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Abstract

This paper addresses the role of the right jump tail under the risk-neutral measure, as a
proxy for fear-of-fear, in the return predictability implicit in the VIX market. A simulation
establishes that the right jump tail dominates the left jump tail in explaining various risk
measures and their associated term structures. Using VIX futures and options from 2006 until
2020, the superior predictive power for futures returns afforded by the variance-of-variance
risk premium (VV RP) is shown to arise predominantly from the right jump tail risk. A
separate consideration of the continuous and jump tail components of the V'V RP outperforms
the alternative models in an out-of-sample forecasting exercise and generates non-trivial
economic value, especially over short horizons. However, the impact of right jump tail is weak
on option returns and only evident for short maturities, suggesting that the fear component
cannot be the sole factor explaining the observed losses incurred on the delta-hedged VIX
options.
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1 Introduction

Investor sentiment and asset market volatility are often captured by the VIX index which is
published by the Chicago Board Options Exchange (CBOE). Derived by the cross section of
SPX options, the VIX nonparametrically approximates the expected future index volatility
over the next 30 days. Since the VIX is not a directly tradeable instrument, futures and
options, subsequently introduced by the C BOF in 2004 and 2006, provide investors with tradeable
exposure to volatility. A fast growing recent literature concentrates on measuring and modelling
the volatility-of-volatility (VVIX) implied by the VIX options due to its crucial role in asset
pricing (see Park (2015), Huang et al. (2019) and Yuan (2021), among others).

As indicated by Park (2015) and Huang et al. (2019), investors dislike volatility-of-volatility
risk and are willing to pay a premium for downside protection. This indicates that the VVIX
contains information, not only on a physical expectation of future volatility-of-volatility risk, but
also on its associated risk premium. The latter is defined as the difference between the physical
and risk-neutral variances of the VIX index, the so-called variance-of-variance risk premium
(VVRP) in the work of Kaeck (2018). Despite widespread interest in the variation of the
volatility-of-volatility and its risk premia, little progress is apparent in understanding the tail
risk manifest in VI X options. The current paper seeks to fill this void by examining the impact
of jump tails upon the dynamic properties of the VVIX and VV RP and their predictive power
for future returns. Given that the VIX is often referred to as the "investor fear gauge", the
VVIX based on the VIX options might be considered the "fear-of-fear". In the present paper,
we argue that the right jump tail variation from the VIX option data is attributable to the
genuine fear-of-fear component; and that fear per se may account for much of the predictive power
underlying the V'V RP. Disentangling the part of the VV RP associated with normal sized price
variations, from that associated with extreme tail events, is likely to provide a better guide to

investment decisions.



The main contributions are twofold. First, we assess the role of the fear-of-fear component
in return predictability for the VX market as implied by the VVIX, VV RP and their term
structures. We follow Bollerslev, Todorov, and Xu (2015) in treating the difference between
the left and right jump tail risk premia as a proxy for fear-of-fear, since it is virtually exempt
from any compensation for temporal variation in jump tail risk. To ensure the robustness of our
predictability results, we conduct both in-sample and out-of-sample analysis while considering
various time horizons and pricing factors as control variables.

Second, we identify the different impact of upward and downward jump risk premia on the
VVIX and VV RP. For this, we undertake a Monte Carlo simulation based upon an extended
model of VIX dynamics, as considered in Park (2016). Using simulated V' /X options, we also
evaluate the contributions to the VVIX, VVRP and their associated term structures of the
risk-neutral left and right jump tails while justifying the use of the latter as an approximation for
the fear-of-fear. The right jump tail depends solely on deep short-lived OTM call options that are
worthless in the absence of any substantial increase in the VIX before the options expire. We
therefore view this as compensation for exposure to sudden downside movements in the market.
With a wide range of strikes and equal numbers of the OTM calls and puts, our simulation study
is less prone to the problem of measurement errors, as encountered by the empirical work where
bias in the estimation of the left jump tail is induced by frequent misses of VIX deep OTM puts.

The simulation evidence indicates that, for the same magnitude of jump risk premium, the
upward jump premium has greater impact than its downward counterpart, on the properties
of the VVIX and VV RP. Moreover, that impact tends to increase as the jump risk premium
increases; and it declines with longer investment horizons. As the upward jump premium increases,
it delivers a steeper slope of term structures for the VVIX and V'V RP. However, changes in the
downward jump premium leave the shape of the term structure virtually unaffected. The dominant
role played by the upward jump premium is indicative of the superiority of the right jump tail

under the risk-neutral measure. The latter approximates the difference between the downward



and upward jump risk premia for large sized jumps. Indeed, regardless of the size of the jump
risk premium, the right jump tail clearly outperforms its counterpart in explaining the VV RP,
VVIX and their term structures.

In the empirical study, we first explore the predictive power of the VVIX, VV RP and other
traditional predictor variables for VIX futures returns. We establish that the VV RP serves
as the top performer for monthly and quarterly return predictions. Moreover, the predictive
information underlying the V'V RP cannot be fully subsumed by other traditional predictors that
we have considered. To disentangle the true source of the return predictability and to characterize
the role of the fear-of-fear, we then deprive the V'V RP of the right jump tail component. This
substantially reduces the R? relative to the regression based on the VV RP alone. Finally, a
considerable increase in the degree of predictability is achieved when the diffusive and the right
jump tail risk components of the V'V RP are included as separate predictors. It is also worth noting
that the right jump tail remains statistically significant when the traditional predictor variables
are included. Our results suggest that the fear-of-fear component proxied by the right jump tail
variation is the primary source of the in-sample predictive ability inherent in the VV RP for VIX
futures returns.

Out-of-sample results further confirm the in-sample results regarding the role of the right jump
tail in return predictions. We show that the V'V RP significantly outperforms the historical average
model in most of the forecasting horizons and its forecasting power considerably weakens, if not
disappears, when the right jump tail component is removed. In addition, the best forecasting
performance over short horizons is obtained when the right jump tail is reintroduced to the
predictive regression based on the diffusive component of the VV RP. Results of the Clark and
West (2007) test indicate that such superiority afforded by the right jump tail still remains even
after other traditional predictor variables are added in the forecasting exercises. From an asset
allocation perspective, we further devise a trading strategy for a mean-variance investor and

provide evidence that the right jump tail is nontrivial in generating economic gains, especially



over short horizons.

For the V' I X options, we show that over all strike and maturity combinations, OTM delta-hedged
VIX options have significantly negative returns. Consistent with earlier studies of Mencia and
Sentana (2013) and Park (2015), compared with the VV RP, we find that the VVIX is a more
significant risk factor affecting VIX option returns. When the VVIX is stripped of the right
jump tail variation, a decline in return predictability is only observed for short-dated options.
Furthermore, the inclusion of the right jump tail risk does not alter the sign and statistical
significance of the coefficients for the VVIX. Our results indicate that, while the fear-of-fear
proxy plays an important role, it cannot fully explain the negative delta-hedged returns and that
the predominant forecast power is afforded by the VVIX.

Our work is related to several recent papers that examine the forecasting power of the tail risk
measures obtained from SPX options. Bollerslev, Todorov, and Xu (2015), Andersen, Fusari,
and Todorov (2015), Andersen, Fusari, and Todorov (2020) and Andersen, Todorov, and Ubukata
(2021) show that the return predictability implied by the variance risk premium (V' RP) arises
largely from the left jump tail, and that this hinges on the SPX deep out-of-the-money (OTM)
put options. We build on this literature by constructing the jump tail measure in the V' I X market
and evaluating its role in the predictions of the VI X futures and option returns. Among the few
studies of jump dynamics for the VIX derivatives, Park (2016) emphasizes the importance of
upward jumps in pricing performance and Park (2015) and Huang et al. (2019) include jumps as
control variables in predictive regressions for VIX option returns. Neither formal treatment of
the jump tail risk underlying the V' I X market, nor a thorough analysis of jump tails in the VIX
return predictability, are to be found in the literature.

Finally, our results enrich the literature on the forecasting performance afforded by the VV RP.
Despite the extensive study of volatility-of-volatility risk in recent years, empirical work dedicated
to the predictability inherent in the V'V RP is rather limited. This contrasts sharply with mounting

evidence on the usefulness of the VRP as a predictor for aggregate stock market returns, see,



Bollerslev, Tauchen, and Zhou (2009), Drechsler and Yaron (2010), Bollerslev et al. (2014), and
Li, Izzeldin, and Yao (2020), among others. Given that investors’ aggregate risk aversion could
vary differently with the time horizon, Li and Zinna (2018) and Bardgett, Gourier, and Leippold
(2019) further establish that the V RP term structure contains additional information on future
returns. In contrast, we are among the first to investigate the predictive power of the V'V RP and
its term structure for VI X futures returns. To improve the reliability of the predictability results,
we adopt the IVX approach of Kostakis, Magdalinos, and Stamatogiannis (2015) to account for
the potential presence of strong persistency and endogeneity in the variables.

The rest of the paper proceeds as follows. We present our construction of the VVIX, VV RP
and the jump tails in section 2. A simulation study on the role of jump tail risk is demonstrated in
section 3. Section 4 details the data used in our study and section 5 discusses the main empirical

results. Section 6 concludes.

2 Construction of Risk Measures

We first derive the risk-neutral expectation of the quadratic variation for the VI X index. We then
construct the realized variance for the VI X and obtain the variance-of-variance risk premium as
the wedge between the conditional expectations of quadratic variation under the risk-neutral and
objective measures. Finally, we extract the investors’ fear-of-fear component as proxied by the

special compensation for jump tail risk.

2.1 Implied variance measure

The VIX index offers a model-free and market-determined estimate of one-month stock market
volatility implied by index option prices. Britten-Jones and Neuberger (2000) and Jiang and Tian
(2005) indicate that the VIX can be derived from the prices of S&P 500 call and put options

covering a range of strikes. In practice, the published VI X adopts a few approximations due to



the availability of options data.
In the present paper, we calculate the implied volatility of volatility by applying the same
method as the VIX to a cross-section of the VIX options. The squared V'V IX that captures the

model-free implied volatility of VIX futures reads

) 2e" T [ (1 > ]
VVIX[t,tJrT] = T ; ﬁpt(’r, K)dK + v FCt(T, K)dK (1)

where rf is the risk-free rate, F}; is the VIX futures price, K denotes the strike price, 7 is
time-to-maturity measured in annual units and P;(7, K) (Ci(7, K')) denotes the price of OTM put
(call) options on the VIX. In the subsequent analysis, we always consider the use of squared
VVIX, thus the VVIX? notation, unless otherwise stated. To approximate the integral on the
right-hand side of equation (1), we follow a procedure that is now adopted as common practice
in the related literature: a) interpolate between listed strikes employing a simple cubic spline; b)
extrapolate the observed implied volatilities by assuming a flat implied volatility function beyond
the available strike prices. To reduce measurement errors induced by the limited availability of
strike prices, we generate a grid of strikes with one-point increments and consider strikes covering

a range of three times the standard deviation around the futures price.

2.2 Variance-of-variance risk premium

Next, we characterize the variance-of-variance risk premium (V'V RP) in the form of a gap between
the objective and risk-neturalized expectations of the total quadratic variation for the VX index
over a fixed maturity. This premium represents compensation demanded by investor for the risk
associated with fluctuations in the return variation of the volatility index.

Following Barndorff-Nielsen and Shephard (2002) and Kaeck (2018), we obtain the realized

variance over the interval from ¢ to t + 7 below

252
RVVIXjpr) = == > (10g (Fyper) — log (Fourtir)) (2)

i=1



where F} ;. denotes the futures contract on day ¢ with fixed maturity ¢+ 7. For each time horizon
7, the daily return is calculated between two points in the partition [t, ¢ + 7|, where ¢t + T is
the expiry date of VIX options in the following month and ¢ is the trading day after the expiry
date of the present month. Since VIX futures maturities are consistent with the expiry dates of
the options, this approach achieves exact matching of information in the measurement of the two
expectations of the future return variation of the VIX. To capture the premium that investors

require to hold variance-sensitive assets, we construct the VV RP as follows

VVRP, ; EtP (QV[t,t+r]) - E? (QV[LHT]) (3)

RVVIXjypiq) — VVIXE

Q

where QV;+4- is the quadratic variation measuring the return variation of the log-price process
over t and t + 7, EF (QV[LHT]) and EtQ (QV[LHT]) respectively correspond to the objective and

risk-neutral expectations of QVj; ¢4

2.3 Jump tail risk

As indicated in Bollerslev, Todorov, and Xu (2015) and Andersen, Todorov, and Ubukata (2021),
VV RP,,; in equation (3) can be decomposed into a part associated with variation in the diffusive
volatility process and a part that is induced by jumps. Define the left and right jump variation

under the risk-neutral measure as LJ Vt 7] a,nd RJIV®

7] , their counterparts under the physical

and RJVF

10 Specifically, LJV®

[t,t+7]

and RJV?

measure are therefore LJV” [t,t+7]

[t,t+7]

(LJ V[t 1+ and
RJV?E

7] ) can be understood as the predictable component of the quadratic variation associated

with large negative and large positive jumps under the risk-neutral ¢Q—(physical P—) measure.
By analogy with the definition of VV RPF, ., the left and right jump tail risk premia can by given
by
P P
LIP,, = E, (LJV[t,t+ﬂ) - (Ljv[t t+T]) (4)



and

RIP,; = B (RIVif,) = ER (RIVE,,,) )

where LJP,; is the component of VV RP,, due to large negative jumps and RJP,, is the
component of VV RP, ; due to large positive jumps.

Consistent with the work of Bollerslev, Todorov, and Xu (2015), we assume that the jump
intensity under the physical measure is approximately symmetric for large sized jumps, i.e. L.J V[f rr) P
RJ V[f br] In the following simulation and empirical studies, we provide strong evidence for this
conjecture and show that changes in the statistical jump measures play only a minor role in

explaining the time variation in the tail risk premia. As a result, the difference between the two

jump tail premia becomes
LJP,, — RJP,, ~ Ef <RJV[SHT]) ~ E/ (LJ‘/[fi+T]) (6)

The measure LJP, ; — RJP, ; mimics the component of investor fears proposed in Bollerslev and
Todorov (2011b) and Bollerslev, Todorov, and Xu (2015), which is implicit in the gap between
the estimated objective and risk-neutral jump tail variations implied by the S&P 500 index and
therefore associated with investors’ attitudes towards market risks. In contrast to Bollerslev
and Todorov (2011b) and Bollerslev, Todorov, and Xu (2015) who consider the aggregate stock
market, we concentrate on the dynamics underlying the VIX market. Since the VIX is called
the "investor fear gauge", LJP, ; — RJP,; based on the VIX can therefore be interpreted as the
"fear of fear" in the present study. As noted in Bollerslev, Todorov, and Xu (2015), LJP;, and
RJP, ; both contain components that reflect the compensation for time-varying jump intensity
risk, or the premia attached to variation in the investment opportunity set. Hence, the difference
between LJP,; and RJP,, will be largely purged of such risk and effectively be attributable to
the special compensation demanded by investors for rare disaster events even when the investment

opportunity set remains the same over time. In the rest of the paper, we employ (LJP,, —RJP, ;)



as a proxy for fear in the VI X market. The details on the estimation of the ) jump tail measures

are presented in Appendix.

3 Simulation Study

This section presents a simulation study to examine the role of jump risk premium in affecting
the time series properties of VVIX [Qt,t ] and VV RP, ;. We also extract the left and right jump

tail variations and evaluate their contributions to the two risk measures considered.

3.1 Design

We first extend the jump-diffusion model for the pricing of VIX derivatives in Park (2016) by
allowing for risk premia in both upward and downward jumps. The dynamics under the risk-neutral

measure takes the following form

dve = ro (i — ) dt + \/i5dBS + JEANG + JEANG (7)
A O dt — A_O_dt
du; = Ky (ﬁ - ut) dt + Jungf

dw, = Ky (W —wy)dt + aw\/wtng

where v, = log (VIX,;), u; denotes the long-run mean of the VIX and w, captures the variation in
the volatility of the VI X. The processes Bg, Bg and Bg are standard Brownian motions, among
which BY and BY are correlated with the coefficient p. In the VIX dynamics, we accommodate
both upward and downward jumps driven by independent compound Poisson processes. They
are characterized by Nth (Ng ) that represents a risk-neutral Poisson process generating upward
(downward) jumps with intensity A, (A_). The size of upward (downward) jumps is denoted by
J? (JS), following an independent exponential distribution with a positive (negative) mean, i.e.

dy >0 (d- <0).

10



The corresponding system under the physical measure becomes

dvi = ky (ue —vp) dt + JwdBi, + JTAN], + J3 dN,, (8)
—\EORdt — \* ot dt
dut = Ry (ﬁ — Ut> dt + nuutdt + O'udB;

dw, = Ky (W —wy)dt + nywidt + 0/ wd B,

where BY, Bl and BI are standard Brownian motions, n,u; and 7, w; drive the risk premia for
the u; and w; processes. To introduce jump risk premia, we allow upward and downward jumps
under the physical measure to have their own jump intensity and jump-size distributions specified
by the parameters A, 6, A” and 0”. Similar to the simulation study conducted in Duan and
Yeh (2010), we assume the means of jump sizes are the same under P and @ with 6 =, and
0" = 4_, and allow for different jump intensities under the change of measure. As such, we define
the upward and downward jump risk premia by ¢, = Ay — A} and ¢_ = A_ — \*, respectively’.
The specification in equation (8) preserves the affine structure of the framework under different
measures.

The simulation of VIX is generated using an Euler discretized version of (8) based on 78
intervals® for each of the T = 7 x 200 trading day in the sample. A daily series is extracted
by sampling once every 78 data points. The parameter values used are taken directly from those
reported in the last column of Table 3 in Park (2016), with the parameter capturing the persistence

of the volatility process k,, adjusted to ensure the positivity of the volatility in our simulation

'We also consider forcing an equality on jump intensities and allow the jump sizes to vary from the physical
probability measure P to the risk-neutral pricing measure @, in which case the jump risk premia is defined as
¢, =0, —d4 and ¢_ =0~ — d_. Results on the contribution of jump tail variations to the VVIX? and VVRP
are qualitatively similar and therefore not reported for brevity.

2We assume 1 day consists of 6.5 hours of open trading and consider a sparse sampling at a frequency of once
every 5 minutes. This results in 78 intraday intervals in a day, i.e. % = T78.
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experiment.

ky p K Iz Oy Uy Kw
6.576 0.794 0.258 3.106 0.293 -0.024 1.8
w Ow N Ay 04 A 0_
1.956 1.976 -2.15 2.682 0.266 2.042 -0.217

The processes vy, u; and w; are respectively initialized at 2, 2 and 0.2, which are given by the
unconditional means of the corresponding series in our empirical study. We assume one year has
252 trading days.

We then compute the option prices of VIX corresponding to different strikes and maturities
(7) using the jump diffusion model under the risk-neutral probability measure in (7). To improve
simulation accuracy, we rely on the empirical martingale simulation procedure introduced by
Duan and Simonato (1998) and set the simulation path for option pricing to 10,000. Based on
the simulated options on each trading day, we construct VVIX ét +7] with various maturities as
in section 2 and compute the realized variance comprising the price information in the next 7
days. Finally, we select both the implied and realized variances on the trading day that follows
the previous maturity date so that we obtain non-overlapping samples with size equal to 200. All

of our results reported below are based on a total of 1000 replications.

3.2 Results

Table 1 reports the mean values of VVI X[Qt,t ] and VV RP,, with 6 different maturities. To

identify the impact of jump risk premia on the properties of the risk measures, we vary the

magnitude of the upward (downward) jump premium ¢, (¢_) from 2 to 10 while restricting

the downward (upward) jump premium ¢_ (¢, ) to zero. The parentheses report the percentage

2

changes of the mean values of VV'I Xit ot

. and VV RP, ; relative to their corresponding values
in the case where there exist no jump risk premia, i.e. ¢, = ¢_ = 0. We show that for the
same magnitude of jump risk premium, the upward jump premium generates a larger impact on

VVIX [?f,t ] and VV RP, ; when compared to the downward jump premium. As maturity grows,
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the two risk measures are generally less sensitive to the presence of jump premia.

Figure 1 is a heat map showing mean values of VVI X[?;t +1] and VV RP, . over different

2

combinations of the maturity and jump risk premia. We find that the term structure of VVIXp

and VV RP, . are highly responsive to upward jump premium ¢_, exhibiting a greater slope in
magnitude as the jump premium grows. However, the downward jump premium ¢_ delivers only
trivial effects on the shape of the term structure with the slope virtually unaffected by the variation
in ¢_. Our results in Figure 1 are generally consistent with the empirical findings in the existing
literature and complement Christoffersen, Jacobs, and Ornthanalai (2012) for the important role
of jump risk premium in the implied volatility term structure. In summary, our simulation reveals
the dominant role played by the upward jump premium, indicating that the right jump tail risk
premium associated with the large upward jumps may constitute the primary source of variation
in VV]X[%HT] and VVRP, ..

In the simulation above, we only allow for the presence of one type of jump risk premium,
i.e. upward or downward, to ascertain their different roles in affecting the dynamics of the risk
measures. This obviously contradicts the real-life observations where the upward and downward
jump premia often coexist. Going one step further, we simultaneously incorporate the two different
jumps in the VI X dynamics and construct the right and left jump tails using the method discussed
in section 2. Unlike the empirical study in which the VX OTM puts are much less traded, our
simulation study ensures that there are equal numbers of the OTM puts and calls, which alleviates
the issue of measurement errors in the comparison of right and left jump tails.

Panel A of Table 2 reports the mean values of the jump tail variation under both P and @
measures’. In line with Bollerslev, Todorov, and Xu (2015) and Ellwanger (2017), we find that the
P jump tail variation measures are dwarfed by the corresponding () measures in the presence of the

jump risk premia. Hence, we conclude that changes in the jump tail premia are primarily due to

3Details on the construction of the left and right jump tail variation measures under P from the return data
can be found in Appendix.
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movements in the tail variations under the () measure. In addition, we investigate the hypothesis
of symmetry of the jump tail risk under different probability measures. The last column in Panel
A shows that the null hypothesis under the P measure is only rejected in 6% of the simulation
repetitions whereas the rejection is obtained in almost all cases under the () measure. Confirming
Bollerslev, Todorov, and Li (2013), Bollerslev, Todorov, and Xu (2015) and Andersen, Todorov,
and Ubukata (2021), the P jump process is approximately symmetric deep in the tails. In contrast,
the @ expectation of the right jump tail variation exceeds its left counterpart in magnitude.

To assess the contribution of the ) jump tail variation measures to VVIX [Qt’t 1] and VVRP, ;,

we run the following regression with a focus on the monthly horizon
Yjt = i + BijTie + Eije (9)

where y,, denotes the measure j among a set of J candidates, j = 1, ---, 6, namely VV RP, 5,
V'V RP, 15 the VV RP slope defined as the (VV RP, 150—VV RP, 50) as well as the three corresponding
measures for the V'V 1 X?; the jump tail variation is given by z; ;, with 2, denoting the right tail and
T2, representing the left tail. To account for the issue of serial correlation, we derive the statistical
significance using Newey and West (1987) robust ¢-statistics with an optimal lag. Panel B of Table
2 reports the mean values of the adjusted R? for the regressions based on the VV RP with the
proportion of significant results indicated in the parentheses. We find that the right jump tail
outperforms the left jump tail in explaining the dynamics underlying V'V RP, 30 and the VV RP
slope while the evidence is weak for the long-term V'V RP. The corresponding results for the
VVIX? are provided in Panel C. Although the two tails both contribute significantly to variations
in the short- and long-term VVIX? as well as its term structure, the right tail demonstrates a
much higher degree of explanatory power. Our results in Table 2 therefore confirm the findings
in Table 1 that the upward jump premium plays a dominant role in affecting the properties of

VV[X[2 jand VVRE, ;.

tt+7
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Recall equation (6) for the proxy of the fear-of-fear factor

LIPy = RIP, ~ B (RIVE,,,) - B2 (LIVE, )

[t,t+7]

With equal numbers of OTM calls and puts, our simulation clearly points towards the superiority of

RJIVEY

it4-47) OVer its left counterpart not only in terms of the magnitude but also on the contribution

to the relevant risk measures. In practice, OTM VIX calls are often considered a form of tail
risk hedges. This can be explained by the leverage effect that negative variations in returns are
closely associated with rises in volatility, in which case OTM VIX calls can hedge. As a result,
OTM call options are more heavily traded in the real VX market, suggesting that the size of

RJ V[?t 4] May further exceed that of L.J V[tQt ] in the empirical study. Hence, we obtain the

following approximation given by

LJP,, — RIP,, ~ E? (RJV}Q ) (10)

t,t47]

Since the right jump tail is a key contributor to the level and slope of VV IX [2t,t ] and VVRP, ;, it
may also perform as the primary component providing return predictive power for these measures,

2
[t,t+7]°

VVRP,, and RIVi?,, | by VVIXZ, VVRP; and RJV?, respectively, when 7 = 30 is considered

t,t+T

which we verify below in our empirical study. For ease of notation, we abbreviate V'V IX

in the rest of the paper.

4 Data

VIX futures data are collected from the C BOFE website and span from March 26, 2004 through
December 31, 2020. On each trading day during the sample period, three to six different maturities
are traded. We rely on the daily settlement prices to obtain the realized variance of VIX. In
addition, the raw VI X options data originate from OptionMetrics covering the period of February

24, 2006 to December 31, 2020. As a result, our sample is restricted to the shorter period when
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examining the joint information content from the data of futures and options. For robustness,
we also consider an alternative measure of statistical volatility-of-volatility based on the 5-minute
VIX futures returns. The data is sourced from Tick Data Inc. and starts in July 2012.

We apply standard filters to the raw options data to eliminate inaccurate or illiquid options.
First, we delete the VIX options for which the price, defined as the midpoint of the option bid
and ask quotes, is less than 0.2 or the trading volume is zero. Second, options with Black-Scholes
implied volatility (BSIV) lower than 10% or greater than 150% are excluded from the sample.
Third, we focus on options with 8 to 90 days to expiration. This leaves us with more than a
million VI X option quotes, with a daily average of 102.7 VIX OTM calls and 41.3 puts over
the full sample. The number of VIX OTM options on a given date increases with time, with
around 25.9 calls (11.2 puts) at the beginning of the data set and around 136.5 calls (87.9 puts)
at the end. To assess whether the return predictability (previously ascribed to the popular risk
measures) is effectively arising from the right jump tail, we follow Bollerslev, Todorov, and Xu
(2015) in constructing the jump tails using OTM options with maturities between 8 and 49 calendar
days. It is worth noting that all of our risk measures are non-overlapping. Taking the monthly
horizon as an example, the implied variance measures are given by the values at the end of the
month and the realized variance is derived over the following month and annualized.

In addition to the risk measures introduced in section 2, we also consider a variety of predictor
variables that are widely employed in the existing literature of return predictions (see, for instance,
Neely et al. (2014), Park (2015) and Cakmakli and van Dijk (2016)). Data on the P/E ratio and
dividend yields are taken from Standard & Poor’s. The default spread (the difference between
Moody’s BAA and AAA corporate yields), the term spread (the difference between the 10-year
and 3-month Treasury yields) and the TED spreads are all sourced from the website of the Federal
Reserve Bank of St. Louis. We also consider the Economic Policy Uncertainty (EPU) index of
Baker, Bloom, and Davis (2016) and the risk aversion index of Bekaert, Engstrom, and Xu (2022).
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Both are downloaded from the authors’ websites®.

5 Empirical Results

5.1 Preliminary data analysis

As option returns are heavily influenced by shocks in the underlying asset price and volatility,
we employ the approach of Bakshi and Kapadia (2003) and Huang et al. (2019) to derive the

delta-hedged option gains that are unaffected by the underlying asset’s price risk:

N-1 N-1
T
7Tt,t+7- = Ct+7' — Ct — Z Atn(Ftn+1 — Ftn) — Z TfCtN (11)
n=0 n=0

where tg = t, ty = t + 7 refers to the maturity date, and A, indicates the option delta that is
available from OptionMetrics. We then scale the delta-hedged option gain by the initial option
price 7 44,/C; and take an average of the gains over their respective moneyness and maturity
category. Specifically, we separate OTM options by call or put and classify each option into 2 bins
by moneyness that is defined as k = K/F;(7). Following Bakshi and Kapadia (2003), we consider
a sample of options with constant maturity, i.e. 30 and 60 days, to avoid overlapping observations
of option returns. To obtain the returns on VX futures, we make use of the front contracts and
roll over to the next maturity contract in the case where the shortest contract has less than 5 days
to maturity, see also in Taylor (2019).

Panel A of Table 3 reports the descriptive statistics of the delta-hedged option returns across
different moneyness bins and maturity. Overall, OTM delta-hedged V' I X options have significantly
negative returns and the delta-hedged gains become more negative when the hedging horizon is
extended from 30 days to 60 days. In addition, option returns exhibit mild serial correlation, which
are dealt with in the subsequent predictive regressions. Panel B of Table 3 presents the results

of VIX futures returns. Similar to returns of S&P 500, VIX returns are approximately serially

4The time series of EPU index is obtained from http://www.policyuncertainty.com and that of the risk aversion
index is from https://www.nancyxu.net/risk-aversion-index.
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uncorrelated, with a mean indistinguishable from zero. All the findings above are consistent with
those reported in previous studies.

Summary statistics for the monthly predictor variables are reported in Table 4. In constructing
V'V RP;, defined as the difference between E} (QVWH]) and EtQ (QVMHT]), for forecasting purpose,
we rely on the HAR model of Corsi (2009) to obtain a direct forecast for RV VX ;.. that can be
approximated as B} (QVWJFT]). Inspired by Li and Zinna (2018) who point out the significance of
the variance risk premium term structure for stock return predictability, we also consider the slope
of VV RP, defined as VV RPS; = VV RP, go—VV RPF;. Theslope of VVI X? is therefore computed
as VVIXS, = VVIX@HQO} — VVIX?. To isolate the effects of the right jump tail variation,
we obtain the components of the VVIX2 and VV RP, striped of RJV,?, VVIX2 — RJV? and
VVRP, — RJVS, denoted as VVIX?" and VV RP!".

To examine whether the predictive power afforded by VV RP,, VVIX? and R.J V;Q is robust to
other pricing factors, we include the following control variables in our regressions and classify them
into six distinct groups: 1) macroeconomic variables including log price-earnings ratio (P;/E;),
log price-dividend ratio (P;/D;), the default spread (DFSF;) and the term spread (T'MSPF,); 2)
technical indicators introduced by Neely et al. (2014), among which we select the moving-average
indicator (M A;) and the momentum indicator (MODM,;)’; 3) uncertainty measures including
the U.S. EPU index (EPU;) of Baker, Bloom, and Davis (2016) and the risk aversion index
(RA;) of Bekaert, Engstrom, and Xu (2022); 4) limits of arbitrage proxied by the TED spreads
(TED;); 5) option market liquidity as measured by the relative bid-ask spreads (SPREAD;)
of the VIX options; 6) jump fears captured by the option-implied skewness (SKEW}) in the
work of Bakshi, Kapadia, and Madan (2003)°. Groups 1), 2) and 3) are considered in the
predictions of VIX futures returns and groups 3), 4), 5) and 6) for the case of option returns.

Given the existing literature, there is no surprise that many of the traditional predictor variables,

5In constructing M Ay, we let the length of the short M A (s) be 2 and the length of the long M A (I) be 9; we
consider m = 12 for the momentum indicator, see more details in Neely et al. (2014).
6More details on the calculation of SKEW,; using the VIX options data can be found in Appendix.
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e.g. macroeconomic variables and uncertainty measures in particular, exhibit strong persistence
with first-order autocorrelations in the range of 0.80 and 0.98. In a sharp contrast, VVIX? and
V'V RP, are substantially less persistent, thereby balancing the regression for returns in terms of
the integration order and generating fewer econometric problems.

In light of the correlation matrix reported in the lower panel of Table 4, we conjecture that,
compared with the risk aversion index RA;, the fear-of-fear proxied by R.J VtQ may capture distinct
investor proclivities. Specifically, while RA; is negatively correlated with R.J VtQ, it displays
positive relationships with both VVIX? and VVIX?". This implies that RA; may reflect investors’
attitudes towards the temporal variation in volatility-of-volatility or continuous price moves in the
VIX market rather than the fear for jump tail events. As a different measure of uncertainty in
the present study, FPU; positively correlates with our fear proxy but the correlation is relatively
small at 0.157. Intuitively, high values of EPU; result in increased market fear through investor
sentiment when economic policies are difficult to anticipate. Consistent with the finding by
Bekaert, Engstrom, and Xu (2022), RA, displays a correlation of 0.342 with EPU,. However,
their opposite relationships with R.J V;Q suggest that they may measure uncertainty via different
mechanisms.

We also report in Figure 2 the time series plots of the main risk measures introduced in section
2 along with the two uncertainty measures. That VIX options only started in 2006, and that
the deep OTM options were infrequently traded in early stage, explains missing values in the
series of R.J VtQ. A few differences between the series of VVIX? and RJVtQ are noted. For
example, V'V IX? reaches high values during the 2008 financial crisis and 2010 flash crash before
attaining its maximum around early 2020 when the pandemic starts to heavily impact the global
financial markets. Although RJV® grows steadily over the period of 2008 and 2010, it peaks
around 2011-2012, coinciding with the European debt crisis. During the pandemic period, R.J VtQ
experiences an abrupt increase in Feb 2020, exhibiting a good coherence with V'V IX?2. Notably,

we document clearly different dynamics in the series of RA; and EPU, and the latter displays
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more similar movements to R.J V;Q, which corroborates the findings on the correlations discussed
above. Moreover, RA;, EPU,; and our fear proxy all rise sharply in early 2020 where the pandemic

triggered a massive spike in uncertainty.

5.2 In-sample analysis

5.2.1 VIX futures returns

We start by assessing the role of right jump tail component in the in-sample predictions for the

VIX futures returns given by

h
1
=D s = Boulh) + Bu(W)aia + iaen (12
n=1

where r; is the monthly VIX futures return and z;; denotes the predictor i among various
candidate predictors. As highlighted in section 5.1, several predictor variables, macroeconomic
variables in particular, are highly persistent with autoregressive roots close to unity. This raises a
common concern regarding the use of strongly persistent variables and the possibility of unbalanced
regressions, which undermine the reliability of predictability tests (see more discussions in Campbell
and Yogo (2006), Magdalinos and Phillips (2009) and Yang et al. (2020)). To address this problem,
we employ the IVX approach of Kostakis, Magdalinos, and Stamatogiannis (2015) that exploits
instrumental variables with a lower degree of persistence than that of the predictive variables. The
method is not only robust to the time-series properties of the predictors, covering the entire range
from stationarity to pure nonstationarity of unit root series, but also eliminates the endogeneity
issue.

Table 5a reports the results from the monthly return regressions using the IVX estimator and
the corresponding Wald statistics under the null of no predictability. For ease of interpretation, in
dividing each explanatory variable by its standard deviation, the estimated coefficient represents
the effect of a one standard deviation change in that variable. Unless otherwise stated, in what

follows, we always preprocess the data in such a manner when conducting estimations. In addition,
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all coefficient estimates are scaled up by a factor of 100 for presentation purposes. The univariate
regressions on the left panel of Table 5a show that V'V RP; dominates VVIX? and all the other
traditional predictors in terms of the sample fit". Combining V'V RP, with other predictors only
leads to a marginal increase in the (adjusted) R?. Notably, several predictors, e.g. the default
spread (DFSP;), the moving-average indicator (M A;) and EPU;, that exhibits the evidence of
predictability in the univariate regression are no longer significant in the multiple regression with
VV RP,. A similar observation on the superiority of V'V RP, is also established for the quarterly
return regressions in Table 5b. For annual regressions reported in Table 5¢, P;/D;, the default
spread (DFSP;), the term spread (I'MSP;) and the two uncertainty measures show a higher
degree of return predictability than VV RP;. This is largely in line with many of the empirical
studies which show that the predictive power of the traditional predictors tends to be the strongest
over longer multi-year horizons. Finally, it is worth noting that, regardless of the time horizon
and the inclusion of other traditional predictive variables, V'V RP; remains statistically significant
at the 1% level or better.

To identify the source of the predictive power afforded by VV RP;, we decompose VV RP;
into the diffusive and jump tail risk components and run the predictive regressions based on
these different components together with the control variables for monthly, quarterly and annual
returns. The results are summarized in Tables 6a to 6¢, respectively. Similar to the construction
of VV RP[, the slope of V'V RP; deprived of the right jump tail variation is derived as VV RPS}]' =
<VVRPt790 RJ V?t +90> — (VVRPt — RJ VtQ> with RJ V[tQt +90] obtained by averaging the daily
measures within 90 days. We show that, for various time horizons, subtracting R.J V;Q from VV RP,

results in less significant Wald—statistics and little return predictability underlying V'V RP]*. We

"In Kostakis, Magdalinos, and Stamatogiannis (2015), the IVX instruments are constructed by suitably filtering
the actual predictor and the coefficient estimates of the predictive regression are obtained by employing a two-stage
least-squares estimator. The adjusted R? reported in the present paper is based on the residual vector from the
second stage of the two-stage least squares procedure, namely the prediction errors, and therefore is considered
an appropriate measure for model comparison. Our calculation of the adjusted R? is in the spirit of Pesaran and
Smith (1994) who propose the generalized R? in the context of instrumental variable regressions.
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also find that the term structure V'V RPS; is nontrivial in return predictions but an evident increase
in the R? driven by VV RPS, is only obtained at annual horizons. Similar to the univariate case
where only V'V RP; is considered, the removal of R.J V;Q from VV RP, and VV RPS, substantially
reduces the R? and renders the Wald—statistics for VVRP* and VV RPS} less significant. In
addition, adding R.J VtQ to the regression based on VV RP™ and VV RPS™ increases the R? where
the values exceed those implied by VV RP, and V'V RPS, over monthly and quarterly horizons.
Finally, we include other traditional predictors in the regressions based on VV RFP]*, VV RPS}
and RJ VtQ and provide evidence for the significance of VV RFP and R.J V;Q in all the cases
considered. We therefore conclude that much of the return predictability afforded by VV RP,
is attributable to the right jump tail variation and that the predictability results are robust to

various control variables.

5.2.2 VIX options returns

To ascertain the role of right jump tail variation in pricing the delta-hedged option gains, we follow
Bakshi and Kapadia (2003) and Huang et al. (2019) in constructing the following regression based

on the fixed option maturity

GAINS, 4\ = mgﬂ = 0o + 01iis +v,GAINS, 7 + €ipir (13)
t

Delta-hedged option returns GAIN S, ;. realized over 30 and 60 days are regressed from expiration
to expiration on the value of x;; at the end of the previous expiration. As mentioned in section 5.1,
option returns display some degree of autocorrelation and thus may alleviate the concern related to
the use of unbalanced regressions that has been extensively investigated in the literature of market
return predictions. Given this, we follow the mainstream literature on option return predictions
by including the lagged gains in equation (13) to correct for the serial correlation present in the
residuals. The null of no predictability by each of the predictor variables is examined by the

Newey-West procedure with an optimal lag.
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Tables 7a and 7b report the predictive regression results for OTM call option returns over 30
and 60 days, respectively®. The Box-Pierce test with 6 lags (Qg) is undertaken to detect the level
of residual autocorrelation. The results show that V'V IX? significantly predicts the future option
returns with a negative sign and a reasonable fit similar to that reported in Bakshi and Kapadia
(2003). In contrast, the predictions by VV RP, are only marginally significant for 30-day options
and insignificant for 60-day options. The superiority of VVIX? over VV RP; in predicting the
VIX option returns is also reported in the work of Park (2015). In the univariate regressions,
none of the other predictors exhibits predictive ability with the exception of TED; and SPREAD,
that are significant at 10% level for 30-day options. Combined with the traditional predictors for
option returns, V'V I X? retains its significance across different moneyness levels and time horizons,
suggesting that none of the other predictors have incremental predictive power beyond V'V IX?.

To further examine the role of R.J V;Q in the option return predictability afforded by VVIX?,
we adopt a similar decomposition procedure to that applied in the case of V'V RP; for predicting
VIX futures returns and report the results in Tables 8a and 8b. First, we show that the VVIX?
term structure VVIXS; is trivial in enhancing the predictions based on VVIX? alone. Second,
removing RJV,® from VVIX2 and VVIXS, leads to a 30%—40% reduction in the R? for 30-day
option returns but produces little effect on the longer-dated options. Third, adding R.J V;Q to the
multiple regressions based on VVIX?* and VVIXS? increases the R? where the values are similar
to those generated by VVIX? and its term structure. Across all the different cases, VVIX?" and
RJ VtQ remain significant even after other traditional predictor variables are controlled for. Our
results suggest that, while RJ V,;Q helps explain a modest proportion of the losses incurred on
the short-dated delta-hedged portfolios, VV I X? is the predominant measure providing significant

forecasting power for V' I.X option returns.

8We focus on the OTM VIX calls since they are considered an important form of tail risk hedges (see Park
(2015) for example) and therefore receive more attention from investors. Results for the OTM puts support our
general conclusion on the predictability of option returns and are available upon request.
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5.2.3 Robustness

Our investigation of the robustness of our predictability results uses alternative measures of
volatility-of-volatility. For the risk-neural expectation of the volatility-of-volatility, we make use of
the VVIX index as well as its term structure from the C'BOE. The index has been published since
2012 and back-filled to 2006. For the physical expectation, we rely on the 5-minute front-month
VIX futures returns to compute RVV IX;. Due to the availability of tick data, our analysis based
on RVVIX,is from 2012 to 2020. In line with the previous analysis, all the variation measures are
at a monthly frequency. Figure 3 depicts the time series plots of the CBOE V'V IX index and our
measure of VVIX? calculated using OTM options. Overall, the calculated VVIX? qualitatively
match the evolution of the reported VVIX index with a correlation coefficient of 95%. That
our measure of VVIX? is on average lower than the CBOE VVIX may be attributable to two
points. First, we obtain a broader strike range by including most of the option quotes that meet
the conditions specified in section 4 and consider the interpolation and extrapolation procedure
to approximate the integral on the RHS of equation (1). However, the C BOE adopts a particular
cutoff rule which may induce distortions, see Jiang and Tian (2005) and Andersen, Bondarenko,
and Gonzalez-Perez (2015) for details. Second, our VVIX? is obtained using the options from the
Optionmetrics database containing the last daily bid-ask quotes only, which might not perfectly
match the data published by the C BOFE for their final end-of-day computation.

Next, we follow Bollerslev and Todorov (2011a) and Bollerslev, Todorov, and Li (2013) in
using the high-frequency data to derive the continuous variation along with the realized jump tail
variation under the statistical measure. The time series plots in Figure 4 show that the estimate for
the left tail appears larger than the right, which is in parallel to the results reported in Bollerslev,
Todorov, and Li (2013). We further confirm that the realized jump tail is approximately symmetric
with the null hypothesis L.J V[P | =RJ V[P not rejected at the 5% level.

T t,t+7]

Finally, we estimate the predictive regressions over horizons ranging from 1 to 12 months using
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new measures of the volatility-of-volatility risk and report the values of adjusted R? for VIX
futures returns in Figure 5”. Consistent with the earlier empirical results, V'V RP, outperforms
the CBOE VVIX over most of the horizons and the right jump tail is still the primary source of
the forecasting power afforded by V'V RP,. Further to this, note that the greatest magnitude of
return predictability is observed for the case where the right jump tail and the diffusive components

are separately accommodated.

5.3 Out-of-Sample Analysis

Our in-sample results so far suggest that the right jump tail is a key driver of the predictability
ascribed to V'V RP, for VIX futures returns. In this subsection, we further evaluate the role of the
right jump tail in the out-of-sample (OOS) forecasting exercises. Using a rolling window scheme,
we employ half of the full sample for in-sample estimation and the remaining for performance
evaluation.

We consider the out-of-sample R-squared (OO R?) to measure the proportional decrease in the
mean squared prediction error (MSPE) of the competition model relative to the historical average.
A positive value of OOR? implies that the model of interest beats the historical average forecast
in terms of the MSPE and a negative value indicates the opposite. We provide the OOS results
in Table 9 where the highest values of OOR? in each of the two panels are indicated in bold.
To examine the null that the MSPE of the historical average forecast is no greater than that of
the predictive regression, we employ the Clark and West (2007) MSPE-adjusted statistics and
report the results in Panel A. We find that the the MSPE-adjusted statistics given by VV RP,
are significant in 10 out of 12 forecasting horizons, suggesting that V'V RP, generally outperforms

the historical average benchmark in the OOS forecasting practice. Note that the results of the

9Regression results on the return predictability of VIX futures are not reported but they are available upon
request. The use of non-overlapping option returns further reduces the size of our sample based on the CBOE
VVIX? and the high-frequency data of VIX futures. We therefore do not perform the predictive regressions for
delta-hedged option returns due to the lack of observations.
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MSPE-adjusted test are significant for a few cases associated with the negative values of OOR?. A
similar observation is documented in Neely et al. (2014). This arises from the fact that the adjusted
MSPE test accounts for the upward bias in the MSPE of the alternative model with additional
parameters that are zero under the null, see more discussions on the nested model forecasts in
Clark and West (2007). When RJV;? is removed from VVRP, in model 2, a reduction in the
OOR? is observed across all the forecasting horizons and none of the predictions are significant.
Finally, the reintroduction of R.J V;Q in model 3 substantially increases the OOR? especially over
short horizons and renders the MSPEs over different horizons significantly lower than those of the
historical average.

Going one step further, we include other traditional predictor variables to model 3 based on
VV RP]" and RJ VtQ and report the results in Panel B. The MSPE-adjusted statistic is computed
to test the null that the MSPE generated by model 3 is less than or equal to the MSPE given by the
various competition model in Panel B. We show that our benchmark model 3 is only outperformed
by the inclusion of macroeconomic variables or uncertainty measures over 6-12 months. Adding
technical indicators brings few significant gains beyond model 3 with the exception of predictions
over 9- and 11-month horizon. Hence, our OOS results clearly point towards the superior role of
RJ VtQ in predicting VI X futures returns over short horizons.

As a final exercise, we evaluate the economic significance of the OOS forecasts by forming
a trading strategy based on VIX futures and risk-free assets. Following Neely et al. (2014)
and Pyun (2019), among others, we calculate the certainty equivalent return (CER) gain for a
mean-variance investor who allocates across V' I X futures and risk-free bills using forecasts of V' I.X
futures returns. At the end of period ¢, the investor assigns the optimal weight to the VI X futures

during period ¢t + 1
R s

Wy = PO
VO

(14)

where v = 3 is assumed as the risk-aversion coefficient, 7}, ; denotes the forecast of VIX futures
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excess returns, and the forecast-based realized variance of the VIX futures returns is used as a
proxy for 3? +1- We allow the investor to rebalance the portfolio weight at the same frequency as the
forecasting horizon and restrict the portfolio weight to lie between [—0.5, 1.5] for the consideration

of short sales. The period—t + 1 portfolio return is therefore

Rppv1 = wiry oy +1fin (15)

where 77, is the VIX futures excess returns and r f;; is the risk-free rate'’. The CER is obtained
as

CER=TR, - %@(PLZ,) (16)

where R, and @"(Rp) denote the sample mean and variance of the portfolio returns, respectively.

In Panel A of Table 9, the CER gain is derived as the difference between the CER of the
forecasts generated by models 1, 2 and 3 and the CER of the historical average forecast. In Panel
B, we compare the CER of various competition models, i.e. models 4, 5 and 6, with that given by
model 3. As suggested in Campbell and Thompson (2008) and Rapach, Strauss, and Zhou (2010),
the CER gain can be interpreted as the portfolio management fees that investors are willing to
pay to utilize the information in the predictive regression forecast in place of the forecast delivered
by the benchmark model. Panel A shows that the investment strategy based on V'V RP; results
in positive CER gains over various horizons where gains are considerably diminished when R.J V;Q
is subtracted from VV RP, in model 2. The highest CER gains are attained by the predictive
regression including RJ V;Q in model 3 except for 7-month to 10-month horizons, suggesting that
the information contained in R.J VtQ has substantial economic value for a risk-averse investor,
especially over short horizons. Considering other traditional predictors in Panel B, we show that,
although the CER gains can be further enhanced over longer horizons, model 3 still dominates the

alternatives, at least over monthly horizon.

10The three-month T-bill data (risk-free rate) is obtained from the public website of the Federal Reserve Bank
of St. Louis.
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6 Conclusion

The paper examines the role of fear-of-fear in determining the properties of the variance-of-variance
risk premium (VV RP;) and volatility-of-volatility (VVIX?) as well as their predictive power for
returns in the V' I.X market. We adopt the difference between the upward and downward jump risk
premia associated with sizeable price moves as a proxy for the fear-of-fear, since it reflects the the
compensation for rare jump events and is largely independent of the temporal variation in asset
prices. Our simulation shows that the risk-neutral right jump tail variation (R.J VtQ) dominates
the left tail as a key driver of VV RP, and VVIX?. With plausible assumptions, we conjecture
that the fear component embedded in the VI X market can be approximated by R.J VtQ.

Our empirical study is based on the VIX options and futures from 2006 to 2020. We present
novel in-sample evidence for the superior performance of VV RP, in the return predictions of
VIX futures and the dominant role of R.J V;Q in providing the strong predictive power underlying
VV RP,. An out-of-sample forecasting exercise shows that RJVtQ not only accounts for much
of the return predictability afforded by V'V RP, but also generates nontrivial economic value,
especially over short horizons. In particular, from 1-month to 5-month horizon, the predictive
regression based on the diffusive component of VV RP, and RJ VtQ serves as the top performer
even against other traditional predictor variables. With the delta-hedged option returns, we find
that, while R.J VtQ plays an important role for short-dated options, V'V IX? is the primary source
of the negative gains of delta-hedged portfolios.

The present paper concentrates on using jump tail variation to capture investor fears implicit
in the VIX market. Although we include the Risk Aversion index and the Economic Policy
Uncertainty index as control variables in our predictive regressions, further research might investigate
how our jump tail risk measures differ from market-based sentiment indicators. This could deliver
a deeper understanding of differences in risk attitudes in the VX market and in the aggregate

stock market. It might also be rewarding to examine whether the fear proxied by the jump tail
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variation could be used to forecast rare disasters relevant to the VX market or future returns
of the aggregate market. Moreover, incorporating the jump tail risk analyzed here might further

improve the VIX derivatives pricing and reveal important dynamics of S&P 500 returns.

7 Appendix

7.1 Jump Tail Variation Under the Risk-Neutral Measure

Our estimation of the @) jump tail measures follows Bollerslev, Todorov, and Xu (2015). Assuming
that the tail parameters remain constant over the maturity 7, the left and right jump tail variations

can be written as

3

LJV[SHT] = 7¢, e M (a7 ky (a7 k +2) +2) / (o) (17)
RIVE, = 7éfe M (afky (of by +2) +2) / (o))’

where the level shift parameters gzﬁf and the shape parameters ;" are allowed to vary independently
over time, and the threshold k; defines large jumps. The estimation of ¢f and a;° are based on
the close-to-maturity and deep OTM puts and calls for the left and right tails, respectively. The
intuition is that such options may more effectively isolate jump tail risk since they are worthless
unless jumps occur in the underlying asset.
Let O, (k) represent the time ¢ price of an OTM option with time to maturity 7 and log-moneyness

k. It follows from Bollerslev and Todorov (2011b) that the ratio of two OTM options with the
same maturity 7 but different strikes does not rely on gzﬁf, giving rise to the estimator proposed

by Bollerslev and Todorov (2014)
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where Nti demotes the total number of options used in the estimation with 0 < |k| < -+ <
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k, v=|. Based on a given o, the level shift parameters can be estimated by
t.N;

~t
¢, = arg mm Z

og (9 0)) (1 620+ o (37 7 1) + o) — log()

(19)
where 7, denotes the risk-free interest rate over the [t, t+ 7| time interval, and F, ; represents the
time t futures price of VI X;,,. In practice, we employ OTM VI X call options with log-moneyness
greater than 1.5 times the normalized at-the-money (ATM) BSIV and set the cutoff k; equal to
2.5 times the normalized ATM BSIV at time t''. Furthermore, we allow o; and ¢, to vary on

a daily basis and the monthly jump tail variation is constructed by averaging the daily measures

within the month.

7.2 Jump Tail Variation Under the Physical Measure

This section provides details on the estimation of P jump tails from high-frequency VIX futures
data following the work of Bollerslev and Todorov (2011a) and Bollerslev, Todorov, and Li (2013).
Let the discrete time grid be 0, %, %,- -+, T where n denotes the sampling frequency and T' the
time span, we express the log-price increments over the time interval [%, %] by A'p=p i —pit.
We first derive the realized variation and bi-power variation given by

tn+n

RV, = > |Apf (20)
1=tn+1
tn+n

BV, = = Z |A7p| | AT p]

i=tn-+2
With n — oo, the bi-power variation consistently estimates only the component of the total

variation associated with continuous price movements.

'We also consider other choices for the thresholds and the results of the return predictability are qualitatively
similar.
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Next, we compute the Time-of-Day (TOD) factor as given by

n 30, [Anp* 1 (|ALp| < 0VBV A RVin @)

TODZ - nT ) _
S AP 1 (JArp| < 1y/BVigm) A RVig/mn ™)

(21)

where iy = (t —1)n+14,i=1,---, n, n > 0 and @ are both constants. In line with Bollerslev,
Todorov, and Li (2013), we set n = 2.5 and w = 0.49, indicating that we classify all of the
high-frequency price moves that exceed 2.5 standard deviations of a local estimator of the corresponding

stochastic volatility as jumps. We then estimate the continuous variation as follows

tn+n
CVi= Y [Ap1(|Arp| < am™) (22)

i=tn+1
To isolate the realized jumps from the continuous price movements, we calculate the truncation

parameter as

o = W\/Bvi/n] A Rvi/n] * TODZ-_[Z-/”}”, 1=1,---,nT (23)

The total variation that is due to jumps is therefore given by
JVi =RV, — CV, (24)

with left and right jump tail variations defined as the part attributable to large negative and large

positive jumps, respectively.

7.3 Option-Implied Skewness

The option-implied skewness is obtained using the approach of Bakshi, Kapadia, and Madan
(2003). The basic idea is that the implied skewness can be written as a function of the current
price of three securities that pay quadratic, cubic and quartic payoffs equal to the second, third,
and fourth power of VIX futures log return, respectively. These payoffs can be further expressed

as a linear combination of OTM option prices.
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The time ¢ prices of these three securities are given by

Vi(r) = /Fjo i (1 —;g(%)) Cy(r, K)dK + /OFt 2(1 +}1(02g(%)) Pi(1,K)dK

2

N———

Wi(r) =

/oo 6log(35) — 3 (log(£) o K

P K?
/Ff 610g(%) +3 (10g(%))2
0

= Pi(r, K)dK

and

2

N—

)> Cy(t, K)dK

X,(r) = /Fjo 12 <10g(E) K—2 4 <10g(E

. /Ft 12 (log(£))” + 4 (log(%))”

= Py(r, K)dK

where F} is the VI X futures price. The implied skewness is then derived as

exp(r7) (We(1) — 3p,(1)V(T)) + 2445(7)

SEEW: = = ) Vilr) — ()

where r is the risk-free rate, u,(7) is defined as

exp(rr) exp(rr) exp(r7)

Vi() — 5 Wi(r) — o1 Xi(7)

pu(7) = exp(rr) — 1 —
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Table 2
Simulation Results of the Jump Tail Measures. Panel A reports the mean values of the jump tail measure
under the risk-neutral and physical measures as well as the rejection rate of the null hypothesis of

RJV[t?t+30] = LJV[E?H?)O} (RJV[EHSO] = LJV[ft+30]>' Panel B reports the averaged values of the adjusted

R? for the regression y; = c+ Bx; +&¢, where y; refers to the 30-day or 180-day V'V RP, or their difference
as a measure of the slope of the VV RP term structure, x; denotes the jump tail under the risk-neutral
measure, i.e. RJ V[?t +30] OF LJ V[?t +30]° Numbers in parentheses represent the percentage of simulation
replications in which the coefficient estimate of 3 is significant at the 5% level. The corresponding values

of the adjusted R? and the significance ratio for VVIX? are reported in Panel C.

Panel A: Jump Tail Measures

Risk-Neutral Measure Physical Measure
RJV[StJr:zo} LJV[E?HSO] Rejection Rate RJV[EH%} LJV[SH_SO] Rejection Rate
o, =¢_=0 0.160 0.070 98% 0.028 0.027 6%
b, =¢_ =2 0.214 0.154 98%
o, =¢_ =4 0.353 0.229 100%
o, =¢_=6 0.496 0.353 98%
Panel B: Contribution to the VV RP, ; and its term structure
VVRP; 30 VVRP; 180 VVRP; 180 — VVRP; 30
R‘]V[gt+30] L ‘]V[gt+30] RJV[?HSO] L ‘]V[gt+30] R ‘]V[gt+30] L ‘]V[t?t+30]
o, =¢_=0 0.013 0.003 0.003 0.002 0.015 0.005
(33%) (6%) (9%) (9%) (39%) (8%)
o, =¢_=2 0.020 0.004 0.003 0.001 0.030 0.005
(50%) (13%) (14%) (8%) (68%) (16%)
o, =¢_ =4 0.029 0.008 0.002 0.003 0.047 0.013
(67%) (23%) (7%) (11%) (78%) (37%)
o, =¢_=6 0.045 0.016 0.008 0.005 0.063 0.027
(81%) (46%) (21%) (19%) (85%) (58%)
Panel C: Contribution to the VVIX[QMH] and its term structure
VVIXﬁ7t+30] VVIX[Qt,t+180] VVIX[%,Hlso] — VVIXﬁ7t+30]
RJV[SH?)O] L‘]V[Etmo] R‘]V[St+30] LJV[E?H:),O] RJV[%H,O] LJV[SH%]
o, =¢_=0 0.563 0.183 0.485 0.235 0.542 0.173
(100%) (97%) (100%) (100%) (100%) (100%)
oL =¢_ =2 0.609 0.242 0.456 0.283 0.598 0.229
(100%) (99%) (100%) (99%) (100%) (100%)
o, =¢_=4 0.644 0.297 0.434 0.302 0.620 0.287
(100%) (100%) 39 (100%) (100%) (100%) (100%)
o, =¢_=6 0.649 0.369 0.429 0.327 0.621 0.352
(100%) (100%) (100%) (100%) (100%) (100%)
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