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Abstract

Force fields form the basis for classical molecular simulations and their accuracy

is crucial for the quality of, for instance, protein-ligand binding simulations in drug

discovery. The huge diversity of small molecule chemistry makes it a challenge to build

and parameterize a suitable force field. The Open Force Field Initiative is a combined

industry and academic consortium developing a state-of-the-art small molecule force

field. In this report industry members of the consortium worked together to objectively

evaluate the performance of the force fields (referred to here as OpenFF) produced by

the initiative on a combined public and proprietary dataset of 19,653 relevant molecules

selected from their internal research and compound collections. This evaluation was

important because it was completely blind; at most partners, none of the molecules or

data were used in force field development or testing prior to this work. We compare

the Open Force Field “Sage” version 2.0.0 and “Parsley” version 1.3.0 with GAFF-

2.11-AM1BCC, OPLS4 and SMIRNOFF99Frosst. We analyzed force field-optimized

geometries and conformer energies compared to reference quantum mechanical data.

We show that OPLS4 performs best, and the latest Open Force Field release shows

a clear improvement compared to its predecessors. The performance of established

force fields such as GAFF-2.11 was generally worse. While OpenFF researchers were

involved in building the benchmarking infrastructure used in this work, benchmarking

was done entirely in-house within industrial organizations and the resulting assessment

is reported here. This work assesses the force field performance using separate bench-

marking steps, external datasets, and involving external research groups. This effort

may also be unique in terms of the number of different industrial partners involved,

with 10 different companies participating in the benchmark efforts.

Introduction

The computational modeling of chemical and biological systems relies on an accurate assess-

ment of the energetics and geometries of the systems. Methods range from more accurate,
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higher-cost quantum mechanical (QM) techniques to more approximate but efficient meth-

ods such as classical mechanics-based calculations. The latter have the advantage of being

applicable to larger systems over longer timescales.1–4 Extended simulation timescales are

particularly relevant for the calculation of thermodynamic properties such as protein-ligand

binding affinity where the accurate treatment of entropy, desolvation, and other factors re-

quires ensemble-based free energy approaches. The classical mechanical calculations use a

force field that gives the energy of the system as a function of the coordinates, given a

number of empirical parameters fit to describe this and other properties accurately.5,6

Force field development has an extensive history, and the approaches taken vary with

respect to the chemical space covered, the data used for training, and the approach for

parameter optimization.7–10 It is common to fit force fields using data from both experimental

physical property measurements and reference QM calculations carefully chosen to represent

the systems for which the force field is designed. The performance of the resulting force field

is then assessed by its ability to reproduce either experimental observables, or QM data such

as geometries and relative energies. Given that force field development is complex due to the

diversity of training data, various functional forms, and approaches to chemical perception,11

it is expected that the resulting force fields vary in how accurately they reproduce the

properties of interest.12–16

Force fields for proteins, based on the 20 common amino acids, have been refined over

many years and are widely used and continue to be updated.17–25 A high quality general force

field suitable for small, organic and drug-like molecules represents a bigger challenge due to

the vast chemical space that must be considered. Furthermore, inherent to innovation is the

search for novel chemical matter and a general force field should be suitable for application to

as-yet undiscovered compounds. Popular current small molecule force fields include the Gen-

eral AMBER force field (GAFF),26,27 the CHARMM General force field (CGenFF),28 and

the Optimized Potentials for Liquid Simulations force field (OPLS).29–33 These approaches

have undergone substantial improvement, with the latest versions of OPLS32,33 in particular
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showing impressive performance, but it is widely accepted that further improvements are

possible.34

Begun in late 2018, the Open Force Field (OpenFF) Initiative is a relatively new effort

to build and optimize a general force field using an automated and reproducible proce-

dure, with all software, data, and workflows made freely available. Rather than traditional

atom-typing, the approach builds on the SMIRKS-native Open Force Field (SMIRNOFF)

parameter assignment formalism, which can incorporate increased chemical diversity without

needlessly increasing the complexity of the underlying specification and parameterization.

The first version of the new OpenFF started with SMIRNOFF99Frosst,35 consisting of direct

chemical perception typing rules and parameters from the prior AMBER parm99 force field

and Merck-Frosst’s parm@frosst.36 Since then, nearly all of the 500 valence parameters have

been optimized to improve agreement with quantum chemical optimized geometries, energet-

ics, and vibrational frequencies. The first generation OpenFF 1.X37–39 (”Parsley”) releases

largely retained the Lennard-Jones and electrostatic parameters of SMIRNOFF99Frosst,

whereas the more recent OpenFF 2.0.040 (”Sage”) release refit Lennard-Jones parameters

as well. The OpenFF Initiative includes the OpenFF Consortium, a pre-competitive, net-

work of academic and industry researchers working together to advance the required science

and infrastructure. The shared goal is to develop automated and systematic data-driven

techniques to parameterize and assess new generations of the force field.

In this report, academic and industrial partners of the OpenFF consortium worked to-

gether to assess the performance of recent OpenFF releases. The work is an extension of

the recent article from Lim et al.41 Each industry partner selected compounds from their

internal research or compound collections; a total set of 19,653 are studied. As part of this

study, a large proportion of the compounds (10,121) were compiled and made publicly avail-

able on the QCArchive,42 while the rest of the compounds remained proprietary and were

studied internally at each industry partner, with only overall performance statistics being

released. The study was enabled by the development of a standard workflow that could be
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easily installed and run at the sites of each collaborator. The workflow enabled the running

and analysis of both QM and force field-based calculations. The identical approach used by

each partner allowed the sharing of analysis data without compromising the confidentiality

of the proprietary sets of molecules.

Force fields belonging to three families were assessed: (i) the second generation General

Amber Force Field GAFF-2.11-AM1BCC (hereafter simply referred as GAFF-2.1126,27); (ii)

the latest version of the Optimized Potentials for Liquid Simulations Force Field (OPLS433);

and (iii) the latest version of each generation of OpenFF force fields (SMIRNOFF99Frosst

v1.135), OpenFF “Parsley” v1.3.039 and the newest release, OpenFF “Sage” v2.0.0.40 For a

pruned dataset of 137,052 molecular conformations of 18,154 small molecules, we compared

the structures and energetics of conformers optimized using force fields to those optimized

using quantum mechanical methods. This work provides a general understanding of the

strengths of different small molecule force fields and identifies areas of improvement for

future force field development.

Methods

The dataset

Industry partners from the following companies were involved in this collaborative effort:

BASF, Bayer, Bristol Myers Squibb, Boehringer Ingelheim, Janssen, Merck KGaA, Roche,

Genentech, Vertex, and XtalPi. Partners were asked to choose the molecules most suited

or best capturing their research interests, by selecting a set of molecules that could be

made public, as well as proprietary compounds. As an example for the public set, one

company chose compounds from recent patents being sure to remove intermediates, solvents,

and reagents etc. Meanwhile, proprietary molecules from internal drug discovery projects

were studied on-site at each partner organization. All partners contributed proprietary

molecules, while six of them also contributed with public molecules. In both cases, we
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recommended to each partner to keep the number of heavy atoms below 30-35 to avoid

overly time consuming QM calculations. Overall, the set of molecules is likely to be highly

representative of current small molecule drug discovery efforts. The compounds within the

public dataset were deposited to the QCArchive43 (see the Supporting Information for an

example of how to extract optimized records of the public dataset from QCArchive).

Assigning force field parameters

For the OpenFF force field family (SMIRNOFF99Frosst, Parsley and Sage) and GAFF-2.11,

we assigned AM1 Mulliken-type partial charges with bond-charge corrections (AM1-BCC

charges).44,45 Partial charges were generated using the antechamber software package pro-

vided within the AmberTools.27 Parameters for the OpenFF family were assigned using the

Open Force Field toolkit, whereas for GAFF-2.11 force field, we used tleap27 via open-

moltools.46

For OPLS4 charge and parameter assignment was performed using Schrödinger Mae-

stro.47 Available pre-computed general purpose (default) parameters were applied. Also,

molecule specific custom parameters were derived using the default approach with the ff-

builder tool. This approach checks for missing parameters and if necessary derives new ones

based on QM calculations (B3LYP/6-31G* level geometry optimization followed by single-

point M06-2X/cc-pVTZ(-f) calculations). Custom OPLS4 parameters were derived for 9057

dihedrals for the public set of 10,121 molecules, indicating the overall set of molecules is rather

diverse. OpenFF 2.0.0 only contains 174 torsion parameters, whereas OPLS4 uses a library

of 147K or more diverse torsions as reported for OPLS3e, before addition of these custom

parameters. Upon recommendation of scientists from Schrödinger, we used the ffld server

command line tool to perform OPLS4 optimizations (see Supporting Information for more

details). This tool contains the latest version of the force field and includes features such

as virtual sites. The command used was $SCHRODINGER/utilities/ffld server -imae

<input structures> -omae <output structures> -opt -OPLSDIR <path/to/oplsdir>
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-cutoff 999 -min verbose 1 to perform the optimization with custom OPLS4 parameters

and $SCHRODINGER/utilities/ffld server -imae <input structures> -omae <output structures>

-opt -cutoff 999 -min verbose 1 to perform the optimization with default parameters.

All other geometry optimizations were completed in OpenMM48 with the same specifications

previously used by Lim et al.41

Corresponding files containing QM geometries and energies, SMILES strings and depic-

tions of the public dataset are deposited on GitHub49 (See section Data and code availability)

Automation of our approach

Figure 1 depicts the automated workflow which was deployed at all partners and permitted

consistent benchmarking of proprietary molecules between partners and with the public set.

During the production runs, it was found that iodine-containing molecules gave unreliable

QM results for our choice of basis set with density fitting. This has since been fixed in psi4

as of version 1.450 but they were removed from this study. An additional filter was applied to

remove silicon- and boron-containing molecules, as these elements are currently unsupported

by OpenFF.

The first step in the protocol performs the validation of the chosen molecules. This step

checks that the OpenFF Toolkit can sufficiently interpret each molecule, and for molecules

that it can, a unique identifier is then assigned to each. Conformers are aligned during this

step, and if a subsequently-loaded conformer has an RMSD of less than 0.5 Å from an existing

conformer, it will be discarded as a duplicate. In the Public OpenFF Industry Dataset 85

out of 10,226 initial molecules were filtered by validation, hence 10,141 successfully passed

this step.

The second step in the protocol generates additional conformers beyond those provided in

the input set of molecules. This step attempts to generate up to 10 conformers per molecule

in total, with selection based on minimum inter-conformer RMSD of 0.5 Å. Conformers

provided by the user in the previous step are preserved.
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The third step in the protocol creates a coverage report that gives the number of times

each parameter in OpenFF 1.3.0 is exercised by the molecules in the dataset. Any molecules

that could not be parameterized are discarded. All molecule conformers that could success-

fully be parameterized are exported as SDFs and used for the following geometry optimiza-

tion. In this step, a total of 60 molecular structures (of which 40 from the proprietary and

20 from the public set) were not successfully parameterized, and were therefore removed

from the combined dataset. Our pruned set going into QM minimization contained 19,653

molecules, of which 10,121 were from the public dataset, with unique chemical connectivity.

The fourth step in the protocol executes the optimizations required for benchmarking.

There are two stages to this step: the first generates QM geometry-optimized structures

and energies at the gas-phase, B3LYP-D3BJ/DZVP level of theory51–55 using psi4.56 This

method and basis set were chosen by the Open Force Field initiative to provide reasonably

accurate conformational energies and geometries at moderate computational cost37,57,58 and

are consistent with the method used previously.41 Molecular modeling approaches typically

rely upon accurate assessment of low energy minima but there are cases where it is useful to

predict higher-energy structures,.59,60 The protocol used here does not exclude conformers

based on a cut-off for relative QM energy (dE) and indeed some higher-energy local minima

were retrieved, < 0.06% for dE>20 kcal/mol. The second stage performs gas-phase MM opti-

mizations using the different forcefields, starting from the minimized QM structures for each

molecule conformation. Publicly available compounds on the QCArchive were minimized

with the latest generation of each force field family, namely GAFF-2.11, OPLS4 with both

custom (OPLS4CST) and default (OPLS4DEF) parameters, and OpenFF “Sage” v2.0.0.40

Proprietary compounds were minimized using each OpenFF generation (SMIRNOFF, “Pars-

ley”v1.3.0, “Sage”v2.0.0) and GAFF-2.11, as OPLS4 was not available at all the industry

partners. The SMIRNOFF99Frosst version used here is SMIRNOFF99Frosst-1.1.0.offxml.

Because QM geometry optimization can, in rare cases, change the connectivity of a molecule,

the final QM geometries were assessed to ensure that their interatomic distances remained
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consistent with the connectivity of the input molecule, and any conformer that deviated

from their original connectivity were discarded from further analysis.

From the pruned set, 18,154 molecular structures were successfully optimized during

step (i) and subsequently went through step (ii), producing a different success rate in MM

optimization than QM (see Table S2 and S1).

Once all optimizations are finished, in the final step the data produced are analyzed and

the corresponding plots subsequently generated.

Energies and optimized geometries with respect to QM reference are finally compared by

relative energy difference (ddE), root-mean-square deviation of atomic positions (RMSD) and

torsion fingerprint deviation (TFD),61–63 similar to our previous benchmark assessment.41

The ddE energies account for the energy difference (dEMM) between each MM optimized

conformer and the MM conformer with minimum energy, relative to the energy difference

(dEQM) between each corresponding QM optimized conformer and the QM conformer with

minimum energy (compare-forcefields).

In addition, to address any potential low agreement between force field and QM energies

due to change in conformation after MM energy minimization, we performed a conformer

matching process (match-minima) for each MM structure which considered the final optimized

geometries and energy differences. In this case, the ddE takes into account the energy

difference between each MM optimized conformer and the MM conformer with lowest RMSD

with respect to the QM minimum, relative to (dEQM). The equations used in compare-

forcefields and match-minima to compute the ddE between the MM and QM energy for the

ith conformer of a specific molecule are reported in the SI (Eq S1 and Eq S2, respectively).

The complete Python code used for the setup, minimizations, and analysis of this work

is open source and available on GitHub49 and the protocol used to run minimization on

Confluence (See section Data and code availability).
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Figure 1: The automated benchmark workflow was deployed in-house by all partners and
allowed consistent benchmarking of proprietary datasets. After checking that the molecules
are compatible with the OpenFF force field (”Validation”), it generates up to 10 conformers
per molecule (”Conformer Generator”), optimizes the conformers first with a QM method
(”QM Minimization (Psi4)”) and then with various MM methods (”MM Minimization”).
Finally, the non-proprietary data is extracted and plots are generated for the comparison of
results (”Analysis”).

Results and Discussion

Here, we present and discuss our results comparing several general small molecule force

fields against reference QM data. We are interested in two major categories of comparison –

energetic agreement and geometric agreement. An ideal force field will yield the same energy

minima or optimized geometries as the QM energy landscape, with no additional or missed

minima, and the energies of those minima will agree between QM and MM. However, with

even minor energy errors, the relative ordering of the QM and MM minima could be different

even if all minima are present in both landscapes. Thus, to assess performance in these two

categories, we computed relative conformer energies and compared these between MM and

QM, as well as assessed geometric agreement of MM optimized geometries with those from

QM.

Our study relies on the assumption that force field accuracy can be evaluated using gas

phase energies and geometries. One of the greater goals of force field science, such as that of

the Open Force Field Initiative, is building force fields that will work well in the condensed

phase (e.g., small molecules in solution or binding to biomolecules). That being said, we
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make our assumption based on two key observations. First, force fields, especially those

in the AMBER family, are usually fitted to reproduce gas phase conformational energies

and geometries.26 This means that we are testing these force fields on properties they are

fitted to reproduce. Second, bonded parameters are not expected to change significantly on

transfer to the condensed phase. Rather, non-bonded interactions are particularly impor-

tant in condensed phase simulations. Regarding the non-bonded interactions, electrostatics

could be over polarized beyond what would be expected in the gas phase in order to repro-

duce condensed-phase properties, and Lennard-Jones parameters can be tuned to reproduce

condensed phase properties (as has been a particular focus of the OPLS force fields30,64).

Even when these are done, force fields retain bonded terms parameterized to reproduce QM

geometries and energetics, further emphasizing the importance of testing in such a context.

We therefore believe our assumption is reasonable and that this work warrants investigation.

We start our force field benchmark analysis by comparing MM energies to QM energies

of the two different datasets, namely (i) the Public OpenFF Industry Dataset and (ii) the

Proprietary OpenFF Industry Dataset. All the optimizations were performed consistently,

using the same software installed and running identical workflows.

We found that 99.94% of the relative conformer energies of the molecular structures in

the two datasets with the six force fields were within -55<ddE<45 kcal/mol, according to

Equation S1. However, 62 conformers in (i) and 24 in (ii) that had outlying energies beyond

this range were treated as outliers and removed from the two datasets (Table S3 and S4).

After excluding these outliers, the ddE energy histograms for datasets (i) and (ii) are

shown in Figure 2a and Figure 2b, respectively. In Seaborn density histograms, bin height

is normalized so that the total area of the histogram is 1 and the unity of density is 1/kcal

mol−1 for ddE (whereas forRMSD plots it is 1/Å). OPLS4 results were generated with the

ffld server tool, not macromodel as in previous work,41 (see section Methods and Supporting

Information for more details). OPLS4 could not be calculated for the proprietary dataset

(ii) because that force field was not available in house for some of the industry collaborators
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in this study. The difference between MM relative conformer energies and QM relative

conformer energies exhibits very similar distributions for all force fields. All distributions

appear asymmetric, having a skew towards more negative ddE values than positive ones,

indicating that the conformer energy differences may be underpredicted by MM compared

to QM. In (i) the comparison between OPLS4, OpenFF-2.0.0 and GAFF-2.11 shows that

the qualitative ordering of force fields from lowest to highest agreement with QM energies

goes as GAFF-2.11 < OpenFF-2.0.0 < OPLS4DEF < OPLS4CST. In other words, the peak

size around ddE = 0 kcal/mol (the fraction of conformations with good agreement between

QM and MM relative energies) is greatest for OPLS4CST, closely followed by OPLS4DEF,

then by OpenFF-2.0.0 and GAFF-2.11. OPLS4CST and OPLS4DEF predict 51.2± 0.4% and

47.9 ± 0.4% of conformers within 1 kcal/mol of QM, respectively. OpenFF-2.0.0 predicts

41.0± 0.4% and GAFF-2.11 37.6± 0.4% (standard error with 95% CI calculated with 2000

bootstrap iterations).

Figure 2b illustrates the progress made within the OpenFF family of force fields with

respect to GAFF-2.11 in the benchmark of dataset (ii). Smirnoff99Frosst and GAFF-2.11

almost overlap, performing worse than all other investigated force fields. Improvements can

be noticed in OpenFF-1.3.0 and more so in the most recent release OpenFF-2.0.0, which

clearly performs better than its predecessors. Indeed, OpenFF-2.0.0 predicts 44.4± 0.4% of

conformers within 1 kcal/mol of QM, OpenFF-1.3.0 42.2 ± 0.4%, GAFF-2.11 41.2 ± 0.4%

and Smirnoff99Frosst 40.0± 0.4%

We next examine agreement between MM-optimized geometries and those from QM, as

calculated by each molecule’s root-mean-square deviation of atomic positions (RMSD) and

Torsion Fingerprint Deviation (TFD) scores with reference to the parent QM-optimized

geometry. While RMSD is the more common metric, it depends on the molecule size,

complicating interpretation.65,66 In contrast, TFD was designed to be more independent

of molecule size in order to compare molecular conformations more meaningfully.61 The

TFD score between two molecular structures is evaluated by computing, normalizing, and
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(a)

(b)

Figure 2: Histograms of the relative conformer energy differences as computed for compare-
forcefields (equation S1) for each force field relative to QM. Each molecular structure, in-
cluding different conformers of the same molecule, is counted separately. Since the global
minimum molecular structures were set to zero deliberately and add a constant offset to the
central bin, they are removed from the counts. A force field having higher agreement with
QM would have a higher bin centered at ddE = 0 kcal/mol. (a) compares the latest re-
lease of all three force field families over the public dataset. (b) shows the three histograms
belonging to the OpenFF family of force fields and GAFF-2.11 over the proprietary set.
Smirnoff99Frosst (light brown) and GAFF-2.11 (orange) slightly overlap in the central bin
of (b)

Gaussian weighting the (pseudo-)torsion deviation for each bond and ring system. While

TFD is normalized from 0 to 1, RMSD is unbounded. Both RMSD and TFD are similar in

that a higher value signifies lower agreement between the geometries of two molecules. A FF

which yields optimized geometries closer to those of QM would have generally smaller RMSD

and TFD values. We calculated RMSD and TFD scores for all MM optimized geometries

with respect to QM geometries. We plotted this data in histograms, in Figure 3.

In terms of geometry agreement, we observed similar results between the RMSD and
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(a) (b)

(c) (d)

Figure 3: Histograms of the RMSD (a, c) and TFD (b, d) values between force field structures
as compared to QM structures. Values closer to zero indicate higher geometric similarity
for both RMSD and TFD. Panels (a) and (b) compare the families of force fields (GAFF-
2.11, OPLS4, and OpenFF-2.0.0) over the public dataset. Panels (c) and (d) compare the
force fields of the OpenFF family (Smirnoff99Frosst, OpenFF-1.3.0, and OpenFF-2.0.0) and
GAFF-2.11 over the proprietary set.

TFD plots. The ranking of the force fields is mostly the same as with the ddE rankings

above, with OPLS4CST performing best, followed by OPLS4DEF, the latest Open Force Field

release OpenFF-2.0.0 and finally GAFF-2.11. The use of the custom parameters made a

notable improvement for OPLS4 compared to the default parameters in both the energetic

and geometric comparisons. The OpenFF force fields show clear improvement with newer

generations having higher densities close to zero and also by having tails successively reduced.

To understand how each forcefield scored in both energetics and geometries we rerported

in Figure 4 the percentage of conformers within certain threshold values of both |ddE| and

RMSD with respect to QM reference. The trend in scoring both metrics is consistent with

that reported separately in Figure 2, 3a and 3c, showing that the qualitative ordering of

force fields from highest agreement to both QM energies and geometries goes as OPLS4CST
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(a)

(b)

Figure 4: Bar plots with percentages of conformations predicted by the different force fields
matching both |ddE| and RMSD given thresholds. Error bars represent standard error at
95% CI calculated with 2000 bootstrap iterations. (a) compares the force fields assessed on
the public dataset. (b) compares the force fields assessed on the proprietary dataset.

> OPLS4DEF > OpenFF-2.0.0 > GAFF-2.11 for the public dataset (i), and OpenFF-2.0.0

> OpenFF-1.3.0 > GAFF-2.11 > Smirnoff99Frosst for the proprietary dataset (ii).

Ultimately, we assessed the performances of OpenFF-2.0.0, GAFF-2.11 and OPLS4 on

charged and neutral molecules of the public dataset (i) (Figure S4 and Table S5). Overall,

charged molecules feature a more negative ddE mean distribution than neutral molecules

according to all FFs. In OPLS4DEF this difference was largest (ddE charged = -2.54±0.12

kcal/mol, ddE neutral = -0.78±0.02 kcal/mol). Training custom parameters in OPLS4CST

reduces the discrepancy (ddE charged = -2.08±0.11 kcal/mol, ddE neutral = -0.63±0.02

kcal/mol) to a comparable level with OpenFF-2.0.0 and GAFF-2.11 (ddE charged = -2.07±

0.12 kcal/mol, ddE neutral = -1.00±0.03 kcal/mol and ddE charged = -1.51±0.12 kcal/mol,

16



ddE neutral = -0.98± 0.03 kcal/mol, respectively). No major geometric differences were seen

for charged versus neutral molecules, the greatest divergence in the RMSD mean distribution

is only 0.1 Å for OPLS4DEF (Table S5).

Analysis of OpenFF-2.0.0 shortcomings

As mentioned in section Automation of our approach, our FF benchmark was performed

running the MM optimization on top of QM-optimization and comparing results. Ideally,

the conformer which is the global minimum on the QM potential energy surface should

still be found as global minimum on the MM surface. Nevertheless, in practice, the MM

optimization could lead to a structurally different conformer which is local rather than global

MM minimum. Thus, to objectively identify these types of FF shortcomings, we computed

the relative energy difference (dE) between the MM reference conformer with lowest RMSD

with respect to the QM global minimum (MM,ref) and the MM conformer with the lowest

energy (MM,min) according to Equation 1:

dE = E(MM,ref) − E(MM,min) (1)

Large energy differences in this metric are thereby indicative of suboptimal FF behaviour

in terms of the MM force field’s ability to identify the same global minimum as QM does. We

ran this analysis on the proprietary Roche set and inspected molecular structures with dE >

2 kcal/mol. According to OpenFF-2.0.0, a total of 40 out of 809 molecules were identified.

The low number of identified problematic issues indicates that Sage performed generally well

in the Roche dataset. A selection of the problematic torsions compared to the QM reference

geometry are shown in Figure 5 and Figure S5, including incorrect intra-molecular hydrogen

(Figure 5a) and chalcogen (5b) bonds, tendencies to form flipped ureas (5c), cis-amides (5d)

and aromatic amines (5e,f).

Motivated to identify systematic issues in torsion parameters, we developed a workflow to
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Figure 5: Molecular fragments of the Roche dataset containing concerning torsions. Global
minima conformers optimized with QM and MM are shown with the concerning torsion(s)
marked in brackets. Relative (dE) energies calculated according to equation 1 and torsion
parameter(s) associated with corresponding concerning torsion(s) are reported.

detect any dihedral deviation from a threshold value for each i-th MM optimized conformer

with respect to the same i-th conformer optimized with QM. We performed the analysis on

the public dataset (i) and counted all the torsion violations in MM structures that were off by

more than 30◦ threshold for any dihedral bond angle (Figure 6). Some torsion parameters are

more common than others, therefore we weighted by the number of times that it was used in

the dataset. Most of the problematic parameters found by this analysis were also identified

in the previous RCH set (Figure 5), namely t17, t64, t66, t67, and t74. Interestingly, other

parameters that appeared more frequently among the most concerning cases (>50 counted

violations and >1 weighted violations) include t18 (torsion comprised by a tetra- and a

trivalent C, Figure S6) and t105 (torsion formed by a trivalent C and bivalent O). The

results from this analysis can be part of the follow-up work and improvements to future

OpenFF force field releases.
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Figure 6: Analysis of torsion violations in the Public OpenFF Industry Dataset. Inset:
2D sketch chemistry match of selected torsion parameters. Elements in red color (bond,
charge) may or may not exist, meaning that the corresponding atom can be either tri- or
dicoordinated, respectively.

Conclusions

This work represents a large-scale assessment of relative conformer energies and geometries

of five small-molecule force fields (GAFF-2.11, OPLS4, SMIRNOFF99Frosst, OpenFF-1.3.0

and OpenFF-2.0.0) compared to QM data. Among the force fields tested, we found that

OPLS4CST performed best in terms of reproducing QM conformer energies and geometries.

Nevertheless, the higher computational cost to generate custom OPLS4 parameters by means

of DFT torsion fitting should be considered (likely in part due to the diversity of the present
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molecule set), whereas with the other force fields, including OPLS4DEF, parameter assign-

ment is immediate, because no new quantum chemical calculations are required.

As previously reported,41 OpenFF showed improvements in both energetic and geometric

metrics with each new version. The gap in performance to OPLS4 suggests there is still

opportunity to improve. However, we herein show that the latest OpenFF-2.0.0 appears to

be positioned as the best open source/free small molecule force field in this study.

In the view of the industry collaborators performing this benchmarking work, this study

evidences the advances made by the Open Force Field Initiative towards its objective of

building high quality open force fields produced with infrastructure which enables rapid pa-

rameterization. Particularly, the series of OpenFF force fields tested in this study showed sig-

nificant enhancement in accuracy over a relatively short time, and these improved force field

are publicly available. Pursuing the road to progress, one key challenge will be represented

by continuing improving the treatment of problematic areas of chemical space and expanding

coverage. Forthcoming OpenFF updates are planned to include Wiberg bond order-based pa-

rameter interpolation67 to improve the treatment of torsions, off-site charges and optimized

handling of trivalent nitrogen geometries68 (which should boost performances further). Ad-

ditionally, a tool for fitting bespoke torsion parameters for specific molecules/chemistries of

interest is now available69,70 likely further improving accuracy. In parallel, a biopolymer

force field and an OpenFF software stack that will enable the conversion from OpenMM

objects to file formats understood by other molecular simulation engines, like AMBER and

GROMACS (OpenFF Interchange71), will soon be released.

Beyond these specific conclusions, we believe the general strategies employed in this

study to assess force field performance will be useful far more broadly than this specific

study. Specifically, the analysis we have herein presented demonstrates the importance of

comparing force field performance by energetic and geometric metrics. Moreover, large-

scale force field benchmarks are made easier by the large amount of public data available in

QCArchive.
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Data and code availability

QM geometries and energies, SMILES strings and depictions of the public dataset are

deposited on GitHub: https://github.com/openforcefield/qca-dataset-submission/

tree/master/submissions/2021-07-28-OpenFF-Industry-Benchmark-Season-1-MM-v1.

1.

The Python code used for the setup, minimizations, and analysis of this work is open

source and available on GitHub at https://github.com/openforcefield/openff-benchmark;

the protocol used to run minimization is available on Confluence at https://openforcefield.

atlassian.net/wiki/spaces/FF/pages/971898891/Optimization+Benchmarking+Protocol+

-+Season+1.

Associated content

The supplementary Information contains (1) equations used to compute ddE energies; (2)

tables with the number of molecules selected by each industry partner and optimized with

QM and MM for the public and the proprietary dataset; (3) table with outliers (defined

as ddE<-60 or ddE>45 kcal/mol) of the public and proprietary datasets; (4) plots similar

to those of Figure 2 and Figure 3 comparing OPLS4 using both ffld server and macromodel

obtained with compare-forcefields and the conformer matching process match-minima; (5)

table with mean ddE and RMSD values of charged and neutral molecules and corresponding

scatter plots for charged and neutral molecules, (6) molecular fragments of the Roche dataset

containing concerning torsions not shown in Figure 5, (7) code to extract optimized records

from QCArchive for the public datasets hosted there.
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