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Abstract

This paper addresses the role of the right jump tail under the risk-neutral measure, as a

proxy for fear-of-fear, in the return predictability implicit in the VIX market. A simulation

establishes that the right jump tail dominates the left jump tail in explaining various risk

measures and their associated term structures. Using VIX futures and options from 2006 until

2020, the superior predictive power for futures returns afforded by the variance-of-variance

risk premium (V V RP ) is shown to arise predominantly from the right jump tail risk. A

separate consideration of the continuous and jump tail components of the V V RP outperforms

the alternative models in an out-of-sample forecasting exercise and generates non-trivial

economic value, especially over short horizons. However, the impact of right jump tail is weak

on option returns and only evident for short maturities, suggesting that the fear component

cannot be the sole factor explaining the observed losses incurred on the delta-hedged VIX

options.
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1 Introduction

Investor sentiment and asset market volatility are often captured by the V IX index which is

published by the Chicago Board Options Exchange (CBOE). Derived by the cross section of

SPX options, the V IX nonparametrically approximates the expected future index volatility

over the next 30 days. Since the V IX is not a directly tradeable instrument, futures and

options, subsequently introduced by the CBOE in 2004 and 2006, provide investors with tradeable

exposure to volatility. A fast growing recent literature concentrates on measuring and modelling

the volatility-of-volatility (V V IX) implied by the V IX options due to its crucial role in asset

pricing (see Park (2015), Huang et al. (2019) and Yuan (2021), among others).

As indicated by Park (2015) and Huang et al. (2019), investors dislike volatility-of-volatility

risk and are willing to pay a premium for downside protection. This indicates that the V V IX

contains information, not only on a physical expectation of future volatility-of-volatility risk, but

also on its associated risk premium. The latter is defined as the difference between the physical

and risk-neutral variances of the V IX index, the so-called variance-of-variance risk premium

(V V RP ) in the work of Kaeck (2018). Despite widespread interest in the variation of the

volatility-of-volatility and its risk premia, little progress is apparent in understanding the tail

risk manifest in V IX options. The current paper seeks to fill this void by examining the impact

of jump tails upon the dynamic properties of the V V IX and V V RP and their predictive power

for future returns. Given that the V IX is often referred to as the "investor fear gauge", the

V V IX based on the V IX options might be considered the "fear-of-fear". In the present paper,

we argue that the right jump tail variation from the V IX option data is attributable to the

genuine fear-of-fear component; and that fear per se may account for much of the predictive power

underlying the V V RP . Disentangling the part of the V V RP associated with normal sized price

variations, from that associated with extreme tail events, is likely to provide a better guide to

investment decisions.
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The main contributions are twofold. First, we assess the role of the fear-of-fear component

in return predictability for the V IX market as implied by the V V IX, V V RP and their term

structures. We follow Bollerslev, Todorov, and Xu (2015) in treating the difference between

the left and right jump tail risk premia as a proxy for fear-of-fear, since it is virtually exempt

from any compensation for temporal variation in jump tail risk. To ensure the robustness of our

predictability results, we conduct both in-sample and out-of-sample analysis while considering

various time horizons and pricing factors as control variables.

Second, we identify the different impact of upward and downward jump risk premia on the

V V IX and V V RP . For this, we undertake a Monte Carlo simulation based upon an extended

model of V IX dynamics, as considered in Park (2016). Using simulated V IX options, we also

evaluate the contributions to the V V IX, V V RP and their associated term structures of the

risk-neutral left and right jump tails while justifying the use of the latter as an approximation for

the fear-of-fear. The right jump tail depends solely on deep short-lived OTM call options that are

worthless in the absence of any substantial increase in the V IX before the options expire. We

therefore view this as compensation for exposure to sudden downside movements in the market.

With a wide range of strikes and equal numbers of the OTM calls and puts, our simulation study

is less prone to the problem of measurement errors, as encountered by the empirical work where

bias in the estimation of the left jump tail is induced by frequent misses of V IX deep OTM puts.

The simulation evidence indicates that, for the same magnitude of jump risk premium, the

upward jump premium has greater impact than its downward counterpart, on the properties

of the V V IX and V V RP . Moreover, that impact tends to increase as the jump risk premium

increases; and it declines with longer investment horizons. As the upward jump premium increases,

it delivers a steeper slope of term structures for the V V IX and V V RP . However, changes in the

downward jump premium leave the shape of the term structure virtually unaffected. The dominant

role played by the upward jump premium is indicative of the superiority of the right jump tail

under the risk-neutral measure. The latter approximates the difference between the downward
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and upward jump risk premia for large sized jumps. Indeed, regardless of the size of the jump

risk premium, the right jump tail clearly outperforms its counterpart in explaining the V V RP ,

V V IX and their term structures.

In the empirical study, we first explore the predictive power of the V V IX, V V RP and other

traditional predictor variables for V IX futures returns. We establish that the V V RP serves

as the top performer for monthly and quarterly return predictions. Moreover, the predictive

information underlying the V V RP cannot be fully subsumed by other traditional predictors that

we have considered. To disentangle the true source of the return predictability and to characterize

the role of the fear-of-fear, we then deprive the V V RP of the right jump tail component. This

substantially reduces the R2 relative to the regression based on the V V RP alone. Finally, a

considerable increase in the degree of predictability is achieved when the diffusive and the right

jump tail risk components of the V V RP are included as separate predictors. It is also worth noting

that the right jump tail remains statistically significant when the traditional predictor variables

are included. Our results suggest that the fear-of-fear component proxied by the right jump tail

variation is the primary source of the in-sample predictive ability inherent in the V V RP for V IX

futures returns.

Out-of-sample results further confirm the in-sample results regarding the role of the right jump

tail in return predictions. We show that the V V RP significantly outperforms the historical average

model in most of the forecasting horizons and its forecasting power considerably weakens, if not

disappears, when the right jump tail component is removed. In addition, the best forecasting

performance over short horizons is obtained when the right jump tail is reintroduced to the

predictive regression based on the diffusive component of the V V RP . Results of the Clark and

West (2007) test indicate that such superiority afforded by the right jump tail still remains even

after other traditional predictor variables are added in the forecasting exercises. From an asset

allocation perspective, we further devise a trading strategy for a mean-variance investor and

provide evidence that the right jump tail is nontrivial in generating economic gains, especially
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over short horizons.

For the V IX options, we show that over all strike and maturity combinations, OTMdelta-hedged

V IX options have significantly negative returns. Consistent with earlier studies of Mencía and

Sentana (2013) and Park (2015), compared with the V V RP , we find that the V V IX is a more

significant risk factor affecting V IX option returns. When the V V IX is stripped of the right

jump tail variation, a decline in return predictability is only observed for short-dated options.

Furthermore, the inclusion of the right jump tail risk does not alter the sign and statistical

significance of the coeffi cients for the V V IX. Our results indicate that, while the fear-of-fear

proxy plays an important role, it cannot fully explain the negative delta-hedged returns and that

the predominant forecast power is afforded by the V V IX.

Our work is related to several recent papers that examine the forecasting power of the tail risk

measures obtained from SPX options. Bollerslev, Todorov, and Xu (2015), Andersen, Fusari,

and Todorov (2015), Andersen, Fusari, and Todorov (2020) and Andersen, Todorov, and Ubukata

(2021) show that the return predictability implied by the variance risk premium (V RP ) arises

largely from the left jump tail, and that this hinges on the SPX deep out-of-the-money (OTM)

put options. We build on this literature by constructing the jump tail measure in the V IX market

and evaluating its role in the predictions of the V IX futures and option returns. Among the few

studies of jump dynamics for the V IX derivatives, Park (2016) emphasizes the importance of

upward jumps in pricing performance and Park (2015) and Huang et al. (2019) include jumps as

control variables in predictive regressions for V IX option returns. Neither formal treatment of

the jump tail risk underlying the V IX market, nor a thorough analysis of jump tails in the V IX

return predictability, are to be found in the literature.

Finally, our results enrich the literature on the forecasting performance afforded by the V V RP .

Despite the extensive study of volatility-of-volatility risk in recent years, empirical work dedicated

to the predictability inherent in the V V RP is rather limited. This contrasts sharply with mounting

evidence on the usefulness of the V RP as a predictor for aggregate stock market returns, see,
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Bollerslev, Tauchen, and Zhou (2009), Drechsler and Yaron (2010), Bollerslev et al. (2014), and

Li, Izzeldin, and Yao (2020), among others. Given that investors’aggregate risk aversion could

vary differently with the time horizon, Li and Zinna (2018) and Bardgett, Gourier, and Leippold

(2019) further establish that the V RP term structure contains additional information on future

returns. In contrast, we are among the first to investigate the predictive power of the V V RP and

its term structure for V IX futures returns. To improve the reliability of the predictability results,

we adopt the IVX approach of Kostakis, Magdalinos, and Stamatogiannis (2015) to account for

the potential presence of strong persistency and endogeneity in the variables.

The rest of the paper proceeds as follows. We present our construction of the V V IX, V V RP

and the jump tails in section 2. A simulation study on the role of jump tail risk is demonstrated in

section 3. Section 4 details the data used in our study and section 5 discusses the main empirical

results. Section 6 concludes.

2 Construction of Risk Measures

We first derive the risk-neutral expectation of the quadratic variation for the V IX index. We then

construct the realized variance for the V IX and obtain the variance-of-variance risk premium as

the wedge between the conditional expectations of quadratic variation under the risk-neutral and

objective measures. Finally, we extract the investors’ fear-of-fear component as proxied by the

special compensation for jump tail risk.

2.1 Implied variance measure

The V IX index offers a model-free and market-determined estimate of one-month stock market

volatility implied by index option prices. Britten-Jones and Neuberger (2000) and Jiang and Tian

(2005) indicate that the V IX can be derived from the prices of S&P 500 call and put options

covering a range of strikes. In practice, the published V IX adopts a few approximations due to
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the availability of options data.

In the present paper, we calculate the implied volatility of volatility by applying the same

method as the V IX to a cross-section of the V IX options. The squared V V IX that captures the

model-free implied volatility of V IX futures reads

V V IX2
[t,t+τ ] =

2erfτ

τ

[∫ Ft

0

1

K2
Pt(τ ,K)dK +

∫ ∞
Ft

1

K2
Ct(τ ,K)dK

]
(1)

where rf is the risk-free rate, Ft is the V IX futures price, K denotes the strike price, τ is

time-to-maturity measured in annual units and Pt(τ ,K) (Ct(τ ,K)) denotes the price of OTM put

(call) options on the V IX. In the subsequent analysis, we always consider the use of squared

V V IX, thus the V V IX2 notation, unless otherwise stated. To approximate the integral on the

right-hand side of equation (1), we follow a procedure that is now adopted as common practice

in the related literature: a) interpolate between listed strikes employing a simple cubic spline; b)

extrapolate the observed implied volatilities by assuming a flat implied volatility function beyond

the available strike prices. To reduce measurement errors induced by the limited availability of

strike prices, we generate a grid of strikes with one-point increments and consider strikes covering

a range of three times the standard deviation around the futures price.

2.2 Variance-of-variance risk premium

Next, we characterize the variance-of-variance risk premium (V V RP ) in the form of a gap between

the objective and risk-neturalized expectations of the total quadratic variation for the V IX index

over a fixed maturity. This premium represents compensation demanded by investor for the risk

associated with fluctuations in the return variation of the volatility index.

Following Barndorff-Nielsen and Shephard (2002) and Kaeck (2018), we obtain the realized

variance over the interval from t to t+ τ below

RV V IX[t,t+τ ] =
252

n

n∑
i=1

(
log (Fti,t+τ )− log

(
Fti−1,t+τ

))2
(2)
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where Ft,t+τ denotes the futures contract on day t with fixed maturity t+τ . For each time horizon

τ , the daily return is calculated between two points in the partition [t, t + τ ], where t + τ is

the expiry date of V IX options in the following month and t is the trading day after the expiry

date of the present month. Since V IX futures maturities are consistent with the expiry dates of

the options, this approach achieves exact matching of information in the measurement of the two

expectations of the future return variation of the V IX. To capture the premium that investors

require to hold variance-sensitive assets, we construct the V V RP as follows

V V RPt,τ ≡ EP
t

(
QV[t,t+τ ]

)
− EQ

t

(
QV[t,t+τ ]

)
(3)

≈ RV V IX[t,t+τ ] − V V IX2
[t,t+τ ]

where QV[t,t+τ ] is the quadratic variation measuring the return variation of the log-price process

over t and t + τ , EP
t

(
QV[t,t+τ ]

)
and EQ

t

(
QV[t,t+τ ]

)
respectively correspond to the objective and

risk-neutral expectations of QV[t,t+τ ].

2.3 Jump tail risk

As indicated in Bollerslev, Todorov, and Xu (2015) and Andersen, Todorov, and Ubukata (2021),

V V RPt,τ in equation (3) can be decomposed into a part associated with variation in the diffusive

volatility process and a part that is induced by jumps. Define the left and right jump variation

under the risk-neutral measure as LJV Q
[t,t+τ ] and RJV

Q
[t,t+τ ], their counterparts under the physical

measure are therefore LJV P
[t,t+τ ] andRJV

P
[t,t+τ ]. Specifically, LJV

Q
[t,t+τ ] andRJV

Q
[t,t+τ ] (LJV

P
[t,t+τ ] and

RJV P
[t,t+τ ]) can be understood as the predictable component of the quadratic variation associated

with large negative and large positive jumps under the risk-neutral Q−(physical P−) measure.

By analogy with the definition of V V RPt,τ , the left and right jump tail risk premia can by given

by

LJPt,τ = EP
t

(
LJV P

[t,t+τ ]

)
− EQ

t

(
LJV Q

[t,t+τ ]

)
(4)
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and

RJPt,τ = EP
t

(
RJV P

[t,t+τ ]

)
− EQ

t

(
RJV Q

[t,t+τ ]

)
(5)

where LJPt,τ is the component of V V RPt,τ due to large negative jumps and RJPt,τ is the

component of V V RPt,τ due to large positive jumps.

Consistent with the work of Bollerslev, Todorov, and Xu (2015), we assume that the jump

intensity under the physical measure is approximately symmetric for large sized jumps, i.e. LJV P
[t,t+τ ] ≈

RJV P
[t,t+τ ]. In the following simulation and empirical studies, we provide strong evidence for this

conjecture and show that changes in the statistical jump measures play only a minor role in

explaining the time variation in the tail risk premia. As a result, the difference between the two

jump tail premia becomes

LJPt,τ −RJPt,τ ≈ EQ
t

(
RJV Q

[t,t+τ ]

)
− EQ

t

(
LJV Q

[t,t+τ ]

)
(6)

The measure LJPt,τ −RJPt,τ mimics the component of investor fears proposed in Bollerslev and

Todorov (2011b) and Bollerslev, Todorov, and Xu (2015), which is implicit in the gap between

the estimated objective and risk-neutral jump tail variations implied by the S&P 500 index and

therefore associated with investors’ attitudes towards market risks. In contrast to Bollerslev

and Todorov (2011b) and Bollerslev, Todorov, and Xu (2015) who consider the aggregate stock

market, we concentrate on the dynamics underlying the V IX market. Since the V IX is called

the "investor fear gauge", LJPt,τ −RJPt,τ based on the V IX can therefore be interpreted as the

"fear of fear" in the present study. As noted in Bollerslev, Todorov, and Xu (2015), LJPt,τ and

RJPt,τ both contain components that reflect the compensation for time-varying jump intensity

risk, or the premia attached to variation in the investment opportunity set. Hence, the difference

between LJPt,τ and RJPt,τ will be largely purged of such risk and effectively be attributable to

the special compensation demanded by investors for rare disaster events even when the investment

opportunity set remains the same over time. In the rest of the paper, we employ (LJPt,τ−RJPt,τ )
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as a proxy for fear in the V IX market. The details on the estimation of the Q jump tail measures

are presented in Appendix.

3 Simulation Study

This section presents a simulation study to examine the role of jump risk premium in affecting

the time series properties of V V IX2
[t,t+τ ] and V V RPt,τ . We also extract the left and right jump

tail variations and evaluate their contributions to the two risk measures considered.

3.1 Design

We first extend the jump-diffusion model for the pricing of V IX derivatives in Park (2016) by

allowing for risk premia in both upward and downward jumps. The dynamics under the risk-neutral

measure takes the following form

dvt = κv (ut − vt) dt+
√
wtdB

Q
1t + JQ1 dN

Q
1t + JQ2 dN

Q
2t (7)

−λ+δ+dt− λ−δ−dt

dut = κu (µ− ut) dt+ σudB
Q
2t

dwt = κw (w − wt) dt+ σw
√
wtdB

Q
3t

where vt = log (V IXt), ut denotes the long-run mean of the V IX and wt captures the variation in

the volatility of the V IX. The processes BQ
1t, B

Q
2t and B

Q
3t are standard Brownian motions, among

which BQ
1t and B

Q
3t are correlated with the coeffi cient ρ. In the V IX dynamics, we accommodate

both upward and downward jumps driven by independent compound Poisson processes. They

are characterized by NQ
1t (N

Q
2t) that represents a risk-neutral Poisson process generating upward

(downward) jumps with intensity λ+ (λ−). The size of upward (downward) jumps is denoted by

JQ1 (J
Q
2 ), following an independent exponential distribution with a positive (negative) mean, i.e.

δ+ > 0 (δ− < 0).
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The corresponding system under the physical measure becomes

dvt = κv (ut − vt) dt+
√
wtdB

P
1t + JP1 dN

P
1t + JP2 dN

P
2t (8)

−λ∗+δ∗+dt− λ∗−δ∗−dt

dut = κu (µ− ut) dt+ ηuutdt+ σudB
P
2t

dwt = κw (w − wt) dt+ ηwwtdt+ σw
√
wtdB

P
3t

where BP
1t, B

P
2t and B

P
3t are standard Brownian motions, ηuut and ηwwt drive the risk premia for

the ut and wt processes. To introduce jump risk premia, we allow upward and downward jumps

under the physical measure to have their own jump intensity and jump-size distributions specified

by the parameters λ∗+, δ
∗
+, λ

∗
− and δ

∗
−. Similar to the simulation study conducted in Duan and

Yeh (2010), we assume the means of jump sizes are the same under P and Q with δ∗+ = δ+ and

δ∗− = δ−, and allow for different jump intensities under the change of measure. As such, we define

the upward and downward jump risk premia by φ+ = λ+ − λ∗+ and φ− = λ− − λ∗−, respectively1.

The specification in equation (8) preserves the affi ne structure of the framework under different

measures.

The simulation of V IX is generated using an Euler discretized version of (8) based on 78

intervals2 for each of the T = τ × 200 trading day in the sample. A daily series is extracted

by sampling once every 78 data points. The parameter values used are taken directly from those

reported in the last column of Table 3 in Park (2016), with the parameter capturing the persistence

of the volatility process kw adjusted to ensure the positivity of the volatility in our simulation

1We also consider forcing an equality on jump intensities and allow the jump sizes to vary from the physical
probability measure P to the risk-neutral pricing measure Q, in which case the jump risk premia is defined as
φ+ = δ∗+ − δ+ and φ− = δ∗− − δ−. Results on the contribution of jump tail variations to the V V IX2 and V V RP
are qualitatively similar and therefore not reported for brevity.

2We assume 1 day consists of 6.5 hours of open trading and consider a sparse sampling at a frequency of once
every 5 minutes. This results in 78 intraday intervals in a day, i.e. 6.5×3600300 = 78.
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experiment.

kv ρ ku µ σu ηu kw

6.576 0.794 0.258 3.106 0.293 -0.024 1.8

w σw ηw λ+ δ+ λ− δ−

1.956 1.976 -2.15 2.682 0.266 2.042 -0.217

The processes vt, ut and wt are respectively initialized at 2, 2 and 0.2, which are given by the

unconditional means of the corresponding series in our empirical study. We assume one year has

252 trading days.

We then compute the option prices of V IX corresponding to different strikes and maturities

(τ) using the jump diffusion model under the risk-neutral probability measure in (7). To improve

simulation accuracy, we rely on the empirical martingale simulation procedure introduced by

Duan and Simonato (1998) and set the simulation path for option pricing to 10,000. Based on

the simulated options on each trading day, we construct V V IX2
[t,t+τ ] with various maturities as

in section 2 and compute the realized variance comprising the price information in the next τ

days. Finally, we select both the implied and realized variances on the trading day that follows

the previous maturity date so that we obtain non-overlapping samples with size equal to 200. All

of our results reported below are based on a total of 1000 replications.

3.2 Results

Table 1 reports the mean values of V V IX2
[t,t+τ ] and V V RPt,τ with 6 different maturities. To

identify the impact of jump risk premia on the properties of the risk measures, we vary the

magnitude of the upward (downward) jump premium φ+ (φ−) from 2 to 10 while restricting

the downward (upward) jump premium φ− (φ+) to zero. The parentheses report the percentage

changes of the mean values of V V IX2
[t,t+τ ] and V V RPt,τ relative to their corresponding values

in the case where there exist no jump risk premia, i.e. φ+ = φ− = 0. We show that for the

same magnitude of jump risk premium, the upward jump premium generates a larger impact on

V V IX2
[t,t+τ ] and V V RPt,τ when compared to the downward jump premium. As maturity grows,
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the two risk measures are generally less sensitive to the presence of jump premia.

Figure 1 is a heat map showing mean values of V V IX2
[t,t+τ ] and V V RPt,τ over different

combinations of the maturity and jump risk premia. We find that the term structure of V V IX2
[t,t+τ ]

and V V RPt,τ are highly responsive to upward jump premium φ+, exhibiting a greater slope in

magnitude as the jump premium grows. However, the downward jump premium φ− delivers only

trivial effects on the shape of the term structure with the slope virtually unaffected by the variation

in φ−. Our results in Figure 1 are generally consistent with the empirical findings in the existing

literature and complement Christoffersen, Jacobs, and Ornthanalai (2012) for the important role

of jump risk premium in the implied volatility term structure. In summary, our simulation reveals

the dominant role played by the upward jump premium, indicating that the right jump tail risk

premium associated with the large upward jumps may constitute the primary source of variation

in V V IX2
[t,t+τ ] and V V RPt,τ .

In the simulation above, we only allow for the presence of one type of jump risk premium,

i.e. upward or downward, to ascertain their different roles in affecting the dynamics of the risk

measures. This obviously contradicts the real-life observations where the upward and downward

jump premia often coexist. Going one step further, we simultaneously incorporate the two different

jumps in the V IX dynamics and construct the right and left jump tails using the method discussed

in section 2. Unlike the empirical study in which the V IX OTM puts are much less traded, our

simulation study ensures that there are equal numbers of the OTM puts and calls, which alleviates

the issue of measurement errors in the comparison of right and left jump tails.

Panel A of Table 2 reports the mean values of the jump tail variation under both P and Q

measures3. In line with Bollerslev, Todorov, and Xu (2015) and Ellwanger (2017), we find that the

P jump tail variation measures are dwarfed by the corresponding Qmeasures in the presence of the

jump risk premia. Hence, we conclude that changes in the jump tail premia are primarily due to

3Details on the construction of the left and right jump tail variation measures under P from the return data
can be found in Appendix.
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movements in the tail variations under the Q measure. In addition, we investigate the hypothesis

of symmetry of the jump tail risk under different probability measures. The last column in Panel

A shows that the null hypothesis under the P measure is only rejected in 6% of the simulation

repetitions whereas the rejection is obtained in almost all cases under the Q measure. Confirming

Bollerslev, Todorov, and Li (2013), Bollerslev, Todorov, and Xu (2015) and Andersen, Todorov,

and Ubukata (2021), the P jump process is approximately symmetric deep in the tails. In contrast,

the Q expectation of the right jump tail variation exceeds its left counterpart in magnitude.

To assess the contribution of the Q jump tail variation measures to V V IX2
[t,t+τ ] and V V RPt,τ ,

we run the following regression with a focus on the monthly horizon

yj,t = αij + βijxi,t + εij,t (9)

where yj,t denotes the measure j among a set of J candidates, j = 1, · · · , 6, namely V V RPt,30,

V V RPt,180 the V V RP slope defined as the (V V RPt,180−V V RPt,30) as well as the three corresponding

measures for the V V IX2; the jump tail variation is given by xi,t with x1,t denoting the right tail and

x2,t representing the left tail. To account for the issue of serial correlation, we derive the statistical

significance using Newey and West (1987) robust t-statistics with an optimal lag. Panel B of Table

2 reports the mean values of the adjusted R2 for the regressions based on the V V RP with the

proportion of significant results indicated in the parentheses. We find that the right jump tail

outperforms the left jump tail in explaining the dynamics underlying V V RPt,30 and the V V RP

slope while the evidence is weak for the long-term V V RP . The corresponding results for the

V V IX2 are provided in Panel C. Although the two tails both contribute significantly to variations

in the short- and long-term V V IX2 as well as its term structure, the right tail demonstrates a

much higher degree of explanatory power. Our results in Table 2 therefore confirm the findings

in Table 1 that the upward jump premium plays a dominant role in affecting the properties of

V V IX2
[t,t+τ ] and V V RPt,τ .
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Recall equation (6) for the proxy of the fear-of-fear factor

LJPt,τ −RJPt,τ ≈ EQ
t

(
RJV Q

[t,t+τ ]

)
− EQ

t

(
LJV Q

[t,t+τ ]

)
With equal numbers of OTM calls and puts, our simulation clearly points towards the superiority of

RJV Q
[t,t+τ ] over its left counterpart not only in terms of the magnitude but also on the contribution

to the relevant risk measures. In practice, OTM V IX calls are often considered a form of tail

risk hedges. This can be explained by the leverage effect that negative variations in returns are

closely associated with rises in volatility, in which case OTM V IX calls can hedge. As a result,

OTM call options are more heavily traded in the real V IX market, suggesting that the size of

RJV Q
[t,t+τ ] may further exceed that of LJV

Q
[t,t+τ ] in the empirical study. Hence, we obtain the

following approximation given by

LJPt,τ −RJPt,τ ≈ EQ
t

(
RJV Q

]t,t+τ ]

)
(10)

Since the right jump tail is a key contributor to the level and slope of V V IX2
[t,t+τ ] and V V RPt,τ , it

may also perform as the primary component providing return predictive power for these measures,

which we verify below in our empirical study. For ease of notation, we abbreviate V V IX2
[t,t+τ ],

V V RPt,τ and RJV
Q
[t,t+τ ] by V V IX

2
t , V V RPt and RJV

Q
t , respectively, when τ = 30 is considered

in the rest of the paper.

4 Data

V IX futures data are collected from the CBOE website and span from March 26, 2004 through

December 31, 2020. On each trading day during the sample period, three to six different maturities

are traded. We rely on the daily settlement prices to obtain the realized variance of V IX. In

addition, the raw V IX options data originate from OptionMetrics covering the period of February

24, 2006 to December 31, 2020. As a result, our sample is restricted to the shorter period when
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examining the joint information content from the data of futures and options. For robustness,

we also consider an alternative measure of statistical volatility-of-volatility based on the 5-minute

V IX futures returns. The data is sourced from Tick Data Inc. and starts in July 2012.

We apply standard filters to the raw options data to eliminate inaccurate or illiquid options.

First, we delete the V IX options for which the price, defined as the midpoint of the option bid

and ask quotes, is less than 0.2 or the trading volume is zero. Second, options with Black-Scholes

implied volatility (BSIV) lower than 10% or greater than 150% are excluded from the sample.

Third, we focus on options with 8 to 90 days to expiration. This leaves us with more than a

million V IX option quotes, with a daily average of 102.7 V IX OTM calls and 41.3 puts over

the full sample. The number of V IX OTM options on a given date increases with time, with

around 25.9 calls (11.2 puts) at the beginning of the data set and around 136.5 calls (87.9 puts)

at the end. To assess whether the return predictability (previously ascribed to the popular risk

measures) is effectively arising from the right jump tail, we follow Bollerslev, Todorov, and Xu

(2015) in constructing the jump tails using OTM options with maturities between 8 and 49 calendar

days. It is worth noting that all of our risk measures are non-overlapping. Taking the monthly

horizon as an example, the implied variance measures are given by the values at the end of the

month and the realized variance is derived over the following month and annualized.

In addition to the risk measures introduced in section 2, we also consider a variety of predictor

variables that are widely employed in the existing literature of return predictions (see, for instance,

Neely et al. (2014), Park (2015) and Cakmakli and van Dijk (2016)). Data on the P/E ratio and

dividend yields are taken from Standard & Poor’s. The default spread (the difference between

Moody’s BAA and AAA corporate yields), the term spread (the difference between the 10-year

and 3-month Treasury yields) and the TED spreads are all sourced from the website of the Federal

Reserve Bank of St. Louis. We also consider the Economic Policy Uncertainty (EPU) index of

Baker, Bloom, and Davis (2016) and the risk aversion index of Bekaert, Engstrom, and Xu (2022).
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Both are downloaded from the authors’websites4.

5 Empirical Results

5.1 Preliminary data analysis

As option returns are heavily influenced by shocks in the underlying asset price and volatility,

we employ the approach of Bakshi and Kapadia (2003) and Huang et al. (2019) to derive the

delta-hedged option gains that are unaffected by the underlying asset’s price risk:

πt,t+τ = Ct+τ − Ct −
N−1∑
n=0

∆tn(Ftn+1 − Ftn)−
N−1∑
n=0

rfCt
τ

N
(11)

where t0 = t, tN = t + τ refers to the maturity date, and ∆tn indicates the option delta that is

available from OptionMetrics. We then scale the delta-hedged option gain by the initial option

price πt,t+τ/Ct and take an average of the gains over their respective moneyness and maturity

category. Specifically, we separate OTM options by call or put and classify each option into 2 bins

by moneyness that is defined as k = K/Ft(τ). Following Bakshi and Kapadia (2003), we consider

a sample of options with constant maturity, i.e. 30 and 60 days, to avoid overlapping observations

of option returns. To obtain the returns on V IX futures, we make use of the front contracts and

roll over to the next maturity contract in the case where the shortest contract has less than 5 days

to maturity, see also in Taylor (2019).

Panel A of Table 3 reports the descriptive statistics of the delta-hedged option returns across

different moneyness bins and maturity. Overall, OTM delta-hedged V IX options have significantly

negative returns and the delta-hedged gains become more negative when the hedging horizon is

extended from 30 days to 60 days. In addition, option returns exhibit mild serial correlation, which

are dealt with in the subsequent predictive regressions. Panel B of Table 3 presents the results

of V IX futures returns. Similar to returns of S&P 500, V IX returns are approximately serially

4The time series of EPU index is obtained from http://www.policyuncertainty.com and that of the risk aversion
index is from https://www.nancyxu.net/risk-aversion-index.
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uncorrelated, with a mean indistinguishable from zero. All the findings above are consistent with

those reported in previous studies.

Summary statistics for the monthly predictor variables are reported in Table 4. In constructing

V V RPt, defined as the difference betweenEP
t

(
QV[t,t+τ ]

)
andEQ

t

(
QV[t,t+τ ]

)
, for forecasting purpose,

we rely on the HAR model of Corsi (2009) to obtain a direct forecast for RV V IX[t,t+τ ] that can be

approximated as EP
t

(
QV[t,t+τ ]

)
. Inspired by Li and Zinna (2018) who point out the significance of

the variance risk premium term structure for stock return predictability, we also consider the slope

of V V RPt defined as V V RPSt = V V RPt,90−V V RPt. The slope of V V IX2
t is therefore computed

as V V IXSt = V V IX2
[t,t+90] − V V IX2

t . To isolate the effects of the right jump tail variation,

we obtain the components of the V V IX2
t and V V RPt striped of RJV

Q
t , V V IX

2
t − RJV

Q
t and

V V RPt −RJV Q
t , denoted as V V IX

2n
t and V V RP n

t .

To examine whether the predictive power afforded by V V RPt, V V IX2
t and RJV

Q
t is robust to

other pricing factors, we include the following control variables in our regressions and classify them

into six distinct groups: 1) macroeconomic variables including log price-earnings ratio (Pt/Et),

log price-dividend ratio (Pt/Dt), the default spread (DFSPt) and the term spread (TMSPt); 2)

technical indicators introduced by Neely et al. (2014), among which we select the moving-average

indicator (MAt) and the momentum indicator (MOMt)5; 3) uncertainty measures including

the U.S. EPU index (EPUt) of Baker, Bloom, and Davis (2016) and the risk aversion index

(RAt) of Bekaert, Engstrom, and Xu (2022); 4) limits of arbitrage proxied by the TED spreads

(TEDt); 5) option market liquidity as measured by the relative bid-ask spreads (SPREADt)

of the V IX options; 6) jump fears captured by the option-implied skewness (SKEWt) in the

work of Bakshi, Kapadia, and Madan (2003)6. Groups 1), 2) and 3) are considered in the

predictions of V IX futures returns and groups 3), 4), 5) and 6) for the case of option returns.

Given the existing literature, there is no surprise that many of the traditional predictor variables,

5In constructing MAt, we let the length of the short MA (s) be 2 and the length of the long MA (l) be 9; we
consider m = 12 for the momentum indicator, see more details in Neely et al. (2014).

6More details on the calculation of SKEWt using the V IX options data can be found in Appendix.
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e.g. macroeconomic variables and uncertainty measures in particular, exhibit strong persistence

with first-order autocorrelations in the range of 0.80 and 0.98. In a sharp contrast, V V IX2
t and

V V RPt are substantially less persistent, thereby balancing the regression for returns in terms of

the integration order and generating fewer econometric problems.

In light of the correlation matrix reported in the lower panel of Table 4, we conjecture that,

compared with the risk aversion index RAt, the fear-of-fear proxied by RJV
Q
t may capture distinct

investor proclivities. Specifically, while RAt is negatively correlated with RJV Q
t , it displays

positive relationships with both V V IX2
t and V V IX

2n
t . This implies thatRAt may reflect investors’

attitudes towards the temporal variation in volatility-of-volatility or continuous price moves in the

V IX market rather than the fear for jump tail events. As a different measure of uncertainty in

the present study, EPUt positively correlates with our fear proxy but the correlation is relatively

small at 0.157. Intuitively, high values of EPUt result in increased market fear through investor

sentiment when economic policies are diffi cult to anticipate. Consistent with the finding by

Bekaert, Engstrom, and Xu (2022), RAt displays a correlation of 0.342 with EPUt. However,

their opposite relationships with RJV Q
t suggest that they may measure uncertainty via different

mechanisms.

We also report in Figure 2 the time series plots of the main risk measures introduced in section

2 along with the two uncertainty measures. That V IX options only started in 2006, and that

the deep OTM options were infrequently traded in early stage, explains missing values in the

series of RJV Q
t . A few differences between the series of V V IX2

t and RJV Q
t are noted. For

example, V V IX2
t reaches high values during the 2008 financial crisis and 2010 flash crash before

attaining its maximum around early 2020 when the pandemic starts to heavily impact the global

financial markets. Although RJV Q grows steadily over the period of 2008 and 2010, it peaks

around 2011-2012, coinciding with the European debt crisis. During the pandemic period, RJV Q
t

experiences an abrupt increase in Feb 2020, exhibiting a good coherence with V V IX2
t . Notably,

we document clearly different dynamics in the series of RAt and EPUt and the latter displays
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more similar movements to RJV Q
t , which corroborates the findings on the correlations discussed

above. Moreover, RAt, EPUt and our fear proxy all rise sharply in early 2020 where the pandemic

triggered a massive spike in uncertainty.

5.2 In-sample analysis

5.2.1 VIX futures returns

We start by assessing the role of right jump tail component in the in-sample predictions for the

V IX futures returns given by

1

h

h∑
n=1

rt+n = β0i(h) + β1i(h)xi,t + εi,t+h (12)

where rt is the monthly V IX futures return and xi,t denotes the predictor i among various

candidate predictors. As highlighted in section 5.1, several predictor variables, macroeconomic

variables in particular, are highly persistent with autoregressive roots close to unity. This raises a

common concern regarding the use of strongly persistent variables and the possibility of unbalanced

regressions, which undermine the reliability of predictability tests (see more discussions in Campbell

and Yogo (2006), Magdalinos and Phillips (2009) and Yang et al. (2020)). To address this problem,

we employ the IVX approach of Kostakis, Magdalinos, and Stamatogiannis (2015) that exploits

instrumental variables with a lower degree of persistence than that of the predictive variables. The

method is not only robust to the time-series properties of the predictors, covering the entire range

from stationarity to pure nonstationarity of unit root series, but also eliminates the endogeneity

issue.

Table 5a reports the results from the monthly return regressions using the IVX estimator and

the corresponding Wald statistics under the null of no predictability. For ease of interpretation, in

dividing each explanatory variable by its standard deviation, the estimated coeffi cient represents

the effect of a one standard deviation change in that variable. Unless otherwise stated, in what

follows, we always preprocess the data in such a manner when conducting estimations. In addition,
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all coeffi cient estimates are scaled up by a factor of 100 for presentation purposes. The univariate

regressions on the left panel of Table 5a show that V V RPt dominates V V IX2
t and all the other

traditional predictors in terms of the sample fit7. Combining V V RPt with other predictors only

leads to a marginal increase in the (adjusted) R2. Notably, several predictors, e.g. the default

spread (DFSPt), the moving-average indicator (MAt) and EPUt, that exhibits the evidence of

predictability in the univariate regression are no longer significant in the multiple regression with

V V RPt. A similar observation on the superiority of V V RPt is also established for the quarterly

return regressions in Table 5b. For annual regressions reported in Table 5c, Pt/Dt, the default

spread (DFSPt), the term spread (TMSPt) and the two uncertainty measures show a higher

degree of return predictability than V V RPt. This is largely in line with many of the empirical

studies which show that the predictive power of the traditional predictors tends to be the strongest

over longer multi-year horizons. Finally, it is worth noting that, regardless of the time horizon

and the inclusion of other traditional predictive variables, V V RPt remains statistically significant

at the 1% level or better.

To identify the source of the predictive power afforded by V V RPt, we decompose V V RPt

into the diffusive and jump tail risk components and run the predictive regressions based on

these different components together with the control variables for monthly, quarterly and annual

returns. The results are summarized in Tables 6a to 6c, respectively. Similar to the construction

of V V RP n
t , the slope of V V RPt deprived of the right jump tail variation is derived as V V RPS

n
t =(

V V RPt,90 −RJV Q
[t,t+90]

)
−
(
V V RPt −RJV Q

t

)
with RJV Q

[t,t+90] obtained by averaging the daily

measures within 90 days. We show that, for various time horizons, subtracting RJV Q
t from V V RPt

results in less significant Wald−statistics and little return predictability underlying V V RP n
t . We

7In Kostakis, Magdalinos, and Stamatogiannis (2015), the IVX instruments are constructed by suitably filtering
the actual predictor and the coeffi cient estimates of the predictive regression are obtained by employing a two-stage
least-squares estimator. The adjusted R2 reported in the present paper is based on the residual vector from the
second stage of the two-stage least squares procedure, namely the prediction errors, and therefore is considered
an appropriate measure for model comparison. Our calculation of the adjusted R2 is in the spirit of Pesaran and
Smith (1994) who propose the generalized R2 in the context of instrumental variable regressions.
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also find that the term structure V V RPSt is nontrivial in return predictions but an evident increase

in the R2 driven by V V RPSt is only obtained at annual horizons. Similar to the univariate case

where only V V RPt is considered, the removal of RJV
Q
t from V V RPt and V V RPSt substantially

reduces the R2 and renders the Wald−statistics for V V RP n
t and V V RPS

n
t less significant. In

addition, adding RJV Q
t to the regression based on V V RP n and V V RPSn increases the R2 where

the values exceed those implied by V V RPt and V V RPSt over monthly and quarterly horizons.

Finally, we include other traditional predictors in the regressions based on V V RP n
t , V V RPS

n
t

and RJV Q
t and provide evidence for the significance of V V RP n

t and RJV Q
t in all the cases

considered. We therefore conclude that much of the return predictability afforded by V V RPt

is attributable to the right jump tail variation and that the predictability results are robust to

various control variables.

5.2.2 VIX options returns

To ascertain the role of right jump tail variation in pricing the delta-hedged option gains, we follow

Bakshi and Kapadia (2003) and Huang et al. (2019) in constructing the following regression based

on the fixed option maturity

GAINSt,t+τ =
πt,t+τ
Ct

= θ0i + θ1ixi,t + γiGAINSt−τ + εi,t+τ (13)

Delta-hedged option returnsGAINSt,t+τ realized over 30 and 60 days are regressed from expiration

to expiration on the value of xi,t at the end of the previous expiration. As mentioned in section 5.1,

option returns display some degree of autocorrelation and thus may alleviate the concern related to

the use of unbalanced regressions that has been extensively investigated in the literature of market

return predictions. Given this, we follow the mainstream literature on option return predictions

by including the lagged gains in equation (13) to correct for the serial correlation present in the

residuals. The null of no predictability by each of the predictor variables is examined by the

Newey-West procedure with an optimal lag.
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Tables 7a and 7b report the predictive regression results for OTM call option returns over 30

and 60 days, respectively8. The Box-Pierce test with 6 lags (Q6) is undertaken to detect the level

of residual autocorrelation. The results show that V V IX2
t significantly predicts the future option

returns with a negative sign and a reasonable fit similar to that reported in Bakshi and Kapadia

(2003). In contrast, the predictions by V V RPt are only marginally significant for 30-day options

and insignificant for 60-day options. The superiority of V V IX2
t over V V RPt in predicting the

V IX option returns is also reported in the work of Park (2015). In the univariate regressions,

none of the other predictors exhibits predictive ability with the exception of TEDt and SPREADt

that are significant at 10% level for 30-day options. Combined with the traditional predictors for

option returns, V V IX2
t retains its significance across different moneyness levels and time horizons,

suggesting that none of the other predictors have incremental predictive power beyond V V IX2
t .

To further examine the role of RJV Q
t in the option return predictability afforded by V V IX2

t ,

we adopt a similar decomposition procedure to that applied in the case of V V RPt for predicting

V IX futures returns and report the results in Tables 8a and 8b. First, we show that the V V IX2
t

term structure V V IXSt is trivial in enhancing the predictions based on V V IX2
t alone. Second,

removing RJV Q
t from V V IX2

t and V V IXSt leads to a 30%−40% reduction in the R2 for 30-day

option returns but produces little effect on the longer-dated options. Third, adding RJV Q
t to the

multiple regressions based on V V IX2n
t and V V IXSnt increases the R

2 where the values are similar

to those generated by V V IX2
t and its term structure. Across all the different cases, V V IX

2n
t and

RJV Q
t remain significant even after other traditional predictor variables are controlled for. Our

results suggest that, while RJV Q
t helps explain a modest proportion of the losses incurred on

the short-dated delta-hedged portfolios, V V IX2
t is the predominant measure providing significant

forecasting power for V IX option returns.

8We focus on the OTM V IX calls since they are considered an important form of tail risk hedges (see Park
(2015) for example) and therefore receive more attention from investors. Results for the OTM puts support our
general conclusion on the predictability of option returns and are available upon request.
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5.2.3 Robustness

Our investigation of the robustness of our predictability results uses alternative measures of

volatility-of-volatility. For the risk-neural expectation of the volatility-of-volatility, we make use of

the V V IX index as well as its term structure from the CBOE. The index has been published since

2012 and back-filled to 2006. For the physical expectation, we rely on the 5-minute front-month

V IX futures returns to compute RV V IXt. Due to the availability of tick data, our analysis based

on RV V IXt is from 2012 to 2020. In line with the previous analysis, all the variation measures are

at a monthly frequency. Figure 3 depicts the time series plots of the CBOE V V IX index and our

measure of V V IX2
t calculated using OTM options. Overall, the calculated V V IX2

t qualitatively

match the evolution of the reported V V IX index with a correlation coeffi cient of 95%. That

our measure of V V IX2
t is on average lower than the CBOE V V IX may be attributable to two

points. First, we obtain a broader strike range by including most of the option quotes that meet

the conditions specified in section 4 and consider the interpolation and extrapolation procedure

to approximate the integral on the RHS of equation (1). However, the CBOE adopts a particular

cutoff rule which may induce distortions, see Jiang and Tian (2005) and Andersen, Bondarenko,

and Gonzalez-Perez (2015) for details. Second, our V V IX2
t is obtained using the options from the

Optionmetrics database containing the last daily bid-ask quotes only, which might not perfectly

match the data published by the CBOE for their final end-of-day computation.

Next, we follow Bollerslev and Todorov (2011a) and Bollerslev, Todorov, and Li (2013) in

using the high-frequency data to derive the continuous variation along with the realized jump tail

variation under the statistical measure. The time series plots in Figure 4 show that the estimate for

the left tail appears larger than the right, which is in parallel to the results reported in Bollerslev,

Todorov, and Li (2013). We further confirm that the realized jump tail is approximately symmetric

with the null hypothesis LJV P
[t,t+τ ] = RJV P

[t,t+τ ] not rejected at the 5% level.

Finally, we estimate the predictive regressions over horizons ranging from 1 to 12 months using
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new measures of the volatility-of-volatility risk and report the values of adjusted R2 for V IX

futures returns in Figure 59. Consistent with the earlier empirical results, V V RPt outperforms

the CBOE V V IX over most of the horizons and the right jump tail is still the primary source of

the forecasting power afforded by V V RPt. Further to this, note that the greatest magnitude of

return predictability is observed for the case where the right jump tail and the diffusive components

are separately accommodated.

5.3 Out-of-Sample Analysis

Our in-sample results so far suggest that the right jump tail is a key driver of the predictability

ascribed to V V RPt for V IX futures returns. In this subsection, we further evaluate the role of the

right jump tail in the out-of-sample (OOS) forecasting exercises. Using a rolling window scheme,

we employ half of the full sample for in-sample estimation and the remaining for performance

evaluation.

We consider the out-of-sample R-squared (OOR2) to measure the proportional decrease in the

mean squared prediction error (MSPE) of the competition model relative to the historical average.

A positive value of OOR2 implies that the model of interest beats the historical average forecast

in terms of the MSPE and a negative value indicates the opposite. We provide the OOS results

in Table 9 where the highest values of OOR2 in each of the two panels are indicated in bold.

To examine the null that the MSPE of the historical average forecast is no greater than that of

the predictive regression, we employ the Clark and West (2007) MSPE-adjusted statistics and

report the results in Panel A. We find that the the MSPE-adjusted statistics given by V V RPt

are significant in 10 out of 12 forecasting horizons, suggesting that V V RPt generally outperforms

the historical average benchmark in the OOS forecasting practice. Note that the results of the

9Regression results on the return predictability of V IX futures are not reported but they are available upon
request. The use of non-overlapping option returns further reduces the size of our sample based on the CBOE
V V IX2 and the high-frequency data of V IX futures. We therefore do not perform the predictive regressions for
delta-hedged option returns due to the lack of observations.
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MSPE-adjusted test are significant for a few cases associated with the negative values of OOR2. A

similar observation is documented in Neely et al. (2014). This arises from the fact that the adjusted

MSPE test accounts for the upward bias in the MSPE of the alternative model with additional

parameters that are zero under the null, see more discussions on the nested model forecasts in

Clark and West (2007). When RJV Q
t is removed from V V RPt in model 2, a reduction in the

OOR2 is observed across all the forecasting horizons and none of the predictions are significant.

Finally, the reintroduction of RJV Q
t in model 3 substantially increases the OOR2 especially over

short horizons and renders the MSPEs over different horizons significantly lower than those of the

historical average.

Going one step further, we include other traditional predictor variables to model 3 based on

V V RP n
t and RJV

Q
t and report the results in Panel B. The MSPE-adjusted statistic is computed

to test the null that the MSPE generated by model 3 is less than or equal to the MSPE given by the

various competition model in Panel B. We show that our benchmark model 3 is only outperformed

by the inclusion of macroeconomic variables or uncertainty measures over 6-12 months. Adding

technical indicators brings few significant gains beyond model 3 with the exception of predictions

over 9- and 11-month horizon. Hence, our OOS results clearly point towards the superior role of

RJV Q
t in predicting V IX futures returns over short horizons.

As a final exercise, we evaluate the economic significance of the OOS forecasts by forming

a trading strategy based on V IX futures and risk-free assets. Following Neely et al. (2014)

and Pyun (2019), among others, we calculate the certainty equivalent return (CER) gain for a

mean-variance investor who allocates across V IX futures and risk-free bills using forecasts of V IX

futures returns. At the end of period t, the investor assigns the optimal weight to the V IX futures

during period t+ 1

ωt =
1

γ

r̂∗t+1
σ̂2t+1

(14)

where γ = 3 is assumed as the risk-aversion coeffi cient, r̂∗t+1 denotes the forecast of V IX futures
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excess returns, and the forecast-based realized variance of the V IX futures returns is used as a

proxy for σ̂2t+1. We allow the investor to rebalance the portfolio weight at the same frequency as the

forecasting horizon and restrict the portfolio weight to lie between [−0.5, 1.5] for the consideration

of short sales. The period−t+ 1 portfolio return is therefore

Rp,t+1 = ωtr
∗
t+1 + rft+1 (15)

where r∗t+1 is the V IX futures excess returns and rft+1 is the risk-free rate10. The CER is obtained

as

CER = Rp −
γ

2
V̂ ar(Rp) (16)

where Rp and V̂ ar(Rp) denote the sample mean and variance of the portfolio returns, respectively.

In Panel A of Table 9, the CER gain is derived as the difference between the CER of the

forecasts generated by models 1, 2 and 3 and the CER of the historical average forecast. In Panel

B, we compare the CER of various competition models, i.e. models 4, 5 and 6, with that given by

model 3. As suggested in Campbell and Thompson (2008) and Rapach, Strauss, and Zhou (2010),

the CER gain can be interpreted as the portfolio management fees that investors are willing to

pay to utilize the information in the predictive regression forecast in place of the forecast delivered

by the benchmark model. Panel A shows that the investment strategy based on V V RPt results

in positive CER gains over various horizons where gains are considerably diminished when RJV Q
t

is subtracted from V V RPt in model 2. The highest CER gains are attained by the predictive

regression including RJV Q
t in model 3 except for 7-month to 10-month horizons, suggesting that

the information contained in RJV Q
t has substantial economic value for a risk-averse investor,

especially over short horizons. Considering other traditional predictors in Panel B, we show that,

although the CER gains can be further enhanced over longer horizons, model 3 still dominates the

alternatives, at least over monthly horizon.

10The three-month T-bill data (risk-free rate) is obtained from the public website of the Federal Reserve Bank
of St. Louis.
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6 Conclusion

The paper examines the role of fear-of-fear in determining the properties of the variance-of-variance

risk premium (V V RPt) and volatility-of-volatility (V V IX2
t ) as well as their predictive power for

returns in the V IX market. We adopt the difference between the upward and downward jump risk

premia associated with sizeable price moves as a proxy for the fear-of-fear, since it reflects the the

compensation for rare jump events and is largely independent of the temporal variation in asset

prices. Our simulation shows that the risk-neutral right jump tail variation (RJV Q
t ) dominates

the left tail as a key driver of V V RPt and V V IX2
t . With plausible assumptions, we conjecture

that the fear component embedded in the V IX market can be approximated by RJV Q
t .

Our empirical study is based on the V IX options and futures from 2006 to 2020. We present

novel in-sample evidence for the superior performance of V V RPt in the return predictions of

V IX futures and the dominant role of RJV Q
t in providing the strong predictive power underlying

V V RPt. An out-of-sample forecasting exercise shows that RJV
Q
t not only accounts for much

of the return predictability afforded by V V RPt but also generates nontrivial economic value,

especially over short horizons. In particular, from 1-month to 5-month horizon, the predictive

regression based on the diffusive component of V V RPt and RJV
Q
t serves as the top performer

even against other traditional predictor variables. With the delta-hedged option returns, we find

that, while RJV Q
t plays an important role for short-dated options, V V IX2 is the primary source

of the negative gains of delta-hedged portfolios.

The present paper concentrates on using jump tail variation to capture investor fears implicit

in the V IX market. Although we include the Risk Aversion index and the Economic Policy

Uncertainty index as control variables in our predictive regressions, further research might investigate

how our jump tail risk measures differ from market-based sentiment indicators. This could deliver

a deeper understanding of differences in risk attitudes in the V IX market and in the aggregate

stock market. It might also be rewarding to examine whether the fear proxied by the jump tail
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variation could be used to forecast rare disasters relevant to the V IX market or future returns

of the aggregate market. Moreover, incorporating the jump tail risk analyzed here might further

improve the V IX derivatives pricing and reveal important dynamics of S&P 500 returns.

7 Appendix

7.1 Jump Tail Variation Under the Risk-Neutral Measure

Our estimation of the Q jump tail measures follows Bollerslev, Todorov, and Xu (2015). Assuming

that the tail parameters remain constant over the maturity τ , the left and right jump tail variations

can be written as

LJV Q
[t,t+τ ] = τφ−t e

−α−t |kt|
(
α−t kt

(
α−t kt + 2

)
+ 2
)
/
(
α−t
)3

(17)

RJV Q
[t,t+τ ] = τφ+t e

−α+t |kt|
(
α+t kt

(
α+t kt + 2

)
+ 2
)
/
(
α+t
)3

where the level shift parameters φ±t and the shape parameters α
±
t are allowed to vary independently

over time, and the threshold kt defines large jumps. The estimation of φ
±
t and α

±
t are based on

the close-to-maturity and deep OTM puts and calls for the left and right tails, respectively. The

intuition is that such options may more effectively isolate jump tail risk since they are worthless

unless jumps occur in the underlying asset.

LetOt,τ (k) represent the time t price of an OTM option with time to maturity τ and log-moneyness

k. It follows from Bollerslev and Todorov (2011b) that the ratio of two OTM options with the

same maturity τ but different strikes does not rely on φ±t , giving rise to the estimator proposed

by Bollerslev and Todorov (2014)

α̂±t = arg min
α±

1

N±t

N±
t∑

i=1

∣∣∣∣log

(
Ot,τ (kt,i)

Ot,τ (kt,i−1)

)
(kt,i − kt,i−1)−1 − (1± (−α±))

∣∣∣∣ (18)

where N±t demotes the total number of options used in the estimation with 0 < |kt,1| < · · · <
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∣∣∣kt,N±
t

∣∣∣. Based on a given α±, the level shift parameters can be estimated by
φ̂
±
t = arg min

φ±

1

N±t

N±
t∑

i=1

∣∣∣∣log

(
ert,τOt,τ (kt,i)

τFt−,τ

)
− (1∓ α̂±t )kt,i + log

(
α̂±t ∓ 1

)
+ log(α̂±t )− log(φ±)

∣∣∣∣
(19)

where rt,τ denotes the risk-free interest rate over the [t, t+ τ ] time interval, and Ft,τ represents the

time t futures price of V IXt+τ . In practice, we employ OTM V IX call options with log-moneyness

greater than 1.5 times the normalized at-the-money (ATM) BSIV and set the cutoff kt equal to

2.5 times the normalized ATM BSIV at time t11. Furthermore, we allow α+t and φ
+
t to vary on

a daily basis and the monthly jump tail variation is constructed by averaging the daily measures

within the month.

7.2 Jump Tail Variation Under the Physical Measure

This section provides details on the estimation of P jump tails from high-frequency V IX futures

data following the work of Bollerslev and Todorov (2011a) and Bollerslev, Todorov, and Li (2013).

Let the discrete time grid be 0, 1
n
, 2
n
,· · · , T where n denotes the sampling frequency and T the

time span, we express the log-price increments over the time interval [ i−1
n
, i
n
] by ∆n

i p = p i
n
− p i−1

n
.

We first derive the realized variation and bi-power variation given by

RVt =
tn+n∑
i=tn+1

|∆n
i p|

2 (20)

BVt =
π

2

tn+n∑
i=tn+2

|∆n
i p|
∣∣∆n

i−1p
∣∣

With n → ∞, the bi-power variation consistently estimates only the component of the total

variation associated with continuous price movements.

11We also consider other choices for the thresholds and the results of the return predictability are qualitatively
similar.
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Next, we compute the Time-of-Day (TOD) factor as given by

TODi =
n
∑T

t=1

∣∣∆n
itp
∣∣2 1
(∣∣∆n

itp
∣∣ ≤ η

√
BVt ∧RVtn−ω

)∑nT
s=1 |∆n

sp|
2 1
(
|∆n

sp| ≤ η
√
BV[s/n] ∧RV[s/n]n−ω

) (21)

where it = (t − 1)n + i, i = 1,· · · , n, η > 0 and ω are both constants. In line with Bollerslev,

Todorov, and Li (2013), we set η = 2.5 and ω = 0.49, indicating that we classify all of the

high-frequency price moves that exceed 2.5 standard deviations of a local estimator of the corresponding

stochastic volatility as jumps. We then estimate the continuous variation as follows

CVt =
tn+n∑
i=tn+1

|∆n
i p|

2 1
(
|∆n

i p| ≤ αin
−ω) (22)

To isolate the realized jumps from the continuous price movements, we calculate the truncation

parameter as

αi = η
√
BV[i/n] ∧RV[i/n] ∗ TODi−[i/n]n, i = 1, · · · , nT (23)

The total variation that is due to jumps is therefore given by

JVt = RVt − CVt (24)

with left and right jump tail variations defined as the part attributable to large negative and large

positive jumps, respectively.

7.3 Option-Implied Skewness

The option-implied skewness is obtained using the approach of Bakshi, Kapadia, and Madan

(2003). The basic idea is that the implied skewness can be written as a function of the current

price of three securities that pay quadratic, cubic and quartic payoffs equal to the second, third,

and fourth power of V IX futures log return, respectively. These payoffs can be further expressed

as a linear combination of OTM option prices.
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The time t prices of these three securities are given by

Vt(τ) =

∫ ∞
Ft

2
(

1− log(K
Ft

)
)

K2
Ct(τ ,K)dK +

∫ Ft

0

2
(
1 + log(Ft

K
)
)

K2
Pt(τ ,K)dK (25)

Wt(τ) =

∫ ∞
Ft

6 log(K
Ft

)− 3
(

log(K
Ft

)
)2

K2
Ct(τ ,K)dK (26)

−
∫ Ft

0

6 log(Ft
K

) + 3
(
log(Ft

K
)
)2

K2
Pt(τ ,K)dK

and

Xt(τ) =

∫ ∞
Ft

12
(

log(K
Ft

)
)2
− 4

(
log(K

Ft
)
)3

K2
Ct(τ ,K)dK (27)

+

∫ Ft

0

12
(
log(Ft

K
)
)2

+ 4
(
log(Ft

K
)
)3

K2
Pt(τ ,K)dK

where Ft is the V IX futures price. The implied skewness is then derived as

SKEWt =
exp(rτ)(Wt(τ)− 3µt(τ)Vt(τ)) + 2µ3t (τ)

[exp(rτ)Vt(τ)− µ2t (τ)]3/2
(28)

where r is the risk-free rate, µt(τ) is defined as

µt(τ) = exp(rτ)− 1− exp(rτ)

2
Vt(τ)− exp(rτ)

6
Wt(τ)− exp(rτ)

24
Xt(τ) (29)
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Table 2
Simulation Results of the Jump Tail Measures. Panel A reports the mean values of the jump tail measure
under the risk-neutral and physical measures as well as the rejection rate of the null hypothesis of
RJV Q

[t,t+30] = LJV Q
[t,t+30] (RJV

P
[t,t+30] = LJV P

[t,t+30]). Panel B reports the averaged values of the adjusted

R2 for the regression yt = c+βxt+εt, where yt refers to the 30-day or 180-day V V RP , or their difference
as a measure of the slope of the V V RP term structure, xt denotes the jump tail under the risk-neutral
measure, i.e. RJV Q

[t,t+30] or LJV
Q
[t,t+30]. Numbers in parentheses represent the percentage of simulation

replications in which the coeffi cient estimate of β is significant at the 5% level. The corresponding values
of the adjusted R2 and the significance ratio for V V IX2 are reported in Panel C.

Panel A: Jump Tail Measures

Risk-Neutral Measure Physical Measure

RJV Q[t,t+30] LJV Q[t,t+30] Rejection Rate RJV P[t,t+30] LJV P[t,t+30] Rejection Rate

φ+ = φ− = 0 0.160 0.070 98% 0.028 0.027 6%

φ+ = φ− = 2 0.214 0.154 98%

φ+ = φ− = 4 0.353 0.229 100%

φ+ = φ− = 6 0.496 0.353 98%

Panel B: Contribution to the V V RPt,τ and its term structure

V V RPt,30 V V RPt,180 V V RPt,180 − V V RPt,30
RJV Q[t,t+30] LJV Q[t,t+30] RJV Q[t,t+30] LJV Q[t,t+30] RJV Q[t,t+30] LJV Q[t,t+30]

φ+ = φ− = 0 0.013 0.003 0.003 0.002 0.015 0.005

(33%) (6%) (9%) (9%) (39%) (8%)

φ+ = φ− = 2 0.020 0.004 0.003 0.001 0.030 0.005

(50%) (13%) (14%) (8%) (68%) (16%)

φ+ = φ− = 4 0.029 0.008 0.002 0.003 0.047 0.013

(67%) (23%) (7%) (11%) (78%) (37%)

φ+ = φ− = 6 0.045 0.016 0.008 0.005 0.063 0.027

(81%) (46%) (21%) (19%) (85%) (58%)

Panel C: Contribution to the V V IX2
[t,t+τ ] and its term structure

V V IX2
[t,t+30] V V IX2

[t,t+180] V V IX2
[t,t+180] − V V IX2

[t,t+30]

RJV Q[t,t+30] LJV Q[t,t+30] RJV Q[t,t+30] LJV Q[t,t+30] RJV Q[t,t+30] LJV Q[t,t+30]

φ+ = φ− = 0 0.563 0.183 0.485 0.235 0.542 0.173

(100%) (97%) (100%) (100%) (100%) (100%)

φ+ = φ− = 2 0.609 0.242 0.456 0.283 0.598 0.229

(100%) (99%) (100%) (99%) (100%) (100%)

φ+ = φ− = 4 0.644 0.297 0.434 0.302 0.620 0.287

(100%) (100%) (100%) (100%) (100%) (100%)

φ+ = φ− = 6 0.649 0.369 0.429 0.327 0.621 0.352

(100%) (100%) (100%) (100%) (100%) (100%)
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