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Abstract—Network softwarization has revitalized the interest
of the network community towards emulation as an effective
mechanism for network experimentation. Relevant platforms
automate the deployment of virtual network topologies on a
host, providing users the ability to manually run experimental
scenarios. Whilst this may suit prototyping, modern develop-
ment and deployment practices such as CI/CD depend on
fully automated testing processes, built around high-level testing
APIs and abstracting the challenges involved with synchronizing
complex node interaction scenarios. In this paper, we present
Network Emulation System (NES): a cloud-native, and highly-
parallelizable Network Emulation as a Service (NEaaS) platform
designed from the ground up to facilitate codeless experiment
specification and to automate network testing workflows in cloud
CI/CD environments. We demonstrate that NES offers a 8x speed-
up improvement in topology instantiation times in comparison
to existing emulation platforms, and its life-cycle model can
automate testing processes for complex service configurations
using existing CI/CD platforms such as GitHub Actions.

I. INTRODUCTION

Network programmability has drastically changed the way
we operate network infrastructures, enabling unprecedented
flexibility and programmability. This paradigm shift equally
transformed the culture toward network testing and exper-
imentation. Traditional experimentation methodologies rely
on two approaches. On the one hand, network practitioners
use network simulators and models to study the macroscopic
behaviors of network systems [1], with imperfect accuracy
and precision. On the other hand, network practitioners using
small-scale testbeds with real network hardware to study the
behavior of real devices in a configuration scenario. The two
approaches remain complementary and offer different trade-
offs between experimental scalability and realism.

In recent years, network emulation has emerged as an
equally effective mechanism for network experimentation.
Relevant platforms use control plane interfaces and data model
standards to develop software components that emulate the
behavior of real devices, at low link rates, and remain out-
of-the-box compatible with unmodified off-the-shelf software.
Furthermore, such platforms use the ability of modern OS
network stacks to create virtual network topologies with user-
defined link-level characteristics. As a result, an experimenter
can emulate large network experiments in software and control
the trade-off between experimental scalability and realism [2].
Furthermore, the adoption for Network Function Virtualization
(NFV) technologies means that network vendors release an in-
creasing number of software Virtual Machine (VM) appliances

that replicate the characteristics of hardware devices. Such
appliances are compatible with network emulation and can
improve the realism of an emulated network experiment [3].

Inspired by these technological advances, the network com-
munity has developed several open-source network emulation
platforms, like Mininet [4] and GNS3 [5], and open-source
initiatives to promote experimental reproducibility [6], [7].
Furthermore, new management paradigms emerge, that exploit
the flexibility of network emulation to improve network au-
tomation. For example, Network Developer Operations (Net-
DevOps) and Continuous Integration/Continuous Development
(CI/CD) operationalize network testing, deployment, and mon-
itoring, in an effort to achieve automation levels, typically
found in the cloud-software domain. The success of Net-
DevOps depends on the ability to support multi-dimensional
testing, and network emulation can realize suitable testing en-
vironments, facilitating integration tests for network configura-
tions in a CI/CD pipeline [8]. Similarly, network twins propose
the fusion of network models (simulation and emulation) with
live network data as a way to predict the behavior and support
the management decision processes. Several network vendors
use network emulation to implement network twins of mobile
and IoT systems [9], [10].

Unfortunately, emulation platforms cannot keep abreast with
the increasing need for experimental automation. Firstly, mod-
ern CI/CD platforms, like GitHub Actions, require support for
cloud-native execution. Experimental execution should support
API design flexibility to align with varying CI/CD APIs and
embrace packaging and isolation technologies, like containers.
Secondly, emulation APIs remain topology-first, and low-level
experimentation APIs introduce the need for custom host syn-
chronization mechanisms to coordinate experimental execu-
tion. Automating experimental execution, essential for CI/CD,
requires a fundamental rethink of experimental models in order
to capture experimental stages and interactions, beyond the
initial experimental setup. Finally, emulation platform archi-
tecture must increase the support for scalability and distributed
execution. The time-based cost model in cloud infrastructures
means that emulation platforms must exploit parallelization,
in order to improve setup and execution times for individual
experiments, while ensuring experimental isolation.

This paper argues that network emulation requires a re-
design of models and execution environments, in order to meet
the scalability and automation requirements of emerging net-
work use cases. To address these challenges, we present an ex-



tensible experiment life-cycle model that allows practitioners
to customize experimental execution beyond topology defini-
tions and express component interdependence. To demonstrate
the effectiveness of our model, we present Network Emulation
System (NES), a cloud-native network emulation platform
with support for a wide range of virtualization technolo-
gies, including containers, namespaces, and VNF appliances
running on KVM. The contributions of this paper are the
following:

• We present an extensible lifecycle model for network
experiments, covering experimental setup and execution.
The proposed model captures component interdepen-
dence and can improve execution time for experiments
by parallelizing scenario execution.

• We present NES, a cloud-native emulation platform,
with support for scalable and heterogeneous experiments.
Users can define experimental topologies and scenarios
in YAML.

• We demonstrate that the automation features present in
NES can improve experimental execution by a significant
margin in some use cases and can be integrated with
popular CI/CD pipelines, like Github Actions.

In the rest of this paper, we discuss related network emula-
tion research platforms (§ II) and elaborate on two emerging
use-cases to identify the limitation of existing platforms (§ III).
Furthermore, we present the design of NES(§ IV) and evaluate
its performance in comparison to existing emulation platforms,
as well as its ability to automate network testing (§ V).
Finally, we conclude and discuss future directions (§ VI).
NES and its components are open source and can be found at
https://github.com/NEaaS.

II. BACKGROUND

The term network emulation describes a mechanism that
allows a user to replicate aspects of a real network infrastruc-
ture in real-time on general-purpose CPUs. Originally, net-
work emulation focused on accurately recreating packet-level
characteristics on network traffic [11], [12] and replicating
topologies with virtual routers in a single host [13]. In recent
years, emulation realism has improved, with platforms like
Cisco VIRL [3] allowing the inclusion of virtual hosts and
VNF appliances in the form of VMs and namespaces and
running large topologies entirely in software.

In recent years the increasing improvement in network
emulation technologies, offers a plethora of emulation-based
platforms to network experimenters, which improve fidelity on
several experimental characteristics. Nonetheless, improving
the fidelity of specific experimental characteristics influences
the platform API and execution model. For example, GNS3,
EVE-NG [14], and ContainerLab/VRNetLab [15] set as a
key goal to increase support for device heterogeneity. This is
achieved through a plugin model that abstracts access to vir-
tualization technologies, and allows the creation of topologies
with diverse node types, including Docker containers, Cisco
virtual routers, and VNF appliances, in a single topology.
Furthermore, users can share drivers for new network node

types through open marketplaces, like the GNS3’s appliance
marketplace [16]. Alternatively, emulators such as Kathata
[17] use pre-existing software registries that make a vast
selection of software available to the emulator. In Kathara’s
case, this is Docker container registries such as Docker Hub.
However, these platforms primarily focus on topology instan-
tiation and lack support for automated experimental execution.
Experimental execution is manual, and users can access virtual
hosts via terminal through a GUI interface.

Another key design focus is emulation realism for specific
network technologies. Scalion [18], for example, is a Tor emu-
lation platform, built on top of the Shadow network emulator,
and allows performance evaluation of Tor overlay applications
at scale. Another popular platform in this class is Mininet,
offering support for large-scale OpenFlow experimentation.
Mininet defines an extensible host model, and several Mininet
forks exist that enable support for new host types, like the
Docker-based ContainerNet [19], as well as link technologies,
like the Mininet-WiFi [20] platform. Mininet offers a Python
Topology API, and a low-level execution API allows users to
partially automate experimental execution via scripts, that se-
quentially execute commands on virtual hosts at runtime. The
Mininet execution model is limited, experimenters must define
custom synchronization mechanisms with reduced reusability.
MeDICINE [21], is a network emulator that uses the NFV-
MANO data model to realize experimental automation. The
topology API is similar to Mininet and users can automate
the configuration of virtual hosts using elements in the NFV-
MANO host life-cycle model. Yet, although support for the
NFV-MANO model certainly improves experimental automa-
tion, it lacks some key features, like experimental synchro-
nization across nodes and event ordering.

Another key design goal for emulators is scalability. Rel-
evant efforts utilize network tunneling protocols to distribute
topologies across multiple emulation hosts, with Distrinet [22]
and Mininet clusters [23] being prime platform examples.
Alternatively, other approaches to scalability have seen smarter
uses of modern virtualization technologies, as seen with Nokia
Service Router Linux (SR Linux) [24], a containerized version
of Nokia’s routing platform. NES, combines components of
both approaches to distribute experimental execution. Of great
relevance to NES is Crystalnet [25], an Azure-centric emula-
tion platform for cloud-based large-scale network experimen-
tation. Crystalnet offers an experimental API that decouples
topology creation from host configuration. Nonetheless, the
specification of a common experimentation specification API
is described as future work.

Table I compares the features of NES, the emulation
platform presented in this paper, with that of other popular
platforms. Whilst all provide the functionality required of
network emulators, their specific design goals and supported
features define the scenarios in which they offer the greatest
benefit.

Recent research efforts explore the integration of net-
work emulation in automated integration pipelines. Network
Emulation-based Automated Testing (NEAT) [8] is a network

https://github.com/NEaaS


Emulator N
et

N
S

C
on

ta
in

er

V
M

C
lo

ud
-N

at
iv

e

A
ut

om
at

io
n

E
xp

er
im

en
ta

l
A

PI

D
is

tr
ib

ut
ed

Mininet [4] ✓ ✘ ✘ ✓ ✘ Python ✓
ContainerNet [19] ✓ ✓ ✘ ✓ ✘ Python ✓

GNS3 [5] ✓ ✓ ✓ ✘ ✘ ✘ ✓
ContainerLab [26] ✘ ✓ ✘ ✘ ✘ ✘ ✘

NES ✓ ✓ ✓ ✓ ✓ REST, WS ✓

TABLE I
A COMPARISON TABLE BETWEEN POPULAR OPEN-SOURCE NETWORK

EMULATION PLATFORMS AND NES.

testing platform that uses the Mininet API and leverages
containerization to perform automated testing in cloud CI/CD
environments. However, the emergence of NEaaS [27] looks to
be the most direct way for emulation to adopt the technologies
required for the demands of modern workflows.

III. MOTIVATION

Network emulation use cases are plentiful, and include
prototyping [28], [29], testing [30], and even teaching [31],
[32]. However, as softwarization adoption increases across net-
work infrastructures [2], network emulator architectures offer
limited support for the automation required by operational
workflows. In this section, we present two emerging use-cases
for network emulation and define a set of desired functional
requirements for relevant platforms.

DevOps and Continuous Integration/Continuous Deliv-
ery (CI/CD): The DevOps paradigm promotes mechanisms
for autonomous testing, deployment, and monitoring, pre-
dominantly relying on CI/CD pipelines. The effectiveness
of DevOps methods to support the rapid rollout of code
changes in production with minimal operational disruption in
cloud infrastructures has motivated the network community
to explore adoption strategies. Network emulation offers a
holistic mechanism for integration testing of network con-
figuration in a CI/CD pipeline [8]. The emulator creates a
testing environment similar to that in which a service will
be deployed, taking into consideration the high degree of
configuration interdependence of individual network functions
in modern network services. Integration tests can deliver as-
surances regarding the compatibility between the configuration
defined by the infrastructure operator and the component
developer/configurator. However, existing emulation platforms
depend on human interaction, and the limited experimental
automation capabilities remain low-level, experiment-specific,
and require development effort. To address these challenges,
network emulators require API-driven testing automation, with
support for a rich lifecycle model for experiments, beyond
topology creation. These capabilities will improve both the
completion time of experiments, by parallelizing the execution
of independent processes, as well as, enable new cooperative
testing approaches, like network test suite standardization.

Emulation-based Network Twins: Network twin tech-
nologies combine system models with real-time production
data, in order to predict the behavior of an infrastructure,

support decision-making, as well as generate realistic data for
AI/ML model training. The research community has explored
the application of network twins on a range of operational
processes, including prognostic maintenance [33] and plan-
ning [34]. Network twins predominantly utilize simulation
to manage computational scalability, with potential negative
consequences on experimental precision. Network emulation
has been proposed as a complementary mechanism to model-
based network twins [9], [10], offering improved realism by
integrating real production software in a network topology.
Controlling the trade-offs between experimental scalability and
fidelity is essential for network twins. Emulation mechanisms
offer built-in mechanism to facilitate vertical scaling, in order
to support experiments of varying size. In parallel, API-driven
architectures allow easy integration of external components,
like monitoring, with emulation components.

IV. DESIGN

In order to support new application domains, we identify
three key design goals for network emulation. Firstly, network
emulation platforms must adopt cloud-native design and offer
cloud execution environments by-design, like Docker and
Kubernetes. In addition to creating a container image with the
emulator binary and all required resources, an emulator plat-
form should support strong experimental isolation mechanisms
and flexible API integration. An experimenter should be able
to execute the same experimental files seamlessly on a laptop,
as well as on a large multi-cloud environment. Secondly,
emulation platforms must rely on new modeling approaches
that can equally automate topology creation and experimental
execution and can model complex entity interactions. Model-
ing entity interactions can improve experimental scallability
and allow the platform to parallelize experimental execution
while ensuring correctness by ordering interaction events.
Thirdly, automation should ensure platform extensibility, and
support experimental automation for a wide range of node
types.

In this section we present the design of NES, a NEaaS
platform, and discuss how the platform supports the afore-
mentioned properties.

Cloud-native network emulation: The term Cloud-native
describes services that can be decomposed into re-usable
components, capable of integrating into any cloud execution
environment. Enabling Cloud-native support in network em-
ulation opens up a wide-range of benefits, including easy
vertical scale in experimental execution and easy execution
of service specifications in a wide range of environments (e.g.
personal laptop, test harness, deployment environment). Plat-
forms like Kathara and ContainerLab provide partial cloud-
native emulation support, since their node support is limited
to Docker containers, and lack support for VM-based node
types, like vendor VNF appliances.

The NES architecture, depicted in Figure 1, adopts a client-
server architecture, thus allowing easy distribution of network
experiments in multi-host environments. NES is split in two
components: the NES client and the server-side NES (SNES).
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Fig. 1. Architecture of the SNES emulation server application

The NES client holds the user-provided definition of a topol-
ogy, along with all the assets required to build the topology,
such as VM images, and effectively controls the execution
of experiments. SNES is distributed as a Docker container,
consisting of the NES binary and libraries and runtimes to
facilitate OS virtualization, including namespaces, containers,
netlink support, using libnl, and KVM VMs. The binary
SNES exposes a low-level emulation API, which abstracts
virtualization control and allows NES clients to remotely
instantiate and manage topologies along with their constituent
nodes and links. A user can co-locate the client and the SNES
container on a single host, to run a local experiment, or
instantiate the complete or a part of the network topology on
a remote SNES host.

Figure 2 depicts a sample API endpoint snippet of the SNES
RESTful API. The API allows for network nodes and links to
be created, destroyed and otherwise managed at any point.
SNES offers additionally a websocket-based API for event
monitoring. This eliminates the possibility of an unexpected
HTTP request timeout for long-running events, like VM node
creation. The notion of sensible defaults is also adopted in
the API design, allowing for a very minimal configuration in
typical use cases, yet allowing for fine-grain control where
necessary.

One the key benefits of the client-server NES architecture
is the ability to seamlessly scale execution across multiple
emulation hosts to support large resource-intensive topologies
and improve experimental realism. This ability builds on two
mechanisms: offering an extensive experimental management
API; and allowing links to exist across multiple SNES in-
stances. Effectively, the SNES API decouples the operational
state of a topology element, from its runtime state and allows
NES state to distribute across multiple hosts. The NES client
stores the operational state of all topology elements, while
the runtime details of an element are managed by the SNES
instance. For example, a Docker container node will have a
topology node ID managed by the client, however, the running

POST /api/node/create
Create a node in SNES. Example showing
an abridged version of a docker node (nokia
SRL) with a post start script.

Body application/json

1 "name" : "egNode",
2 "appliance" : "docker",
3 "hooks": {
4 "post-start": "setupScript",
5 ...
6 },
7 "config" {
8 "image": "ghcr.io/nokia/...",
9 ...

Fig. 2. Snippet of the create node API endpoint of SNES

container and associated runtime details will be managed by
the SNES instance and the local Docker engine. Furthermore,
link models in NES allow users to adopt a range of con-
nectivity technologies to interconnect multi-host deployments.
As a result, an experiment can use a VXLAN link type to
interconnect topologies running on different hosts, on envi-
ronments that permit direct UDP connectivity. Alternatively, a
L3 VPN link in conjunction with the GRE tunneling protocol
can establish Ethernet connectivity between hosts where NATs
and firewalls impose restrictions. Our NES implementation
uses Netlink vEth pairs for regular local links, and provides
VXLAN and Wireguard/GRE support for WAN links.

NES Topology Model: Although a challenge in and of
itself given the growing heterogeneity of modern networks,
extensibility is also deeply tied to scalability. Existing emu-
lation modeling efforts have a fundamental trade-off between
ease of use and experimental generality. Platform designs, like
Mininet, target a single virtualization technology, in order to
allow easier experiment development and automation, whilst
platform designs, like GNS3, adopt a plugin model that allows
for easy integration of several element types, and frequently
sacrifice experimental automation or flexibility.

Towards this challenge, NES adopts the later approach,
but enforces a rich set of interactions for plugin realizations.
Figure 3 shows the three base plugin specifications in the NES
model: tool, link, and appliance. At the root of the NES plugins
system are tools, compile-time plugins that provide internal
access for SNES to interact with system tools, essential for
emulation. The NES source code offers built-in tool support
for several popular emulation technologies, including Netlink,
Docker, OpenVSwitch, and Libvirt. Building atop the tools,
appliance and link runtime plugins create and manage the
components of a topology, such as the veth link plugin and
the Docker container appliance plugin. Existing plugins in
NES allow for the creation of highly heterogeneous topologies,



A
pp

lia
nc

e 
Pl

ug
in

DeviceCreate(name, config) Device, error
DeviceStart(device) error
DeviceStop(device) error
DeviceDestroy(device) error
AttachInterface(device, iface) error
ConfigureInterface(device, config) error
...

Li
nk

 P
lu

gi
n

CreateInterfaces(link) Interface, error
DestroyInterfaces(Interfaces) error

Tool Plugin

Setup(config) error
Test() error

Fig. 3. The NES plugin model consisting of three primary components: Tools,
Appliances and Links.

capable of running emulated hardware devices, such as CISCO
IOS devices, and software switches with SDN support, like
OpenFlow and P4.

The complexity that can often arise with plugin systems is
mitigated in NES by maintaining a simple topology model.
An SNES node has a type, which maps into a type of
a runtime appliance, and it carries a set of configuration
metadata, including node-specific parameters. This slim mode
model design allows the inclusion of real hardware devices
in a topology, by developing a set of interaction scripts that
configure the device and monitor its operation.

Life-Cycle Automation: Directly addressing shortcomings
in currently available emulation platforms, NES adopts a life-
cycle model for topology components to improve automation
support. In doing so, NES adopts a novel topology design
model, that differs from ones seen in platforms such as
Mininet and GNS3. This model acts as the medium for
topology definition, the driver for the API design, and the core
approach for automation. Other benefits of a life-cycle model
for emulation can also be found, perhaps the most pronounced
being parallelism, greatly improving performance of startup
times in some topologies.

To start with, nodes in topologies get 4 life-cycle events
shown in Figure 4: creation, startup, stop, and destruction.
At each one of these a pre and post hook can be provided,
executing logic on either the relevant node or the emulation
host. These events can be used by an experimenter to con-
trol the configuration parameters of an instance at different
stages of an experimental run. For example, the relatively
simple life-cycle can be leveraged to emulate the impact of
updating a network function after a specified portion of the
topology has passed the startup stage. This model also allows
experimenters to declare node event dependencies, since using
this experiment model creates a directed graph between node
events. This in turn, provides a global ordering of node events,
as well as allowing the platform to detect opportunities for
parallelization. Whilst this is useful for automating topologies
in general, some use-cases leverage this feature more than
others. In a scenario where a topology contains a lightweight
container-based firewall application, and VM-based router that
has a long instantiation time, so long as the firewall does
not depend on the router to have started before starting itself,
tests specific to the firewall can be executed whilst the router

CreateNode A

Pre-Stage Hook Executed

Post-Stage Hook Executed

Start Stop Destroy

Create Start Stop Destroy

Start B After A

If B fails to start, stop and exit

If B starts ok, run test X

Node B

Fig. 4. Lifecycle for automating node hook execution in NES topologies

instantiates. This may allow for failed tests to be identified
prior to fully starting the topology. This conforms well with the
costing model in cloud CI/CD environments, which typically
are time-based thus shorter test execution times reduce CI/CD
costs.

Platforms, such as Mininet, offer built-in scripted tests such
as PingAll, where all nodes attempt to ping all other nodes.
This does rely on the somewhat rigid node model used, as if
other node appliances are used, the means to execute a ping
from a node may be different than a Netns Exec. Similarly,
ContainerNet makes assumptions of VMs in its LibVirt branch,
expecting all VMs to have a running SSH daemon. Whilst
not an outlandish assumption, this approach bakes some fixed
operational requirements in the execution model for the node
type, which reduces support for heterogeneity. NES adopts a
flexible and slim testing approach, that can support a wide
range of execution models to favor extensibility. Specifically,
the platform offers NEScript, a scripting framework to describe
test actions on a node. Using Go text templating, complicated
scripts can be created in just a few lines. Furthermore, each
NEScript can specify an interpreter, thus not assuming nodes
have a shell and allowing languages like Bash and Python
to be used. Finally, this system defines a loose interface for
script execution, enabling the script to be executed via a
range of mediums including SSH, Docker Engine, Netns Exec,
and locally. In parallel, the service depends on a lightweight
interface, and adding support for additional services is straight-
forward. NEScript is open-source and can be found on GitHub
(https://github.com/willfantom/nescript).

1 iperf_out=$(iperf3 -J -c 127.0.0.1 | jq -c)
2 echo "::set-output name=bw type=json::"$iperf_out

Listing 1. NEScript Example

1 bw.end.sum_received.bits_per_second >= 10000000000

Listing 2. NEScript Expression Example

Extending this, NES explicitly defines tests as a compo-
nent of the topology, each containing its own life-cycle and
dependencies. Much like the node life-cycle model, tests can
have dependencies against node and link events. For example,
a test create event can depend on the start events of specific
nodes and links, which allows tests to be executed as soon
as the nodes and link have completed their configuration.



Furthermore, in order to improve testing automation for net-
work emulation, NEScript also provides the means to evaluate
testing outputs. Using print statements similar to that seen
in GitHub Action’s ::set-output::, NEScripts can set string,
integers and json output that can then be parsed via the expr
[35] module. As a result, tests in NES can be executed as soon
as possible, contain complex logic simplified via Go templates,
be executed via a medium appropriate for the node appliance,
and be evaluated beyond a simple exit code. For example,
the short NEScript in listing 1 can ensure that the measured
bandwidth of a topology is greater than or equal to 10Gbps
with the expression in listing 2. Finally, NEScripts can use the
NES template capabilities to support dynamic data setting at
runtime, and thus a single NEScript can be reused by multiple
nodes even where node specific data is needed.

Other Considerations: Whilst the core design decisions of
NES have been discussed, the complete design is not limited
to this. The use of Go for the implementation allows both
the SNES and NES applications to be distributed as single
binaries, a distance away from the complex install process
of some other emulators. Whilst tools such as Docker and
Libvirt are still expected to be installed on the host machine,
the base SNES binary can run basic topologies using Linux
bridges and network namespaces, typically no further install
procedures on many UNIX systems. Also, the Go compiler can
target multiple CPU architectures, including x86 and ARM. In
conjunction with the multi-host emulation setup, this allows
specific node appliances that run on differing architectures to
be used in the same topology, using WAN links for inter-
connectivity.

Finally, the SNES platform offers a Dockerfile that can
generate a Docker container image, especially useful in short-
lived cloud environments. The resulting container image con-
tains all tools to create a NES topology, including Docker-in-
Docker and Libvirt in Docker. Coming in at less than 300MB,
this container image is also an ideal way to get up-and-
running quickly with network emulation with NES. Although
not intended as a secure isolation method due to the privileges
required for interacting with certain system tools, this acts as
the most suitable deployment approach for cloud-environments
in most circumstances.

V. EVALUATION

In this section, we evaluate the performance of the NES
emulator. Network emulation platforms depends on system
virtualization tools, and thus, their performance is influenced
by the technologies it relies on. Regardless, it is not un-
common for literature around network emulation platforms
to discuss metrics describing performance characteristics such
as topology instantiation times. Our analysis evaluates the
scalability of NES and compares the topology instantiation
performance between NES and other open-source network
emulators. All experiments are executed on a dual-socket
DELL server (2xIntel E5-2697, 32G RAM, Ubuntu 22.04)
with all the latest stable software versions at the time of
writing. Finally, we demonstrate the flexibility of the NES

platform by presenting a network test automation use-case for
NES on a hosted CI platform.

A. Scalability Evaluation

A key design principle for NES is extensibility, both in
terms of supporting the level of network heterogeneity avail-
able in today’s networks, as well as, to enable user-controller
scalability. The appliance plugin system presented in NES
allows for many different system tools to be used to create
emulated devices. The choice of appliance can be impacted
by the user from both a resource perspective, looking to run
a topology in given resource constraints, or from a fidelity
point of view, looking to create a network providing the
highest degree of realism possible. In Figure 5 we show
how different node types can impact NES startup times on
topologies of varying size. The results highlight that appliances
such as Linux bridges and network namespaces have short
setup times in comparison even to lightweight Alpine-based
Docker images.
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Fig. 5. Comparison of the times required to create a topology consisting of
a varying number of node instances using the NES platform.

The results demonstrate the built-in ability of NES to paral-
lelize node creation and improve setup times for large topolo-
gies. Notably, simple node types with short setup times, like
Netlink-based nodes, gain small benefits from parallelization,
and the topology setup time is driven by the synchronization
model of the Netlink service. Nonetheless, Docker containers
see a much greater benefit from parallelism, and a 100-
node topology exhibits an 8x increase on instantiation time,
versus a 10-node container topology. These startup time gains
are further pronounced for application containers, like the
Ryu OpenFlow controller. NES experimenters can mix-and-
match any node type typically found in a modern network
environment and control the trade-off between precision and
scalability.

The built-in parallelization in NES achieves faster topol-
ogy setup times in comparison to most open-source network
emulators, when using the same underlying virtualization tech-
nologies. Figure 7 present the topology setup time of a simple
topology realized using NES and two popular emulators that
support a subset of the same underlying tools as NES: Mininet
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Fig. 7. Star topology startup time with NES, Mininet, and ContainerNet

(namespaces) and ContainerNet (Docker containers). Each
experiment creates a star topology, depicted in Figure 6, for
a varying number of star branches and Figure 7 presents
the total topology creation time for each configuration. As
netlink-based nodes are not benefited by the parallelism
brought about by the NES lifecycle model, the NES topology
instantiation is only marginally faster than Mininet, which
uses network namespaces. However, the NES lifecycle model
can achieve increased parallelization when instatiating docker-
based topologies and outperforms ContainerNet.

1 {{ range .Nodes }}
2 {{if (ne .ID 0) }}
3 ping -c 1 {{ (index .Iface 0).IP }}
4 {{end}}
5 {{ end }}

Listing 3. A basic ’PingAll’ NEScript

Given the extensive feature set of NES, having comparative
or improved performance over other popular platforms is
significant. It also shows how automation-focused features can
be added with little impact on the overall performance, and
in some cases actually improves key performance metrics.
However, the components of NES that enable this automation
can incur performance costs. For example, the scripting system
(NEScript) used in NES node hooks and tests has to be
compiled whilst the emulation session is underway in order
to use dynamic topology data. One specific example is the
PingAll script, where a node pings all other nodes in the
topology. Listing 3 shows what such a NEScript looks like
prior to being compiled by the Go text template system.
Fortunately, this cost is remarkably low even when dealing
with large sets of data. Figure 8 shows the cost of compiling
the PingAll script with a data set of varying size, both with
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Fig. 8. Impact of dataset size on compile time of ’PingAll’ NEScript

and with the self-check if statement. Whilst this can give
insight to the compilation cost of each operation, it generally
demonstrates a very low cost, even with very large data sets.

B. Testing Automation Evaluation

To show how NES can integrate the benefits of network
emulation into autonomous workflows, we present a testing
framework for a network service. The network design is from
the source code of ContainerNet and consists of a simple
Service Function Chain (SFC) containing several clients, a
proxy, a firewall, an IDS, an OpenFlow switch and a controller,
and a web content server. ContainerNet uses this topology as
a tutorial to demonstrate how experimenters can performs a
series of connectivity and performance test from the user nodes
via the interactive CLIs. In this section, we present a NES
configuration that can create a similar topology and perform
automated tests in a hosted CI environment.

1 nodes:
2 - name: "client1"
3 appliance: "namespace"
4 host: local
5 interfaces:
6 - "h1eth0"
7 - name: "s1"
8 appliance: "ovs"
9 ...

10 - name: "proxy"
11 appliance: "docker"
12 config:
13 image: "ubuntu/squid"
14 ...
15 - name: "client2"
16 ...
17 hooks:
18 post_start: #add httpie,hping3 via nescript
19 links:
20 - type: "veth"
21 interfaces:
22 h1eth0:
23 hw: "72:A6:A3:69:AD:54"
24 ip: "10.0.0.1"
25 ...

Listing 4. NES Topology Definition Example

Firstly, to create the topology in NES, we define the nodes
and links in the YAML format as shown abridged in Listing 4.
However, as many cloud CI environments, particularly hosted
ones, do not have nested virtualization support, we adapt
the ContainerNet scenario. In order to fully instantiate the
topology in GitHub Actions, we replace LibVirt nodes with
equivalent Docker container nodes. The resulting Github Ac-
tion configuration uses the Docker-in-Docker NES image, and



the same environment can run both in the cloud environment
and in a local host. Here it is also worth noting, that thanks to
the parallelized startup of nodes in NES, the topology instanti-
ation time is reduced compared to ContainerNet, a particularly
useful metric in pay-per-minute hosted CI platforms.

With the topology defined, the tests can now be added to the
same topology file, coupled with the relevant NEScripts along-
side. Defining these tests in NES is trivial, simply requiring a
name, a list of nodes to execute the tests from, the NEScript to
execute, and a set of expressions that will be used to evaluate
the success or failure of the test. For this demonstration, the
topology is tested by checking the HTTP response from the
web content server from the clients, ensuring HTTP status
OK is returned, and testing the firewall by sending packets
that should be blocked, in this case ICMP. Listing 5 shows
how these tests are added to the topology file, and Listing 6
shows the NEScript that can be used in order to get the HTTP
status code of the web server from any client in the topology.

1 tests:
2 - name: "curl web server"
3 nodes:
4 - "client1"
5 - "client2"
6 script: # curl web server and store status
7 expressions:
8 - "status == 200"
9 - name: "test firewall"

10 nodes: ["client1"]
11 script: | # send known blocked packets (icmp)
12 expressions:
13 - "packet_loss == 100"

Listing 5. NES Tests Definition Example

1 status=$(curl --silent \
2 --output /dev/null \
3 --write-out "%{http_code}" \
4 {{ Nodes.Server.IP }} )
5 echo "::set-output name=status type=int::"$status

Listing 6. NEScript to capture HTTP status code

Once the topology file and scripts for the experiment have
been created, these can be mounted to the NES Docker-in-
Docker image in order to be executed. The resulting container
is used in a GitHub actions file and pushed to a remote
repository. Provided the test is successful, the action will pass.
However, if the test fails for any reason, NES outputs a non-
zero exit code so most hosted CI platforms will consider
the run failed. More information regarding test failure is
outputted in the logs. This action can be associated with a
repository events such as a push, tag, or release, and during
service changes (e.g., modify the OpenFlow controller code
or the proxy configuration) the emulation-based test will
automatically execute and show the results. This example use
case requires a report 7 seconds to instatiate the test topology
and run tests on GitHub actions, with NES itself reporting
4.6 seconds to create the topology and 0.95 seconds to run
and evaluate the tests. Although introducing more resource-
intensive nodes, or even scaling up the size of the topology
may increase the required time, the overall execution time is
well within the norm for a CI pipeline, especially considering

other tests can be run in parallel, such as style checking and
unit tests.

VI. CONCLUSION

Network programmability has drastically evolved the opera-
tional capabilities of network infrastructures. Network emula-
tion has emerged as a key technology to improve operational
assurances in new automated and autonomic network man-
agement paradigms. Unfortunately, existing emulation-based
experimentation platforms have not kept abreast with the
need for cloud-native, API-driven and automated operational
requirements. NES is a network emulation platform, with
built-in support for heterogeneous network topologies and
experimental automation, beyond topology creation. A key
approach to improve experimental automation is the definition
of an extensible life-cycle model for experimental components
which can capture complex node interdependencies and topol-
ogy events. Furthermore, NEScript hooks and tests leverage
dynamic topology data to allow for well-defined and repeatable
automated emulation workflows, all whilst keeping the scope
of script capabilities wide. Although NES shares many of
the same network virtualization technologies with existing
emulation platforms, its ability to parallelize experimental
execution provides improved scalability and fast experiment
completion times. Changes to the current toolstack such as
these are necessary for the growing autonomy of modern
networking workflows, from NetDevOps practices to fully
autonomous updates via intent-based networking.

In terms of future development, we intend to implement
additional plugins that integrate NES with advanced manage-
ment APIs, including OpenStack and Kubernetes, to support
the deployment of complex topologies. This would allow NES
to increase topology fidelity and even incorporate some com-
ponents of production-like infrastructure, where the context is
appropriate. Furthermore, to improve experimental efficiency
we plan to explore how node, test and link dependencies
can be utilized to assist experimental scheduling and resource
allocation mechanisms. For example, NES can schedule inter-
connected nodes on cores that belong to the same CPU socket,
that reducing the impact of NUMA architectures on experi-
mental performance and reduce noise neighbor effects. Finally,
although using hosted CI environments such as GitHub Ac-
tions and GitLab CI can be a quick and easy way to begin
adopting modernized software workflows, the platforms often
have limits such as job co-location and nested virtualization
limits. However, having a multi-tenant NES server would
allow NES to operate as its own job manager and be hosted
elsewhere, thus bypassing the prior mentioned limitations.
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