content (Polley et al. 2022) and also linked to vegetation 

indices such as NDVI (Polley et al. 2020). Studies that used LDMC as a condition 

metric were conducted at a range of scales and using a wide range of spectral 

devices, but most studies were conducted at field or regional scale and utilised 

satellite products.  

Roelofsen et al. (2014) collected spectral data on individual leaves in a laboratory 

(400-1800nm spectral range of 35 species) and tested the strength of correlation 

between these spectral data and a range of structural and biochemical variables. 

LDMC had higher r2 values (0.57-0.58) than other morphological and biochemical 

variables which had correlation values r2 <0.3 except leaf nitrogen content (0.46-

0.66). Ali et al. (2019) compared the performance of PLSR and 11 different VIs to 
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predict LDMC on wetlands in the Netherlands where Sentinel-2 spectral data were 

used as predictors. Using spectral data in PLSR produced the strongest prediction of 

LDMC (R2 = 0.71) although four of the eleven VIs produced relatively strong results in 

predicting LDMC (R2 = 0.67). Polley et al. (2020) used patch level spectral data 

collected by a drone on both semi-natural and monoculture grasslands in PLSR 

models to predict LDMC at both leaf level and canopy level. The results of these 

models were then extrapolated to field level using spectral data collected from an 

aircraft. The PLSR models were reported to explain 62% and 73% of the variance in 

LDMC of individual leaves and canopies respectively. It is assumed that these results 

are at patch level, it is not made clear how well these models perform when 

extrapolated to field level using airborne collected spectral data. It was also found by 

using variable importance in projection (VIP) that the red edge and NIR spectral 

bands were the strongest predictors of LDMC. Polley et al. (2022) also used patch 

level spectral data on semi-natural and monoculture grasslands, this time collected 

using a drone and ASD hand-held spectrometer, to predict LDMC using PLSR with a 

R2 value of 0.73. Roelofsen et al. (2014) tested the strength of correlation between 

the spectral signature of individual leaves (400-1800nm spectral range of 35 species) 

measured in a laboratory and a range of structural and biochemical variables. LDMC 

had higher r2 values (0.57-0.58) than other morphological and biochemical variables 

which had correlation values r2 <0.3 except leaf nitrogen content (0.46-0.66). 

There are advantages to using LDMC over SLA, for example LDMC correlates more 

closely with spectral data than SLA (Roelofsen et al., 2014). Furthermore, it is easier 

to take ground measurements of LDMC and it is a more effective proxy than SLA for 

grassland variables such as net primary productivity and litter decomposition 

(Pakeman et al., 2011; Smart et al., 2017). LDMC has the disadvantage of being 

time-consuming to measure (as measurements of individual blades of grass are 

being taken) resulting in a low sample size (Shipley and Vu, 2002) and has high 

within-grassland variability (Harzé et al., 2016).  

 

2.3.7. Leaf water content (LWC) 

Moisture content is defined as the difference in weight (gram or % for absolute or 

relative moisture content respectively) between wet grass sample mass and dry 

grass sample mass and is linked to drought and wildfire risk. Like SLA and LDMC, 

measuring LWC requires oven-drying grass cuttings which are weighed before and 
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after oven-drying (Davidson et al., 2006). Davidson et al. (2006) applied VIs, “band 

combinations” and “derivative combinations” with OLS regression to predict absolute 

and relative vegetation water content (AWC and RWC respectively) on a prairie 

grassland–shrubland at patch level using CROPSCAN hand-held spectrometer data. 

“Band combinations” and “derivative combinations” were combinations of bands that 

were potentially the best predictors based on a modified bootstrap approach but 

these bands were not specified by the authors. The results of predicting AWC and 

RWC were then upscaled from patch level (0.5m resolution) to field level (30m 

resolution) to make the resolution comparable to Landsat TM imagery. It was found 

that “band combinations” predicted AWC with high R2 and RMSEP values (R2 = 0.8 

and RMSEP = 48.4 at patch level and R2 = 0.73 and RMSEP = 53.1 at field level) as 

did some VIs (R2 = 0.76 and RMSEP = 51.7 at patch level and R2 = 0.7-0.71 and 

RMSEP = 52.6 at field level). RWC predictions were less accurate, but once again 

using band combinations performed best with results of R2 = 0.53 and RMSEP = 

0.05. Li et al. (2008) used leaf-level data and NASA AVIRIS aircraft spectral data to 

estimate equivalent water thickness (EWT). At leaf level, EWT was estimated with R2 

values during calibration and validation >0.99. When modelling with data from 

AVIRIS, the R2 values were R2 = 0.87 after calibration and R2 = 0.78 after validation. 

Ferreira et al. (2011) quantified the spatial and temporal variability of vegetation 

(forest, shrubland and grassland) water content in the Cerrado of Brazil using EWT. 

EWT was derived from ground-based measurements of SLA and leaf water 

concentration. EWT was predicted at patch level and then up-scaled using two 

different approaches, one approach used an unspecified regression analysis 

(possibly OLS regression) and Earth Observing-1 (EO-1) Hyperion satellite imagery. 

The other approach applied a different unspecified regression analysis (also possibly 

OLS regression) to the MODIS vegetation index 16-day 250m resolution global 

product. The outcome of extrapolating the results using these two different satellite 

products were compared and the lower resolution (250m) MODIS product appeared 

to give lower canopy EWT values relative to the EO-1 Hyperion satellite 30m 

resolution imagery. As part of a wider study conducted on experimental grasslands, 

Sibanda et al. (2019) used spectral data collected using an ASD FieldSpec Pro plus 

data from two hyperspectral satellites (HyspIRI and EnMAP) to train PLSR and 

sparse PLSR models to estimate EWT. Models were trained on each of the twelve 

experimental grasslands that represented a range of different fertiliser treatments, 

and also trained on either HyspIRI or EnMAP data. The results presented in the 

figures of the paper are from trained sparse PLSR models as these apparently 

outperformed PLSR models. The R2 values from models trained with HyspIRI data 
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seemed to range from approximately 0.5-0.9 whilst models trained with EnMAP data 

ranged from approximately 0.2-0.7. Wavelengths close to the water absorption bands 

in the upper NIR and SWIR regions of the EM spectrum were the strongest predictors 

of EWT. 

 

2.3.8. Dead matter and % bare ground cover 

Dead material, in the context of this thesis, refers to any above-ground necromass 

belonging to a floral species whilst bare ground refers to any non-vegetated surface 

including bare soil and rock. Dead material can consist of standing senesced plants 

or overlying litter (Xu et al., 2014; Yang and Guo, 2014). Dead material is used as an 

indicator of disturbance level (Xu et al., 2014) or management intensity as this 

variable is influenced by grazing regime, cutting and fire (Franke et al., 2012; Xu et 

al., 2014). For example, a build-up of litter can be the result of a lack of hay collection 

or undergrazing which can affect species composition (JNCC, 2004; 2006). Particular 

species produce relatively large amounts of litter, and the species in question may be 

a positive or negative indicator species depending on the grassland type (Gerard et 

al., 2015). 

Bare soil % cover is linked to grassland condition as a relatively high % cover of bare 

soil is said to be a sign of grassland degradation (Möckel et al., 2014). Common 

Standards Monitoring (CSM) guidance recommends bare soil cover of <5% for most 

grassland types although a relatively higher (unspecified) % cover of bare soil is 

accepted for certain acid and calcareous grasslands. A low percentage of bare soil is 

seen as more beneficial than no bare soil as it promotes the regeneration of grass 

from seed, but a relatively high % cover of bare soil may also be considered 

unfavourable as undesirable species (e.g. invasive or highly competitive species) are 

more likely to colonise the bare patch (JNCC, 2004). Möckel et al. (2014) tried to 

classify different successional phases on grasslands and used bare soil as an 

indicator of condition. Their study assumed gradual degradation (as increased % 

bare soil cover) for all fields with time plus dead litter was removed during data 

collection. 

Guo et al. (2005) investigated the relationship between spectral data and in situ 

grassland measurements on a range of grassland variables in a native mixed prairie 

ecosystem, which included study sites that had a relatively high litter content. Data 
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were collected using two hand-held devices (to collect hyperspectral data and LAI 

measurements) on a total of sixty 100m transects. Correlation analysis was run 

between biophysical variables and NDVI then LAI respectively with the Jack-knife 

used as a validation technique. Regression analysis was used to predict total 

biomass and plant moisture content from NDVI and LAI separately. All biophysical 

variables except moisture content (r = 0.729) had low r values when using NDVI in 

analysis. Using LAI produced r values >0.7 for graminoids, dead material and 

moisture content. Xu et al. (2014) calculated a range of indices using Landsat 7 

imagery to test their potential as predictors to estimate dead cover. The results 

suggest that the dead component can be estimated with multispectral images using 

Normalized Burn Ratio (NBR) or Normalized Difference Water Index (NDWI), but the 

relationships are highly influenced by bare soil and soil crust, i.e. are only significant 

when bare soil and soil crust are <20% of cover. 

It has been stated in a number of papers that dead material and bare soil complicate 

RS studies of heterogeneous grasslands (Asner, 1998; Asner et al., 2000; He and 

Guo, 2006; Schile et al., 2013; Shen et al., 2014; Xu et al., 2014; Yang and Guo, 

2014; Zhao et al., 2014). Xu et al. (2014) partly attributed this complication to a 

similarity in spectral signature between dead litter, bare soil and soil crust (i.e. 

bryophytes), with the only main difference in part of the shortwave infrared region 

(~2000 nm). Xu et al. (2014) and Yang and Guo (2014) show how different ratios of 

bare soil, dead material and green grass within a study site change the shape of the 

grassland spectral signature in specific places and in a subtle way. Dead material 

also causes an increase in variation of the spectral signature on the same grassland 

type (Asner et al., 2000; Xu et al., 2014). Furthermore, it was stated by Asner et al. 

(2000) that the presence of dead material could be detected in the spectral signature, 

but not quantified. 

 

2.3.9. Species richness, indicator species and invasive 

species 

Species richness is the absolute number of species within a defined space, which is 

not to be confused with species abundance which refers to the relative abundance 

(usually captured as % cover) of each species within a defined space. Positive 

indicator species are species considered to be indicative of a particular grassland 
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community with negative indicator species being their antithesis. Invasive species are 

described as non-native species that have a negative impact on their new 

environment e.g. by reducing biodiversity (JNCC, 2004; 2006). 

Several studies have associated particular grassland species or communities with 

condition as part of a specific grassland variable study (e.g. Bai et al. (2001) focused 

on biomass), as a proxy for other condition-related variables (e.g. Roelofsen et al., 

2015), part of a more holistic study (e.g. Homolová et al., 2014) or wider framework to 

label a particular grassland by type or condition (e.g. JNCC, 2004). These studies 

were conducted at a range of scales, with studies utilising spectral data collected 

from a UAV becoming increasingly common.  

Wang et al. (2018) used data from multiple ground-level spectral devices and the 

aircraft-mounted AISA Eagle imaging spectrometer to link spectral variation with 

grassland biodiversity in Minnesota, USA. Zaman et al. (2011) used high-resolution 

multispectral imagery from a UAV to identify the spread of an invasive species 

(Phragmites australis) in wetlands in Utah, USA. Roelofsen et al. (2015) used 

indicator species as part of a remote sensing study to indicate soil pH and 

groundwater levels. Schweiger et al. (2017) reiterated that indicator species are 

related to soil biogeochemistry plus biochemical and structural grassland variables. 

Möckel et al. (2014) used indicator species as part of a RS study to identify 

grasslands at different levels of “succession” which actually related to management 

type and degradation. Mansour et al. (2016) mapped grassland degradation using 

SPOT 5 data by using the distribution of indicator species as a proxy for degradation. 

Edaphic factors derived from soil samples (including soil chemistry) were used to 

improve the classification accuracy, including edaphic (soil-related) factors was 

reported to have increased the classification accuracy by 13% to 88.60%. 

Noss (1990) summarised the ideal indicator species but also stated that one limitation 

to this approach is that it is possible that the indicator species may not indicate 

anything about some environmental trends. Xu and Guo (2015) stated that many 

variables are not taken into consideration when only using indicator species in a 

study such as energy flux, nutrient cycle, productivity, diversity or response capacity 

to disturbance. This is possibly because data collection for species richness or 

abundance is also time-consuming, limiting time to collect data on other variables 

(JNCC, 2004). Despite this, the use of indicator species as part of a more 

comprehensive study was still recommended by Noss (1990).  

https://paperpile.com/c/BtFFzw/UwrG
https://paperpile.com/c/BtFFzw/71lk
https://paperpile.com/c/BtFFzw/71lk
https://paperpile.com/c/BtFFzw/6u2x
https://paperpile.com/c/BtFFzw/To2Q
https://paperpile.com/c/BtFFzw/VXJs/?noauthor=1
https://paperpile.com/c/BtFFzw/71lk/?noauthor=1
https://paperpile.com/c/BtFFzw/kYWp/?noauthor=1
https://paperpile.com/c/BtFFzw/dpwU/?noauthor=1
https://paperpile.com/c/BtFFzw/i9JX/?noauthor=1
https://paperpile.com/c/BtFFzw/u20O/?noauthor=1
https://paperpile.com/c/BtFFzw/OWhX/?noauthor=1
https://paperpile.com/c/BtFFzw/To2Q
https://paperpile.com/c/BtFFzw/u20O/?noauthor=1
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2.3.10. Biochemical variables 

There are a wide range of biochemical grassland variables used as proxies of 

grassland condition in the literature such as chlorophyll, nitrogen and phosphorus 

which are linked to plant stress (i.e. nutrient deficiency) (Lausch et al., 2018). 

Estimating canopy biochemical variables from remote sensing is usually carried out 

using hyper-spectral reflectance signatures, where particular bands or regions of the 

spectral signature are sensitive to changes in a particular chemical e.g. the 

chlorophyll absorption peaks within the visible region of the EM spectrum. Destructive 

grass samples are analysed in a laboratory to ascertain the concentration of 

chemicals targeted by a given study (e.g. Asner, 1998). These chemical 

concentration values are then used as response variables in models where hyper-

spectral data are used as predictors. 

Many studies have tried to link spectral data and biochemical variables at different 

scales but most of these studies focus on forests (e.g. Asner et al., 2011; 2015) with 

few studies being conducted on grasslands. Polley et al. (2022) used patch level 

spectral data from a drone and ASD hand-held spectrometer to predict community 

nitrogen levels with a R2 value of 0.87 using PLSR. Wang et al. (2019) compared the 

ability of PLSR and Gaussian processes regression to predict fifteen different 

grassland biochemical and structural variables on experimental grasslands using 

data from the NASA AVIRIS aircraft. Both modelling approaches predicted all 

variables except lignin and chlorophyll a + b with R2 values > 0.55 (some with R2 

values > 0.8). The biochemical variables predicted by models with a moderate to 

strong predicting power included nitrogen, carbon, carbon:nitrogen ratio, 

hemicellulose and cellulose. Capolupo et al. (2015) compared the results of PLSR 

and multiple vegetation indices (VI) to establish which was best in estimating 

biochemical and structural grassland variables.  Using spectral data collected in a 

PLSR model produced R2 results =>0.7 for grass height and fresh matter yield whilst 

all biochemical variables (except potassium content with R2 results = 0.68) produced 

R2 results <0.6. Roelofsen et al. (2014) also found that structural variables had a 

stronger relationship with spectra than biochemical variables in their study on the 

strength of correlation between leaf-level spectral data and multiple structural and 

biochemical variables. Apart from leaf nitrogen content (0.46-0.66), LDMC had higher 

https://paperpile.com/c/BtFFzw/0hU1
https://paperpile.com/c/BtFFzw/SINT
https://paperpile.com/c/BtFFzw/nDNK+UKRW
https://paperpile.com/c/BtFFzw/nlwv/?noauthor=1
https://paperpile.com/c/BtFFzw/XbHe/?noauthor=1
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r2 values (0.57-0.58) than all other morphological and biochemical variables which 

had correlation values r2 <0.3. 

A key disadvantage of using biochemical variables in a RS of grassland condition 

study is the time and cost required to establish chemical concentrations on a 

sufficient number of destructive samples to effectively train a model. Furthermore, 

scaling grassland biochemical content from leaf level to canopy level can be affected 

by confounding variables as grassland canopy reflectance is strongly influenced by 

vegetation structural properties (He and Mui, 2010). This could explain why structural 

variables can be more effectively predicted than biochemical variables (Capolupo et 

al., 2015; Roelofsen et al., 2014). 

 

2.4. Summary 

Lausch et al. (2018) stated that a holistic approach (i.e. taking a multitude of 

environmental and management-related variables into consideration) is required for 

the effective RS monitoring of grassland condition to capture the non-linear effects of 

reduced plant condition. This would increase the likelihood of recognising a reduction 

in condition and acting in a more decisive and targeted way to improve plant 

condition. Lausch et al. (2018) also accepted that a truly holistic approach, capturing 

a wide range of inter-related data types, is not practical due to time and resource 

constraints. This means that conducting a RS of grassland condition study means 

making difficult decisions on which data sets to collect, including which spectral 

devices to use and which grassland variables to focus on. This literature review 

explored which spectral devices, condition-related spectral variables or grassland 

variables and which framework would be most effective for a RS of grassland 

condition study. This review also conducted a process of elimination to understand 

which approaches of the RS of grassland condition are both viable and relatively less 

explored. 

Many RS studies of grassland condition are conducted on experimental grasslands 

(e.g. Capolupo et al., 2015) or relatively structurally homogeneous grasslands (e.g. 

Zhao et al., 2014). Many of these studies focused on spectral variables related to the 

structural or chemical properties of grassland canopies. Some grassland variables, 

such as dead material (Yang and Guo, 2014) and bryophytes (Cole et al., 2014) have 

https://paperpile.com/c/BtFFzw/nlwv+XbHe
https://paperpile.com/c/BtFFzw/nlwv+XbHe
https://paperpile.com/c/BtFFzw/0hU1/?noauthor=1
https://paperpile.com/c/BtFFzw/0hU1/?noauthor=1
https://paperpile.com/c/BtFFzw/nlwv
https://paperpile.com/c/BtFFzw/YGGj
https://paperpile.com/c/BtFFzw/YGGj
https://paperpile.com/c/BtFFzw/RBaY
https://paperpile.com/c/BtFFzw/QQTf
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received little attention in previous grassland condition studies and data were only 

collected over one or two seasons in many of these studies. Very few studies have 

been conducted in the UK (Cole et al., 2014), none of which utilised multispectral 

imagery collected by a UAV (e.g. Cupolupo et al., 2015). This is despite the 

advantages that UAV data collection offers, for example some UK grasslands are 

fragmented and the use of UAVs in condition studies, rather than satellite products, 

on fragmented grasslands has been suggested by Dabrowska - Zielinska et al. 

(2015).

https://paperpile.com/c/BtFFzw/QQTf
https://paperpile.com/c/BtFFzw/nlwv/?noauthor=1
https://paperpile.com/c/BtFFzw/XefQ/?noauthor=1
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Chapter 3 – Methodology 

The aim of this research is to assess the link between the definition of grassland 

condition used in this thesis (i.e. CSM-condition) and condition-related grassland 

variables with grassland spectral reflectance through field and drone spectro-

radiometry. The focus of achieving this aim is on grassland condition within the 

context of ecosystem services (ES) and on a range of grassland types that exist 

within the UK. Furthermore, this thesis is focused on how RS techniques could be 

deployed to address some of the limitations of establishing grassland condition using 

traditional techniques. 

Within these constraints, this work addressed the following three overarching 

questions: 

1. Can grassland condition-related variables form the basis for RS-based 

approaches to monitoring grassland condition? Which grassland variables are 

the most suitable and are they suitable for all different types of grasslands? 

2. How do changes in season affect our ability to determine grassland condition 

using remote sensing? 

3. Is it possible to upscale field radiometry based models from patch level (1m2) 

to field level using data collected with a CROPSCAN or a UAV? 

Related to these are the following detailed questions: 

4. Can PLSR models trained using spectral reflectance data predict grassland 

variables or CSM-condition with an acceptable level of accuracy? Can CSM-

condition be predicted with an acceptable level of accuracy using grassland 

variable data? 

5. Will using mass or % cover of grassland variables impact on the relationship 

between grassland variables and spectral reflectance? 

6. Do we need access to reflectance recorded across the full spectrum, instead 

of across the visible and near-infrared (NIR) spectrum to successfully monitor 

grassland condition using remote sensing? 
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7. Does the choice of radiometry instruments affect the relationship between 

grassland variables and reflectance? 

8. Which spectral reflectance bands are the strongest predictors of each 

grassland variable including CSM-condition and which grassland variables are 

the strongest predictors of CSM-condition? 

 

3.1. Definition of grasslands and UK grasslands 

As grasslands are defined broadly (Reinermann et al., 2020), a definition specific to 

this thesis is provided in this section. This thesis uses the Dixon et al. (2014) 

definition of grasslands as a non-wetland type dominated or co-dominated by 

graminoids and forbs where trees consist of <10% cover and shrubs <25% cover 

although legumes have also been considered in this thesis in line with some other 

grassland studies (e.g. Dabrowska - Zielinska et al., 2015). Graminoids consist of the 

families Poaceae (true grasses), Juncaceae (rushes) and Cyperaceae (sedges) 

whilst forbs are herbaceous flowering plants that do not include grass families 

considered to be graminoids. This thesis uses the standard definition of bryophytes, 

which includes any species considered to be mosses, liverworts or hornworts. 

Volume three of British Plant Communities defines different categories of 

mesotrophic (neutral), calcicolous (alkaline), calcifugous (acid) and montane 

grasslands according to the National Vegetation Classification (NVC) system. Volume 

two uses the same system to classify mires and heaths. These subcategories are 

often divided by a change in species presence and abundance as a result of different 

treatment, but are also related to the environment e.g. surficial geology. An example 

of this are MG5-MG7 grasslands; where different cutting and/or grazing regimes may 

have led to a difference in species composition but surficial geology and fertiliser 

treatment may have also had an effect (Rodwell, 1991; 1992). 

 

3.2. Study sites 

Halabuk et al. (2015) stated that the success of grassland studies depends mainly on 

site specific conditions, including the grassland types to be studied. Furthermore, 

https://paperpile.com/c/7n2Hxm/ysdP/?noauthor=1
https://paperpile.com/c/7n2Hxm/bazsO+yijEj
https://paperpile.com/c/7n2Hxm/VjzP/?noauthor=1
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Harzé et al. (2016) conducted a grassland condition study measuring three functional 

variables (specific leaf area, leaf dry matter content and plant vegetative height) on 

four calcareous grassland species within three populations. The study showed that 

for total variability of the considered grassland variables, 0-30% of variance was 

attributed to between population differences and 70-100% for within population 

differences. These findings were taken into consideration when choosing the study 

sites and grassland types. Data were collected on seven temperate semi-natural 

grassland sites across two locations in England; three grasslands located in the 

Parsonage Down National Nature Reserve (NNR) and four in the Ingleborough NNR.  

Parsonage Down NNR is located in the chalk downs of Salisbury Plain, Wiltshire, UK 

(51° 10' 42.2159"N, 1° 54' 38.0528"W, Figure 1a). It is a 275-hectare site of special 

scientific interest (SSSI) and also part of a working farm managed by Natural 

England. Most of the reserve consists of mixed-grazed calcareous grasslands that 

represent a range of improvement levels. This location is characterised by chalk 

geology with associated alkaline soil and calcareous grasslands which are mixed-

grazed. Calcareous grasslands are a UK Biodiversity Action Plan (BAP) priority 

habitat and therefore the monitoring of their condition is mandatory to land managers. 

Three grasslands were chosen for data collection that represented varying stages of 

improvement located on the same geology and with the same grazing regime, 

reducing the possibility of these variables acting as confounding variables (Kahmen 

and Poschlod, 2008).  

Ingleborough NNR is situated in the south-west of the Yorkshire Dales National Park 

in North Yorkshire, UK (54° 11' 44.5452'' N, 2° 21' 0.9432'' W, Figure 1b). The 

reserve covers 1,014 hectares of mountainous karst terrain and contains a range of 

vegetation types that are associated with (i) a mixed basic and acidic solid geology 

and drift and (ii) a lowland to upland gradient. The area has calcareous, acid, neutral, 

improved, semi-improved and reverting grassland plus blanket-bog over gritstone or 

drift. A variety of grazing regimes exist; sheep, cattle, mixed and no grazing take 

place on different fields. Data were collected on four grasslands that represent a 

variety of grassland types and grazing regimes. 

Overall, the seven grassland sites were chosen to encompass a range of 

management styles, grazing regimes, species composition and grassland structural 

complexity. Maps of each location can be seen in Figures 3.1 and 3.2, a summary of 

the environmental characteristics of each location is provided in Table 3.1 and a 

https://paperpile.com/c/7n2Hxm/obr5/?noauthor=1
https://www.uksouthwest.net/wiltshire/
https://paperpile.com/c/byTTdf/hH6m
https://paperpile.com/c/byTTdf/hH6m
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summary of the environmental characteristics of each study site is provided in Table 

3.2. 
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Figure 3.1 Map showing the boundaries and locations of transects 1 to 3 at 

Parsonage Down NNR. Note that data were collected at this location across three 

seasons. 

Figure 3.2: Map showing site boundaries and locations of transects for Grasslands 4 

to 7 at Ingleborough NNR.  
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Table 3.1: The environmental characteristics of the two locations chosen for data 

collection (from information provided by Natural England and by conducting a desk 

study (BGS UKSO, 2017; Edina®, 2017). 

Location Management Geology Soil type Grassland type 

Parsonage 

Down 

(Wiltshire) 

Previously 

improved 

mixed grazed 

grasslands at 

different levels 

of reversion 

Cretaceous 

chalk 

formations 

(Seaford 

and 

Newhaven) 

Lime-rich 

alkaline 

soil (freely 

draining) 

 

Chalk grasslands of 

a range of condition 

types; improved, 

reverting, semi-

improved and semi-

natural 

Ingleborough 

(North 

Yorkshire) 

Previously 

improved, 

semi-natural, 

experimental 

and rewilding 

grassland plus 

peat and 

limestone 

pavements – 

sheep, cow 

and mixed 

grazing 

Danny 

Bridge 

Limestone 

Formation 

(limestone), 

Yoredale 

Group (LST, 

MST and 

SST 

interbeds) 

plus till 

Peat (poor 

drainage), 

acidic 

loamy 

peaty soils 

(high 

drainage) 

and 

rendzinas 

A variety of types – 

acid, alkaline, peat 

bog, limestone 

pavement 

 

Table 3.2: The characteristics of the seven study sites using information provided by 

Natural England or gained from the desk study (BGS UKSO, 2017; Edina®, 2017). 

The NVC for each grassland was ascertained by entering species abundance data 

into MAVIS software (Smart et al., 2016). 

https://paperpile.com/c/7n2Hxm/SFaL+V5OV/?prefix=Edina®%2C,BGS%20UKSO%2C&noauthor=1,1
https://paperpile.com/c/7n2Hxm/SFaL+V5OV/?prefix=Edina®%2C,BGS%20UKSO%2C&noauthor=1,1
https://paperpile.com/c/7n2Hxm/2iRPd
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Site Site 
Location 

Site Name Grassland 
type / 
NVC 

Grazing 
regime 

Improvement 
level & 
grazing 
intensity 

Grassland 
structure 

1 Parsonage Castle 
Down 

Chalk 
grassland / 
CG2 

Mixed 
grazing 

Unimproved Relatively 
long grass 
with 
tussocks 

2 Parsonage 100 Acre Semi-
improved 
grassland / 
MG6 

Mixed 
grazing 

Relatively 
improved 

Relatively 
long grass 
with 
tussocks 

3 Parsonage Parsonage 
Down 

Semi-
improved 
grassland / 
MG5 

Mixed 
grazing 

Semi-
improved 

Relatively 
long grass 
with 
tussocks 

4 Ingleborough Scar 
Close 
Moss 

Alkaline 
grassland / 
CG10 

Sheep 
grazing 

Unimproved 
but heavily 
grazed 

Closely 
cropped by 
grazing, 
with 
intermittent 
limestone 
pavement 

5 Ingleborough Scar 
Close 
Moss 

Acid mire 
grassland / 
M19 

Sheep 
grazing 

Unimproved 
and under-
grazed 

Relatively 
long grass 
with 
tussocks 
and 
heather, 
plus 
sinkholes 

6 Ingleborough Over 
Pasture 

Alkaline 
grassland / 
CG10 

Cow 
grazing 

Unimproved Lightly 
grazed 
with a low 
% cover of 
limestone 
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7 Ingleborough Top Cow 
Pasture 

Sloping 
semi-
improved 
grassland / 
MG5 

Sheep 
grazing 

Semi-
improved and 
heavily 
grazed 

Closely 
cropped by 
grazing, 
forb 
dominated 
in places 

 

3.3. Data collection 

The literature review revealed that there were few RS studies using the mass of 

grassland constituents (e.g. graminoids) as studies that collect destructive samples 

usually only measure total biomass (such as Schweiger et al., 2017). However, it was 

thought that collecting and utilising data on mass and % cover would have their own 

set of advantages and disadvantages. Because bryophytes are sometimes covered 

by a canopy of graminoids, collecting destructive samples (i.e. mass data) helped 

establish the amount of bryophytes present, which could have an important impact on 

reflectance and be missed using the % cover approach. Also, % cover data are 

compositional data (i.e. relative rather than absolute values) constrained to 0-100% 

and some analytical methods (e.g. principle component analysis), particularly those 

using untransformed compositional data and assuming that those data can be 

projected in Euclidean space, can lead to spurious results as some analyses assume 

that the data set values are unconstrained and do not transform data as part of the 

analysis (Gupta et al., 2018; Reimann et al., 2012). Furthermore, there is at least 

some collinearity in compositional data i.e. the variables under consideration will 

always total 100% and an increase in one variable inevitably means a decrease in at 

least one other variable (Dormann et al. 2012). Using grass cuttings provides the 

opportunity for establishing biomass, which is often used as a grassland condition 

measure, plus other grassland constituents can be measured by separating the grass 

samples into their constituent parts before weighing. On the other hand, establishing 

mass is far more time consuming than % cover and lacks spatial coverage of the 

quadrat relative to % cover data.  

The grassland variables in Table 3.3 were chosen as it was thought that these 

variables would be influential to changes in the spectral signature; particularly grass 

profile (influenced by graminoid:forb ratio), bare soil cover and dead material cover 

(Asner et al., 2000; Guo et al., 2010; Xu et al., 2014)(Asner et al., 2000; Guo et al., 

https://paperpile.com/c/7n2Hxm/6XS0W
https://paperpile.com/c/7n2Hxm/6XS0W
https://paperpile.com/c/7n2Hxm/ymLt+x02U+7Tp0
https://paperpile.com/c/7n2Hxm/ymLt+x02U+7Tp0
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2010; Xu et al., 2014). Furthermore, it was necessary to collect traditional data on 

grassland composition to utilise the criteria for measuring grassland condition 

provided by the CSM documents. Data were not collected on LAI despite this 

approach being taken by a multitude of RS studies on the basis that LAI is 

considered to be a dominant control on canopy reflectance (Asner, 1998; Roelofsen 

et al., 2015) as it was not possible to collect LAI data on very short grasslands 

(<5cm). It is thought that not taking LAI into consideration is not detrimental to this 

thesis as biomass, which is considered, is related to LAI (e.g. Möckel et al. 2014). 

Similar approaches have been used in other RS grassland condition studies where 

collecting data on LAI was not viable, for example Möckel et al. (2014) used changes 

in graminoid and bare soil cover as part of a RS of grassland condition study 

conducted on the island of Öland in Sweden. 

 

Table 3.3: Variables used in this study, listing whether mass and/or % cover data 

were used to establish them and at which NNR locations they were collected. In the 

context of this thesis, moisture content refers to leaf wet mass - leaf dry mass). 

Grassland variable Type Location 

Bare ground % cover Ingleborough  

Biomass mass Both 

Bryophytes % cover, 
mass 

Both 

Dead material % cover, 
mass 

Both 

Forbs % cover, 
mass 

Both 

Graminoids % cover, 
mass 

Both 

Graminoid:bryophyte ratio 

(‘gram:bryo ratio’) 

% cover, 
mass 

Both 

Graminoid:forb ratio 

(‘gram:forb ratio’) 

% cover, 
mass 

Both 

Live material % cover, 
mass 

Both 

https://paperpile.com/c/7n2Hxm/ymLt+x02U+7Tp0
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Live material:dead material ratio 
(‘live:dead ratio’) 

 

% cover, 
mass 

Both 

 Moisture content  

i.e. leaf wet mass - leaf dry mass 

% mass Both 

 

3.3.1. Fieldwork plan and sampling strategy 

On each of the seven chosen grasslands, a 200m transect was set up and ten 

quadrats (1m2) placed along it at random (Figure 3.3) where a random integer 

generator (https://www.random.org/) was used to choose how far along the transect 

to place the quadrats. The three Parsonage Down sites were revisited three times 

during the 2018 growing season (spring, summer and autumn) on the following dates: 

16th – 20th April, 25th – 29th June and 10th – 14th September. Radiometers require 

sufficient irradiance (considered to be 400 W/m2 in this thesis) to operate which 

eliminates the possibility of data collection during the winter (CROPSCAN Inc., 2018). 

At the four Ingleborough sites, data were collected during the summer of 2017 (1st – 

9th July) (see Section 3.6). Each quadrat was geo-referenced using an eTrex 10 

GNSS device giving GPS readings with potential spatial accuracies of 2-3m. For sites 

that were revisited during the growing season, reference points (e.g. fence posts) and 

photographs were used to relocate quadrats precisely. To locate the quadrats 

accurately on the drone collected imagery, laminated white A4 sheets (large enough 

to be visible on the drone imagery) were placed directly opposite the quadrat at a 

distance of 60cm from bottom-left quadrat corner. 

 

https://www.random.org/
https://paperpile.com/c/7n2Hxm/ja9l


Chapter 3 – Methodology 
 

47 
 

 

Figure 3.3: Schematic showing the sampling strategy for data collection (using Castle 

Down as an example). The yellow line represents the 200m transect and the dark 

blue squares represent the quadrats. The white squares represent the spatial 

reference panels and the other grey and black squares represent calibration panels. 

The green lines are the UAV flight path and the blue rectangle in the background 

represents the area covered by the UAV-mounted Rikola camera. 

 

3.3.2. Quadrat sampling 

On each quadrat, the data was collected using the following sequence: grassland 

variable % cover estimates, photographs, soil moisture, grass height, species 

abundance (from which species richness was derived), spectral data and finally 

destructive samples. For % cover, the grassland variables were: graminoids, forbs, 

bryophytes, live material, bare ground, dead material and other (see Table 3.3). 

Percentage cover was estimated by looking straight down onto the quadrat, to the 

nearest 5%, using the dimensions of the quadrat and a ruler as a spatial reference. 

Bryophytes were any species that belonged to the bryophyte group of non-vascular 

plants. Live material cover is the sum total of the % cover of graminoids, forbs, and 

bryophytes. Bare ground is the % cover of bare soil and rocks. Dead material was 

considered to be any necromass visible above ground. “Other” refers to something 

not considered in this study, which was usually dung but also included heather 

patches on the M19 acid mire grassland. From these variables, two ratios were 
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calculated: graminoid:forb ratio cover and live:dead ratio cover. Quadrat photos were 

taken with the camera looking straight down. Soil moisture data were collected at five 

random points on each quadrat using a HH2 Moisture Meter from Delta-T Devices 

which has a stated accuracy of ± 0.01 m3.m-3 or ±1% and has the functionality to take 

accurate readings in mineral rich and organic rich soils (Delta-T Devices, 2020). 

Grassland canopy height was established by taking five randomly located 

measurements on each quadrat with a ruler. This method was chosen as it is a 

relatively fast data collection approach and a drop disc compresses grass which 

would affect the spectral readings (Stewart et al., 2001).  Species abundance was 

established for each quadrat by a botanical expert during spring for Ingleborough 

NNR and during summer for Parsonage NNR. This thesis defined species abundance 

as the % cover of each species within a 1m2 quadrat, where a botanical expert 

estimated the cover of each species within each quadrat to the nearest 1% if the 

cover was 0-5%, or nearest 5% if the cover was >5%. Where % cover exceeded 

100%, this was due to more than one layer of vegetation being present e.g. 

bryophytes covered by a canopy of graminoids. After all other data were collected 

including spectral data (see Section 3.3.3), five randomly located 10cm2 grass 

cuttings were taken from each quadrat (see example in Figure 3.4).  

https://paperpile.com/c/7n2Hxm/8mRA
https://paperpile.com/c/7n2Hxm/QCWy
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Figure 3.4: An overhead view showing how each quadrat was sampled by destructive 

sampling. 

 

The grass cuttings were sorted into the following grass constituents: graminoids, 

forbs, bryophytes, dead material and other (see Figure 3.5). Long and thin bladed 

species were considered to be graminoids while broadleaved species were 

considered to be forbs. Bryophytes were defined as any species that belonged to the 

bryophyte group of non-vascular plants. Dead material was considered to be any 

necromass found within a sample. In this thesis, “other” refers to the minute cuts of 

grass which were too difficult to sort or bits of soil that were accidentally collected. 

After sorting, grass cuttings were weighed, then oven-dried at 60oc for 72 hours, and 

weighed again to determine moisture content (e.g. Bai et al., 2001). As the weighing 

of grass samples collected in one season took approximately three weeks, the sorted 

samples would be oven-dried at 60oc as close to the time of weighing of dry mass as 

possible to ensure that no moisture was present in the samples. Moisture content 

https://paperpile.com/c/7n2Hxm/D6ob
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was defined as wet mass subtracted from dry mass. Biomass is the sum total of the 

mass of graminoids, forbs, bryophytes and dead material. Live material mass is the 

sum total of the mass of graminoids, forbs and bryophytes. Three ratios were 

calculated: graminoid:forb ratio mass, graminoid:bryophyte ratio mass and live:dead 

ratio mass. Data on species abundance, grassland height and grassland constituent 

% cover were used to establish the CSM-condition of each quadrat using the NVC 

framework (see Section 3.4.1) (JNCC, 2004; 2006).  

 

 

Figure 3.5: A grass sample separated into its constituent parts (clockwise from top-

left): dead material, graminoids, other, forbs and bryophytes. 

 

 

https://paperpile.com/c/7n2Hxm/njYkF+OvF8m
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3.3.3. Grassland reflectance 

3.3.3.1. Spectral devices 

Before grass cuttings were taken, spectral data were collected using three hand-held 

radiometers (i.e. an Analytical Spectral Device (ASD) FieldSpec Pro, a Spectral Vista 

Corporation (SVC) HR-1024i and a CROPSCAN MSR 16R) as well as an Uncrewed 

Aerial Vehicle (UAV) (i.e. DJI Matrice) with a Rikola multispectral camera on board. 

Table 3.4 lists the spectral characteristics of these devices. 

The MSR 16R model of CROPSCAN multispectral radiometer (referred to as 

CROPSCAN from now on) (Rochester, MN, USA) can accommodate up to 16 bands 

in the 450-1750 nm spectral range. Upward and downward facing sensors measure 

both incoming and reflected radiation which is used to calculate % reflectance. To 

ensure data integrity (George, C. and Gerard, F. pers. comm. 7th July 2016) spectral 

data was only collected when there was a minimum of 400 watts per meter squared 

(W/m2) incident irradiance, which is above the recommended minimum of 300 W/m2 

(CROPSCAN Inc., 2018). To keep data sets and results comparable, the 16 bands 

chosen were as closely matching as possible to the bands of the Rikola multi-spectral 

camera.   

The Analytical Spectral Device (ASD) FieldSpec Pro (Analytical Spectral Devices, 

Boulder, USA, ASD Inc., 2002) and the Spectral Vista Corporation (SVC) HR-1024i 

field spectrometer (SVC from now on) (Poughkeepsie, NY, USA, SVC, 2012) are very 

similar hyperspectral instruments which collect data from > 1800 bands that can be 

interpolated to produce a spectral signature across the 350-2500nm spectrum. Both 

were loaned by the Field Spectroscopy Facility. The ASD was used to collect data in 

Ingleborough NNR and the SVC to collect data in Parsonage NNR. This spectro-

radiometer collects hyperspectral data in the range of 350-1000nm at 1.4nm intervals 

plus 1000-2500nm at 2nm intervals (ASD Inc., 2002). Data on 1869 bands are 

available after water absorption bands have been removed (1350-1460nm and 1790-

1960nm). 

A drone was deployed to collect multispectral data at the field scale: a custom-built 

DJI Matrice 600 (DJI, 2018) equipped with a Rikola VNIR camera, referred to as the 

Rikola camera from now on. This camera has a FOV of 37o and a spectral range of 

400-900nm. Thirty bands, each with 10nm bandwidth, can be selected within this 

https://paperpile.com/c/7n2Hxm/ja9l
https://paperpile.com/c/7n2Hxm/T9sI
https://paperpile.com/c/7n2Hxm/V4Na
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range. Like with the CROPSCAN, to keep data sets and results comparable, bands 

chosen to be as closely matching as possible to the bands of the CROPSCAN.  

Relative to the ASD or SVC, the CROPSCAN collects more limited spectral data but 

is easier to use in field, making it possible to collect a greater quantity of data 

spatially. Furthermore, the CROPSCAN has the added convenience of collecting 

upwelling and downwelling radiation simultaneously. The advantage of using a drone 

to collect multi- or hyperspectral data over using a hand-held device is that data can 

be collected on an entire field at a relatively high spatial resolution (6cm using a 

Rikola VNIR camera). A disadvantage is that data are collected on far fewer bands 

than some hand-held spectral devices (often only in the VIS and NIR regions of the 

EM spectrum), such as the ASD FieldSpec Pro, and a smaller region of the EM 

spectrum relative to many hand-held, aircraft-mounted or satellite-mounted spectral 

devices due to broad limitations related to the size and weight of the instruments 

mounted on any <20kg UAV. A more extensive list of the advantages of using UAVs 

to collect data is given by Anderson and Gaston (2013). 

 

Table 3.4: Summary of multispectral and hyperspectral devices used in the field. 

 ASD 

FieldSpec Pro 

CROPSCAN 

MSR 16R 

Rikola VNIR 

camera 

SVC HR-1024i 

Spectral 

range 

350nm–

2500nm 

450nm–1750nm 400-900nm 350nm–2500nm 

Channels 2149 16 30 1024 

Bandwidth 

(FWHM*) 

3nm @ 350–

1000nm 

10nm @ 

1000–2500nm 

10nm @ 

≤870nm 

11nm – 1240nm 

13nm – 1640nm 

10nm ≤3.3 nm, 700nm 

≤9.5 nm, 1500nm 

≤6.5 nm, 2100nm 

https://paperpile.com/c/7n2Hxm/CbfA/?noauthor=1
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Bands 

chosen 

1869 bands 

across 

350nm–

2500nm – 280 

bands in 1350-

1460nm and 

1790-1960nm 

ranges 

removed 

470, 530, 560, 

570, 647, 690, 

700, 720 740, 

760, 780, 850, 

850, 860, 870, 

1240, 1640 

515, 530, 531, 

550, 560, 570, 

647, 655, 665, 

675, 687, 690, 

700, 710, 720, 

730, 740, 750, 

760, 770, 780, 

800, 810, 820, 

830, 840, 850, 

860, 870, 880 

1249 within 

350nm–2500nm 

range - 1024 

bands 

interpolated, then 

bands in 1350-

1460nm and 

1790-1960nm 

ranges removed 

* Full Width Half Maximum 

 

3.3.3.2. Spectral data collection 

Using CROPSCAN and either the SVC or ASD spectral data was collected for the 

randomly placed quadrats along the 200m transect (see 3.3.2). Figure 3.6 shows how 

each quadrat was sampled using the hand-held spectrometers. To minimise the 

impact of shading, data were collected two hours either side of solar noon and on 

hilly sites transects ran up/downhill (rather than across the hill) although this was 

done as a precaution as the slope of the grasslands in this study was minimal (<5o). 

Quadrats were also kept on the south, west or south-west side of the person 

collecting the spectral data to prevent the person casting a shadow on the quadrats. 

Finally, to prevent the tape reflectance contaminating the quadrat reflectance 

acquired from the drone-mounted Rikola camera, quadrats were placed 60cm away 

from the tape measure.  

The CROPSCAN device was held 2m above the quadrats to collect nadir reflectance 

from a 1m diameter patch, holding the instrument at 2m was made easy by the 

design of the device. CROPSCAN data were collected every 1m producing 200 data 

points. When possible, triplicate data were collected at each data point and then 

averaged. The raw data were converted into reflectance using CROPSCAN software 

(processing raw data is explained in Section 3.4.3.1). 
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Figure 3.6: An overhead view showing how each quadrat was sampled using two 

hand-held spectrometers (blue = CROPSCAN, red = SVC/ASD) and by destructive 

sampling (black squares).  

 

Spectral data were collected during the summer season using a SVC at Parsonage 

Down NNR and an ASD at Ingleborough NNR. The SVC/ASD, fitted with an 18o field 

of view lens, was held 0.79 m high to take spectral measurements of four 0.25m 

diameter patches within each quadrat. A tape measure was used to help hold the 

SVC sensor at 0.79m high. The SVC/ASD collects 25 readings in quick succession, 

providing the user with one averaged reading. To produce calibrated spectral 

reflectance signatures (see Section 3.4.3.2) and account for rapid irradiance changes 

in the field, measurement pairs alternating between the grassland and a white 

reference panel (Spectralon, Labsphere, NH, USA) were collected. The four patch 

spectral signatures were averaged into a single quadrat spectral signature. The 
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Matrice UAV was flown over target fields to cover an area of ~200x200m. White 

reference sheets were placed along the tape measure near each quadrat so that the 

quadrats could be located easily in drone images. Grey and black reference images 

were placed on either end of the study site to help calibrate the Rikola camera.  

 

UAV-mounted Rikola camera 

A UAV with a mounted Rikola VNIR camera was flown across all three grasslands on 

the 25th June 2018 within two hours of solar noon at a height of ~100m. To ensure 

the quality of the spectral data being collected, the transects had to be set up to 

prevent contamination of the spectral signatures of the quadrats by adjacent objects 

(e.g. by the tape measure) and so that the Rikola VNIR camera could be calibrated. 

White reference panels were placed adjacent to the quadrats so that the quadrats 

could be identified in the drone imagery and for the purpose of calibration. Quadrats 

were placed 60cm away from the A3-sized white reference panels and the tape 

measure to prevent corruption of the spectral data collected on quadrats. Grey and 

black reference panels (1m2) were also placed on the outskirts of each field for the 

purpose of calibrating the Rikola camera. The Rikola camera was calibrated using a 

black reference panel before flight. Calibrated imagery collected by the UAV-mounted 

Rikola camera were processed (explained in detail in Section 3.4.3.4) to 

georeferenced the images, normalise their illumination, calculate the reflectance 

values for each pixel then finally extract averaged (mean) reflectance values for the 

1m2 areas within each quadrat. 
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3.4. Data pre-processing 

3.4.1. Grassland condition: converting a qualitative measure 

into a quantitative gradient 

The partial least square regression (PLSR) model requires a continuous response 

variable, so using mass (in g) and % cover as grassland variable responses is valid. 

However, condition, as defined in the UK by the Common Standards Monitoring 

(CSM) guidance booklets (i.e. National Vegetation Classification, NVC) (JNCC, 2004; 

2006) is a qualitative and discrete measure established using grassland type specific 

criteria. Therefore, instead of pursuing an approach which caters for a range of 

response variable types (categorical, nominal, etc.) and has options to address 

multicollinearity such as a penalised generalised linear model (Nelder and 

Wedderburn, 1972) or a penalised generalised additive model approach (Hastie and 

Tibshirani, 1986) this condition measure was simply converted to a continuous form 

for direct use as the response with PLSR.  

The seven chosen grasslands were classified using the NVC system, before their 

condition was determined, as each grassland type has its own set of condition-related 

criteria in the CSM guidelines. To classify each grassland, species abundance data 

collected on the ten quadrats established on each grassland were analysed using 

MAVIS software (Smart et al., 2016) which gave each grassland a NVC category. 

CSM guidelines (JNCC, 2004; 2006) were then used to determine how closely 

related each quadrat was to the guidelines for the NVC category of that particular 

grassland, except for relatively improved grasslands which were compared to the 

guidelines for MG5 grasslands. Species abundance, % cover of grassland variables 

and grass height measurements were compared to the NVC-specific condition criteria 

in the CSM guidelines for every quadrat (summary of criteria provided in Table 3.5). A 

“good” rating was given for each criterion met or a “bad” rating was given otherwise. 

For example, if forb cover of 40-90% was a criterion then a “good” rating would be 

given if forb cover is 50% but a “bad” rating would be given if forb cover is 20%. The 

good:bad ratio was determined for each quadrat by calculating the ratio of the 

number of “good” and “bad” criteria. This ratio became resultant CSM-condition 

variable and had a continuous range from 0 to 1. No weighting was given to particular 

criteria, so each criterion contributed equally to the good:bad ratio. Each NVC 

category had a different set of criteria meaning that a different number of criteria were 

https://paperpile.com/c/1LTQmN/szjM+CwFJ
https://paperpile.com/c/1LTQmN/szjM+CwFJ
https://paperpile.com/c/1LTQmN/Z8uw
https://paperpile.com/c/1LTQmN/Z8uw
https://paperpile.com/c/1LTQmN/To1o
https://paperpile.com/c/1LTQmN/To1o
https://paperpile.com/c/7n2Hxm/2iRPd
https://paperpile.com/c/7n2Hxm/njYkF+OvF8m


Chapter 3 – Methodology 
 

57 
 

referred to for each target grassland. Furthermore, some guidelines were not used as 

data were not available for this purpose e.g. signs of grazing. 

 

Table 3.5: Shows the classification for each chosen grassland and lists the 

grassland-specific CSM criteria used in this thesis. 

Grassland Grassland 

criteria 

applied 

Criteria used Criteria not used 

CG2b CG2 

10 criteria 

>30% and <90% forb cover, 

<5% scrub cover, <25% dead 

material cover, <5% bare 

ground cover, average height 

>2cm and <50cm, two or more 

positive indicator species, <20% 

agricultural species cover and 

<10% cover by any one 

agricultural species, <20% 

cover by rank grasses and 

sedges plus <10% cover for 

Arrhenatherum and Dactylis 

species, <=5% agricultural 

weeds, no introduced species 

Extent, scrub and 

trees plus bracken, 

local distinctiveness 

CG10a CG10 

8 criteria 

<33% forb cover, <10% scrub 

cover, <10% dead material 

cover, <10% bare ground cover, 

<10% Juncus effuses cover, 

<25% Ranunculus repens and 

Bellis perennis cover, at least 

two positive species indicators 

present, <1% negative species 

cover 

Extent, <1% non-

native species, 

grazing indicators 
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M19a M19 

7 criteria 

<10% scrub cover, disturbance: 

<10% bare ground cover plus 

<10% damaged Sphagnum 

species cover, at least six 

positive species indicators 

present, Sphagnum fallax is not 

the only Sphagnum species, 

>50% cover for at least three 

indicator species, <1% negative 

species cover, no signs of 

burning 

Extent, indicators of 

browsing (e.g. shrub 

grazing), peat 

erosion, <75% 

Ericaceous species 

cover, <1% non-

native species 

MG5b 

MG6b 

MG6c 

MG5 

7 criteria 

>40 and <90% forb cover, <5% 

scrub cover, <25% dead 

material cover, <5% bare 

ground cover, at least two 

positive species indicators 

present, agriculturally favoured 

species cover and rank grasses 

and sedges cover: <10% for 

one species or <20% 

collectively, <5% agricultural 

weeds cover 

Extent, height 

 

3.4.2. Processing response data before model training 

3.4.2.1. Test for normality 

One assumption made when using a linear regression approach such as PLSR is 

that there is a normal distribution of errors. Furthermore, the results of PLSR can be 

considered unreliable if affected by error heteroscedasticity. These issues can be 

addressed by transforming non-normal response data (Meyer et al., 2019; Ripley et 

al., 2019). As many of the grassland variable data sets appeared to be skewed based 

on a subjective assessment of distribution graphs, a Shapiro-Wilk test for normality 

https://paperpile.com/c/1LTQmN/uIj5+xkuv/?prefix=Meyer%20et%20al.%2C,Ripley%20et%20al.&noauthor=1,1
https://paperpile.com/c/1LTQmN/uIj5+xkuv/?prefix=Meyer%20et%20al.%2C,Ripley%20et%20al.&noauthor=1,1
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was applied to quantitatively assess whether the distribution of each data set was 

normal. 

The W value is calculated as: 

 

𝑊 = 𝑏2 ÷ 𝑆𝑆      (eq. 3.1) 

Where: 

 

 𝑏 = ∑ 𝑎𝑖(𝑥𝑛+1−𝑖 − 𝑥𝑖)𝑚
𝑖=1       (eq. 3.2) 

 

With m being n ÷ 2 if n is even, or (n-1) ÷ 2 if n is odd, and: 

 

      𝑆𝑆 = ∑ (𝑥𝑖 − 𝑥)𝑛
𝑖=1

2
       (eq. 3.3) 

 

The closer the W value is to 1, the more normal the distribution is considered to be 

although it is possible for values >0.95 to be applied to distributions that are clearly 

non-normal subject to the sample size (Shapiro and Wilk, 1965). A p-value 

(probability associated with W value) is also calculated, where the null hypothesis of 

normal data distribution is rejected if p<0.05. In the context of this thesis, response 

data were considered to be significantly skewed if the results of a Shapiro-Wilk test 

(Shapiro and Wilk, 1965) produced a p-value of <0.05 (i.e. at the 95% level). 

A one sample Kolmogorov-Smirnov test, Lillefors test or an Anderson-Darling test 

could have been used for the same purpose (Razali and Wah, 2011). The one 

sample Kolmogorov-Smirnov test and related Lillefors test compares the distribution 

of a given data set against an ideal normal distribution with the null hypothesis that 

the data set being analysed is from a normally distributed population. This is 

achieved by calculating the observed values against the expected cumulative relative 

frequencies that would exist if the data set followed an ideal normal distribution. The 

https://paperpile.com/c/7n2Hxm/KqU4
https://paperpile.com/c/7n2Hxm/KqU4/?prefix=Shapiro%20and%20Wilk%2C&noauthor=1
https://paperpile.com/c/7n2Hxm/8696


Chapter 3 – Methodology 
 

60 
 

Kolmogorov-Smirnov test and Lillefors test differ in the calculations made in 

determining whether the null hypothesis is rejected. The Anderson–Darling test 

evaluates whether a sample comes from a defined distribution, which in this context 

is a normal distribution (Razali and Wah, 2011). Although all tests achieve the same 

purpose and had no clear advantage in the context of this study, the Shapiro–Wilk 

test was chosen as it is considered to be the most powerful (Razali and Wah, 2011). 

One disadvantage of all aforementioned tests is that they are less powerful on small 

sample sizes, where the term “small sample sizes” has not been quantified. 

Therefore, it is not clearly defined whether the sample sizes used in this study 

constitute “small sample sizes”. It has been stated that the Shapiro–Wilk test requires 

relatively few samples to give reliable results but the recommendation is to use at 

least 50 samples (Razali and Wah, 2011) while Royston (1995) explains that any 

sample size between 3 and 5000 is viable for analysis using the Shapiro–Wilk test. 

This study used less than 50 samples for most analyses (10, 30, 40 or 90) where the 

Shapiro-Wilk test was still the more powerful than comparable tests (Razali and Wah, 

2011) but it was not made unambiguously clear if this sample size is sufficient for 

reliable results in this particular study. Also, the Shapiro–Wilk test is known not to 

work well in samples with many identical values (Shapiro and Wilk, 1965). This was 

the case when using bare ground for all grasslands and CSM-condition for 

Grasslands 1 and 6 as response variables in this thesis for example. 

 

3.4.2.2. Transformation of response variables 

Response data that were not considered to have a Gaussian distribution after a 

Shapiro-Wilk test were transformed before PLSR analysis to help address the 

assumption of a normally distributed error term made by the PLSR analyses and to 

address the issue of error heteroscedasticity. A log transformation was applied to the 

response data if the response distribution was right- or left-skewed respectively, 

where left-skewed response data were “reflected” before transformation (Meyer et al., 

2019; Ripley et al., 2019). Compositional data were also log transformed to remove 

the constraints on data (i.e. 0-100% for cover data) and to account for the non-linear 

relationship between spectral data and the condition-related variables chosen for this 

thesis. An optimising constant (c) was included to optimise the transformation by 

taking the extent of the skew into consideration (Meyer et al., 2019; Ripley et al., 

2019). The equation is: 

https://paperpile.com/c/7n2Hxm/8696
https://paperpile.com/c/7n2Hxm/8696
https://paperpile.com/c/7n2Hxm/8696
https://paperpile.com/c/7n2Hxm/CuEE/?noauthor=1
https://paperpile.com/c/7n2Hxm/8696
https://paperpile.com/c/7n2Hxm/8696
https://paperpile.com/c/7n2Hxm/KqU4
https://paperpile.com/c/7n2Hxm/dU6Uw+8w8yT/?prefix=Meyer%20et%20al.%2C,Ripley%20et%20al.&noauthor=1,1
https://paperpile.com/c/7n2Hxm/dU6Uw+8w8yT/?prefix=Meyer%20et%20al.%2C,Ripley%20et%20al.&noauthor=1,1
https://paperpile.com/c/7n2Hxm/dU6Uw+8w8yT/?prefix=Meyer%20et%20al.%2C,Ripley%20et%20al.&noauthor=1,1
https://paperpile.com/c/7n2Hxm/dU6Uw+8w8yT/?prefix=Meyer%20et%20al.%2C,Ripley%20et%20al.&noauthor=1,1
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 𝑙𝑜𝑔 (𝑥 + 𝑐)       (eq. 3.4) 

 

Although log transforming compositional data helps deal with issues related to using 

compositional data in regression analyses, using a log ratio transform before 

regression (Aitcheson, 1982) or using beta regression (Douma and Weedon, 2018) 

would be a more effective but less generic approach to transforming response data.  

 

3.4.3. Grassland reflectance 

3.4.3.1. CROPSCAN data processing 

Incoming and reflected irradiance data were collected by the CROPSCAN, then 

converted to millivolt quantities which were stored in the data logger. To calculate 

percent reflectance, the software makes sensor sun angle cosine corrections and 

temperature corrections to the millivolt readings. Corrections for temperature are 

necessary as dark readings (millivolts with no irradiance) and responsivity (millivolts 

per watts/m2 of irradiance) are affected by differences in temperature. Cosine 

corrections are made to account for the sun angle using information on date, time, 

latitude and longitude. The end product of converting and correcting raw millivolt data 

is a CSV file with reflectance values for each of the sixteen bands collected at each 

data with associated dates and times of data collection (CROPSCAN Inc., 2018). 

Some of the spectral data collected with the CROPSCAN during the spring fieldwork 

campaign used an incorrect hardware setup meaning that the spectral data were 

incorrectly calibrated. To account for this, data were collected using a CROPSCAN 

with the correct and the same incorrect setup used in Parsonage Down along the 

same 50m transect on a grassland in Oxfordshire (UK). The two spectral data sets 

were then compared to see if there was a consistent difference between comparable 

bands along the transect. As the spectral data collected on the same transect was 

consistently different between the correct and incorrect setup, a coefficient was 

calculated on each wavelength by calculating the difference in reflectance between 

the correct and incorrect setup. This coefficient was then applied to the incorrectly 

calibrated CROPSCAN data collected during spring at Parsonage Down NNR. 

https://paperpile.com/c/7n2Hxm/ja9l
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3.4.3.2. ASD data processing 

Binary files were converted to ASCII files, then absolute reflectance calculated for 

each band on each data point using white reference data for calibration using Excel 

with prepared macros provided by the Field Spectroscopy Facility. The water 

absorption bands (1350-1460nm and 1790-1960nm) were then removed as these 

bands have a signal to noise ratio too low for these data to be viable. After this, it was 

found that the integrity of these data had been compromised by the difficult weather 

conditions experienced at Ingleborough NNR so it was decided not to use these 

spectral data in analysis. 

 

3.4.3.3. SVC data processing 

Raw data collected using the SVC were saved in the device as .sig files. An Excel 

spreadsheet with prepared macros was provided by the Field Spectroscopy Facility to 

calculate absolute reflectance for each measurement using paired white reference 

and target data. These calibrated reflectance values for 1024 bands are then 

interpolated across the spectral range of 350-2500nm to produce a reflectance 

spectral signature for every nanometre in the 350-980nm range and every two 

nanometres in the 980-2500nm range. Then the atmospheric water absorption bands 

were removed (1350-1520nm & 1790-1960nm) due to their low signal to noise ratio, 

leaving 1249 bands. 

 

3.4.3.4. Rikola VNIR imagery processing 

To prepare the Rikola VNIR imagery for analysis, several processing steps were 

necessary; which included pre-processing (calibration), georeferencing the images, 

normalising the images for illuminance, calculating reflectance, autoscaling the 

reflectance values then extracting the reflectance values for analysis. 
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Pre-processing (calibration) 

Multispectral images collected using the Rikola camera were calibrated using Rikola 

Hyperspectral Imager v2.1 software. Readings were taken from a black reference 

panel prior to each flight, which was used as a dark reference that the drone images 

were calibrated against. The results of pre-processing were stacks of multispectral 

images of reflected irradiance values, each image representing data collected on a 

wavelength. 

 

Georeferencing 

As a drone collects images on a target grassland, data on each band are not 

collected simultaneously for each image meaning that these bands are not 

georeferenced against each other. The georeferencing of images is necessary to 

ensure that spectral data truly represent a particular space such as a quadrat. Firstly, 

Environmental for Visualising Images (ENVI) software was used to separate each 

multispectral image into 30 mono-band images. ArcGIS v10.6 was then used to align 

the 30 images to each other. These images were then “stacked” to produce a 

georeferenced multispectral image. 

 

Normalising illumination 

Despite drone imagery being collected at Parsonage NNR in clear sky conditions 

within two hours of solar noon, some parts of the drone imagery had far higher 

illuminance relative to other parts of the imagery. This within-image variance in 

illuminance is related to the solar zenith angle and the view angle of the camera (Roy 

et al., 2016) and can make the results of regression analysis erroneous as the 

predicted response values can simply be a reflection of illuminance values. To ensure 

the integrity of the results of PLSR statistical modelling, images were normalised 

against a column of pixels that represented the average illuminance for the image 

using R software (v. 3.5.1). 

 

https://paperpile.com/c/7n2Hxm/ZZpd
https://paperpile.com/c/7n2Hxm/ZZpd
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Calculating reflectance values 

R software (v. 3.5.1) was used to calculate the reflectance of each pixel value 

(radiance) for all images. As reflectance is the proportion of radiation not absorbed or 

transmitted, the following equation was applied to each pixel value: 

 

    𝑃𝑟𝑒𝑓 =  𝑃𝑟𝑎𝑑  ÷  𝑅𝑟𝑎𝑑  ×  𝑅𝑟𝑒𝑓     (eq. 3.5) 

 

Where Pref refers to pixel reflectance, Prad refers to pixel radiance, Rrad refers to 

radiance from a reference panel and Rref refers to reflectance from a reference panel. 

Reference panel readings were taken using a SVC on a grey panel. 

 

Extracting quadrat reflectance data from the images 

To train PLSR statistical models using spectral reflectance as predictors, reflectance 

values calculated from Rikola imagery had to be extracted from each quadrat. Once 

the processing of Rikola images had been completed to produce georeferenced 

pixels of reflectance values, reflectance values were extracted from all 30 quadrats 

set up in Parsonage Down NNR during the summer fieldwork campaign. Using ENVI 

software, a “region of interest” was established on top of each 1m2 quadrat which 

calculated the average reflectance values for each band using all of the 6cm2 pixel 

values within. These average values were extracted for use as training data for PLSR 

statistical models. Taking the average value was considered to be the simplest viable 

approach and the most comparable with other literature, but other calculations can be 

utilised instead such as the variation, maximum value and minimum value. 

 

3.4.3.5 Scaling of reflectance data 

Prior to applying PLSR, autoscaling was used to scale spectral reflectance data to a 

mean of zero and a standard deviation of one at each spectral band (Farrés et al., 

2015; Wold et al., 2001) for data collected with all spectral devices used in this thesis. 

Autoscaling is defined as: 

https://paperpile.com/c/1LTQmN/iGsk+GFue
https://paperpile.com/c/1LTQmN/iGsk+GFue
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      �̃�𝑖𝑗 =  
𝑥𝑖𝑗−�̅�𝑖

𝑆𝑖
                  (eq. 3.6) 

 

Where the average of all spectral values for a quadrat is taken away from the spectral 

value, then this value is divided by the standard deviation of all spectral values for a 

quadrat to get the autoscaled value. Autoscaling addresses assumptions made when 

using PLSR (Farrés et al., 2015; Wold et al., 2001) by de-emphasizing the relatively 

higher and highly variable values in the near and short wave-infrared regions of the 

EM spectrum (van den Berg et al., 2006; Haaland and Thomas, 1988) and also 

prevents the results of the VIP analyses (explained in Section 3.5.2.1) from being 

biased. The alternatives are range scaling, which is sensitive to outliers, and Pareto 

scaling, which is sensitive to large fold changes (i.e. differences between the values 

of the predictors). 

 

3.5. Analytical methods 

The overarching approach (summarised in Figure 3.7) was to apply partial least 

squares linear regressions between grassland reflectance, grassland variables and 

condition data to explore the strength of the relationships between (1) grassland 

reflectance and grassland CSM-condition, (2) grassland reflectance and grassland 

variables and (3) grassland variables and grassland CSM-condition. This approach 

was designed to establish if there is a consistent relationship between grassland 

reflectance and grassland CSM-condition and which of the chosen grassland 

variables are more likely to contribute to this relationship. In other words, can 

grassland variables form the basis for remotely sensed based approaches to 

monitoring grassland condition? And which grassland variables are the most 

suitable? 

https://paperpile.com/c/7n2Hxm/dbxD+u2ud/?noauthor=0,1&prefix=,Wold%20et%20al.
https://paperpile.com/c/7n2Hxm/XjwYt+Efy5N


Chapter 3 – Methodology 
 

66 
 

  

Figure 3.7: Schematic of overarching approach used to establish if remote sensing 

can be used to determine grassland condition and to identify which spectral bands 

and which grassland variables are particularly suited for condition monitoring using 

remote sensing. 

 

3.5.1. Testing for significant difference of grassland variables 

between grassland sites 

Botanical experts provided support in selecting the target grasslands, one reason for 

selecting them is that the grasslands should be as different in their characteristics as 

possible to represent a range of different grassland types. It was hypothesised that 

these different characteristics would be reflected in significantly different quantities of 

grassland variables (e.g. an undergrazed acid mire grassland will have significantly 

different quantities of graminoids compared to an overgrazed alkaline grassland). A 

Wilcoxon rank sum test (a.k.a. Mann-Whitney U test) (Bauer, 1972) is a non-

parametric test for significant difference between the medians of two independent 

data sets. This method was used to establish whether there were significant 

https://paperpile.com/c/1LTQmN/7Ieu
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differences between grassland sites in terms of the grassland variable distributions. 

Differences were considered significant if p <= 0.05 (i.e. at the 95% level). A non-

parametric method was chosen as almost all of the mass and % cover data sets were 

found to have a non-normal distribution by the Shapiro-Wilk test (Whitley and Ball, 

2002). The two-sided version of the test does not suggest the directionality if two data 

sets are deemed to be different, which was considered advantageous when dealing 

with a combination of left-skewed and right-skewed data. This approach was chosen 

as the data sets being compared were not matching (i.e. data being compared was 

collected on different grasslands), ruling out the use of analyses such as the Sign test 

or Wilcoxon Signed Rank Test (Whitley and Ball, 2002). Also, data sets were 

compared against each other (i.e. between two grasslands) meaning that analyses 

that compare groups of data sets and produce one result such as a Kruskal-Wallis 

test were not considered appropriate. 

Boxplots showing the mass or % cover of grassland constituents for each grassland 

were produced to visualise the differences in distribution. To test for significant 

differences in the values of each grassland variable between different grasslands, an 

unpaired two-sample Wilcoxon test was applied using R software (version 3.4.2 or 

3.5.1). This non-parametric method, which compares the medians of each data set, 

can be applied to skewed data to compare two independent groups of samples. The 

equation is as follows: 

 

   𝑈1 = 𝑛1𝑛2 + 𝑛1(𝑛1 + 1)2 − 𝑅1                (eq. 3.7) 

 

And: 

 

   𝑈2 = 𝑛1𝑛2 + 𝑛2(𝑛2 + 1)2 − 𝑅2                (eq. 3.8) 

 

Where n is the sample size and R is the sum of ranked values. The smaller of the U 

values from the two sets of samples is chosen. A U value closer to zero suggests that 

the null hypothesis can be rejected, but this can only be done after comparing the U 

https://paperpile.com/c/7n2Hxm/Q8gE
https://paperpile.com/c/7n2Hxm/Q8gE
https://paperpile.com/c/7n2Hxm/Q8gE
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value against a table of significant U values. The significant U value depends on the 

sample size and the alpha value chosen (default is 0.5 which is the equivalent of the 

95% level). If U is equal to or less than the significant U value then the null 

hypothesis, which in this case is that the mass or % cover of grassland variables 

between two grasslands is not significantly different, can be rejected. 

 

3.5.2. Partial least squares regression 

In the context of this thesis, multicollinearity can occur when spectral bands or 

grassland variable values (i.e. predictors) can be predicted to a high degree of 

accuracy by other spectral bands or grassland variables. The use of redundant 

variables (i.e. multicollinear variables) increases the likelihood of model overfitting 

(Wold et al., 2001). Therefore, it was deemed important to consider a statistical 

modelling approach that helps deal with the issues of multicollinearity and model 

overfitting. 

Firstly, to test whether a predictor decomposition approach such as PLSR was 

necessary, correlation matrices were produced to test the strength of multicollinearity 

between predictors. It was deemed that an approach such as PLSR would necessary 

to deal with multicollinearity if there were any significant correlations. This is 

important as weak correlations would suggest a PLSR methodology would not be 

worth following and a less complex modelling approach such as an ordinary least 

squares (OLS) regression would suffice (i.e. standard regression). Correlation 

coefficients (r) of r > +0.8 or r < -0.8 were considered significant. 

As it was deemed necessary to choose a method that helped overcome the issues of 

multicollinearity and overfitting (See Figure 4.1, Section 4.4.1); partial least squares 

regression (PLSR), also called projection of latent structures regression, was chosen 

for analysis. PLSR (Wold et al., 2001) decomposes the predictor and response data 

sets simultaneously into relatively few orthogonal components (latent variables) that 

explain as much of the covariance between predictors and responses as possible. A 

linear regression step then uses these components to predict the responses. 

The latent variables can also be referred to as X-scores which predict Y and model X. 

X-scores can be denoted as ta where a = (1, 2...A) and A is the number of X-scores. 

They are estimated as linear combinations of the original variables xk with the 

https://paperpile.com/c/7n2Hxm/u2ud
https://paperpile.com/c/7n2Hxm/u2ud/?prefix=Wold%20et%20al.&noauthor=1
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weighting coefficients wka where k = (1...K) and K is the number of X variables. The 

equation for ta (or tia for one indexed object) is: 

 

       𝑡𝑖𝑎 = ∑ 𝑊𝑘𝑎𝑋𝑖𝑘𝑘        (eq. 3.9) 

 

The X-scores are multiplied by the loadings pak, which should represent good 

summaries of X: 

 

    𝑋𝑖𝑘 = ∑ 𝑡𝑖𝑎𝑝𝑎𝑘 + 𝑒𝑖𝑘𝑎      (eq. 3.10) 

 

Where eik represents the X-residuals, which should be relatively small if the loadings 

(pak) genuinely represents a good summary. To calculate the multivariate Y (yim), Y-

scores (ua) are multiplied by the weights cam, gim represents the Y-residuals: 

 

     𝑦𝑖𝑚 = ∑ 𝑢𝑖𝑎𝑐𝑎𝑚 + 𝑔𝑖𝑚𝑎     (eq. 3.11) 

 

The X-scores are used as predictors of Y as follows: 

 

      𝑦𝑖𝑚 = ∑ 𝑐𝑚𝑎𝑡𝑖𝑎 + 𝑓𝑖𝑚𝑎     (eq. 3.12) 

 

The Y-residuals (fim) express the deviations between the observed and modelled 

responses. Because of Eq. 3.9, Eq. 3.12 can be rewritten to look like a multiple 

regression model: 
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  𝑦𝑖𝑚 ∑ 𝑐𝑚𝑎 ∑ 𝑤𝑘𝑎𝑥𝑖𝑘𝑘 + 𝑓𝑖𝑚 = ∑ 𝑏𝑚𝑘𝑥𝑖𝑘 + 𝑓𝑖𝑚𝑘𝑎    (eq. 3.13) 

 

The PLS-regression coefficients (bmk) can be written as: 

 

    𝑏𝑚𝑘 = ∑ 𝑐𝑚𝑎𝑤𝑘𝑎𝑎      (eq. 3.14) 

 

These coefficients are used to calculate the fitted value(s) of the response variable. 

One advantage that PLSR has over regression methods that use PCA regression, or 

a similar approach, is that PCA regression produces components from predictors that 

explain as much of the variance of the predictors as possible before regression 

analysis but does not utilise response data to establish the best way to predict as 

much of the variance of the response data as possible. Another advantage to using 

PLSR is that this analysis can be followed by a variable importance in projection 

(VIP) analysis to determine which variables are most important in predicting the 

response values. Spectral data were autoscaled (explained in Section 3.4.3.5) before 

analysis. Although there are few studies that compare VIP to similar analyses, Farrés 

et al. (2015) found that VIP projections were easier to interpret than selectivity ratio 

projections (another test to ascertain which variables are most important in predicting 

the response values, which is calculated as the ratio between the explained and the 

residual (unexplained) variance for each variable) when dealing with mass 

spectrometry data. 

https://paperpile.com/c/7n2Hxm/dbxD/?noauthor=1
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Figure 3.8: Schematic showing the partial least squares regression (PLSR) approach 

developed to establish if spectral data can be used to determine grassland condition 

(A) and to identify which spectral bands (B) and which grassland variables (C) are 

particularly suited for condition monitoring using spectral remote sensing. R2, 

normalised root mean square error (nRMSE) and variable importance in projection 

(VIP) are used to evaluate and compare model performance. 

 

PLSR (Mevik et al., 2019; Wold et al., 2001) was used to assess the ability of spectral 

data to predict grassland variables and CSM-condition (A and B in Figure 3.8), plus 

the ability of grassland variables to predict CSM-condition (C in Figure 3.8). The 

coefficient of determination (R2) is an ‘in-sample’ measure that represents the % of 

variance of the response variable explained by the regression model, and a leave-

one-out cross validation root mean square error (RMSE) is an alternative ‘out-of-

sample’ measure of the accuracy of the model (Wold et al., 2001). This thesis used 

adjusted R2, which compensates for the addition of predictors by only increasing if the 

new latent variable enhances the model more than what would be expected by 

chance, which is defined as: 

https://paperpile.com/c/7n2Hxm/xwjxd+u2ud/?prefix=Mevik%20et%20al.%2C,&noauthor=1,0
https://paperpile.com/c/7n2Hxm/u2ud
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𝑅𝑎𝑑𝑗
2 = 1 − (1 − 

∑ (𝑦𝑖− �̂�𝑖)𝑖
2

∑ (𝑦𝑖− �̅�)𝑖
2 ) 

𝑛−1

𝑛−𝑝−1
               (eq. 3.15) 

                                                                                                              

Where y represents the measured values, ŷ represents the predicted values, ȳ 

represents the average measured value, p represents the total number of explanatory 

variables in the model and n represents the number of samples. To make the 

performance of different PLSR models comparable, RMSE was normalised (nRMSE): 

 

      𝑛𝑅𝑀𝑆𝐸 = 100
1

𝑁
∑ (𝑆𝑖−𝑂𝑖)𝑁

𝑖=1

2

𝑠𝑑(𝑂𝑖)
    (eq. 3.16) 

 

Where S refers to the predicted values and O refers to the observed values. This 

made different model runs comparable (Bigiarini, 2019). R2 and nRMSE were used to 

compare model performance between grassland sites. R2 results were considered 

strong (R2 >0.7), moderate (R2 of 0.5-0.7) or weak (R2 <0.5) based on previous 

literature (Capolupo et al., 2015; Doughty et al., 2011; Roelofsen et al., 2014) whilst 

models with nRMSE >100 were considered weak as models with this level of 

prediction accuracy using true data are no more accurate than a model using 

randomised data. Higher R2 values and lower nRMSE values were considered to be 

indicative of a better performing PLSR model. A linear regression approach to 

predicting grassland variable values may underestimate the largest (Psomas et al., 

2011) or smallest values (Chen et al., 2009) as the relationship between spectral data 

and grassland variables may not be linear.  

There are other analytical methods that help deal with overfitting and multicollinearity. 

A few predictors can be manually selected (e.g. vegetation indices) or selected 

through other analyses to reduce multicollinearity and make overfitting less likely. 

This can be achieved by decomposing predictors into relatively few components prior 

to regression (e.g. PCA) or by applying methods that incorporate the use of latent 

variables other than PLSR such a penalised generalised additive modelling approach 

(Dormann et al. 2013). 

https://paperpile.com/c/7n2Hxm/K6ml8
https://paperpile.com/c/7n2Hxm/jwwcq+Qdxvz+D9Zdg
https://paperpile.com/c/byTTdf/6LW23/?noauthor=1
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3.5.2.1. Variable Importance in Projection 

Variable Importance in Projection (VIP) coefficients can be used to calculate the 

relative contribution of each predictor when predicting the responses (Farrés et al., 

2015; Wold et al., 2001). Farrés et al. (2015) defined the VIP score for jth variable as: 

 

𝑉𝐼𝑃𝑗 = √
∑ 𝑤𝑗𝑓

2 .𝑆𝑆𝑌𝑓
𝐹
𝑓=1 .𝐽

𝑆𝑆𝑌𝑡𝑜𝑡𝑎𝑙.𝐹
     (eq. 3.17) 

 

Where VIPj is a measure of the global contribution of j variable in the complete PLSR 

model, SSYtotal is the total sum of squares explained of the responses, F is the total 

number of components, wjf is the weight value for j variable and f component and 

squaring this is considered to give the importance of the jth variable in each fth 

component, SSYf is the sum of squares of explained variance for the fth component 

and J number of X variables. A more detailed explanation of the methodology of VIP 

has been provided by Wold et al. (2001) and Farrés et al. (2015).  

In the context of this study, VIP was used to identify key spectral bands for predicting 

grassland variables plus condition (A and B in Figure 3.8) and key grassland 

variables for predicting grassland condition (C in Figure 3.8). Spectral bands or 

grassland variables with VIP coefficients => 1 were considered to be important 

(Farrés et al., 2015). 

 

3.5.2.2. Model fit and validation 

Leave-one-out cross validation (LOO-CV) was used to test the predictive ability of 

each model (Mevik et al., 2019; Wold et al., 2001) where the RMSE values were 

derived from LOO-CV then normalised (nRMSE) so that PLSR models were directly 

comparable. To avoid overfitting, the number of latent variables (i.e. the PLSR 

components derived from the spectral bands) for each model run was determined by 

the lowest prediction error sum of squares (PRESS) value. 

https://paperpile.com/c/7n2Hxm/dbxD+u2ud
https://paperpile.com/c/7n2Hxm/dbxD+u2ud
https://paperpile.com/c/7n2Hxm/dbxD
https://paperpile.com/c/7n2Hxm/u2ud
https://paperpile.com/c/7n2Hxm/dbxD
https://paperpile.com/c/7n2Hxm/dbxD
https://paperpile.com/c/7n2Hxm/xwjxd+u2ud/?prefix=Mevik%20et%20al.%2C,&noauthor=1,0
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For each predictor to response combination, model validation was established by 

calibrating a PLSR model m times where 80% of the quadrat data used for training 

was chosen randomly for each model run. To establish m, first the binomial 

coefficient was used to establish the maximum number of iterations of 80% of the 

quadrat data without repetition or replacement for each combination of grasslands: 

 

𝑚 =  
𝑛!

𝑟!(𝑛−𝑟!)
    (eq. 3.17) 

 

Where in this context n is the number of quadrats and r represents the sample size 

which is set to 80%. Where analyses were conducted on individual grasslands (i.e. n 

= 10 and r = 8), m = 45 but where grasslands were analysed collectively (e.g. all 

three Parsonage grasslands collectively), m was considered to be too large to make 

computing the results realistic so m was limited to 1000 for these analyses. 

As the variance in the training data means that there will also be variance in the fitted 

models, the median of the resulting 45 or 1000 R2 and 45 or 1000 nRMSE values 

from the iterated PLSR model runs were used as the final results (i.e. a form of 

bagging (Breiman, 1994), these will be called the iterated model runs or iterated 

results from now on) to account for this variance and reduce the chance of overfitting. 

A non-parametric method was used to calculate 99% confidence intervals of the R2 

and nRMSE results to capture the variability of the iterated model runs (see Section 

3.5.2.3) (Campbell and Gardner, 1988). 

To establish if the resulting PLSR models (referred to as actual models) provided 

predictions that are more accurate to that found by chance in a random case 

(referred to as random models), PLSRs were run 44 or 999 more times for each 

predictor to response combination, but with the response variable values randomly 

assigned to a different set of predictors (referred to as random models). Then, the 

median result of the actual models were ranked against the results of the 44 or 999 

random models to establish its place in this ranking. If the actual model results were 

placed in the top 5% most accurate fits (e.g. placed in position 950 or above where m 

= 1000) then the actual model R2 or nRMSE values can be said to be significant at 

the 95% level. 

https://paperpile.com/c/1LTQmN/D6PU
https://paperpile.com/c/7n2Hxm/cCymZ
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3.5.2.3. Confidence intervals (CIs) 

Confidence intervals can be used to determine a range of values that have a set 

probability (usually 95% chance) of including the population median. The following 

equation was used to calculate the lower and upper confidence intervals: 

 

(𝑛 ÷ 2) − 2.58 × (√𝑛 ÷ 2)    (eq. 3.18) 

       1 + (𝑛 ÷ 2) − 2.58 × (√𝑛 ÷ 2)    (eq. 3.19) 

 

In this study, confidence intervals were calculated with 99% confidence to capture the 

variability of the iterated PLSR runs meaning that there is a 1% chance that the 

population median would be outside of the calculated range of values. A relatively 

narrow CI range suggests greater precision of the sample statistic as an estimate of 

the overall population value (Campbell and Gardner, 1988). In the context of this 

study, a narrower CI range suggests that the median value of the iterated PLSR runs 

is more representative of all 45 or 1000 results i.e. the distribution of the iterated R2 

and nRMSE results is relatively narrow. 

 

3.5.2.4. Coefficient of variation 

To test the stability and consistency of the PLSR model runs, the coefficient of 

variation (CV) was calculated for all of the model runs for each grassland variable 

and for CSM-condition to highlight which of these responses produced the most 

consistent (strong or weak) R2 and nRMSE results. The equation for calculating CV 

is: 

 

𝐶𝑉 =  
𝜎

µ
 × 100     (eq. 3.20) 

https://paperpile.com/c/7n2Hxm/cCymZ
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In practical terms, this approach would highlight any grassland variables including 

CSM-condition that could be consistently predicted (or not predicted) across 

grasslands, seasons and when using different spectral devices. 

 

3.6. Summary of the main chapters 

Where and when spectral data were successfully collected, and with which devices, 

influenced which data sets were utilised for each of the main chapters in this thesis.  

So while the main analytical approach remained the same, reflectance data were 

combined in different ways with the other data sets in the next three chapters. Table 

3.6 summarises the main characteristics of each study. 

 

Table 3.6: The main characteristics of the data sets used in the three studies. 

Chapter Locations Seasons Spectral devices Sample 

sizes (n) 

Scale 

Chapter 4 Ingleborough NNR 

Parsonage NNR 

Summer-Jun’17 

Summer-Jun’18 

CROPSCAN* 10, 30, 40 

or 70 

 1m2 

Chapter 5 Parsonage NNR Spring-Apr’18 

Summer-Jun’18 

Autumn-Sep’18 

CROPSCAN*  10, 30, or 

90 

1m2 

Chapter 6 Parsonage NNR Summer-Jun’18 CROPSCAN*, Rikola 

camera & and SVC + 

10 or 30 1m2 and 

200x1m 

*CROPSCAN data were successfully collected during the summer 2017 at Ingleborough NNR and during 2018 for 

all three seasons at Parsonage NNR.  

+ During summer 2018, good quality SVC spectral data were collected at Parsonage NNR, on 28 of 30 quadrats.  

& Good quality Rikola camera imagery was also collected during summer 2018 at Parsonage NNR.  
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All three studies utilised traditional (mass, % cover) data and CROPSCAN spectral 

data collected on three grasslands at Parsonage Down NNR during the summer 

season. All studies also used PLSR, VIP and CV to understand which grassland 

variables (including CSM-condition) can be predicted with a reasonable level of 

accuracy and precision using scaled spectral data as predictors plus whether 

unscaled grassland variables can predict CSM-condition with acceptable accuracy 

and precision (Question 4). The impact of using mass or % cover variables on the 

results was also investigated across all three studies (Question 5). In addition, all 

models trained in each study were compared with models trained with randomised 

data to test if the models have stronger predicting power than models trained with 

randomised data. 

VIP was used to understand which spectral bands, when used as predictors, had 

predictive power considered significant (VIP => 1) when predicting grassland 

variables and CSM-condition, plus which grassland variables had significant 

predictive power when predicting CSM-condition (Questions 6 and 8). One reason for 

this analysis was to help establish if we need access to reflectance recorded across a 

broader range of the spectrum (i.e. including SWIR spectral values), instead of only 

utilising the visible and near-infrared (NIR) spectrum to successfully predict grassland 

variables and CSM-condition. 

The first study (Chapter 4) also uses data collected on four grasslands at 

Ingleborough NNR during the summer, meaning that data from seven grasslands 

within the summer season were analysed. This study was conducted to investigate 

(Question 1) whether the chosen grassland variables form the basis for RS- based 

grassland condition monitoring and, related to this, whether these grassland variables 

are the most suitable for estimating grassland condition on a range of different 

grassland types? The second study (Chapter 5) uses data collected during spring, 

summer and autumn on three grasslands at Parsonage Down NNR, to investigate 

(Question 2) the relationship between reflectance and grassland variables plus CSM-

condition across the growing seasons. This study also explores which time of the 

year is most effective for RS based CSM-condition monitoring or if using reflectance 

data from three seasons would be more effective. The third study (Chapter 6) 

consists of two parts. The first part compliments the VIP analysis by comparing the 

predictive power of models trained with spectral data from three different spectral 

devices (Questions 3 and 7). The second part tests whether models trained with data 
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from all three grasslands and using CROPSCAN data as predictors can be 

extrapolated from patch level (1m2) to field level (200x1m).  

 

3.6.1. Varying sample information within and across sites 

In order to assess the effects of combining datasets and how sample size may 

change results, while at the same time potentially contaminating the PLSR fit with 

data representing different processes as a consequence of using data from different 

grassland types, the PLSR models were fitted using combined data. For the first 

study (Chapter 4), these data consisted of: (1) both locations (i.e. all seven grassland 

sites together: 70 quadrats), (2) one NNR location at a time (i.e. four Ingleborough 

NNR sites: 40 quadrats or three Parsonage NNR sites: 30 quadrats), and (3) each 

individual grassland site (i.e. 10 quadrats in each of the seven sites). Thus sample 

size is one of n = 10, 30, 40 or 70. For the second study (Chapter 5), the PLSR 

models were fitted using combined data consisting of all three grasslands collectively 

(30 quadrats per season) and each individual grassland site (10 quadrats per 

season). Also, PLSR models were fitted with data from all three seasons (30 

quadrats per grassland, 90 quadrats for all grasslands) or from one season (10 

quadrats per grassland where data were collected during spring, summer or autumn). 

Therefore, the sample size is one of n = 10, 30, or 90. For the third study (Chapter 6), 

PLSR models were fitted with data from all three Parsonage sites or each individual 

grassland site (n = 10 or 30). 

 

3.7. Summary of the methodology 

This chapter has provided details of the approach taken in this thesis to assess the 

condition of grasslands using RS techniques, addressing each of the questions 

specified at the beginning of this chapter. Grasslands were defined in the context of 

this thesis and a description of the study sites provided. Details were also provided 

on which data sets were collected, how those data were collected and how those 

data were analysed. 

To address Questions 1, 2 and 5 posed at the start of this chapter, data were 

collected from seven grassland sites across two locations that represent a range of 
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grassland types, grazing regimes and improvement levels; data were successfully 

collected over three seasons on three grasslands at Parsonage NNR and during the 

summer on four grasslands at Ingleborough NNR. On each of these seven 

grasslands, a 200m transect was set up and ten quadrats (1m2) placed along it at 

random. On each quadrat, the following data sets were collected then utilised in 

analysis: species abundance, the mass and % cover of grassland variables, grass 

height and spectral data. Species abundance, the % cover of grassland variables and 

grass height were used to define a quantitative metric considered representative of 

grassland condition which was labelled “condition”. To address Question 3, a 

CROPSCAN was used to collect spectral data along the entirety of each transect 

(200 x 1m2 grass patches) and a UAV-mounted Rikola VNIR camera collected multi-

band imagery on all seven grasslands 

To address Questions 4 and 5, PLSR was used to assess the link between spectral 

data (predictors) and grassland variables including CSM-condition (responses) plus 

the link between grassland variables (predictors) and CSM-condition (response). 

When spectral data were used as predictors; different spectral devices were used, or 

the SWIR part of the spectrum was removed before analysis, to test whether using 

the full spectral range made available by some spectral devices is required to 

successfully monitor grassland condition (addressing Questions 6 and 7). VIP was 

used to highlight which spectral wavelengths were significantly important in predicting 

grassland variables including CSM-condition plus which grassland variables were 

significantly important in predicting CSM-condition (addressing Question 8). The CV 

for the iterated model runs identified which grassland variables including CSM-

condition could be consistently predicted (or not predicted) across grasslands, 

seasons and when using different spectral devices. 
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Chapter 4 - Assessing the condition 

of semi-natural grasslands using 

CROPSCAN field radiometry at 

patch level (1m2) 

 

4.1. Summary 

Grassland regeneration and conservation are important to land managers, yet 

conventional methods of measuring grassland condition are time consuming and 

limited in their spatial coverage. This study investigated the relationship between 

grassland condition and associated grassland variables with remotely sensed 

spectral reflectance data. Data were collected on semi-natural UK grasslands within 

Ingleborough National Nature Reserve (NNR) and Parsonage Down NNR. Data 

collection at patch level (1m2) included in situ field radiometry (spectral reflectance) 

measurements, using a CROPSCAN MSR 16R, and species abundance measured 

by a botanical expert. A range of grassland variables were quantified using 

destructive sampling and % cover estimates. A condition variable (referred to as 

CSM-condition in this study) was established by identifying the National Vegetation 

Classification (NVC) category of the seven grasslands included in this study, then 

comparing species and % cover data to the monitoring guidance criteria for that NVC. 

Given multicollinearity in the variables used as predictors, partial least squares 

regression (PLSR) was used to test the strength of the link between spectral data 

(the predictors) and the mass or % cover of condition-related grassland variables and 

also the CSM-condition (the responses). The link between variables and CSM-

condition was also assessed using PLSR by using the mass or % cover of condition-

related grassland variables as predictors, where this predictor data set also exhibited 

multicollinearity. As a part of the PLSR analysis, variable importance in projection 

was used to establish which spectral bands are most important for predicting each 

grassland variable (by mass or % cover) or CSM-condition and which grassland 
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variables (now as predictors, and by mass or % cover) were most important in 

predicting CSM-condition. 

This study demonstrated that remotely-sensed reflectance measures can accurately 

predict CSM-condition and some condition-related grassland variables across highly 

spatially heterogeneous grasslands, where levels of accuracy vary depending on the 

grassland variable or CSM-condition being predicted and whether or not data were 

combined from different grassland sites. The most important wavelengths for 

predicting the grassland variables and CSM-condition were found to be the red edge 

(647nm) and the upper near infrared and shortwave infrared range (780, 870, 1240 

and 1640nm). The most important grassland variables for predicting CSM-condition 

were gram:forb ratio mass, live:dead ratio mass and forbs cover. Relatively, 

gram:forb ratio mass and live:dead ratio mass provided the most consistent results 

when models were run using data from different grassland sites or all grassland sites 

collectively, suggesting relative stability of results when predicting these grassland 

variables. The approach introduced in this chapter addresses knowledge gaps 

identified in the literature by conducting a UK-based remote sensing of grassland 

condition on semi-natural grasslands, by using hand-held spectral devices both 

sunny and cloudy conditions and by including mass-based grassland variables and 

other grassland variables included in few other studies. 

 

4.2. Introduction 

A report by the Food and Agricultural Organisation highlights the global extent of 

grasslands and their socio-economic importance to over one billion people (Neely et 

al., 2009). Grasslands are also considered important for their ecosystem services and 

for their sequestration of carbon and relatively low emissions of other greenhouse 

gases (Bullock et al., 2011; Derner and Schuman, 2007). Despite their importance; 

grasslands face encroachment, degradation and fragmentation due to increasing 

population, overgrazing and urbanisation (Reid et al., 2005). Grasslands are also 

subject to degradation or loss through overgrazing, intensive management practices 

and climate change (Ali et al., 2016; Bullock et al., 2011; Möckel et al., 2014; Neely et 

al., 2009). 

https://paperpile.com/c/1LTQmN/aqEc/?prefix=Neely%20et%20al.%2C&noauthor=1
https://paperpile.com/c/1LTQmN/aqEc/?prefix=Neely%20et%20al.%2C&noauthor=1
https://paperpile.com/c/1LTQmN/VvQX+MCJz
https://paperpile.com/c/1LTQmN/VkWI/?prefix=Reid%20et%20al.%2C&noauthor=1
https://paperpile.com/c/1LTQmN/y3ZE+VvQX+aqEc+ezmT/?noauthor=0,0,1,0&prefix=,,Neely%20et%20al.,
https://paperpile.com/c/1LTQmN/y3ZE+VvQX+aqEc+ezmT/?noauthor=0,0,1,0&prefix=,,Neely%20et%20al.,


Chapter 4 - Assessing the condition of semi-natural grasslands using CROPSCAN 
field radiometry at patch level (1m2) 

 

82 
 

In the UK, although the loss of semi-natural grassland has slowed over the last 10-20 

years, agricultural improvement since 1945 has led to a ~90% loss of semi-natural 

grasslands. This loss is primarily due to arable crop planting and reforestation 

(Bullock et al., 2011). Monitoring the condition of the remaining semi-natural 

grasslands is critical to avoid further degradation and enable effective interventions to 

preserve or improve condition. Conventional grassland condition monitoring uses 

qualitative or semi-quantitative measures such as those explained in the Common 

Standards Monitoring (CSM) guidance (JNCC, 2004; 2006) and in similar approaches 

internationally (Bai et al., 2001; Fliervoet, 1987). 

Conventional grassland monitoring is intensive and time consuming and those who 

are tasked with monitoring urgently require more cost and time effective 

alternatives.  Remote sensing (RS), with its capacity to provide extensive high spatial 

and temporal resolution, at a relatively low resource cost, could be part of the solution 

(Xu and Guo, 2015). In RS-based studies that used a statistical approach to predict 

grassland condition, methods that helped address issues related to multicollinearity 

between spectral bands and associated model overfitting caused by using such 

highly correlated predictor variables were usually chosen. Psomas et al. (2011) used 

spectral data as predictors of biomass on semi-natural grasslands that represented a 

soil moisture gradient in two modelling approaches, using VIs as predictors in 

ordinary least squares regression or using selected bands used as predictors in 

multiple linear regression. The strongest models for predicting biomass were multiple 

linear regression models trained with different combinations of bands (R2 = 0.51-

0.86). Schweiger et al. (2017) used PLSR to establish which functional metrics were 

predictable from multi-spectral grassland reflectance on semi-natural grasslands 

which represented a species richness gradient. Functional metrics of graminoids, 

forbs and forbs + legumes were each predicted with R2 values ranging from 0.5-0.6 

suggesting only moderately accurate PLSR model fits. Wang et al. (2019) compared 

the predictive power of PLSR and Gaussian processes regression to predict fifteen 

structural and biochemical grassland variables on experimental grasslands using 

NASA AVIRIS aircraft spectral data. Both modelling approaches predicted all 

variables with moderate to strong predictive power (R2 > 0.55, but > 0.8 for some 

variables) except lignin and chlorophyll a + b. Capolupo et al. (2015) demonstrated, 

also using an experimental setup, how hyperspectral imagery collected from an 

unmanned airborne vehicle (UAV) in combination with a PLSR can be used for 

predicting grass height and biomass. The study found that structural variables such 

https://paperpile.com/c/1LTQmN/VvQX
https://paperpile.com/c/1LTQmN/szjM+CwFJ
https://paperpile.com/c/1LTQmN/qiSA+ffxO
https://paperpile.com/c/1LTQmN/O9SF
https://paperpile.com/c/BtFFzw/2WPl/?noauthor=1
https://paperpile.com/c/1LTQmN/uYR2/?noauthor=1
https://paperpile.com/c/1LTQmN/UcFS/?noauthor=1
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as biomass and height could be predicted more accurately than chemical variables 

such as crude protein and metabolic energy.  

Xu and Guo (2015) highlight the lack of grassland condition studies that are 

conducted on healthy to sub-healthy grasslands and stated that few studies have 

proposed a consistent grassland monitoring system. Although many RS of grassland 

condition studies exist; few RS of grassland condition studies have tested whether 

the concept of the RS of grassland condition is viable in a real-world situation by 

conducting research on semi-natural grasslands that represent a wide range of types, 

structure, improvement levels and grazing regime particularly in the UK. Furthermore, 

few other RS studies have attempted to predict some of the condition-related 

grassland variables included in this study or have defined a condition measure (CSM-

condition) using conventional grassland monitoring methods as a means of effectively 

training a model to predict grassland condition. This chapter addresses these issues 

directly by presenting an investigation of seven semi-natural grasslands sites of 

varying type and condition located in the UK. The aim of this study is to compare the 

accuracy and precision of predicting CSM-condition and condition-related variables at 

patch level (1m2) across a range of different grassland types. 

 

4.3. Methods 

As the methods have already been explained in detail in the previous chapter, only a 

basic explanation will be provided here. On each of the seven sites, three sites at 

Parsonage Down NNR and four sites at Ingleborough NNR, traditional and spectral 

data were collected as explained in Section 3.3. Then, the data sets necessary to 

quantify CSM-condition and the grassland variables in Table 3.3 were obtained. 

CSM-condition was established as a continuous variable using the methodology in 

Section 3.4.1. Spectral data were scaled (Section 3.4.3.5) but grassland variables 

that were used as predictors of CSM-condition were not scaled before analysis. 

Response data were transformed where deemed necessary (Section 3.4.2) before 

model training. 

First, to test whether a predictor decomposition approach such as PLSR was actually 

necessary, correlation matrices were produced to test the strength of multicollinearity 

between predictors for Parsonage grassland data (n = 30, Figure 4.1) and also using 

https://paperpile.com/c/1LTQmN/O9SF/?noauthor=1
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data from all seven grasslands and data from Parsonage collected across three 

seasons (n = 70 and n = 90 respectively, Appendix Figure 1). Results from the 

smallest data set are presented here to show that a standard regression approach is 

not viable. Secondly, an unpaired two-sample Wilcoxon test was applied (Bauer, 

1972) to establish whether there were significant differences between grassland sites 

in terms of the grassland variable distributions (Figure 4.2) (for details see Chapter 3, 

Section 3.5.1).  

Thirdly, PLSR models (Mevik et al., 2019; Wold, 1966; Wold et al., 2001) were fitted 

to assess the ability of spectral data to predict grassland variables and CSM-

condition, plus the ability of grassland variables to predict CSM-condition (Figure 4.4). 

R2 and nRMSE were used to compare model performance between grassland sites 

(see Section 3.5.2 for more details). PLSR models were fitted and validated as 

explained in Section 3.5.2.2 to produce actual and random models (trained on actual 

and randomised response data respectively). The R2 and nRMSE values of actual 

PLSR models were compared with random models to test whether actual PLSR 

models provided predictions more accurate than that found by chance (Figure 4.8) 

(see Section 3.5.2.2 for details). 

To identify key predictors, variable importance in projection (VIP) coefficients were 

calculated to establish the relative contribution of each predictor to the model and 

resulting response predictions (Figures 4.6 and 4.7) where coefficients => 1 were 

considered important predictor variables (see Section 3.5.2.1 for details). To further 

test the stability and consistency of PLSR model runs, the coefficient of variation (CV) 

was calculated for all of the model runs for each grassland variable (Figure 4.5) (see 

Section 3.5.2.4 for details).  

 

4.4. Results 

4.4.1. Predictor correlation matrices 

Correlation matrices (Figure 4.1 and Appendix Figures 1 and 2) were produced to 

investigate whether there were strong correlations between the spectral bands used 

as predictors in some PLSR models and also between the grassland variables used 

as predictors in other PLSR models using the data sets used for each of the main 

https://paperpile.com/c/1LTQmN/7Ieu
https://paperpile.com/c/1LTQmN/7Ieu
https://paperpile.com/c/1LTQmN/r4yc+GFue+ayrB/?prefix=Mevik%20et%20al.%2C,,&noauthor=1,0,0
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chapters in this thesis. Figure 4.1 presents correlation matrices which used the 

smallest sample size as an example, where the correlations were found using data 

from Parsonage grasslands collected during the summer only (30 quadrats, data set 

used in Chapter 6). The correlation plots presented in Appendix Figures 1 and 2 used 

data collected during summer from seven grasslands across two locations (70 

quadrats, data set used in Chapter 4) and from Parsonage grasslands collected 

across three seasons (90 quadrats, data set used in Chapter 5).  

Figure 4.1a shows results from using CROPSCAN data while Figure 4.1b shows 

results from using Rikola camera (UAV) data. Correlation matrices were not produced 

for the ASD/SVC spectral devices as these devices have bands that match the 

CROPSCAN and Rikola camera. Figure 4.1c shows results from using mass data 

while Figure 4.1d shows results from using % cover data. The correlation matrix for 

the spectral bands indicated statistically significant correlations of r < -0.8 and r > 

+0.8 between bands in the visible part of the spectrum and also between some bands 

in the NIR region of the spectrum (Figure 4.1a and b). The correlation matrices for the 

mass and % cover-based grassland variables similarly resulted in a few significant r 

values r < -0.8 and r > +0.8 (Figure 4.1c and d). Furthermore, the p-value was 

calculated for each correlation and any correlation that was not considered to be 

significantly different from r = 0 (95% value) was greyed out. Similar results were 

produced from using CROPSCAN, mass and % cover data collected on all seven 

grasslands during summer (Appendix Figure 1) and on Parsonage grasslands 

collected over three seasons (Appendix Figure 2). 
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Figure 4.1: Correlation matrices between predictors used in PLSR modelling a) 

spectral bands from CROPSCAN, b) spectral bands from Rikola VNIR camera, c) 

mass data, d) % cover data where n = 30 (data from Parsonage grasslands). 

Correlation coefficients that are not statistically significant (alpha >= 0.05) are 

blanked out. 
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4.4.2. Grassland site characteristics 
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Figure 4.2: Boxplots of grassland variables (mass in g and cover in %) for the seven 

grassland sites. The boxplot colours summarise the unpaired two-sample Wilcoxon 

test results between grassland types: A grassland variable was considered 

significantly different between two grasslands if p<0.05; the boxplot of each grassland 

site is coloured according to the number of sites from which it is significantly different. 

 

The Wilcoxon tests for the mass-based grassland variables show that for bryophytes 

mass, dead material mass and forbs mass; at least five of the seven grassland sites 

were significantly different in their distribution from at least four other sites. Three 

grassland sites were significantly different from at least four other sites for the 

grassland variables biomass, graminoids mass and moisture content. Live material 

mass, gram:forb ratio mass and live:dead ratio mass have less than three grasslands 

that were significantly different from at least four of the other grasslands. 

The Wilcoxon tests for the % cover-based grassland variables show that all grassland 

sites were significantly different in their distribution from at least four other sites for 

dead material cover and live:dead ratio cover. Three grassland sites were 

significantly different from at least four other sites for forbs cover and live material 

cover. Gram:forb ratio cover and graminoids cover had no grasslands that were 

significantly different to at least four other grasslands. 

Figure 4.3 shows the condition scores according to the CSM guidance at quadrat 

level for each grassland site, indicating the level of variation in condition within each 

site. Three sites (Sites 3, 4 and 5) show quadrat level conditions that range from bad 

to good; two other sites (Sites 2 and 7) have quadrat conditions that vary between 

bad and intermediate, and the two remaining sites (Sites 1 and 6) show all quadrats 

in good condition. 
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Figure 4.3: Absolute numbers of quadrats of each level of condition per grassland 

according to the UKCSM criteria and grassland NVC classifications for each of the 

seven grassland sites. Sites 1 to 3 are for Parsonage Down NNR (names in green) 

and Sites 4 to 7 are for Ingleborough NNR (names in red). Good condition means 

that >80% UKCSM criteria are met, intermediate is 60-80% of criteria met and bad is 

<60% criteria met. 

 

4.4.3. Predicting grassland variables and condition using 

PLSR 

The median R2 and nRMSE results of using PLSR modelling where R2 => 0.5 and 

nRMSE <= 100, from 45 runs for individual grasslands or 1000 runs for collective 

grasslands, to predict mass and % cover grassland variables plus CSM-condition 

using spectral data can be seen in Figure 4.4 while the full results are presented in 

Appendix Figure 3. The success in predicting these variables from spectral data is 

partly dependent on whether the models are using data from both locations (total of 

70 quadrats), a single location (total of 30 or 40 quadrats which has been termed 

“collective analysis” for the three or four sites, respectively) or a single site (10 

quadrats) with a broad trend of model performances improving (higher R2 and lower 

nRMSE) when the data used is limited to a specific location and then site. Using the 
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full band set (16 bands) including SWIR (i.e. FULL) or the VNIR only bands (14 

bands), impacts only when the data used is limited to a specific grassland site. 

When mass grassland variable data from all seven grasslands are analysed as one 

using data for both locations combined (given as top left plot in Figure 4.4a) the 

PLSR models for bryophytes mass, dead material mass and graminoids mass stand 

out with R2 values of >0.5 and nRMSE <100. When % cover grassland variable data 

is used (given as top left plot in Figure 4.4c), only forbs cover has a R2 value of >0.5 

value and nRMSE value <100.
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Figure 4.4: Plots for results of 426 PLSR regressions where R2 =>0.5 and nRMSE <=100, each of which represent the median R2 and 

nRMSE values of the iterated model runs, where (i) spectral data (either FULL or VNIR) were used to predict grassland variables 

(coloured dots) and CSM based condition (black dot) and (ii) grassland variables were used to predict CSM based condition (white dot). 

Panels a and b show results for mass based analysis; c and d for % cover based analysis.
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When grassland sites from both locations are analysed collectively (all seven grasslands); 

bryophytes mass, dead material mass, graminoids mass and forbs cover were predicted with 

R2 >0.5 and nRMSE <100 whilst other PLSR model runs produced R2 values <0.5. When 

grassland sites from each location are analysed collectively (i.e. three and four sites 

combined for Parsonage and Ingleborough, respectively), most grassland variables were 

predicted with R2 >0.5 and nRMSE <100 for Parsonage when predicting % cover data, 

whereas only a few variables achieved this level of accuracy when predicting mass data; 

bryophytes mass and moisture content plus CSM-condition (black dots in Figure 4.4) when 

predicting with spectra. Relatively few variables were predicted with R2 >0.5 and nRMSE 

<100 for Ingleborough; only forbs cover, biomass and dead material mass. 

When grassland sites at Parsonage or Ingleborough are analysed individually for predicting 

mass or % cover grassland variable data, many PLSR model fits produced R2 values >0.5 

and nRMSE <100 except for Grasslands 2 and 3 when using mass grassland variable data 

or Grassland 5 when using % cover grassland variable data where only 2-3 model fits 

produced R2 values >0.5 and nRMSE <100. 

Of 426 model runs in total (using mass and % cover data); 188 produced results of R2 >0.5 

and nRMSE <100; with live:dead ratio (27 model runs) producing the most followed by forbs, 

graminoids, dead material, gram:forb ratio (19-21 model runs for each grassland variable). 

More accurate performances in order of number of R2 >0.7 results are for live:dead ratio (17 

model runs), forbs (12 model runs), live material (11 model runs) and gram:forb ratio (10 

model runs). 

The success in predicting grassland variables from spectral data was dependent on whether 

the variables were expressed in terms of mass or % cover and the difference in performance 

varied from small to substantial depending on the grassland variable. When 144 comparable 

mass and % cover based models are compared against each other; % cover achieved higher 

R2 results than mass for Parsonage and Ingleborough locations in 9 of 14 comparable 

models and lower nRMSE results in 10 of 14 comparable models. Also, % cover achieved 

higher R2 results than mass for Parsonage in 44 of 54 comparable models and lower nRMSE 

results in 42 of 54 comparable models. For Ingleborough grasslands, mass had higher R2 

results than % cover for 43 of 76 comparable models and lower nRMSE results in 49 of 76 

comparable models. 
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The impact of utilising FULL spectral bands (16 bands across 470-1640nm range) as 

predictors relative to just the VNIR bands (14 bands across 470-870nm range) appears to be 

site specific, but generally, the difference in model performance is small (R2 <0.05 and 

nRMSE <10). Of 188 model runs that produced results of R2 >0.5 and nRMSE <100, 94 of 

them used FULL spectrum data whilst 86 of them used VNIR spectral data, where the other 

8 models predicted CSM-condition with grassland variables (i.e. did not involve the spectral 

data).  

When the R2 and nRMSE results of 140 comparable models were compared between models 

that used FULL spectral data as predictors and models that used VNIR spectral data as 

predictors, VNIR produced stronger R2 results in 10 of 14 model runs and lower nRMSE 

results for 12 of 14 model runs when comparing results from analysing both locations. FULL 

produced stronger R2 results and lower nRMSE results in 40 of 48 model runs when 

comparing results from analysing Parsonage grasslands. VNIR produced stronger R2 results 

in 44 of 78 model runs and lower nRMSE results for 37 of 78 model runs when comparing 

results from analysing Ingleborough grasslands. 

The PLSR models that used spectral data to predict CSM-condition delivered results of R2 

>0.5 (mostly R2 =>0.65) and nRMSE <100 when grasslands were analysed collectively and 

for Grassland 3 (Figure 4.4). When grassland variables were used to predict CSM-condition, 

models based on % cover data from individual sites or from Parsonage grasslands 

collectively performed best, most achieving R2 >0.5 and nRMSE <100. 

 

4.4.4. Stability and consistency between model runs using the same 

response variable 

Figure 4.5 shows the % coefficient of variation (CV) found from the iterated model runs for 

the resulting R2 and nRMSE values of the site specific PLSR models that were calculated to 

evaluate the stability of model performances across sites for specific grassland variables. 

These results suggest that the performance of the models for bryophytes cover, forbs cover 

and live:dead ratio cover are relatively stable. Most grassland variables have a similar level 

of consistency when mass data are used. Overall, mass based models produce more 

consistent nRMSE results across sites compared to % cover based models and VNIR-based 

models have slightly more consistent nRMSE results between sites than FULL-based 
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models. There is no overall trend showing which sets of results have more consistent R2 

results and whether using mass/cover or FULL/VNIR for more consistent results is grassland 

variable specific. 

 

 

Figure 4.5: % coefficient of variation (CV) plots for the R2 and nRMSE results of the site 

specific PLSR models grouped per treatment (% cover - left; mass - right) and spectral input 

data (full spectrum - top; VNIR - bottom). 
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4.4.5. VIP analysis for spectral band and grassland variable 

selection 

Figure 4.6 shows the results of using a VIP analysis to understand which spectral bands 

were the most important predictors for predicting grassland variables, where only results => 

1 have been included and therefore most of the results are not shown here. The results 

suggest that the two SWIR bands (1240 and 1640nm) are the most important for predicting 

grassland variables and condition across all grasslands, along with the red edge (647nm) 

and upper NIR bands for some grasslands. When VNIR data are used; the upper NIR bands 

plus the red edge are most important for predicting grassland variables and CSM-condition. 

When grassland variables are used to predict condition (Figure 4.7); gram:bryo ratio cover 

(where applicable), gram:forb ratio cover and live:dead ratio cover plus forbs cover and 

graminoids cover are important for a range of grasslands. Other grassland variables were 

only important in predicting CSM-condition on some grasslands, with these grasslands being 

different depending on the grassland variable.
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Figure 4.6: VIP plots showing which combinations of spectral bands (predictors) and which responses (grassland variables on x axis 

and CSM-condition on y axis) are most important in the PLSR models used in this study. 
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Figure 4.7: VIP plot showing which grassland variables are most important in predicting CSM-condition using either mass or % cover 

data from analysing grasslands individually or collectively for one or both locations.
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4.4.6. Comparison of PLSR models trained with actual data and 

PLSR models trained with random data 

The actual data results, as seen in Figure 4.4, were compared against the results of iterative 

model runs (either 44 for individual grassland analysis or 999 for collective grassland 

analysis) with randomised response variable values to test if the results run with the actual 

data genuinely produce reasonable results in comparison to models with randomised data. 

The results are plotted in Figure 4.8, where points close to the top right corner of the graph 

are of interest. 

The results suggest that models using the true data (actual models) are only superior to 

models using randomised data (random models) depending on the size and combination of 

the data being used. At the 95% level, actual models consistently perform more accurately 

than random models when data from both locations are used. When using data from 

collective analysis (30 quadrats for Parsonage and 40 for Ingleborough) the actual models 

almost always produce stronger nRMSE results but not stronger R2 results. Using data from 

individual grasslands (10 quadrats) to train PLSR models results in models that are not 

considered to be more reliable than a random model.
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Figure 4.8: Comparison of the median values of iterated model runs using actual response data and 44 or 999 model runs (dependent 

on whether grasslands were analysed individually or collectively) using randomised response data. The plot shows the ranking of the 

actual model out of the maximum iterated runs (either 45 for individual grasslands or 1000 for collective grasslands), where high 

rankings (e.g. >950 for the 95% level) are sought.
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4.5. Concluding remarks 

The aim of this study was to link CSM-condition, condition-related grassland variables and 

CROPSCAN RS spectral reflectance for the purpose of more effective condition monitoring. 

It has been demonstrated that RS reflectance measures can strongly predict some 

condition-related grassland variables and CSM-condition, even when spectral data are 

collected in unfavourable weather conditions and across different grassland sites as long as 

there is a sufficient quantity of data (considered to be at least 30 quadrats of data). 

Grassland variables can also predict CSM-condition on some grasslands. Few studies have 

taken the same approach where a condition measure plus condition-related grassland 

variables have been predicted to a reasonable level of accuracy and precision on semi-

natural grasslands. 

Future work will test the same approach for establishing grassland condition using three 

seasons of data from the Parsonage Down Natural Nature Reserve and compare the results 

of using three different spectral devices to understand the importance of the SWIR part of 

the spectrum. This work will test the hypothesis that this approach to establishing grassland 

condition can be used to improve the accuracy of upscaling condition measures from ground 

to field level using drone data (Dabrowska – Zielinska et al., 2015).

https://paperpile.com/c/1LTQmN/uFSb


Chapter 5 - Assessing seasonal effects on the condition of calcareous semi-natural 
grasslands using CROPSCAN field radiometry at patch level (1m2) 

 

113 
 

Chapter 5 - Assessing seasonal effects 

on the condition of calcareous semi-

natural grasslands using CROPSCAN 

field radiometry at patch level (1m2) 

 

5.1. Summary 

Lowland calcareous grasslands are a UK Biodiversity Action Plan priority habitat and 

therefore a national programme is in place to regenerate or conserve these environments, 

making cost- and time-efficient condition monitoring desirable. This study assessed the link 

between grassland condition and associated grassland variables with remotely sensed 

spectral reflectance data over three seasons on calcareous grasslands of varying levels of 

regeneration. Grassland condition data and spectral data were collected at patch level (1m2) 

on three calcareous grasslands at Parsonage Down National Nature Reserve during the 

spring, summer and autumn of the 2019 growing season. Spectral data were collected on 

quadrats using a CROPSCAN MSR 16R and species abundance was recorded by a 

botanical expert. A range of grassland variables were quantified using destructive sampling 

and % cover estimates. A quantitative condition variable labelled CSM-condition was 

calculated by identifying the National Vegetation Classification category of each grassland in 

this study then using % cover data of grassland variables, grass height measurements and 

species abundance to test how well quadrats met condition criteria from the Common 

Standards Monitoring guidelines.  

Due to multicollinearity in the predictor variables, partial least squares regression (PLSR) 

was chosen to assess the link between spectral data and (a) the mass or % cover of 

condition-related grassland variables and (b) the derived CSM-condition variable explained 

above. The link between grassland variables and CSM-condition was also assessed, where 

grassland variables (mass or % cover) were now the predictor variables of CSM-condition. 

This link between grassland variables and CSM-condition was similarly assessed using 

PLSR as the grassland variable dataset also exhibited multicollinearity. All PLSR model runs 
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were compared to PLSR model runs with randomised response values to test the validity of 

the true data results to results found by chance. Variable importance in projection (VIP) was 

used to establish which spectral bands were most important for predicting each grassland 

variable or CSM-condition and which grassland variables were best for predicting CSM-

condition. 

Overall, the results suggest that some grassland variables and CSM-condition could be 

reliably predicted on all of the three different seasons or different grasslands, but no 

grassland variables could be consistently predicted accurately on different grasslands or 

across seasons. The most promising results concerned graminoids, live material and 

live:dead ratio (mass or % cover) which were predicted most frequently with a moderate to 

high accuracy (R2 values >0.5 and nRMSE <100) where values <100 were considered better 

than a randomised model).  

The VIP analysis indicated that when using FULL spectrum data (470-1640nm), SWIR 

bands (1240 and 1640nm) were the most important spectral bands for grassland variable or 

CSM-condition prediction. When using VNIR data (470-870nm), NIR bands within the 740-

870nm range were the most important predictors. Particular bands in the visible blue and red 

edge regions were also important predictors regardless of the spectral range used. When 

grassland variables were used to predict CSM-condition, the most important grassland 

variables differed between using mass grassland variable data and using % cover grassland 

variable data. Specifically; biomass, gram:forb ratio mass, live:dead ratio mass and moisture 

content were most important when using mass data, while forbs cover and graminoids cover 

were most important when using % cover. The approach explained in this chapter not only 

helps address the knowledge gaps discussed in Chapter 4 but also the lack of studies that 

utilised data collected over three seasons. 

 

5.2. Introduction 

Grasslands are considered economically important to over one billion people globally (Neely 

et al., 2009) for reasons summarised by Lawley et al. (2016) such as forage for grazing 

animals, wildlife habitats, carbon storage plus the conservation of soil and water resources. 

Threats to the ecosystem services provided by grasslands include conversion to cropland, 

afforestation and under- or overgrazing (Bai et al., 2001; Bullock et al., 2011). In the UK, to 

preserve these ecosystem services, some grassland types (including calcareous grasslands) 

https://paperpile.com/c/byTTdf/3OPP/?prefix=Neely%20et%20al.%2C&noauthor=1
https://paperpile.com/c/byTTdf/3OPP/?prefix=Neely%20et%20al.%2C&noauthor=1
https://paperpile.com/c/byTTdf/JHaA/?noauthor=1
https://paperpile.com/c/byTTdf/c2tR+o1LU/?prefix=Bai%20et%20al.%2C,&noauthor=1,0


Chapter 5 - Assessing seasonal effects on the condition of calcareous semi-natural 
grasslands using CROPSCAN field radiometry at patch level (1m2) 

 

115 
 

were given protection under the UK Biodiversity Action Plan (BAP) which has since been 

incorporated into the UK Post-2010 Biodiversity Framework (JNCC and DEFRA 2012). 

To adhere to these policies, grassland condition is measured primarily using semi-

quantitative measurements of grassland characteristics and species cover (JNCC, 2004; 

2006). Conventional monitoring of grassland condition (e.g. Dodd et al., 1994) is time 

consuming and can lack spatial coverage of the target grassland. As an alternative to direct 

measurement; an approach that incorporates remote sensing (RS) techniques of grassland 

condition can be deployed where RS offers more efficient data collection, reduced work 

hours and increased spatial-temporal coverage (Xu and Guo, 2015). 

Lausch et al. (2018) stated that a range of vegetation metrics can be used as indicators of 

various forms of vegetation stress where key metrics for a RS vegetation condition study 

could include biochemical variables to indicate nutrient deficiency (e.g. Schweiger et al., 

2017), functional variables (e.g. Filella and Penuelas, 1994) or structural variables such as 

LAI to detect a reduction in productivity (e.g. Shen et al., 2014) while species focussed RS 

studies (Cole et al., 2014; Wang et al., 2018a; Wang et al., 2018b) or focussing on variables 

related to disturbance (e.g. Mirik and Ansley, 2012) could detect a reduction in biodiversity. 

RS studies have tended to predict these variables using empirical or statistical modelling 

methods (e.g. Homolová et al., 2014) though some studies use radiative transfer models 

(Atzberger et al., 2015; Punalekar et al. 2018). PLSR (Mevik et al., 2019; Wold et al., 2001) 

was chosen over standard regression mainly due to multicollinearity between RS bands and 

associated model overfitting. Chen et al. (2009) conducted a patch level study on 

heterogeneous grasslands to assess whether PLSR using a range of vegetation indices 

(VIs) as predictors could effectively predict biomass using either standard linear or non-linear 

approach. This study found that bands in the red edge and NIR regions of the spectrum 

were the most important for predicting biomass, but all of the models had low accuracy (R2 

<0.27). Ali et al. (2019) compared the ability of PLSR and 11 VIs to predict LDMC (linked to 

biomass) at patch level on wetlands using spectral data from the Sentinel-2 satellite. PLSR 

and most of the VIs produced R2 results of 0.66-0.71, with PLSR producing more accurate 

results (R2 = 0.70-0.71) than VIs (R2 = 0.66-0.67). Darvishzadeh et al. (2008) compared the 

ability of PLSR and VIs to predict LAI (linked to biomass and water content) and canopy 

chlorophyll content (CCC) at patch level on heterogeneous Mediterranean grasslands. PLSR 

produced higher R2 results of 0.69 and 0.74 for LAI and CCC respectively when compared to 

the VIs used in this study (R2 = 0.49-0.64 for LAI and R2 = 0.51-0.69 for CCC). 

Few RS studies of grassland condition have been conducted across three seasons or on 

semi-natural grasslands (Xu and Guo, 2015), particularly on calcareous grasslands in the 

https://paperpile.com/c/byTTdf/jtgF/?prefix=JNCC%20and%20DEFRA&noauthor=1
https://paperpile.com/c/byTTdf/bdqv+VwYDg
https://paperpile.com/c/byTTdf/bdqv+VwYDg
https://paperpile.com/c/byTTdf/Drxb/?prefix=e.g.
https://paperpile.com/c/byTTdf/nRHaa
https://paperpile.com/c/byTTdf/gRIm/?noauthor=1
https://paperpile.com/c/byTTdf/xDqE
https://paperpile.com/c/byTTdf/xDqE
https://paperpile.com/c/byTTdf/H6tP
https://paperpile.com/c/byTTdf/a7Dg/?prefix=e.g.%20Shen%20et%20al.&noauthor=1
https://paperpile.com/c/byTTdf/GWZd+jKDx
https://paperpile.com/c/byTTdf/gl3G/?prefix=e.g.
https://paperpile.com/c/byTTdf/mN9l
https://paperpile.com/c/byTTdf/CGZ5
https://paperpile.com/c/byTTdf/cWVIF+v0DLB/?prefix=Mevik%20et%20al.%2C,&noauthor=1,0
https://paperpile.com/c/byTTdf/U6K1/?noauthor=1
https://paperpile.com/c/byTTdf/910F/?noauthor=1
https://paperpile.com/c/byTTdf/2BO3/?noauthor=1
https://paperpile.com/c/byTTdf/nRHaa/?prefix=Xu%20and%20Guo%2C&noauthor=1
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UK. Furthermore, few studies have quantified a CSM-condition variable based on 

conventional grassland study measures (e.g. Bai et al., 2001) with the intention to predict it 

using RS techniques on spatially heterogeneous semi-natural grasslands. The aim of this 

study is to compare the accuracy and precision of predicting CSM-condition and the mass or 

cover of condition-related grassland variables at patch level (1m2) on three grasslands of 

varying levels of improvement at three sites of the Parsonage Down National Nature 

Reserve (NNR) during the spring, summer and autumn of the 2019 growing season.  

 

5.3. Methods 

As the methodology of this study is similar to the study in Chapter 4 and the methodology of 

the thesis has already been provided in Chapter 3, only a broad explanation and information 

specific to this study will be provided here. On three sites at Parsonage Down NNR, 

traditional and spectral data were collected on ten quadrats per grassland as explained in 

Section 3.3. These data sets were used to quantify grassland variables (Table 3.3) and 

CSM-condition (Section 3.4.1).  

The rest of the methodology closely resembles that used in the previous chapter. Spectral 

data were scaled (Section 3.4.3.5) and response data were transformed where necessary 

(Section 3.4.2) before analysis. An unpaired two-sample Wilcoxon test was again applied 

(Bauer, 1972), this time to test for significant differences between grassland sites in terms of 

the grassland variable distributions using data collected over three seasons (Figure 5.1) (see 

Section 3.5.1 for details).  

PLSR models (Mevik et al., 2019; Wold, 1966; Wold et al., 2001) were again fitted to assess 

the ability of spectral data to predict grassland variables and CSM-condition, plus the ability 

of grassland variables to predict CSM-condition, but this time using data from each of the 

three seasons and for all three seasons (Figures 5.2 and 5.3) where R2 and nRMSE were 

used to compare model performance (see Section 3.5.2 for more details). PLSR models 

were fitted and validated as explained in Section 3.5.2.2 to produce actual and randomised 

data models which were compared to test whether actual PLSR models provided predictions 

more accurate than that found by chance (Figures 5.8 and 5.9) (see Section 3.5.2.2 for 

details). The coefficient of variation (CV) was again calculated to further test the stability and 

consistency of PLSR model runs (Figure 5.4) (see Section 3.5.2.4 for details). Variable 

https://paperpile.com/c/byTTdf/c2tR/?prefix=e.g.%20Bai%20et%20al.&noauthor=1
https://paperpile.com/c/1LTQmN/7Ieu
https://paperpile.com/c/1LTQmN/r4yc+GFue+ayrB/?prefix=Mevik%20et%20al.%2C,,&noauthor=1,0,0
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importance in projection (VIP) coefficients were again used to identify key model predictors 

(Figures 5.5, 5.6 and 5.7) (see Section 3.5.2.1 for details).  

  

5.4. Results 

5.4.1. Grassland site characteristics 

The boxplots seen in Figure 5.1 show the quantity of each variable for each grassland and 

season, including the results of significant difference tests between grassland types across 

seasons. Overall, the Wilcoxon tests for grassland variables show that some mass-based 

grassland variables are generally significantly different on the three different grasslands 

across three seasons whilst cover-based grassland variables were generally not significantly 

different to each other. The Wilcoxon tests for the mass-based variables show that for 

variables biomass, bryophytes mass, live material mass, live:dead ratio mass and forbs 

mass most of the nine grassland site and season combinations were significantly different in 

their distribution from at least five other site-season combinations. The Wilcoxon tests for the 

cover-based grassland variables shows that live:dead ratio cover was generally significantly 

different in distribution between grasslands and seasons. Also, at least two grasslands 

during spring had significantly different distributions for the variables dead material cover, 

live material cover and graminoids cover when compared to other site-season combinations 

but other grassland variables had no grasslands that were significantly different to at least 

four other site-season combinations.
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Figure 5.1: Boxplots of the mass or % cover values of grassland variables for the three grassland sites. The boxplot colours summarise the 

unpaired two-sample Wilcoxon test results between grassland types and seasons: a grassland variable was considered significantly different 

between two grasslands if p<0.05; the boxplot of each grassland site is coloured according to the number of different site-season combinations 

from which it is significantly different. 
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5.4.2. Predicting grassland variables and CSM-condition using 

PLSR 

The median R2 and nRMSE results of the PLSR modelling from the iterated model runs to 

predict mass and % cover grassland variables including CSM-condition variables can be 

seen in Figures 5.2 and 5.3 Overall, most variables were predicted with R2 values >0.5 and 

nRMSE results <100 for at least some grasslands and seasons, but there are few patterns 

where a particular variable is predicted consistently across grasslands and seasons. 

Analysing data from all grasslands collectively (n = 30 or 90 for one or for all three seasons) 

produced PLSR models with R2 >0.5 and nRMSE <100 for a similar number of grassland 

variables as analysing data from single sites (n = 10 or 30 for one or all three seasons) for 

most seasons, a clear exception being autumn for some grasslands when using % cover 

variable data. Removing the SWIR bands before analysis (14 bands, labelled VNIR) does 

not appear to have a big impact on the results relative to using the full spectral data set (16 

bands, labelled FULL). 

  

5.4.2.1. Mass-based grassland variable data 

The results of using grassland variables derived from mass data as response data in the 

model runs where R2 => 0.5 and nRMSE <= 100 can be seen in Figure 5.2 and the full 

results are presented in Appendix Figure 4. When grasslands are analysed collectively for all 

seasons (n = 90); graminoids mass (when using FULL), live material mass and live:dead 

ratio mass have R2 values 0.5-0.7 but all other results are <0.5. For spring (n = 30); 

biomass, dead material mass, graminoids mass, live material mass and live:dead ratio mass 

all produced results of R2 >0.5 and nRMSE results <100. For summer (n = 30); bryophytes, 

moisture content and CSM-condition predicted with spectral data produced results of R2 

=>0.5 and nRMSE results <100. For autumn (n = 30); biomass, forbs mass, graminoids 

mass, and live material mass had results of R2 =>0.5 and nRMSE results <100. 

When grasslands are analysed individually (n = 30 for all seasons or n = 10 for one season), 

there were some significant results but there is no obvious pattern in the results for any 

grassland variable except that gram:forb ratio mass is predicted consistently with R2 values 

=>0.5 for Grassland 2. The grassland variables that produce the greatest number of 

significant results are biomass, graminoids mass and live material mass plus live:dead ratio 

mass when using VNIR. 
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Of 512 model runs (Figures 5.2 and 5.3); 243 produced R2 results => 0.5 and nRMSE <100, 

128 of which have R2 results => 0.7. All grassland variables except bryophytes mass had 

>10 results of R2 =>0.5 and nRMSE <100. Live material mass, graminoids mass and 

live:dead ratio mass have the most PLSR models with R2 results => 0.5 and nRMSE <100 

with 38, 39 and 40 respectively. Using % cover grassland variable data produced 119 PLSR 

models with R2 results => 0.5 and nRMSE <100 whilst using mass grassland variable data 

produced 124 such results, suggesting that using mass grassland variables a similar number 

of moderate to strong PLSR models than using % cover data.  

Analysing data from all grasslands collectively produced fewer PLSR models with R2 results 

=> 0.5 and nRMSE <100 (50) than analysing data from individual grasslands; 62 for 

Grasslands 1 and 2, and 70 for Grassland 3. A similar number of PLSR models with R2 

results => 0.5 and nRMSE <100 results were produced for FULL and VNIR; Using FULL 

spectral data produced 125 such results whilst using VNIR spectral data produced 118 such 

results. Using data from all seasons produced more PLSR models with R2 results => 0.5 and 

nRMSE <100 (69) than using data from one season; 53, 57 and 63 for spring, autumn and 

summer respectively. The results for one season, particularly for spring, could have been 

affected by a relatively high quantity of dead material on the grasslands (Yang and Guo, 

2014).  

 

https://paperpile.com/c/byTTdf/SabS
https://paperpile.com/c/byTTdf/SabS
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Figure 5.2: Median results of iterated model runs where spectral data were used to predict CSM-condition and mass-based grassland variables 

for each of the three seasons (n = 10 or 30) and for all seasons (n = 30 or 90). Also included are the results of predicting CSM-condition using 

grassland variables as predictors.
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5.4.2.2. Cover-based grassland variable data 

The results of using % cover grassland variable data as response data can be seen in 

Figure 5.3. When grasslands are analysed using data from all seasons; most grassland 

variables produced significant results for at least one grassland but dead material cover, 

graminoids cover, live material cover and live:dead ratio cover consistently produced R2 

values => 0.5 and nRMSE <100. When grasslands are analysed collectively for one season, 

most grassland variables were predicted with R2 values => 0.5 for summer but almost all 

had R2 values <0.5 except dead material cover and live:dead ratio cover when using VNIR 

data. When grasslands are analysed individually for one season, the grassland variables 

that produced significant results for all or nearly all of these grasslands and seasons (except 

Grasslands 1 and 2 for autumn) include forbs cover, graminoids cover, live material cover 

and live:dead ratio cover. 
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Figure 5.3: Median results of iterated model runs where spectral data were used to predict CSM-condition and cover-based grassland variables 

for each of the three seasons (n = 10 or 30) and for all seasons (n = 30 or 90). Also included are the results of predicting CSM-condition with 

grassland variables data.
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5.4.2.3. Predicting CSM-condition with spectral data or grassland variables 

Of 32 model runs where spectral data were used as predictors of CSM-condition (Figures 

5.4 and 5.5); 11 produced R2 results => 0.5 and nRMSE <100, 5 of which have R2 results => 

0.7. Most of these PLSR models were for Grasslands 1 and 3 (5 and 4 model runs 

respectively), the other two results being from analysing grasslands collectively. Using FULL 

spectral data produced 6 PLSR models with R2 >0.5 whilst VNIR produced 5 PLSR models 

with R2 >0.5. Using data collected in summer produced far more PLSR models with R2 >0.5 

(6) than using data from other seasons or analysing data from all seasons collectively (5 

model runs in total, 1-2 from each season or from collective analysis).  

Of 32 model runs where grassland variables were used to predict CSM-condition (Figures 

5.4 and 5.5); 13 of 32 model runs had R2 results >0.5, 4 of which had R2 results => 0.7. Of 

these 13 model runs, 10 were produced using % cover data but there were no other clear 

patterns in the results beyond this. 

 

5.4.3. Stability and consistency between model runs using the 

same response variable 

Coefficient of variation (CV) was calculated to evaluate the stability of model performances 

across sites for specific variables. Figure 5.4 shows the % CV found from the iterated PLSR 

model runs for the resulting site specific R2 and nRMSE values. Overall, models using cover-

based grassland variables produce more consistent R2 results but less consistent nRMSE 

results than models using mass-based grassland variables. For CSM-condition, this trend is 

reversed. Whether FULL-based models or VNIR-based models produce more stable results 

is grassland variable dependent although the results are generally similar. 

When using % cover data; model performances for forbs cover, graminoids cover and 

live:dead ratio cover are relatively stable. When using mass data; model performances for 

graminoids mass were the most stable with biomass, live material mass, moisture content 

and live:dead ratio mass also being relatively stable. 
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Figure 5.4: % coefficient of variance (CV) for the R2 and nRMSE results of the site specific PLSR models grouped per treatment and spectral 

input data.
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5.4.4. VIP analysis for spectral band and grassland variable 

selection 

5.4.4.1. Mass and cover data 

Figures 5.5 and 5.6 show the results of using a VIP analysis to understand which spectral 

bands were the most important predictors for predicting grassland variables, where only 

important results (=>1) have been included. The results suggest that when using the FULL 

spectrum, the SWIR bands (1240 and 1640nm) are consistently important whether 

grasslands are analysed collectively or individually. For Grassland 3, some NIR bands plus 

470nm and 647nm were also important. When VNIR spectral data were used; for 

Grasslands 1-2 plus collective analysis, bands within the 740-860nm were significant. Bands 

470nm and 647nm were also important when grasslands were analysed collectively. The 

results for Grassland 3 were similar to using the FULL spectrum minus the SWIR bands.
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Figure 5.5: VIP plots showing which combinations of spectral bands (predictors) and which responses (grassland variables on x axis and CSM-

condition on y axis) are most important in the study PLSR models where a) PLSR models trained with FULL spectral data and mass-based 

grassland variables and b) PLSR models trained with VNIR spectral data and mass-based grassland variables. 
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Figure 5.6: VIP plots showing which combinations of spectral bands (predictors) and which responses (grassland variables on x axis and CSM-

condition on y axis) are most important in the study PLSR models where a) PLSR models trained with FULL spectral data and cover-based 

grassland variables and b) PLSR models trained with VNIR spectral data and cover-based grassland variables.
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5.4.4.2. Grassland variables predicting condition 

Figure 5.7 shows the results of using grassland variable data to predict CSM-condition. 

Overall, multiple variables are significant for predicting condition but these grassland 

variables are different depending on whether mass or cover data are used. When mass data 

were used, the most important grassland variables were biomass, gram:forb ratio mass, 

live:dead ratio mass and moisture content. Primarily; forbs cover and graminoids cover were 

important when cover data were used although dead material cover, live material cover and 

live:dead ratio cover also had importance. These trends exist when analysing data from any 

one season or for all seasons. 
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Figure 5.7: VIP plot showing which grassland variables are most important in predicting CSM-condition using either mass- or cover-based 

grassland variables from analysing grasslands individually or collectively or for one or all seasons.
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5.4.5. Comparison of PLSR models trained with actual data and 

PLSR models trained with random data 

The median values of R2 and nRMSE results presented in Figures 5.2 and 5.3 (i.e. actual 

models) were compared against the results of 999 further model runs with randomised 

response variable values (randomised models) to test if the results run with the actual data 

genuinely produce veritable results. The results of comparing actual models to randomised 

models can be seen in Figures 5.8 and 5.9, where actual models that beat at least 950 

randomised models (95% level) are considered consistently superior to randomised models.  

These results suggest that producing actual models that are superior to randomised models 

depends on the quantity of data being used but also whether data were collected over one 

season or multiple seasons. When data from all three grasslands and for all seasons (n = 

90) are used, the median R2 and nRMSE results are consistently superior to randomised 

models. When grassland data are analysed collectively for all grasslands and one season, 

almost all median nRMSE results, and median R2 results for a few grassland variables, 

produces results that are consistently superior to results from randomised models at 95% 

level though some grassland variables are at least consistently superior to results from 

randomised models at an 80% level. When data from one grassland and one season are 

used (n = 10) or all seasons and one grassland (n = 30), the actual models are no more 

robust than randomised models. 
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Figure 5.8: Rankings of the median values of iterated model runs using actual mass response data and also iterated model runs using 

randomised response data, where rankings >95% level are considered significant for the actual model fit. 
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Figure 5.9: Rankings of the median values of iterated model runs using actual % cover response data and iterated model runs using 

randomised response data, where rankings >95% are considered consistently superior to randomised models.
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5.5. Concluding remarks 

The aim of this study was to compare how the link between grassland condition and 

associated grassland variables with RS spectral reflectance changes across 

seasons, partly to understand if condition monitoring is more effective during a 

particular time of the year. It has been demonstrated that RS reflectance measures 

can strongly predict some condition-related grassland variables for some seasons but 

not for all grasslands and seasons in this study plus a sufficient quantity of data is 

necessary to produce reliable results (sufficient is believed to be 30 quadrats of data 

in this thesis).  

Few studies have taken the same approach where a condition measure plus 

condition-related grassland variables within semi-natural grasslands have been 

predicted to a reasonable level of accuracy and precision. The next steps will be to 

further explore the significance of using SWIR data to predict condition or condition-

related grassland variables by utilising spectral data from three different 

spectrometers then to upscale the results to field level.
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Chapter 6 - Comparison of patch level 

(1m2) spectral data from different 

devices and an assessment using field 

level (200x1m) CROPSCAN data when 

predicting condition-related grassland 

variables on calcareous semi-natural 

grasslands 

  

6.1. Summary 

Lowland calcareous grasslands are a UK Biodiversity Action Plan (BAP) priority habitat, 

making a time- and cost-effective monitoring approach desirable. Many studies have 

explored the use of remote sensing (RS) to characterise grassland condition, but few studies 

have focussed on semi-natural grasslands or made direct comparisons of the use of different 

RS devices on them. This study assessed the link between grassland condition and 

associated grassland variables with patch level (1m2) spectral reflectance using spectral 

data collected with three different devices: a hand-held CROPSCAN MSR 16R radiometer 

(referred to as a CROPSCAN), a hand-held SVC HR-1024i spectroradiometer (referred to as 

a SVC) and a UAV-mounted Rikola VNIR camera (referred to as a Rikola). These devices 

differ in spectral range (particularly the coverage of the NIR and SWIR parts of the 

spectrum), spectral resolution, number of channels available and ease of deployment. This 

study also assessed the strength of the link between grassland condition and associated 

grassland variables at field level (200x1m) using CROPSCAN data. 

Patch-level grassland condition data and spectral data collection took place on three 

calcareous grasslands at Parsonage Down National Nature Reserve, with field level spectra 
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data being collected with a CROPSCAN. The mass and % cover of a multitude of condition-

related grassland variables were quantified. Furthermore, a quantitative condition variable 

labelled CSM-condition was calculated by identifying the National Vegetation Classification 

category of each grassland in this study then using % cover data of grassland variables, 

grass height measurements and species abundance to measure how well quadrats met 

condition criteria from the Common Standards Monitoring guidelines.  

Given multicollinearity in the predictor variables, partial least squares regression (PLSR) was 

chosen to assess the link between spectral data from the three different devices 

(CROPSCAN, SVC, Rikola) and (a) the mass or % cover of condition-related grassland 

variables and (b) the derived CSM-condition variable explained above. All PLSR model runs 

were compared to PLSR model runs with randomised response values to test the validity of 

the true data results to results found by chance. Variable importance in projection (VIP) was 

used to establish which spectral bands were most important for predicting each grassland 

variable or CSM-condition. Unlike Chapters 4 and 5, models were not fitted where grassland 

variables were used to predict CSM-condition as this has been covered in those chapters. 

The models trained on CROPSCAN spectral data that predicted grassland variables or 

CSM-condition with a sufficient level of predictive power were extrapolated to predict the 

mass or % cover of grassland variables at field level (200x1m). 

The results suggest that some grassland variables and CSM-condition can be accurately 

predicted using spectral data at patch level (1m2) from any of the three devices. Using 

spectral data from the CROPSCAN produced a relatively higher number of moderate to 

strong PLSR models, followed by the SVC, then the Rikola camera. Some of the results are 

contrary to papers which suggest that utilising a greater range of the SWIR part of the 

spectrum leads to increased model prediction power. VIP showed that the upper NIR and 

(where applicable) lower SWIR parts of the spectral range of each device was generally 

more important in predicting grassland variables and CSM-condition. When the models 

trained using CROPSCAN data were extrapolated to field level (200x1m), the trends of the 

grassland variables and CSM-condition both within and between grasslands was as 

expected as the CG2 grassland showed trends suggesting that it was in a better condition 

than the other two grasslands which are semi-improved e.g. increased bryophyte and CSM-

condition quantities. Although these results look promising, they have not been externally 

validated by a data set separate from those used to train the models. Furthermore, as a 

subject of further study, it would be necessary to solve the problems of illumination 

differences within and between drone images to produce projections of extrapolated 

grassland variable values from drone imagery that are accurate instead of producing the 
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same image patterns as the image illumination. The approach explained in this chapter not 

only helps address the knowledge gaps discussed in previous chapters but also the lack of 

studies that have compared the results of using different spectral devices in statistical model 

training.  

 

6.2. Introduction 

Grasslands are a key resource to over one billion people (Neely et al., 2009) as highlighted 

and summarised by Lawley et al. (2016), in particular for their economic value (e.g. by 

supporting grazing animals) and for the ecosystem services that they provide (Bengtsson et 

al., 2019; Neely et al., 2009). The UK Post-2010 Biodiversity Framework provides legal 

protection to calcareous grasslands in the UK JNCC and DEFRA (2012). To comply with 

these policies, conventional grassland studies are conducted which rely on semi-quantitative 

and qualitative measurements of species cover and grassland characteristics (JNCC, 2004; 

2006). Conventional methods of monitoring grasslands are time consuming and lack spatial 

coverage. Remote sensing (RS) could be the solution to these issues, offering superior 

spatial and temporal collection of data. Few RS studies have attempted to predict the 

condition of semi-natural grasslands, especially in the UK. 

A range of different RS instruments exist; with different spectrometers collecting data at 

different scales, spectral ranges and spatial resolutions (Gamon et al., 2019). Each device 

has advantages and disadvantages relative to each other, taking into consideration the 

specifics of the purpose of data collection and the environmental factors of the area of 

interest. Reviews have been written specifically about UAVs (e.g. Anderson and Gaston, 

2013), the comparison of UAV-mounted instruments (Von Beuren et al. 2015) and the 

remote sensing of vegetation using UAVs (e.g. Salami et al., 2014) where a multitude of 

methods, landscapes and targets of previous UAV remote sensing of vegetation studies 

were reviewed. For example; data from RGB cameras fixed to UAVs have been used to 

estimate the biomass in temperate grasslands (Grüner et al., 2019; Lussem et al., 2019), 

water stress in orange orchards (Zarco-Tejada et al., 2012), the LAI of grapevines (Mathews 

and Jensen, 2013) and the extent of bryophytes (Lucieer et al., 2011).  

Spectral data collected on vegetation can be utilised in many ways to infer the condition of 

the targeted vegetation (Lausch et al., 2018) and many RS studies of vegetation condition 

have used spectral devices mounted on unmanned aerial vehicles (UAVs) or hand-held 

https://paperpile.com/c/vWl4vg/x9VZ/?prefix=Neely%20et%20al.&noauthor=1
https://paperpile.com/c/vWl4vg/4KzU/?noauthor=1
https://paperpile.com/c/vWl4vg/LYTm+x9VZ/?noauthor=0,1&prefix=,Neely%20et%20al.
https://paperpile.com/c/vWl4vg/LYTm+x9VZ/?noauthor=0,1&prefix=,Neely%20et%20al.
https://paperpile.com/c/vWl4vg/TEn8/?noauthor=1
https://paperpile.com/c/vWl4vg/Pb7O+tydl
https://paperpile.com/c/vWl4vg/Pb7O+tydl
https://paperpile.com/c/vWl4vg/3prS
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devices for data collection. Capolupo et al. (2015) utilised drone-acquired hyperspectral 

imagery when comparing the results of using PLSR and narrow-band VIs to predict a range 

of structural and biochemical grassland variables on experimental grasslands. PLSR 

statistical models performed better and using structural grassland variables generally 

produced stronger results when comparing R2 and root mean squared error (RMSE) values, 

the strongest being for height and fresh matter yield. Sakowska et al. (2016) assessed the 

performance of using Analytical Spectral Device (ASD) data, resampled to resemble 

Sentinel-2 data, to investigate the potential of the Sentinel-2 satellite to monitor biophysical 

parameters (e.g. FAPAR). It was found that it was possible to monitor seasonal variations in 

these parameters and that monitoring these seasonal variations was not adversely affected 

by using Sentinel-2 simulated bands compared to using the full spectral range of ASD 

bands.  

Guo et al. (2005) used spectral data collected using a ASD on a prairie grassland to 

calculate NDVI, then correlation and regression analyses were run using these NDVI values 

and LAI to predict biophysical variables (total biomass, live grass biomass, forb, biomass 

and plant moisture content). Using OLS regression and applying LAI values as predictors, 

patch level (1m2) dry biomass was predicted with a R2 value of 0.598 and moisture content 

with a R2 value of 0.903. Psomas et al. (2011) used spectral data collected using an ASD, 

resampled to resemble Hyperion EO-1 data, to compare the results of using different 

vegetation indices (VIs) and multiple linear regressions to predict biomass. Estimated 

biomass maps were then created by extrapolating the results of the regression model trained 

using spectral bands 1084nm and 1205nm as predictors. Yang and Guo (2014) used 

spectral data collected using an ASD to calculate a range of VIs to test the relationship 

between these indices and dead material. It was found that Vis based on a combination of 

red and NIR bands, particularly the weighted difference vegetation index (WDVI), could 

accurately predict dead material where dead material cover is greater than 50%. Ren and 

Zhou (2012) calculated a range of senesced vegetation coverage indices and band depth 

indices from spectral data collected using an ASD, then tested the relationship between 

these indices and dead material. Cellulose absorption index (CAI) produced the highest 

coefficient of determination values (R2 = 0.67). 

Not only have few RS studies been conducted on calcareous grasslands or quantified a 

CSM-condition variable based on conventional grassland study measures, few vegetation 

condition studies have directly compared the results of using spectral data from different RS 

devices when trying to assess vegetation condition (such as Yao et al., 2013). The aim of 

this study is to compare the accuracy and precision of predicting CSM-condition and 

https://paperpile.com/c/vWl4vg/7PUx/?noauthor=1
https://paperpile.com/c/vWl4vg/qP2J/?noauthor=1
https://paperpile.com/c/vWl4vg/av9wj/?noauthor=1
https://paperpile.com/c/vWl4vg/oX0ZQ/?noauthor=1
https://paperpile.com/c/vWl4vg/MXJB/?noauthor=1
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condition-related grassland variables at patch level (1m2) using devices with differing 

spectral characteristics; a CROPSCAN MSR 16R, a Spectral Vista Corporation (SVC) HR-

1024i spectroradiometer loaned by the Field Spectroscopy Facility (FSF) and a Rikola 

multispectral camera mounted on a UAV. This comparison will highlight the differences in 

predicting power of using spectral data from devices with differing spectral range, spectral 

resolution, bandwidth and channels which should help better understand the importance of 

using SWIR spectral bands as predictors. Models trained using CROPSCAN data were 

extrapolated to test their accuracy and precision when predicting CSM-condition and 

condition-related grassland variables at field level (200x1m). Successfully extrapolating the 

results to field level would provide a methodology to land managers to monitor grassland 

condition using RS techniques with the benefits of more time-efficient data collection and 

improved spatial-temporal coverage. 

 

6.3. Methods  

Data for this study were collected at Parsonage Down NNR during the summer as explained 

in Section 3.3 and information on the specifics of this study has been provided in Section 3.6 

so only a brief summary has been provided here. Much of the data collection and data pre-

processing steps (data scaling, data transforms and creation of CSM-condition variable) 

were the same as that described in previous chapters. Unlike Chapters 4 and 5, three 

competing spectral datasets from three different devices were collected and analysed. 

Details of the spectral devices are provided in Section 3.3.3 and spectral data collection with 

all three devices is provided in Section 3.3.3.2.  

The formal statistical analysis for Chapter 6 almost exactly emulates Chapters 4 and 5, 

therefore only a brief explanation is provided here. An unpaired two-sample Wilcoxon test 

was applied (Bauer, 1972) to data collected at Parsonage Down NNR during the summer 

(Figure 6.1). PLSR models (Mevik et al., 2019; Wold, 1966; Wold et al., 2001) were again 

fitted to assess the ability of spectral data to predict grassland variables and CSM-condition, 

plus the ability of grassland variables to predict CSM-condition but now using data from one 

of three different spectral devices (Figures 6.2 and 6.3). The observed and predicted values 

for each grassland variable (mass and % cover) plus CSM-condition have been plotted with 

1:1 lines to further help understand the predictive power of each PLSR model (Figures 6.5 

and 6.6). Then, for the PLSR models with moderate to strong predicting power trained with 

CROPSCAN data, the results were extrapolated along the entire transect for each 

https://paperpile.com/c/1LTQmN/7Ieu
https://paperpile.com/c/1LTQmN/r4yc+GFue+ayrB/?prefix=Mevik%20et%20al.%2C,,&noauthor=1,0,0
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grassland. Projections of predicted grassland variable values (Figure 6.7) were produced 

from these extrapolated results. Once again, the coefficient of variation (CV) was calculated 

to test PLSR model stability and consistency for each grassland variable and spectral device 

(Figure 6.8), the R2 and nRMSE values of actual PLSR models were again compared with 

random models (Figure 6.9) and variable importance in projection (VIP) coefficients were 

again calculated to identify key predictors but this time for the three different spectral devices 

(Figures 6.9 and 6.10). 

 

6.4. Results 

6.4.1. Grassland site characteristics 

The boxplots of Figure 6.1 show the quantity of each grassland variable for each grassland 

together with the results of significant difference tests between grassland types, using an 

unpaired two-sample Wilcoxon test. This differs from a similar projection in Chapter 5 (Figure 

5.1) in that only data collected during the summer are analysed. Overall, the Wilcoxon tests 

for grassland variables show that some grassland variables are significantly different at least 

between two grasslands. The Wilcoxon tests for the mass-based grassland variables show 

that for biomass, forbs mass and live material mass; two grasslands are significantly 

different from one other grassland. For dead material mass and moisture content; two 

grasslands are significantly different from one other grassland and one grassland from two 

others. For bryophytes mass, all grasslands are significantly different from each other. The 

Wilcoxon tests for the cover-based grassland variables show that for dead material cover, 

live material cover and live:dead ratio cover; two grasslands are significantly different from 

one other grassland and one grassland from two others. 
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Figure 6.1: Boxplots of the grassland variable values for the three grassland sites. The 

boxplot colours summarise the unpaired two-sample Wilcoxon test results between 

grassland types where the colour represents the number of sites from which each grassland 

variable is significantly different (p<0.05).  

 



Chapter 6 - Comparison of patch level (1m2) spectral data from different devices and an 
assessment using field level (200x1m) CROPSCAN data when predicting condition-related 

grassland variables on calcareous semi-natural grasslands 
 

153 
 

6.4.2. Predicting grassland variables and condition using PLSR 

The median R2 and nRMSE results of the PLSR modelling from the iterated model runs to 

predict mass, % cover grassland variables and CSM-condition using spectral data from the 

three different devices as predictors where R2 => 0.5 and nRMSE <= 100 can be seen in 

Figures 6.6 and 6.7, with the full results presented in Appendix Figure 5. Overall; when 

PLSR models were trained with data from all three grasslands (n = 30), using spectral data 

from different devices produced similar results. When PLSR models were trained with data 

from a single site (n = 10); there is no set pattern in the results as performance seems to be 

specific to the grassland and the spectral device used. 

 

6.4.2.1. Predicting mass-based grassland variable data 

The results to predict mass-based grassland variables and CSM-condition can be seen in 

Figure 6.2. When grasslands are analysed collectively using spectral data from any device; 

bryophytes mass, moisture content and CSM-condition all produced R2 results >0.5 (most 

are >0.7) and nRMSE <100 when using data from the Rikola camera. When grasslands are 

analysed individually; most of the significant results came from using spectral data from the 

Rikola camera, CROPSCAN and the SVC when using data from Grassland 1 plus from 

Grassland 3 when using a CROPSCAN. 

 

6.4.2.2. Predicting cover-based grassland variable data 

The results to predict cover-based grassland variables and CSM-condition) can be seen in 

Figure 6.7. When grassland were analysed collectively using spectral data from any 

device; most grassland variables produced R2 values => 0.5 and nRMSE <100 for at least 

one device but CSM-condition, live material cover, live:dead ratio cover produced significant 

results for all three devices with live material cover and CSM-condition producing R2 results 

>0.7. When grasslands were analysed individually using spectral data from any device; most 

grassland variables produced significant results except for Grassland 1 when using spectral 

data from the SVC. 
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6.4.2.3. Predicting CSM-condition using grassland variables 

Of 12 model runs when using spectral data to predict CSM-condition (Figures 6.6 and 6.7); 8 

produced R2 results => 0.5 and nRMSE <100, 4 of which have R2 results => 0.7. Most of the 

significant results were produced when analysing grasslands collectively (3) whilst analysing 

grasslands individually produced 1-2 significant results. Using different devices produced 2 

results for the SVC and 3 significant results each for the CROPSCAN and Rikola camera. Of 

8 model runs when using grassland variables to predict CSM-condition; 4 produced R2 

results => 0.5 and nRMSE <100, 2 of which have R2 results => 0.7. All significant results 

using % cover data. Analysing grasslands collectively or individually produced 1 significant 

result each. 
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Figure 6.2: Median results of iterated model runs where spectral data from three different devices were used to predict CSM-condition and 

mass-based grassland variables for all grasslands collectively (n = 30) or single sites (n = 10). 
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Figure 6.3: Median results of iterated model runs where spectral data from three different devices were used to predict CSM-condition and 

cover-based grassland variables for all grasslands collectively (n = 30) or single sites (n = 10).
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6.4.3. Comparing observed and predicted values 

Each of the trained PLSR models produced predicted values for each grassland variable on 

each quadrat. These predicted values have been plotted against the observed values (1:1 

lines have been included) for comparison in the appendix. The clusters of some grassland 

variables appear to be close to the 1:1 line. For other grassland variables, the 1:1 line 

appears to run closer to the main body of the cluster than to the lowest and/or highest 

observed values, suggesting that the PLSR models did not predict these values as 

accurately. For a few grassland variables, particularly live:dead ratio cover, the clusters 

appear to be scattered suggesting a low predictive power of the associated PLSR models. 

 

6.4.4. Extrapolating predicted grassland variables and condition 

using CROPSCAN data as predictors 

Moderate to strong fitting PLSR models trained with data from all three grasslands 

collectively using CROPSCAN data as predictors were used to predict grassland variable 

values at field level (Figure 6.4).
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Figure 6.4a: Projection of bryophyte mass predicted values derived from a PLSR model trained with CROPSCAN spectral data. 
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Figure 6.4b: Projection of dead material % cover predicted values derived from a PLSR model trained with CROPSCAN spectral data. 
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Figure 6.4c: Projection of live material % cover predicted values derived from a PLSR model trained with CROPSCAN spectral data. 
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Figure 6.4d: Projection of live:dead ratio % cover predicted values derived from a PLSR model trained with CROPSCAN spectral data. 
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Figure 6.4e: Projection of forbs % cover predicted values derived from a PLSR model trained with CROPSCAN spectral data. 
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Figure 6.4f: Projection of gram:forb ratio % cover predicted values derived from a PLSR model trained with CROPSCAN spectral data. 
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Figure 6.4g: Projection of moisture content (% mass) predicted values derived from a PLSR model trained with CROPSCAN spectral data. 
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Figure 6.4h: Projection of CSM-condition predicted values derived from a PLSR model trained with CROPSCAN spectral data. 
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6.4.5. Stability and consistency between model runs using the 

same response variable 

Figure 6.5 shows the % CV of the median found from the iterated PLSR model runs and the 

resulting R2 and nRMSE values of the site specific PLSR models that were calculated to 

evaluate the stability of model performances across sites for specific grassland variables. 

Lower CV values were considered to be more indicative of model stability. Overall, models 

predicting mass-based grassland variables produce more consistent R2 results but less 

consistent nRMSE results than models predicting % cover-based grassland variables.  

The results between different spectral devices appear to be similar when predicting mass-

based grassland variables and for most grassland variables when predicting cover-based 

grassland variables, with some of the grassland variables showing a different level of 

consistency when spectral data from the Rikola VNIR camera are used as predictors. When 

predicting % cover data, forbs cover, gram:forb ratio cover and live:dead ratio cover appear 

to be relatively consistent. When predicting mass data, dead material mass and moisture 

content are relatively consistent for all three devices. Other grassland variables are relatively 

consistent for the two devices; forbs mass, live material mass and live:dead ratio mass. 
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Figure 6.5: % coefficient of variation (CV) for the R2 and nRMSE results of the site specific PLSR models grouped per treatment and spectral 

input data from different spectral devices.
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6.4.6. VIP analysis for spectral band selection 

Figures 6.6 and 6.7 show the results of VIP analysis, highlighting the spectral regions most 

important for predicting grassland variables (by mass or by % cover) and CSM-condition. For 

this analysis, the spectral bands were grouped into the following categories: VIS (300-

700nm), NIR (701-900nm), SWIR1 (901-1640nm) and SWIR2 (1640-2500nm). VIP values 

>1 were considered to be indicative of a strong predictor variable. The most significant 

region of the spectral signature for predicting any grassland variable depended on the 

spectral range of the device. Generally speaking, for each device the outer part of the 

spectrum was most important. When using spectral data from the Rikola camera; the NIR 

part of the spectrum was most significant except for Grassland 2 where the VIS part of the 

spectrum was more significant for most grassland variables. When using spectral data from 

the CROPSCAN or SVC, the NIR and SWIR parts of the spectrum were generally more 

important. 
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Figure 6.6: VIP plots showing which regions of spectral data from three different devices and which responses (grassland variables on x axis 

and CSM-condition on y axis) are most important in the study PLSR models where mass-based grassland variables are used as response 

data. 
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Figure 6.7: VIP plots showing which regions of spectral data from three different devices and which responses (grassland variables on x axis 

and CSM-condition on y axis) are most important in the study PLSRs where % cover-based grassland variables are used as response data.
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6.4.7. Comparison of PLSR models trained with actual data and 

PLSR models trained with random data 

The median values of R2 and nRMSE results presented in Figures 6.2 and 6.3 (referred to 

as actual models) were compared against the results of 999 further model runs with 

randomised response variable values (referred to as randomised models) to test the validity 

of the actual models. The results seen in Figures 6.8 and 6.9 suggest that producing actual 

or true models that are superior to a randomised model primarily depends on the quantity of 

data being used, not on the spectral device used to collect the spectral data being used as 

predictors. Almost all median nRMSE results, and median R2 results for some grassland 

variables produces actual results that are consistently superior to results found by chance 

(i.e. from the randomised models), particularly when analyses are carried out on all 

grasslands collectively (n = 30). Only some nRMSE results, and a few R2 results, are 

consistently better in more than 95% of cases regardless of whether data from all grasslands 

or single sites are used to train the PLSR models (n = 10 or 30). 

 



Chapter 6 - Comparison of patch level (1m2) spectral data from different devices and an assessment using field level (200x1m) CROPSCAN 
data when predicting condition-related grassland variables on calcareous semi-natural grasslands 

 

172 
 

 

Figure 6.8: Rankings of the median values of the iterated model runs using actual mass response data and 999 model runs using randomised 

mass response data, where rankings >95% are considered significant for the actual model fit. 
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Figure 6.9: Rankings of the median values of the iterated model runs using actual % cover response data and iterated model runs using 

randomised % cover response data, where rankings >95% are considered significant for the actual model fit.
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6.5. Concluding remarks 

One aim of this thesis is to compare the effectiveness of using spectral data from 

three different spectral devices as predictors for condition-related grassland variables 

and CSM-condition, partly to understand the importance of the SWIR part of the 

spectrum as predictors by using three spectral devices that collect varying quantities 

of data on the SWIR part of the spectral (no bands, two bands and many bands for 

the Rikola, CROPSCAN and SVC respectively). Another aim was to extrapolate the 

results of moderate to strong PLSR models from patch level to field level. Models 

trained using CROPSCAN data were chosen as it was not possible to extrapolate the 

results of models that were trained using data from the other spectral devices used in 

this study. 

It was found that using spectral data from any of the three devices as predictors could 

potentially produce moderate to strong PLSR models to predict grassland variables. It 

was also found relatively few PLSR models trained with Rikola spectral data had 

moderate to strong predictive power, which could be attributed to the sensitivity of the 

SWIR region of the spectrum to some grassland variables. 

It has been shown that the % cover of most condition-related and CSM-condition can 

be strongly predicted using spectral data from any of the three devices used in this 

study. The mass of grassland variables can also be strongly predicted using 

CROPSCAN data. The validity of the results is dependent on the quantity of data 

used to train the statistical models, with training models using mass data appearing to 

be more susceptible to producing results that struggle to beat the results of 

randomised models if an insufficient quantity of data are used (<30 quadrats of data 

in this thesis). 

When extrapolating the results of the models trained using CROPSCAN data with 

relatively strong predictive power to field level, the results seemed to follow the trends 

expected. For example, the CG2 grassland has increased bryophyte, live material 

and CSM-condition quantities plus a reduced quantity of dead material. The 

increased quantity of forbs and the reduced moisture content could also relate to 

improved condition, as these results could relate be due to increased biodiversity and 

reduced fertilisation of the soil respectively. The caveat of these findings is that the 

predicted grassland variable and CSM-condition results could not be externally 

validated by a data set independent of model training. Furthermore, it was not 
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possible to create similar projections using models trained with Rikola data as it was 

not possible to correct the drone imagery for both within and between image 

illumination. The author is not aware of any studies where the issue of normalising 

illumination within and between images has been solved. 

Few studies have taken the same approach where a condition measure plus 

condition-related grassland variables within semi-natural grasslands have been 

predicted to a reasonable level of accuracy and precision, or have compared different 

spectral devices in this way.
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Chapter 7 – Discussion 

7.1. Effectiveness of using PLSR in a RS of 

grassland condition study 

PLSR has been utilised in grassland studies that used a range of RS devices, 

combinations of spectral data as predictors and grassland condition metrics as either 

responses or as predictors of other metrics. A PLSR modelling approach has been 

used in some studies to predict a wide range of biophysical and/or biochemical 

grassland variables at canopy scale (Capolupo et al. 2015; Schweiger et al. 2017; 

Wang et al. 2019) or leaf scale (Roelofsen et al. 2014). Other studies have targeted 

only a few related metrics or solitary metrics such as LAI (Darvishzadeh et al. 2008; 

Yuan et al. 2016), FAPAR (Sakowska et al. 2016), equivalent water thickness (Li et 

al. 2008), LDMC (e.g. Ali et al. 2019), nitrogen concentration (Polley et al. 2022; Yuan 

et al. 2016) plus soil pH and groundwater levels (Roelofsen et al. 2015). 

Many model comparison studies have been conducted to ascertain which modelling 

approach has superior predictive power for any given condition-related grassland 

variables and PLSR has been utilised in several of these model comparison studies. 

Linear regression models trained with vegetation indices (VIs) were also commonly 

included in model comparison studies. Capolupo et al. (2015) found that PLSR had 

superior performance to four VIs when predicting the quantities of a range of nine 

structural and biochemical grassland variables on experimental grasslands using 

drone-acquired hyperspectral imagery. The results of using VIs to predict three 

structural variables ranged from R2 = 0.3-0.599 but ranged from R2 = 0.63-0.86 when 

using PLSR. When predicting six biochemical variables, using VIs produced results of 

R2 = 0.001-0.51 while PLSR results ranged from R2 = 0.21-0.8. Wang et al. (2019) 

compared the ability of PLSR and Gaussian processes regression (GPR) to predict 

fifteen different grassland biochemical and structural variables on experimental 

grasslands using data from the NASA AVIRIS aircraft. Both modelling approaches 

produced models with moderate to strong predictive power for all variables except 

lignin and chlorophyll a + b with R2 values > 0.55 (some with R2 values > 0.8). Ali et 

al. (2019) found that PLSR had superior performance to using eleven different VIs 
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when using Sentinel-2 spectral data to predict LDMC on wetlands (R2 = 0.71) 

although four of the eleven VIs also produced relatively strong results (R2 = 0.67).  

Some model comparison studies have also been conducted at patch level. Sakowska 

et al. (2016) assessed the performance of using data collected using an Analytical 

Spectral Device (ASD) set up to automatically collect spectral data across a swath of 

an experimental grassland, which was resampled to resemble Sentinel-2 data, to 

investigate the potential of the Sentinel-2 satellite to monitor three different 

biophysical parameters (CCC, FAPAR, and green FAPAR (GFAPAR)). One aspect of 

this study was a model comparison between the VIs, MLR and PLSR (where MLR 

and PLSR models were trained with full spectral data) to predict CCC and GFAPAR. 

Although PLSR models had superior predictive power for GFAPAR (adjusted R2 = 

0.77, 0.78, and 0.82 for VIs, MLR and PLSR respectively), the three modelling 

approaches had similar predictive power for CCC (adjusted R2 = 0.88, 0.9 and 0.89 

for VIs, MLR and PLSR respectively). Darvishzadeh et al. (2008) compared the ability 

of PLSR and two VIs (NDVI and SAVI) to predict LAI and canopy chlorophyll content 

(CCC) at patch level on heterogeneous Mediterranean grasslands. Although PLSR 

produced higher R2 results of 0.69 and 0.74 for LAI and CCC respectively, using VIs 

also had a moderate to strong predictive power with results of R2 = 0.49-0.64 for LAI 

and R2 = 0.51-0.69 for CCC. Yuan et al. (2016) used PLSR to predict the quantities of 

nitrogen concentration and leaf mass per area of two types of crops (sweet corn and 

snap beans) using different ranges of SVC spectral data as predictors. The results 

ranged from R2 = 0.8-0.96 (model fit and validation results) depending on the spectral 

region utilised, with the strongest results either using the almost the full spectral 

range of the SVC (450-2400nm) or the 1500-2400nm range. Yuan et al. (2016) 

claimed that PLSR produced superior results based on a literature review, they did 

not carry out a comparison study themselves. 

Other studies have also used modelling approaches similar to PLSR that have 

produced models with moderate to strong predictive power, or found that other 

approaches produced models with stronger predictive power than PLSR. Homolová 

et al. (2014) compared the ability of VIs, stepwise MLR and PLSR to estimate five 

different condition-related grassland variables on grasslands that represented a 

range of grazing regimes using hyperspectral imagery collected with the using the 

aircraft-mounted AISA Dual system. For four of the five variables (dead material, 

crude protein content, species diversity and soil carbon content) it was found that 

stepwise MLR had the strongest predictive power (R2 = 0.6-0.97) but VIs were 

https://paperpile.com/c/vWl4vg/7PUx/?noauthor=1
https://paperpile.com/c/byTTdf/2BO3/?noauthor=1
https://paperpile.com/c/byTTdf/mN9l
https://paperpile.com/c/byTTdf/mN9l
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strongest for live material (R2 = 0.54). Only the strongest results were presented, so it 

is not possible to say how much stronger the strongest models were relative to other 

trained models. Atzberger et al. (2015) compared two statistical modelling methods 

(predictive equations and VIs, both utilising in situ LAI and spectral data) and two 

radiative transfer models (RTM) inversion methods (one based on look-up-tables and 

one based on predictive equations) to estimate LAI using hyperspectral imagery 

collected by an aircraft-mounted HyMap sensor. All methods produced R2 values of 

0.75-0.91, but concerns were raised that the accuracy and robustness of the 

statistical modelling approaches decreases when fewer samples are used for 

calibration.  

 

7.2. The use of mass- or cover-based variables 

for condition assessment 

The primary aim of this research is to assess the link between condition-related 

grassland variables plus our defined metric CSM-condition with grassland spectral 

reflectance on semi-natural grasslands. As a precursor to achieving this aim, it was 

deemed necessary to select semi-natural grasslands that represented a spectrum of 

different grassland types for data collection which was done with an aspect of 

subjectivity. In other words, grasslands were chosen based on NVC type (based on 

several semi-quantitative measures) but also several other qualities that remained 

qualified rather than being converted to a quantity e.g. grazing intensity. To test 

whether the chosen grasslands represented a spectrum of significantly differing 

quantities of the condition-related variables chosen for this thesis, Wilcoxon rank sum 

tests were conducted on the mass and % cover of data collected on condition-related 

variables over space and time. The first test was conducted on all seven different 

grassland types chosen for this thesis. The second and third tests focussed on three 

chalk grasslands with differing levels of improvement, one of which focussed on the 

summer season and the other looked at data collected over three seasons. 

The exploratory boxplots in Figure 4.2, which used data from all seven grasslands 

collected during the summer, suggest that the mass of some grassland variables 

(bryophytes mass, dead material mass and forbs mass) can be used to differentiate 

between grassland types. The seven grasslands analysed are grasslands that 

strongly contrast in species, improvement level and grazing intensity.  Also, biomass, 

https://paperpile.com/c/BtFFzw/bSNp/?noauthor=1
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graminoids mass and moisture content can be used to differentiate some of the 

seven different grassland types, particularly grasslands 6 and 7 which are a 

regenerated and a semi-improved grassland on limestone geology. Dead material 

cover and live:dead ratio cover can also be used to differentiate some grassland 

types, particularly grassland 5 which is an acid mire grassland. The results suggest 

that only some of the grassland variables considered in this study are significantly 

different between grasslands, though some of these results concur with the study of 

Fliervoet (1987) where biomass (and LAI) were found to be significantly different 

between different grassland types. When only the less strongly contrasting 

grasslands with differing levels of improvement located at Parsonage (Grasslands 1-

3) are analysed (Figure 6.1), biomass, bryophytes mass, dead material mass, live 

material mass and moisture content showed significant differences in quantities 

between some grasslands with differing levels of improvement. The mass of other 

grassland variables plus all % cover grassland variables showed no significant 

difference in grassland variable quantities between grasslands. The results suggest 

that grasslands with differing levels of improvement may not necessarily have 

significantly different quantities of condition-related grassland variables. Biomass and 

dead material quantity depends on the species present and grazing/mowing regime 

(Bai et al., 2001); therefore if the same regime is applied to all grasslands (cow 

grazing using a similar number of cows confined to that particular grassland) then this 

could result in these grassland variables not being significantly different between 

grasslands. It is possible that some forb values plus graminoid and gram:forb ratio 

values are not significantly different between grasslands, despite Grassland 1 being 

more species rich. Grasslands 2 and 3 had forb species associated with more 

improved grasslands such as Trifolium pratense (Red Clover) and Trifolium repens 

(White Clover) (JNCC, 2004). 

When taking seasonality into consideration (Figure 5.1), no grassland variables for 

mass or % cover were significantly different between all grasslands and for all three 

seasons. Some grassland variables were significantly different on one or two 

grasslands for at least one season and spring is the season where grassland 

variables are more often significantly different. Mass data were significantly different 

between grasslands more frequently than % cover data, where many % cover 

grassland variables were not significantly different to any of the other grasslands. For 

% cover grassland variables, grasslands were significantly different between more 

grasslands over three seasons during spring for dead material, live material and 

graminoids. 

https://paperpile.com/c/1LTQmN/qiSA/?noauthor=1
https://paperpile.com/c/vWl4vg/BVcs
https://paperpile.com/c/vWl4vg/Pb7O
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The results suggest that the different levels of improvement of the grasslands do not 

make them considerably different with respect to the grassland variables chosen for 

this study. One possibility is that it was not the quantities of forb and gram:forb ratio 

that were different but the forb species present. In other words, while the grasslands 

were structurally similar, more improved grasslands had forb species associated with 

these types of grasslands such as red clover and white clover while less improved or 

unimproved grasslands includes forb species associated with grasslands in better 

condition (JNCC, 2004; 2006). The structural complexity of grasslands, and how 

these changes in time, is discussed in Herben et al. (2000). In summary, Herben et 

al. (2000) explain how the spatial-temporal changes in patterns of species, 

particularly dominant species over a period of years, results in structural changes 

described as “fast” when looking at grasslands at a “small” scale but grasslands 

remain structurally similar over time at a “large” scale (small and large in this context 

was not defined by the authors, but small seems to refer to patches <=0.25m2 based 

on referenced literature). This change is driven by a combination of internal and 

external factors and there are multiple theories behind the dynamics of the changes 

in species within a grassland over space and time. Species presence as well as 

abundance can change over time on a given patch, contributing to small-scale 

structural change 

The grasslands at Parsonage Down (Grasslands 1-3) were under-grazed in spring 

(Hope, S., 2018. pers. comm., 11 July), particularly Grassland 1, which may have 

contributed to the character of grassland variables being relatively different in spring 

relative to summer and autumn. In particular, it was observed that a relatively high 

quantity of dead material existed on the grasslands in spring. A build-up of dead 

material leading up to data collection in the autumn is also apparent when looking at 

how the quantities of dead material for each quadrat changes over time.  Specific to 

this thesis, it could be that as the results of the Wilcoxon rank sum tests and the 

training of PLSR models for spring and autumn were impacted by this build-up of 

dead material. Although it is believed that dead material was the primary influence in 

seasonal differences, there are a list of other variables that could have contributed 

that cannot be tested in this thesis. These variables include seasonal changes in 

weather, changes in soil nutrients (and potentially pH through fertilisation), 

differences in grazing regime and differences in aspect and slope (Stevens et al. 

2016). The grasslands chosen for this study have the same grazing regime plus the 

transects were placed where the slope was minimal (0-4o) which would have 

minimised the effect of aspect.  

https://paperpile.com/c/byTTdf/bdqv+VwYDg
https://paperpile.com/c/byTTdf/m6EM/?noauthor=1
https://paperpile.com/c/byTTdf/m6EM/?noauthor=1
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It is possible that collecting data on grasslands that are not considerably different in 

quantities of condition-related grassland variables had repercussions for PLSR model 

training. The lack of variation in condition-related grassland variable quantities would 

have limited the ability to detect changes in condition using trained PLSR models. 

Alternatively, the lack of variation could be related to the small quantity of samples 

collected where the full variation of condition-related grassland variables was not fully 

captured. 

 

7.3. Predicting grassland variables and CSM-

condition 

7.3.1. Predicting grassland variables and CSM-condition using 

spectral data as predictors 

To directly address the primary aim of this research, PLSR was used to assess the 

link between the mass or % cover of condition-related grassland variables plus CSM-

condition with grassland spectral reflectance. In general, the results of training PLSR 

models using data (n = 10) from individual grasslands (Figures 4.4, 5.2, 5.3, 6.2, 6.3) 

showed that most grassland variables can be predicted from reflectance data with R2 

values >0.5 and nRMSE values <100. It is possible that overfitting has occurred for 

results of R2 >0.9, although aspects of the PLSR method should have prevented this 

(Land et al., 2011). In contrast, when grassland sites are treated collectively (i.e. 

three, four or seven sites are combined or data collected over three seasons are 

combined), most of the R2 values of resulting PLSR models mostly drop below 0.5. In 

other words, predictive models that are site specific appear to be more accurate than 

those that aim to represent multiple sites. This outcome is entirely expected as 

grouping data sets is mixing different populations and heightening structural 

heterogeneity, even though this coincides with an increase in sample information 

within the context of this thesis (n = 30, 40, 70 or 90). When the validity of PLSR 

models is tested by comparing them with randomised models (Figures 4.8, 5.8, 5.9, 

6.8 and 6.9), the results suggest that training PLSR models with 10 quadrats of data 

(i.e. data collected on one grassland, n = 8 during model training) was insufficient to 

produce a model fit that has significantly stronger R2 and nRMSE values than a 

randomised model. Though nearly all actual models were superior to randomised 
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models for nRMSEm it has been shown that training PLSR models with <20 samples 

may lead to unreliable models (Goodhue et al., 2012). 

When PLSR models were trained with mass data from all three Parsonage 

grasslands collectively within or across seasons (Figures 5.2 and 5.3), more variables 

were moderately or strongly predicted in spring or autumn than summer. Conversely, 

when PLSR models were trained with % cover data, very few variables were 

predicted moderately or strongly during spring and autumn. When data from all three 

seasons were utilised to train PLSR models, models with moderate to strong 

predictive power were produced for particular variables regardless of whether mass 

or % cover data were used. This suggests that future studies should consider when 

data is collected as well as which data sets are collected and the quantity of data 

collected on each grassland. It is possible that the results of using % cover data to 

train PLSR models results in weaker predictions on grasslands with relatively high 

quantities of dead material when compared to training models with mass data. 

Although it has been demonstrated that a high dead material cover affects the 

spectral signature (Xu et al. 2014; Yang and Guo, 2014), potentially leading to 

weaker predictive models, this thesis used the same spectral data as predictors in 

PLSR models trained to predict mass and % cover of condition-related grassland 

variables. This suggests that changes in spectral signature due to high dead material 

cover was not the root cause of producing PLSR models with weak predictive power 

per se but could be related to the weak PLSR models trained with % cover from 

spring and autumn. 

A specific variable cannot be recommended for all grasslands and conditions 

achieving a higher R2 or lower nRMSE depended on the grassland variable, how 

those data were collected (mass or % cover) and site with no obvious pattern. 

However, for some grassland variables (Figures 4.5, 5.4, 6.5) the model performance 

across sites was more consistent (i.e. low R2 and nRMSE CVs). Variables used in 

model training that were relatively consistent across grasslands, seasons and 

spectral devices include biomass, bryophytes (mass and % cover), forb cover, 

moisture content, live:dead ratio cover and CSM-condition. Live material was 

relatively stable except when using % cover data with data from different spectral 

devices. Model results for other variables were relatively stable under a specific set of 

circumstances. For example, model performance for graminoids was relatively stable 

across seasons on Parsonage grasslands and for dead material mass when using 

different spectral devices. The inconsistencies in model performance highlighted by 

https://paperpile.com/c/1LTQmN/ZMqI
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the CV results could be due to using an insufficient quantity of data to train some of 

the statistical models i.e. there is inconsistency because some PLSR models were 

trained with only 10 quadrats of data. Overall, there appears to be less consistency in 

results when using mass data relative to using % cover data for some grassland 

variables. This could be due to a lack of spatial coverage of sampling when collecting 

mass data, which meant that the complexity of the grasslands was not effectively 

captured. 

In broad terms, previous RS condition studies have used multispectral or 

hyperspectral RS data in combination with in situ data and models for the 

assessment of vegetation condition (e.g. Psomas et al., 2011). Few studies where 

grassland variables were predicted by RS methods included the use of grassland 

constituent mass and no studies have defined a comparable CSM-condition metric or 

used grassland variable data to predict a CSM-condition metric. Guo et al. (2005) 

used OLS regression and correlation analyses to link condition-related biophysical 

grassland variables with NDVI and LAI on a spatially heterogeneous prairie. Using 

regression and LAI values as predictors, patch level (1m2) dry biomass was predicted 

with a R2 value of 0.598 and moisture content with a R2 value of 0.903. Furthermore, 

correlation coefficient values were between r = 0.7-0.8 when correlating LAI with 

biomass, graminoids and forbs and when correlating NDVI with moisture content. 

Correlation between LAI and moisture content was 0.903. Psomas et al. (2011) 

investigated the strength of the relationship between above ground biomass and 

spectral reflectance at patch level using multiple linear regression and VIs, where 

they found that feeding 2-4 specific spectral bands into an MLS regression produced 

the strongest predictions of biomass (R2 = 0.77-0.86) and the R2 results for all VIs 

were <0.6. Chen et al. (2009) also tested the strength of the relationship between 

biomass and spectral data at patch level on spatially heterogeneous grasslands, 

using VIs as predictors in PLSR. This study collected data at different angles to better 

capture grassland structure and shadowing, but dead material was removed from 

destructive samples after spectral readings had been taken in spite of studies (Asner, 

1998; Asner et al., 2000; Xu et al., 2014) that show that dead material influences the 

spectral signature. If dead material % cover was low as suggested but not quantified, 

this may have not strongly influenced the spectral signature of quadrats (Yang and 

Guo, 2014). The highest R2 values (0.52-0.54) were achieved by using PLSR and 

single narrow band reflectance or first-order derivative reflectance. Yang and Guo 

(2014) assessed the strength of the relationship between dead material % cover and 

a range of VIs using linear and non-linear regressions, where almost all of the results 

https://paperpile.com/c/1LTQmN/wEJq/?prefix=e.g.
https://paperpile.com/c/byTTdf/rBYH/?noauthor=1
https://paperpile.com/c/1LTQmN/wEJq/?noauthor=1
https://paperpile.com/c/byTTdf/U6K1/?noauthor=1
https://paperpile.com/c/byTTdf/uIIK+mLdo+fgG6
https://paperpile.com/c/byTTdf/uIIK+mLdo+fgG6
https://paperpile.com/c/byTTdf/SabS
https://paperpile.com/c/byTTdf/SabS
https://paperpile.com/c/1LTQmN/Aefz/?noauthor=1
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of using different VIs and different regressions were R2 = 0.53-0.56, where data were 

collected on patches with dead material % cover of 45-56%. Davidson et al. (2006) 

used OLS regression to predict moisture content (absolute and relative) using VIs 

and spectral data fed directly into the models as predictors. The results of using 

spectral data and for some VIs were relatively strong with R2 = 0.7-0.8. However, the 

R2 values of these two studies should be viewed with suspicion as multicollinearity 

effects were not addressed as neither of the studies used a PLSR as used in this 

thesis.  

When predicting biomass on a range of different grassland types (Chapter 4); of 16 

model runs that used data from Grasslands 1-3 (Parsonage), five model runs 

produced results of R2 >0.5 and nRMSE <100 (R2 = 0.54-0.59 and nRMSE = 55.6-

76.8). Of 20 model runs for Grasslands 4-7 (Ingleborough), all had values of R2 >0.5 

and all but two had nRMSE values of <100 (R2 = 0.56-0.94 and nRMSE = 46.8-110.2) 

with the results of the collective analyses having a range of R2 = 0.56-0.67 and 

nRMSE = 67.7-75.4. It is not clear why biomass was predicted more effectively on 

some grasslands, or combination of grasslands, as there does not appear to be a link 

with grassland structure (taking structural complexity and grazing regime into 

consideration) or level of improvement and biomass prediction strength. Furthermore, 

there did not appear to be a clear link with a relative lack or abundance of a particular 

grassland variable and biomass prediction. Although weaker PLSR models generally 

seem to be trained with data collected on grasslands with a relatively high % cover of 

dead material and low % cover of forbs, this pattern is not strictly the case as 

Grassland 7 does not fit this pattern. Grassland 7 does not appear to be more heavily 

grazed than Grassland 6 or more improved than Grasslands 2 or 3. 

When dead material was predicted in this study; training PLSR models with mass 

data from both locations (R2 = 0.57-0.60 and nRMSE = 74.9-75.9) or Ingleborough 

(Grasslands 4-7, R2 = 0.50-0.88 and nRMSE = 45.7-88.9) almost always produced 

moderate to strong predictions. Relatively few PLSR models produced moderate to 

strong predictions when trained with % cover data from both locations or from 

Grasslands 4-7. When PLSR models were trained with data from Grasslands 1-3, the 

only moderate to strong prediction (R2 >0.5) that did not seem to be dubious (R2 

>0.9) was produced by a model trained with % cover data from all three grasslands 

collectively (R2 = 0.53 and nRMSE = 47.3). It is not clear why destructive sampling 

captured dead material more effectively on Ingleborough grasslands compared to 

Parsonage grasslands. Grassland 2 (Parsonage) plus Grasslands 4 and 5 
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(Ingleborough) have a dead material cover of 0-25% but the other grasslands have a 

lower dead material cover of 0-8%, suggesting that there is a relatively high variance 

in dead material within each location. This suggests that increased variance in % 

cover of dead material does not positively or negatively impact the predictive power 

of the PLSR models. 

When moisture content was predicted in this study; most of the predictions were 

weak (R2 < 0.5) but stronger predictions (R2 >0.5) were produced by analysing 

Parsonage or Ingleborough grasslands collectively and for Grasslands 1, 4 and 6. 

There appears to be a pattern where the models with R2 values >0.5 were trained 

with data either from all grasslands within one location or from alkaline grasslands. It 

is not clear why this should be the case. Although all three Parsonage grasslands 

had a similar mean soil moisture (0.104-0.111m3 water/m3 soil) and three of four 

Ingleborough grasslands also had a similar mean soil moisture (0.358-0.409m3 

water/m3 soil), Grassland 5 is an acid mire grassland and had a relatively high mean 

soil moisture (0.787m3 water/m3 soil). Other soil data were not collected to verify 

whether these soil moisture readings were affected by high organic content i.e. 

because increased organic content may make a soil more poorly draining. Also, 

Grasslands 3 (Parsonage), 4 and 5 (Ingleborough) had a relatively high variance in 

moisture content. Furthermore, training a PLSR model with Parsonage or 

Ingleborough grasslands collectively produces moderately strong models, but training 

a model with data from both locations produces a weak PLSR model. 

When predicting biomass within or across different seasons (Chapter 5), of the 32 

model runs using either FULL or VNIR spectral data, 19 model runs produced PLSR 

models with R2 => 0.5 and nRMSE <100, with a range of R2 = 0.5-0.91 and nRMSE = 

45.5-98.1. The strongest six of these PLSR models, and the most PLSR models with 

R2 >0.5 of these 32 models, are for Grassland 3 with more of these PLSR models 

produced using autumn data. It is not clear why most of the strongest models were 

trained on data collected in autumn as the quantities of grassland variables for the 

summer season were generally similar (but with increased dead material cover in 

autumn relative to summer). Although canopy structure is considered to be primarily 

responsible for canopy level reflectance characteristics, biochemical variables were 

not considered in this study and this could have influenced the results to an 

unquantified extent (Cole et al. 2014). It seems clearer that a reduced amount of 

biomass and an increased amount of dead material would have affected the training 

of PLSR models to predict biomass in spring. 
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Of 64 model runs for dead material (either mass or % cover responses and either 

FULL or VNIR predictors), 25 model runs produced PLSR models with R2 => 0.5 and 

nRMSE <100 with a range of R2 = 0.5-0.97 and nRMSE = 25.5-77.6. Of these model 

runs, 19 used % cover data. Also, analysing data from all seasons or spring produced 

most of the PLSR models with R2 => 0.5.  Asner et al. (2000) shows how seasonal 

changes in dead material influence the factors (i.e. grassland variables) that affect 

variability in spectral reflectance. A high dead material content had a relatively 

stronger influence on the visible part of the spectrum (40-60% of variance) but also 

on the NIR part of the spectrum (20-40% of variance). This may explain why most of 

the PLSR models with moderate or high predicting power were trained at least in part 

using spectral data from spring, when the dead material cover on the grasslands was 

particularly high (up to 70% cover). The influence of high dead material cover on the 

spectral signature may also have reduced the models’ predictive power for other 

grassland variables (Asner et al. (2000); Xu et al. (2014); Yang and Guo (2014)).  

When PLSR models were run with moisture content as response data, most of the 

predictions were weak (R2 <0.5) but stronger predictions (R2 >0.5) were produced by 

analysing data from Parsonage grasslands collectively (Grasslands 1-3) for summer 

and for Grassland 2 for some seasons (spring, summer and when using data from all 

three seasons) plus Grassland 3 for spring. The results of comparing these models to 

models trained on randomised data (Figure 5.8) suggest that the models trained on 

data from individual grasslands are unreliable because of the low sample size. One 

possibility for stronger predictions of moisture content during the summer is that the 

sampling strategy better captured the variation in moisture content by chance. 

Variance for moisture content data is 2.05 for summer compared to 1.27 and 0.69 for 

spring and autumn respectively. Another reason could be the increased dead 

material cover during spring, and to a lesser extent, autumn having an impact on the 

spectral data which were then used as predictors in the models. Asner (1998) 

conducted an aircraft RS study on a range of semi-arid grasslands, shrublands and 

transition zones (succeeding from grasslands to shrublands) in the Brazilian Cerrado 

to link vegetation variables with the variation of wavelengths in the 400-2500nm 

spectral region. The results suggest that on grasslands; the dominant biophysical 

factors on the variation of reflectance in the 400-2500nm spectral region were soil 

reflectance, litter reflectance and transmittance (at the leaf level) and the fractional 

cover of grass canopies. Soil reflectance was the most dominant factor across the 

whole 400-2500nm spectral region, likely because of relatively sparse vegetation 

cover, but litter was the next dominant factor in the VNIR part of the spectrum. 



Chapter 7 - Discussion 
 

187 
 

Although there was minimal soil cover on the grasslands chosen for this thesis, it 

could be that dead material and canopy structure had a relatively strong influence on 

the spectral signature which partly explains the results seen in Chapter 5. 

When comparing the prediction of grassland variables using data from different 

spectral devices (Chapter 6); models trained to predict bryophytes, moisture content 

and CSM-condition (but not for moisture content when using Rikola data) were the 

models with moderate to strong predictive power. When using % cover data; live 

material and CSM-condition were moderately to strongly predicted by models trained 

with spectral data from any three of the spectral devices used in this study. Models 

trained with CROPSCAN or SVC data also had moderate to strong predictive power 

for forb cover and gram:forb ratio cover. Models trained with CROPSCAN data also 

had moderate to strong predictive power for dead material cover and live:dead ratio 

cover.  

Yao et al. (2013) showed that models with stronger predicting power can be 

produced when trained using ASD spectral as predictors compared to using 

CROPSCAN spectral data as predictors (possibly due to an increased range or 

quantity of bands) although this study predicted nitrogen quantity on croplands. This 

thesis suggests that similarly good results can be produced from using CROPSCAN 

or SVC data, but it is possible that using the methodology proposed in this thesis 

does not fully utilise the additional spectral data gained from using the SVC the way 

that some authors (e.g. Psomas et al., 2011) may have done. 

Generally speaking; different grasslands, spectral data or seasons did not produce a 

markedly different number of PLSR models with R2 => 0.5 when spectral data were 

used to predict grassland variables and CSM-condition and when grassland variables 

were used to predict CSM-condition. An exception is that most of the superior PLSR 

models trained to predict CSM-condition with spectral data were trained using data 

collected in summer. When grassland variables were used to predict CSM-condition, 

most of the superior PLSR models were trained using % cover data. 

There are numerous potential reasons for the lack of consistency in predicting 

grassland condition-related variables across different grasslands and seasons. It is 

possible that a holistic study (Homolová et al., 2014; Lausch et al. 2018), or at least a 

wider-ranging study that captured data on more variables would have highlighted 

condition-related variables that could be more consistently predicted with a moderate 

to high level of accuracy and precision. It has also been suggested that time and 

https://paperpile.com/c/vWl4vg/MxHb/?noauthor=1
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resource restrictions prevent this (Lausch et al. 2018) and therefore the variables 

considered to be more promising based on the literature review were chosen. 

Alternatively, it could be that an approach that better accounted for at least some of 

the limitations pointed out in Section 7.7 would have led to more consistent results. 

For example, an approach where more data could be collected within time and cost 

constraints or a modelling approach that could better capture the variation in the 

condition-related variables chosen or could better predict the lowest and highest 

variable values (Chen et al. 2009; Psomas et al. 2011). 

 

7.3.2. Predicting CSM-condition using grassland variables 

When using grassland variable data collected over a wider range of grasslands to 

predict condition (Chapter 4), the results suggest that some grassland variables are 

more important predictors of CSM-condition across different types of grasslands than 

others. For predicting CSM-condition across different types of grasslands, live:dead 

ratio using mass or % cover appears to be a particular important variable with other 

relatively important variables including forbs cover, graminoids cover, gram:forb ratio 

mass and gram:bryo ratio mass. 

When using grassland variable data collected over multiple seasons to predict 

condition (Chapter 5), the results suggest that which grassland variables are most 

important depend on whether mass or % cover data are used; biomass, gram:forb 

ratio mass, live:dead ratio mass and moisture content when using mass data but 

dead material cover, forbs cover, graminoids cover, live material cover and live:dead 

ratio cover when using % cover data. Focusing on data collected at Parsonage during 

the summer forbs cover, graminoids cover and live:dead ratio cover were important 

for predicting CSM-condition when using % cover data whilst gram:forb ratio mass 

and live:dead ratio mass were important when using mass data although there were 

slight differences between grasslands. When using mass data; biomass was 

important when using data from Grassland 1 and gram:forb ratio mass was not 

important for Grassland 3 whilst graminoids cover was not important to Grassland 2 

when using % cover data. As all of the grassland variables used in this thesis are 

considered to be related to condition, it is possible that these results are related to 

how well each grassland variables is captured by a particular method of data 

collection (i.e. % cover or mass) although it is possible that changes in vegetation 

across seasons and particularly the changes in dead material quantities had an 
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impact on the results. Another possible reason for some of the aforementioned 

grassland variables being considered significant is that they were used, either directly 

or indirectly, as criteria to calculate CSM-condition. For example, dead material cover 

was a criterion for establishing CSM-condition for some grasslands which would 

relate to the grassland variable live:dead ratio cover. 

 

7.4. Extrapolating predicted grassland variables 

The practical purpose of the research in this thesis is to provide land managers with a 

methodology to monitor grassland condition on semi-natural grasslands with 

improved time-efficiency and spatial-temporal coverage. To achieve this, the results 

of PLSR models trained with CROPSCAN data were extrapolated from patch to field 

level (Figure 6.4). For extrapolation, an emphasis was placed on trained PLSR 

models that had been trained with grasslands from all grasslands collectively as other 

results in this thesis (Figures 4.8, 5.8, 5.9, 6.8 and 6.9) suggested that PLSR models 

trained using data from individual grasslands (n = 10) may not be able to consistently 

improve on models trained with random data. Most of the PLSR models trained with 

collective grassland data had weak predictive power (R2 <0.5 and/or nRMSE >100) 

though most of the PLSR models trained using % cover and CROPSCAN data sets 

were at least moderate predictive power (R2 >0.5 and/or nRMSE <100). Although 

extrapolated predicted values have been presented in Figure 6.4, it is not clear how 

accurate these predictions are as it is not possible to externally validate the results 

aside from the leave-one-out cross-validation (LOO-CV) approach used to derive 

nRMSE and the calculation of the PRESS statistic (used in this thesis to choose 

optimum number of components for model training) due to the small sample size of 

the data sets. External validation of the results using a data set completely separate 

from the one used to train the models would have been a more robust external 

validation approach (Ramspek et al. 2021). An example of a study which took this 

approach is Schweiger et al. (2017).  

Furthermore, it was observed from the drone data and the projections of the 

predicted values from the PLSR models that the pattern of grassland variable 

predicted values appears to follow the spatial pattern of the varying illumination levels 

of the imagery (i.e. a higher illumination value for that image pixel meant a higher 

grassland variable value predicted by the PLSR models). This suggests that issues 
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caused by within and between image illumination have not been solved in this study 

and an effective solution does not currently exist to the knowledge of the author. This 

means that these results are not reliable as it would be necessary to equalise 

illumination variation both within and between images before analysis to prevent this 

issue for occurring.  

When the predicted values from the PLSR models trained with CROPSCAN spectral 

data were projected, the trend in the predicted values between grasslands appeared 

to be as expected. The regenerated calcareous grassland (Grassland 1, NVC = CG2) 

had an increased quantity of bryophyte mass, live material % cover, forbs % cover 

and CSM-condition plus decreased dead material % cover and gram:forb ratio 

(derived from % cover data) compared to the two semi-improved grasslands. These 

trends are associated with grasslands of a better condition although an increase in 

forbs % cover can be associated with more improved (lower condition) grasslands 

due to an increase % cover of species such as Red Clover (Trifolium pratense) and 

White Clover (Trifolium repens) (JNCC, 2004; 2006). As explained earlier, it was not 

possible to externally validate the results using a data set separate from model 

training therefore the only validation of the results was achieved using the leave-one-

out cross-validation (LOO-CV) approach used to derive nRMSE.  

To the knowledge of the author, the only comparable literature currently available 

focused on prediction of biomass or grassland variables related to biomass such as 

grass height on experimental grasslands. Capolupo et al. (2015) used PLSR models 

trained using UAV-acquired spectral data as predictors of structural grassland 

variables. Their study was conducted on experimental grasslands over two seasons 

at field level. Using one season of data; wet biomass, height and dry biomass 

produced R2 results of 0.72, 0.7 and 0.63 respectively. These results improved to 

>0.8 when two seasons of data were analysed collectively. Lussem et al. (2019) used 

OLS regression to estimate dry biomass on experimental grasslands that had a range 

of fertilisation (improvement) levels. Three VIs were calculated using spectral data 

collected with two UAV-mounted devices. The Plant Pigment Ratio Index was 

considered to produce more accurate predictions (R2 = 0.7) than the NDVI (R2 = 0.63) 

and Normalized Green Red Difference Index (NGRDI) with R2 = 0.57 when these 

indices were used as predictors in the OLS regression. Although LOO-CV was 

applied, only absolute RMSE values were provided so the model error is not clear 

and it is not possible to compare model performance between models using R2 and 

nRMSE results. As part of a wider study, Viljanen et al. (2018) used estimated grass 
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height, VIs and spectral data collected with a UAV as separate or combined 

predictors of biomass on experimental fields; in this case to train OLS regression and 

random forest models using data collected on four different dates in June. The R2 

and nRMSE results for each date ranged from 0.82-0.93. Again, it is not clear how 

model overfitting was prevented although it is unlikely to have happened if models 

were trained with only a few features. Michez et al. (2019) also estimated canopy 

height (this time using LiDAR data) then used either these estimated canopy height 

values, spectral data collected using a UAV, or a combination of the two to train four 

different types of models to predict biomass. Spectral data were either utilised in 

models as reflectance values or as VIs. The best performing model had a R2 value of 

0.49 where the model was trained using a combination of estimated canopy height, 

reflectance values and VIs. Like the previous study, data sets were collected within 

one month (May) and therefore grassland variability over the growing season was not 

captured.  

Théau et al. (2021) estimated biomass and vegetation cover on experimental pasture 

plots using a range of methods; structure from motion (SfM) and non-linear 

regression to predict biomass plus a classification (cluster) analysis to estimate 

vegetation cover. A range of VIs, calculated by extracting spectral data collected with 

a drone, were used as predictors in the latter two analyses. Linear regression 

between estimated biomass using the SfM approach and observed biomass 

produced R2 values of 0.93 and 0.94 for fresh and dry biomass respectively with 

nRMSE values <10%, although only 12 samples (n = 12) were used in this analysis 

plus it is not clear how the analysis was carried out and therefore how overfitting was 

prevented. For heavily-grazed grasslands where a structure from motion (SfM) 

approach is ineffective, the results of using green NDVI (GNDVI) as a predictor 

produced the most accurate predictions of estimating biomass with R2 values of 0.80 

and 0.60 and nRMSE values of 24% and 29% for fresh and dry biomass respectively. 

Grüner et al. (2019) estimated canopy height using a SfM approach then estimated 

dry biomass with the aid of estimated canopy height using reduced major axis 

regression on experimental grasslands. The strength of the predictions of biomass 

ranged from R2 = 0.46-0.87 subject to the treatment that a given experimental 

grassland had received, which was attributed to differences in the variability of the 

canopy structure of each grassland. It is not clear if confounding variables have some 

responsibility for the variation in results. Furthermore, this approach would possibly 

be flawed if used to estimate biomass on heavily grazed grasslands, but it is not clear 

if this is the case. 
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This study did not use grass height as a grassland variable (although it played a 

minor role in determining CSM-condition) and the PLSR models trained using data 

from all Parsonage grasslands collectively presented in this study had weak 

predictive power for biomass. On the other hand, the PLSR models had strong 

predictive power (R2 => 0.7) for live material % cover. All of the aforementioned 

papers used experimental grasslands as study sites and did not make available the 

data sets collected on these grasslands. It is possible that the standard linear 

regression approaches produced particularly strong results because the grassland 

data collected to train the models were uniform because the grasslands studied by 

the aforementioned authors (e.g. Viljanen et al. (2018)) were structurally 

homogeneous. In practical terms, the models would be overfitted as they would have 

no predicting power for more structurally heterogeneous grasslands. For this reason, 

it is thought that inferences made by authors such as Lussem et al. (2019) that 

biomass predictions on experimental grasslands can be transferred to other 

grasslands are likely to be false. Addressing this would require experimental 

grasslands to replicate the structural heterogeneity (both within and between 

grasslands) observed on semi-natural grasslands such as the grasslands selected for 

this thesis. 

A similar situation may have occurred with the mass-based observations in this study. 

Despite collecting data on more structurally heterogeneous grasslands, the models 

appeared to lack the ability to predict the highest mass values (e.g. where there are 

tussocks). One reason could be that the data collection approach did not successfully 

capture the structural heterogeneity both within and between the grasslands in three 

dimensional space, a consequence of collecting a relatively small data set. 

Alternatively, a change in some grassland variable values did not result in a sufficient 

change in the spectral signature for the trained model to predict values that are much 

higher than most of the other grassland variable values. The inability of the models to 

predict much higher values could also be a result of using a linear regression 

approach.  

 

7.5. Choice of spectral bands 

One goal of this thesis is to explore which spectral reflectance bands, and related to 

this which radiometry instruments and regions of the EM spectrum, would be most 
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useful in training PLSR models with strong predictive power. This thesis used VIP to 

understand which model predictors were most important for the predictive power of 

the trained models. Spectral data from each device was autoscaled prior to analysis 

to remove the possibility of the VIP results being positively biased towards the NIR 

part of the spectrum. Generally speaking for all three devices used in this thesis, the 

VIP results (Figures 4.6, 5.5, 5.6, 6.6 and 6.7) suggest that the bands in the upper 

part of their spectral range (upper NIR and SWIR bands) were most important for 

predicting grassland variables. To use the CROPSCAN as an example; the most 

significant bands for predicting a wide range of grassland variables across different 

locations, seasons and when using different data types are the SWIR bands and 

upper NIR bands (760-1640nm) along with the red edge (647nm) and blue band 

(470nm) to a more limited extent. The importance of the upper NIR and SWIR bands, 

regardless of the device used, is highlighted by looking at how many wavelengths in 

these regions was considered an important predictor (Figures 6.6 and 6.7) for all of 

the PLSR models trained (Figures 6.2 and 6.3) for this particular study (Chapter 6).  

For the CROPSCAN (collects data on 16 wavelengths); the SWIR1 range produced 

nearly twice as many VIP values >1 (125) than the NIR range (77) and approximately 

six times more than using the VIS part of the spectrum (22) when predicting 

grassland variables, all of the VIP values >2 are in the SWIR1 range. For the Rikola 

camera (collects data on 30 wavelengths); the NIR range produced approximately six 

times more VIP values >1 (672) than using the VIS region of the spectrum (121) 

when predicting grassland variables. For the SVC (collects data on 1249 

wavelengths); the NIR and SWIR1 regions of the spectrum (8989 and 9753 

respectively) produced more VIP values >1 than the VIS or SWIR2 regions of the 

spectrum (4407 and 5183 respectively).  

These results suggest that the aforementioned bands better capture and/or are more 

sensitive to changes in CSM-condition and the condition-based grassland variables 

used in this study regardless of grassland, season or device. These results agree 

with some studies (e.g. Chen et al., 2009; Polley et al. 2020) and disagree with others 

(e.g. Capolupo et al., 2015) although the studies where the results disagree did not 

use instruments that collect data on the SWIR part of the spectrum. Despite this, it 

could be that the upper NIR bands being strong predictors of grassland variables and 

condition generally explains why the results of using FULL and VNIR data are similar. 

Furthermore, the CROPSCAN only collects data on two bands in the SWIR region of 

the EM spectrum. 
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When considering the results of the VIP analysis (where specific bands in the VIS 

and red edge regions of the spectrum were also deemed important), one possibility is 

that these results are influenced by grassland canopy spectral reflectance being 

strongly influenced by chlorophyll and water absorption (Knipling, 1970). The VIP 

results could also be explained by previous studies which show the importance of 

NIR and SWIR bands in predicting grassland variables (Asner (1998); Chen et al. 

(2009); Roelofsen et al. (2015)). Chen et al. (2009) used spectral data ranging from 

400-1100nm in their analyses and used a band importance index (BII) to highlight 

which bands were most important in predicting biomass. The BII results suggested 

that parts of the NIR range and blue range of the spectrum were the most important 

ranges of bands for predicting biomass. These findings were reiterated when 

Pearson’s correlation was used to test the strength of correlation between the 

reflectance at each wavelength and aboveground biomass. The results from this 

study match their results quite closely, except this study used two bands from the 

SWIR part of the spectrum which were also found to be important. Capolupo et al. 

(2015) found that VIS (450–545 nm) was most important in predicting some 

grassland variables including fresh biomass and grass height, but their study also 

used a more limited part of the spectrum (450-950nm). Using simulated spectral 

signatures, Xu et al. (2014) found that increased bare soil cover increased 

reflectance along the whole spectral signature whilst increased dead material cover 

decreased NIR reflectance and increased SWIR reflectance. Roelofsen et al. (2015) 

related changes in the NIR parts of the spectral signature to leaf orientation and LAI 

plus the SWIR part of the spectrum to water content in agreement with findings by 

Asner (1998).  

One aspect of this thesis is to try to understand how important it is to utilise SWIR 

data when training predictive models. In Chapters 4 and 5, models were trained with 

two different ranges of spectral data; VNIR (visible and NIR data) and FULL (VNIR 

plus two SWIR wavelengths). In Chapter 4, models trained with VNIR data produced 

higher R2 and lower nRMSE results for most grassland variables when analysing 

grasslands from both locations or Ingleborough grasslands collectively. Full spectrum 

data (FULL) produced stronger predictions for most grassland variables and for 

condition when analysing Parsonage grasslands collectively. When the results of 

analysing individual grasslands are compared, whether using full spectrum or VNIR 

data produces higher R2 values is dependent on the grassland type and grassland 

variable. For biomass, live material or dead material R2 results (mass or % cover); full 

spectrum results are almost always weaker than using VNIR. Overall, the ratio 

https://paperpile.com/c/byTTdf/uIIK/?noauthor=1
https://paperpile.com/c/byTTdf/U6K1/?noauthor=1
https://paperpile.com/c/byTTdf/ibe4Y/?noauthor=1
https://paperpile.com/c/byTTdf/U6K1/?noauthor=1
https://paperpile.com/c/1LTQmN/UcFS/?noauthor=1
https://paperpile.com/c/1LTQmN/1n9W/?noauthor=1
https://paperpile.com/c/1LTQmN/VRfg/?noauthor=1
https://paperpile.com/c/1LTQmN/RDx2/?noauthor=1


Chapter 7 - Discussion 
 

195 
 

between occasions when each produced stronger results was almost 1:1 in favour of 

using VNIR data. Both spectral data ranges produced a similar number of significant 

results (R2 >0.5 and nRMSE <100). 

One of the aims of the thesis addressed in Chapter 6 was to assess whether spectral 

data from different devices can accurately predict CSM-condition or the mass or % 

cover of condition-related grassland variables and to compare the performance of the 

PLSR models trained using data from these different spectral devices. Of 192 model 

runs (Figures 6.6 and 6.7), 76 were considered moderate to strong on the basis that 

the results had R2 values => 0.5 and nRMSE <100; 35 model runs for CROPSCAN, 

16 for the Rikola camera and 25 for the SVC. Some of these models (49) had R2 

values => 0.7; 20 for CROPSCAN, 14 for the Rikola camera and 15 for the 

SVC. When comparing how many PLSR models made moderate to strong 

predictions of grassland variables using spectral data from each device, no one 

variable stands out as producing many more significant results than the others. All 

grassland variables except biomass, bryophytes and dead material produced 10-13 

significant results each (mass and % cover). Biomass and bryophytes were used in 

half as many model runs (only mass data) and produced 3 and 5 significant results 

respectively. All 5 of the significant results for dead material were the result of using 

% cover data. Using % cover data produced 52 significant results whilst using mass 

data produced 24 significant results. For the CROPSCAN, SVC and Rikola camera; 

the ratio of significant results when using % cover data is 23:16:13 and when using 

mass data it is 12:9:3. It is possible that relatively few models trained with Rikola 

spectral data had moderate to strong predictive power because the SWIR region of 

the spectrum is relatively sensitive to water content which correlates strongly with 

chlorophyll content (and, in turn, biomass) in other studies (Sakowska et al., 2016). 

 

7.6. Practical implications of RS condition 

monitoring of grasslands 

Unlike most comparable studies which are conducted on experimental or relatively 

structurally homogeneous grasslands and in clear sky conditions, the RS studies of 

grassland condition in this thesis were carried out on spatially heterogeneous 

grasslands (within and between grasslands) and in changeable weather conditions 

which can introduce error and uncertainty into RS studies. For example, Harzé et al. 
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(2016) found that specific leaf area (SLA), leaf dead matter content (LDMC), and 

plant height are characterized by considerable intra-population variability (SLA: 72–

95%, LDMC: 78–100% and vegetative height: 70–94% of the variability of grassland 

variables) as a result of within-site environmental heterogeneity (e.g. soil depth and 

slope). It is thought that this variability plus variation in aspects of the grazing regime 

of each grassland, particularly grazing intensity (Bai et al., 2001) could have made it 

more difficult to link spectral data to grassland variables and condition on the semi-

natural grasslands chosen for this study. Furthermore, on the mire grassland included 

in this study; tussocks, sinkholes and shrubs complicated the collection of good 

quality RS data because spectral data can be influenced by topography and canopy 

structure. Also, the calcareous grasslands of Ingleborough NNR included a limestone 

pavement where outcropping rocks affected the spectral signature. Although the 

aforementioned within-grassland variability of some grassland characteristics and 

geographic features may have increased model error in predicting the grassland 

variables included in this study, these features of semi-natural grasslands are not 

taken into consideration in studies conducted on experimental grasslands (e.g. 

Capolupo et al., 2015), meaning their methodology may not be viable on semi-natural 

grasslands. In contrast to many other RS studies on grassland condition, the mass of 

grassland variables (graminoids, forbs, bryophytes and dead material in particular) 

were used as responses in regression analyses. These grassland variables can be 

linked to condition for the reasons explained in Chapter 2, in particular Sections 2.1 

and 2.3.6. 

The results of this study have implications for future studies that try to predict 

condition-related grassland variables using a RS methodology. If models need to be 

calibrated to individual grasslands (particularly grasslands that are as spatially 

heterogeneous as the ones studied) to produce stronger predictions, more in situ 

data is required to capture the within-grassland variability in grassland variables and 

related grassland canopy structure. Many of the models with values of R2 >0.7 were 

trained using data from individual grasslands (n=10 in this thesis), suggesting that 

site specific studies are more reliable. Comparing these results to the results of 

randomised models suggests that training statistical models with insufficient data lead 

to unreliable results even if the study is site specific (Goodhue et al., 2012). 

Therefore, the results of this study suggest that collecting sufficient data to train the 

models is critical and a sufficient quantity in this thesis was deemed to be 30 

quadrats. Receiving relatively high R2 and low nRMSE results can be deceptive as 

these same models may not be able to consistently beat randomised models or 
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deliver reproducible results, which also demonstrates the importance of model 

testing. In addition, it is also important to collect a sufficient quantity of data to allow 

for validation of the results using a data set separate from the data set used to train 

the models. The increased number of moderately strong PLSR models produced 

using data from all grasslands collectively, relative to Chapter 4 which included 

grasslands from Ingleborough NNR, suggests that using data from different 

grasslands may have a reduced impact on model strength if all of the grasslands are 

structurally similar. There are many variables other than canopy structure that 

influence the spectral signature and were not taken into consideration in this study 

(e.g. biochemical variables). A study where a larger quantity of samples are collected 

on each grassland may confirm whether site specific studies produce superior results 

to studying multiple grasslands. Furthermore, using % cover or mass data seems to 

capture different condition-based grassland variables more effectively although % 

cover data can be collected more time-efficiently. 

It also seems necessary to use high resolution satellite or drone data that includes 

the capture of data on at least a couple of SWIR wavelengths to capture the spatial 

structural heterogeneity of target grasslands when comparing the predictive power of 

PLSR models trained with CROPSCAN data compared to models trained with Rikola 

data. The most advanced VNIR cameras mounted on <20kg drones currently 

available collect data on a 500-900nm range with a spatial resolution of <1m (6cm for 

the Rikola camera). The results of the PLSR and VIP analyses suggest that 

predicting grassland variables using this range of spectral data is viable but the 

strength of grassland variable prediction is dependent on grassland type, grassland 

variable and how the variable is captured (mass or % cover). Despite this, the results 

suggest that devices that collected spectral data on SWIR wavelengths (e.g. SVC), 

even if it is only two wavelengths (e.g. CROPSCAN) trained more models with a 

moderate to strong predictive power relative to using Rikola data. Considerations 

need to be made around collecting imagery with UAVs as within and between image 

illumination levels can have a detrimental impact on the viability of any results gained 

from using the spectral data from these images as predictors in models. The timing of 

the flight needs to be as close to the time of highest sun as possible to minimise 

within and between image illumination variability. The vignetting effect (reduction in 

illumination at the periphery of the image) also needs to be considered as it will 

contribute to within image illumination variability (Kordecki et al., 2016). A contributing 

factor to this issue may have been that this thesis chose the PLSR modelling 

approach, which can be sensitive to issues related to the viewing angle of the 
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spectral device and the sun as well as surface property differences such as canopy 

structure (Li et al. 2016). 

 

7.7. Study limitations 

This study directly attempted to address issues around monitoring the condition of 

semi-natural grasslands which had practical implications for the robustness of the 

results from this work. As so many hypotheses were tested at once, the results may 

have been affected by the multiple testing hypothesis and the “look-elsewhere” effect. 

Although steps were taken to ensure that the results of this study are reproducible 

(making it unlikely that the “look-elsewhere” effect is happening), training such a large 

number of PLSR models has complicated making inferences from the results. 

Furthermore, PLSR models cannot accommodate a fixed-effect i.e. if all the values of 

the response variable are the same. This prevented PLSR models being trained to 

predict “bare ground” and “graminoid:bryophyte ratio” for Parsonage grasslands 

(Grasslands 1-3). Using PLSR as a statistical modelling approach seemed to 

underestimate the largest grassland variable values and overestimate the smallest 

grassland variable values (as seen in Psomas et al. (2011) and Chen et al. (2009) 

respectively), but whether using a non-linear regression approach per se would have 

produced superior results is debatable (Yang and Guo, 2014). One possibility for the 

above limitations is the variation in spectra that can occur even when many of the 

variables of a target remain the same (e.g. Price, 1994) which can occur because of 

spatial and temporal variability in illumination, the problems of which would be 

exacerbated when using an insufficient quantity of training data in the statistical 

models. Some of the spectral data collected in spring were incorrectly calibrated and 

were corrected using spectral data collected at a separate site (see Section 3.4.3.1). 

Although it is believed that correcting these data means that the quality of these data 

meant they were viable for analysis, this would possibly have reduced the quality of 

the spectral data which may have had a minor impact on the accuracy and precision 

of the results. Data collected with an Analytical Spectral Device (ASD) at 

Ingleborough NNR was not viable as a result of the highly changeable weather 

conditions and cloud patterns. Weather conditions also prevented triplicate data 

collection with the CROPSCAN on all Ingleborough grasslands except the acid mire 

grassland plus the collection of spectral data at Ingleborough NNR during spring and 

autumn. Although the results of this study suggest that forbs can be predicted by 
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spectral data with significant accuracy and precision if grasslands are analysed 

individually, only the species count was able to determine which species of forb 

existed in a target area. This may be an issue as some forb species are positive 

indicators while others are negative indicators of condition (JNCC, 2004; 2006). This 

could be inferred from the species abundance data in this study, but these data were 

only collected on quadrats during the spring period at Ingleborough NNR and the 

summer period at Parsonage NNR and species abundance on a given patch can 

change over time (Herben et al., 2000) therefore this is another limitation. CSM-

condition was derived from CSM criteria where multiple data sets including species 

abundance and % cover grassland variables were used as inputs for the criteria. 

When % cover grassland variables were used as predictors of CSM-condition, there 

may have been positive bias as % cover “dead material” and “forbs” were also used 

for a few of the CSM criteria that CSM-condition was derived from. Furthermore, 

CSM-condition was calculated using criteria that were weighted equally in the 

calculation. It is acknowledged that the criteria weights used to calculate CSM-

condition could be relaxed or refined and this should be further investigated to 

establish the optimum weightings of each criterion. 

The results of using the mass or % cover of grassland variables to demonstrate that 

the grasslands in this study are significantly different in character due to differing 

levels of fertilisation mostly suggested that this was not the case, but it is unclear if 

the methods used in this study were ineffective as Hollberg and Schellberg (2017) 

suggested that different intensities of fertilisation can be distinguished using VIs. 

Collecting % cover data of bryophytes was limited as they grow beneath graminoid 

and forb species. Also, some quadrats in spring had dead material cover values that 

were considered high (50-75% for quadrats 1-8 and 35-60% for seven quadrats on 

Grassland 3) which may have led to increased within-site variability of grassland 

variables and spectral signatures (Yang and Guo, 2014). The amount of error that 

may have been introduced by these factors is unknown but the total error for each 

model run has been quantified using nRMSE. Changing quadrat locations each 

season introduced spatial-variation to a temporal study which may have complicated 

the interpretation of the results. This was unavoidable as spectral data had to be 

collected on quadrats unaffected by destructive sampling as this sampling would 

have altered the canopy structure and therefore affected spectral data collection 

(Gitelson et al. 2019). Furthermore, the CSM guidelines suggested that 4m2 quadrats 

should be used for assessing M19 grasslands but this study used 1m2 quadrats. 

Finally, this study was also affected by major limitations specific to the extrapolation 
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of the results from PLSR models trained with Rikola spectral data. Although the 

vignetting effect was addressed to an extent by removing a portion of the image 

peripheries, this study did not effectively solve the detrimental effect that within and 

between illumination variation can have on the accuracy of predicted grassland 

variable values. Furthermore, the predicted grassland variable values extrapolated to 

field level have not been independently verified against a separate data set to assess 

the accuracy of the extrapolated results for PLSR models trained with Rikola or 

CROPSCAN spectral data.  

Studies using the same approach as this paper should be conducted on other 

spatially heterogeneous grasslands and collect a greater quantity of data to confirm 

that the results would be consistent regardless of the target grassland. Alternatively, 

a study that is better suited to capturing then mining spatial-temporal data should also 

be completed to determine if seasonal data would increase the predictive power of 

regression analyses on grassland variables and CSM-condition. 

 

7.8. Potential research opportunities  

There are several directions that future research could take in relation to this thesis. 

There is already a trend towards the increased use of UAVs as remote sensing 

platforms.  If the use of RS data collected with a UAV is to truly become viable, 

issues related to between and within variances in image illumination would need to 

be solved. Solving this issue could lead to grassland condition studies on semi-

natural grasslands at field level becoming viable. This could coincide with 

advancements in UAV-mounted instruments, for example they could collect 

hyperspectral data on a wider range of the EM spectrum or become more 

economically accessible. As more very-high resolution satellites are launched and 

their imagery becomes more commonplace, it is possible that grassland condition 

monitoring at field level will become financially viable but whether this is scientifically 

possible may depend on which wavelengths data are collected. Hyperspectral 

satellite imagery with a higher spatial and spectral resolution (e.g. from EnMap) could 

also become more available for grassland condition studies in future, but whether this 

is possible may depend on the cost of the imagery and the cost of acquiring sufficient 

computing power. 



Chapter 7 - Discussion 
 

201 
 

Regarding machine learning techniques, a model comparison study that includes 

further exploration of Bayesian (e.g. Zhao et al. 2013), kriging and neural network 

(NN) techniques could lead to more accurate models although a larger data set may 

be required to train accurate models (Li et al. 2016). For example, Li et al. (2016) 

found that regression kriging and random forests residuals kriging predicted LAI more 

accurately than PLSR, random forests or artificial neural networks. Furthermore, 

using neural networks may be an effective way to overcome issues related to 

differences in illumination between and within multi- or hyperspectral images 

collected with a UAV.  The neural network may produce veritable results without the 

necessity of image (histogram) equalisation subject to a sufficient amount of spectral 

data being utilised as training data and taken from different images to capture the 

changes in illumination (Thomas, T. pers. comm. 1st December 2020.
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Chapter 8 - Conclusion 

This thesis assessed whether remote sensing techniques could be used to ascertain the 

condition, in the context of ecosystem services, of different types of grasslands by predicting 

condition-related grassland variables with a sufficient level of accuracy. Previous studies had 

been conducted to address issues within this line of research, but these studies were 

generally limited by not directly tackling the issues around the remote sensing of grassland 

condition on working semi-natural grasslands. Finding a working solution to establishing the 

condition of semi-natural grasslands was considered most beneficial to land managers who 

may adopt this approach as a more cost- and -time efficient approach to condition 

monitoring with the added benefit of better spatial coverage than traditional monitoring 

techniques. 

This assessment was conducted by training PLSR models using spectral data collected with 

hand-held devices or by UAV as predictors and using the mass or % cover of condition-

related grassland variables plus CSM-condition as responses. Grassland variables were 

also used as predictors of CSM-condition. The results suggest that it is possible to use this 

methodology to accurately estimate some of the grassland variables chosen by this study 

subject to some caveats. The results suggested that, despite PLSR being suggested as a 

correct approach for use with small data sets and to avoid model overfitting, it is still possible 

train models that seem to have moderate to strong predictive power but are actually 

unreliable if an insufficient quantity of data are used. More specifically, the results suggest 

that most of the PLSR models with moderate to strong predictive power in this thesis are not 

reliable if they are trained with data from only one grassland (n = 10). A sufficient amount of 

data to train PLSR models so that the results were considered reliable was considered to be 

at least 30 quadrats (n = 30). It is possible that collecting larger data sets on each grassland 

would have solved this issue, but data collection was limited by time and resources and 

therefore this is not clearly demonstrated in this thesis.  

This has implications for other similar studies which may have assumed their results were 

robust without using an effective external validation technique. There are also implications 

for land managers who are interested in implementing RS techniques to monitor the 

condition of grasslands as it would be necessary to collect a sufficient amount of data to train 

models with reliable results and to externally validate the results of extrapolated models. 

This suggests that collecting and separating a sufficient number of grass samples to 

establish the mass of grassland variables may not be practical, but could lead to models 

trained to accurately predict some condition-related variables that would not be possible 

when using % cover data. The grasslands and time of year could also be factors when trying 
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to accurately predict condition-related variables as the results of this thesis suggest that 

none of the grassland variables chosen for this thesis could be consistently predicted with 

reasonable accuracy across grasslands and seasons. The results of this thesis also suggest 

that choosing a spectral device that collects data on the SWIR part of the spectrum could 

help train more accurate models but this is not crucial.
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There were also a number of other limitations, a summary of which is given here: 

• Bad weather limited data collection at Ingleborough NNR to only the summer season. 

Also, triplicate spectral data collection with the CROPSCAN was limited at some 

study sites and data collection with the ASD only took place at Parsonage Down 

NNR during the summer. 

• Spectral data were only collected at nadir. 

• Some of the spectral data collected with the CROPSCAN at Parsonage Down NNR 

during spring were not correctly calibrated and had to be manually corrected which 

would have introduced some error in the readings. 

• The quantification of condition was affected a few issues. Species abundance data 

were only collected at each location during the summer, which were also used to 

quantify CSM-condition during the spring and autumn.  

• Forb species were not labelled as positive or negative indicator species which 

affected the quantification of CSM-condition on each quadrat.  

• Not all NVC criteria were used when quantifying CSM-condition plus the CSM 

guidelines suggested that 4m2 quadrats should be used for assessing M19 

grasslands but this study used 1m2 quadrats (JNCC, 2004; 2006). 

• Data collection of bryophyte % cover was limited on most grasslands including all 

three Parsonage NNR grasslands. 

 

A number of recommendations are suggested based on the findings of this thesis: 

• The methodology used in Chapter 6 to predict grassland variables at field level 

should include a data set separate from model training to externally validate the 

predicted values from extrapolated models.  

• This proposed methodology, with a validation approach included, should be tested 

with an increased amount of response data i.e. mass or % cover of grassland 

variables. 

• The methodology in Chapter 6 should also be tested across seasons. 
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• If the limitations to using imagery collected by a UAV cannot be overcome (e.g. 

removing illumination differences within and between images), using a UAV-mounted 

spectrometer that collects patch level spectral data (i.e. comparable to a 

CROPSCAN) on many patches over an entire field may be a more suitable device for 

the prediction of grassland variables at field level. 

• A recommendation for land managers considering adopting this methodology for 

monitoring grasslands is to decide whether it is practical to collect and separate a 

sufficient number of grass samples to ensure the robustness of the PLSR models 

when trying to predict the mass of a given variable. Collecting % cover data on 

grassland variables is considerably more time-efficient but has its own set of 

limitations. 

• Some studies have used Bayesian techniques or neural networks to determine 

grassland condition. A model comparison would determine which approach would be 

most suitable for predicting condition-related grassland variables.  
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Appendix Figure 1: Correlation matrices between predictors used in PLSR modelling a) 

spectral bands, b) mass-based grassland variables and c) % cover-based grassland 

variables. Correlation coefficients that are not statistically significant (p > 0.05) are not 

included. The data used to for analysis were collected across seven grasslands during the 

summer season (n=70). The correlation matrix for the spectral bands from the CROPSCAN 

(Appendix Figure 1a) indicated statistically significant strong correlations between bands 

within each of the VIS (390-700nm) and NIR (701-870nm) regions of the spectrum. There 

are also significant strong negative correlations between NIR bands and SWIR bands (1240 

and 1640nm). When using mass-based grassland variables (Appendix Figure 1b), live 

material mass was strongly correlated with biomass and forbs mass. When using % cover-

based variables (Appendix Figure 1c), dead material cover was negatively correlated with 

live:dead ratio cover with a value of -0.78. 
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Appendix Figure 2: Correlation matrices between predictors used in PLSR modelling a) 

spectral bands, b) mass-based grassland variables and c) % cover-based grassland 

variables. Correlation coefficients that are not statistically significant (p > 0.05) are blanked 

out. The correlation matrix for the spectral bands from the CROPSCAN (Appendix Figure 2a) 

emulated those of Appendix Figure 2a; there were statistically significant strong correlations 

between bands within the VIS and NIR regions of the spectrum and there are also significant 

negative correlations between some NIR and SWIR bands. When using grassland variables; 

the only significant r values were between biomass and live material when using mass-

based variables (Appendix Figure 2b), and live material and dead material when using 

cover-based variables (Appendix Figure 2c). 
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Appendix Figure 3: Plots for results of 426 PLSR regressions, each of which represent the median R2 and nRMSE values of the iterated model 

runs, where (i) spectral data (either FULL or VNIR) were used to predict grassland variables (coloured dots) and CSM based condition (black 

dot) and (ii) grassland variables were used to predict CSM based condition (white dot). Panels a and b show results for mass based analysis 

for Parsonage and Ingleborough respectively, c and d for % cover based analysis for Parsonage and Ingleborough respectively. 
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Appendix Figure 4: Median results of all iterated model runs where spectral data were used to predict CSM-condition and grassland variables 

for each of the three seasons (n = 10 or 30) and for all seasons (n = 30 or 90). Also included are the results of predicting CSM-condition using 

grassland variables as predictors. Panels a and b show results for mass based analysis (FULL and VNIR respectively), and panels c and d for 

% cover based analysis (FULL and VNIR respectively).
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Appendix Figure 5: Median results of iterated model runs where spectral data from three different devices were used to predict grassland 

variables and CSM-condition for all grasslands collectively (n = 30) or single sites (n = 10). Panel a shows results for mass based analysis and 

panel b shows results for cover based analysis. 
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Observations vs. predictions – Chapter 4 
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Appendix Figure 6: Observed and predicted values for each grassland variable and CSM- 

condition where CROPSCAN spectral data were used as predictors on data collected on all 

seven grasslands during the summer. The first two sets of graphs project predicted values 

derived from mass data (except moisture content which is % mass) where the first set are 
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the results of using FULL spectral data and the second set of graphs are the result of using 

VNIR data. The next two sets of graphs are projections of predicted values derived from % 

cover data, where FULL spectral data and VNIR spectral data were used respectively. 
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Appendix Figure 7: Observed and predicted values for each grassland variable and CSM- 

condition where CROPSCAN spectral data were used as predictors on data collected over 

three seasons on Parsonage grasslands. The first two sets of graphs project predicted 

values derived from mass data (except moisture content which is % mass) where the first set 

are the results of using FULL spectral data and the second set of graphs are the result of 

using VNIR data. The next two sets of graphs are projections of predicted values derived 

from % cover data, where FULL spectral data and VNIR spectral data were used 

respectively. The data sets used include data collected on all three grasslands across three 

seasons, on one grassland across three seasons, across all grasslands for one season and 

on one grassland for one season.
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Appendix Figure 7: Observed and predicted values for each grassland variable and CSM-

condition where CROPSCAN spectral data were used as predictors. The first three rows 

project predicted values derived from mass data (except moisture content which is % mass) 

and the bottom two rows project predicted values derived from % cover data. 
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Appendix Figure 8: Observed and predicted values for each grassland variable and CSM-

condition where Rikola spectral data were used as predictors. The first three rows project 

predicted values derived from mass data (except moisture content which is % mass) and the 

penultimate two rows project predicted values derived from % cover data. The bottom 

projection shows predicted values for CSM-condition. 
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Extrapolating predicted grassland variables and condition using Rikola data as predictors 
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Appendix Figure 4a: Projection of predicted bryophyte mass predicted values derived from a PLSR model trained with Rikola data. 
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Appendix Figure 4b: Projection of predicted live material % cover predicted values derived from a PLSR model trained with Rikola data. 
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Appendix Figure 4c: Projection of ‘condition’ predicted values derived from a PLSR model trained with Rikola data. 


