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Abstract—Deep Learning (DL) models increasingly power a
diversity of applications. Unfortunately, this pervasiveness also
makes them attractive targets for extraction attacks which
can steal the architecture, parameters, and hyper-parameters
of a targeted DL model. Existing extraction attack studies
have observed varying levels of attack success for different DL
models and datasets, yet the underlying cause(s) behind their
susceptibility often remain unclear. Ascertaining such root-cause
weaknesses would help facilitate secure DL systems, though
this requires studying extraction attacks in a wide variety of
scenarios to identify commonalities across attack success and
DL characteristics. The overwhelmingly high technical effort and
time required to understand, implement, and evaluate even a
single attack makes it infeasible to explore the large number
of unique extraction attack scenarios in existence, with current
frameworks typically designed to only operate for specific attack
types, datasets and hardware platforms. In this paper we present
PINCH: an efficient and automated extraction attack framework
capable of deploying and evaluating multiple DL models and at-
tacks across heterogeneous hardware platforms. We demonstrate
the effectiveness of PINCH by empirically evaluating a large
number of previously unexplored extraction attack scenarios, as
well as secondary attack staging. Our key findings show that 1)
multiple characteristics affect extraction attack success spanning
DL model architecture, dataset complexity, hardware, attack
type, and 2) partially successful extraction attacks significantly
enhance the success of further adversarial attack staging.

Index Terms—Deep Learning, adversarial machine learning,
model stealing, extraction attacks, secure AI

I. INTRODUCTION

Deep Learning (DL) has become a critical technology sup-
porting a growing diversity of applications. However, the suc-
cessful deployment and execution of DL models is threatened
by cyber attacks occurring within systems [1]–[4], compro-
mising DL model integrity, privacy, and confidentiality [5]. A
particularly damaging threat against DL models are extraction
attacks (also known as model stealing). Extraction attacks
occur when an adversary attempts to extract fundamental
characteristics of a target DL model (architecture, parameters,
hyper-parameters) [6], [7] to reconstruct an identical or highly
similar DL model [8]. Such attacks result in information
leakage, digital IP theft, and enable further DL model attacks
to be staged [3], [6], [9].

Extensive studies of DL model extraction attacks have been
conducted to understand and mitigate their impact [5], [10].
However these studies have predominately been performed
with isolated attacks, each leveraging distinctive threat models

and deployment scenarios with different DL model types,
datasets, and hardware platforms. Given that extraction attacks
yield varying degrees of success when exposed to different DL
model types and datasets [1], [3], [7], [11], it is necessary to
study extraction attacks across a multitude of deployment sce-
narios to determine whether there exist common associations
between extraction attack success, DL model characteristics
and platform hardware properties.

Attaining such knowledge is constrained given the over-
whelmingly high technical effort (and time) required to un-
derstand, implement and evaluate the large number of unique
extraction attacks, platforms and DL model architectures in ex-
istence. This is because current studies are bespokely designed
to operate for a targeted or small sub-set of deployment scenar-
ios (e.g. a single hardware platform or DL model architecture)
[1], [3], [12]. Whilst this approach is effective to demonstrate
extraction attack feasibility, it is presently not possible to study
attack effectiveness and generalizability without extensive re-
designing and engineering attacks to operate within different
and evolving operational scenarios [13]–[15].

Extensive progress has been made to create extraction attack
frameworks to alleviate the complexity of re-implementing
attacks and providing configurable attack scenarios [16]–
[18]. However, such frameworks exhibit limitations towards
studying generalizable features of extraction attacks, as current
proposed frameworks provide discrete approaches towards
extraction, typically only implementing attacks within one area
of the DL system attack surface and targeting specific model
characteristics [6], [18]. Additionally, current frameworks are
often optimized for the small memory footprint of bespoke
models and simpler datasets, unable to evaluate larger models
and complex dataset pairings deployed within the modern DL
landscape.

To tackle limitations of existing work, we present PINCH:
an efficient and automated extraction attack framework ca-
pable of deploying a large number of DL models, attacks,
and deployment environments in a generalizable manner.
Our framework contains (1) dynamic framework-independent
model loading and training via transfer learning and curated
AI deployment repositories, with (2) configuration of attacks
encapsulated as attack scenarios, and (3) experiment automa-
tion for recording and reporting.

PINCH is capable of automated attack execution that ex-
tracts DL model characteristics utilizing multiple areas of the
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DL system attack surface, enabling exploration of scenarios
not examined within contemporary literature, and provides
support for unexplored adversarial attack staging. The effec-
tiveness of PINCH is demonstrated by empirically evaluating
extraction scenarios across different state-of-the-art extraction
attack types [3], [12], [19] when exposed to various DL model
architectures, datasets, and hardware/software environments.
Our work makes the following contributions:

• PINCH: An end-to-end automated adversarial attack
framework capable of efficiently performing extraction
attack scenarios and enabling extensive evaluation across
heterogeneous hardware platforms.

• Extensive extraction experimentation: Our work ad-
dresses previously unexplored extraction attack scenar-
ios across a plethora of model families, architectures,
datasets, hardware and DL environments. To date, this
is the most extensive extraction attack study conducted.

• Secure AI insights. We have identified several new
phenomena in adversarial attacks (1) stolen models can
exhibit equivalent target model performance, yet can be
composed of uniquely different DL model characteristics,
and (2) DL model architecture, dataset complexity, and
hardware are key characteristics affecting attack success
based on extraction attack type.

• Further attack staging: We demonstrate the feasibility
of adversarial attack staging. We discovered it is possible
to launch successful model inversion attacks on DL mod-
els created from partially successful extraction attacks.
We uncover limitations in existing methods for measuring
DL model similarity for denoting attack success, and
advocate a need for new methods.

The paper is structured as follows: Section II introduces
the background of DL systems, model extraction, and dis-
cusses current challenges in extraction frameworks. Section III
presents the threat model. Section IV discusses the extraction
attacks involved in our study. Section V outlines the compo-
nent design and implementation of PINCH. The experiment
setup is described in Section VI. Section VII conducts an
empirical evaluation of extraction attacks within DL systems.
Section VIII discusses analysis findings. Section IX reviews
related work, and Section X concludes the paper.

II. BACKGROUND

A. Deep Learning Systems

Deep Learning (DL) is a sub-field of Machine Learning
(ML), which uses multiple processing layers to learn repre-
sentations from input data with multiple levels of abstraction
[20]. DL models are represented by Deep Neural Networks
(DNNs); collections of Operators (Convs, MaxPool, ReLU,
etc.), specialized programs designed for performing actions
on tensors, grouped into Layers. A DNNs operator layers
are selected and organized based on desired architecture best
suited for different applications, e.g., Convolutional Neural
Networks (CNNs) for image classification, Long Short-Term
Memory (LSTM) for time series data analysis. DL models
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Fig. 1: Overview of extraction attack process: Deep
Learning models comprising of architecture, parameters and
hyper-parameters can be be stolen via extraction attacks.

leverage accelerator devices such as Graphics Processing
Units (GPUs) that enable parallel execution of operators,
hastening the training process [21], as well as performing
faster model inference. A machine equipped with a CPU,
accelerators and the accompanying software (ML frameworks,
libraries) to perform DL model training and inference is a
Deep Learning System (DL system).

DL systems have been widely adopted throughout both
industry and research, providing considerable acceleration to
the creation of cutting-edge DNNs capable of performing
tasks unknown to previous generational systems [22]. The
widespread usage of such systems has lead to increasing
concern of privacy and security related issues surrounding
deployed DNNs. The increased data and sophistication present
within DNNs has made DL systems a target for adversarial
attacks, aiming to perform attacks spanning model evasion
[23], poisoning [24], as well as extract sensitive and con-
fidential data [4], [6], [9]. The concern raised from the
existence of such attacks has prompted extensive research into
understanding adversarial attacks [4], [9], [25], and protection
against successful attack execution [5], [26].

B. Model Extraction

Model extraction, also referred to as model stealing, is a
set of adversarial attacks that aim to steal the fundamental
characteristics of a DL model: its architecture, parameters
and hyper-parameters (Figure 1). A stolen model is created
using extraction techniques to collect information leakage
(model characteristics) via access to a target DL model or its
underlying DL system, and recreating an equivalent copy of
the target model [3], [6], [7]. A stolen model can be used for
further attacks, such as reconstructing training data via model
inversion attacks [1], or designing a replica model with similar
performance [1], [6].

Extraction techniques. DL models can be stolen across
a wide range of attack surfaces covering various areas of
the DL system attack surface. For instance, an adversary can



perform prediction API attacks by obtaining predictions on
input feature vectors to train a local substitute model [1],
[11], [27], or a side-channel attack by extracting informa-
tion leakage from Peripheral Component Interconnect Express
(PCIe) traffic. Many works have demonstrated that system
operation (i.e., timing, power usage, computation, cache) can
be exploited to infer the underlying operators of the DL model,
which can be exploited in order to perform model extraction
[3], [7], [12].

Additionally, attacks have different numbers of intermediate
stages depending on their complexity, based on the MITRE
ATLAS (MA) [28] knowledge base. PINCH focuses on 4 MA
tactics and their enabling techniques: 1) Initial Access, where
the adversary prepares the environment such as deploying spy
kernels and monitoring code [3], [3], [6]. 2) Attack Staging,
wherein preliminary attacks are launched to gather DL model
system and model information [3], [3]. 3) Exfiltration, primar-
ily the deployment of API attacks, potentially using previously
gathered information from attack staging. [6], [7], [29].

Model recreation. Recreation focuses on training a model,
either uninitialized or pre-trained, that provides an architecture
and weights [3], [27] with the intention of replicating a target
model by leveraging collected information leakage of DL
model characteristics. Extracted target model characteristics
can be acquired using a number of adversarial attacks, such
as a training set created from synthetic or ground truth inputs
paired with confidence values or labels gained from a predic-
tion API attack [1], [6], [27]. It is feasible for sophisticated
approaches using side-channels to observe DL system traffic
to infer DL model characteristics [3], [6], [7]. Using gathered
metrics, GPU kernels mappings and inference inputs and
outputs enable the creation of a dataflow graph representing
model architecture layout. The complexity of model recreation
can be vast due to the possible combinations of ML frame-
works, compute libraries, model architectures, among other
variables that can be partially and entirely unknown to an
adversary when attacking a DL system.

Consequence. Failure to defend against extraction attacks
can compromise the integrity, privacy and confidentiality of
the DL system. System integrity can be compromised during
attack preparation and execution, with the potential backdoors
created for future access [30]. Data privacy is degraded via
stolen model characteristics being exploited to stage further
attacks that extract training data information [1], [31]. Fur-
thermore, the confidentiality of the DL model is compro-
mised since adversaries have access to model characteristics,
therefore allowing adversaries to reverse engineer and steal
confidential data.

C. Challenges in Extraction Attack Research

In model extraction literature, a number of studies have
demonstrated the feasibility and practicality of extraction
attacks against DL models [1], [6], [19]. However these studies
are predominately performed with isolated attacks targeting
one DL model characteristic, leveraging distinctive threat mod-
els, and bespoke deployment scenarios with different DL types

[1], [3], [7], [11]. This is problematic given the evolving DL
landscape of extraction scenarios whereby current extraction
attack implementations are obsolete when paired with state-
of-the-art DL types [13], [14], and DL systems [15], [32].

From extraction attack literature, it is observable that ex-
traction attacks yield varying degrees of success when exposed
to different DL model types and datasets [1], [6]. However,
current extraction attacks lack the generalizability required to
execute attacks across different extraction scenarios. Exploring
common associations is challenging due to the technical effort
required to consider attacks across attack scenarios in software
and hardware heterogeneous DL systems. Understanding the
associations attributed to DL types, datasets, and deployment
scenarios can greatly benefit the fundamental understand-
ing towards the intrinsic susceptibility observed in literature.
Therefore, given the vast amount of deployment scenarios it
is necessary to alleviate the limitations present within current
work, and further study the common associations within
extraction attacks across a multitude of deployment scenarios,
DL types, and datasets.

PINCH targets the capability of an efficient and automated
extraction attack framework capable of deploying and evaluat-
ing DL model security across heterogeneous DL systems and
extraction attack scenarios with design goals of: 1) General-
izability, providing a unified platform for the hardware and
software used in DL system deployments, and for the attacks
that target them. 2) Configuration & Automation, providing a
machine independent system to define an attack scenario and
deploy it for repeatable experimentation at scale.

III. THREAT MODEL

The objective of a DL model is to map an input sample to
a provided label / classification. Given an input, the model
propagates through the operators within the DL model to
output a vector of probabilities denoting the confidence of
classification labels associated to the input. The threat models
underpinning extraction attacks in this paper are categorized
into three aspects: Model knowledge, DL System Environment
knowledge and access to the Auxiliary dataset.

Model knowledge. We consider two access types observed
(Mo) and hidden (Mh). With observed knowledge, an adver-
sary has access to sufficient1 information of the target model
(architecture, parameters) to infer its model characteristics.
With hidden knowledge, adversary access is limited to API
calls to the target model (query, data output from model),
with attacks [33] assuming that the model architecture is al-
ready known to construct a shadow model. Hidden knowledge
encompasses scenarios whereby a target model is accessed
via external API calls commonly found in Machine Learning
as a Service (MLaaS). Observed knowledge encapsulates
information leakage of target model characteristics via attacks
such as bus snooping, and side-channel.

DL system knowledge. Knowledge pertaining the DL
system environment is used to infer DL model characteristics.

1We deliberately use the term ”sufficient” as certain attacks only require a
limited sub-set of target model information to succeed.



Two types of knowledge are considered for the DL environ-
ment: partial (Sp), and none (Sn). Types denote the adver-
saries knowledge associated with the target DL environment
the target model is executing upon. This includes knowledge
regarding DL framework, GPU accelerators, and CPU devices.
Partial knowledge of the environment enables an adversary to
have direct or indirect knowledge about the DL environment,
for example, knowing the type of CPU (Intel, AMD), or GPU
(Nvidia, AMD). None states the adversary has no information
regarding the DL environment, and encompasses scenarios
whereby an adversary may have no, or not need any knowledge
about the DL system.

Auxiliary dataset. Depending on the type of attack, the
adversary may require an auxiliary dataset to perform their
attack. We consider two scenarios in decreasing order of
adversarial ”strength”: 1) Partial (Dp) where an adversary
has some knowledge of target dataset and therefore can obtain
parts of the target dataset (e.g. via public knowledge, or staging
previous attacks). 2) No dataset (Dn) whereby the adversary
has no information regarding the dataset. We assume the
attacker has access to open source datasets commonly provided
by DL libraries or online repositories [34]–[36].

Overall scenarios. Considering the model knowledge, DL
environment knowledge, and auxiliary dataset a total of 8
distinctive threat models are possible. In the rest of the paper
we focus on two: (Mh, Sn, Dp), and (Mo, Sp, Dn). As the
scenarios are tailored to extraction attacks 6 scenarios are
omitted due to their indifference to extraction success.

IV. EXTRACTION ATTACKS

A. KnockOffNets

KnockOffNets (KON) [19] is an inference attack whereby
an adversary undergoes inference upon a target model by
querying with a set of images randomly sampled from a query
set to steal target model parameters and recreate a stolen
model. All predictions made by the target model are combined
into a new stolen dataset containing the previously sent query
image and stolen prediction confidence values or label pairs.
The stolen dataset is then used to reconstruct a new model via
a training recreation technique, in which an untrained model of
the same architecture as the target is trained on stolen dataset
samples until the desired similarity to the target is reached. The
adversary’s intention is for the stolen model to be equivalent
when compared to the target model within the targets task.

KON leverages the assumptions (Mh, Sn, Dp). The adver-
sary has hidden knowledge access to the target model while
being capable of performing inference requests with queries,
and does not assume any rate limiting or other inference
countermeasures associated with the target model. Inference
extraction attacks only use the API to access the DL target
model which is abstracted away from the underlying DL
system, meaning no DL system knowledge is required. The
adversary has partial auxiliary dataset knowledge about the
underlying target model architecture and training dataset used
to therefore establish a query set to be used during the attack.

B. DeepSniffer

DeepSniffer (DS) focuses on utilizing leaky information
from the GPU to infer target model architecture [3]. DS
captures 4 kernel metrics during operator execution; execution
time (ExeLat), read volume (RV ), write volume (WV ), and
I/O output volume (IV / OV ), to understand the relationship
between operators and variance of metrics. From this rela-
tionship, DS can infer one of seven operators within a target
model architecture; Conv, ReLU, BN, Pool, Concat, Add, and
FC kernels via a pre-trained DL model trained upon previous
examples leaked by the GPU, called the DS model. There
are two stages to executing DeepSniffer: 1) Attack Staging:
Whereby DS gathers required GPU metrics during target
model execution. 2) Exfiltration: DeepSniffer uses the gathered
data to undergo architecture prediction via a previously trained
DS model.

We make the following assumptions (Mo, Sp, Dn): The
adversary observes knowledge about the target model via
architectural hints exposed within the GPU that the target
model is executing upon. We assume the adversary has partial
knowledge of the DL system, and the capability to access
low level system functionality including capturing stream of
memory and PCI metrics for CPU/Memory → GPU communi-
cation of the target model to infer kernel metrics through GPU
profiling tools such as NVPROF [37]. Knowledge pertaining
to the target models ML framework is also considered due to
the training requirements to create a DS model. Finally, the
adversary must be capable of performing inferences upon the
target model. Auxiliary dataset knowledge is not required as
activating the networks operators is the focus, not the models
prediction, for which data outside the auxiliary set can be used.

C. DeepRecon

DeepRecon (DR) [12] is a side-channel extraction attack
that gathers information about the target model architecture
by using information leakage from a device’s L3 cache, in
this instance the CPU. DeepRecon extracts eight DL operators
(Conv, MatMul, Softmax, Relu, MaxPool, AveragePool, Merge
& Bias) by associating them with symbols from the target
model framework binary and identify their execution by start-
ing a co-located programme to monitor L3 cache. In the case
of a CPU attack, Flush+Reload [38] is used which flushes the
CPUs L3 cache to observe which symbols repopulate the cache
on the assumption that frequently occurring symbols belong
to a target executing DL process. Dimensional reduction
techniques, such as Principle Component Analysis (PCA), are
used on extracted operators to create clusters representing
different DL architectures. An adversary can use such analysis
to infer possible unknown model architecture by comparing it
to reduced dimensions of known models.

DR leverages the assumptions (Mo, Sp, Dn): The adver-
sary has observed model and partial DL system knowledge
whereby it is known that targeted systems are vulnerable
to Flush+Reload. Similarly to DeepRecon, auxiliary dataset
knowledge is not required. It is assumed that: 1) An adversary
is capable of launching co-located user-level processes on



the host of the target model. 2) The target and attacking
processes use the same DL framework binaries, to associate
symbols with DL operators. 3) The adversary knows which
CPU architecture is in use, as Flush+Reload is an Intel exploit.

D. MiFace (Inversion Attack)

To demonstrate PINCHs ability to enable further attacks
to be staged upon extracted models, we implemented the
MiFace model inversion attack by Fredrikson et al. [39].
Model inversion is a privacy violating attack whereby an
adversary with access to an inference API seeks to reconstruct
a representative example from each class within the DL model.
The consequence of such an attack is the ability for images
representative of trained classes within a model to be extracted.
For each class within the target model, the adversary performs
back-propagation over target model parameters to optimize the
input sample so that the corresponding class posterior exceeds
an established threshold. An input sample can be a randomly
generated image, or another initialization technique established
via an adversaries capability and knowledge of the DL model.

Model inversion leverages the assumptions (Mh, Sn, Dp):
It is assumed that the adversary is targeting the a model
with hidden knowledge, requiring the capability to perform
prediction queries on feature vectors targeted by an adversary.
As seen previously in IV-B IV-C, no DL system environment
knowledge is required as model inversion uses the infer-
ence API which provides abstraction from the DL systems
software and hardware. Furthermore, partial knowledge of
model classes is required: with a facial recognition model, the
adversary indirectly knows the model responds positively to
faces, and the adversary requires access to an auxiliary dataset
providing input initialization values.

V. FRAMEWORK DESIGN

A. Overview

The objective of PINCH is to simplify and generalize the
process of executing adversarial attacks, facilitating the explo-
ration of associations between attacks, DL model characteris-
tics, and DL systems. PINCH accomplishes this by creating
interfaces to standardize model inputs, data sets and software
environments, providing compatibility for the execution of
attacks. PINCH enables readily reproducible configuration and
automation of attack scenarios to gather insights, with straight-
forward deployment into a DL system without coding or
complex build processes. Figure 2 depicts PINCH and its five
components: Scheduler, Extraction Handler, Attack Interface,
Model Manager, Results & Metrics and Repositories.

B. Components

User Interface. PINCH was designed for both Command
Line Interfaces (CLI) and Browser Interfaces (BI), and can
readily interface with established AI/ML/DL pipelines. Inter-
nally, extraction attack scenarios are stored as JSON objects
and are parsed to configure the PINCH module pipeline. Single
or multi-stage scenarios are passed to the attack function and
the results returned within 10 LoC in Python using the CLI.
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Fig. 2: PINCH system model and components.

The BI was implemented using a ReactJS front end and Flask
web server framework [40], [41], providing the same facilities
but with GUI features, such as drop-down attack scenario
configuration and generated results visualizations.

Extraction Handler. PINCH follows the pipeline software
design pattern [42] by instantiating components required for
an attack scenario and having unidirectional data flow, with the
extraction handler being the pipeline orchestrator. Given large
datasets and models are I/O and memory intensive to load
and unload, PINCHs extraction handler requests the dataset
and model managers to begin loading resources from disk im-
mediately after JSON parsing to reduce pipeline latency. The
extraction handler also preemptively creates the software en-
vironments (libraries, frameworks, interpreters) for the attack
interface of a given attack to execute within, either referencing
software installed on the DL system, or through the use of
virtual environments. Alternative Python library versions are
created and accessed using the native venv [43] tool, creating
lightweight site directories isolated from the default system
packages. Attacks with more complex dependencies and build
processes, such as DeepRecon, are assigned and run in a
containerized environment via docker, with a volume shared
on the host machine for data access.

Scheduler. PINCH allows multiple attack scenarios to be
executed concurrently on a DL system using its scheduler. A
heuristic method assesses the attacks, the currently available
resources (e.g. GPUs and memory), and decides whether the
attacks can be run in parallel. Once agreed, the DL frame-
works are configured to use the assigned resources and attack
interfaces components instantiated for each attack. Parallel
compute time for KnockOffNets is 1/n with n GPUs installed
in the DL system, compared to linear execution. Side-channel
snooping attacks are not run in parallel by default, as the
operations of other executing attacks (noise) may provide
unsatisfactory results.

Attack Interface. The attack interface creates a valid
input configuration for executing a given attack scenario.
As mentioned in Section II-C, successful attack execution is
highly dependent on input data being syntactically correct. The
attack interface implements stub methods that manipulate the
attack input from intermediate representations to the standard
compatible for the attack depending on scenario. This pro-



TABLE I: Experiment model architectures.
(KON=KnockOffNets, DS=DeepSniffer, DR=DeepRecon).

Name Family Parameters KON DS DR
Alexnet - 61.10m Y Y Y

ConvNeXt Small ConvNeXt 50.21m Y Y N
ConvNeXt Large 197.74m Y Y N

Densenet121

Densenet

7.99m Y Y Y
Densenet161 28.68m Y Y Y
Densenet169 14.14m Y Y N
Densenet201 20.01m N N Y

Resnet18

Resnet

11.68m Y Y N
Resnet34 21.79m Y Y N
Resnet50 25.55m Y Y N

Resnet101 44.55m N N Y
Resnet152 60.19m N N Y

VGG11

VGG

132.86m Y Y N
VGG13 133.04m Y Y N
VGG16 138.358m Y Y Y
VGG19 143.67m N N Y

RegNetY-400MF - 4.344m Y Y N
SqueezeNet - 1.248m Y Y N

ViTB16 - 86.568m Y Y N
MobileNetV2 - 3.50m Y Y Y
InceptionV3

Inception
27.161m N N Y

Inception Resnet 54.34m N N Y
Xception 22.91m N N Y

tects from crash-stop failures caused by fragile input errors
regardless of extraction attack and model architecture. The
interface wraps the attack execution calls, recording queries
and responses or predicted architectures, and performs attack-
contextual evaluation e.g. calculating model extraction fidelity
and similarity methods [44].

Dataset Manager. Inefficient loading techniques in existing
attack frameworks makes testing Top 1% models on contem-
porary datasets often exhaust system memory by attempting
to load entire datasets simultaneously. This was resolved by
creating a loader that automatically splits requested datasets
into chunks and loads them progressively into memory on
demand, and by limiting the retrieved dataset objects to the
number of queries set to execute, rather than the entire set.

Model Manager. We built a model manager to fulfill
requests by attacks to load models, while providing for com-
patibility and reduced user involvement. PINCH maintains a
repository consisting of online [34], [45] and local DL models
and their checkpoint history. We built a server to serve models
by framework, architecture, stage of training and subsets
trained classes, additionally implementing automatic transfer
learning capabilities [46] to: 1) train variants of existing model
architectures with compatibility for new datasets, and 2) train
models used in attacks on targeted subsets of a models classes.

VI. EXPERIMENT SETUP

A. Experiment Configuration

Experiments consisted of studying 23 state-of-the-art DL
models trained across four benchmark datasets creating a total
of 92 target models. These target models were exposed to
3 extraction attacks (see Section IV) and 1 model inversion
attack. Datasets are further partitioned into two segments,

encompassing query dataset and dataset complying with threat
models described in Section III.

Using PINCH, a target model and corresponding dataset
was automatically deployed into a specific DL framework and
hardware device (Section VI-B). Next, a configured extraction
attack was launched against the target model (Section VI-D)
and datasets (VI-C). Upon attack completion, we used PINCH
to extract, transmit, and summarize results enabling us to
perform detailed analysis to answer specific research questions
described in Section VII.

B. Hardware & Software

Experiments were conducted on multiple hardware plat-
forms. Attacks targeting the web API (whose effectiveness
reported to be independent of hardware device type, e.g.
KnockOffNets) [19], were deployed on a Nvidia TESLA
V100, and Intel Xeon Gold 5218. Extraction attacks designed
to target particular software and hardware device vulnera-
bilities (DeepSniffer, DeepRecon) were studied across three
GPU devices (Nvidia TESLA V100, GTX 1080, GTX 970)
and three CPU devices (Intel i5-3470, i7-4770 and i7-6850k)
selected to study extraction attack effectiveness when exposed
to different hardware dimensions (GPU architecture; Maxwell,
Pascal, Tesla, GPU compute schedule capability; 7.0 and
below, CPU generation; 3rd, 4th, 6th, CPU cache size: 6MB,
8MB, 15MB, etc). All experiments used Ubuntu 20.04.2 and
were performed on PyTorch 1.11.0, and TensorFlow 1.10.0
ML Frameworks, with CUDA 11.3.

C. Datasets

Experiments used 4 datasets, selected based on their com-
plexity; class size, image size, number of channels, and
their observed impact upon API-based extraction attack on
inference models [18]. Dataset training splits are denoted by
the selected dataset. In order of dataset complexity:

MNIST. [47] 60,000 training and 10,000 test greyscale
images with an input size of 28x28 amongst 10 classes. Images
contain a white hand–written number in front of a black
background.

CIFAR100. [48] 50,000 training and 10,000 test colored
images with an input size of 32x32 amongst 100 classes.
Images represent photos taken of animals, buildings, vehicles.

CelebA. [35] 200,000 celebrity face greyscale images with
an input size of 218x178, associated with 40 attributes in
which we selected 10 faces out of the provided 10,177
identities. The inclusion of this dataset is entirely focused on
investigating further attack staging discussed Section VII-D.

ImageNet. [36] contains 14 million colored images with
an input size of 224x224 amongst 1000 classes. Within our
experiments we use a subset of ImageNet which provides
80,000 training and 20,000 test images derived from the 14
million images (we refer to it as ImageNet in what follows).

Two types of datasets are used to undergo and evaluate
the effectiveness of an extraction attack. 1) Query dataset:
A collection of inputs that an adversary can use to extract
stolen classified labels from a target model. The size of the



query dataset reflects the amount of queries an adversary can
make. 2) Testing dataset: Used to evaluate extraction fidelity
of the stolen model compared to the target model. Test sets
are derived from the selected dataset test images and therefore
are related to the target model trained dataset.

D. Target Models

Our study utilizes 23 DL model architectures as shown in
Table I across three data sets described in Section VI-C, with
the exception of CelebA dedicated to exploring the impact
of further attack staging. Architectures were chosen based off
parameter size, model family, commonality within extraction
literature, and newer state-of-the-art models such as ConvNext,
RegNet, and ViTB16 [13], [49], [50].

Target models were acquired via online repositories or
trained locally. Online target models were sourced from
TorchVision for KON and DS [34], or Keras for DR [45],
which provide pre-trained ImageNet weights upon a given
architecture. MNIST and CIFAR target models were trained
via a transfer learning approach where pre-trained ImageNet
models were re-trained to learn the new dataset. Training was
performed with mini-batch size set to 10, and a cross-entropy
loss function with a learning rate of 0.01 using a v100 GPU
[32]. Target models were trained for 3 and 40 epochs for
MNIST and CIFAR, respectively following similar training
models in literature [47], [48].

E. Extraction attacks

KnockOffNets. We used MNIST, CIFAR100, and Ima-
geNet as query datasets for target models. Stolen model
training leveraged identical training setup in Section VI-D
with epochs set to 10, 20, and 100 for MNIST, CIFAR,
and ImageNet, respectively and chosen due to differences in
dataset complexity. The number of maximum queries for each
attack relates to the training set size or is chosen due to
overfitting with indifferent success, therefore the only reduced
dataset was MNIST which used 10,000 queries, while CIFAR,
and ImageNet both used their maximum training size. For the
purposes of generalization, all query dataset input image sizes
were transformed to 224x224. We also investigated the impact
of dataset class sizes by randomly selecting classes available
from the dataset to create smaller subsets which were trained
across all architectures.

DeepSniffer. Kernel metrics were collected using NVPROF
to profile a model during a single inference similarly to
Hu et al. [3]. Each target model was extracted 25 times to
measure variation in extraction success across runs and then
additionally repeated across all evaluated GPUs (GTX 970,
GTX 1080, Tesla V100). This collectively totals 750 results
for the entire experiment.

DeepRecon. Target models were deployed within a con-
tainerized software environment identical to [12]. The attack
was configured to perform 5 inferences each on a 13 models
to account for stochastic interference from the operating
system. When inference begins, symbol extraction starts, and
the detected symbols collected. Each model performed 5
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Fig. 3: KnockOffNets extraction results. KnockOffNets
extraction attack across architectures, datasets, and class sizes.
Error bars not shown as all runs produced the same fidelity.

inferences 50 times for each threshold, totaling 19500 results
across all machines. Thresholds of 200 (default) were reported
for all runs, as alternative thresholds (mean value using the
Mastik FR-threshold function) were found to have no impact
upon results. After Principle Component Analysis was used
to fingerprint the models, the 19,500 initial results were used
to train a KNN-classifier to classify the model of a symbol
result set. A further 3,900 results were collected as a test set
to evaluate the classifiers performance.

F. Evaluation metrics

Extraction Fidelity. A metric is widely used within ex-
traction literature [1], [19] whereby the characteristics of the
stolen and original model are directly compared by using the
Top1-accuracy of predicted classified labels or architecture
prediction for KON, and DS respectively. Additional metrics
of relevance were collected based on extraction attack type
including number of queries (KnockOffNets).

VII. EVALUATION

A. KnockOffNets

The attack exhibited varying success across different target
model and dataset combinations as shown in Figure 3, with
DenseNet161 achieving highest overall success with MNIST
(0.95), CIFAR100 (0.52) and ImageNet (0.29). We identified
multiple influences on attack success, including model archi-
tecture, dataset complexity, class size, and number of queries.

Model architecture. We observed that target models
(AlexNet, DenseNet161, VGG16) comprising of standard
CNN architectures achieved higher attack success. In contrast,
newer state-of-the-art target model architectures (ConvNeXt
Small, ViTB16, RegNetY-400MF) reported lower attack suc-
cess. ViTB16, a transformer model exhibited the lowest fi-
delity across experiments at 0.0 – 0.18 across datasets. These
architectures prove exceedingly complex with large training
costs in time and data, therefore extracting a target model
using an exact adversary architecture proves difficult without
considerable amount of queries and processing time. Such
findings indicate that using complex architectures can intrinsi-
cally hinder an adversaries success without considerable effort
to extract it, similarly to other security literature that use
exceeding adversary effort as a deterrent [5]. As shown in
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Fig. 4: Varying class sizes for KnockOffNets attack. Lower
class sizes results in higher attack success rate.

Figure 6b, we determined that the number of architecture
layers for target model family had minor impact, with minimal
variation in extraction fidelity across model families.

Dataset complexity. Target models leveraging MNIST ex-
hibited the highest attack success, with multiple target models
(ResNet18, DenseNet161, AlexNet) reporting over 0.9 attack
success, whereas ImageNet indicated the lowest attack success
rate between 0.03 – 0.29. The reason for such results is due
to dataset complexity, specifically image size also reported
in [18]. As shown in Figure 3 MNIST is the simplest dataset
with the smallest class size, containing 28x28 pixel gray
scale images, whereas ImageNet is more complex dataset
with 1000 classes and 224x224 color images. More complex
datasets, such as ImageNet, exhibit lower extraction success
because they are harder to generalize on, and thus are prone
to overfitting [18].

Class size. We observed that dataset class size exhibited
a large impact of attack effectiveness as shown in Figure 4
and 5b. For instance, reducing ImageNet class size with
DenseNet16 from 1000 to 10 resulted in increase attack
success from 0.29 to 0.41, respectively. CIFAR100 however
only showed increase to extraction success with ConvNeXt
family of models. The difference in success across datasets
may relate to their complexity, whereby more complex datasets
such as ImageNet react favorably when extracted with less
classes. Additionally, the classes selected as a subset can also
factor into extraction success whereby specific classes may be
difficult for a model to generalize.

Query number. We found across all target models, the
number of queries launched [10,000, 50,000, 80,000] for
MNIST, CIFAR100, and ImageNet, respectively exhibited the
highest impact on attack success whereby datasets of less com-
plexity are stolen quicker (Figure 3). This is intuitive, given
the training recreation technique used within KnockOffNets,
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Fig. 5: Varying query amounts. KnockOffNets extraction
upon ImageNet across DL model architectures with various
class sizes and query amounts.

whereby more training data would lead (in moderation) to
higher success due to greater learning generalization and
diversity of data as shown in Figure 5a, also reported in [18].
Architectures and datasets of higher complexities, such as
ConvNeXt upon ImageNet, require larger amount of queries
for adequate extraction success. We specifically highlight that
architecture complexity is a stronger factor in this context
compared to dataset complexity due to observing MNIST,
a less complex dataset providing higher extraction across
architectures (Figure 3).

B. DeepSniffer

DeepSniffer demonstrated various extraction success
throughout all evaluated architectures and DL environments.
Across GTX 970, and GTX 1080, Densenet161 (0.71,
0.78) achieved the highest accuracy, however for Tesla
V100, Resnet18 (0.71) was the highest. Extraction success
was observed to be in influenced by three factors; model
architecture, ML framework, and GPU environment.

Model architecture. As shown in Figure 7, we observed
that the attack achieved high success across evaluated model
architectures. We discover that DeepSniffer was ineffective
when applied to newer state-of-the-art models (ConvNeXt,
RegNet, ViTB16), as these models include new operators
or network designs not utilized in other commonly evalu-
ated models (Resnet, Vgg, etc) [13], [49], [50]. ConvNeXt
and ViTB16 both implement Gausesian Error Linear Units
(GELU) as replacements to widely used Rectified Linear
Units (ReLU) [51], ViTB16 additionally uses Transformer
specific operators [14], and RegNet introduces a completely
new network design paradigm [49]. These new operators, and
architectural approaches, cannot be transformed into dimen-
sions recognized within DeepSniffer (see Section IV-B) which
only consider standard operators within CNNs [3]. Therefore,
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Fig. 6: Architecture family depth comparison. Fidelity
variance with models of different depths/parameters using
same model architecture family.
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Fig. 7: DeepSniffer extraction results across GPU devices.

DeepSniffer is not capable of predicting architectures to high
success if they include these operators, and highlights a future
revision of the attack for newer models. Moreover, in Figure
6a we observed that deeper models (models with more layers)
within the same family resulted in reduced fidelity for VGG
and Resnet families.

ML framework. We observed that models using the Tensor-
flow framework were ineffective at model extraction irrespec-
tive of target model architecture. From analyzing profiled data
from both frameworks, the reason behind this result is due to
TensorFlow generating additional kernel calls. The increased
size of profiled data causes the trained DeepSniffer classifier
to predict an architecture of greater length than expected.
The existence of such noise can be attributed to low-level
framework-level optimizations when kernels execute, in com-
parison to PyTorch. This finding indicates that DeepSniffer is
framework specific, and therefore requires training on different
frameworks to generalize extraction across these scenarios and
further additional threat models to enable adversary knowledge
of the system framework.

GPU architecture. Observing Figure 7, we can see variance
in success over all architectures across different GPUs. GTX
970, and 1080 appear to show similar trends of results with
fidelity varying slightly between GPUs. Across all GPUs, we
continue to observe a clear attack ineffectiveness to target
newer state-of-the-art models (ConvNeXt, RegNet, ViTB16).
ViTB16 had little to no extraction success across all GPUs
with the 1080 only reporting partial extraction. Interestingly,
RegNetY-400MF was only partially extracted on the v100
(0.20) with the 970, and 1080 GPUs both failing to extract.
ConvNext achieved the lowest extraction fidelity on the v100,
while the 970 and 1080 incurred similar extraction results
for ConvNeXt Small (0.26, 0.26) and ConvNeXt Large (0.15,
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Fig. 8: DeepRecon model architecture & family prediction.

0.12), respectively. Such phenomena indicates that architecture
attack susceptibility depends on the GPU used. These archi-
tectural differences affect the information leakage gathered by
NVPROF, with optimizations causing recorded kernel metrics
such as execution duration, read, and write amounts, to change
between different systems.

C. DeepRecon

DeepRecon demonstrated distinct levels of success across
the hardware platforms evaluated, as shown in Figure 8, with
ResNet (0.81) and DenseNet (0.78) families highly successful
on i7-4770 & i7-6850, and AlexNet (0.80) on all systems. We
observe patterns of success across both hardware platforms,
model architectures and their depths.

CPU architecture. We observed that systems with Intel
Gen. 4 or later CPUs responded better to DeepRecon, with
the i5-3470 generating symbol files 100x larger than the i7-
4770 and i7-6850 and demonstrating noisy results in Figure 9.
We attribute this to the caching policies of older CPUs being
unfamiliar to the Flush+Reload exploit, causing multiple logs
of a single symbol and disturbing the analysis. We observed
in Figure 9 that newer CPUs (i7-4770 & i7-6850) reported
a higher effectiveness in fingerprinting and classification for
all model families compared to i5-3470. This is reinforced
by classifier results from Figure 8, with the i5-3470, i7-4770
and i7-6850 averaging 0.35, 0.64 and 0.83 across all model
families respectively. Findings also show cache size itself does
not influence results, as Hong et al. [12] evaluated with a
Gen 4. 4MB CPU successfully, smaller than i5-3470 (Gen3.,
6MB). i7-6850 (0.83) reported significant improvements over
i7-4770 (0.65), which we attribute to it being the most modern
CPU (Gen 6.) evaluated, with more optimized caching policies
that interfere with Flush+Reloads symbol detection less than
i7-4770 (Gen 4.). This is strengthened by PCA analysis
cumulative explained variance ratio of 92.20% for i7-4770 and
95.56% for i7-6850, (Appendix A.1). Of note is target model
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Fig. 9: Principle Component Analysis (PCA) results for 19,500 inferences across three systems. Clustering infers models
demonstrate similar proportions of cached operators monitored by DeepRecon. Systems i7-4770 and i7-6850 exhibit distinctive
model family fingerprints.

AlexNet achieved 0.80 classification accuracy on all platforms
(Figure 8), with 0.85 on i5-3470. This finding indicates that
models with highly homogeneous operators (AlexNet being
primarily convs) can still be classified accurately with an
imperfect Flush+Reload result as the proportions of logged
operators are not as prevalent.

Model architecture & family. As shown in Figure 9, we
observed target models within model families with distinct
operator traits (ResNet; residual operators, DenseNet; dense
blocks) successfully fingerprinted, but overlapped with other
family members. This is shown further when models were
often misclassified individually but with high success within
a family. Analyzing i7-4770 & i7-6850, individual DenseNet
models never achieved more than 0.52 classification accuracy
for any depth (121: 0.47), (161: 0.20), (201: 0.51), however
were correctly classified as in the DenseNet family with 0.78
accuracy across all depths. Similarly with VGG 16 and VGG
19, that achieved 0.31 and 0.48 individually, but familial
success of 0.76 overall. This indicates that families with
homogeneous operators built strong fingerprints, but using
these fingerprints to train classifiers for specific depths is
insufficient. The Inception Family (XCeption; DSC operator,
Inception ResNet; residual operators, Inception V3) feature
operators not included in other members of the family and
hence built weaker fingerprints, intuitively showing lower
average family success (0.65) on i7-4770 & i7-6850 than
DenseNet (0.78), ResNet (0.81) and VGG (0.76).

D. Adversarial Attack Staging: Model Inversion

Extraction attacks have been identified as a means to stage
further adversarial attacks [3], [6], [9]. Using PINCH, we
conduct a case study whereby an adversary uses an extraction
attack to stage a further model inversion attack.

Scenario setup. Two target models were stolen; Cus-
tom MNIST, and Custom CelebA trained on two datasets
of differing complexity (MNIST 28x28, CelebA 218x178,
both greyscale). The subsequent shadow model is exposed

Fig. 10: Model Inversion on stolen models. Resulting model
inversion attack upon a previously stolen model for CelebA
(Top), and MNIST (Bottom). Stolen Model (Left), Target
Model (Middle), Actual Image (Right)

to a model inversion attack MiFace [39] whereby model
information is used to generate images representative of target
model classes. The MiFace attack was performed on the
shadow model created by KnockOffNets at various query
requests for MNIST [100 – 10000] and CelebA [1000 – 35000]
to evaluate MiFace attack success at different stolen model
fidelity. Following the threat model in Section III the adversary
has access to an auxiliary dataset, and partial knowledge of
the target model. Thus images representative of model classes;
written numbers for MNIST and random faces for CelebA,
are used for image initialization [31], [39]. Success of the
MiFace attack when applied to a stolen model was evaluated
by comparing generated images against images generated by
the target model.



Fig. 11: Adversarial attack staging. Model inversion on stolen models using KnockOffNets; CelebA (Top), MNIST (Bottom)
exhibit varying query amount, model attack fidelity and PWCCA distance between stolen and target model.

Inversion success. Observing the result within Figure 10,
it is apparent that using a stolen model the success of the
inversion attack exhibits similar generated features in com-
parison to having direct access to the target model. Specially,
we highlight that class features such as shape, are captured
to a high degree of accuracy. For example, CelebA, captured
dataset specific features such as; face shape, eye and mouth
positioning, are inline with the actual image of the class.
These captured features enable the adversary to gain additional
knowledge about the target models and therefore exploit this
knowledge to further augment the model inversion attack,
or repeat extraction with a more tuned query set. Dataset
complexity is an additional effecting inversion success, a less
complex dataset such as MNIST shows very clear results,
while CelebA is more complex introducing more noise due to
a more granular greyscale, and the subject within the image
including more distinctive features [35], [47].

Extraction sensitivity. We demonstrate further MiFace
upon stolen models of varying query amounts (Figure 11).
We observe that both datasets begin to show class features
early with MNIST establishing a clear shape with 500 queries
and similarly CelebA at 10,000 queries. Interestingly we see
that the fidelity of the CelebA stolen model shows signs of
overfitting with [25,000 – 35,000] queries, however displays
different model inversion results despite the same fidelity
score. The fidelity metric used in our experimentation, and
within other extraction literature [6], [10], [19] may conceal
the fundamental similarity of the models, therefore we intro-
duce PWCCA to further understand model similarity.

Architecture similarity. While fidelity provides one aspect
of similarity, we additionally applied Projection Weighted
Canonical Correlation Analysis (PWCCA) [52] that measures
similarity by calculating the distance between the calculated

activation layers between models during inference. We observe
that increasing query amounts for MNIST cause both fidelity
and PWCCA distance to increase, achieving a maximum of
0.95 fidelity and a 0.09 PWCCA distance at 10,000 queries,
denoting high similarity. CelebA also follows this trend until
15,000 queries where the PWCCA distance was at its low-
est, however additional query amounts increase the PWCCA
distance despite fidelity increasing. Therefore despite high
extraction fidelity, models are able to make the same decisions
but have fundamentally different execution from each other.
This contrasting relationship between PWCCA distance and
extraction fidelity highlights that these two metrics for model
similarity do not always correlate, and thus a model in
which makes the same predictions as a target model does not
necessarily attribute to an underlying equivalent model.

VIII. DISCUSSION

A. Characteristics Affecting Extraction Attack Success

Model architecture. Throughout our experimentation we
evaluated a plethora of different target architectures ranging
from RNNs to newly established transformers and discovered
a clear variance in success between all evaluated attacks.
DeepSniffer demonstrates how the fundamental execution of a
model can vary the attack success, with newer state-of-the-art
models including operators unexpected within the dimensions
of the attack [3]. KnockOffNets however presented a form of
abstraction away from the architecture through a API, but still
demonstrated that differing model architectures can be intrin-
sically harder to attack due to their underlying architectural
complexity and training requirements (Figure 3).

Dataset complexity. Observing attack success across
datasets, it is apparent that complexity of training datasets for
target models has a strong effect on attack success [18]. We



observed that in ImageNet, the dataset which KnockOffNets
was the least effective, dataset classes sizes had a considerable
impact on extraction success. With knowledge of specific
target model classes, it may possible for an adversary to run
fewer queries yet extract particular target model classes of
interest, which we aim to explore in future work.

B. DL Environment
Experiments reported variance in extraction success upon

various evaluated DL environments (Figure 7, and 9). Orig-
inal experiments in DeepSniffer used a k40 GPU [3], and
when compared to our evaluated GPU hardware, it is intu-
itive that with DL hardware architectural improvements, such
as optimizing kernel execution, would result in changes to
DeepSniffer effectiveness. Such changes affect the success
of DeepSniffer as gathered NVPROF data changes due to
underlying kernel execution being different across three gen-
erations of GPUs. Furthermore, we observed DeepRecon also
displayed varying extraction success across evaluated CPUs
with different feature prevalence across evaluated environ-
ments (Appendix A.1). These observations uncover an intrinsic
variation of extraction success across DL hardware driven by
hardware specific extraction attacks.

C. Extraction Equivalency & Model Similarity
When measuring extracted model similarity with PWCCA

distance (See Section VII-D), we observed that the relationship
between PWCCA distance and extraction fidelity used in
extraction attack literature does not always correlate, whereby
the prediction fidelity between a target and stolen model can
appear successful despite a high PWCCA distance (Figure
11). This observation highlights that both metrics, prediction
fidelity and PWCCA distance, are metrics that do not fully
capture nor measure the extraction success of a model. Pre-
diction fidelity measures the success of the task in which
the target model is used, while PWCCA measures model
activation and thus differences in parameters of models. The
disparity indicates the need to explore and propose new metrics
to measure similarity of model prediction and execution.

D. Further Attack Staging
From conducting experiments, we observed that even with

stolen models acquired from partially successful extraction
attacks can be leveraged to stage further adversarial attacks
such as model inversion to attain reasonable levels of success
(0.7+). Less complex datasets such as MNIST are considerably
less noisy compared to more complex datasets such as CelebA.
However defined features can still be extracted by the inversion
attack such as face shape, and gender (Figure 10). The ability
to extract such features is especially concerning given the
privacy related issues associated with specific types models
of such as facial recognition, which allow an adversary to
reverse engineer the classes to generate and expose images
associated with real world people [31], [39]. This highlights
that underlying hidden knowledge present within DL models
can be extracted from stolen models, and therefore adversarial
attack staging must be studied further.

IX. RELATED WORK

There is a growing body of research dedicated towards the
study of adversarial attacks against DL models [53] [54] [55]
[56] [57] [58] [59] [60].

Extraction Attack Studies. Tramèr et al. [1] introduced
the first extraction attack to extract target ML models exposed
in online prediction APIs. Papernot et al. [61] proposed an
avatar approach to extract a substitute DNN model for the
purpose of generating adversarial examples. Different from
[61], Joon et al. [62] designed an avatar based approach to
train a meta-model to predict model hyperparameters. Junti
et al. [63] developed a generic method for extracting DNN
models by optimizing training hyperparameters and generating
synthetic queries. Orekondy et al. [19] proposed a reinforce-
ment learning based framework to improve query sample
efficiency and performance. Hua et al. [64] first studied on
reverse engineering of CNN on hardware accelerators, and
investigated potential vulnerabilities in CNN accelerators in
the context of model stealing. Wang et al. [65] provided
hyperparameter stealing attacks to DL models.

Adversarial Attack Framework. Hussain et al. [17] pre-
sented a library allowing for black-box and label-only extrac-
tion, inference and inversion attacks on DL models. As an
extended work of [17], Nicolae et al. [16] developed a more
feature-rich library for evaluating and defending ML models
to extraction, inference, inversion and poisoning attacks. Chen
et al. [66] designed a Frank-Wolfe algorithm-based adversarial
attack framework for white-box and black-box settings. Pearce
et al. [67] provided a generic automation tool for testing
the security of ML, which is a flexible environment, model
and data agnostic framework. Liu et al. [18] proposed a
holistic risk assessment of different inference attacks against
ML models and established a threat model taxonomy. In
contrast to these works, we propose an end-to-end automated
extraction attack framework for studying DL models across
heterogeneous hardware platforms, as well conduct an in-
depth evaluation of extraction attack across a large number
of different operational scenarios.

X. CONCLUSION

In this paper we have proposed PINCH: a framework for
securing DL systems. The framework is capable of rapidly
designing, deploying, and analyzing a large number of ex-
traction attack scenarios across a multitude of different DL
model archtiectures, datasets, hardware, and attack types.
Results identify key characteristics influencing attack success,
demonstrate that extraction attacks can reverse engineer AI
models as high as 95% similarity, and show that even partially
successful model extraction results in significant increase to
the success of further adversarial attack staging. We hope our
findings will be of interest and use to the secure AI community.
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APPENDIX

TABLE A.1: Hardware platforms evaluated against the DeepRecon side-channel attack, and PCA feature prevalence.
Well-fingerprinted systems i7-4770 and i7-6850 closely align on the most prevalent features (Conv, Merge, ReLU).

System Cache
(MB)

Feature Prevalence Simplifiedconvs fcs softms relus mpool apool merge bias

i5-3470 4 X 0.0003 -0.1643 -0.0583 0.6807 -0.6021 0.3475 -0.069 -0.1340 relus>mpool>apool
Y -0.0004 -0.4484 0.3590 -0.4292 -0.0839 0.5101 0.373 -0.2805 apool>relus>fcs

i7-4770 8 X -0.8412 0.0808 0.0776 0.0119 0.0625 0.1082 0.5136 -0.0136 convs>merge>apool
Y 0.3603 -0.0684 -0.0680 -0.6455 -0.0605 -0.0983 0.6524 -0.0718 merge>relus>convs

i7-6850 15 X -0.7878 -0.0029 -0.0038 0.5642 -0.0054 0.0044 0.2462 -0.0148 convs>relus>merge
Y -0.1529 0.0051 0.0001 -0.5671 -0.0118 -0.0081 0.8060 -0.0712 merge>relus>convs
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