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Three-dimensional (3D) excitonic complexes influence the optoelectronic properties of bulk semi-
conductors. More generally, correlated few-particle molecules and ions, held together by pairwise
Coulomb potentials, play a fundamental role in a variety of fields in physics and chemistry. Based
on statistically exact diffusion quantum Monte Carlo calculations, we have studied excitonic three-
and four-body complexes (trions and biexcitons) in bulk 3D semiconductors, as well as a range of
small molecules and ions in which the nuclei are treated as quantum particles on an equal footing
with the electrons. We present interpolation formulas that predict the binding energies of these
complexes, either in bulk semiconductors or in free space. By evaluating pair distribution functions
within quantum Monte Carlo simulations, we examine the importance of harmonic and anharmonic
vibrational effects in small molecules.

I. INTRODUCTION

Excitons (X) are hydrogen-like bound states of excited
electron-hole pairs in semiconductors. They significantly
affect the optical properties of direct-gap semiconduc-
tors, especially at low temperature, giving rise to narrow
peaks below the conduction-band edge in optical spec-
tra. Excitons are electrically neutral composite bosons.
If an exciton binds to a free electron or hole in a semi-
conductor, a negatively or positively charged trion (X±)
is formed, which can be regarded as an exotic analog of
a hydride H− anion or a dihydrogen H+

2 cation. Trion
formation generally requires an imbalance in the pop-
ulations of electrons and holes, e.g., when photoexcita-
tion takes place in a doped semiconductor. Trion bind-
ing energies are much smaller than exciton binding ener-
gies because trions are held together by a charge-induced
dipole interaction rather than a charge-opposite charge
Coulomb attraction. In analogy to dihydrogen H2 or di-
positronium Ps2 molecules, a pair of excitons may form
a bound state called a biexciton (X2). Biexciton forma-
tion does not require an imbalance in the populations of
electrons and holes.

Although ionic cores modify the electronic dispersion
in a semiconductor enormously, around the band edges,
the dispersion is free-particle-like (i.e., quadratic), and
hence the effects of ionic cores can often be described
by an effective mass approximation. Furthermore, ions
and core electrons screen the electron and hole charges,
making the Coulomb potential between charge carriers
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in a semiconductor much weaker than the Coulomb in-
teractions in an isolated atomic or molecular system.
Especially in crystals of cubic symmetry, the screened
Coulomb potential can often be described by an isotropic,
homogeneous, static permittivity. Since this permittivity
is generally large in covalent semiconductors, electrons
and holes bind weakly to form so-called Mott-Wannier
excitons. These excitons are weakly localized, have a
radius larger than the lattice constant, and do not sig-
nificantly alter the atomic structure. They therefore act
as free complexes moving within the semiconductor. In
many bulk three-dimensional (3D) semiconductors, the
trion and biexciton lines in optical spectra cannot easily
be identified due to their weak intensity and proximity
to the exciton peak; therefore, theoretical investigations,
including both analytical and numerical methods, are es-
sential in this field.

The Mott-Wannier Hamiltonian that describes charge-
carrier complexes in crystals with isotropic effective
masses and permittivities is of the same form as
the nonrelativistic Hamiltonian for few-particle atoms,
molecules, or ions in free space [1]. In this work we study
small numbers of interacting charges, including trions
and biexcitons in semiconductors as well as isolated ions
and molecules of hydrogen, and positronic and muonic
species. We focus on the ground-state properties of each
complex, for which the spatial wave function is nodeless
and the particles can be treated as distinguishable. Thus,
for example, we examine para-H2 (in which the electrons
and protons are in spin singlet configurations) and ortho-
D2 (in which the electrons are in a spin singlet but the
deuterons are in an ortho spin configuration).

Different analytical many-body formalisms have pre-
viously been applied to compute 3D trion and biexci-
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ton total energies using the Coulomb potential. Shiau
et al. solved approximately the Schrödinger equations
of trions and biexcitons, using a free exciton basis [2, 3].
They treated exciton-electron and exciton-exciton inter-
actions within the composite boson many-body formal-
ism. However, the predicted binding energies show a
discrepancy with previous results obtained using varia-
tional trial wave functions [4, 5] due to a restriction of
the exciton basis to the low-lying s-like excitonic wave
function. In another work, Combescot calculated the
binding energy of a trion from a general exact solution
to the three-body problem based on the scattering T -
matrix [6]. The numerical results obtained in Ref. 6 are
in good agreement with the variational energies reported
in Refs. 7, 8, and 9, and were used to propose a for-
mula for calculating 3D trion binding energies. Despite
the straightforwardness and accuracy of the analytical
method employed in Ref. 6, it cannot easily be used to
study larger complexes such as biexcitons. We present a
series of numerical results obtained using the variational
and diffusion quantum Monte Carlo (VMC and DMC)
approaches [10] to predict the ground-state binding en-
ergies of three- and four-body excitonic complexes in 3D.
We use trial wave functions consisting of pairing func-
tions multiplied by Jastrow correlation factors. Since the
ground states of the complexes that we study are formed
of distinguishable particles, the corresponding wave func-
tions are nodeless. This is an important point because
the DMC method gives the ground-state energy of such
a system without bias (in the limit of zero time step,
adequate equilibration, and infinite walker population);
there is no fixed-node error. The VMC and DMC meth-
ods have previously been used to study 3D trions and
biexcitons [11, 12], and the para-H2 molecule [13]. Bres-
sanini et al. presented total and binding energies of exotic
four-particle Coulomb complexes consisting of two oppo-
sitely charged heavy particles and two oppositely charged
light particles using VMC and DMC methods [11]. Here
we focus on the far more commonly encountered case
where particles of the same charge also have the same
mass.

Throughout, we assume isotropic electron and hole
masses and permittivities, and so our model is appro-
priate for cubic-symmetry direct-gap III-V binary semi-
conductors, which are crucially important in electronic
research and technology due to their high carrier mobili-
ties, tunable gaps, and the availability of well-established
growth and characterization techniques. We have fitted
algebraic functions to our DMC binding energies such
that the fractional error in the fitted binding energy at
each data point is less than 0.01%. Using these interpo-

lation formulas we are able to predict the binding ener-
gies of Mott-Wannier trions and biexcitons in bulk semi-
conductors as functions of the electron and hole effec-
tive masses me and mh and the static permittivity ϵ.
We have also examined extreme electron-hole mass ra-
tios σ = me/mh, and we present an analysis of limiting
behavior near σ = 0 and σ = ∞, which is of relevance to
real three- and four-body systems such as the Ps−, Mu−,
H−, D−, T−, Mu+2 , Ps

+
2 , H

+
2 , D

+
2 , T

+
2 , Ps2, Mu2, H2, D2,

and T2 ions and molecules that are at the heart of ther-
monuclear processes, astronomy, and atomic, molecular,
and chemical physics. We define all these complexes in
terms of their constituents in Tables IV, IX, and XI. In
the heavy-“hole” limit σ → 0, the electron and hole de-
grees of freedom decouple and we simply need to solve the
Schrödinger equation for the electrons in the presence of
fixed positive particles; the resulting electronic ground-
state energy as a function of the hole separation pro-
vides a Born-Oppenheimer (BO) potential energy surface
within which the holes move. By fitting interpolation for-
mulas to the DMC energy against hole-hole distance, we
are able to calculate the static equilibrium distance and
some important spectroscopic constants [14]. Further-
more, without making the BO approximation, we have
investigated physical properties of dihydrogen molecules
and cations such as the dynamical (nonadiabatic) mean
nucleus-nucleus distances, which can be deduced from the
pair distribution functions (PDFs). These PDFs pro-
vide valuable information about the spatial size of an
excitonic complex. Furthermore, the PDFs allow the
evaluation of the electron-hole contact density, which
is an important factor in the recombination rate. Fi-
nally, for completeness, we present quantum Monte Carlo
(QMC) data for other small Coulomb complexes of phys-
ical importance: mixed-isotope hydrogen molecules, he-
lium hydride cations, and positronic and muonic hydro-
gen molecules.

II. COMPUTATIONAL METHODOLOGY AND
DETAILS

A. Hamiltonian for excitonic complexes

We model Mott-Wannier excitonic complexes in a 3D
semiconductor within the isotropic effective mass approx-
imation. The Coulomb interactions between the elec-
trons and holes are isotropically screened by the static
permittivity ϵ of the crystal. For a system consisting of
Ne electrons and Nh holes, the Hamiltonian is

Ĥ = −
Ne∑
i=1

ℏ2∇2
e,i

2me
−

Nh∑
i=1

ℏ2∇2
h,i

2mh
−

Ne∑
i=1

Nh∑
j=1

e2

4πϵ|re,i − rh,j |
+

Ne−1∑
i=1

Ne∑
j=i+1

e2

4πϵ|re,i − re,j |
+

Nh−1∑
i=1

Nh∑
j=i+1

e2

4πϵ|rh,i − rh,j |
, (1)

where me and mh denote the electron and hole effective masses, respectively, and re,i and rh,j are the position vectors
of the ith electron and jth hole, respectively. We introduce dimensionless positions r′ = r/a∗0, such that ∇′ = a∗0∇ and
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(∇′)
2
= (a∗0)

2∇2, where a∗0 = 4πϵℏ2/(µe2) is the exciton Bohr radius and µ = memh/(me +mh) is the electron-hole
reduced mass, and dimensionless masses m′

e = me/µ and m′
h = mh/µ. The Hamiltonian can then be written as

Ĥ =
µe4

(4πϵ)
2ℏ2

[
− 1

2

Ne∑
i=1

(∇′
e,i)

2

m′
e

− 1

2

Nh∑
i=1

(∇′
h,i)

2

m′
h

−
Ne∑
i=1

Nh∑
j=1

1

|r′e,i − r′h,j |
+

Ne−1∑
i=1

Ne∑
j=i+1

1

|r′e,i − r′e,j |
+

Nh−1∑
i=1

Nh∑
j=i+1

1

|r′h,i − r′h,j |

]
. (2)

The constant µe4/[(4πϵ)
2ℏ2] is our unit of energy, the

exciton Hartree. Henceforth we will drop the primes from
the nondimensional lengths and masses, and we will use
“e.u.” (excitonic units) to indicate that a length is in
units of the exciton Bohr radius, or that an energy is in
units of the exciton Hartree, or that mass is in units of
the electron-hole reduced mass. In the limit me ≪ mh,
we have µ = me and hence e.u. reduces to Hartree atomic
units (a.u.).

For excitonic complexes with Ne ≥ 2 or Nh ≥ 2 the
Hamiltonian of Eq. (2) is σ-dependent. For Ne = Nh = 1
we rewrite Eq. (2) in terms of the center-of-mass position
rµ = (mere +mhrh)/(me +mh) and the position of the
electron relative to the hole r = re − rh, giving (in e.u.)

Ĥ = Ĥr + Ĥµ =

(
−1

2
∇2 − 1

|r|

)
− µ

2M
∇2
µ, (3)

with M = me + mh. Ĥr is the Hamiltonian term de-
scribing the internal motion of the system, due to the
interaction between the electrons and the holes, and Ĥµ

describes the kinetic energy of the center of mass, which
is zero in the ground state. Since the Ĥr and Ĥµ terms
are independent, the wave function can be written as a
product Ψ(r, rµ) = ϕr(r)ϕµ(rµ), and the exciton energy
can be found from the first part:(

−1

2
∇2 − 1

|r|

)
ϕr(r) = EXϕr(r). (4)

Equation (4) is σ independent.

B. QMC calculations: excitonic wave functions and
Jastrow terms

We calculated the total energies of complexes by solv-
ing the few-body Schrödinger equation using the VMC
and DMC methods [10]. We employed trial wave func-
tions of the form Ψ = exp(J)ΨS. The ΨS part of the
wave function is a sum of products of excitonic pairing
orbitals:

ΨS = ϕ1(re,1;h,1)ϕ1(re,2;h,2)ϕ2(re,1;h,2)ϕ2(re,2;h,1)

+ ϕ2(re,1;h,1)ϕ2(re,2;h,2)ϕ1(re,1;h,2)ϕ1(re,2;h,1),

(5)

where re,i;h,j = |re,i − rh,j |, for biexcitons [15] and

ΨS = ϕ1(re,1;h,1)ϕ2(re,2;h,1) + ϕ2(re,1;h,1)ϕ1(re,2;h,1) (6)

for negative trions. The pairing orbitals are of the form

ϕi(r) = exp
(
−r2/[ai(bi + r)]

)
, (7)

where {ai} and {bi} are optimizable parameters. The
pairing orbitals only couple electron-hole pairs, but their
long-range exponential behavior binds the complex. The
pairing orbitals do not enforce the Kato cusp conditions;
instead, these are enforced via the Jastrow factor exp(J).
The Jastrow exponent J consists of two-body polynomial
(U) and three-body polynomial (H) terms that are trun-
cated at finite range over a few exciton Bohr radii [16]. In
simulations with fixed holes (i.e., σ = 0), particle-ion (χ)
and particle-particle-ion (F ) terms were also included in
J . Free parameters in the wave function were optimized
within VMC by minimizing the energy variance [17, 18]
and then energy expectation value [19].
In the trial wave functions of complexes with very small

but nonzero σ, we have included an additional two-body
Jastrow term of the form −c(r − r0)

2
between the heavy

holes, where c and r0 are optimizable parameters. This
term violates both the short-range (Kato cusp) behavior
and the long-range exponential behavior but is appropri-
ate for particle pairs whose motion is primarily vibra-
tional. Including this term lowers the VMC total ener-
gies of the molecular hydrogen isotopes H2, D2, and T2

by 7.3(3)×10−4, 7.10(2)×10−3, and 6.00(3)×10−3 e.u.,
respectively.
To ensure that time-step bias is negligible, we have ex-

amined the effect of varying the time step on the DMC
total energy for a positive trion and a biexciton at a very
small mass ratio σ; if time-step bias is negligible at an
extreme mass ratio, then it is certain to be negligible
at mass ratios closer to 1. In Figs. 12 and 13 of Ap-
pendix A, we compare the zero-time-step DMC energy
obtained from a linear fit to two small DMC time steps
(0.01 and 0.0025 e.u.) with the zero-time-step DMC en-
ergy obtained from a quadratic fit to data at six time
steps over a wider range. The extrapolated energies are
in statistical agreement. Hence we performed our pro-
duction DMC calculations using the two small time steps
in the ratio 1:4, with the target walker population being
varied in inverse proportion to the time step, and we lin-
early extrapolated the resulting DMC energies to zero
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time step and therefore infinite population. Since we
study nodeless ground-state wave functions, the fixed-
node DMC energy is exact; nevertheless, it is still desir-
able to obtain an accurate trial wave function to improve
the statistical efficiency of the algorithm and to improve
the expectation values of operators such as the PDF that
do not commute with the Hamiltonian.

All our VMC and DMC calculations were performed
using the casino code [20].

C. PDFs and contact interactions between charge
carriers

Although the Mott-Wannier excitons in 3D crystals ex-
tend over many unit cells, there is a nonzero probability
density that the charge carriers are found at the same
point in the crystal. In this case, significant local ex-
change and correlation effects are expected. This implies
an additional, perturbative, pairwise contact interaction
potential [21, 22]:

V̂contact = Aee
Ne−1∑
i=1

Ne∑
j=i+1

δ(re,i − re,j)

+Ahh
Nh−1∑
i=1

Nh∑
j=i+1

δ(rh,i − rh,j)

+Aeh
Ne∑
i=1

Nh∑
j=1

δ(re,i − rh,j), (8)

where Aee, Ahh, and Aeh are constants and can be
found via ab initio calculations or by fitting to experi-
mental results. The first-order perturbative expectation
value of the contact interaction potential is ⟨V̂contact⟩ =
Aeegee(0) + Ahhghh(0) + Aehgeh(0), where the electron-
electron, hole-hole, and electron-hole PDFs are

gee(r) =

〈
Ne−1∑
i=1

Ne∑
j=i+1

δ(r− (re,i − re,j))

〉
(9)

ghh(r) =

〈
Nh−1∑
i=1

Nh∑
j=i+1

δ(r− (rh,i − rh,j))

〉
(10)

geh(r) =

〈
Ne∑
i=1

Nh∑
j=1

δ(r− (re,i − rh,j))

〉
, (11)

respectively. In addition to perturbative corrections due
to contact interactions, the PDF gives important infor-
mation about an excitonic complex. The recombina-
tion rate of an excitonic complex is proportional to the
electron-hole contact PDF [21]. Furthermore, the spatial
size and shape of a charge-carrier complex can be found
directly from the PDF.

The errors in the VMC and DMC estimates of each
PDF depend linearly on the error in the trial wave func-
tion. However, the error in the extrapolated estimate

(twice the DMC estimate minus the VMC estimate) is
quadratic in the error in the trial wave function [23].
Here, we report extrapolated PDFs.

III. NUMERICAL RESULTS

A. Excitons

Equation (4) is of the form of the Schrödinger equation
for a hydrogen atom and its well-known solution results
in an energy spectrum for bound states,

EX = − 1

2n2
, (12)

where n = 1, 2, . . .. In particular, the exciton ground-
state energy is EX = −1/2 e.u., independent of the
electron-hole mass ratio. To convert to “real” units (as
opposed to e.u.) we need the permittivity ϵ and electron
and hole effective masses to calculate the exciton Hartree
as µe4/[(4πϵ)

2ℏ2].
The band effective mass approximation is valid if

the ground-state energy of the exciton is much smaller
than the corresponding semiconductor energy gap [24].
This condition leads to a very large exciton Bohr ra-
dius a∗0, such that the exciton extends over many crystal
sites. Under such conditions, a crystal can accurately be
treated as a continuous medium, and electrons and holes
are well described by the effective mass approximation
with statically screened Coulomb interactions between
charge carriers.
Equations (2) and (4) are obtained under the assump-

tion of isotropic electron and hole effective masses and
isotropic permittivities. Such a model is most suitable for
cubic zinc-blende-structure semiconductors such as InAs,
InP, GaAs, InN, and InSb. For these direct-gap binary
III-V compounds, the lowest conduction-band minimum
is isotropic, and it occurs at the Brillouin-zone (BZ) cen-
ter. The degenerate valence-band maxima corresponding
to heavy and light holes in these compounds also occur
at the BZ center. The hole masses are anisotropic in
binary III-V compounds [25, 26]; nevertheless, isotropic
approximations to the hole mass are widely used. Heavy
holes lead to larger exciton binding energies and hence
we take the hole mass to be that of heavy holes. In
the diamond-structure group-IV semiconductors Si and
Ge, the conduction-band minima are away from the
BZ center (on the Γ–X line) and are therefore strongly
anisotropic, with ellipsoidal symmetry. This anisotropy
imposes great complexity on the excitons in Si and Ge
crystals. However, by noting the large exciton Bohr radii
in these crystals (see Table I) and the cubic symmetry
of the lattice, which results in a diagonal effective mass
tensor, one can use the simple spherical optical mass aver-
age approximation to calculate the exciton ground-state
energy [24]. The optical average electron mass me is de-
fined via m−1

e = (2m−1
et +m−1

el )/3, where met and mel are
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the electron masses in the transverse and longitudinal di-
rections, respectively. In Si and Ge the valence band is
anisotropic around its maximum at Γ; we therefore used
the spherically averaged heavy-hole effective mass in our
calculations.

TABLE I. Electron effective mass me in III-V semiconductors
or optical average effective mass me in group-IV semicon-
ductors, spherically averaged hole effective mass mh, static
relative permittivity ϵr, exciton Bohr radius a∗

0, and exciton
ground-state total energy EX (from the hydrogenic model and
compared with available experimental data).

Crystal
me mh ϵr

a∗
0 (Å) EX (meV)

(a.u.) (a.u.) Theo. Theo. Expt.

Si 0.26a 0.49a 11.7a 36.14 −17.18 −14.7b

Ge 0.12a 0.33a 16.2 a 97.42 −4.56 −2.1c

GaAsd 0.067 0.51 12.90 115.27 −4.84 −4.1(1)e

InAsf 0.022 0.40 15.1 383.18 −1.24 −1g

InSbh 0.03 0.41 16.8 318.02 −1.35

InPi 0.089 0.414 12.09j 87.34 −6.82 −4.0j

a Parameters taken from Ref. 27. The electron optical effective
masses of Si and Ge are calculated from the longitudinal and
transverse electron masses given in Ref. 27.

b Data taken from Ref. 28.
c Data taken from Ref. 29.
d Parameters taken from Refs. 30 and 31.
e Data taken from Ref. 32.
f Parameters taken from Ref. 33.
g Data taken from Ref. 34.
h Parameters taken from Ref. 35.
i Parameters taken from Ref. 36.
j Data taken from Ref. 37 and references therein.

The physical parameters that we require to calculate
the binding energies of excitons in a selection of impor-
tant semiconductors are given in Table I. For semicon-
ductors such as Ge or InSb, even at low temperatures
of 100 K (or equivalently 8.6 meV), thermal fluctuations
may overcome the small exciton binding energy. Con-
sequently, exciton lines in photospectra can only be de-
tected only below ∼ 100 K.

The exciton energy discussed in this section will be
used to calculate the binding energies of trions and biex-
citons in subsequent sections.

B. Trions

1. Binding energies

The energy difference between the exciton peak and
the peak of a larger excitonic complex in a photolumi-
nescence experiment is equal to the energy required to
separate a single exciton from the complex. For freely
moving trions and biexcitons, this is also the energy re-
quired to break the complex into its most energetically
favorable daughter products, so we refer to this energy
difference as the binding energy of the complex.

A positive trion (X+) is a positively charged complex
consisting of two distinguishable holes and a single elec-
tron. Likewise, a negative trion (X−) is a negatively
charged complex consisting of two distinguishable elec-
trons and one hole: see Fig. 1. According to the above
definition, the binding energy of a positive or negative
trion is the energy required to separate the trion into a
bound exciton and a free hole or electron, respectively:

EB
X± = EX − EX± , (13)

where EX± is the ground-state total energy of the trion
and EX is the ground-state energy of the exciton. Note
that the ground-state energy of the free hole or electron
is zero.

FIG. 1. (a) An exciton X is a bound electron-hole pair. (b)
A negative trion is a negatively charged exciton X−. (c) A
positive trion is a positively charged exciton X+.

Generally, the hole effective mass in semiconductors
is larger than the electron effective mass because va-
lence bands show weaker energy dispersion, and often the
electron-hole mass ratio σ lies in the range 0.01 < σ < 1.
Since the Coulomb interaction is symmetric in terms of
particle charge, the binding energy of a negative trion
with electron-hole mass ratio σ is equal to the binding
energy of a positive trion with electron-hole mass ratio
1/σ. In fact, it is often more convenient to show the
binding energy of a trion in terms of the rescaled mass
ratio x = σ/(1 + σ) ∈ [0, 1] rather than σ ∈ [0,∞). The
binding energy of a negative trion with rescaled mass ra-
tio x is equal to the binding energy of a positive trion
with rescaled mass ratio 1− x.

DMC binding energies of negative and positive trions
at different mass ratios σ are listed in Appendix B, to-
gether with previous theoretical data where available.
The binding energy reaches its maximum value for two
heavy holes and one light electron (σ = 0), or equiva-
lently, two heavy electrons and one light hole (σ → ∞).

In the case σ → 0 (me ≪ mh), we have an X+ consist-
ing of a light electron moving in the field of two slowly
moving heavy holes, and the BO approximation can be
applied to the Hamiltonian of Eq. (2) to separate the
electron’s contribution to the total energy from the holes’
contributions. Let Req be the position of the minimum of
the BO potential energy between two heavy holes; then
the BO potential energy at distance r near Req can be
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expanded as a Taylor series:

Uhh(r) = Uhh(Req) +
1

2
U ′′
hh(Req)(r −Req)

2
+ . . . .

≡ Uhh(Req) +
1

2
µhhω

2(r −Req)
2
. (14)

The hole-hole reduced mass in e.u. is µhh = mh/2 =
(1 + 1/σ)/2 = 1/(2x). Hence the vibrational frequency
ω is

ω =
√
2U ′′

hh(Req)x. (15)

From Eq. (15), the ground-state energy of an X+ in the
harmonic approximation is

E ≈ Uhh(Req)+
1

2
ω = Uhh(Req)+

1

2

√
2U ′′

hh(Req)x. (16)

Thus the energy and hence binding energy of a positive
trion increases as

√
x at small x (and by charge symme-

try, the energy of a negative trion goes as
√
1− x near

x = 1). Equation (16) suggests that a suitable fitting
function for the binding energy of a negative trion is a
Padé function in powers of

√
1− x:

EB
X− =

∑3
i=0 ai(1− x)

i/2

1 +
∑3
j=1 bj(1− x)

j/2
, (17)

where the values of the fitting parameters {ai} and {bj}
are presented in Table II. In Fig. 2 the formula in Eq. (17)
is plotted against x and compared with the original DMC
data. The summed square of deviations (SSE) from the
DMC data is 8.37× 10−10 e.u., with a root-mean-square
error (RMSE) of 7.128 × 10−6 e.u. Equation (17) also
describes positive trions, provided 1−x is replaced by x.

TABLE II. Fitted parameters in Eq. (17) for negative trion
binding energies.

Parameter Value (e.u.)

a0 0.10259977858492200

a1 −0.19032032332604387

a2 0.12107317507399042

a3 −0.013040190842318337

b1 0.34760392556048214

b2 −0.20820698951970068

b3 −0.40782706820695203

Equation (17) enables us to predict the binding energy
of a trion in a semiconductor in units of exciton Hartree
given the electron-hole mass ratio. If we also know the
actual electron and hole masses and permittivity, we can
evaluate the exciton Hartree and hence find the binding
energy in real units. In Table III we present examples of
predicted binding energies of negative and positive trions
using Eq. (17) for a range of technologically important
semiconductors. In each case, the positive trion forms a

FIG. 2. DMC binding energies of negative trions against
rescaled mass ratio x = σ/(1 + σ). The solid line shows the
fit of Eq. (17).

stronger bound state than the negative trion. This ap-
pears to contradict the finding of Ref. [30], obtained by
solving the Faddeev equations within the effective mass
approximation, that a positive trion is unbound for semi-
conductors such as GaAs. In each case, DMC predicts
the trion binding energy to be an order of magnitude
smaller than the corresponding exciton binding energy.
Therefore, one expects the exciton peak to hide the trion
peak in each case. Also, biexciton peaks may be difficult
to observe in experiments, because the sub-meV binding
energies are often less than experimental uncertainties.
In the following sections, we will demonstrate another
important application of our study in the field of atomic
and molecular physics.

TABLE III. Predicted binding energies of negative and posi-
tive trions (X−) and biexcitons (X2) in bulk semiconductors,
using Eqs. (17) and (28), respectively, to interpolate our DMC
data. The material parameters are shown in Table I, while
the fitting parameters in the interpolation formulas are given
in Tables II and VIII.

Crystal EB
X− (meV) EB

X+ (meV) EB
X2

(meV)

GaAs
0.23910(3) 0.46066(4) 0.67338(2)

0.5a

InAs 0.065198(6) 0.15279(1) 0.238160(6)

InSb 0.069477(6) 0.15356(1) 0.235254(6)

InP 0.32245(4) 0.54338(5) 0.75443(3)

Si 0.77530(9) 0.97733(9) 1.24781(9)

Ge
0.20753(2) 0.29744(3) 0.38983(3)

0.2(1)b

a Data taken from Ref. 30.
b Data taken from Ref. 38.



7

2. Mass effects in anions and molecular cations of
hydrogen isotopes

Molecular cations of hydrogen isotopes (i.e., H+
2 , D

+
2 ,

and T+
2 ) are effectively trions consisting of two extremely

heavy “holes” (the nuclei) and one light electron. The
binding energy of such a cation is the energy required to
dissociate the system into a neutral atom and a single
nucleus. On the other hand, atomic anions such as H−,
D−, and T− can be viewed as negative trions consisting
of an extremely heavy “hole” and two light electrons. For
these anions, the binding energy is the energy needed to
separate an electron to infinite distance from the neutral
atom and is equal to the electron affinity of the neutral
atom.

We performed DMC simulations of these ions, and we
report the resulting total energies and binding energies in
Table IV. We take the proton mass, deuteron mass, and
triton mass to be mp+ = 1836.152673440001 a.u., md+ =
3670.482967853717 a.u., and mt+ = 5496.921535729647
a.u., respectively [39]. The energy required to separate
an electron from a hydrogen anion slightly increases with
isotope mass, as expected from Fig. 2, and the corre-
sponding energy approaches the σ = 0 limit of a nega-
tively charged trion. The same trend is observed for Ps−

and Mu− (a bound state of an antimuon and two elec-
trons), while the calculated values are in good agreement
with the available experimental data.

Similarly, DMC predicts a slight increase in binding
energy with mass ratio for the three molecular cations
of hydrogen isotopes, as seen in Table IV. The corre-
sponding values approach the σ = 0 limit for a positively
charged trion, so that the heavier isotope T+

2 has a 3%
larger binding energy than the lighter isotope H+

2 .
For comparison, we also show the total energy and

binding energy of the hydrogen ions calculated using Eq.
(17) in Table IV. There is excellent agreement between
the DMC results and Eq. (17). Consequently, knowing
the electron-hole mass ratio, Eq. (17) can be used to pre-
dict the total energy and binding energy of either a trion
in an isotropic semiconductor or a Coulomb complex in
free space.

3. BO potential energy curve

The extreme electron-hole mass ratio of σ = 0 is very
important in atomic and molecular physics. The result-
ing BO potential allows us to compute important spec-
troscopic data. We calculated the BO potential energy
curve as a function of hole-hole separation by solving the
Schrödinger equation for a single electron in the presence
of two fixed holes using DMC. We selected a wide range
of hole-hole distances, between 1.4 and 3.5 a.u. DMC
total energies for each hole-hole separation are given in
Appendix C 1. The interaction between nuclei in a di-
atomic molecule or ion is often described by a Morse po-
tential. The Morse potential can qualitatively describe

the BO potential at very short and very large separations,
as shown in Appendix C 2. However, because the Morse
potential shows a significant deviation from the DMC
data near the equilibrium separation, the resulting spec-
troscopic data based on the Morse model disagree with
experiments. Instead, we found that a degree-6 polyno-
mial,

Uhh(r) =

6∑
i=0

pir
i, (18)

fits our DMC data well near the equilibrium separation,
as seen in Fig. 3. The SSE and RMSE of the fit are
1.061× 10−8 and 3.434× 10−5 a.u, respectively, and the
maximum fractional deviation of the fitted function from
the DMC data is less than 0.007%. The fitted coefficients
{pi} are given in Appendix C 1.

FIG. 3. DMC BO potential energy, i.e., DMC total energy of
a positive trion in the infinite mass limit of two heavy holes
and one light electron (σ = 0) against the hole-hole distance.
The solid curve shows a fit of Eq. (18) to the DMC data.

For infinite hole mass, the electron-hole reduced mass
is µ = me, and assuming that ϵr = ϵ0 (i.e., the complex
is in free space), the exciton Bohr radius and exciton
Hartree energy are equal to the atomic Bohr radius and
Hartree energy (1 e.u. = 1 a.u.).
From Eq. (18) the minimum energy of a positive

charged trion in the fixed hole limit occurs at Req =
1.9970(5) e.u., which agrees well with the prediction of
Schaad and Hicks, who used Burrau’s method to sepa-
rate the Schrödinger equation for the single electron in
H+

2 in confocal elliptical coordinates [42, 45]; see Table
V.
In another, more precise approach, we have calcu-

lated the mean nucleus-nucleus distance of the molecu-
lar hydrogen cation from the radial distribution function
(RDF) 4πr2ghh(r) obtained using QMC calculations for
the exact mass ratio, as shown in Fig. 4. The position
of the peak in the hole-hole RDF gives the most likely
nucleus-nucleus distance for each isotope. The mean
nucleus-nucleus distance or bond length between two
nuclei can be evaluated as ⟨rhh⟩ =

∫∞
0

4πr2ghh(r) r dr.
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TABLE IV. Ground-state total energy and binding energy of various ions obtained by DMC and compared with previous
(experimental) works, where possible. d+ and t+ denote a deuteron and a triton, respectively.

Ion
Total energy (e.u.) Binding energy (eV)

DMC Eq. (17) Prev. works DMC Eq. (17) Expt.

Ps− (e−e−e+) −0.52401(1) −0.524009(2) −0.524010140465960a 0.3267(1) 0.32666(3)

Mu− (e−e−µ+) −0.52759(5) −0.527607(3) 0.747(1) 0.74761(8)

H− (e−e−p+) −0.52762(7) −0.527748(4) 0.751(2) 0.7547(1) 0.75419(2)b

D− (e−e−d+) −0.527742(4) −0.527757(4) 0.7547(1) 0.7551(1) 0.75459(7)b

T− (e−e−t+) −0.527744(3) −0.527760(4) 0.75482(8) 0.7553(1)

Mu+
2 (e−µ+µ+) −0.587951(2) −0.58795(2) 2.38175(5) 2.3817(5)

H+
2 (e−p+p+) −0.5974636(7) −0.59745(1)

−0.602634619c

−0.597464275221235d
2.65068(2) 2.6503(3)

D+
2 (e−d+d+) −0.59893(3) −0.59893(1) 2.6913(8) 2.6913(3)

T+
2 (e−t+t+) −0.59956(5) −0.59959(1) 2.709(1) 2.7095(3)

X+ (e−h+h+), with σ = 0 −0.60265(2) −0.60260(1) −0.6025e 2.7933(5) 2.79189(3)

a Data taken from Ref. 40.
b Data taken from Ref. 41.
c Data taken from Ref. 42.
d Data taken from Ref. [43].
e Data taken from Ref. 44.

DMC predicts a slight increase in the bond length of the
system when nuclear dynamics are considered; see Ta-
ble V. Also, a slightly larger equilibrium nucleus-nucleus
distance for lighter isotopes is obtained. These results
are in good agreement with previous data when nuclear
dynamics are included in the calculations [46]. In addi-
tion, the maximum of the RDF increases with the nuclear
mass as we approach the static-nucleus limit.

FIG. 4. Nucleus-nucleus RDF 4πr2ghh(r) for three dihydro-
gen cations (H+

2 , D+
2 , and T+

2 ) vs the nucleus-nucleus dis-
tance.

The nucleus-nucleus spatial width of the lighter iso-
tope H+

2 is slightly larger than the two others and shows
a slight asymmetry, demonstrating that anharmonicity
effects are more important in H+

2 than D+
2 or T+

2 . The
width of the RDF is quantified by the standard deviation

σhh =
√
⟨r2hh⟩ − ⟨rhh⟩2. The standard deviation for H+

2

is 0.231(9) a.u., and it decreases for the more massive
isotopes D+

2 and T+
2 , as seen in Table V. A previous

path integral Monte Carlo study indicated a broaden-
ing of 0.539(1) a.u. and 0.454(1) a.u. at half maximum
of RDF diagram for H+

2 and D+
2 , respectively [46]. On

the other hand, as seen in Fig. 5, isotope mass does not
strongly influence the electron-nucleus coupling, and we
obtained three very similar geh(r) curves, as implied by
the BO approximation. Figure 5 also shows that geh(r)
falls off approximately exponentially with distance, with
the associated length scale being 0.58(1) e.u.

FIG. 5. Electron-nucleus PDF geh(r) and the corresponding
RDF 4πr2geh(r) in three dihydrogen cations (H+

2 , D+
2 , and

T+
2 ) vs the electron-nucleus distance. The curves for the dif-

ferent ions are almost on top of each other.
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TABLE V. Adiabatic equilibrium nucleus-nucleus distance Req, nonadiabatic mean nucleus-nucleus and electron-nucleus dis-
tances ⟨rhh⟩ and ⟨reh⟩, DMC zero-point energy (ZPE), difference ∆EZ between the exact ZPE and the harmonic approximation
ωe/2 to the ZPE, and spectroscopic constants of dihydrogen cations. Results are from the present work, except where citations
are given.

Ion Req (a.u.) ⟨rhh⟩ (a.u.) ⟨reh⟩ (a.u.) σhh (a.u.) ZPE (eV) ∆EZ (meV) ωe (cm−1) ωexe (cm−1) αe (cm−1) Be (cm−1)

H+
2

1.9970(5)

1.9972a

1.99719(1)b

2.063(9)

2.075(2)c

2.06403(7)d

1.69(3) 0.231(9) 0.1500(5) 6.0(7) 2323(4)

2323.98(8)a

2321e

68(4)

67.3(2)a

66.2e

1.67(3)

1.597(2)a

1.68e

29.97

29.9626(2)a

30.2e

D+
2

1.9970(5)

1.99719(1)b
2.059(9) 1.69(3) 0.180(9) 0.106(1) 4(1) 1643(3)

1577.3e
34(2) 0.59(1)

0.560e
14.99

15.061e

T+
2

1.9970(5)

1.99719(1)b
2.061(9) 1.69(2) 0.159(9) 0.087(1) 4(1) 1343(2) 23(1) 0.322(6) 10.01

a Data taken from Ref. 47.
b Data taken from Ref. 42.
c Data taken from Ref. 46.
d Data taken from Ref. 11.
e Data taken from Ref. 48.

4. Spectroscopic constants

For a given electronic state, the spectrum of the atomic
system is determined by the corresponding vibrational
and rotational levels. We applied the BO potential en-
ergy curve described by Eq. (18) to evaluate the contribu-
tion of rovibrational motion to the total energy by eval-
uating the spectroscopic constants of H+

2 isotopes from a
Dunham polynomial [14]:

EnJ = E00 + ωe

(
n+

1

2

)
− ωexe

(
n+

1

2

)2

+BeJ(J + 1)− αeJ(J + 1)

(
n+

1

2

)
+ . . . ,

(19)

where E00 = Uhh(Req) is the minimum of the BO po-
tential, ωe is the harmonic vibration frequency about the
minimum of the BO potential, and n = 0, 1, 2, . . . is the
vibrational quantum number. ωexe describes the effects
of anharmonicity in the BO potential. BeJ(J + 1) is the
angular kinetic energy and J = 0, 1, 2, . . . is the rotational
quantum number. αe describes the strength of rovibra-
tional coupling. In an adiabatic approach, we have used
the energy function introduced by Eq. (18) at the equi-
librium nucleus-nucleus distance within the BO approx-
imation to calculate the spectroscopic constants of the

H+
2 isotopes as [14]

Be =
1

2µhhr2
(20)

ωe =

(
1

µhh

d2Uhh

dr2

)1/2

(21)

ωexe =
1

48µhh

5( d3Uhh

dr3

d2Uhh

dr2

)2

− 3
d4Uhh

dr4

d2Uhh

dr2

 (22)

αe = −6B2
e

ωe

(
R

3

d3Uhh/dr
3

d2Uhh/dr2
+ 1

)
. (23)

Here, r is the nucleus-nucleus distance, and µhh = mh/2
is the reduced mass of the two nuclei. Our results are
presented in Table V and compared with the available
data in the literature.
The spectroscopic parameters given in Eqs. (20)–(23)

can be evaluated either at the equilibrium separation
r = Req or by taking their expectation values with re-
spect to the nucleus-nucleus PDF. The results did not
change significantly when the spectroscopic parameters
were calculated by taking their expectation value with
respect to the PDF instead of calculating the parameters
at the adiabatic equilibrium distance Req, and hence our
reported results just used r = Req. In Table IV we report
the exact vibrational ZPE of each dihydrogen cation as
the difference between the ground-state energy and the
minimum total energy of a heavy-hole positive trion X+

(σ = 0). Comparing the ZPEs of these three isotopes
with the harmonic part of their vibrational energy ωe/2
shows that anharmonicity makes a larger contribution to
the ZPE of H+

2 than in the other two isotopes, as can
be seen in Table V. As shown in Table V, the ZPE falls
off as the nuclear mass increases. Zero-point fluctuations
are responsible for the broadening of the nucleus-nucleus
RDF in Fig. 4 at temperature T = 0.
Electron-positron contact pair densities (which deter-
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mine annihilation rates) are given in Table VI.

TABLE VI. VMC-DMC extrapolated estimates of the
opposite-spin electron-positron contact pair density geh(0)/2
in some positronic ions and molecules. The analytic result
for Ps is shown for comparison. The error bars quantify the
uncertainty due to VMC and DMC simulation, but not errors
due to the form and optimization of the trial wave function.

Complex geh(0)/2 (a.u.)

Ps 1/(16π)

Ps− 0.020709(9)

Ps2 0.04427(1)

PsH 0.02465(2)

PsD 0.02455(1)

PsT 0.02457(1)

5. Accuracy of BO and harmonic approximations

Equation (18) gives the BO potential energy surface,
which only depends on the hole-hole distance rhh. Trans-
forming to the hole-hole center-of-mass and difference co-
ordinates, as done for electron-hole relative motion in an
exciton in Eq. (4), the nuclear part of the Schrödinger
equation within the BO approximation is[

− 1

2µhh
∇2

hh + Uhh(rhh)

]
ψhh(rhh) = EBOψhh(rhh),

(24)
where ψhh(rhh) is the hole-hole wave function. EBO rep-
resents the total energy of the system within the (fully
anharmonic) BO approximation. In a spherically sym-
metric system, the wave function only depends on the
hole-hole separation rhh. Consequently, Eq. (24) reduces
to a one-dimensional Schrödinger equation:

− 1

2µhh

(
d2

dr2hh
+

2

r

d

drhh

)
ψhh(rhh) + Uhh(rhh)ψhh(rhh)

= EBOψhh(rhh). (25)

We have employed the shooting method with the initial

condition ψhh(0) = 0 and dψhh(rhh)
drhh

= 0 at large separa-

tion to solve Eq. (25) numerically for the H+
2 cation. In

Table VII we compare (i) the exact nonrelativistic energy
obtained using DMC for all the constituent particles, (ii)
the energy within the fully anharmonic BO approxima-
tion obtained using the shooting method, and (iii) the
harmonic approximation within the BO framework, in
which the total energy is

EBO+Harm. = Uhh(Req) +
ωe

2
. (26)

From the data in Table VII, the BO energies are
about 0.0003–0.0005 a.u. lower than the DMC-calculated
exact energies. In Fig. 6 the probability density

|ψhh(rhh)|2 within the BO approximation is compared
with both the DMC hole-hole RDF and the ground-
state probability density in the harmonic approxima-

tion, (µhhωe/π)
1/2
e−µhhωe(rhh−Req)

2

, where Req and ωe

are taken from Table V. The BO fully anharmonic hole-
hole RDF, shown in Fig. 6, is in slightly better agreement
with the DMC hole-hole RDF than is the BO harmonic
approximation, especially for the tails of the RDF. On
the other hand, surprisingly, the harmonic approximation
gives a more accurate ground-state total energy than the
fully anharmonic BO approximation in comparison with
the DMC simulation of all the particles. The likely reason
for this pathological behavior of the BO approximation
is that, at the level of accuracy at which we are work-
ing, the ambiguity in the mass of the heavy particles is
significant: should some fraction of the electron mass be
included in µhh?

TABLE VII. Total energy of the molecular hydrogen cation
H+

2 and dihydrogen H2 from three different approaches: (i)
the exact nonrelativistic solution E obtained using DMC, (ii)
the BO approximation EBO, and (iii) the BO and harmonic
approximations EBO+Harm..

Complex E (a.u.) EBO (a.u.) EBO+Harm. (a.u.)

H+
2 −0.5971384(7) −0.59738903 −0.597340(7)

H2 −1.164015(8) −1.1645088 −1.16441(2)

FIG. 6. Proton-proton RDF in a hydrogen molecular cation
obtained using the three different approaches listed in the
caption of Table VII.

C. Biexcitons

1. Binding energies

The binding energy of a biexciton is the energy re-
quired to decompose it into its two constituent excitons:

EB
X2

= 2EX − EX2
, (27)
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where EX2
is the ground-state total energy of the biexci-

ton.

As we have done for a trion, in the limit of two heavy
holes, we can employ the BO approximation and separate
the vibrational contribution of heavy holes to the total
energy from the electronic contribution. The derivation
of Eq. (16) is exactly the same for a biexciton as for a
positive trion, again leading to the conclusion that the
binding energy must go as

√
x at small x. However, un-

like a trion, the binding energy must be unchanged under
the exchange of electrons and holes (i.e., me ↔ mh or,
equivalently, σ ↔ 1/σ or x ↔ 1 − x). This suggests
that a suitable fitting function for the binding energy of
a biexciton should be a symmetric polynomial in

√
x and√

1− x. We found the DMC binding energy data to be
well fitted by

EB
X2

=

4∑
i=0

ci[x(1− x)]
i/2
. (28)

The fitting parameters {ci} are presented in Table VIII,
and the fitted curve is plotted along with the raw data in
Fig. 7. The DMC total energies are listed in Appendix B.
The SSE and RMSE are 2.249×10−9 e.u. and 1.224×10−5

e.u., respectively.

TABLE VIII. Fitted parameters in Eq. (28) for biexciton
binding energies.

Parameter Value (e.u.)

c0 0.17438546591410939

c1 −0.42831856512902888

c2 0.38685906773221207

c3 −0.26511242810730029

c4 0.13132632976660738

FIG. 7. DMC binding energies of biexcitons against rescaled
mass ratio x = σ/(1 + σ). The solid line shows the fit of Eq.
(28).

Using Eq. (28), we predict the biexciton binding en-
ergy in various semiconductors in Table III. In all cases,
the biexciton binding energies are larger than the trion
binding energies, but are of the same order of magnitude.

2. Mass effects in molecular hydrogen isotopes

An H2 molecule consists of two protons and two elec-
trons and hence resembles a biexciton with heavy holes.
Likewise, a dimuonium molecule Mu2 is formed by the
electrostatic interaction between two electrons and two
antimuons. The binding energy of such a molecule is
defined as the energy required to dissociate the molecule
into two isolated atoms. The DMC ground-state total en-
ergies and binding energies of dimuonium and the molec-
ular hydrogen isotopes H2, D2, and T2 are given in Table
IX. The DMC-calculated total energies are in excellent
agreement with previous quantum electrodynamics pre-
dictions [49], confirming that the molecules are well de-
scribed by nonrelativistic quantum mechanics. Indeed,
the DMC binding energies retrieve the experimental out-
comes and show that the binding energy increases with
nuclear mass. As can be seen in Table IX, Eq. (28) pre-
dicts the binding energies of the three molecular hydro-
gen isotopes in good agreement with both the raw DMC
data and experimental results.

3. BO potential energy curve

As with molecular cations, the BO potential energy
curve provides important information about the nuclear
motion around the equilibrium separation. We per-
formed a series of DMC simulations of two electrons in
the presence of two fixed holes at different hole-hole dis-
tances, between 0.8 and 1.8 a.u. The results are shown
in Appendix B and compared with the available previous
data. We found that a polynomial of degree 8,

Uhh(r) =

8∑
i=0

pir
i, (29)

fitted our data excellently, with the coefficients {pi}
reported in Appendix C 1. The SSE and RMSE are
3.02 × 10−9 and 3.173 × 10−5 a.u., respectively. Fig-
ure 8 shows how well the curve given by Eq. (29) passes
through the DMC data.

4. Spectroscopic constants

We have calculated the spectroscopic constants of
molecular hydrogen from the potential energy curve given
by Eq. (29), using Eqs. (20)–(23) evaluated at the equi-
librium separation. The results are shown in Table X. For
comparison, the spectroscopic constants obtained from a
Morse model are given in Appendix C 2. The adiabatic
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TABLE IX. As Table IV, but for neutral dihydrogenlike molecules. Raw data in Ref. 49 are given in a.u.; for easy comparison
with DMC results, we converted them to e.u. and rounded them to a smaller number of digits.

Molecule
Total energy (e.u) Binding energy (eV)

DMC Eq. (28) Prev. works DMC Eq. (28) Expt.

Ps2 (e−e−e+e+) −1.032009(3) −1.032010(3) −1.03196a 0.43550(4) 0.43552(4)

Mu2 (e−e−µ+µ+) −1.1465(1) −1.14651(1) 3.967(3) 3.9676(3)

H2 (e−e−p+p+) −1.164649(8) −1.16460(1) −1.164659b 4.4779(2) 4.4766(3) 4.478c

D2 (e−e−d+d+) −1.167482(2) −1.16742(1) −1.167487b 4.55618(5) 4.5545(3) 4.556d

T2 (e−e−t+t+) −1.168749(3) −1.16868(1) −1.168748b 4.59106(8) 4.5892(3)

X2 (e−e−h+h+), with σ = 0 −1.17443(3) −1.17439(1) 4.7465(8) 4.7454(3)

a Data taken from Refs. 50.
b Data taken from Refs. 49 and 51 (QED).
c Data taken from Ref. 52.
d Data taken from Ref. 53.

equilibrium nucleus-nucleus distance is Req = 1.4 a.u.,
which agrees with a previous adiabatic VMC prediction
[54]. Furthermore, we obtained the vibrational ZPE of
these molecules by comparing adiabatic and nonadiabatic
energies. Our spectroscopic constants are in good agree-
ment with the available experiments, as seen in Table
X.

FIG. 8. DMC BO potential energy, i.e., DMC total energy of
a biexciton in the infinite mass limit of two heavy holes and
two light electrons (σ = 0) against the hole-hole distance.
The solid curve shows a fit of Eq. (29) to the DMC data.

In Appendix C 2 we compare our model, given by Eq.
(29), with the Morse potential. As in the case of trions,
although a Morse potential behaves much better than
Eq. (29) at large hole-hole separations, it does not match
the DMC data so well in the vicinity of the equilibrium
point.

Using the RDF results obtained from nonadiabatic
QMC simulations of two electrons and two nuclei, we
explore the effects of nuclear motion on the bond lengths
of the molecular hydrogen isotopes. Our results show
slight increases in bond length when nuclear dynamics
are considered, bringing our results into agreement with

FIG. 9. Nucleus-nucleus RDF 4πr2ghh(r) for three dihydro-
gen molecules (H2, D2, and T2) vs the nucleus-nucleus dis-
tance.

FIG. 10. Electron-nucleus PDF geh(r) and RDF 4πr2geh(r) in
three dihydrogen molecules (H2, D2, and T2) vs the electron-
nucleus distance.
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TABLE X. As Table V, but for neutral dihydrogen molecules.

Mol. Req (a.u.) ⟨rhh⟩ (a.u.) ⟨reh⟩ (a.u.) σhh (a.u.) ZPE (eV) ∆EZ (meV) ωe (cm−1) ωexe (cm−1) αe (cm−1) Be (cm−1)

H2
1.400(5)

1.4a
1.44(2)

1.4009(1)b
1.57(6) 0.16(2) 0.2834(8)

0.27030(1)c
10(1) 4400(10)

4401.213c
110(30)

121.336c
3.1(2)

3.0622c
60.984

60.853c

D2
1.400(5) 1.43(2)

1.401(2)b
1.57(4) 0.14(2) 0.1977(8)

0.19174(1)c
4(1) 3120(10)

3115.5 d

55(7)

61.82d
1.03(7)

1.0786d
30.50739(2)

30.4436d

T2
1.400(5) 1.43(2)

1.4(4)e
1.57(6) 0.13(2) 0.1604(8)

0.1569d
2(1) 2547(8)

2546.4d
36(5)

41.23d
0.56(4)

0.5887d
20.371

20.335d

a Data taken from Ref. 54.
b Data taken from Ref. 55.
c Data taken from Ref. 56.
d Data taken from Ref. 48.
e Data taken from Ref. 57.

the available experimental data, as shown in Table X.
Figure 9 shows the nucleus-nucleus RDF for the three

molecular hydrogen isotopes. As is the case for H+
2 ,

the distribution of nucleus-nucleus distances in H2 has
a larger spatial broadening than in the more massive
isotopes, as quantified by the standard deviation of the
nucleus-nucleus distance reported in Table X. Accord-
ingly, the ZPE increases with electron-hole mass ratio
σ, as seen in Table X. The effects of anharmonicity are
visible in Fig. 9 as an asymmetry in the RDF.

On the other hand, isotope mass does not influence the
electron-nucleus coupling: the three molecules show the
same electron-nucleus PDF curves in Fig. 10. Indeed, for
all three molecules, the mean electron-nucleus distance
⟨reh⟩ is only slightly less than the mean electron-nucleus
distance in the molecular cations.

The exact nonrelativistic energy of H2, the energy
within the BO approximation, and the energy within the
harmonic approximation within the BO framework are
shown in Table VII, and the corresponding RDFs are
shown in Fig. 11. The mean separation obtained within
exact DMC calculations for all four particles is greater
than the equilibrium separation of the BO potential. As
in the dihydrogen cation, the harmonic approximation
appears to perform better than the fully anharmonic BO
approximation.

D. Other Coulomb complexes: mixed hydrogenic
molecules and cations; helium hydride; and

positronic and muonic complexes

The DMC-calculated nonrelativistic ground-state to-
tal energies of a number of small Coulomb complexes
are shown in Table XI. We take the masses of a
proton (p+), deuteron (d+), triton (t+), helion (h2+),
alpha particle (α2+), and muon (µ±) to be mp+ =
1836.152673440001 a.u., md+ = 3670.482967853717
a.u., mt+ = 5496.921535729647 a.u., mh2+ =
5495.885280115730 a.u., mα2+ = 7294.299425443957
a.u., and mµ± = 206.7682830910218 a.u., respectively

[39]. With the exception of H+
3 , the ground-state spa-

FIG. 11. Proton-proton RDF in a hydrogen molecule
H2 from three different approaches: BO approximation,
BO+harmonic approximation, and the DMC solution to the
four-particle problem.

tial wave function is nodeless in each case and hence
DMC provides numerically exact solutions to the non-
relativistic Schrödinger equation. For H+

3 we treat the
three protons as distinguishable particles. Many of these
compounds play important roles in interstellar chemistry.
For the positronic compounds we report the contact

pair density geh(0)/2 between spin-up electrons and the
positron in Table VI. It is clear that isotope effects in
the electron-positron annihilation rate in PsH, PsD, and
PsT are small.

IV. CONCLUSIONS

We report high-precision, statistically exact DMC cal-
culations of the binding energies of three-dimensional ex-
citonic complexes in terms of the electron-hole mass ra-
tio. In particular, we have focused on three- and four-
body complexes (trions and biexcitons) formed from dis-
tinguishable electrons and holes with isotropic effective
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TABLE XI. DMC nonrelativistic ground-state total energies of various Coulomb complexes.

Complex
Total energy (a.u.)

DMC Prev. works

µ+H (e−µ+p+) −0.58990(2)

µ+D (e−µ+d+) −0.59023(2)

µ+T (e−µ+t+) −0.59028(3)

HD (e−e−p+d+) −1.165472(7) −1.16547192396366(5)a

HT (e−e−p+t+) −1.166027(9) −1.16600203732867(6)a

DT (e−e−d+t+) −1.16781(1) −1.16781967343673(5)a

HD+ (e−p+d+) −0.59790(4)

HT+ (e−p+t+) −0.59817(1)

DT+ (e−d+t+) −0.59915(2)
3He2+2 (e−e−h2+h2+ −3.672410(7)
3He 4He2+ (e−e−h2+α2+) −3.67302(1)
4He2+2 (e−e−α2+α2+) −3.67364(1)

H+
3 (e−e−p+p+p+) −1.32344(1)

H2D
+ (e−e−p+p+d+) −1.325273(7)

H2T
+ (e−e−p+p+t+) −1.325985(9)

HD+
2 (e−e−p+d+d+) −1.327270(9)

HDT+ (e−e−p+d+t+) −1.328035(9)

HT+
2 (e−e−p+t+t+) −1.328830(9)

D+
3 (e−e−d+d+d+) −1.329399(9)

D2T
+ (e−e−d+d+t+) −1.330230(9)

DT+
2 (e−e−d+t+t+) −1.331115(9)

T+
3 (e−e−t+t+t+) −1.332040(9)

3He (e−e−h2+) −2.9031670(7)
4He (e−e−α2+) −2.9033053(7)
3HeH+ (e−e−p+h2+) −2.970719(6)
4HeH+ (e−e−p+α2+) −2.97107(1)
3HeD+ (e−e−d+h2+) −2.972272(9)
4HeD+ (e−e−d+α2+) −2.972691(7)
3HeT+ (e−e−t+h2+) −2.972895(7)
4HeT+ (e−e−t+α2+) −2.97335(1)

PsH (e−e−e+p+) −0.78890(2)

PsD (e−e−e+d+) −0.78904(3)

PsT (e−e−e+t+) −0.78909(3)

a Data taken from Ref. [49].

masses and interacting via an isotropic 1/r Coulomb po-
tential. Based on our DMC data, we obtained interpola-
tion formulas for the binding energies of trions and biex-
citons. These formulas can be applied to interpret exper-
imental photoabsorption and photoluminescence spectra
in 3D semiconductors. Furthermore, based on DMC cal-
culations with small mass ratios, we have calculated the
nonrelativistic binding energies of “real” three-, four-,
and five-particle Coulomb complexes, including hydro-
gen molecules and ions (with different isotopes), helium
hydride cations, and small positronic and muonic com-
plexes. Using QMC PDFs, we predict the nonadia-
batic nucleus-nucleus distance, nuclear spatial distribu-
tion, and spectroscopic constants for hydrogen molecules

and ions. Where comparison is possible, our nonrelativis-
tic results are in good agreement with both experiments
and previous theoretical results obtained within quantum
electrodynamics.
We find reasonable agreement between the exact non-

relativistic total energy of H2 and the total energy within
the BO approximation. Interestingly, we find that the
total energy evaluated within the BO approximation, in-
cluding all anharmonic effects, is slightly less accurate
than the total energy evaluated using the harmonic ap-
proximation to the BO potential. Similar conclusions
are reached for H+

2 . This shows that it cannot be guar-
anteed that the inclusion of vibrational anharmonicity
within the BO framework improves the total energy of a
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molecule or crystal, especially when light atoms such as
hydrogen are present.

An important conclusion of our work is that, at least
for the small molecules that we have studied, QMC sim-
ulations in which the nuclei are treated as quantum par-
ticles on an equal footing with the electrons are no more
difficult and only proportionately more expensive than
calculations with fixed nuclei, provided that an appro-
priate vibrational Jastrow factor is used. This holds out
the prospect that QMC calculations for larger systems

with a full quantum treatment of nuclei could routinely
be performed using Jastrow factors that are quadratic
functions of the phonon normal coordinates.
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Appendix A: Extrapolation of DMC results to zero
time step

Figures 12 and 13 show extrapolation of DMC energies
to zero time step for the H+

2 ion and the H2 molecule, re-
spectively. In both figures the DMC energies at zero time
step are obtained from two fits: (i) a quadratic function
fitted to six time steps and (ii) a linear fit to two small
time steps. The zero-time-step results are the same to
within the statistical error bars.

FIG. 12. DMC total energy against time step for an H+
2 ion

(a positive trion with a very small electron-hole mass ratio
of σ ≈ 0.0005446). A quadratic fit to the DMC energies at
time steps of 0.0025, 0.005, 0.008, 0.01, 0.08, and 0.16 e.u. is
shown as a dashed blue line. A linear fit to the DMC energies
at two small time steps of 0.0025 and 0.01 e.u. is shown as a
solid red line. The DMC energies extrapolated to zero time
step using the quadratic and linear fits are −0.5974637(4) and
−0.5974636(7) e.u., respectively.

FIG. 13. As Fig. 12, but for an H2 molecule. The DMC ener-
gies extrapolated to zero time step using quadratic and linear
fits are −1.164653(5) and −1.164649(8) e.u., respectively.

Appendix B: DMC total energies for trions and
biexcitons

The DMC energies of negative trions, positive trions,
and biexcitons are reported in Tables XII, XIII, and XIV,
respectively.

TABLE XII. DMC total energies of negative trions against
mass ratio σ.

σ
DMC total energy (e.u.)

Present work Previous works

0 −0.527760(5)
−0.5282a

−0.5275b

0.05 −0.526318(4)

0.10 −0.524994(6)

0.20 −0.523792(4)

0.32 −0.522915(7)

0.40 −0.522653(6) −0.5222b

0.50 −0.522550(6) −0.5246a

0.64 −0.522737(8)

0.70 −0.522881(7) −0.52275b

0.80 −0.523191(8)

0.90 −0.523599(8)

1 −0.52401(1) −0.524b

∞ −0.60261(2)

a Data taken from Ref. 6.
b Data taken from Ref. 44.
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TABLE XIII. DMC total energies of positive trions against
mass ratio σ.

σ DMC total energy (e.u.)

0 −0.60265(3)

0.05 −0.56283(3)

0.10 −0.551984(5)

0.20 −0.54094(1)

0.32 −0.534225(5)

0.40 −0.531452(5)

0.50 −0.529034(6)

0.64 −0.526793(7)

0.70 −0.52612(1)

0.80 −0.52521(2)

0.90 −0.524521(5)

1 −0.524002(5)

TABLE XIV. DMC total energy (in e.u.) of a biexciton X2

against mass ratio σ.

σ DMC total energy (e.u.)

0 −1.17437(2)

0.04 −1.104619(7)

0.05 −1.098427(5)

0.08 −1.084599(4)

0.1 −1.07784(1)

0.2 −1.04545(2)

0.4 −1.04088(2)

0.5 −1.03715(2)

0.62 −1.034469(8

0.725 −1.033133(4)

0.8 −1.032556(4)

0.92 −1.03206(3)

1
−1.03203(2)

−1.0321(1)a

1.6 −1.0344(2)

2.5 −1.04086(1)

4 −1.05136(1)

9 −1.074611(4)

20 −1.098425(5)

∞ −1.17440(2)

a Data taken from Ref. 11.

Appendix C: Born-Oppenheimer potential curves

1. DMC energies and fits

DMC energies against hole-hole separation for positive
trions and biexcitons are reported in Tables XV and XVI,
respectively. The parameters in the polynomials [Eqs.
(18) and (29)] fitted to the DMC BO data are reported
in Tables XVII and XVIII, respectively.

TABLE XV. DMC total energy of a positive trion in the
heavy-hole limit (σ = 0), i.e., the BO potential energy Uhh.
In each calculation, the two holes are fixed with separation
rhh.

rhh (e.u.)
Uhh (e.u.)

DMC (Present work) VMCa

1.4 −0.56998(2) −0.569983491(6)

1.5 −0.58233(2) −0.582323174(5)

1.6 −0.59092(2) −0.590937199(5)

1.7 −0.59672(2) −0.596696250(4)

1.8 −0.60024(2) −0.600253616(4)

1.9 −0.60209(2) −0.602105768(3)

2 −0.60265(2) −0.602634202(3)

2.1 −0.60215(2) −0.602134935(3)

2.2 −0.60082(2) −0.600839617(3)

2.3 −0.59891(2) −0.598930879(3)

2.4 −0.59652(2) −0.596553632(3)

2.5 −0.59381(2) −0.593823505(2)

2.6 −0.59084(2) −0.590833192(2)

2.7 −0.58765(2) −
3.0 −0.57756(3) −0.577562861(2)

3.2 −0.57069(2) −
3.5 −0.56092(8) −

a Data taken from Ref. 47.

TABLE XVI. DMC total energy of a biexciton in the heavy-
hole limit (σ = 0), i.e., the BO potential energy Uhh. In each
calculation, the two holes are fixed with separation rhh.

rhh (e.u.)
Uhh (e.u.)

DMC (Present work) Previous worka

0.2 2.1976(2) 2.197807(4)

0.8 −1.02007(2) −1.020056(1)

0.9 −1.08362(2)

1 −1.12449(2) −1.124539(2)

1.1 −1.15005(2)

1.2 −1.16488(2)

1.3 −1.17231(2)

1.4 −1.17445(3) −1.174475(3)

1.5 −1.17280(3)

1.6 −1.16860(3)

1.7 −1.16244(3)

1.8 −1.15503(3) −1.1550699(2)

1.9 −1.14683(3)

2 −1.13818(3)

2.1 −1.12917(3)

2.5 −1.0881(10)

a Data taken from Ref. 54.
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TABLE XVII. Coefficients of the fitting function Eq. (18) for
the BO potential of a positive trion, determined by fitting to
the data in Table XV in the range 1.4 a.u. ≤ rhh ≤ 3.2 a.u.

Parameter Value (e.u.)

p0 1.0427824014296136

p1 −3.3397706586457314

p2 2.8588375211577741

p3 −1.3365671624439441

p4 0.36129754841667888

p5 −0.053146452736184853

p6 0.0033007257815276473

TABLE XVIII. Coefficients of the fitting function Eq. (29) for
the BO potential of a biexciton, determined by fitting to the
data in Table XVI in the range 0.8 a.u. ≤ rhh ≤ 1.9 a.u.

Parameter Value (e.u.)

p0 4.9372623192546792

p1 −26.739727920240565

p2 55.588815121898229

p3 −70.359270025396583

p4 57.928244487543246

p5 −31.202873732362676

p6 10.619660811375310

p7 −2.0737318548490848

p8 0.17711891075798453

2. Comparison of polynomial and Morse potential
fits to BO potential

A Morse interatomic potential is of the form

UMorse(r) = Deq

[
e−2a(r−Req) − 2e−a(r−Req)

]
, (C1)

where the equilibrium separation Req, well depth Deq,
and a are fitting parameters [58]. By construction,
the Morse potential goes to zero at large separation,
whereas the BO potential goes to EX in a trion and
to 2EX in a biexciton, where EX = −1/2 e.u. is the
ground-state energy of a single exciton; hence we fit
UMorse(r) to the UDMC(r) − EX raw data for trion and
to the UDMC(r)− 2EX for the biexciton. Plots of DMC-
calculated points on the BO potential energy curves, to-
gether with fitted polynomials and Morse potentials, are
shown in Figs. 14 and 15 for dihydrogen cations and
molecules, respectively. The corresponding spectroscopic
constants are shown in Tables XIX and XX.
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FIG. 14. Fits of a Morse potential [Eq. (C1), raw DMC
data offset by EX] and Eq. (18) to the DMC BO potential
of a positive trion. The Morse fitting parameters are Deq =
0.102553(8) a.u., Req = 2.0181(1) a.u., and a = 0.7003(2) a.u.
The SSE and RMSE are 6.451×10−6 a.u. and 0.0006788 a.u.,
respectively. The value of Req is slightly larger than the value
predicted by fitting Eq. (18). However, the Morse poten-
tial shows much more reasonable behavior at small and large
hole-hole separations. The fitted function given by Eq. (18)
increases unphysically at large separations beyond 2.6 a.u.
However, Eq. (18) fits the DMC data very well in the vicinity
of the equilibrium point, as seen in the inset; consequently,
spectroscopic constants predicted by Eq. (18), shown in Ta-
ble V, are more accurate than those predicted by the Morse
potential, shown in Table XIX.

TABLE XIX. Spectroscopic constants obtained from the
Morse potential fitted to the DMC BO potential of the posi-
tive trion. The fitted parameters are listed in the caption of
Fig. 14.

Cation ωe (cm−1) ωexe (cm−1) αe (cm−1) Be (cm−1)

H+
2 2297.4(8) 58.63(4) 0.9298(7) 29.348(4)

D+
2 1624.9(6) 29.33(2) 0.3290(3) 14.681(2)

T+
2 1327.8(5) 19.58(1) 0.1795(1) 9.803(1)

TABLE XX. Spectroscopic constants obtained from the
Morse potential fitted to the DMC BO potential of a biex-
citon. The fitted parameters are listed in the caption of Fig.
15.

Molecule ωe (cm−1) ωexe (cm−1) αe (cm−1) Be (cm−1)

H2 4453(3) 129.3(1) 2.280(3) 60.51(1)

D2 3149(2) 64.70(7) 0.807(1) 30.271(5)

T2 2573(1) 43.20(5) 0.4401(5) 20.213(4)
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FIG. 15. Fits of a Morse potential [Eq. (C1), raw DMC data
offset by 2EX] and Eq. (29) to the DMC BO potential of
a biexciton. To obtain a better SSE and RMSE using the
Morse model, we only included separations in the range 1
a.u. ≤ rhh ≤ 1.8 a.u. in the fit. The Morse fitting param-
eters are Deq = 0.17459(1) a.u., Req = 1.4054(1) a.u., and
a = 1.0402(6) a.u. The SSE and RMSE are 1.018× 10−5 a.u.
and RMSE = 0.001128 a.u., respectively. The Req is close to
the value obtained by fitting Eq. (29). In the large separation
limit, contrary to the Morse model, Eq. (29) becomes unphys-
ical. In the vicinity of the equilibrium point, Eq. (29) fits the
DMC data better and produces more accurate spectroscopic
constants, as seen by comparing Tables X and XX.
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