
1



Abstract—Induction motors (IMs) are used extensively as
driving actuators in electric vehicles. Motor rotors are prone to
defects in the die casting procedure, which can significantly
reduce the production quality. Benefitting from the development
of Internet of things (IoT) techniques and edge computing, this
study designed an instrumentation system for the fast inspection
of rotor defects to meet the objectives of efficient and high-quality
rotor production. First, an electromagnetic sensing device is
designed to acquire the induced voltage signal of the rotor under
investigation. Second, a residual multiscale feature fusion
convolutional neural network model is designed to extract the
hierarchical features of the signal, to facilitate defect recognition.
The developed algorithm is deployed into a cost-effective edge
computing node that includes a signal acquisition circuit and a
Raspberry Pi microcontroller. The conducted experimental
studies show that this implementation can achieve an inference
time of less than 200 ms and accuracy of more than 99 %. It is
shown that the designed system exhibits superior performance
when compared with conventional methods. The developed,
compact and flexible handheld solution with enhanced deep
learning techniques shows outstanding potential for use in
real-time rotor defect detection.

Index Terms—IM, rotor defect detection, IoT, multiscale
feature fusion, convolutional neural network, edge computing

I. INTRODUCTION

LL seem highly concerned about and value resource
conservation and carbon reduction; thus, the electric
vehicle (EV) industry is rapidly flooding the market [1,

2]. The pivotal components of an EV are the drive motors,
among which induction motors (IMs) are the most widely used

This work was supported in part by the National Natural Science
Foundation of China under Grants 52075002 and 62203010, and the Project of
the Outstanding Young Talents in Colleges and Universities of Anhui Province
under Grant gxyqZD2022006. (Corresponding authors:Siliang Lu; Min Xia)

Qingyun Zhu, Jingfeng Lu, Hui Wang, and Siliang Lu are with the College
of Electrical Engineering and Automation, Anhui University, Hefei 230601,
China. (e-mail: z19301104@stu.ahu.edu.cn; z21301139@stu.ahu.edu.cn;
wanghui@stu.ahu.edu.cn; lusliang@mail.ustc.edu.cn)

Xiaoxian Wang is with the College of Electronics and Information
Engineering, Anhui University, Hefei, 230601, China, and also with the
Department of Precision Machinery and Precision Instrumentation, University
of Science and Technology of China, Hefei 230027, China. (e-mail:
xiaoxian@ahu.edu.cn)

C.W. de Silva is with the Department of Mechanical Engineering, The
University of British Columbia, Vancouver V6T 1Z4, Canada (email:
desilva@mech.ubc.ca)

M. Xia is with the Department of Engineering, Lancaster University,
Lancaster LA1 4YW, U.K. (e-mail: m.xia3@lancaster.ac.uk)

[3]. The motor rotor, as the key component in an IM,
considerably affects the performance and efficiency of the IM
[4]. Die casting is a mainstream production process of IM rotors.
As the die cast rotor goes through a complex manufacturing
process, multiple defects could occur/emerge in the rotor bars
during production, such as porosity and destruction [5], which
will result in low yield and must be detected in a timely manner.
Thus, methods for accurate evaluation of rotor quality are
necessary, and considerable research has been devoted to the
detection of rotor faults [6].

Deep learning (DL) techniques are widely employed in fault
diagnosis [7]. For instance, Shao et al. presented a framework
based on an improved convolutional neural network (CNN)
with transfer learning for fault diagnosis of rotor bearing
systems under different operating conditions [8]. Jiao et al. put
forward a new CNN for intelligent diagnosis using
complementary data to integrate information fusion, feature
extraction and fault classification [9]. Liu et al. proposed a new
fault diagnosis framework based on the characteristics of
industrial vibration signals, which they used a novel dislocated
time series CNN. This model is designed to extract the
relationship between signals at various intervals in periodic
mechanical signals, which overcame the disadvantages of
conventional CNNs. This approach is appropriate for modern
electrical machines, especially under nonstationary conditions
[10]. Xiao et al. firstly took cross-domain case from simulation
domain to experimental domain into consideration, and
developed promising joint adaptation network, which
contributes to unsupervised transfer fault diagnosis [11]. Wang
et al. exploited a novel convolutional deep belief network,
which is applicable to fault diagnosis [12].

 The mentioned methods represent a certain contribution in
fault diagnosis. However, most of the available methods are
employed to handle offline data and are conducted on desktops
or servers. Many practical industry applications, such as quality
inspection of die cast rotors require real-time performance and
convenience. Most of the existing deep learning-based methods
are incapable of acceptable performance and should be further
improved.

With the rise of Internet of things (IoT), many of IoT
techniques are used in different fields (eg., 5G [13], unmanned
aerial vehicle [14], and fault diagnosis [15-19]). Meanwhile,
edge computing is a new computing paradigm that enables fast
detection through the deployment of algorithms that are
embedded in distributed nodes [20]. Hence, the data
transmitted and preprocessed by IoT techniques can be
conducted by edge computing, and combined with DL models
to realize high efficiency detection [21-24].

Real-time Quality Inspection of Motor Rotor Using
Cost-effective Intelligent Edge System

A

Qingyun Zhu, Jingfeng Lu, Xiaoxian Wang, Member, IEEE, Hui Wang, Siliang Lu, Senior Member, IEEE,

Clarence W. de Silva, Fellow, IEEE, Min Xia, Senior Member, IEEE

2
>

In light of the presented discussion, the present study
introduced an approach that incorporates DL models and edge
computing to achieve real-time rotor defect detection (RDD),
focusing on factory application. The main process of the
proposed method is as follows: 1) a sensor is designed for an
IM stator to output the induced voltage signals, 2) an embedded
system is designed for the data acquisition and transmission, 3)
data pretreatment is conducted, and 4) a designed CNN model
that is trained on a desktop with offline data is used to process
the online signals on a Raspberry Pi microcontroller, producing
the quality inspection result of the motor.

The novelty and primary contributions of the present study
are the following. 1) A new sensor is designed based on an IM
stator to output the induced voltage signals by directly changing
the wiring method of the three-phase winding, which
substantially simplifies the detection process. A sensing
approach that is of low cost and handy for industry
implementation. 2) A residual multiscale feature fusion CNN
(RMFFCNN) model is designed to extract distinct and
hierarchical features from the sensor signals. Besides high
recognition accuracy, this DL model has benefits including fast
convergence in training, suitability for limited training samples,
and good anti-noise capacity. 3) The design of a compact
system, including a microcontroller unit (MCU) and an
analog-to-digital converter (ADC), which are used for the data
acquisition and transmission, and a Raspberry Pi used as the
platform for the CNN model. The developed solution is
demonstrated to exhibit high accuracy, flexibility,
cost-effectiveness, and efficiency and is superior to
state-of-the-art methods that typically include complex signal
sensing and large machine learning models.

The remaining sections of the present paper are organized as
shown below. Section II introduces the designed sensor, the
designed embedded system, and the experimental rotors.
Section III introduces the novel RMFFCNN model and the
edge computing framework. Section IV presents the results of
the RMFFCNN training and real-time RDD. Section V
compares the developed method with existing methods. Section
VI discusses the research trends and future works. Finally,
Section VII provides the conclusion.

II. HARDWARE DESIGN AND EXPERIMENTAL ROTORS

In the present section, the sensor and the embedded system,
which are designed in the present work, and the nine IM rotors
that are used in the experiments are described, to demonstrate
the system design and the experimental setup.

A. Designed Sensor

The sensor that is designed in the present work is based on an
IM stator, as shown in Fig. 1(a), in which the IM stator is
converted directly into an electromagnetic sensor [25].
Different from the traditional techniques of wiring and
electrification of the stator windings, where the rotor windings
are not externally excited [3], the innovative wiring method is
depicted in Fig. 1(b). Phases A and B are powered by a constant
DC voltage to provide a constant magnetic field to the sensor,
as in a synchronous motor. When the rotor spins to intercept the
magnetic field in the sensor, an induced voltage Us,c is caused in
phase C according to the principle of electromagnetic induction.

The induced voltage signal Us,c is used as the sensed signal. The
designed sensor is simple and convenient, and presents
considerable potential in real-time RDD for practical industry
application. Note: A Hall effect sensor may be used as well as
for the present purpose [3].

(a) (b)AC Output

A1 C2 B1 A2 C1 B2

Fig. 1. The designed sensor based on (a) IM stator; (b) wiring of the sensor.

B. Experimental Setup and Edge Computing Node

The designed hardware devices are displayed in Fig. 2.
Besides the designed sensor for generating the rotor detection
signal, an embedded system is designed to implement real-time
CNN inference, including an ADC (AD7606, Analog Devices,
Inc.), an MCU (STM32H7, STMicroelectronics, Inc.), and a
single-board microcomputer (SBC) (Raspberry Pi 4 Model B,
Element14, Inc.) A 22.5-inch LCD monitor connected to the
SBC via a micro-HDMI port is used to show the real-time
results. A laptop serves as the host, and is used to store the
experimental data and results that are unnecessary in real-time
RDD.

Raspberry Pi

LCD
touch
screen

LaptopSTM32H7AD7606

Drive motorIM

USART

USART

HDMI

Power supply

Power
supply

Drive motor controller

Drive
motor

IM

LCD

Laptop

The embedded system SBC

Fig. 2. Experimental setup.

First, the drive motor rotates the rotor that is attached by a
mechanical coupling, and a servo motor controller is used to
control the speed of the rotor rotation. The sensor is powered at
30 V by a regulated DC power supply. The induced voltage
signal Us,c that is generated in the designed sensor is then
real-time sampled by the ADC. Second, the MCU is used for
acquiring and transmitting the signals to the SBC. Specifically,
the ADC is controlled by the MCU, for accurate setting of the
real-time period. In the present manner, the SBC is involved in
real-time operation. In the present study, the sampling
frequency is initially configured to 200 kHz. Finally, the
designed CNN model is utilized to handle the induced voltage

3

signal on the SBC. When the real-time input data are processed,
the results are immediately displayed on the LCD monitor.
Universal synchronous asynchronous receiver transmitters are
used for the communication between the SBC, the MCU, and
the laptop. The STM32H7, the AD7606, and the SBC are
powered at +3.3 +5 V, and +5 V, respectively. In addition, the
Raspberry Pi may be controlled by the desktop visual interface
through Windows Remote Desktop Connection. The entire
system possesses the simplicity and flexibility of the design,
which is particularly appropriate in real-time RDD in practical
applications.

C. Experimental Rotors

The IM parameters in the experiment are presented in Table I,
and the nine IM rotors used are depicted in Fig. 3. The different
types of defects of rotors include those that are healthy, those
with various degrees of porosity faults, and those with various
degrees of broken bar faults. The rotor faults are created as
follows. 1) The rotor porosity defect is manufactured by
drilling a hole in the rotor bar using a drilling machine. The
hold does not disconnect the entire rotor bar, allowing the
current to run through the rotor bar. The degree of rotor
porosity defect is indicated by the number of holes. 2) The rotor
with broken bar is manufactured by drilling hole whose
dimension is larger than that of the bar, which leads to the rotor
bar being completely broken. Thus, the entire rotor bar
becomes open-circuit connection. The degree of rotor broken
bar defect is also indicated by the number of drilled holes. This
configuration can simulate the actual rotor defects. In the
present study, the corresponding rotor faults are labeled 0–8 as
shown in Fig. 3.

TABLE I
IM PARAMETERS

No. of
phases

Rated
power (W)

Rated voltage
(VAC)

Rated
current (A)

3 90 380 0.39

Health
(0)

Low-
porosity

(1)

High-
porosity

(2)

1-hole
broken

(3)

2-hole
broken

(4)

3-hole
broken

(5)

2-bar
broken

(6)

3-bar
broken

(7)

4-bar
broken

(8)

Fig. 3. Experimental IM rotors.

III. PROPOSED ALGORITHMS FOR REAL-TIME RDD

In the present study, a novel data pretreatment method is
adopted before subjecting to CNN training, to reduce the
redundancy, prevent overfitting, enhance the robustness, and
improve the classification accuracy. In addition, the novel
RMFFCNN method and edge computing framework are
presented.

A. Induced Voltage Signal Pretreatment

The signal pretreatment process is shown in Fig. 4. The
initial induced voltage Us,c waveforms collected from the data
acquisition system are shown in Fig. 5. The rotors include a

healthy rotor and defect ones with different fault degrees.
Obviously, the time domain features of Us,c, such as the
amplitude and the shape, differ for the various rotor defect. The
oscillation modes of the signals are also different, indicating
that the signal features are located at different scales on
frequency domain.

Input
images

Generated
images

 Initial
data

Dataset
Feature

extraction Kurtosis
data

Image
enhancement

Fig. 4. Flowchart of signal pretreatment.

The induced voltage signal from the IM is discretized as
follows:

[]KU n (1)

where n = 1,2, ..., Nk, and Nk is the number of samples. Then,
kurtosis is extracted from the initial data. This method can
obtain a reasonable data processing effect based on multiple
experimental results. The kurtosis UK may be expressed as

4

1

1 N i
i

t

x x
K

N 

 
  

 
 (2)

where xi is the signal value, x is the average value of the signal
values. N is the number of signals used. σt is the standard
deviation. In this present study, a kurtosis is taken for every five
data points (N = 5).

Health

Porosity

Broken bar
(single bar)

Broken bar
(multiple bars)

Fault types

Fault degree

Low High

-4

4

0

U
(V

)

-4

4

0

U
(V

)

-10

10

0

U
(V

)

-10

10

0

U
(V

)

Fig. 5. Initial induced voltage waveforms.

Second, the three-dimensional (3D) kurtosis data is obtained
by duplicating the one-dimensional (1D) kurtosis data, and the
3D kurtosis data are transformed into the two-dimensional
matrix of a three-channel image, which can be expressed as

(, ,1) [(1)]

(, , 2) [(1)]

(, ,3) [(1)]

K K

K K

K K

U i j u p j q i

U i j u p y q i

U i j u p y q i

    
     
     

 (3)

in which i =1, 2, ..., q (q are the numbers of rows in the
two-dimensional matrix); j = 1, 2, ..., n (n are the numbers of
columns in the two-dimensional matrix); and p is the location
of the stochastically chosen preliminary point. With the
two-dimensional matrix acquired, its values are mapped to
numbers in the range between 0 and 255 to make the image,
which are expressed as

(, ,) min((:,:,))
(, ,) 255

max((:,:,)) min((:,:,))
K K

K
K K

U u v w U w
U u v w

U w U w


 


(4)

4

where w = 1,2,3. The generated images of the nine experimental
IM rotors are shown in Fig. 6, in which either slight or
significant differences can be observed between the different
fault type images. The white dots dispersed in the black
background have different distributed modes for different types
of defects. The dense or sparse levels of the white dots indicate
that the images present multi-scale features. Hence, a
multi-scale feature fusion approach is investigated to
effectively extract the image features and pave the way for
high-accuracy RDD. In the present study, the size of each
image is set to 28 × 28 pixels, consisting of 3,920 induced
voltage signal lengths.

Health

Porosity

Broken bar
(single bar)

Broken bar
(multiple bars)

Fault types

Fault degree

Low High

Fig. 6. Generated images of the nine experimental rotors.

Third, as the generated images have the characteristics of a
small amount of information and a simple information
distribution, scaling and translation transformation methods are
used to process the generated images, address the problem of
network overfitting and resist the interference caused by
external factors of the front sensor. Hence, four times scaling
and translation transformation is applied to each generated
image to obtain the input images, which are shown in Figs.
7(a)–(d). It can be noticed that the generated image is zoomed

and shifted after processing. This method can further expand
the dataset and strengthen the robustness of the network.

(a)

(c)

(b)

(d)
Original image

Four times scaling and
translation transform

Fig. 7. Four times scaling and translation transformation of the generated
image.

B. RMFFCNN

In view of the features of the input images and the limited
computing resources of the designed embedded system, the
RMFFCNN based on a residual structure and multiscale feature
fusion is designed. The main structure of the module consists of
1) multiscale feature fusion and 2) a residual structure
consisting of mixed features and the shortcut, which differs
from existing methods that use only multiscale feature fusion in
the input layer. The residual structure lacks a deep integration
with the other structures; thus, its performance cannot be fully
exploited. The RMFFCNN performs multiscale feature fusion
in the input layer, innovatively uses multiscale feature fusion as
the basic unit that is constituted in the network, and combines
multiscale feature fusion with the residual structure to form the
hidden layer of the network. This can considerably improve the
diversity and parameter utilization of the convolutional kernel,
reduce the training difficulty of the network parameters, and
further enhance the RMFFCNN performance. The construction
of the RMFFCNN is described in Fig. 8. This model is
primarily comprised of three parts, introduced as follows.

Scale1

Scale2

Scale5

+

Shortcut

Module2 Maxpooling Block2 Block3

Dense

Output
Input

Module
input

Feature
1

Module
output

Filter
1

Filter
3

Filter
2

Conv

Conv

Scale4

Scale3 Feature
2

Feature
3

Conv

Residual
feature
fusion

Module1

Block1Multiscale feature fusion

Fig. 8. RMFFCNN architecture.

1) The input layer is the first part, where multiscale feature
fusion is conducted. Multiscale feature fusion provides a
solution to the low hardware efficiency problem for no uniform
sparse data computation by using convolutional kernels of
different sizes to extract the target features from different scales
of the receptive domain [26]. This layer has a relatively wide
network width and uses a large convolutional kernel size,
which is expressed as

   *i i i
j ms j ms jx f k x b   (5)

 concat () (1, 2, 5), (1, 2)i
ms j msy x i j   (6)

where σi
j (ꞏ) is the ith channel output on the jth scale, bi

j is the
corresponding bias, “*” is the convolution operation, xms is the
input of the multiscale feature mixing layer, yms is the output of
the multiscale feature mixing layer, k i

j represents the jth
convolution kernel on the ith scale. In addition, f(ꞏ) represents
the activation function, and it is a ReLU function when not
specified otherwise throughout the RMFFCNN, and concat{ꞏ}
is the matrix splicing operation.

5
 <

2) The hidden layer is based on the residual structure and the
feature fusion structure. The essence of a residual connection is
mapping shallow features directly on the deep features in the
network structure, which is a well-established solution to the
problem of the recognition accuracy not increasing with the
deepening of the number of layers in the network and
computational resources being consumed, vanishing gradient,
and exacerbated overfitting [27]. The module is the basic unit
of the hidden layer, multiple modules constitute a block after
the maximum pool operation, and the hidden layer is composed
of multiple blocks according to the modular design idea, which
may be expressed as [28]

 , , , , ,concat () 1 ,0m m i m m m
h l h l j h l h l h ly x x i I j J      (7)

 ,maxpoolingb m
h h Ly y (8)

where ym
h,l is the output of the lth module in the hth block, l is

between the interval (1, Lh), Lh is the maximum number of
modules in the hth block, ym

h,L is the output of the last module in
the block, yb

h is the output of the hth block, h is between the
interval (1, H), H is the maximum value of the number of
blocks, xm

h,l is the input of the lth module in the hth block, Im
h,l is

the number of features of the different scales in the lth module
of the hth block, Jm

h,l is the total number of channels in the
features mixing in the lth module in the hth block, and
maxpooling{ꞏ} is the maximum pooling operation.

3) The output layer is fully connected to the hidden layer in
order to output a probability vector as the prediction result, by
expanding the convolution result into a 1D vector and
activating the output, expressed as

 0 flatten b
Hx y (9)

0softmax(())y f wx b  (10)

where yb
H is the output of the last layer of the network block,

flatten {ꞏ- indicates the expansion of the output tensor of the
hidden layer into a 1D vector, b is the corresponding bias, x0 is
the input of the output layer, w is the weight of the output layer,
and y is the final output of the network obtained after activation
by the softmax function. Additionally, Module 2 has the same
structure as Module 1, but with different model parameters. The
detailed configuration parameters of the whole network are
illustrated in Table II, in which ‘1×1’, ‘2×2’,…, represent the
size of the convolution kernels. ‘3×3 reduce’ and ‘5×5 reduce’
stand for the number of 1×1 filters in the reduction layer used
before ‘3×3’ and ‘5×5’ convolutions, respectively. ‘10976FC’

and ‘9FC’ represent that the number of fully connected neurons
are 10976 and 9, respectively.

The pseudo code for implementation of the proposed
RMFFCNN model is shown in Algorithm 1. Steps 1-18 show
the creation process of the Module. Firstly, the input tensor is
operated differently for 4 paths, and then it is connected to the
input for residuals. The output is generated after maximum
pooling and normalization. Steps 19-31 show the forward
propagation process of the whole network. Firstly, multi-scale
feature extraction is conducted from the input data, and then the
data stream is processed by several Modules. Finally, the 3D
tensor is expanded into a 1D tensor, and then mapped to a
classification probability vector and output. This paper adopts a
modular engineering idea to combine the residual and
multi-scale feature extraction structures into code blocks. Such
an architecture provides feasibility to adjust the model size for
implementing onto the edge computing nodes with different
computing power and storage resources, thereby improving the
model robustness and engineering applicability.
Algorithm 1

Pseudo code for the RMFFCNN model
1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

// Module of the model
Procedure Module(input):

pathway1 ← Conv2D (filter = 1×1, input)
pathway1 ← Relu(pathway1)
pathway2 ← Conv2D (filter = 1×1, input)
pathway2 ← Conv2D (filter = 3×3, pathway2)
pathway2 ← Relu (pathway2)
pathway3 ← Conv2D (filter = 1×1, input)
pathway3 ← Conv2D (filter = 5×5, pathway3)
pathway3 ← Relu (pathway3)
Pathway4 ← MaxPooling2D (size = 3×3, input)
Pathway4 ← Conv2D (filter = 1×1, pathway 4)
pathway4 ← Relu (pathway4)
// Residual connections to the merge matrix of all paths
Mout ← input + Concat{pathway1, pathway2, pathway3, pathway4}
Mout ← MaxPooling (size = 3×3, Mout)
Mout ← BatchNormalization (Mout)

Return Mout
// Input: Initialize a placeholder with the shape (28, 28, 3)
// Multiscale feature fusion
for i=1: N do

i N  , // Multi-scale feature extraction using different N kernels
outi ← Conv2D (filter = i×i, input)
outi ← Relu (outi)

end for
out ← Concat{out1, out2, ..., outN},

// The data flow executes step 2~18 repeatedly
// Expanding a 3D tensor into a 1D vector
out1D←Flatten(out3D)
// Mapping to classification vector through full connection layer
outmodel←Dense (out1D)

TABLE II
PARAMETERS OF RMFFCNN CONFIGURATION

Type 1×1 2×2 3×3 reduce 3×3 4×4 5×5 reduce 5×5
Input layer 2 2 Null 2 2 Null 2

Block-1
B1-Module1 16 Null 24 32 Null 4 8
B1-Module 2 16 Null 24 32 Null 4 8

Block-2
B2-Module 1 32 Null 48 64 Null 8 16
B2-Module 2 32 Null 48 64 Null 8 16
B2-Module 3 32 Null 48 64 Null 8 16

Block-3
B3-Module 1 64 Null 96 128 Null 16 32
B3-Module 2 64 Null 96 128 Null 13 32

Flatten
Linear 10976FC

Softmax 9FC

6
 <

C. Edge Computing Framework

The edge computing framework for real-time RDD includes
RMFFCNN training and real-time inference, which is depicted
in Fig. 9. First, the training of RMFFCNN is carried out on a
configured desktop computer to minimize the computational
time, as shown in the middle part of Fig. 9. Then, a well-trained
RMFFCNN is obtained from the training, and the offline data
are used for validation before the real-time RDD. Finally, the
validated RMFFCNN model is deployed into the SBC, to
conduct the real-time RDD. Second, numerous sampling points
generated in the designed sensor are acquired and transmitted
by the data acquisition and transmission equipment (ADC and
MCU) and finally, to the Raspberry Pi.

Next, the induced voltage signals are preprocessed to obtain
the input images, as mentioned in the previous section. The
images are processed by the RMFFCNN model on the
Raspberry Pi for real-time RDD, as shown in the bottom part of
Fig. 9. The training of RMFFCNN and real-time inference are
carried out on the Keras platform using Python, which is
displayed in the upper right hand part of Fig. 9. This approach
combines different software (Windows and Linux) and
hardware (x64 CPUs and ARM CPUs) to achieve versatility
and interoperability in edge computing [29], which is suitable
for real-time RDD in an industrial production line.

 Prepare signal dataset and design CNN model

CNN model training and off-line testO
ff

-l
in

e
da

ta
O

n-
lin

e
da

ta

Model transplant

Induced voltage signal

Induced voltage signal pretreatment

R
ea

l-
ti

m
e

R
D

D

Development environment:
Programming language: Python 3.7
Deep learning framework: Keras

Real-time CNN inference

Display the RDD result on the LCD

CNN training:
OS: windows 10, x64;
CPU: E52678v3;
Memory: 62GB

CNN inference:
OS: Raspbian (Debian,
Linux); CPU: ARM,
Quad-Core@1.5GHz;
Memory: 4GB
SDRAM+32GB TF Card

IM

Fig. 9. Edge computing framework.

IV. EFFECTIVENESS VALIDATION

In this section, RMFFCNN training, validation, and testing
are conducted using offline signals. In addition, the RMFFCNN
is executed on the Raspberry Pi to handle the online signals that
are acquired and transmitted by the embedded system, to
achieve real-time RDD.

A. RMFFCNN Training, Validation, and Testing

A total of 20,000 images without overlaps are generated
from the acquired induced voltage signals for each rotor defect
fault. That is, a total of 180,000 offline images are used for the
RMFFCNN training, validation, and testing, with a ratio of
6:2:2, on the desktop computer. In this study, the batch size is
set as 32 after many repeated experiments. The optimal batch
size may change depending on the hardware, such as different
CPUs and GPUs. The training trends of the RMFFCNN model
are illustrated in Fig. 10, and Table III displays the training,
validation, and testing accuracy. It can be concluded that the

RMFFCNN has a fast convergence speed and high
classification accuracy.

TABLE III
TRAINING, VALIDATION, AND TESTING ACCURACIES

Method
Training

accuracy (%)
Validation

accuracy (%)
Testing

Accuracy (%)
RMFFCNN 100.00 100.00 99.69

Iteration

T
ra

in
in

g
ac

cu
ra

cy
 (

%
)

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

0.0

0.2

0.4

0.6

0.8

1.0

Training accuracy

Training loss

Fig. 10. RMFFCNN training accuracy and loss curves.

B. Real-time Inference in Edge Computing Node

The files generated by the RMFFCNN model are replicated
and stored on the SD memory card of the embedded system.
Next, real-time inference is realized in the designed embedded
system under the edge computing framework as described in
Section III. C. When the real-time inference is completed, the
results are immediately displayed on the LCD monitor.
Subsequently, 4,000 images for each fault type are collected
and processed in real-time for real-time inference, and the
classification accuracy of each category is calculated and
analyzed, as shown in Fig. 11. All the predicted rotor defect
types are corresponded to the actual ones, and the overall
probability of nine defect types is higher than 99 %.

0.9999

0.9999

0.9999

0.9999

0.9998

0.9998

0.9925

0.9941

0.9999

2.3×10-6 2.9×10-9 6.5×10-7 1.2×10-8 1.5×10-7 2.3×10-6 1.1×10-7 1.2×10-8

3.1×10-11

2.2×10-10

8.6×10-9

2.5×10-8

4.5×10-7

4.2×10-8

8.9×10-10

2.4×10-11 1.1×10-9 8.9×10-9 2.1×10-8 6.1×10-10 7.3×10-10 2.4×10-10 1.1×10-8

4.7×10-8

5.8×10-7

9.1×10-6

5.4×10-10

1.2×10-6

2.1×10-11

6.7×10-9

1.3×10-9

1.1×10-7

1.3×10-4

8.6×10-8

9.8×10-4

5.8×10-4 3.6×10-10 5.5×10-9 5.1×10-8 1.1×10-5 5.2×10-10

1.8×10-7

9.8×10-9

8.2×10-10

1×10-8

8.7×10-9

3.3×10-7 6.3×10-10

6.5×10-10

2.5×10-7

3.1×10-8

6.1×10-10

2.7×10-6 6.4×10-3 1.3×10-6 1.5×10-8

2.5×10-8

3.6×10-10

8.1×10-7

1.4×10-8

1.1×10-5 8×10-8

1.5×10-7

9.5×10-7

8×10-9

7.5×10-9

7.2×10-6

6.9×10-10

6.4×10-6

2.4×10-8

2.4×10-9 2.2×10-13

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

Predicted Label

T
ru

e
L

ab
el

Fig. 11. The confusion matrix of the RMFFCNN model for real-time inference.

V. PERFORMANCE EVALUATION

The performance of the proposed method in real-time RDD
applications is affected by the instrument system, DL model,
and edge computing platform. To further demonstrate the
superiority of the proposed method in these three aspects, a
comparison among the proposed method and state-of-the-art
methods is carried out.

7

A.>

<
Introduction of Comparative Methods
The comparative methods are briefly introduced as shown

below.
The first one is the convolutional attention neural network

(CANN) method [30]. This method proposed by Tran et al.
achieved higher fault diagnosis accuracy for IM diagnosis by
combining the continuous wavelet transform with a CANN
model.

The second one is the Enhanced CNN (ECNN) method that
is implemented on an embedded system for real time motor
fault diagnosis [29]. Specially, the performance on embedded
systems is compared between the proposed method and ECNN
method.

GoogLeNet model in Ref. [31] developed an inception
structure and the concept of feature fusion, and it is used in a
broad range of fields. GoogLeNet model is compared with the
RMFFCNN in the present work, to explore the influence of the
residual structure on the performance of the feature fusion
structure.

AlexNet model in Ref. [32] proposed a regularization
method called dropout. The method, which is a typical image
recognition technique and widely applied in fault diagnosis,
demonstrates excellent network performance.

ResNet model in Ref. [27] first introduced the residual
structure. To be as close as possible to the parameters of the
RMFFCNN model, ResNet18 is used as a comparison network
to explore the effect of the residual structure on the
performance of the feature fusion structure.

B. Effects of the DL Models on Classification Accuracy

1) Training and Testing Performance
The training and testing procedures of the six methods are

the same as those presented in previous section. The training
results of the six methods for the first epoch are displayed in Fig.
12. It can be shown that among the six methods, the proposed
method demonstrates the highest training accuracy. To further
examine the performances of different DL models, 10
independent tests are conducted and the average testing
accuracies are calculated as shown in Fig. 13. It can be seen that
the proposed method has the highest average testing accuracy
(96.64%) and the lowest standard deviation when compared
with the other methods, thereby demonstrating excellent
recognition accuracy and stability of the RMFFCNN model.
2) Effects of Training Samples Number and Noise Interference

When edge computing devices process large amounts of data,
edge devices can increase device latency, energy consumption,
and reduce system reliability [33]. Therefore, it is necessary for
models deployed in edge devices to use fewer data to achieve
high classification accuracy. To explore the influence of the
dataset size on the methods and further demonstrate whether
the proposed method can achieve relatively high classification
accuracy by using less data, different numbers of training
samples including 108000, 19200, 16000, 12800, and 9600, are
used in the independent experiment. The experimental results
are shown in the 2nd to 6th columns in Table IV. It is obvious
that, compared with the other methods, the proposed method
has reached the highest fault identification accuracy in each
dataset. Moreover, GoogLeNet, AlexNet, and ResNet18 are
hardly able to complete the convergence, owing to the large
number of parameters and layers. Hence, it can be summarized

that the proposed method exhibits outstanding performance and
can achieve relatively high classification accuracy by using less
data, thereby meeting the requirements of edge computing
solutions.

0 2000 4000 6000
0

20

40

60

80

100

CANN
ECNN

ResNet18
AlexNet

Proposed method

GoogLeNet

Iteration

A
cc

ur
ac

y
(%

)

Fig. 12. Training accuracy of six methods for the first epoch.

96.64 94.42 87.58 88.86
75.65 74.94

20

40

60

80

100

Proposed
method

CANN ECNN GoogLeNet AlexNet ResNet18
0

C
la

ss
if

ic
at

io
n

ac
cu

ra
cy

 (
%

)

Fig. 13. Average accuracy and standard deviation of the six methods.

In practice, the signals are easily corrupted by the
background noise especially in rotor production line. Given this,
the anti-noise performance of different methods is also tested
by adding external interference noise. In practical factory
settings, the interference noise is typically a time-varying signal.
Therefore, to effectively simulate real-noise interference for
real-time RDD, salt-and-pepper noise is added to the dataset,
which can be expressed as

255,

,

~ (0,1)

ij
ij

seed Den
y

x seed Den

seed U

 
   




 (11)

where xij represents the elements of ith row and jth column in
the input matrix before noise is added; yij represents the
elements of ith row and jth column in the output matrix after
noise is added; Den represents the noise density, that is, the
proportion of white noise points in the image; and seed
represents random numbers that conform to the uniform
distribution within the interval (0, 1).

In the experiments, the noises with different intensities
respect to the normalized image magnitude are injected into the
training samples. The testing accuracies under different noise
intensities are summarized in the 7th to 11th columns in Table IV.
It can be seen that the overall testing accuracy decreases with
the increase of noise intensity. Nevertheless, the proposed
method still maintains the highest accuracy as compared with
the other methods. This result demonstrates that the proposed
method has high anti-noise capacity and robustness, which will
be beneficial to practical applications.

The proposed RMFFCNN model combines the residual
structure and multi-scale feature fusion mechanism. The

8

hierarchical features are extracted simultaneously by adding
convolutional kernels with different scales. In addition, the
residual structure further increases the generalization and
robustness of the model, and effectively alleviates the gradient
explosion and training overfitting problems caused by the

increased number of layers. The combination of multi-scale
feature extraction and residual structure finally improves the
recognition accuracy, model stability, and robustness.

TABLE IV
TESTING ACCURACY FOR DIFFERENT TRAINING SAMPLES NUMBER AND NOISE INTENSITY

Method
C = 108000
δ = 0

C = 19200
δ = 0

C = 16000
δ = 0

C = 12800
δ = 0

C = 9600
δ = 0

C = 108000
δ = 0.02

C = 108000
δ = 0.04

C = 108000
δ = 0.06

C = 108000
δ = 0.08

C = 108000
δ = 0.10

Proposed 96.64 94.14 92.44 90.82 89.43 87.31 85.32 84.87 84.25 83.97
CANN 94.42 89.03 76.24 60.33 52.32 84.89 83.26 81.37 78.65 73.53
ECNN 87.58 86.93 73.89 74.06 73.60 79.29 78.84 76.52 66.27 63.68

GoogLeNet 88.86 66.80 70.04 61.55 51.59 84.14 83.81 79.18 78.58 75.19
AlexNet 75.60 87.20 81.30 80.14 78.24 33.53 25.07 23.12 22.71 21.58

ResNet18 74.94 85.59 85.54 80.62 78.66 82.75 71.12 66.46 58.42 57.38
C is the number of training samples, δ is the noise intensity

C. Effects of Model Size and Computing Time on Edge
Computing Platform

With the development of semiconductor technology, the
computing capacity of edge computing nodes improves rapidly
in recent years. RDD can be realized by implementing the DL
models into the edge computing platforms. In this subsection,
the effects of DL model’s performance on edge computing are
evaluated. The relevant experimental parameters and results for
the six methods are listed in Table V. Note that the AlexNet and
ResNet18 models cannot be implemented on the Raspberry Pi
because their model sizes are too large. The model size in Table
V is just the memory space for storing the model’s parameters.
The execution of the DL model requires much more available
memory on the edge computing system. The results of multiple
tries indicate that the maximal size of the model that can be
successfully implemented on the Raspberry Pi (4 GB memory)
is 100 MB. The training time is recorded on the desktop
computers with x64-architecture CPUs. The inference time is
recorded on the Raspberry Pi platform with ARM-architecture
CPUs. It can be seen that the proposed method and ECNN
methods have a small model size, lower training time and
inference time. The model size and training time of the AlexNet
and ResNet18 are obviously larger than those of other methods,
and hence these two models are not suitable to be implemented
on edge computing platforms with limited computation
capacity and storage space.

TABLE V
COMPARISON OF THE MODEL SIZE, TRAINING TIME, AND INFERENCE TIME

Method
Proposed
method

CANN ECNN
GoogLe

Net
Alex
Net

ResNet
18

Model size
(MB)

7.95 27.38 2.41 68.91 9356.27 134.43

Training
time (s)

94.05 137.87 64.57 160.89 484.48 965.25

Inference
(ms)

170.18 213.25 145.79 876.16 Null Null

To further examine the influence of the model size on the
performance, the model size of the proposed method and
ECNN is changed to approximately 2.00, 7.00, and 11.00 MB,
respectively, by increasing or decreasing the network
parameters. For the proposed RMFFCNN model, according to
the network structure shown in Fig. 8, the model size can be
adjusted while maintaining structural consistency by simply
adding or deleting the Block structures. For the ECNN model,

the parameters of the network are added or deleted according to
the composition rules of each layer.

 The comparative results are presented in Table VI. As
shown in the 3rd column in Table VI, the proposed method
maintains its classification accuracy (92.48 %) for the model
size of ~2.00 MB, which is higher than that of the ECNN model
(87.15 %). However, as the network parameters increase and
the model size reaches ~7.00 MB, the accuracy of the proposed
method increases to 99.46 %, whereas the accuracy of ECNN
remains similar to that without adding parameters. When the
network continues to deepen and the model size reaches ~11.00
MB, the accuracy of the two methods remains unchanged
compared with that of the ~7.00 MB model. This phenomenon
demonstrates that: 1) in terms of performance, the proposed
method is superior to ECNN, and 2) the ~2.00 MB and ~7.00
MB model sizes are sufficient to maximize the performance of
the ECNN and the proposed method, respectively. In addition,
their performance cannot be improved by increasing the model
size.

With regard to the computing time, as the model size
increases from ~2.00 MB to ~11.00 MB, the training time and
the real-time inference time of both methods increase.
Although the computing time of ECNN is shorter than that of
the proposed method for the same model size, the computing
time difference is not obvious. For example, the real-time
inference time of ECNN is 168.58 ms, which is approximately
2 ms less than that of the proposed method (170.86 ms) for a
~7.00 MB model size. Thus, the proposed method demonstrates
better performance than ECNN in satisfying the same
conditions for RDD; that is, small model size and fast
computing time.

TABLE VI
COMPARISON OF THE PROPOSED AND ECNN METHODS

Model
size (MB)

Index
Proposed
method

ECNN

~2.00
Classification
accuracy (%)

92.48 87.15
~7.00 99.27 86.81
~11.00 99.46 87.25
~2.00

Training
time (s)

59.52 64.32
~7.00 93.25 72.53
~11.00 113.18 83.34
~2.00

Inference
time (ms)

159.68 145.15
~7.00 170.86 168.58
~11.00 178.52 171.38

9

D.>

<
Effects of Sensor and Instrument System
The rotor inspection is realized through successive steps

including signal acquisition, feature extraction, and pattern
recognition. The sensor and instrument system has a great
effect on recognition accuracy. To illustrate the advantage of
our instrument system as shown in Figs. 1 and 2, another
instrument system designed for IM rotor inspection [34] is used
for a comparison in this subsection. The experimental setup and
sensor constructed according to Ref. [34] are shown in Figs.
14(a) and 14(b), respectively.

The main difference between our system and the
comparative system is introduced as follows. As shown in Figs.
1 and 2, our instrument system uses the IM stator as the sensor,
and the rotor to be detected is inserted into the stator cavity. In
the comparative system, an external electromagnetic sensor is
placed close to the tested rotor, and the distance and angle of
the sensor should be carefully adjusted according to the rotor
shape. In contrast, our system doesn’t need such a complicated
operation. Besides, the signal generated from the comparative
system is weaker than that of our system, which further affects
the performance of defect detection.

AC
Output

Rotor
Bar

Excitation Coil

Excitation Coil

Sensor Coil

DC Supply

Power supply
Drive motor controller

Sensor DAS
Laptop

Drive motor Rotor
(a)

(b)

Excitation coil

Sensor coil

Excitation coil

Fig. 14. Comparative RDD system referred from Ref. [34]: (a) experimental
setup and (b) sensor.

The rotors in Fig. 3 are tested using the comparative
instrument system in Fig. 14, and the signals are processed
using the proposed DL model and comparative models. The
results are summarized in Fig. 15. It can be seen that the overall
recognition accuracy of the comparative system is lower than
that of our system. The highest accuracy (76.34 %) is generated
by the proposed RMFFCNN model, but this value is about
20 % lower than that of our instrument system.

76.34 73.22 66.96
75.89

61.88
53.12

20

40

60

80

100

Proposed
method

CANN ECNN GoogLeNet AlexNet ResNet18
0

C
la

ss
if

ic
at

io
n

ac
cu

ra
cy

 (
%

)

Fig. 15. Classification accuracy of the dataset generated from the comparative
instrument system.

This result indicates that the instrument system is a crucial
factor to guarantee signal quality along with recognition
accuracy. Indeed, the experimental results in Ref. [34]
demonstrated that the system in Fig. 14 can detect different
types of rotor faults, but it cannot quantitatively evaluate the
fault level or severity. The tested rotors in Fig. 3 contain fault
rotors with different severities, and hence the comparative
system cannot effectively distinguish the rotors’ conditions,
and finally leads to low recognition accuracy. Relatively
speaking, the combination of the designed instrument system
and the proposed DL model achieves a high recognition
accuracy for different types of rotor defects.

VI. DISCUSSIONS

To further improve the practicality, robustness, and
flexibility of the proposed method, the factors that affect the
system performance are discussed from three aspects: 1) DL
model, 2) edge computing system, and 3) sensor and instrument
system.

A. DL Model

For a certain dataset, the recognition accuracy is influenced
by the architectures of the DL models. The merits and limits of
the six comparative DL models are compared and discussed.
According to the results in Tables IV and V, the DL models’
performances are classified into three categories, i.e.,
High/Good/Large, Average, and Low/Fair/Small. The results
are summarized in Table VII. The proposed RMFFCNN and
CANN models have the highest recognition accuracy as
compared with other models. In addition, the fault data with
labels may be difficult to obtain, and hence the model
performance under limited training samples is important. The
proposed model can achieve fast training convergence and high
classification accuracy with limited samples. In the future, the
block and module architectures of the proposed model can be
further investigated and optimized to improve its performance.

TABLE VII
CAPACITY QUALITATIVE ANALYSIS OF DIFFERENT DL MODELS

Method Accuracy
Small

samples
Model

size
Computing

time
Anti-noi

se
Proposed High Good Small Low Good
CANN High Fair Average Average Average
ECNN Average Average Small Low Average

GoogLeNet Average Fair Average Average Good
AlexNet Low Average Large High Fair

ResNet18 Low Good Large High Fair

B. Edge Computing Platform

Edge computing provides a new paradigm for real time
signal processing and RDD. Besides the high accuracy, the size
of the proposed model is only 7.95 MB, thereby it is suitable for
implementation on the edge computing platform. In contrast,
the AlexNet and ResNet18 have a large model size and cannot
even be deployed into the Raspberry Pi. Additionally, the
proposed model can be further optimized due to its flexible
modular architecture, and it shows potential to be implemented
into simpler and cheaper edge computing platforms such as
MCUs. From another aspect, the training of DL model cannot
be carried out on the Raspberry Pi platform due to the limitation

10

of computing resources. With the continuous development of
hardware performance, model training is expected to be
implemented on edge computing systems, which will provide
more convenience for practical applications.

C. Sensor and Instrument System

The comparative results using different sensors and
instrument systems indicate that the classification accuracy is
determined by the quality of the sampled signal. The designed
sensor and instrument system in Figs. 1 and 2 guarantee that the
weak induced voltage signal of the defect rotor can be
effectively detected. Nevertheless, the tested rotors in this study
only contain several types of defects. A rotor may
simultaneously have multiple or compound faults in practice.
Therefore, further improvement of the sensor and instrument
system is needed to achieve compound fault detection. From
another aspect, the automation of the experimental setup can
also be improved. For instance, the installation and adjustment
of the tested rotor can be realized using an industrial robot.
These topics remain a further study so as to improve the
efficiency of rotor quality inspection and to meet Industry 4.0
requirements.

VII. CONCLUSION

The present study designs an intelligent real-time RDD
system including a designed sensor, a novel RMFFCNN model,
and a corresponding edge computing system, which is suitable
for an industrial production line. First, the sensor is configured
into an IM stator, with three-phase winding by an innovative
wiring method to output the induced voltage from phase C. The
stator is transformed into an electromagnetic sensor, which is
low cost and convenient for industry implementation.
Subsequently, a novel RMFFCNN model based on a residual
structure and multi-scale feature fusion is designed, which has
the advantages of small size, fast convergence speed, high
recognition accuracy, and strong robustness. Finally, to realize
real-time RDD, an edge computing framework including model
training and inference is designed on a desktop computer and in
the embedded system, respectively. The reliability of the entire
system is tested and validated through quality classification on
nine different rotor faults, along with a comparison with other
state-of-the-art methods. The analysis of the results
demonstrates the proposed method’s potential for application in
real-time RDD in an industrial production line.

REFERENCE
[1] L. Zhu, Y. Zhou, R. Jia, W. Gu, T. H. Luan, and M. Li, "Real-Time Fault

Diagnosis for EVs With Multilabel Feature Selection and Sliding Window
Control", IEEE Internet of Things Journal, vol. 9, pp. 18346-18359, 2022.

[2] X. X. Wang, S. L. Lu, K. Chen, Q. J. Wang, and S. W. Zhang, "Bearing
Fault Diagnosis of Switched Reluctance Motor in Electric Vehicle
Powertrain via Multisensor Data Fusion", IEEE Transactions on Industrial
Informatics, vol. 18, pp. 2452-2464, Apr. 2022.

[3] C. W. De Silva, Sensors and actuators: Engineering system
instrumentation, 2nd ed.: Taylor & Francis/CRC Press, Boca Raton, FL,
2016.

[4] M. A. Rahman, A. M. Osheiba, K. Kurihara, M. A. Jabbar, H. W. Ping, K.
Wang, and H. M. Zubayer, "Advances on Single-Phase Line-Start High
Efficiency Interior Permanent Magnet Motors", IEEE Transactions on
Industrial Electronics, vol. 59, pp. 1333-1345, Mar. 2012.

[5] P. K. Wong and J. S. Biao, "Fault Diagnosis of Induction Motors Under
Untrained Loads With a Feature Adaptation and Improved Broad Learning

Framework", IEEE/ASME Transactions on Mechatronics, vol. 27, pp.
3041-3052, 2022.

[6] P. Luong and W. Wang, "Smart Sensor-Based Synergistic Analysis for
Rotor Bar Fault Detection of Induction Motors", IEEE/ASME Transactions
on Mechatronics, vol. 25, pp. 1067-1075, 2020.

[7] Y. Djenouri, A. Belhadi, G. Srivastava, U. Ghosh, P. Chatterjee, and J. C.
W. Lin, "Fast and Accurate Deep Learning Framework for Secure Fault
Diagnosis in the Industrial Internet of Things", IEEE Internet of Things
Journal, p. DOI: 10.1109/JIOT.2021.3092275, 2021.

[8] H. Shao, M. Xia, G. Han, Y. Zhang, and J. Wan, "Intelligent Fault
Diagnosis of Rotor-Bearing System Under Varying Working Conditions
With Modified Transfer Convolutional Neural Network and Thermal
Images", IEEE Transactions on Industrial Informatics, vol. 17, pp.
3488-3496, May 2021.

[9] J. Jiao, M. Zhao, J. Lin, and C. Ding, "Deep Coupled Dense Convolutional
Network With Complementary Data for Intelligent Fault Diagnosis", IEEE
Transactions on Industrial Electronics, vol. 66, pp. 9858-9867, Dec. 2019.

[10] R. Liu, G. Meng, B. Yang, C. Sun, and X. Chen, "Dislocated Time Series
Convolutional Neural Architecture: An Intelligent Fault Diagnosis
Approach for Electric Machine", IEEE Transactions on Industrial
Informatics, vol. 13, pp. 1310-1320, Jun. 2017.

[11] Y. M. Xiao, H. D. Shao, S. Y. Han, Z. Q. Huo, and J. F. Wan, "Novel
Joint Transfer Network for Unsupervised Bearing Fault Diagnosis From
Simulation Domain to Experimental Domain", IEEE/ASME Transactions
on Mechatronics, p. DOI: 10.1109/TMECH.2022.3177174, 2022.

[12] F. Wang, R. Liu, Q. Hu, and X. Chen, "Cascade Convolutional Neural
Network With Progressive Optimization for Motor Fault Diagnosis Under
Nonstationary Conditions", IEEE Transactions on Industrial Informatics,
vol. 17, pp. 2511-2521, Apr. 2021.

[13] S. Sakib, T. Tazrin, M. M. Fouda, Z. M. Fadlullah, and N. Nasser, "An
Efficient and Lightweight Predictive Channel Assignment Scheme for
Multiband B5G-Enabled Massive IoT: A Deep Learning Approach", IEEE
Internet of Things Journal, vol. 8, pp. 5285-5297, 2021.

[14] N. Dilshad, A. Ullah, J. Kim, and J. Seo, "LocateUAV: Unmanned Aerial
Vehicle Location Estimation via Contextual Analysis in an IoT
Environment", IEEE Internet of Things Journal, p. DOI:
10.1109/JIOT.2022.3162300, 2022.

[15] P. Liu, Y. Zhang, H. Wu, and T. Fu, "Optimization of Edge-PLC-Based
Fault Diagnosis With Random Forest in Industrial Internet of Things",
IEEE Internet of Things Journal, vol. 7, pp. 9664-9674, 2020.

[16] A. A. Shah, N. A. Bhatti, K. Dev, and B. S. Chowdhry, "MUHAFIZ:
IoT-Based Track Recording Vehicle for the Damage Analysis of the
Railway Track", IEEE Internet of Things Journal, vol. 8, pp. 9397-9406,
2021.

[17] Q. Yang, C. Hu, and N. Zheng, "Data-Driven Diagnosis of Nonlinearly
Mixed Mechanical Faults in Wind Turbine Gearbox", IEEE Internet of
Things Journal, vol. 5, pp. 466-467, 2018.

[18] W. Zhang, J. Wang, G. Han, S. Huang, Y. Feng, and L. Shu, "A Data Set
Accuracy Weighted Random Forest Algorithm for IoT Fault Detection
Based on Edge Computing and Blockchain", IEEE Internet of Things
Journal, vol. 8, pp. 2354-2363, 2021.

[19] L. Yang, Y. Li, and Z. Wei, "Fa-Mb-ResNet for Grounding Fault
Identification and Line Selection in the Distribution Networks", IEEE
Internet of Things Journal, vol. 9, pp. 11115-11125, 2022.

[20] X. Y. Shi, G. Qiu, C. Yin, X. G. Huang, K. Chen, Y. H. Cheng, and S. M.
Zhong, "An Improved Bearing Fault Diagnosis Scheme Based on
Hierarchical Fuzzy Entropy and Alexnet Network", IEEE Access, vol. 9, pp.
61710-61720, 2021.

[21] V. Bianchi, M. Bassoli, G. Lombardo, P. Fornacciari, M. Mordonini, and
I. D. Munari, "IoT Wearable Sensor and Deep Learning: An Integrated
Approach for Personalized Human Activity Recognition in a Smart Home
Environment", IEEE Internet of Things Journal, vol. 6, pp. 8553-8562,
2019.

[22] S. Chang, S. Huang, R. Zhang, Z. Feng, and L. Liu,
"Multitask-Learning-Based Deep Neural Network for Automatic
Modulation Classification", IEEE Internet of Things Journal, vol. 9, pp.
2192-2206, 2022.

[23] I. Mehmood, A. Ullah, K. Muhammad, D. Deng, W. Meng, F.
Al-Turjman, M. Sajjad, and V. H. C. d. Albuquerque, "Efficient Image
Recognition and Retrieval on IoT-Assisted Energy-Constrained Platforms
From Big Data Repositories", IEEE Internet of Things Journal, vol. 6, pp.
9246-9255, 2019.

[24] C. Hou, G. Liu, Q. Tian, Z. Zhou, L. Hua, and Y. Lin, "Multisignal
Modulation Classification Using Sliding Window Detection and Complex

11
>

Convolutional Network in Frequency Domain", IEEE Internet of Things
Journal, vol. 9, pp. 19438-19449, 2022.

[25] Q. Zhu, X. Wang, H. Wang, M. Xia, S. Lu, B. Liu, G. Li, and W. Cao,
"Real-Time Defect Detection of Die Cast Rotor in Induction Motor Based
on Circular Flux Sensing Coils", IEEE Transactions on Industrial
Informatics, vol. 18, pp. 9271-9282, 2022.

[26] D. Peng, H. Wang, Z. Liu, W. Zhang, M. J. Zuo, and J. Chen,
"Multibranch and Multiscale CNN for Fault Diagnosis of Wheelset
Bearings Under Strong Noise and Variable Load Condition", IEEE
Transactions on Industrial Informatics, vol. 16, pp. 4949-4960, Jul. 2020.

[27] K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image
Recognition", 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770-778, 2016.

[28] C.-Y. Lee and T.-A. Le, "Identifying Faults of Rolling Element Based on
Persistence Spectrum and Convolutional Neural Network With ResNet
Structure", IEEE Access, vol. 9, pp. 78241-78252, 2021.

[29] S. Lu, G. Qian, Q. He, F. Liu, Y. Liu, and Q. Wang, "In Situ Motor Fault
Diagnosis Using Enhanced Convolutional Neural Network in an Embedded
System", IEEE Sensors Journal, vol. 20, pp. 8287-8296, Aug. 2020.

[30] M. Q. Tran, M. K. Liu, Q. V. Tran, and T. K. Nguyen, "Effective Fault
Diagnosis Based on Wavelet and Convolutional Attention Neural Network
for Induction Motors", IEEE Transactions on Instrumentation and
Measurement, vol. 71, p. 3501613, 2022.

[31] C. Szegedy, L. Wei, Y. Jia, P. Sermanet, and A. Rabinovich, "Going
deeper with convolutions," in 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 1-9, 2015.

[32] T. Technicolor, S. Related, T. Technicolor, and S. Related, "ImageNet
Classification with Deep Convolutional Neural Networks", Commun.ACM,
vol. 60, pp. 84–90, 2017.

[33] S. Naveen, M. R. Kounte, and M. R. Ahmed, "Low Latency Deep
Learning Inference Model for Distributed Intelligent IoT Edge Clusters",
IEEE Access, vol. 9, pp. 160607-160621, 2021.

[34] S. T. Varghese, K. R. Rajagopal, and B. Singh, "Design and
Development of Rotor Quality Test System for Die-Cast Copper Rotors",
IEEE Transactions on Industry Applications, vol. 54, pp. 2105-2114,
May-Jun. 2018.

Qingyun Zhu received the B.S. degree in electrical
engineering from Chaohu University, Hefei, China,
in 2019, and the M.S. degree in control engineering
from the College of Electrical Engineering and
Automation, Anhui University, Hefei, China.

He is currently working toward the Ph.D. degree in
mechanical engineering with the Institute of
Technological Science, Wuhan University, Wuhan,
China. His research interests include signal
processing-based machine fault diagnosis.

Jingfeng Lu received the B.S. degree in mechatronic
engineering from Chongqing University of Posts and
Telecommunications, Chongqing, China, in 2021.

He is currently working toward the M.S. degree in
mechanical engineering at the College of Electrical
Engineering and Automation, Anhui University,
Hefei, China. His research interest includes machine
fault diagnosis based on deep learning.

Xiaoxian Wang (Member, IEEE) received the B.S.
degree from the Shandong University of Science and
Technology, Qingdao, China, in 2010, and the M.S.
degree in 2013 from the University of Science and
Technology of China, Hefei, China, where she is
currently working toward the Ph.D. degree with the
Department of Precision Machinery and Precision
Instrumentation, all in mechanical engineering.

She is currently an Engineer with the College of
Electronics and Information Engineering, Anhui
University, Hefei. Her research interests include
innovative design and intelligent maintenance of

electromechanical system.

Hui Wang received the M.S. degree in control
engineering in 2020 from Anhui University, Hefei,
China, where she is currently working toward the
Ph.D. degree in electrical engineering with the School
of Electrical Engineering and Automation.

Her research interests include signal
processing-based motor fault diagnosis.

Siliang Lu (Senior Member, IEEE) received the
B.S. and Ph.D. degrees in mechanical engineering
from the University of Science and Technology of
China, Hefei, China, in 2010 and 2015, respectively.

He is currently an Associate Professor with the
College of Electrical Engineering and Automation,
Anhui University, Hefei. He served as an Associate
Editor for IEEE Transactions on Instrumentation and
Measurement, and an editorial board member for
Journal of Dynamics, Monitoring and Diagnostics.
His research interests include
machinery-condition-based monitoring and fault

diagnosis, signal processing, IoT and edge computing, and robotics.

Clarence W. de Silva (Fellow, IEEE) received the
Ph.D. degrees in mechanical engineering from the
Massachusetts Institute of Technology, Cambridge,
MA, USA, in 1978, also the Ph.D. degree in
information engineering from the University of
Cambridge, Cambridge, U.K., in 1998, and the
honorary D.Eng. degree from the University of
Waterloo, Waterloo, ON, Canada, in 2008.

Since 1988, he has been a Professor of mechanical
engineering, the Senior Canada Research Chair, and
the Natural Sciences and Engineering Research

Council (NSERC)-BC Packers Chair in Industrial Automation with the
University of British Columbia, Vancouver, BC, Canada. Dr. de Silva is a
fellow of the IEEE, the American Society of Mechanical Engineers, the
Canadian Academy of Engineering, and the Royal Society of Canada.

Min Xia (Senior Member, IEEE) is currently a
Lecturer (Assistant Professor) in the School of
Engineering at Lancaster University, UK. He
received B.S. degree in Industrial Engineering from
Southeast University, China (2009); M.S. degree in
Precision Machinery and Precision Instrumentation
from the University of Science and Technology of
China, China (2012); and Ph.D. degree in Mechanical
Engineering from the University of British Columbia,
Canada (2017). He has led 11 research projects in the
UK, Canada, and Japan with total funding of £9
million.

He has served various editorial roles including Associate Editor of IEEE
Transactions on Instrumentation and Measurements. His research interests
include smart manufacturing, machine diagnostics and prognostics, deep neural
networks, process monitoring and optimization.

