
Incorporating	Software	Security:	Using	Developer	Workshops	to	Engage	
Product	Managers		

Charles Weir
Security Lancaster
Lancaster University
United Kingdom
c.weir1@lancaster.ac.uk

Ingolf Becker
Security and Crime Science
University College London
United Kingdom
i.becker@ucl.ac.uk

Lynne Blair
Computing and Communications
Lancaster University
United Kingdom
l.blair@lancaster.ac.uk

©	Charles	Weir,	Ingolf	Becker,	Lynne	Blair	2022	

Abstract	

Evidence from data breach reports shows that many competent software development teams still do not implement
secure, privacy-preserving software, even though techniques to do so are now well-known. A major factor causing this
is simply a lack of priority and resources for security, as decided by product managers. So, how can we help
developers and product managers to work together to achieve appropriate decisions on security and privacy issues?

This paper explores using structured workshops to support teams of developers in engaging product managers with
software security and privacy, even in the absence of security professionals. The research used the Design Based
Research methodology. This paper describes and justifies our workshop design and implementation, and describes our
thematic coding of both participant interviews and workshop discussions to quantify and explore the workshops’
effectiveness.

Based on trials in eight organizations, involving 88 developers, we found the workshops effective in helping
development teams to identify, promote, and prioritize security issues with product managers. Comparisons between
organizations suggested that such workshops are most effective with groups with limited security expertise, and when
led by the development team leaders. We also found workshop participants needed minimal guidance to identify
security threats, and a wide range of ways to promote possible security improvements.

Empowering developers and product managers in this way offers a powerful grassroots approach to improve
software security worldwide.

1 Introduction	

Software security and privacy are now major issues: almost every day we hear that several more organizations’
software systems have been compromised (RiskBased Security 2020).

While there are many aspects to an organization’s security and privacy, the specification, design, and
implementation of the software used has a significant impact on whether such breaches happen. Two industry trends
contribute to this impact: the increasing use of microservices and Software as a Service (SaaS) components, and the
DevOps movement. Both require security to be ‘in the code’ rather than being the responsibility of separate operations
or security teams. So, development teams must be effective at creating secure software.

Unfortunately, there is evidence that developers are not delivering sufficient security. A report from Veracode
concluded that “more than 85 percent of all applications have at least one vulnerability in them; more than 13 percent
of applications have at least one very high severity flaw” (Veracode 2018). A report from Microsoft found that 28%
of Software as a Service applications were not supporting data encryption (Microsoft 2018). Industry practices are not
yet sufficient to support developers in providing the software security1 we need.

In particular, it may not matter how enthusiastic a software development team may be about security. Unless they
have appropriate knowledge, time and resources—both financial and otherwise—to make their software secure, they
are unlikely to be effective at achieving it (Weir et al. 2019; Rauf et al. 2022). Yet development teams are rarely free
to decide how to allocate their own time and resources. Instead, such decisions are taken by a product owner,

1 This paper uses the words ‘secure’ and ‘security’ to include privacy aspects of the software developed, except where privacy

is explicitly differentiated. ‘Developers’ refers to all those involved with creating software: programmers, analysts, designers,
testers, and managers.

customer, senior manager, or product management committee. This role, which we shall call ‘product manager’, is to
ensure that the developers create the software most needed by the organisation. So, how are developers to engage with
product managers to achieve appropriate time and resource expenditure for the security issues in their development?

To work effectively with product managers on security makes a range of demands on the developers involved,
including:

1. Understanding the relevance of security as a business driver;
2. Identifying types of security issues relevant to current projects;
3. Characterizing those issues in terms of impact and likelihood to identify the most important;
4. Identifying and costing solutions, such as security-improving activities (‘assurance techniques’), to address

those important issues; and
5. Discussing those issues and solutions in terms meaningful to product managers.

Items 2, 3 and 4 are now relatively well-understood among cybersecurity experts and some developers (Bell et al.
2017). Items 1 and 5, engaging with product managers with security as a business driver, appear less explored and
understood in literature and practice.

Specifically, this paper explores outcomes from a project to create an intervention to help organizations improve
the security of the code they develop, and specifically to address the five demands above. Given the vast range of
types of software development, and the differences between teams in set-up, organization structure, team culture and
personalities involved, it seemed unlikely we would find a ‘one size fits all’ method to teach to the development teams
involved. Instead, we took a different approach, using ‘Flipped Teaching’ (Franqueira and Tunnicliffe 2015):
structured activities to help participants learn from their own experience and knowledge. This took the form of a
sequence of three short structured workshops to help the developers learn and identify for themselves ways to
improve.

The primary research question explored by this paper, therefore, is:

RQ 1 How can an intervention based on short workshops assist developers in identifying security issues,

assessing them, and engaging product managers with those issues?

1.1 Contribution	

This paper describes the design of the three workshops and the intervention process, their use in eight different
organizations, the analysis of this use, and the practical and theoretical conclusions related to engaging product
managers. The research makes the following contributions:

1. It demonstrates the ability of developers to represent security enhancements in terms of their business
benefits;

2. It categorizes a range of such business benefits, as identified by participating development teams;
3. It identifies factors that encourage or discourage the engagement of product managers with security (‘product

management engagement’); and
4. It provides an existence proof that an ‘intervention package’, structured as a facilitated series of workshops

for a software development team, can help product management engagement.
The paper builds on an earlier paper (Weir et al. 2021a), and describes the same intervention and trials. The major
additional material is as follows:

• This paper focuses on product management engagement, rather than improvements in assurance technique
use, and provides new analysis to support that focus (Sections 1, 2.4, 3.5, 4.2, and 5.6);

• To address the Empirical Software Engineering readership, the full methodology is described in detail in
Sections 4.3 and 4.4; and

• The paper includes the analysis of 47 hours of discussions and presentations in the workshops (Sections 4.3,
5.5, 5.6, and 5.8), to generate the following additional material:

o A discussion of security ‘selling points’ identified in the workshops (Sections 4.2, 5.5), and
o A discussion of factors supporting and opposing product management engagement (Section 5.8).

The rest of this paper is as follows. Section 2 discusses relevant past research; Section 3 describes the requirements for
the intervention package and how they were implemented. Section 4 describes the research method and introduces
research sub-questions. Section 5 explores the results from using the intervention to answer the research questions;
Section 6 discusses those results; and Section 7 provides a conclusion.

2 Background	

Research related to interventions and decisions for secure software has taken a variety of disparate approaches. In this
section, we explore how research has explored security-oriented interventions and the relationship with product
managers. Specifically, we discuss ways to get developers to adopt business process improvements related to security;
consultancy and training interventions; approaches to motivate developers towards security; blockers and motivators
as a means of analysis; and work studying how product managers engage with developers on security.

2.1 Adoption	of	Developer	Security	Activities	

One way to incorporate development security into organizational practice is to build a process around it using a
‘Secure Development Lifecycle’ (SDL). This is a prescriptive set of instructions to managers, developers and
stakeholders on how to add security activities to the development process (De Win et al. 2009). However, research
suggests resistance from development teams to adopting a prescriptive methodology. For example, Conradi and Dybå
(2001) deduced in a survey that developers are skeptical about adopting the formal routines found in traditional quality
systems.

Van der Linden et al. (2020) found from a task-based study and survey that developers tend to see only the activity
of writing code to be security-relevant. They suggested a need for a stronger focus on the tasks and activities
surrounding coding. And an interview survey by Xie et al. (2011) suggests that developers make security errors by
treating security as “someone else’s problem,” rather than as a process involving themselves.

Moving on to security-promoting interventions, Türpe et al. (2016) explored the effect of a single penetration
testing session and workshop on 37 members of a large geographically-dispersed project. The results were not
encouraging; the main reason was that the workshop consultant highlighted problems without offering much in the
way of solutions. A study by Poller et al. (2017) followed an unsuccessful attempt “to challenge and teach [the
developers] about security issues of their product”. The authors found that pressure to add functionality meant that
attention was not given to security issues and that normal work procedures did not support security goals. They
concluded that successful interventions would need “to investigate the potential business value of security, thus
making it a more tangible development goal”.

Other work has also found a need for the business alignment of software security. Caputo et al. (2016) concluded
from three case studies a need for the alignment of security goals with business goals. Weir et al. (2020b) surveyed
security specialists working with developers, identifying a frequently-used approach for developer teams of ‘product
negotiation’: involving product managers and other stakeholders in security discussions.

Considering solutions to support developers, Yskout et al. (2015) tested if ‘security patterns’ might be an effective
intervention to improve secure development in teams of student software developers. The results suggested a benefit
but were statistically inconclusive. Such et al. (2016) defined a taxonomy of twenty assurance techniques from a
survey of security specialists, finding wide variations in the perceived cost-effectiveness of each. And a recent book
by Bell et al. (2017) provides support for developers and tool recommendations, containing much valuable practitioner
experience, but little objective assessment of the advice provided.

2.2 Motivating	Change	in	Development	Teams	

Dybå (2005) concluded from a quantitative survey that organizational factors were at least as important as technical
ones to motivate change in development teams. They found that actions need to be aligned with business goals, and a
need for employees to take responsibility for the changes. Beecham et al. (2008) conducted a literature review of 92
papers on programmer motivation in 2008, concluding that professional programmers are motivated most by problem-
solving, by working to benefit others and by technical challenges. Hall et al. (2008) framed these motivators as
‘intrinsic’, relating them to self-determination theory (Herzberg 2017).

Lopez et al. (2019a) concluded that to encourage developer security there is a need to “raise developers’ security
awareness;” they successfully used ‘playful workshops’ to do so (Lopez et al. 2019b).

More generally, awareness is just the first step (Beyer et al. 2015), and individuals need to be supported through
training to have the ability to perform the expected behavior (Fogg 2009). Organizations need to integrate security
tasks into the primary business activities, rather than ‘bolting them on’ afterwards through unworkable policies or
compliance exercises (Kirlappos et al. 2013).

2.3 Blockers	and	Motivators	

Apart from raising awareness of the importance of security, the workplace environment, individual rewards and
perceived potential negative consequences are important factors affecting developers’ adoption of secure practices
(Assal and Chiasson 2019). Pfleeger et al. (2014) observed that the key to enabling good security behavior is good
‘motivators’: feedback, situations or rewards that encourage the behavior. But piling on motivations is not sufficient.
If individuals are faced with obstacles—‘blockers’—these need to be removed before the desired behavior can be
achieved (Tietjen and Myers 1998). Furthermore, individuals may feel that they are ‘unequipped for security’ or,
potentially even worse, disillusioned to the benefit of promoting security. In that case, motivators will be perceived as
a nuisance and may reinforce archetypal behaviors (Becker et al. 2017; Assal and Chiasson 2019).

2.4 Product	Management	Engagement	

While there is an extensive literature on methods for secure requirements engineering (Nhlabatsi et al. 2012), there is
less work investigating how the need for such requirements is established and motivated: Ambreen et al. (2018) found
only 16 papers discussing the practical effects of requirements engineering out of a total of 270 dedicated to empirical
requirements engineering. Typically these were case studies of the application of specific approaches (Mead and
Stehney 2005; Mellado et al. 2006). Much of the product manager role is one of prioritization: research has developed
several technical approaches to prioritization (Bukhsh et al. 2020), some of which prioritize non-functional
requirements including security against functional ones (Dabbagh et al. 2016); however, we found no evidence in the
literature that software product managers have used them in practice.

Exploring product management more generally, Springer and Miler (2018) identify 8 personas and an archetype
for software product managers; they note that many started in development roles. Standard texts for product managers
tend to explore practical decision-making within the role, e.g. (Haines 2014). We have found no other empirical
research studying the interaction related to security between developers and product managers.

Much work has been done supporting development teams and product managers with the wider scope of non-
functional requirements, of which security can be regarded as one. SEI’s Quality Attribute Workshop, for example,
brings together developers, product managers and other stakeholders to identify and quantify such non-functional
requirements (Barbacci et al. 2000); it addresses security through ‘quality attribute scenarios’. Though powerful it
requires considerable effort and the participation of a wide range of stakeholders.

2.5 Conclusions	

This previous work suggests a need for lightweight interventions to improve the interaction between developers and
product managers to support better engagement in security. In particular, we observe in Section 2.1 a need to align
developers’ security goals with business goals.

3 Design	of	the	Intervention	Workshops	

This section explores the design criteria and creation approach for the intervention. We expressed the design criteria in
terms of ‘Requirements’, using the term in the requirements engineering sense to mean the explicit and implicit needs
and wants of the stakeholders using the intervention (Nhlabatsi et al. 2012). As discussed in Section 1, we wanted an
intervention to help developers in:

Requirement 1 Understanding security decisions as business decisions;
Requirement 2 Identifying types of security issues relevant to their current projects;
Requirement 3 Characterizing those issues in terms of their importance to the organization;
Requirement 4 Identifying and costing solutions to address the important issues; and
Requirement 5 Discussing those issues and solutions in terms meaningful to product managers.

We also identified, based on industry experience and previous literature, several further implicit requirements for such
an intervention, specifically that it should:

Requirement 6 Take less than one working day for a development team to carry out, to keep costs acceptable;
Requirement 7 Work with development teams, as a majority of developers work in teams (Stack Overflow

2016);
Requirement 8 Work without security specialists, since many teams do not have access to them (Weir et al.

2020a);

Requirement 9 Work without product managers present in the workshops, since while it is obviously a benefit
to include them, in many cases they may not be available or persuaded to attend;

Requirement 10 Support developers currently using few or no assurance techniques, since many teams do not
currently use them (Weir et al. 2020a); and

Requirement 11 Be leadable by non-researchers, to permit the use of the intervention where the researchers are
unavailable (Weir et al. 2019).

The following sections explore the implementation of the each of the above requirements in turn.

3.1 Requirement	1:	Understanding	Security	in	Terms	of	Business	Decisions	

To help developers understand decision making around security we used a facilitated game, the ‘Agile App Security
Game’ based on the game ‘Decisions Disruptions’ (Frey et al. 2017), which is now used extensively in the UK in
management cybersecurity training (Shreeve et al. 2020). In it, the participants work in groups as product managers,
discussing and selecting security-enhancing product improvements with varying costs and learning whether their
choices deter attacks. The Agile App Security Game uses a different case study project from Decisions Disruptions,
with developer-oriented threats and mitigations that have been updated over several years. The game has two implied
lessons for the participants:

• There is no need to have a security expert present to make decisions about software security (Requirement 8)
• Winning, by defending against every threat, is virtually impossible. It is a business decision as to which threats

to address, based on which ones are most important to the organization.

3.2 Requirement	2:	Security	Issues	Relevant	to	Current	Projects	

The activity of identifying specific kinds of security issues for a given project is an important assurance technique for
security (Such et al. 2016). This activity, which we term ‘threat assessment’, was challenging to teach and implement
in a short workshop. Though valuable, standard ‘threat modelling’ approaches require considerable knowledge of
possible technical threats, and preferably support from a professional with a detailed understanding of both the
industry sector and current cyber threats to it (Shostack 2014); we could not assume either would be available.

It seemed possible that developers might require classroom training in threat modelling techniques. In creating the
workshops, though, we instead followed the agile practice of trialling the ‘simplest thing that could possibly work’
(Beck and Fowler 2001). So, as an experiment, we hypothesized that developers would need no training.

We, therefore, used a lightweight threat assessment approach, specifically a facilitated ideation session (Fisher et
al. 2011). The participants were asked to address the open question: “Who might do what bad thing to whom?” in the
context of their current project. In all but the last workshop, all the participants faced a flipchart, and a facilitator wrote
down unfiltered suggestions. One group (Group K) were particularly expert at facilitation. In their workshop,
participants discussed the question in groups of about six, creating post-it notes with suggestions, and placing them on
a shared whiteboard2.

3.3 Requirement	3:	Issues	in	Terms	of	Impact	and	Likelihood	

To make decisions about threats, Requirement 3 was to characterize each type of threat in terms of its importance to
the organization. We approached this using the standard risk management approach of estimating the likelihood and
impact for each threat. To do this rigorously requires considerable knowledge of the business environment, of current
trends in cybersecurity and of risk management theory and practice (Hubbard and Seiersen 2016).

2 All three elements of this approach have been adopted in the current version of the workshop package.

For the workshops, however, we needed only to introduce the
concepts in the simplest way that could add value for the participants. So,
as part of the Threat Assessment workshop, participants used ‘dot voting’
to decide likelihood and impact information. Each of the participants
used a set of 3 red and 3 black colored dots to vote on the most likely and
most impactful types of threat. Based on the votes, the workshop
facilitators organized the types of threat into an ad-hoc 3x3 Risk-Impact
grid. Figure 1 shows an example3. This then enabled participants to select
a set of the four or so ‘most important issues’.

3.4 Requirement	4:	Identifying	and	Costing	Solutions		

Identifying and estimating costs for solutions to these most important
issues was similar to other development tasks, and therefore a skill the
participants had already (Requirement 4). To keep the workshops short
(Requirement 6), the workshop involved only a superficial solution and
costing in each case. We did, however, identify that it was important to
remind or teach developers standard approaches to improving security
(Requirement 10). We approached this by encouraging the facilitator to discuss, wherever relevant, a small set of
assurance techniques: configuration review, automated static analysis, source code review, and penetration testing
(Such et al. 2016).

3.5 Requirement	5:	Discussing	in	Terms	Meaningful	to	product	managers	

From prior literature and earlier work of our own, we had identified that product managers had difficulties engaging
with messages along the lines of “we must do this security enhancement or terrible things will happen.” This reflects
two problems: (1) where a ‘bad’ decision has a large cost, it can often lead to ‘analysis paralysis’ (Haines 2014, ch 5);
and (2) our observation that it is difficult for product managers to compare positive improvements, such as new
features, against risks of negative consequences.

To address these problems (Requirement 5), we hypothesized that it might be better to explore with product
managers the benefits of addressing specific security issues (Ashenden and Lawrence 2013). Therefore, as an
experiment, we added a further ‘Security Promotion’ workshop. In this workshop, developers identified ways to
represent the solutions to their identified threats as positive enhancements: presenting security as a positive good
(McSweeney 1999). While it may be helpful to have product managers present in this workshop to represent the
‘product manager point of view’, it was by no means necessary (Requirement 9).

As in the identification of threats (Section 3.2), we had originally thought that developers might require classroom
training in techniques to do this. In creating the Security Promotion workshop, though, we again followed agile
practice by trialling the ‘simplest thing that could possibly work’ and omitting any training. Participants split into
groups, and each group addressed one of the threats from the most important five or so identified in the threat
assessment. The instruction for the participants was to “work out positive ways in which addressing that threat will
benefit the organization”. Each group discussed the threat they had chosen and wrote notes on a whiteboard or
flipchart page. A representative from each group then presented their conclusions to the other participants. Following
these presentations, the participants decided on project actions to carry out after the workshops.

3.6 Remaining	Requirements	

The remaining, implicit, requirements were addressed as follows. To address Requirement 6 (less than one working
day), we limited the work identifying and costing mitigations as described in Section 3.4. For Requirement 7 (working
with teams) we had teams of developers attend the workshops and discuss their own projects there. For Requirement 8
(avoiding security specialists) and Requirement 10 (for developers using few assurance techniques) we kept
discussions and outputs away from technical security knowledge and activities. To address Requirement 9, the
workshops did not rely on any product manager involvement.

To address Requirement 11 (leadable by non-researchers), we trained one or two facilitators from each
organization, and they then managed the intervention. The training was a 1–2-hour interactive face-to-face discussion,

3 The post-it colours have no significance; the post-it text is deliberately blurred.

FIGURE 1: WHITEBOARD WITH RISK-IMPACT GRID

(‘Facilitator Training’). Here, we discussed the role of the facilitator in each workshop in turn, including points for
them to emphasize and possible pitfalls. We provided the facilitators with materials (Weir et al. 2021b) to give the
workshops: cards and instruction sheets for the game; and PowerPoint slides with participant instructions for the
subsequent workshops.

3.7 Intervention	Approach	and	Schedule	

We recruited one or more development teams (a ‘group’) in each of eight organizations and carried out the
intervention with them. With each group, we first interviewed a selection of the participants to establish a baseline in
terms of their current understanding, practice, and plans (‘before’ interviews). We then trained the facilitators, who led
the intervention workshops. To track the effects of the intervention, we held two monthly follow-up sessions, typically
hour-long video conferences, between the researchers and participants. Finally, about three months after the start we
carried out ‘after interviews’ with the same participants as before. Both ‘before’ interviews and ‘after’ interviews were
semi-structured using open questions; Appendix C lists the questions used; these were as used in an earlier project
(Weir et al. 2019).

Researchers attended all the workshop sessions, recording the audio of the participant discussions for later
analysis. Since the researchers were directly involved with the workshops, Appendix A outlines their backgrounds.

Figure 2 shows a typical schedule for delivering the interventions, distinguishing the different sets of participants
in each activity. As shown, where possible the three workshops—Agile App Security Game, Threat Assessment, and
Security Promotion—were all held on the same day, along with the ‘before’ interviews and the facilitator training,
using approximately the timings shown; for some groups they were held over two consecutive days. The ‘after’
interviews were with the same subset of the participants as the ‘before’ interviews; the subset that attended the follow-
up sessions varied between companies. The research engagement with each group spanned 3–4 months, with
researchers on-site for only one to two days at the start and a day at the end. As shown, the combined time for the
three workshops (items labeled A) was about 5 hours, satisfying Requirement 6 of taking less than a day. The overall
involvement time was limited to four months to provide long enough to achieve change, but not so long that impact
could become difficult to distinguish from other influences.

4 Evaluation	Methodology	

Our approach to the research was pragmatic: we wanted to achieve an effective intervention that could help a large
number of software developers (Easterbrook et al. 2008). We chose Design-Based Research (DBR) as our
methodology for the project for the following main reasons: DBR focusses on designing an artifact, accepts the
involvement of researchers in trials, develops both academic theory and practical outcomes, has a cyclical approach,
and supports different users for the artifact in each cycle (Kelly et al. 2008). We considered other methodologies. One,
Action Research requires following the same participants through multiple cycles of intervention, but in this project,
participants changed between trials of the intervention. Another methodology, ethnography, requires the researchers to

FIGURE 2: TYPICAL INTERVENTION TIMELINE

10:00

12:00

14:00

16:00

18:00

Month 1 Month 2 Month 3 Month 4

A:Security
Promotion

A:Threat
Assessment S:Follow-up S:Follow-up

A:Agile App Security Game

F:Facilitator Training S:After
Interviews

S:Before Interviews

S:Subset of team F:Facilitators A:All of team

take a passive role. Most other approaches require non-intervention by the research team. DBR provided the best ‘fit’
to the research.

4.1 Introduction	to	Design-Based	Research	

DBR has its roots, and is used most, in education research. Its foundation lies in the ‘design experiments’ of Brown
(1992), and Collins (1992) working with teachers as co-experimenters. It emphasizes the development of design
theory in parallel with the creation of teaching innovations. DBR is now an accepted research paradigm, used to
develop improvements ranging from tools to curricula (Design-Based Research Collective 2003), with a recent guide
book for practitioners (Bakker 2018).

The characteristics of DBR are that it is: ‘pragmatic’, aiming to solve real-world problems by creating and trialing
interventions in parallel with the creation of theory; ‘grounded’ in the practicalities of real-world trials in the
“buzzing, blooming confusion of real-life settings” (Barab and Squire 2004); ‘interactive’, ‘iterative’ and ‘flexible’
with an iterative process involving multiple trials and experiments taking place as the theory develops; ‘integrative’ in
that DBR practitioners may integrate multiple methods, and vary these over time; and ‘contextual’ in that results
depend on the context of the real-world trials (Wang and Hannafin 2005). Figure 3, based on Ejersbo et al. (2008),
shows the two parallel cycles of DBR research: creating theory and creating the artefact. The bold, colored, arrows are
additions based on the authors’ own experience of the DBR process.

The practical aspects of carrying out DBR are defined by the ‘integrative’ nature of DBR: both design and
assessment techniques must come from other research methodologies (Wang and Hannafin 2005). In this research, we
used the techniques of the Canonical Action Research method (Davison et al. 2004), though not that method’s
overriding paradigm. Specifically, we participated in an intervention to help the participants change their behavior; we
recorded the discussions involved, transcribed them, and analyzed them in detail; and we are using the research
findings to inform changes to the intervention to incorporate into a further cycle of development.

4.2 Research	Questions	

DBR requires separate research questions for the Design Practice cycle and the Design Theory cycle. Design Practice
questions assess the qualities and effectiveness of the artifact being designed (in this case, the workshop package).
Design Theory questions address the context of artefact usage, with results that can apply to other research, such as the
creation of different interventions. Accordingly, we need to break down the primary research question RQ 1 (How can
an intervention based on short workshops assist developers in identifying security issues, assessing them, and
engaging product managers with those issues?) into sub-questions: specifically, Design Practice questions, and
Design Theory ones.

Our first Design Practice question explores the workshops’ overall impact:
RQ 1.1 To what extent did the developer teams achieve better product management engagement over security

issues as a result of the intervention?
The second Design Practice question considers the outcomes of the Security Promotion workshop, since these
outcomes may be of value for other teams in future:

RQ 1.2 What did participants identify as ‘selling points’ for improvements in software security?
For this purpose, we used a standard definition of a selling point, as a feature of a product for sale that makes it
attractive to customers (Oxford Languages 2011).

FIGURE 3: ACTIVITIES IN PRACTICAL DESIGN-BASED RESEARCH

Hypo-
thesis

Design

Data

Theory

Problem

Trial

Artefact
Design
Practice

Design
Theory

And another question explores differences between the results in different organizations, to indicate how widely
applicable the intervention may be:

RQ 1.3 In what ways do the intervention results vary with different participant contexts?

Turning to Design Theory questions, the hypothesis that presenting a positive view of security would help engagement
(Section 3.5) was speculative, and needed testing:

RQ 1.4 Can having developers consider the positive benefits of security and privacy mitigations lead to
improvements in product management engagement?

In creating the workshops, we had hypothesized that developers would require no training to carry out the activities in
the Threat Assessment and Security Promotion workshops (Sections 3.2, 3.5). We, therefore, posed this further
research question to test this hypothesis:

RQ 1.5 Can teams of developers produce threat assessments, risk-impact assessments, and benefit analyses with
minimal guidance?

Finally, to help explore the ‘how’ of RQ 1 (How can an intervention … assist developers…) we wanted to identify any
other aspects related to product management engagement that might help to explain the working of interventions
aiming to help improve developer security practice:

RQ 1.6 What are the ‘blockers’ and ‘motivators’ affecting product management engagement and other
stakeholders as revealed in the workshops?

For this question, we define blockers to be factors that prevented engagement or made it more difficult; motivators are
correspondingly those factors that encourage such engagement.

4.3 Method	Implementation	

We recorded the audio of all the interviews and all the workshops for each group, then transcribed the interview audio
manually, and the workshop audio using an automated transcription service4.

To evaluate the Design Practice question RQ 1.1, To what extent did the developer teams achieve better product
management engagement over security issues as a result of the intervention?, our approach was as follows. Two
authors coded the interview transcripts in an iterative process, using NVivo. We used the techniques of Thematic
Analysis (Clarke et al. 2015), coding statements in the ‘before’ and ‘after’ interviews that referred to one of the two
‘activities’ related to the question shown in Table 1. We also coded, for the same statements, corresponding Adoption
Levels that the participants in each group might achieve for each activity, as shown in Table 2.

During the coding, we were particularly careful to distinguish changes due to the interventions from those due to
other external factors; we did not code the latter.

To assess the impact (security improvement resulting from the intervention) we extracted, for each group and each
coder, the highest recorded Adoption Level for each activity, both before and after the intervention. Initially, both
coders coded one group’s interviews independently, then met to discuss differences and agree on interpretations going
forward. We both then coded all the interviews and calculated an initial Inter-Rater Reliability based on that coding.
We met to discuss the differences, then independently recoded all the interviews and calculated a final Inter-Rater
Reliability figure. Our Inter-Rater Reliability calculations used Krippendorff’s Alpha (Gwet 2014) to compare the
Adoption Levels calculated from the coding of each coder. See Section 4.4 for an illustrative example.

4 https://sonix.ai/

TABLE 1: ACTIVITIES ANALYZED

Activity Description
Threat assessment Design-level analysis of

possible attackers, motives, and
vulnerability locations.

Product
management
engagement

Working with product
managers to make security
decisions.

TABLE 2: ADOPTION LEVELS FOR EACH ACTIVITY

Level Description
0 No mention No reference to it in the interview
1 Aware The team showed knowledge of it.
2 Planned Existing plans to incorporate it.
3 Using The team have used it.
4 Established The team use it in each new project.

To combine the ratings of the two coders, we took the highest Adoption Level recorded by either coder5 (the
Combined column in Table 3). Using the numerical rating of each Adoption Level as shown in Table 2, we calculated
the ‘impact’ of the intervention on the participants’ adoption of each activity, as the difference between the Adoption
Level in the ‘before’ interviews and the Adoption Level in the ‘after’ ones. Of course, this impact calculation is
merely an indication. For example, a two-unit change in Adoption Level might be from ‘0 No Mention’ to ‘2
Planned’, or from ‘2 Planned’ to ‘4 Established’; these changes are not semantically equivalent.

To explore question RQ 1.1 further, we later looked in detail at the nature of each improvement and identified and
extracted exemplar quotations from the interviews.

For RQ 1.2 (selling points), a single researcher coded all the workshop and training session audio using closed
Thematic Analysis (Clarke et al. 2015). The automated transcription quality was poor, as expected, so the researcher
coded from the audio, using the transcripts only for easier navigation and as placeholders for the codes. Aspects coded
included ‘blockers’, ‘motivators’, and ‘selling points identified’. To further address RQ 1.2, a single researcher
extracted the text coded as ‘selling points’ and used open Thematic Analysis (Clarke et al. 2015) to further categorize
kinds of selling points.

To explore RQ 1.3 (variation with context), we calculated how the impact varied with different attributes of the
participants from each group: the organisation size, facilitation style, team security maturity, whether a product
manager was present, and the job description of the lead facilitator. To do this, we calculated the mean impact for each
activity for different values of each attribute. Again, since impact values are not semantically consistent, this mean
cannot be used for comparing results for different activities against each other, but it does allow us to identify where
changes in Adoption Level tended to occur most.

For RQ 1.4 (positive benefits improving product management engagement), we considered the answers to RQ 1.2,
along with the impact assessment of the product management engagement.

We addressed RQ 1.5 (unsupported threat assessments) with the analysis described for RQ 1.2 above.
Additionally, we reviewed the discussions that took place in the three workshops as well as the outputs produced.

For RQ 1.6 (blockers and motivators), we used the same analysis as RQ 1.2 and RQ 1.5 above. We then
categorized the blockers and motivators identified, using open Thematic Analysis to provide a basis for their
description.

The calculations and graphics creation used the qualitative data analysis tool NVivo6, Microsoft Excel, and Python
in Jupyter Notebooks (Kluyver et al. 2016). The research was approved by the Lancaster University Faculty of
Science and Technology Research Ethics committee.

All the quotations from the recordings in this paper were manually transcribed and checked for correctness.

5 Given we were studying changes in Adoption Levels, to avoid bias we needed only that the combination method be consistent

across ‘before’ and ‘after’ interviews. See Section 5.2 for the practical justification for using the highest values.
6 https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home

TABLE 3: ILLUSTRATION OF ADOPTION LEVEL VALUES FOR GROUP D'S INTERVIEWS

Code Before: After: Impact Rater1 Rater2 Combined Rater1 Rater2 Combined
Product management engagement 0 0 0 4 4 4 4
Threat assessment 1 1 1 3 4 4 3

4.4 Example	of	the	Impact	Coding	

Figure 4 illustrates the impact calculation used for RQ 1.1 and RQ 1.3, showing the final coding for an ‘after’
interview from Group D. In it both coders identify a statement indicating the adoption of threat assessment, but the
coders disagreed on the level of adoption implied. So, two different Adoption Levels would be extracted: “D – After –
threat assessment: 3 Action” for coder Rater1 and “D – After – threat assessment: 4 Incorporation” for coder Rater2.

Table 3 shows an illustrative set of extracted values based on Figure 4. The Krippendorf’s Alpha Inter-Rater
Reliability calculation would be based on both sets of columns Rater1 and Rater2 in that table.

The ‘Combined’ columns in Table 3 shows the highest Adoption Level recorded by either coder. From them, the
table calculates the product management engagement impact for D as 4 − 0 = 4, and the threat assessment impact as
4 − 1 = 3.

5 Results	

This section explores the results from the project, and addresses each of the Design-Based Research questions RQ 1.1
through RQ 1.6.

The intervention was carried out with a total of 88 developers in eight different organizations, generating 21 hours
of interview audio, and 47 hours of audio from training, workshop, and follow-up sessions. The final code book
contained 2859 references to 51 codes. Practical considerations and technical issues meant that not every workshop
and team discussion was recorded. However, all the important points discussed in the non-recorded events were
covered in interviews or other workshops in sufficient detail not to impact the quality of our data.

FIGURE 4: EXAMPLE CODING FROM A D ‘AFTER’ INTERVIEW

Rater1
Rater2

Rater1,Rater2

5.1 Summary	of	Participants	from	each	Organization	

The participant organizations were recruited opportunistically through industry contacts, university outreach and
software developer conferences. Table 4 describes the organizations and groups involved. Organizations are identified
with a letter, starting with D (since three organizations had been involved in earlier trials. All the developers
interviewed were male, as were all the team line managers and quality assurance specialists; three product managers
were female. These numbers are consistent with industry norms (Stack Overflow 2016).

Figure 5 visualizes the participants. It plots the organization sizes (ranging from F’s 20 staff to E’s 6,000 staff),
against an estimate of their ‘secure software capability maturity’ (ISO/IEC 2008) based on the participants’
discussions during the workshops. Ring sizes show the number of participants (3 in F to 16 in K); ring centers show
the facilitators; colors and hatching distinguish the job roles.

5.2 Inter-Rater	Reliability	

The Krippendorff’s Alpha Inter-Rater Reliability calculation on the adoption levels of activities after the first round of
coding7 (Sections 4.3, 4.4) was 0.18, indicating only slight agreement (Viera and Garrett 2005). The main cause of
disagreement was that the interviewees had not been asked explicitly about their use of the activities, in order to avoid
bias in the responses. This caused several kinds of discrepancy between the interpretations of the two coders.

Once the coders had discussed the discrepancies and independently recoded the interviews, the resulting
Krippendorff’s Alpha metric was 0.46, indicating moderate agreement. The metric calculated for the two activities

7 This initial IRR calculation applied to 12 different activities (Weir et al. 2021a); this paper describes only two of them.

TABLE 4: DESCRIPTION OF PARTICIPANTS

 Organization Group
D A development team within a university, funded by a

government grant to promote business innovation by
developing proof of concept (PoC) applications.

Aware of the importance of software security but
had little practical knowledge; worked on several
different projects at a time.

E A government department delivering software for
sensitive government applications. The group worked
on a high-confidentiality product.

Less experienced than average for the industry,
though the session leader is an experienced
security specialist.

F A small surveying company delivering a Geographical
Information System product and related services.

A previous developer had implemented some
security aspects; the current team had little
knowledge.

G A web applications development company delivering a
wide variety of applications for clients.

The two leads were expert in software security, but
were finding that the effort costs of security were
not being included in client pricing.

H A small company selling a range of Internet of Things
devices and their associated infrastructure.

The group justifiably consider themselves good at
software security.

I A well-established company providing the
infrastructure for a commodity trading. Planning move
from perimeter security to cloud-based services.

The company has considerable internal expertise
in security. However, the developers were less
experienced.

J A well-established large company providing web
interfaces for retailers. The group involved had the
responsibility of creating tools and services to support
deployment.

The group was a team of about a dozen developers
creating deployment tools, and included two
security specialists who led the workshops.

K A well-established company with a few hundred
employees creating tools for developers.

The group has a strong emphasis on agile
development processes, and team interaction. All
the participants were developers.

described in this paper was 0.80, indicating substantial agreement. We analyzed the remaining discrepancies and
found them to be mainly omissions by one or another coder, which were mitigated by the policy of using the highest
Adoption Level from each coder for subsequent analysis.

5.3 Impact	of	the	Intervention	

Figure 6 summarizes the impact outcomes related to product manager Engagement, calculated as described in Section
4.3. The size of each bubble indicates the final Adoption Level for the two aspects after the intervention. The bubble’s
color and texture show the impact attributed to the intervention: hatched amber for a change of 1 to 2 Adoption
Levels; dotted red for 3 to 4 Adoption Levels. Note that other aspects of some groups’ security practice, such as the
use of automated static analysis tools, also improved as a result of the intervention (Weir et al. 2021a), but those
improvements are out of scope for this paper.

Figure 6 thus provides an answer to the Design Practice question RQ 1.1 (To what extent did the developer teams
achieve better product management engagement over security issues as a result of the intervention?) Specifically, the

FIGURE 5: COMPOSITION OF THE PARTICIPATING GROUPS

 CIRCLES SHOW PARTICIPANTS; CENTRE RECTANGLES SHOW FACILITATORS

Line Manager Developer
Product Manager Quality Assurance
Security Expert

D

E

F

G
J

H I K

LargeSmall Company size

Hi
gh

Lo
w

Se
cu

rit
y

m
at

ur
ity

FIGURE 6: IMPACT RELATED TO PRODUCT MANAGEMENT ENGAGEMENT

Axis Title

Automated Pen Testing

Automated Static Analysis

Configuration Review

Code Review

Penetration Testing

Threat Assessment

Product Negotiation

Contingency Plan

Security Champion

Standardisation

On-the-job Training

Further Workshops

D E F G H I J K

Size Key: Final Engagement

Established

Using

Planned

Aware

Colour Key: Impact of Intervention

No change

Moderate change

Major change

D E F G H I J K
Threat Assessment

PM Engagement

Axis Title

Automated Pen Testing

Automated Static Analysis

Configuration Review

Code Review

Penetration Testing

Threat Assessment

Product Negotiation

Contingency Plan

Security Champion

Standardisation

On-the-job Training

Further Workshops

D E F G H I J K

Size Key: Final Engagement

Established

Using

Planned

Aware

Colour Key: Impact of Intervention

No change

Moderate change

Major change

Established

Using

Planned

Aware

No change

Moderate

Major

Final engagement: Impact:

Axis Title

Automated Pen Testing

Automated Static Analysis

Configuration Review

Code Review

Penetration Testing

Threat Assessment

Product Negotiation

Contingency Plan

Security Champion

Standardisation

On-the-job Training

Further Workshops

D E F G H I J K

Size Key: Final Engagement

Established

Using

Planned

Aware

Colour Key: Impact of Intervention

No change

Moderate change

Major change

Axis Title

Automated Pen Testing

Automated Static Analysis

Configuration Review

Code Review

Penetration Testing

Threat Assessment

Product Negotiation

Contingency Plan

Security Champion

Standardisation

On-the-job Training

Further Workshops

D E F G H I J K

Size Key: Final Engagement

Established

Using

Planned

Aware

Colour Key: Impact of Intervention

No change

Moderate change

Major change

intervention led to notably improved product management engagement in four of the eight groups involved (D, E, F
and I), and led to some improvement in two further groups (G and K).

As shown, the intervention also improved understanding and use of threat assessment (Design-level analysis of
possible attackers, motives, and vulnerability locations). This is vital to ensure that the team is as effective as possible
by prioritizing the most important security issues. Six of the eight groups (D, F, G, H, I and K) were not doing this
prior to the workshops; six of the eight groups (D, E, F, G, I, J) ended up using this in their current projects; one (D)
adopted it as part of their process for all projects. So, for four groups (D, F, G, I) this represented a major
improvement on their practice before the intervention.

Table 5 explores the detailed outcomes the outcomes in improved product management engagement as a result of
the intervention. The ∆ column shows the impact, using the same highlighting as Figure 6, with quotations from the
exit interviews or (in the case of Group K) workshops.

All of the groups remained relatively consistent in staff and projects during the three months of our research
involvement. The monthly follow-up session (Section 3.7) meant that we could track any important changes in their
customer requirements and their other security initiatives. We used these to filter out effects not due to the workshops
in the analysis, as indicated in Section 4.3. We can therefore be reasonably sure that the outcomes in Table 5 are the
effects of the workshops.

TABLE 5: PRODUCT MANAGEMENT ENGAGEMENT OUTCOMES

 ∆ Product management engagement outcome Quotes
D Identified that the threat and risk assessment

itself was a valuable asset to their clients, and a
need for security support when the clients came
to implement applications based on the PoCs.

After the workshop…, we redesigned our handover
template, which is where we now have a specific
section for security

E Realized that while every security enhancement
was essential, the ordering of their
implementation could be altered to suit the
client.

So, once we were given our requirements we went
away and looked at the security things, and talked to
our customers about, given the time… and the
requirements..., we recommend putting in this, this
and this, and we didn't get them all straight away

F ‘Lined up’ security improvements to be
incorporated in the enhancements when new
clients wanted them, and subsequently did
incorporate the improvements.

Yes, we are in a promising looking situation at the
moment… we have picked up some new contracts…,
so they will require us to implement pretty much
everything that we had listed

G Agreed and adopted an impressively simple way
to discuss security cost-benefit with a client:
gold level hosting, silver, and bronze security.

[A team member] did a lot of the leg work and set up
gold, silver and bronze packages to say 'right, answer
these 10 questions', and then you would get a points
score, and “you fit in within this bracket, and this is
the package that you need”

H Identified that their security story was a major
Unique Selling Point against competitors.

It is used as a sales thing; in that they can say “it is
secure”

I Subsequently included security requirements in
discussions with new clients. Rolled out the
workshops independently of the researchers to
other teams.

When a customer asks me, “why aren't you doing this
thing', I think I am in a much better position to feel
that I can honestly say: yeah, … we will do something
about it ... or no, we don't need to do anything about
that because it is not actually that big a risk”
(Product Owner).

J Devised several functionality and process
improvements for their ‘customers’:
development teams in other parts of the
organization.

In terms of risk assessment, now we have a new
Product Owner on our team, he is quite keen to
incorporate it, and also the team is quite keen. We are
[also] trying to assess the impact....

K Each of four subgroups delivered a convincing
sales pitch for a client-visible security
improvement.

The good thing of this is we [will be] the Gold
Standard Security as well as everything else. For
sales people this will build [customer] confidence.

5.4 Activity	Impact	by	Group	Attributes	

Table 6 addresses RQ 1.3 showing how the Impact varied with different attributes of participants by calculating the
mean impact for each activity resulting from interventions on participant teams with that attribute. The deeper
shadings show the higher values in each categorization. The table shows the two activities, while the figures on the
‘Overall’ line show the average increment over both activities for each category. We observe that:

Less security-expert groups benefitted most from the workshops. Specifically, those with a low security
maturity showed the highest impact.

Sessions facilitated by line managers were more effective than those facilitated by developers or security
specialists. We speculate from our observations in the workshops that this may reflect better training in facilitation-
related skills for managers; it may also reflect greater power amongst managers to introduce new techniques.

The presence or absence of a product manager in the group had negligible effect on product management
engagement. This was a surprise. We had expected a product manager would encourage emphasis and therefore
improvements, but the results do not show that effect.

5.5 Selling	Points	for	Security	

To address Design Practice question RQ 1.2, we coded all the recorded audio from interviews, workshops and training
sessions for selling points for software security. We then used open coding to categorize each item (see Section 4.3).
50 items were found, from 20 different sessions, making a total of 4292 words.

Table 7 summarizes the findings. Each line names a category, shows the groups that identified selling points in that
category and the number identified; and describes each one with quotations from the discussions8. Four selling points
amounted to a naïve ‘security is good for customers’ and are omitted from the categorization.

Thus, the answer to RQ 1.2 is that professional developers can identify a large range of selling points for software
security, in a variety of categories.

5.6 Use	of	Selling	Points	to	Engage	Product	Managers	

To address the Design Theory research question RQ 1.4 (Can having developers consider the positive benefits of
security and privacy mitigations lead to improvements in product management engagement?), the outcomes discussed
in Table 5 in Section 5.3 suggest that this consideration was indeed effective.

8 Note that for Group D the Security Promotion workshop was not recorded; the single selling point was in an exit interview.

TABLE 6: IMPACT AVERAGED BY GROUP ATTRIBUTES

Categorization Category Count in
category

Threat Assessment Impact PM Engagement Impact

Overall 8 1.6 2.1
Organisation Size Large 3 1. 2.7
 Medium 3 2.3 2.
 Small 2 1.5 1.5
Facilitation Style Dominating 2

2.

 Listening 4 2.3 2.3
 Peer 2 2. 2.
Security Maturity High 2

2.

 Medium 4 1.8 1.5
 Low 2 3. 3.5
product manager Yes 4 2.3 2.
 No 4 1. 2.3
Lead facilitator Line manager 4 3. 3.
 Security 2

2.

 Developer 2 0.5 0.5

Figure 7 plots this product management engagement impact against the number of selling points identified in each
set of workshops9. As shown, those identifying more selling points tended to involve more product management
engagement.

This does not provide evidence that the product management engagement impact was caused by the Security
Promotion workshop. It is, however, reasonable to conclude that the Security Promotion workshop assisted in doing
so. We conclude, therefore, that the answer to RQ 1.4 is yes, having developers consider the positive benefits of
security and privacy mitigations can indeed lead to improvements in the security decision making process.

9 Excluding Group D for which data was not available.

TABLE 7: SELLING POINTS IDENTIFIED

Name Org. N. Description Example Quotes
Security
Consultancy

D E F
G I

10 Being the experts in
security; advising the
customer; saying 'No'
to feature requests that
compromise security.

The more projects we do the better we'll get at these
things to the point that the security consultancy ends up
being part of the package (D)
Actually, [security] is not about [us] making the money;
it is about making the right money for the client (G)

Security
Management

G H I
J K

8 Managing security as a
continuous service for
customers

What you want in a supplier is … they're proactive in
considering the [security] challenges and they're doing
things about it (H)

Customer
Tick-box
Requirement

F H I 7 Improvements to
satisfy standard
customer
requirements.

People ask if we are ISO 27001 certified (I)
Got to have two factor authentication, because that's
what [the customer] does with other systems (F)

Customer
Choice

E F G 6 Customer gets value
by specifying level of
security or order of
delivery.

We can sell tiers... this is a basic [security] package;
this is our premium package. (G)
[Sometimes] they have said 'we are happy to accept that
level of risk', but there is also quite a willingness to fix a
lot of the other issues. (E)

Robust
System

E H J
K

6 The system will have
high availability.

Being proud of … your availability: X nines. We have a
track record: 12 months… something to talk about (J).

Better
Security than
Competition

H I 4 Customers will choose
this product because it
has better security.

Using [security] as a differentiator from Chinese
manufacturers that can build stuff for a fraction of the
cost, but wouldn't necessarily have considered the
bigger picture (H)

Implied
Requirement

E F K 3 Security enables a new
item of functionality.

They've said, “could you put in payments?” (F)

Avoiding
Disaster

E K 2 Security will prevent a
disaster.

Yes, if [a disgruntled employee breech] happens once in
five years, but it sets you back 10 years each time so
[customers pay to prevent] it. (E)

FIGURE 7: INDICATIVE PLOT OF ENGAGEMENT IMPACT AND SELLING POINTS

0

1

2

3

0 5 10 15

En
ga

ge
m

en
t I

m
pa

ct

Selling Points identified

5.7 Threat	Assessment	with	Developers	

Considering the second Design Theory research question RQ 1.5 (Can teams of developers produce threat
assessments, risk-impact assessments, and benefit analyses with minimal guidance?), we found that, surprisingly, all
the sets of participants found effective ways to produce threat and risk-impact assessments. Even D, who are
producing proofs of concept and are not domain experts for their products, had little difficulty:

We’ve identified huge risks that they need to consider before they ever get anywhere near an actual
working product. (D)

Team E learned and took away the prioritization process:
We had a follow-on session afterwards where we took everything away, … and sat down and thought
“what do we need to do next”. (E)

In Group F, the facilitator produced a table of risks and impacts based on their discussion. Group G had no problem
with risk assessments since two group members were familiar with the likelihood of attacks on the websites they
managed. Group H and Group I simply had their most expert two members identify the most likely threats by placing
asterisks on the flipchart. Group J had the cybersecurity specialists do the assessment. Group K successfully used post-
it notes for the risk assessment, with separate dot-voting to identify the most likely and the most impactful threats.

It seems reasonable to conclude that the developers in the groups had the necessary skills and insights required.
Thus, the answer to RQ 1.5 is affirmative: teams of developers can indeed produce adequate threat assessments, risk-
impact assessment, and benefit analyses with minimal guidance.

5.8 Blockers	and	Motivators	Related	to	Security	Promotion	

From our coding of the transcriptions of all the recorded workshops and interviews to address RQ 1.6 (What are the
‘blockers’ and ‘motivators’ affecting product management engagement and other stakeholders as revealed in the
workshops?), we identified 30 blocker and 26 motivator statements, involving a total of 3166 words. Though blockers
and motivators are in a sense opposites, they do not ‘pair up’ with each motivator addressing a specific blocker (Weir
et al. 2019).

So, in answer to RQ 1.6, Table 8 lists the categories of blocker, ordered by how many were identified in each
category, with a description of each category and example quotations from workshops. Table 9 does the same for

TABLE 8: BLOCKERS

Name N Description Example Quotes
Communi-
cation

10 Difficulties in conveying
security concepts or getting the
right communication to achieve
effective decisions

[It] is difficult [to identify security requirements] as it
requires a lot of conversation (I)
The security thing is a bit of a taboo subject. (H)

Multiple
stakeholders

6 Different stakeholders may have
different security appetites or
needs; coordinating them is hard

For some clients it’s a really easy sell… But there’s
other clients: “Do I want to spend marketing budget on
this?” (G)

Freeloaders 4 Stakeholders expecting ‘security
for free’

Some of our clients are now saying “You need to
provide all this … for nothing because it’s part of the
security standard …” (G)

Unknown
cost/impact

4 Development teams may not
have the ability to estimate costs;
or may have inaccurate
information about the likelihood
of threats

The mistake that customers have made with this app was
to assume a small pilot study; then issue it to a big
bunch of people… (E)
We don’t … give stakeholders an estimation of delivery
time. We just chew through [work]. (J)

PM time 3 product managers may not be
available or have insufficient
time to devote to the topic

Some of us don’t have access to a product owner. €
[Customers] keep saying “We haven’t had a chance to
review what you sent us…” (D)

Denial 2 Stakeholders refusing to accept a
clear need for security

No-one really cares about security until someone leaves
their data on a train, anyway. (H)

Practical 1 Practical issues, such as
technology export restrictions

If we want to put encryption into the firmware things,
we need an export license. (H)

motivators. Ten of the 30 blockers relate to poor communication. For motivators there is more variation, with 19 of
the 26 split almost equally between friendly customers, policies, principled insistence, and value.

5.9 Answer	to	the	Primary	Research	Question	

Returning to research question RQ 1 (How can an intervention based on short workshops assist developers in
identifying security issues, assessing them, and engaging product managers with those issues?), we can now
summarize the answer as follows.

Such an intervention is likely to need to address the design requirements from Section 3, including working with
inexpert teams, being brief, and not requiring security experts or product managers. It should help teams to:
understand security as a business driver, identify and prioritize types of security issues, cost solutions, and discuss
those solutions effectively with product managers.

One possible implementation, as described in this paper, uses a game to promote understanding, and then short
Threat Assessment and Security Promotion workshops. These workshops guide developers through identifying and
prioritizing security issues for their own projects, costing solutions, and finding ways to promote security with product
managers (Section 3).

Practical trials with teams in eight organizations have proved this implementation effective in improving product
management engagement (Section 5.3). Participants required little explicit teaching to carry out the workshops
(Section 5.7). They identified 8 categories of selling points for security (Section 5.5). Moreover, despite there being
many blockers discouraging security improvement they also identified a similar number of motivators to encourage
security improvement in future (Section 5.8).

Comparisons between different groups (Section 5.4) show that the workshops have greatest impact with groups
with limited security expertise. Also, having the development team managers as facilitators can be particularly
effective in improving both product management engagement and threat assessment.

TABLE 9: MOTIVATORS

Name N Description Example Quotes
Friendly
Customers

5 Focusing on customers who
value security when it is
explained to them

Some clients are really good, and they will listen to best
practice, and as soon as you start saying this … “Okay,
right that’s fine, tick, happy”. (G)

Policies 5 Externally enforced
requirements for security

If they’ve been in an organization with a PCI audit…
they’ll go to long, long lengths to avoid that. (G)

Principled
Insistence

5 Politely insisting on the need
for the implementation of
specific security features, on
principle

I think [customers and product managers] appreciate me
saying “I don’t think this is the best practice… You need
to spend more money and do it this way”. If I can back
that up with the reasoning behind it, that is fine. (G)

Value 4 Collaboratively identifying
value for the stakeholders

Things like single sign-on come to mind… We’re
improving the security. [It] actually makes life easier. (I)

Communi-
cation

3 Improving communication:
using handover documents,
identifying security scope, and
discussing consequences of
poor security

[For example] the handover document says, “The first
thing you need to do is find a different way to send this”,
because … whoever develops this further needs to find a
more secure way. (D)

Logging
Decisions

2 Keeping a log of security-
related decisions, to support
discussions and evaluation in
future

As long as you have made the decision based on the
information … you have a reasoning behind why this is
in, or why this isn’t in. (E)

Structured
Workshops

2 Using facilitated workshops
with stakeholders to inspire
thinking on security issues

I’m going to say to [my customer] “We’re gonna have a
security workshop. Come on have some lunch, bring
[your developers] and we’ll have a [workshop]”. We
won’t charge … but at the end of it I’ll bet [they’ll] spend
20 grand because of the kind of client [they are] (G)

6 Discussion	

6.1 Research	Method	

As Section 4 explains, Design-Based Research (DBR) has been used mostly in the field of education research. While
an intervention to change the behavior of software development teams is certainly a form of education, we are not
aware of other researchers using DBR in this field.

In this research, as Section 5 shows, DBR has provided an effective basis for trialing, evaluating, and deducing
theory from the use of an intervention. The discussion in that section showed that both Design Practice questions
(RQ 1.1 through RQ 1.3) and Design Theory questions (RQ 1.4 through RQ 1.6) are of value, and contribute to our
overall understanding (Section 5.9).

6.2 Trustworthiness	Criteria	and	Limitations	

Since our approach is pragmatic, we are interested only in what this paper can justify related to the future use and
development of this and similar interventions. Accordingly Table 10 explores five quality criteria for qualitative
research of this kind (Denzin and Lincoln 2011; Stenfors et al. 2020) and highlights ways in which this paper satisfies
those criteria. We can, however, identify three limitations in our deductions from the analysis:

• We have no way of evaluating either the completeness or accuracy of the threat assessment results. We believe
that the developers’ assessments were sufficient for the purpose of informing security improvements; that the
consequences of getting a risk assessment wrong are much less than the consequence of not doing it at all; and
that since product managers did engage well with the results (Section 5.6) the assessments were successful.
However, this remains an outstanding question for future research.

• Whilst in most cases product managers did engage with security in the development process (Section 5.6), we
have no indication whether the resulting engagement led to more appropriate security in the resulting products.
It is logical to assume that it would; but this research provides no evidence to support that assumption.

• We note also while we took care to distinguish security improvements caused by the interventions from other
improvements (Section 4.3), in practice this distinction could not be exact. We also note the self-reported
nature of the enhancements (Section 4.3).

The findings of this paper, therefore, form an existence proof: yes, the intervention can improve product management
engagement. In addition, the range of different types of development involved in the trials prove there is a wide range
of situations in which this intervention can work. We believe that the results we have found here justify further
improvements of the intervention and its use in further development teams.

TABLE 10: QUALITY CRITERIA

Criteria What it means Addressed in the Paper
Credibility The research findings are

plausible and trustworthy
Basis in extensive previous work (Weir et al. 2021a);
explicit focus and answers to multiple research questions
(Sections 4.2, 5.3-5.8); detailed and documented analysis
(Sections 4.3, 4.4)

Dependability The extent to which the research
could be replicated in similar
conditions

Workshop materials publicly available with full
instructions (Section 6.4); analysis explained in detail with
examples (Sections 4.3, 4.4)

Confirmability There is a clear link or
relationship between the data and
the findings

Clear outcome summary (Figure 6, Table 5); use of quotes
to substantiate results (Table 5, Table 7, Table 8, Table 9,
Section 5.7)

Transferability Findings may be transferred to
another setting, context or group

Effectiveness in a wide range of situations (Section 5.1);
analysis of where this is likely to be effective (Section 5.4)

Reflexivity A continual process of engaging
with and articulating the place of
the researcher and the context of
the research

Explicit descriptions of the researcher roles in the research
(Sections 3.7, 4)

6.3 Practical	Value	

Since our approach to the research is pragmatic, it is important to assess the practical value of these findings. We can
identify three aspects that can be useful to professional developers, as follows:

1. The validation of the workshop package justifies its use in further software development teams;
2. The categorization of selling points (Table 7) potentially provides a basis for a structured approach for

developers to assess selling points for security enhancements; and
3. The discussion of blockers and motivators (Table 8, Table 9) offers a practical simplification of a

complex subject; the motivators table in particular offers practical ideas to allow a team to address
security issues.

6.4 Further	Work	

The package used in these trials has a practical limitation: it requires time input to train the facilitators, which
potentially restricts its scalability to a wider audience of development teams. However, the workshops are peer-to-peer
exercises where the facilitator only provides instructions rather than knowledge (Section 3.2). This offers the
possibility of a version of the intervention that needs no direct training and therefore can scale without limit.

The authors have now created such a version with funding from the UK CyberASAP scheme; it is available online
as the Developer Security Essentials package10. The full workshop package received an average of 15 downloads per
month in 2021. In addition, the authors provide regular online facilitator training. As of the end of 2021, they had
trained a total of 12 further facilitators; and two large multinational software development companies are deploying
the package with their own teams.

The need to have researchers interview team members both before and after the interventions similarly limits the
possible measurement of the success of such a new scaled-up intervention. An online, questionnaire-based version of
the interviews can trade the flexibility of face-to-face interviews for the benefit of a large sample of results. Such a
questionnaire has been implemented11 and is free to use.

As discussed in Section 3.4, the Threat Assessment workshop uses only existing knowledge from the participants.
This means that participants may fail to identify possible security issues, or wrongly assess the probability or impact
of issues they do identify. This is particularly a problem with small companies, where there may be no security
expertise available. To address this, participants would want evidence-based domain-specific knowledge of security
issues and risk information. This would also require domain-specific nomenclature and definitions of security and
privacy as used by developers and product managers. Current research by the lead author approaches these problems
for a specific domain, Health IoT12.

7 Conclusions	

This paper describes the outcomes from a project in which we, the authors, specified requirements, and designed a
series of three workshops: a game to establish the importance and nature of security decisions; a Threat Assessment
workshop to ideate and evaluate security risks in a specific project; and a Security Promotion workshop to find ways
to discuss solutions with product managers (Section 3). Using the Design-Based Research method (Section 4), we
trialled the workshops in eight organizations, involving 88 developers.

The direct, Design Practice, outcomes of the trials were as follows:
• Five of the eight groups notably improved their threat assessment activities as a result of the interventions; six

improved product management engagement (Section 5.3);
• Participants identified 50 different selling points, in 8 categories, of which the most prolific was ‘Security

Consultancy’, improving customer relationships by impressing them with security expertise (Section 5.5); and
• Less security-expert groups appeared to benefit most from the workshops, and sessions appeared most effective

when facilitated by team managers (Section 5.4).
The Design Theory findings from the research—to support further research and intervention development—included:

10 https://www.securedevelopment.org/workshops/
11 https://www.securedevelopment.org/security-assessment/
12 https://lancaster.ac.uk/hipster

• Having developers identify selling points can indeed lead to improvements in product management engagement
(Section 5.6);

• Teams of developers can produce threat assessments, risk-impact assessment, and benefit analyses with
minimal guidance (Section 5.7); and

• A range of blockers, particularly problems with communication, challenge the introduction of security;
however, there is a wide range, and similar numbers, of motivators to encourage it (Section 5.8).

We conclude that the intervention can be effective both in improving the security practice of development teams and
in improving communication with product managers (Section 5.9).

The findings from the project promise the possibility of a lightweight activity, that can easily be carried out by any
development team, to help that team align their development security goals with their organization’s business goals.
One such implementation is now supported and freely available (Section 6.4), and this and similar interventions can
help improve the security of the software on which we all rely.

7.1 Acknowledgements	

We thank all the teams of developers and companies who contributed to this research. We also thank the editors and
reviewers who helped us present the work effectively in this paper.

This work has been supported by the PETRAS National Centre of Excellence for IoT Systems Cybersecurity,
which has been funded by the UK EPSRC under grant number EP/S035362/1.

8 Bibliography	

Ambreen T, Ikram N, Usman M, Niazi M (2018) Empirical Research in Requirements Engineering: Trends and
Opportunities. Requir Eng 23:63–95. DOI 10.1007/s00766-016-0258-2

Ashenden D, Lawrence D (2013) Can We Sell Security Like Soap? A New Approach to Behaviour Change. In: New
Security Paradigms Workshop 2013. pp 87–94. DOI 10.1145/2535813.2535823

Assal H, Chiasson S (2019) Think Secure from the Beginning: A Survey with Software Developers. In: Conference on
Human Factors in Computing Systems (CHI). ACM. DOI 10.1145/3290605.3300519

Bakker A (2018) Design Research in Education: A Practical Guide for Early Career Researchers. Routledge,
Abingdon

Barab S, Squire K (2004) Design-Based Research: Putting a Stake in the Ground. J Learn Sci 13(1):1–14. DOI
0.1207/s15327809jls1301_1

Barbacci MR, Ellison R, Weinstock CB, Wood WG (2000) Quality Attribute Workshop Participants Handbook
Beck K, Fowler M (2001) Planning Extreme Programming. Addison-Wesley Professional
Becker I, Parkin S, Sasse MA (2017) Finding Security Champions in Blends of Organisational Culture. In: European

Workshop on Usable Security – EuroUSEC. DOI 10.14722/eurousec.2017.23007
Beecham S, Baddoo N, Hall T (2008) Motivation in Software Engineering: A Systematic Literature Review. Inf Softw

Technol 50:860–878. DOI 10.1016/j.infsof.2007.09.004
Bell L, Brunton-Spall M, Smith R, Bird J (2017) Agile Application Security: Enabling Security in a Continuous

Delivery Pipeline. O’Reilly, Sebastopol, CA
Beyer M, Ahmed S, Doerlemann K, Arnell S, Parkin S, Sasse A, Passingham N (2015) Awareness Is Only the First

Step: A Framework for Progressive Engagement of Staff in Cyber Security. Business white paper: Hewlett
Packard

Brown AL (1992) Design Experiments: Theoretical and Methodological Challenges in Creating Complex
Interventions in Classroom Settings. J Learn Sci 2:141–178. DOI 10.1207/s15327809jls0202_2

Bukhsh FA, Bukhsh ZA, Daneva M (2020) A Systematic Literature Review on Requirement Prioritization Techniques
and Their Empirical Evaluation. Comput Stand Interfaces 69:103389. DOI 10.1016/j.csi.2019.103389

Caputo DD, Pfleeger SL, Sasse MA, Ammann P, Offutt J, Deng L (2016) Barriers to Usable Security? Three
Organizational Case Studies. IEEE Secur Priv 14:22–32. DOI 10.1109/MSP.2016.95

Clarke V, Braun V, Hayfield N (2015) Thematic Analysis. In: Smith JA (ed) Qualitative Psychology: A Practical
Guide to Research Methods. SAGE Publications, pp 222–248

Collins A (1992) Toward a Design Science of Education. In: New Directions in Educational Technology. Springer, pp
15–22

Conradi R, Dybå T (2001) An Empirical Study on the Utility of Formal Routines to Transfer Knowledge and
Experience. ACM SIGSOFT Softw Eng Notes 26:268–276. DOI 10.1145/503271.503246

Dabbagh M, Lee SP, Parizi RM (2016) Functional and Non-Functional Requirements Prioritization: Empirical
Evaluation of IPA, AHP-Based, and HAM-Based Approaches. Soft Comput 20:4497–4520. DOI
10.1007/s00500-015-1760-z

Davison RM, Martinsons MG, Kock N (2004) Principles of Canonical Action Research. Inf Syst J 14:65–86. DOI
10.1111/j.1365-2575.2004.00162.x

De Win B, Scandariato R, Buyens K, Grégoire J, Joosen W (2009) On the Secure Software Development Process:
CLASP, SDL and Touchpoints Compared. Inf Softw Technol 51:1152–1171. DOI 10.1016/j.infsof.2008.01.010

Design-Based Research Collective (2003). Design-Based Research: An Emerging Paradigm for Educational Inquiry.
Educational Researcher 32 (1): 5–8. DOI 10.3102/0013189X032001005

Denzin N, Lincoln Y (2011) The Sage Handbook of Qualitative Research
Dybå T (2005) An Empirical Investigation of the Key Factors for Success in Software Process Improvement. IEEE

Trans Softw Eng 31:410–424. DOI 10.1109/TSE.2005.53
Easterbrook S, Singer J, Storey M-A, Damian D (2008) Selecting Empirical Methods for Software Engineering

Research. In: Guide to Advanced Empirical Software Engineering. Springer, London, pp 285–311 DOI
10.1007/978-1-84800-044-5_11

Ejersbo LR, Engelhardt R, Frølunde L, Hanghøj T, Magnussen R, Misfeldt M (2008) Balancing Product Design and
Theoretical Insights. In: The Handbook of Design Research Methods in Education. Routledge, pp 149–164

Fisher R, Ury WL, Patton B (2011) Getting to Yes: Negotiating Agreement Without Giving In. Penguin
Fogg BJ (2009) A Behavior Model for Persuasive Design. In: International Conference on Persuasive Technology -

PERSUASIVE. ACM, pp 40:1–7. DOI 10.1145/1541948.1541999
Franqueira VNL, Tunnicliffe P (2015) To Flip or Not to Flip: A Critical Interpretive Synthesis of Flipped Teaching.

In: Smart Education and Smart e-Learning. Springer, pp 57–67. DOI 10.1007/978-3-319-19875-0_6
Frey S, Rashid A, Anthonysamy P, Pinto-Albuquerque M, Naqvi SA(2017) The Good, the Bad and the Ugly: A Study

of Security Decisions in a Cyber-Physical Systems Game. IEEE Trans Softw Eng 45(5):521–536. DOI
10.1109/TSE.2017.2782813

Gwet KL (2014) Handbook of Inter-Rater Reliability: The Definitive Guide to Measuring the Extent of Agreement
Among Raters. Advanced Analytics LLC

Haines S (2014) The Product Manager’s Desk Reference, Second ed. McGraw-Hill, New York
Hall T, Sharp H, Beecham S, Baddoo N, Robinson H (2008) What Do We Know about Developer Motivation? IEEE

Software 25:92–94 DOI 10.1109/MS.2008.105
Herzberg F (2017) Motivation to Work. Routledge
Hubbard DW, Seiersen R (2016) How to Measure Anything in Cybersecurity Risk. John Wiley & Sons
ISO/IEC (2008) 21827:2008 - Systems Security Engineering - Capability Maturity Model.
Kelly AE, Lesh RA, Baek JY (2008) Handbook of Design Research Methods in Education: Innovations in Science,

Technology, Engineering, and Mathematics Learning and Teaching. Routledge
Kirlappos I, Beautement A, Sasse MA (2013) “Comply or Die” Is Dead: Long Live Security-Aware Principal Agents.

In: Financial Cryptography and Data Security. Springer Berlin, Heidelberg, pp 70–82. DOI 10.1007/978-3-642-
41320-9_5

Kluyver T, Ragan-kelley B, Pérez F, et al (2016) Jupyter Notebooks: A Publishing Format for Reproducible
Computational Workflows. In: Positioning and Power in Academic Publishing: Players, Agents and Agendas.
IOS Press, pp 87–90

Lopez T, Sharp H, Tun T, Bandara A, Levine M, Nuseibeh B (2019a) Hopefully We Are Mostly Secure: Views on
Secure Code in Professional Practice. In: Workshop on Cooperative and Human Aspects of Software Engineering
- CHASE. IEEE, pp 61–68 DOI 10.1109/CHASE.2019.00023

Lopez T, Sharp H, Tun T, et al (2019b) Talking about Security with Professional Developers. In: Workshop on
Conducting Empirical Studies in Industry - CESSER-IP. IEEE Computer Society, Montreal, QC, Canada

McSweeney B (1999) Security, Identity, and Interests: A Sociology of International Relations. Cambridge University
Press. DOI 10.1109/CESSER-IP.2019.00014

Mead NR, Stehney T (2005) Security Quality Requirements Engineering (SQUARE) Methodology. In: SESS 2005 -
Proceedings of the 2005 Workshop on Software Engineering for Secure Systems - Building Trustworthy
Applications. pp 1–7. DOI 10.1145/1082983.1083214

Mellado D, Fernández-Medina E, Piattini M (2006) Applying a Security Requirements Engineering Process. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). pp 192–206 DOI 10.1007/11863908_13

Microsoft (2018) Microsoft Security Intelligence Report, Volume 23. https://info.microsoft.com/rs/157-gqe-
382/images/en-us_cntnt-ebook-sir-volume-23_march2018.pdf. Accessed 6 Mar 2019

Nhlabatsi A, Nuseibeh B, Yu Y (2012) Security Requirements Engineering for Evolving Software Systems: A Survey.
In: Security-Aware Systems Applications and Software Development Methods. IGI Global, pp 108–128. DOI:
10.4018/978-1-4666-1580-9.ch007

Oxford Languages (2011) Concise Oxford English Dictionary
Pfleeger SL, Sasse MA, Furnham A (2014) From Weakest Link to Security Hero: Transforming Staff Security

Behavior. J Homel Secur Emerg Manag 11:489–510. DOI 10.1515/jhsem-2014-0035
Poller A, Kocksch L, Türpe S, Epp FA, Kinder-Kurlanda K (2017) Can Security Become a Routine? A Study of

Organizational Change in an Agile Software Development Group. In: Conference on Computer Supported
Cooperative Work - CSCW. ACM, Portland Oregon USA, pp 2489–2503. DOI 10.1145/2998181.2998191

Rauf I, Petre M, Tun T, et al (2022) The Case for Adaptive Security Interventions. ACM Trans Softw Eng Methodol
31:1–52. DOI 10.1145/3471930

RiskBased Security (2020) 2020 Mid Year Data Breach Report
Shostack A (2014) Threat Modeling: Designing for Security. John Wiley & Sons
Shreeve B, Hallett J, Edwards M, et al (2020) The Best Laid Plans or Lack Thereof: Security Decision-Making of

Different Stakeholder Groups. IEEE Trans Softw Eng. DOI 10.1109/TSE.2020.3023735
Springer O, Miler J (2018) The Role of a Software Product Manager in Various Business Environments. In:

Proceedings of the 2018 Federated Conference on Computer Science and Information Systems, FedCSIS 2018.
Polish Information Processing Society, pp 985–994

Stack Overflow (2016) Annual Developer Survey. https://insights.stackoverflow.com/survey/2016. Accessed 17 Jun
2020

Stenfors T, Kajamaa A, Bennett D (2020) How to … Assess the Quality of Qualitative Research. Clin Teach 17:596–
599. DOI 10.1111/TCT.13242

Such JM, Gouglidis A, Knowles W, et al (2016) Information Assurance Techniques: Perceived Cost Effectiveness.
Comput Secur 60:117–133. DOI 10.1016/j.cose.2016.03.009

Tietjen MA, Myers RM (1998) Motivation and Job Satisfaction. Manag Decis 36:226–231. DOI
10.1108/00251749810211027

Türpe S, Kocksch L, Poller A (2016) Penetration Tests a Turning Point in Security Practices? Organizational
Challenges and Implications in a Software Development Team. In: Workshop on Security Information Workers -
SIW. USENIX Association

van der Linden D, Anthonysamy P, Nuseibeh B, et al (2020) Schrödinger’s Security: Opening the Box on App
Developers’ Security Rationale. In: International Conference on Software Engineering - ICSE. IEEE

Veracode (2018) State of Software Security Report Volume 9. https://info.veracode.com/report-state-of-software-
security-volume-9.html. Accessed 6 Feb 2019

Viera AJ, Garrett JM (2005) Understanding Interobserver Agreement: The Kappa Statistic. Fam Med 37(5):360–363
Wang F, Hannafin MJ (2005) Design-Based Research and Technology-Enhanced Learning Environments. Educ

Technol Res Dev 53:5–23. DOI 10.1007/BF02504682
Weir C, Becker I, Blair L (2021a) A Passion for Security: Intervening to Help Software Developers. In: 2021

IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in Practice (ICSE-
SEIP). IEEE, pp 21–30. DOI: 10.1109/ICSE-SEIP52600.2021.00011

Weir C, Becker I, Noble J, et al (2019) Interventions for Long-Term Software Security: Creating a Lightweight
Program of Assurance Techniques for Developers. Softw - Pract Exp 275–298. DOI: 10.1002/spe.2774

Weir C, Hermann B, Fahl S (2020a) From Needs to Actions to Secure Apps? The Effect of Requirements and
Developer Practices on App Security. In: 29th USENIX Security Symposium (USENIX Security 20)

Weir C, Knight J, Ford N (2021b) Developer Security Essentials. https://www.securedevelopment.org/workshops/.
Accessed 9 Jun 2021

Weir C, Noble J, Rashid A (2020b) Challenging Software Developers: Dialectic as a Foundation for Security
Assurance Techniques. J Cybersecurity 30. DOI 10.1093/cybsec/tyaa007

Xie J, Lipford HR, Chu B (2011) Why Do Programmers Make Security Errors? In: IEEE Symposium on Visual
Languages and Human Centric Computing. Pittsburg, PA, USA, pp 161–164. DOI:
10.1109/VLHCC.2011.6070393

Yskout K, Scandariato R, Joosen W (2015) Do Security Patterns Really Help Designers? In: International Conference
on Software Engineering - ICSE. IEEE, Firenze, Italy, pp 292–302. DOI: 10.1109/ICSE.2015.49

Appendix A Author Biographies
Since the researchers were directly involved with the workshops, this section provides context for the reader with a
brief outline of the authors’ backgrounds.

Charles Weir (main intervenor) has researched Developer Centered Security at Lancaster University, UK, since
2015. Prior to that he had thirty years in industry as a researcher, software architect, design consultant and company
CEO, specializing in software development, especially for terminals and mobile devices. He was technical lead for the
first smartphone, led the development of the first mobile money app for Android, and ran a successful software
development company averaging 20 employees for 17 years.

Ingolf Becker (supported work with Group K) is a Lecturer in Security and Crime Science at University College
London, UK. He has been studying the interactions between security and business processes in organizations since
2013. This work has led him to collaborate with critical national infrastructure companies to technology multinationals
and SMEs. Throughout his work qualitative research methodologies feature heavily, allowing him to understand the
motivations, capabilities and limitations of individuals that are key to effective security decision making.

Lynne Blair is a Senior Lecturer at Lancaster University, UK. She specializes in software education, and co-leads
Lancaster's involvement in the Institute of Coding, with a focus on widening participation. Much of her work is on
human aspects of computing such as personal and social implications of our digital economy on community values
and integrity, wellbeing, and environmental implications regarding sustainability in digital innovations.

Appendix B Data Access
All transcriptions and analysis were commercially confidential, several subject to Non-Disclosure Agreements.

Appendix C Interview Questions
Entry	Interview	

Introduction – establish context
• What is your current role, and what do you find yourself doing day-to-day? What’s your involvement with

this project?

Exploration
• Have you considered security for this project yourself? What’s been done so far?
• In what ways do you consider security important for this product?

Experience
• What’s the last time you came across a security issue in a project? Can you describe the issue?
• How did you deal with that issue?
• How confident are you about that solution?

Vision
• Let’s imagine the project’s finished, and it’s been an excellent piece of work. What do you feel you’ll have

done related to security and privacy to get it that way?

Clarification (as appropriate)
• Oh, I see. Could you give an example?

Exit	Interview	

Introduction – establish context
• Now that we’ve been working together for a while, this is a discussion to see how things have progressed in

the project.

Exploration
• What do you think has changed?
• What are your feelings about the change in the project?
• What did you make of the three activities we did: game, workshop, follow-ups?
• In what way might you have a better story on security now?

Experience
• What changes did you make as a result of the workshops and discussion?
• What exactly did you do?
• How did you go about implementing the changes?
• Why you chose to do those things?
• What is it that’s better now as a result?
• Would you do something similar again?
• What would you do differently?
• How does this relate to these specific threats you’ve identified (from the threat modelling workshop)?

Vision
• Let’s imagine there’s a team starting a similar project now, and you’re advising the team coming in to help

them improve their security. What would you recommend that’s the same as we did, and how would you
recommend improving it?

