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Abstract—Induction motors (IMs) are used extensively as 
driving actuators in electric vehicles. Motor rotors are prone to 
defects in the die casting procedure, which can significantly 
reduce the production quality. Benefitting from the development 
of Internet of things (IoT) techniques and edge computing, this 
study designed an instrumentation system for the fast inspection 
of rotor defects to meet the objectives of efficient and high-quality 
rotor production. First, an electromagnetic sensing device is 
designed to acquire the induced voltage signal of the rotor under 
investigation. Second, a residual multiscale feature fusion 
convolutional neural network model is designed to extract the 
hierarchical features of the signal, to facilitate defect recognition. 
The developed algorithm is deployed into a cost-effective edge 
computing node that includes a signal acquisition circuit and a 
Raspberry Pi microcontroller. The conducted experimental 
studies show that this implementation can achieve an inference 
time of less than 200 ms and accuracy of more than 99 %. It is 
shown that the designed system exhibits superior performance 
when compared with conventional methods. The developed, 
compact and flexible handheld solution with enhanced deep 
learning techniques shows outstanding potential for use in 
real-time rotor defect detection. 

Index Terms—IM, rotor defect detection, IoT, multiscale 
feature fusion, convolutional neural network, edge computing 

I. INTRODUCTION

LL seem highly concerned about and value resource 
conservation and carbon reduction; thus, the electric 
vehicle (EV) industry is rapidly flooding the market [1, 

2]. The pivotal components of an EV are the drive motors, 
among which induction motors (IMs) are the most widely used 
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[3]. The motor rotor, as the key component in an IM, 
considerably affects the performance and efficiency of the IM 
[4]. Die casting is a mainstream production process of IM rotors. 
As the die cast rotor goes through a complex manufacturing 
process, multiple defects could occur/emerge in the rotor bars 
during production, such as porosity and destruction [5], which 
will result in low yield and must be detected in a timely manner. 
Thus, methods for accurate evaluation of rotor quality are 
necessary, and considerable research has been devoted to the 
detection of rotor faults [6].  

Deep learning (DL) techniques are widely employed in fault 
diagnosis [7]. For instance, Shao et al. presented a framework 
based on an improved convolutional neural network (CNN) 
with transfer learning for fault diagnosis of rotor bearing 
systems under different operating conditions [8]. Jiao et al. put 
forward a new CNN for intelligent diagnosis using 
complementary data to integrate information fusion, feature 
extraction and fault classification [9]. Liu et al. proposed a new 
fault diagnosis framework based on the characteristics of 
industrial vibration signals, which they used a novel dislocated 
time series CNN. This model is designed to extract the 
relationship between signals at various intervals in periodic 
mechanical signals, which overcame the disadvantages of 
conventional CNNs. This approach is appropriate for modern 
electrical machines, especially under nonstationary conditions 
[10]. Xiao et al. firstly took cross-domain case from simulation 
domain to experimental domain into consideration, and 
developed promising joint adaptation network, which 
contributes to unsupervised transfer fault diagnosis [11]. Wang 
et al. exploited a novel convolutional deep belief network, 
which is applicable to fault diagnosis [12].  

 The mentioned methods represent a certain contribution in 
fault diagnosis. However, most of the available methods are 
employed to handle offline data and are conducted on desktops 
or servers. Many practical industry applications, such as quality 
inspection of die cast rotors require real-time performance and 
convenience. Most of the existing deep learning-based methods 
are incapable of acceptable performance and should be further 
improved. 

With the rise of Internet of things (IoT), many of IoT 
techniques are used in different fields (eg., 5G [13], unmanned 
aerial vehicle [14], and fault diagnosis [15-19]). Meanwhile, 
edge computing is a new computing paradigm that enables fast 
detection through the deployment of algorithms that are 
embedded in distributed nodes [20]. Hence, the data 
transmitted and preprocessed by IoT techniques can be 
conducted by edge computing, and combined with DL models 
to realize high efficiency detection [21-24]. 
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In light of the presented discussion, the present study 
introduced an approach that incorporates DL models and edge 
computing to achieve real-time rotor defect detection (RDD), 
focusing on factory application. The main process of the 
proposed method is as follows: 1) a sensor is designed for an 
IM stator to output the induced voltage signals, 2) an embedded 
system is designed for the data acquisition and transmission, 3) 
data pretreatment is conducted, and 4) a designed CNN model 
that is trained on a desktop with offline data is used to process 
the online signals on a Raspberry Pi microcontroller, producing 
the quality inspection result of the motor.  

The novelty and primary contributions of the present study 
are the following. 1) A new sensor is designed based on an IM 
stator to output the induced voltage signals by directly changing 
the wiring method of the three-phase winding, which 
substantially simplifies the detection process. A sensing 
approach that is of low cost and handy for industry 
implementation. 2) A residual multiscale feature fusion CNN 
(RMFFCNN) model is designed to extract distinct and 
hierarchical features from the sensor signals. Besides high 
recognition accuracy, this DL model has benefits including fast 
convergence in training, suitability for limited training samples, 
and good anti-noise capacity. 3) The design of a compact 
system, including a microcontroller unit (MCU) and an 
analog-to-digital converter (ADC), which are used for the data 
acquisition and transmission, and a Raspberry Pi used as the 
platform for the CNN model. The developed solution is 
demonstrated to exhibit high accuracy, flexibility, 
cost-effectiveness, and efficiency and is superior to 
state-of-the-art methods that typically include complex signal 
sensing and large machine learning models. 

The remaining sections of the present paper are organized as 
shown below. Section II introduces the designed sensor, the 
designed embedded system, and the experimental rotors. 
Section III introduces the novel RMFFCNN model and the 
edge computing framework. Section IV presents the results of 
the RMFFCNN training and real-time RDD. Section V 
compares the developed method with existing methods. Section 
VI discusses the research trends and future works. Finally, 
Section VII provides the conclusion. 

II. HARDWARE DESIGN AND EXPERIMENTAL ROTORS

In the present section, the sensor and the embedded system, 
which are designed in the present work, and the nine IM rotors 
that are used in the experiments are described, to demonstrate 
the system design and the experimental setup. 

A. Designed Sensor

The sensor that is designed in the present work is based on an
IM stator, as shown in Fig. 1(a), in which the IM stator is 
converted directly into an electromagnetic sensor [25]. 
Different from the traditional techniques of wiring and 
electrification of the stator windings, where the rotor windings 
are not externally excited [3], the innovative wiring method is 
depicted in Fig. 1(b). Phases A and B are powered by a constant 
DC voltage to provide a constant magnetic field to the sensor, 
as in a synchronous motor. When the rotor spins to intercept the 
magnetic field in the sensor, an induced voltage Us,c is caused in 
phase C according to the principle of electromagnetic induction. 

The induced voltage signal Us,c is used as the sensed signal. The 
designed sensor is simple and convenient, and presents 
considerable potential in real-time RDD for practical industry 
application. Note: A Hall effect sensor may be used as well as 
for the present purpose [3]. 

(a) (b)AC Output

A1 C2 B1 A2 C1 B2

Fig. 1. The designed sensor based on (a) IM stator; (b) wiring of the sensor. 

B. Experimental Setup and Edge Computing Node

The designed hardware devices are displayed in Fig. 2.
Besides the designed sensor for generating the rotor detection 
signal, an embedded system is designed to implement real-time 
CNN inference, including an ADC (AD7606, Analog Devices, 
Inc.), an MCU (STM32H7, STMicroelectronics, Inc.), and a 
single-board microcomputer (SBC) (Raspberry Pi 4 Model B, 
Element14, Inc.) A 22.5-inch LCD monitor connected to the 
SBC via a micro-HDMI port is used to show the real-time 
results. A laptop serves as the host, and is used to store the 
experimental data and results that are unnecessary in real-time 
RDD. 
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touch 
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LaptopSTM32H7AD7606

Drive motorIM
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LCD
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The embedded system SBC

Fig. 2. Experimental setup. 

First, the drive motor rotates the rotor that is attached by a 
mechanical coupling, and a servo motor controller is used to 
control the speed of the rotor rotation. The sensor is powered at 
30 V by a regulated DC power supply. The induced voltage 
signal Us,c that is generated in the designed sensor is then 
real-time sampled by the ADC. Second, the MCU is used for 
acquiring and transmitting the signals to the SBC. Specifically, 
the ADC is controlled by the MCU, for accurate setting of the 
real-time period. In the present manner, the SBC is involved in 
real-time operation. In the present study, the sampling 
frequency is initially configured to 200 kHz. Finally, the 
designed CNN model is utilized to handle the induced voltage 
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signal on the SBC. When the real-time input data are processed, 
the results are immediately displayed on the LCD monitor. 
Universal synchronous asynchronous receiver transmitters are 
used for the communication between the SBC, the MCU, and 
the laptop. The STM32H7, the AD7606, and the SBC are 
powered at +3.3 +5 V, and +5 V, respectively. In addition, the 
Raspberry Pi may be controlled by the desktop visual interface 
through Windows Remote Desktop Connection. The entire 
system possesses the simplicity and flexibility of the design, 
which is particularly appropriate in real-time RDD in practical 
applications. 

C. Experimental Rotors

The IM parameters in the experiment are presented in Table I,
and the nine IM rotors used are depicted in Fig. 3. The different 
types of defects of rotors include those that are healthy, those 
with various degrees of porosity faults, and those with various 
degrees of broken bar faults. The rotor faults are created as 
follows. 1) The rotor porosity defect is manufactured by 
drilling a hole in the rotor bar using a drilling machine. The 
hold does not disconnect the entire rotor bar, allowing the 
current to run through the rotor bar. The degree of rotor 
porosity defect is indicated by the number of holes. 2) The rotor 
with broken bar is manufactured by drilling hole whose 
dimension is larger than that of the bar, which leads to the rotor 
bar being completely broken. Thus, the entire rotor bar 
becomes open-circuit connection. The degree of rotor broken 
bar defect is also indicated by the number of drilled holes. This 
configuration can simulate the actual rotor defects. In the 
present study, the corresponding rotor faults are labeled 0–8 as 
shown in Fig. 3. 

TABLE I 
IM PARAMETERS 

No. of 
phases

Rated 
power (W) 

Rated voltage 
(VAC) 

Rated 
current (A) 

3 90 380 0.39

Health
(0)

Low-
porosity

(1)

High-
porosity

(2)

1-hole
broken

(3)

2-hole
broken

(4)

3-hole
broken

(5)

2-bar 
broken

(6)

3-bar 
broken

(7)

4-bar 
broken

(8)

Fig. 3. Experimental IM rotors. 

III. PROPOSED ALGORITHMS FOR REAL-TIME RDD

In the present study, a novel data pretreatment method is 
adopted before subjecting to CNN training, to reduce the 
redundancy, prevent overfitting, enhance the robustness, and 
improve the classification accuracy. In addition, the novel 
RMFFCNN method and edge computing framework are 
presented. 

A. Induced Voltage Signal Pretreatment

The signal pretreatment process is shown in Fig. 4. The
initial induced voltage Us,c waveforms collected from the data 
acquisition system are shown in Fig. 5. The rotors include a 

healthy rotor and defect ones with different fault degrees. 
Obviously, the time domain features of Us,c, such as the 
amplitude and the shape, differ for the various rotor defect. The 
oscillation modes of the signals are also different, indicating 
that the signal features are located at different scales on 
frequency domain. 

Input 
images

Generated 
images

 Initial 
data

Dataset
Feature 

extraction Kurtosis 
data

Image 
enhancement

Fig. 4. Flowchart of signal pretreatment. 

The induced voltage signal from the IM is discretized as 
follows: 

[ ]KU n    (1) 

where n = 1,2, ..., Nk, and Nk is the number of samples. Then, 
kurtosis is extracted from the initial data. This method can 
obtain a reasonable data processing effect based on multiple 
experimental results. The kurtosis UK may be expressed as 
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where xi is the signal value, x is the average value of the signal 
values. N is the number of signals used. σt is the standard 
deviation. In this present study, a kurtosis is taken for every five 
data points (N = 5). 
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Fig. 5. Initial induced voltage waveforms.  

Second, the three-dimensional (3D) kurtosis data is obtained 
by duplicating the one-dimensional (1D) kurtosis data, and the 
3D kurtosis data are transformed into the two-dimensional 
matrix of a three-channel image, which can be expressed as 

( , ,1) [ ( 1) ]

( , , 2) [ ( 1) ]

( , ,3) [ ( 1) ]

K K

K K

K K

U i j u p j q i

U i j u p y q i

U i j u p y q i

    
     
     

   (3) 

in which i =1, 2, ..., q (q are the numbers of rows in the 
two-dimensional matrix); j = 1, 2, ..., n (n are the numbers of 
columns in the two-dimensional matrix); and p is the location 
of the stochastically chosen preliminary point. With the 
two-dimensional matrix acquired, its values are mapped to 
numbers in the range between 0 and 255 to make the image, 
which are expressed as 

( , , ) min( (:,:, ))
( , , ) 255

max( (:,:, )) min( (:,:, ))
K K

K
K K

U u v w U w
U u v w

U w U w


 


(4)
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where w = 1,2,3. The generated images of the nine experimental 
IM rotors are shown in Fig. 6, in which either slight or 
significant differences can be observed between the different 
fault type images. The white dots dispersed in the black 
background have different distributed modes for different types 
of defects. The dense or sparse levels of the white dots indicate 
that the images present multi-scale features. Hence, a 
multi-scale feature fusion approach is investigated to 
effectively extract the image features and pave the way for 
high-accuracy RDD. In the present study, the size of each 
image is set to 28 × 28 pixels, consisting of 3,920 induced 
voltage signal lengths. 

Health

Porosity

Broken bar
(single bar)

Broken bar
(multiple bars)

Fault types

Fault degree

Low High

Fig. 6. Generated images of the nine experimental rotors. 

Third, as the generated images have the characteristics of a 
small amount of information and a simple information 
distribution, scaling and translation transformation methods are 
used to process the generated images, address the problem of 
network overfitting and resist the interference caused by 
external factors of the front sensor. Hence, four times scaling 
and translation transformation is applied to each generated 
image to obtain the input images, which are shown in Figs. 
7(a)–(d). It can be noticed that the generated image is zoomed 

and shifted after processing. This method can further expand 
the dataset and strengthen the robustness of the network.

(a)

(c)

(b)

(d)
Original image

Four times scaling and 
translation transform

Fig. 7. Four times scaling and translation transformation of the generated 
image. 

B. RMFFCNN

In view of the features of the input images and the limited
computing resources of the designed embedded system, the 
RMFFCNN based on a residual structure and multiscale feature 
fusion is designed. The main structure of the module consists of 
1) multiscale feature fusion and 2) a residual structure
consisting of mixed features and the shortcut, which differs
from existing methods that use only multiscale feature fusion in
the input layer. The residual structure lacks a deep integration
with the other structures; thus, its performance cannot be fully
exploited. The RMFFCNN performs multiscale feature fusion
in the input layer, innovatively uses multiscale feature fusion as
the basic unit that is constituted in the network, and combines
multiscale feature fusion with the residual structure to form the
hidden layer of the network. This can considerably improve the
diversity and parameter utilization of the convolutional kernel,
reduce the training difficulty of the network parameters, and
further enhance the RMFFCNN performance. The construction
of the RMFFCNN is described in Fig. 8. This model is
primarily comprised of three parts, introduced as follows.

Scale1

Scale2

Scale5

+

Shortcut

Module2 Maxpooling Block2 Block3

Dense

Output
Input

Module 
input

Feature
1

Module 
output

Filter
1

Filter
3

Filter
2

Conv

Conv

Scale4

Scale3 Feature
2

Feature
3

Conv

Residual 
feature 
fusion

Module1

Block1Multiscale feature fusion

Fig. 8. RMFFCNN architecture. 

1) The input layer is the first part, where multiscale feature
fusion is conducted. Multiscale feature fusion provides a 
solution to the low hardware efficiency problem for no uniform 
sparse data computation by using convolutional kernels of 
different sizes to extract the target features from different scales 
of the receptive domain [26]. This layer has a relatively wide 
network width and uses a large convolutional kernel size, 
which is expressed as 

   *i i i
j ms j ms jx f k x b      (5) 

 concat ( ) (1, 2, 5), (1, 2)i
ms j msy x i j    (6) 

where σi 
j (ꞏ) is the ith channel output on the jth scale, bi 

j  is the 
corresponding bias, “*” is the convolution operation, xms is the 
input of the multiscale feature mixing layer, yms is the output of 
the multiscale feature mixing layer, k i 

j  represents the jth 
convolution kernel on the ith scale. In addition, f(ꞏ) represents 
the activation function, and it is a ReLU function when not 
specified otherwise throughout the RMFFCNN, and concat{ꞏ} 
is the matrix splicing operation. 
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2) The hidden layer is based on the residual structure and the 
feature fusion structure. The essence of a residual connection is 
mapping shallow features directly on the deep features in the 
network structure, which is a well-established solution to the 
problem of the recognition accuracy not increasing with the 
deepening of the number of layers in the network and 
computational resources being consumed, vanishing gradient, 
and exacerbated overfitting [27]. The module is the basic unit 
of the hidden layer, multiple modules constitute a block after 
the maximum pool operation, and the hidden layer is composed 
of multiple blocks according to the modular design idea, which 
may be expressed as [28] 

 , , , , ,concat ( ) 1 ,0m m i m m m
h l h l j h l h l h ly x x i I j J       (7) 

 ,maxpoolingb m
h h Ly y   (8) 

where ym 
h,l is the output of the lth module in the hth block, l is 

between the interval (1, Lh), Lh is the maximum number of 
modules in the hth block, ym 

h,L is the output of the last module in 
the block, yb 

h  is the output of the hth block, h is between the 
interval (1, H), H is the maximum value of the number of 
blocks, xm 

h,l is the input of the lth module in the hth block, Im 
h,l is 

the number of features of the different scales in the lth module 
of the hth block, Jm 

h,l is the total number of channels in the 
features mixing in the lth module in the hth block, and 
maxpooling{ꞏ} is the maximum pooling operation. 

3) The output layer is fully connected to the hidden layer in
order to output a probability vector as the prediction result, by 
expanding the convolution result into a 1D vector and 
activating the output, expressed as 

 0 flatten b
Hx y   (9) 

0softmax( ( ))y f wx b     (10) 

where yb 
H is the output of the last layer of the network block, 

flatten {ꞏ- indicates the expansion of the output tensor of the 
hidden layer into a 1D vector, b is the corresponding bias, x0 is 
the input of the output layer, w is the weight of the output layer, 
and y is the final output of the network obtained after activation 
by the softmax function. Additionally, Module 2 has the same 
structure as Module 1, but with different model parameters. The 
detailed configuration parameters of the whole network are 
illustrated in Table II, in which ‘1×1’, ‘2×2’,…, represent the 
size of the convolution kernels. ‘3×3 reduce’ and ‘5×5 reduce’ 
stand for the number of 1×1 filters in the reduction layer used 
before ‘3×3’ and ‘5×5’ convolutions, respectively. ‘10976FC’ 

and ‘9FC’ represent that the number of fully connected neurons 
are 10976 and 9, respectively.  

The pseudo code for implementation of the proposed 
RMFFCNN model is shown in Algorithm 1. Steps 1-18 show 
the creation process of the Module. Firstly, the input tensor is 
operated differently for 4 paths, and then it is connected to the 
input for residuals. The output is generated after maximum 
pooling and normalization. Steps 19-31 show the forward 
propagation process of the whole network. Firstly, multi-scale 
feature extraction is conducted from the input data, and then the 
data stream is processed by several Modules. Finally, the 3D 
tensor is expanded into a 1D tensor, and then mapped to a 
classification probability vector and output. This paper adopts a 
modular engineering idea to combine the residual and 
multi-scale feature extraction structures into code blocks. Such 
an architecture provides feasibility to adjust the model size for 
implementing onto the edge computing nodes with different 
computing power and storage resources, thereby improving the 
model robustness and engineering applicability. 
Algorithm 1 

Pseudo code for the RMFFCNN model 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 

// Module of the model 
Procedure Module(input): 

pathway1 ← Conv2D (filter = 1×1, input) 
pathway1 ← Relu(pathway1) 
pathway2 ← Conv2D (filter = 1×1, input) 
pathway2 ← Conv2D (filter = 3×3, pathway2) 
pathway2 ← Relu (pathway2) 
pathway3 ← Conv2D (filter = 1×1, input) 
pathway3 ← Conv2D (filter = 5×5, pathway3) 
pathway3 ← Relu (pathway3) 
Pathway4 ← MaxPooling2D (size = 3×3, input) 
Pathway4 ← Conv2D (filter = 1×1, pathway 4) 
pathway4 ← Relu (pathway4) 
// Residual connections to the merge matrix of all paths 
Mout ← input + Concat{pathway1, pathway2, pathway3, pathway4} 
Mout ← MaxPooling (size = 3×3, Mout) 
Mout ← BatchNormalization (Mout) 

Return Mout 
// Input: Initialize a placeholder with the shape (28, 28, 3) 
// Multiscale feature fusion 
for i=1: N do 

i N  , // Multi-scale feature extraction using different N kernels 
outi ← Conv2D (filter = i×i, input) 
outi ← Relu (outi) 

end for 
out ← Concat{out1, out2, ..., outN},  

// The data flow executes step 2~18 repeatedly 
// Expanding a 3D tensor into a 1D vector 
out1D←Flatten(out3D) 
// Mapping to classification vector through full connection layer 
outmodel←Dense (out1D) 

TABLE II 
PARAMETERS OF RMFFCNN CONFIGURATION 

Type 1×1 2×2 3×3 reduce 3×3 4×4 5×5 reduce 5×5 
Input layer 2 2 Null 2 2 Null 2 

Block-1
B1-Module1 16 Null 24 32 Null 4 8 
B1-Module 2 16 Null 24 32 Null 4 8 

Block-2
B2-Module 1 32 Null 48 64 Null 8 16 
B2-Module 2 32 Null 48 64 Null 8 16 
B2-Module 3 32 Null 48 64 Null 8 16 

Block-3
B3-Module 1 64 Null 96 128 Null 16 32 
B3-Module 2 64 Null 96 128 Null 13 32 

Flatten 
Linear 10976FC 

Softmax 9FC 
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C. Edge Computing Framework 

The edge computing framework for real-time RDD includes 
RMFFCNN training and real-time inference, which is depicted 
in Fig. 9. First, the training of RMFFCNN is carried out on a 
configured desktop computer to minimize the computational 
time, as shown in the middle part of Fig. 9. Then, a well-trained 
RMFFCNN is obtained from the training, and the offline data 
are used for validation before the real-time RDD. Finally, the 
validated RMFFCNN model is deployed into the SBC, to 
conduct the real-time RDD. Second, numerous sampling points 
generated in the designed sensor are acquired and transmitted 
by the data acquisition and transmission equipment (ADC and 
MCU) and finally, to the Raspberry Pi. 

Next, the induced voltage signals are preprocessed to obtain 
the input images, as mentioned in the previous section. The 
images are processed by the RMFFCNN model on the 
Raspberry Pi for real-time RDD, as shown in the bottom part of 
Fig. 9. The training of RMFFCNN and real-time inference are 
carried out on the Keras platform using Python, which is 
displayed in the upper right hand part of Fig. 9. This approach 
combines different software (Windows and Linux) and 
hardware (x64 CPUs and ARM CPUs) to achieve versatility 
and interoperability in edge computing [29], which is suitable 
for real-time RDD in an industrial production line. 
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Fig. 9. Edge computing framework. 

IV. EFFECTIVENESS VALIDATION

In this section, RMFFCNN training, validation, and testing 
are conducted using offline signals. In addition, the RMFFCNN 
is executed on the Raspberry Pi to handle the online signals that 
are acquired and transmitted by the embedded system, to 
achieve real-time RDD. 

A. RMFFCNN Training, Validation, and Testing

A total of 20,000 images without overlaps are generated
from the acquired induced voltage signals for each rotor defect 
fault. That is, a total of 180,000 offline images are used for the 
RMFFCNN training, validation, and testing, with a ratio of 
6:2:2, on the desktop computer. In this study, the batch size is 
set as 32 after many repeated experiments. The optimal batch 
size may change depending on the hardware, such as different 
CPUs and GPUs. The training trends of the RMFFCNN model 
are illustrated in Fig. 10, and Table III displays the training, 
validation, and testing accuracy. It can be concluded that the 

RMFFCNN has a fast convergence speed and high 
classification accuracy.  

TABLE III 
TRAINING, VALIDATION, AND TESTING ACCURACIES 

Method 
Training 

accuracy (%) 
Validation 

accuracy (%) 
Testing 

Accuracy (%) 
RMFFCNN 100.00 100.00 99.69 
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Fig. 10. RMFFCNN training accuracy and loss curves. 

B. Real-time Inference in Edge Computing Node

The files generated by the RMFFCNN model are replicated
and stored on the SD memory card of the embedded system. 
Next, real-time inference is realized in the designed embedded 
system under the edge computing framework as described in 
Section III. C. When the real-time inference is completed, the 
results are immediately displayed on the LCD monitor. 
Subsequently, 4,000 images for each fault type are collected 
and processed in real-time for real-time inference, and the 
classification accuracy of each category is calculated and 
analyzed, as shown in Fig. 11. All the predicted rotor defect 
types are corresponded to the actual ones, and the overall 
probability of nine defect types is higher than 99 %. 
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Fig. 11. The confusion matrix of the RMFFCNN model for real-time inference. 

V. PERFORMANCE EVALUATION

The performance of the proposed method in real-time RDD 
applications is affected by the instrument system, DL model, 
and edge computing platform. To further demonstrate the 
superiority of the proposed method in these three aspects, a 
comparison among the proposed method and state-of-the-art 
methods is carried out. 
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< 
Introduction of Comparative Methods
The comparative methods are briefly introduced as shown 

below. 
The first one is the convolutional attention neural network 

(CANN) method [30]. This method proposed by Tran et al. 
achieved higher fault diagnosis accuracy for IM diagnosis by 
combining the continuous wavelet transform with a CANN 
model. 

The second one is the Enhanced CNN (ECNN) method that 
is implemented on an embedded system for real time motor 
fault diagnosis [29]. Specially, the performance on embedded 
systems is compared between the proposed method and ECNN 
method. 

GoogLeNet model in Ref. [31] developed an inception 
structure and the concept of feature fusion, and it is used in a 
broad range of fields. GoogLeNet model is compared with the 
RMFFCNN in the present work, to explore the influence of the 
residual structure on the performance of the feature fusion 
structure. 

AlexNet model in Ref. [32] proposed a regularization 
method called dropout. The method, which is a typical image 
recognition technique and widely applied in fault diagnosis, 
demonstrates excellent network performance. 

ResNet model in Ref. [27] first introduced the residual 
structure. To be as close as possible to the parameters of the 
RMFFCNN model, ResNet18 is used as a comparison network 
to explore the effect of the residual structure on the 
performance of the feature fusion structure. 

B. Effects of the DL Models on Classification Accuracy

1) Training and Testing Performance
The training and testing procedures of the six methods are

the same as those presented in previous section. The training 
results of the six methods for the first epoch are displayed in Fig. 
12. It can be shown that among the six methods, the proposed
method demonstrates the highest training accuracy. To further
examine the performances of different DL models, 10
independent tests are conducted and the average testing
accuracies are calculated as shown in Fig. 13. It can be seen that
the proposed method has the highest average testing accuracy
(96.64%) and the lowest standard deviation when compared
with the other methods, thereby demonstrating excellent
recognition accuracy and stability of the RMFFCNN model.
2) Effects of Training Samples Number and Noise Interference

When edge computing devices process large amounts of data,
edge devices can increase device latency, energy consumption, 
and reduce system reliability [33]. Therefore, it is necessary for 
models deployed in edge devices to use fewer data to achieve 
high classification accuracy. To explore the influence of the 
dataset size on the methods and further demonstrate whether 
the proposed method can achieve relatively high classification 
accuracy by using less data, different numbers of training 
samples including 108000, 19200, 16000, 12800, and 9600, are 
used in the independent experiment. The experimental results 
are shown in the 2nd to 6th columns in Table IV. It is obvious 
that, compared with the other methods, the proposed method 
has reached the highest fault identification accuracy in each 
dataset. Moreover, GoogLeNet, AlexNet, and ResNet18 are 
hardly able to complete the convergence, owing to the large 
number of parameters and layers. Hence, it can be summarized 

that the proposed method exhibits outstanding performance and 
can achieve relatively high classification accuracy by using less 
data, thereby meeting the requirements of edge computing 
solutions. 
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Fig. 12. Training accuracy of six methods for the first epoch. 
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Fig. 13. Average accuracy and standard deviation of the six methods. 

In practice, the signals are easily corrupted by the 
background noise especially in rotor production line. Given this, 
the anti-noise performance of different methods is also tested 
by adding external interference noise. In practical factory 
settings, the interference noise is typically a time-varying signal. 
Therefore, to effectively simulate real-noise interference for 
real-time RDD, salt-and-pepper noise is added to the dataset, 
which can be expressed as  

255,

,

~ (0,1)

ij
ij

seed Den
y

x seed Den

seed U

 
   




 (11) 

where xij represents the elements of ith row and jth column in 
the input matrix before noise is added; yij represents the 
elements of ith row and jth column in the output matrix after 
noise is added; Den represents the noise density, that is, the 
proportion of white noise points in the image; and seed 
represents random numbers that conform to the uniform 
distribution within the interval (0, 1). 

In the experiments, the noises with different intensities 
respect to the normalized image magnitude are injected into the 
training samples. The testing accuracies under different noise 
intensities are summarized in the 7th to 11th columns in Table IV. 
It can be seen that the overall testing accuracy decreases with 
the increase of noise intensity. Nevertheless, the proposed 
method still maintains the highest accuracy as compared with 
the other methods. This result demonstrates that the proposed 
method has high anti-noise capacity and robustness, which will 
be beneficial to practical applications. 

The proposed RMFFCNN model combines the residual 
structure and multi-scale feature fusion mechanism. The 
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hierarchical features are extracted simultaneously by adding 
convolutional kernels with different scales. In addition, the 
residual structure further increases the generalization and 
robustness of the model, and effectively alleviates the gradient 
explosion and training overfitting problems caused by the 

increased number of layers. The combination of multi-scale 
feature extraction and residual structure finally improves the 
recognition accuracy, model stability, and robustness. 

TABLE IV 
TESTING ACCURACY FOR DIFFERENT TRAINING SAMPLES NUMBER AND NOISE INTENSITY 

Method
C = 108000 
δ = 0 

C = 19200 
δ = 0 

C = 16000 
δ = 0 

C = 12800 
δ = 0 

C = 9600 
δ = 0 

C = 108000 
δ = 0.02 

C = 108000 
δ = 0.04 

C = 108000 
δ = 0.06 

C = 108000 
δ = 0.08 

C = 108000 
δ = 0.10 

Proposed 96.64 94.14 92.44 90.82 89.43 87.31 85.32 84.87 84.25 83.97 
CANN 94.42 89.03 76.24 60.33 52.32 84.89 83.26 81.37 78.65 73.53 
ECNN 87.58 86.93 73.89 74.06 73.60 79.29 78.84 76.52 66.27 63.68 

GoogLeNet 88.86 66.80 70.04 61.55 51.59 84.14 83.81 79.18 78.58 75.19 
AlexNet 75.60 87.20 81.30 80.14 78.24 33.53 25.07 23.12 22.71 21.58 

ResNet18 74.94 85.59 85.54 80.62 78.66 82.75 71.12 66.46 58.42 57.38 
C is the number of training samples, δ is the noise intensity 

C. Effects of Model Size and Computing Time on Edge
Computing Platform

With the development of semiconductor technology, the 
computing capacity of edge computing nodes improves rapidly 
in recent years. RDD can be realized by implementing the DL 
models into the edge computing platforms. In this subsection, 
the effects of DL model’s performance on edge computing are 
evaluated. The relevant experimental parameters and results for 
the six methods are listed in Table V. Note that the AlexNet and 
ResNet18 models cannot be implemented on the Raspberry Pi 
because their model sizes are too large. The model size in Table 
V is just the memory space for storing the model’s parameters. 
The execution of the DL model requires much more available 
memory on the edge computing system. The results of multiple 
tries indicate that the maximal size of the model that can be 
successfully implemented on the Raspberry Pi (4 GB memory) 
is 100 MB. The training time is recorded on the desktop 
computers with x64-architecture CPUs. The inference time is 
recorded on the Raspberry Pi platform with ARM-architecture 
CPUs. It can be seen that the proposed method and ECNN 
methods have a small model size, lower training time and 
inference time. The model size and training time of the AlexNet 
and ResNet18 are obviously larger than those of other methods, 
and hence these two models are not suitable to be implemented 
on edge computing platforms with limited computation 
capacity and storage space. 

TABLE V 
COMPARISON OF THE MODEL SIZE, TRAINING TIME, AND INFERENCE TIME 

Method
Proposed 
method

CANN ECNN 
GoogLe

Net
Alex 
Net 

ResNet
18 

Model size 
(MB)

7.95 27.38 2.41 68.91 9356.27 134.43 

Training 
time (s)

94.05 137.87 64.57 160.89 484.48 965.25 

Inference 
(ms) 

170.18 213.25 145.79 876.16 Null Null 

To further examine the influence of the model size on the 
performance, the model size of the proposed method and 
ECNN is changed to approximately 2.00, 7.00, and 11.00 MB, 
respectively, by increasing or decreasing the network 
parameters. For the proposed RMFFCNN model, according to 
the network structure shown in Fig. 8, the model size can be 
adjusted while maintaining structural consistency by simply 
adding or deleting the Block structures. For the ECNN model, 

the parameters of the network are added or deleted according to 
the composition rules of each layer. 

 The comparative results are presented in Table VI. As 
shown in the 3rd column in Table VI, the proposed method 
maintains its classification accuracy (92.48 %) for the model 
size of ~2.00 MB, which is higher than that of the ECNN model 
(87.15 %). However, as the network parameters increase and 
the model size reaches ~7.00 MB, the accuracy of the proposed 
method increases to 99.46 %, whereas the accuracy of ECNN 
remains similar to that without adding parameters. When the 
network continues to deepen and the model size reaches ~11.00 
MB, the accuracy of the two methods remains unchanged 
compared with that of the ~7.00 MB model. This phenomenon 
demonstrates that: 1) in terms of performance, the proposed 
method is superior to ECNN, and 2) the ~2.00 MB and ~7.00 
MB model sizes are sufficient to maximize the performance of 
the ECNN and the proposed method, respectively. In addition, 
their performance cannot be improved by increasing the model 
size. 

With regard to the computing time, as the model size 
increases from ~2.00 MB to ~11.00 MB, the training time and 
the real-time inference time of both methods increase. 
Although the computing time of ECNN is shorter than that of 
the proposed method for the same model size, the computing 
time difference is not obvious. For example, the real-time 
inference time of ECNN is 168.58 ms, which is approximately 
2 ms less than that of the proposed method (170.86 ms) for a 
~7.00 MB model size. Thus, the proposed method demonstrates 
better performance than ECNN in satisfying the same 
conditions for RDD; that is, small model size and fast 
computing time. 

TABLE VI 
COMPARISON OF THE PROPOSED AND ECNN METHODS  

Model 
size (MB) 

Index 
Proposed 
method 

ECNN 

~2.00 
Classification 
accuracy (%) 

92.48 87.15
~7.00 99.27 86.81
~11.00 99.46 87.25
~2.00 

Training  
time (s) 

59.52 64.32
~7.00 93.25 72.53
~11.00 113.18 83.34
~2.00 

Inference  
time (ms) 

159.68 145.15
~7.00 170.86 168.58
~11.00 178.52 171.38
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D.>  

< 
Effects of Sensor and Instrument System
The rotor inspection is realized through successive steps 

including signal acquisition, feature extraction, and pattern 
recognition. The sensor and instrument system has a great 
effect on recognition accuracy. To illustrate the advantage of 
our instrument system as shown in Figs. 1 and 2, another 
instrument system designed for IM rotor inspection [34] is used 
for a comparison in this subsection. The experimental setup and 
sensor constructed according to Ref. [34] are shown in Figs. 
14(a) and 14(b), respectively. 

The main difference between our system and the 
comparative system is introduced as follows. As shown in Figs. 
1 and 2, our instrument system uses the IM stator as the sensor, 
and the rotor to be detected is inserted into the stator cavity. In 
the comparative system, an external electromagnetic sensor is 
placed close to the tested rotor, and the distance and angle of 
the sensor should be carefully adjusted according to the rotor 
shape. In contrast, our system doesn’t need such a complicated 
operation. Besides, the signal generated from the comparative 
system is weaker than that of our system, which further affects 
the performance of defect detection. 

AC 
Output

Rotor 
Bar

Excitation Coil

Excitation Coil

Sensor Coil

DC Supply

Power supply
Drive motor controller

Sensor DAS
Laptop

Drive motor Rotor
(a)

(b)

Excitation coil

Sensor coil

Excitation coil

Fig. 14. Comparative RDD system referred from Ref. [34]: (a) experimental 
setup and (b) sensor. 

The rotors in Fig. 3 are tested using the comparative 
instrument system in Fig. 14, and the signals are processed 
using the proposed DL model and comparative models. The 
results are summarized in Fig. 15. It can be seen that the overall 
recognition accuracy of the comparative system is lower than 
that of our system. The highest accuracy (76.34 %) is generated 
by the proposed RMFFCNN model, but this value is about 
20 % lower than that of our instrument system. 
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Fig. 15. Classification accuracy of the dataset generated from the comparative 
instrument system. 

This result indicates that the instrument system is a crucial 
factor to guarantee signal quality along with recognition 
accuracy. Indeed, the experimental results in Ref. [34] 
demonstrated that the system in Fig. 14 can detect different 
types of rotor faults, but it cannot quantitatively evaluate the 
fault level or severity. The tested rotors in Fig. 3 contain fault 
rotors with different severities, and hence the comparative 
system cannot effectively distinguish the rotors’ conditions, 
and finally leads to low recognition accuracy. Relatively 
speaking, the combination of the designed instrument system 
and the proposed DL model achieves a high recognition 
accuracy for different types of rotor defects. 

VI. DISCUSSIONS

To further improve the practicality, robustness, and 
flexibility of the proposed method, the factors that affect the 
system performance are discussed from three aspects: 1) DL 
model, 2) edge computing system, and 3) sensor and instrument 
system. 

A. DL Model

For a certain dataset, the recognition accuracy is influenced
by the architectures of the DL models. The merits and limits of 
the six comparative DL models are compared and discussed. 
According to the results in Tables IV and V, the DL models’ 
performances are classified into three categories, i.e., 
High/Good/Large, Average, and Low/Fair/Small. The results 
are summarized in Table VII. The proposed RMFFCNN and 
CANN models have the highest recognition accuracy as 
compared with other models. In addition, the fault data with 
labels may be difficult to obtain, and hence the model 
performance under limited training samples is important. The 
proposed model can achieve fast training convergence and high 
classification accuracy with limited samples. In the future, the 
block and module architectures of the proposed model can be 
further investigated and optimized to improve its performance. 

TABLE VII 
CAPACITY QUALITATIVE ANALYSIS OF DIFFERENT DL MODELS 

Method Accuracy 
Small 

samples
Model 

size 
Computing 

time 
Anti-noi

se 
Proposed High Good Small Low Good 
CANN High Fair Average Average Average 
ECNN Average Average Small Low Average 

GoogLeNet Average Fair Average Average Good 
AlexNet Low Average Large High Fair 

ResNet18 Low Good Large High Fair 

B. Edge Computing Platform

Edge computing provides a new paradigm for real time
signal processing and RDD. Besides the high accuracy, the size 
of the proposed model is only 7.95 MB, thereby it is suitable for 
implementation on the edge computing platform. In contrast, 
the AlexNet and ResNet18 have a large model size and cannot 
even be deployed into the Raspberry Pi. Additionally, the 
proposed model can be further optimized due to its flexible 
modular architecture, and it shows potential to be implemented 
into simpler and cheaper edge computing platforms such as 
MCUs. From another aspect, the training of DL model cannot 
be carried out on the Raspberry Pi platform due to the limitation 



10 

of computing resources. With the continuous development of 
hardware performance, model training is expected to be 
implemented on edge computing systems, which will provide 
more convenience for practical applications. 

C. Sensor and Instrument System

The comparative results using different sensors and
instrument systems indicate that the classification accuracy is 
determined by the quality of the sampled signal. The designed 
sensor and instrument system in Figs. 1 and 2 guarantee that the 
weak induced voltage signal of the defect rotor can be 
effectively detected. Nevertheless, the tested rotors in this study 
only contain several types of defects. A rotor may 
simultaneously have multiple or compound faults in practice. 
Therefore, further improvement of the sensor and instrument 
system is needed to achieve compound fault detection. From 
another aspect, the automation of the experimental setup can 
also be improved. For instance, the installation and adjustment 
of the tested rotor can be realized using an industrial robot. 
These topics remain a further study so as to improve the 
efficiency of rotor quality inspection and to meet Industry 4.0 
requirements. 

VII. CONCLUSION

The present study designs an intelligent real-time RDD 
system including a designed sensor, a novel RMFFCNN model, 
and a corresponding edge computing system, which is suitable 
for an industrial production line. First, the sensor is configured 
into an IM stator, with three-phase winding by an innovative 
wiring method to output the induced voltage from phase C. The 
stator is transformed into an electromagnetic sensor, which is 
low cost and convenient for industry implementation. 
Subsequently, a novel RMFFCNN model based on a residual 
structure and multi-scale feature fusion is designed, which has 
the advantages of small size, fast convergence speed, high 
recognition accuracy, and strong robustness. Finally, to realize 
real-time RDD, an edge computing framework including model 
training and inference is designed on a desktop computer and in 
the embedded system, respectively. The reliability of the entire 
system is tested and validated through quality classification on 
nine different rotor faults, along with a comparison with other 
state-of-the-art methods. The analysis of the results 
demonstrates the proposed method’s potential for application in 
real-time RDD in an industrial production line. 
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