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Abstract  

Understanding the orbital alignment of molecules sandwiched between metal electrodes is 

essential in the design of applicable molecular electronic devices. Orbital alignment is 

determined both by the molecular backbone structure and the molecule-electrode interface. 

This thesis presents a series of studies into the electronic and thermoelectric properties of 6 

oligo (phenylene-ethynylene) OPE-based molecules trapped between the single-layer graphene 

(SLG) and a gold electrode to form an asymmetric junction. This study also employs 4 different 

anchor groups including thiol, pyridine, thioacetate and thioether. 

In the first part of this thesis, the theoretical tools, employed to investigate electron-transport 

properties of molecular junctions, are described. In chapter 2, Density Functional Theory 

(DFT), which is implemented in the SIESTA code, will be discussed. This provides the ground 

state wave functions for molecules and the Hamiltonians for molecular junctions, which is the 

first step in the transport calculations. Chapter 3 presents the theoretical basis for calculating 

the electric and thermoelectric properties, based on the Green’s function formalism, which is 

implemented in the quantum transport code GOLLUM. In chapter 3, I present solutions of 

Green’s functions for infinite and semi-infinite chains and the transmission coefficient 

equation, which forms the theoretical basis of this code.  

Chapter 4 is the first results chapter in this thesis, which demonstrates the transport properties 

of the six types of asymmetric junction modelled using a combination of density-functional 

theory and quantum transport theory. In this study, through a combined experimental and 

theoretical study, I show that the control of orbital alignment can be achieved by applying an 

external gate to six types of OPE-based molecules, which in turn control the electron transport 

within the HOMO-LUMO energy gap. I also demonstrate that the shape of the gold electrode 

(i.e., flat versus cluster) may affect the alignment of the HOMO and LUMO levels of the 
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junction with respect to the Fermi level of the electrodes. Atheoretical investigation into the 

Seebeck coefficient is performed in chapter 5 using the first principles quantum transport 

method. This is carried out for six OPE-based molecules with two different gold electrode 

geometries (i.e., flat and cluster).  
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Chapter 1 

 

1.1 Molecular electronics  

Molecular electronics (ME) is the field of science that investigates the electronic and thermal 

transport properties of circuits in which individual molecules (or assemblies of them) are used as 

basic building blocks1. This area of research has attracted  significant attention both from the 

research community and industry, due to promising applications in nanoscale electronic devices 

such as transistors2,3 , rectifies4,5, sensors6,7, and switches8. The idea of using single-molecule 

electronics, based on the bottom-up approach, is to assemble and design molecules to form more 

complex structures, active components and connecting wires. Molecular electronics offers 

enormous benefits for the research community and industry. For instance, the possibility to 

investigate electronic and thermal conduction at the smallest imaginable scale, where the typical 

size of molecules (between 1 and 10 nm) could lead to a higher packing density of devices with 

the subsequent advantages in cost, efficiency, and power consumption1. Another attractive feature 

is the intermolecular interactions which could be utilised in nanoscale self-assembly technology, 

potentially resulting in low-cost manufacturing. Furthermore, there is a huge diversity in the types 

of molecular structures that chemists can make, which means that properties of molecules can be 

rationally and systematically changed. Molecular junctions are also ideal systems to investigate 

the fundamental principles of electron transfer mechanisms9–12. These reasons and many others 

make molecular electronics a very attractive field of science. 
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The first suggestion of molecular electronics was put forward by Ratner and Aviram in 1974, when 

they proposed a theoretical molecular rectifier composed of donor and acceptor sites which are 

insulated from one another13. Research efforts have been devoted to exploring the properties and 

device opportunities of single molecules. However, the rapid development of molecular electronics 

only really took off during the past two decades in tandem with the rise of the nanoscience era and 

the availability of manipulation probes at the single molecule scale, such as the scanning tunnelling 

microscope (STM), mechanically controlled break junction (MCBJ) or electromigration break 

junction (EBJ) techniques14–23. First studies were carried out using STM which works by scanning 

a very sharp metal tip over a conducting surface within a range of several angstroms of it. When 

the tip is brought to such a close distance from the sample and a bias voltage is applied between 

the tip and the sample, a tunneling current flows through the vacuum gap that separates the two 

conductors, even though they are not in electrical contact20. STM has been used for many purposes, 

such as studying atomic and electronic structure of conductive surfaces, the dispersion relation 

between metallic surface states, and probing the electronic structure of highly correlated materials 

like high-TC superconductors. STM tip can be used to manipulate the positions of atoms and 

molecules on conductive surfaces. STM has been used to determine the vibrational and magnetic 

structure of several systems at the atomic scale and there have been many other useful uses of 

STM24.  

The second most used technique is the MCBJ developed by Muller et al in 1992. The principle of 

this method is a small piece of a metallic wire is fixed at two points on a flexible substrate, which 

can be called bending beam also. The cross section of the wire is reduced between two fixed points 

by making a notch near the middle of the wire. The bending substrate is fixed at both ends by 

counter supports. As the beam is bent, the sample wire starts to elongate between the two fixed 
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points, which results in the reduction of the cross section at the notch, and finally the wire 

completely raptures. After break the wire, two clean facing nano-electrodes were generated. The 

distance between the electrodes for both the opened and the closed directions was controlled by 

bending or relaxing the substrate, respectively. After integrating the molecules into the gap, they 

may bridge the two electrodes and the electronic properties of the molecules can be determined25. 

The MCBJ technique, as compared with the STM approach, allows control of the separation 

between two electrodes with extremely high stability and precision, which has attracted great 

interest with respect to its application in molecular charge-transport studies. On the other hand, 

although it is very useful for investigating the fundamental properties of electronic transport on 

the molecular scale, it might be less appropriate for the fabrication of highly integrated molecular 

electronics devices25.	 

 

Simulations based on first principles density functional theory (DFT) emerged as an essential 

theoretical tool in tandem with these experimental methodologies, which allows the researchers to 

construct a quantitative picture of transport mechanisms and form predictions to quid further 

experimental studies.  

 

It is worth noting that creating a single-molecule device is not an easy task, due to some challenges 

and limitations. First, due to the tiny dimensions of the molecule, it is typically impractical to place 

the molecule in the nanogap by direct manipulation. Instead, chemical interaction between the 

molecule and the electrode is needed for the positioning of a molecule in the gap between the 

electrodes. Second, since the electrodes are typically much larger than the molecules, it is an 

additional challenge to make sure that only a single molecule is placed in each functional device. 
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In addition to these challenges, other challenges such as device stability, uniformity and scalability 

are equally important21,26–29.  

 

Despite these challenges and limitations to both theory and experiment, great progress has been 

achieved in the development of molecular electronics, providing a valuable to roadmap for future 

electronics applications. This thesis covers basic concepts in the quantum transport theory required 

to describe fundamental aspects of molecular junctions in the nanoscale, including the density 

functional theory (DFT), which is implemented in the SIESTA code30, and the non-equilibrium 

Green’s function formalism of transport theory, which is implemented in the Gollum code31. 

 

The term molecular junction is an important concept in which a molecular cluster is placed 

between two electrodes, and electrons are transferred across it, and in many molecular junctions, 

a molecule is normally sandwiched between two electrodes. In this thesis, I will present my 

contributions to the field of molecular electronics, with a focus on the understanding of electron 

transport in three-terminal molecular junctions, where a single molecule is tethered between two 

contacting electrodes (source and drain), while a third electrode acts as a gate bias to control the 

conductance32. 

 

Building three-terminal junction is considered to be a critical step forward in molecular electronics. 

To achieve this goal, molecular junction systems must incorporate a gating electrode by applying 

a voltage on the gate, in which one can change the electrostatic potential of the molecule. Energy 

shifts of the molecular transport level are then induced, from which additional information about 

the molecule can be obtained such as the presence of vibrational modes and excited states and the 
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presence of vibrationally induced effects such as Franck–Condon blockade. The gate has also 

played a crucial role in studying Kondo Physics, and superconductivity. Three-terminal devices 

also enabled to read-out and driving of a single nuclear spin, which can be used as molecular 

quantum bit3.  

Compared with a two-terminal junction, a three-terminal device combines both the ability to form 

a stable single-molecule junction via the mechanically controllable break junction (MCBJ) 

technique and the ability to shift the energy levels of the molecule using a side-gate electrode in a 

noncontact configuration33. Moreover, the three-terminal molecular junction presents a new 

platform for fabricating highly stable single-molecule transistor junctions19. It should be noted that 

the construction of a three-terminal junction is not easy because it requires to (1) find a reliable 

method to bridge a single molecule to the source and drain electrodes and (2) place the gate 

electrode a few nanometers away from the molecule to achieve the required gate field. 

 

In recent years, research labs around the world are aiming to create high-performance 

thermoelectric materials and devices, which can convert the waste heat back into electricity 24,34–

39. The Seebeck effect was discovered by the German physicist Thomas Johann Seebeck in 1821 

and refers to the occurrence of a voltage difference. due to the temperature difference across the 

material. The voltage difference (∆𝑉)	originates from the diffusion of majority charge carriers 

(electrons or holes) from the hot side to the cold side due to the applied temperature gradient (∆𝑇). 

The ratio of the developed voltage gradient to the temperature gradient is known as the Seebeck 

coefficient (𝑆 = − ∆"
∆#
	) or the thermopower.  The magnitude and sign of the Seebeck coefficient 

are related to an asymmetry of the electron distribution around the Fermi level40–43. It is worth 
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mentioning that there is a need for thermopowers of both positive and negative signs, so that 

materials with thermopowers of opposite signs can be organised in tandem to boost the 

thermovoltage24. 

1.2 Thesis Outline 
 
The outline of this thesis can be summarised as follows; this chapter is followed by chapter 2 

which presents a brief overview of density functional theory (DFT), which is one of the main 

theoretical techniques that has been used in this thesis to study and understand the electronic 

properties of single-molecule junctions. Chapter 3 describes the single particle transport theory. 

This chapter involves Green’s functions for different transport regimes based on the scattering 

theory, and related topics such as the Landauer formula, with some examples of how to calculate 

the transmission coefficient for different systems using the Hamiltonian and Green’s functions.  

 

This is followed by my first results chapter which investigates the effects of orbital alignment in 

large-scale self-assembled monolayers (SAMs), with a single-layer graphene (SLG) as a top 

contact and gold as a bottom electrode. This study is a result of a collaboration between chemists 

from Durham University, experimental physicists from Cambridge University and myself in 

Lancaster. The SAMs are formed from oligo (phenylene-ethynylene) (OPE)-based molecular 

wires with different molecule-electrode contacts, including SAc, SMe and Py. In this work, I 

model the three-terminal junction, where the top contact is SLG, which is divided into two 

electrodes (electrode 1 and electrode 2), whereas the bottom contact is Au (electrode 3). The 

electronic properties of these SAMs were envisaged and assorted as either HOMO- or LUMO-

dominated molecules. At the end of this chapter, the shape of the Au electrode is changed to 

investigate how this affects the Fermi level alignment and, thereby, the conductance. Chapter 5, 
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the second results chapter, presents the thermoelectric properties of the molecules that were studied 

in chapter 4. The influence of the shape of the Au electrode (i.e., flat and cluster) on the sign of 

the Seebeck coefficient is also investigated. Chapter 6 summarises my conclusions and highlights 

some directions for future research in this topic. 
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Chapter 2 

  

2. Density Functional Theory 

Simulations based on density functional theory (DFT) have emerged as a powerful theoretical tool, 

that allows researchers to construct a quantitative picture of transport mechanisms and form 

predictions to guide further experimental studies. This chapter introduces the basic principles of  

DFT, and its implementation used in this thesis, namely the SIESTA code, which is applied to all 

studied electronic structure calculations. 

 

2.1 Introduction 
 
Density functional theory (DFT) is one of the most successful approaches to the calculation of the 

ground- state properties of quantum many-body problems such as atoms, molecules, solids and 

nuclear systems. It is a theory of electronic structure, based on the electron density distribution 

𝜌(𝑟) as the carrier of all information in the molecular (or atomic) ground state, instead of the many-

electron wave function 𝜓(𝑟$	, 𝑟%	, 𝑟&		, …… . . )1,2. It overcomes the limitations of wave mechanics, 

by reducing the complexity (number of degrees of freedom) of the problem by dealing with 

electron density functionals. The history of this method can be traced back to the pioneering work 

of Hohenberg and Kohn, which implies that any ground- state expectation value can be written as 

a functional of the density alone3. Since then, DFT has stimulated a vast amount of work in 

electronic structure theory, as it provides a possible approach to calculate the ground-state 

properties of many-electron systems. 
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The purpose of this chapter is to give a brief summary of the DFT and its implementation in the 

SIESTA code (Spanish Initiative for Electronic Simulations with Thousands of Atoms)4, which 

has been used as a theoretical tool to study the electronic properties of molecules that are the 

subject of the research in this thesis. I will introduce the general theoretical principles, that 

constitute the basis of the DFT approach, starting from the Born-Oppenheimer approximation of 

the nuclei, and the Hohenberg-Kohn theorem, followed by the Kohn-Sham theorem, which solves 

the intractable many-body problem of interacting electrons in an external potential by converting 

it into a tractable problem of non-interacting electrons in an effective potential. In addition, the 

idea of the pseudo-potentials and the basis set is presented to simplify the task of constructing 

electronic wave functions. 

 

2.2 Many-body problem 
 
The many-body problem is one of the most intractable problems of quantum physics. The great 

difficulty is that the motion of the electrons in atoms and molecules are correlated because of the 

strong Coulomb repulsion between their negative charges5. In a microscopic system consisting of 

charged nuclei surrounded by electron clouds, the interactions such as electron-electron, electron-

nuclei and nuclei-nuclei are described via the Schrodinger equation: 

			𝐻	𝜓(J𝑟$	, 𝑟%	, … , 𝑟⃗)	, 𝑅L⃗ $	, 𝑅L⃗ %	, …… , 𝑅L⃗*	M = 𝐸(𝜓(J𝑟$	, 𝑟%	, … , 𝑟)	, 𝑅L⃗ $	, 𝑅L⃗ %	, …… , 𝑅L⃗*	M                   (2.1) 

 

Here 𝐻 represents the time-independent Hamiltonian operator of the system consisting of N-

electrons and M-nuclei which describes theses interactions, 𝜓( is the wave function of the 𝑖+,	 state 

of the system and 𝐸( is the numerical value of the energy of the 𝑖+,		described by 𝜓( .  

In general, the Hamiltonian of many-body system can be written as:  
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where  

𝑚3 and 𝑚/  are the mass of electron and nucleus, respectively. 

𝑟( 	and 𝑅/ represent the position of electrons and nuclei, respectively. 

𝑒	and 𝑧/ denote the electron and nuclear charge.  

𝑖	and	𝑗	represent the N-electrons while 𝐼	and	𝐽 represent a run over the M-nuclei in the system.  

In equation (2.2), the first two terms represent the kinetic energy of electrons and nuclei, 

respectively. The third and fourth terms are the potential energy of electron and nuclei, 

respectively. The last term is electron-nuclei interactions. Obviously, for a simple system such as 

the hydrogen atom, the solving of the Schrodinger equation is obtainable. On the other hand, the 

exact solution for many-body systems with more than a view of electrons cannot be found unless 

some approximations are used.  As a result of the fact that the nuclei are much heavier than an 

electron, the nuclear kinetic energy could be neglected to yield the Born- Oppenheimer 

approximation6. 

 

2.3. Born- Oppenheimer approximation 
 
The Born-Oppenheimer approximation neglects the motion of the atomic nuclei when describing 

the electrons in a molecule6. The physical basis for this approximation is the fact that the mass of 

an atomic nucleus is much larger than the mass of an electron (more than 1000 times). Because of 

this difference, the nuclei move much more slowly than electrons, which means that the nuclear 

kinetic energy sums to zero and their potential energy is constant. Thus, the electronic Hamiltonian 

reduces to: 
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The first term of equation (2.3) 𝑇3 	is the kinetic energy of all electrons, the second term 𝑉3 

represents the interaction between electrons and the last term 𝑉3>+ is the external potential due to 

nuclei and electron interaction, in addition to any external field.  

 

Therefore, the corresponding time-independent Schrodinger equation can be written as: 

𝐻	𝜓((𝑟$	, 𝑟%	, … , 𝑟( . . ) = 𝐸(𝜓((𝑟$	, 𝑟%	, … , 𝑟( . . )																																							(2.4) 

𝜓( is a function of electron position 𝑟( only.   

 

Although, the size of the system has been reduced by using this approximation, it is still difficult 

to solve the Schrodinger equation. Therefore, density functional theory solves this problem by 

expressing the physical quantities in terms of the ground-state density 𝜌?(𝑟), the electron density 

of a general many-body states characterized by a wave function 𝜓(𝑟$	, 𝑟%	, . …… . . 𝑟)	) is defined 

as: 

𝜌(𝑟) = 𝑁 ∫𝑑𝑟%𝑑𝑟&…𝑑𝑟)	|𝜓(𝑟$	, 𝑟%	, …… . . 𝑟)	)	|%                                      (2.5) 

The factor N arises since all electrons are indistinguishable, and hence all the integrals evaluate to 

the same value. 

 
2.4 The Hohenberg- Kohn theorem 
 
The Hohenberg-Kohn theorems plays a fundamental role in density functional theory, which has 

become a basic tool for the study of electronic structure due its ability to determine the ground- 

state properties of a system and can be applied to any system of electrons moving in an external 

potential7.  
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This approximation is primarily based on two theorems. The first theorem states that for any 

system of interacting particles in an external potential 𝑉3>+(𝑟), the potential 𝑉3>+(𝑟) is uniquely 

determined by the corresponding ground-state electronic density. The second theorem: the total 

energy of a system, which is a functional of the ground-state electron density, is minimized to the 

correct ground-state energy. 

To prove the first theorem, suppose that there are two external potentials 𝑉$(𝑟) and 𝑉%(𝑟), that 

lead to the same ground state density 𝜌?(𝑟). These potentials belong to different Hamiltonian, 

which are denoted 𝐻c$ and 𝐻c%.  

The corresponding Schrodinger equations are given by:  

𝐻c$	𝜓$ =	𝐸$	𝜓$	 

𝐻c%	𝜓% =	𝐸%	𝜓%	 

As 𝜓%  is not the ground state wavefunction of 𝐻c$, 

𝐸$ = d𝜓$e𝐻c$e𝜓$f < d𝜓%e𝐻c$e𝜓%f                                              (2.6) 

and similarly: 

𝐸% = d𝜓%e𝐻c%e𝜓%f 	< d𝜓$e𝐻c%e𝜓$f                                                (2.7) 

Assuming that the ground states are non-degenerate8,9, equation (2.6) can be rewritten as:  

d𝜓%e𝐻c$e𝜓%f = d𝜓%e𝐻c%e𝜓%f + d𝜓%e𝐻c$ − 𝐻c%e𝜓%f 

																								= 𝐸% + ⟨𝜓%|𝑉$(𝑟) − 𝑉%(𝑟⃑)|𝜓%⟩ 

								= 𝐸% + ∫𝑑𝑟	[𝑉$(𝑟⃑) − 𝑉%(𝑟)] 𝜌?(𝑟)	                                                                     (2.8) 

and assuming that |𝜓$⟩ has the same density 𝜌?(𝑟)	as |𝜓%⟩  

d𝜓$e𝐻c%e𝜓$f = 𝐸$ + ∫𝑑𝑟	[𝑉%(𝑟) − 𝑉$(𝑟)] 𝜌?(𝑟)																																										(2.9) 

Adding together the two equations (2.8) and (2.9) leads to,  

𝐸$ + 𝐸%	 <	𝐸$ + 𝐸%	                                                     (2.10) 



 41 

The equation (2.10) shows a logical contradiction, hence it is clear that the two different external 

potentials cannot produce the same ground state density.  

The second theorem can be realized in a similar way, which relates to the minimization of the total 

energy functional.  

𝐸[𝜌] = 𝑇[𝜌] + 𝐸(@+[𝜌] + ∫𝑑𝑟	𝑉3>+	(𝑟) 𝜌(𝑟)                              (2.11) 

The kinetic energy 𝑇 and electron-electron interaction energy are only dependent on the charge 

density, and so are universal. The density 𝜌(𝑟)	that minimizes the functional is the exact ground 

state density 𝜌?(𝑟).	 

 

Although, the Hohenberg-Kohn theorems are extremely powerful, they do not the offer a way of 

computing the ground-state density of a system in practice. Therefore, Kohn-Sham devised a 

simple method for carrying-out DFT calculations, that retains the exact nature of DFT. This 

approximation will be discussed in the next section.  

 

2.5 The Kohn-Sham theorem 
 
The most successful way to implement the density functional theory is the method proposed by 

Kohn and Sham10. This formulation of the DFT has become the method of choice for the ground-

state electronic-structure calculations across usually wide variety of field.  In this approach, an 

interacting-electron system is replaced by a system of non-interacting electrons (fictious system) 

in an effective potential	𝑉3AA, in such a way that the density of this system is same as interacting 

one. This involves replacing the original Hamiltonian of interacting system with effective 

Hamiltonian of non-interacting particles in effective external potential11,12. 
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The form of the energy functional of the Kohn-Sham is: 

𝐸BC		[𝜌(𝑟)] = 𝑇BC	[𝜌(𝑟)] + ∫𝑑𝑟	𝑉3>+	(𝑟) 𝜌(𝑟) + 𝐸D	[𝜌(𝑟)] + 𝐸>E	[𝜌(𝑟)]                       (2.12) 

 

Here, 𝑇FG	 is the kinetic energy of non-interacting system, 𝐸D	represents the classical electrostatic 

energy (Hartree energy), which describes the electron-electron interaction of the classical charge 

distribution, using the Hartree-Fock13,14  method and it is given by: 

																																																					𝐸D	[𝜌(𝑟)] =
$
%∬

H(5)	H(5́)
|565́|

	𝑑𝑟	𝑑𝑟́                                                (2.13) 

The last term of equation (2.12) 𝐸>E	 is the exchange and correlation energy10, which is defined as 

the difference between the energy of the non-interacting and interacting system. In other words, 

𝐸>E	represents the difference between the exact and approximated solutions to both the kinetic 

energy and the electron-electron interaction, that can be written as:  

𝐸>E	[𝜌(𝑟)] = (𝐸(@+	[𝜌(𝑟)] − 𝐸D	[𝜌(𝑟)]) + (	𝑇	[𝜌(𝑟)] − 𝑇BC	[𝜌(𝑟)])                          (2.14) 

By taking the functional derivatives of the last three terms of equation (2.12), we can define an 

effective single particle potential 	𝑉3AA as:  

𝑉3AA	(𝑟) = 𝑉3>+	(𝑟) +	
L
LH
	(𝐸D	[𝜌(𝑟)] + 𝐸>E	[𝜌(𝑟)])                                                (2.15) 

 

Thus, we can write a single particle Hamiltonian as:  

				𝐻BC	 = 𝑇FG[𝜌] + 𝑉3AA	                                          (2.16) 

 

Then, the corresponding Schrodinger equation is given by:  

𝐻BC		𝜓BC	 = 𝐸	𝜓BC	                                          (2.17)  

 

Equation (2.17) is known as Kohn-Sham equation.  



 43 

2.6 The Exchange Correlation functional  
 
As a result of applying the Kohn-Sham DFT, the quantum ground-state density of many-body 

system is reduced to one single-body problem. However, the exact form of the exchange-

correlation energy is unknown, which is the biggest challenge of this approach. There are 

considerable proposed forms with varying level of accuracy for the exchange-correlation energy. 

However, the most used approximations are local density approximation (LDA)15–17 and 

generalized gradient approximation (GGA)18,19. In what follows, I will present a brief overview to 

describe these approximations.  

 

2.6.1 Local Density Approximation 
 
The Local Density Approximation (LDA) is one of the first and most standard approximation for 

the exchange-correlation interaction. In the LDA, the density can be treated locally as a uniform 

electron gas, in which the energy depends on the density at the point where the functional is 

evaluated. The basic idea of this approximation is to divide the entire inhomogeneous electron 

region in the system into multiple small regions, and to approximate these small regions as a 

homogeneous electron gas17. Based on that, the LDA can be expressed as17:  

𝐸>EMNO[𝜌] = 	∫ 𝜖>E,?. J𝜌(𝑟)M	𝜌(𝑟)	𝑑𝑟		                                         (2.18) 

 

where 𝜌(𝑟)  is the electronic density at point 𝑟, and 𝜖>E,?.(𝜌) stands for the exchange correlation 

energy of the homogeneous electron gas with density 𝜌,	which is written as the sum of two separate 

contributions for exchange		𝜖>(𝜌) and correlation 	𝜖E(𝜌) energies. 

	𝜖>EJ𝜌(𝑟)M 	= 	𝜖>J𝜌(𝑟)M 		+ 	𝜖EJ𝜌(𝑟)M                                      (2.19) 
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The LDA is expected to be a good approximation for spatially slowly varying densities such as 

graphene and carbon nanotubes. Although this condition is hardly ever met for real electronic 

systems, LDA has proved to be remarkably accurate for a wide variety of systems.  

 

2.6.2 Generalized Gradient Approximation 
 
As mentioned before, the LDA treats all system as homogeneous. However, real systems are 

clearly inhomogeneous with spatially varying electric field, means that there is a need to find 

alternative approximation, which is the generalized gradient approximation (GGA). The gradient 

and the higher spatial derivatives of the total charge density were included in this approximation. 

In other words, the exchange-correlation functional depends on the density and its gradient18,19. 

There are different parameterizations that are utilized in this approximation. PBE functional is one 

of the most popular and reliable, which was proposed in 1996 by Perdew, Burke and Ernzherhof18.   

																	𝐸>EPPO[𝜌] = 	∫ 𝜖>EPPO J𝜌(𝑟), ∇𝜌(𝑟)M	𝜌(𝑟)	𝑑𝑟		                                        (2.20) 

 

where ∇𝜌(𝑟) is the gradient of the density at the point 𝑟, 𝜖>EPPO is usually some analytic function 

with some free parameters that are either fitted to experiment or determined by some exact sum-

rules.  

LDA and GGA are the two most commonly utilised approximations for estimating exchange-

correlation energies in the DFT. Several approximate exchange-correlation functionals have been 

proposed in the literature, which extend beyond GGA and LDA. Overall, there is no robust theory 

for the validity of these functionals. It is determined via testing the functional for various materials 

over a wide range of systems and comparing results with reliable experimental data. 
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2.7 SIESTA 

SIESTA (Spanish Initiative for Electronic Simulations) is both a method and a computer 

programme implementation to perform efficient electronic structure calculations and ab initio 

molecular dynamics simulations of molecules and solids4. One of the main features of SIESTA is 

that it allows for the use of the standard Kohn-Sham self-consistent density functional method in 

the Local Density (LDA) and Generalized Gradient (GGA) Approximations, as well as in a non-

local functional that includes Van der Waals (VDW) interactions. In addition, it employs norm-

conserving pseudopotentials in their fully non-local form, and a linear combination of atomic 

orbitals (LCAO) basis set20. It is designed to perform efficient calculations on huge system 

consisting of thousands of atoms. In this thesis, all DFT calculations have been performed with 

SIESTA code. It is used to obtain the optimized geometries of the molecules and to explore their 

electronic characteristics.  

 

2.7.1 The Pseudopotential Approximation 

Even though the many-body interacting problem has been simplified into an effective non-

interacting problem by utilising the Kohn-Sham equations, there is still a need for more 

simplification, which could be obtained by using the proposed pseudopotential approximation by 

Fermi in 1934 21. The distribution of electrons around the nucleus is generally categorised as core 

and valence electrons, the valence electrons occupy the outermost (partially filled) shells, but the 

core electrons lie within the innermost (filled) shells. It is well known that the most physical 

properties of solids are dependent on valence electrons to a much greater extent than on the core 

electrons. This can be attributed to the fact that the core electrons are spatially localised about the 
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nucleus, and there is a weak overlap of their wavefunctions with the core electron wavefunctions 

from neighbouring atoms. Therefore, the fundamental idea of the pseudopotential approximation 

is to remove the core electrons and replace them by an external potential known as a 

pseudopotential22–24.This concept allows a significant reduction in computational efforts without 

missing the essential physics provided the interaction of core and valence electrons is well 

described by some effective Hamiltonian. The main advantage of this approach is serious reduction 

in the number of electrons in a system, as well as saving time and memory, which are especially 

important when studying compounds with a large number of core electrons such as transition 

metals.  

 

2.7.2 SIESTA Basis Sets 
 
Basis sets play an essential role in quantum physics and density functional theory, which are used 

to represent the electronic wavefunction. The goal of a basis set is to provide the best representation 

of the unknown molecular orbitals (or electron density), with as small a computational cost as 

possible25. For efficient calculations, SIESTA utilises a linear combination of atomic orbital 

(LCAO) basis sets, which are constrained to be zero outside of a certain radius (cut-off radius 𝑟E)26. 

Consequently, a sparse form of the Hamiltonian is produced because the overlap between basis 

functions is reduced. Therefore, a minimum size basis set can create characteristics close to those 

of the studied system. The basis functions are constructed as a product of the numerical radial 

function and a spherical harmonic4,27. The single- 𝜁 is considered to be the simplest form of the 

atomic basis set for an atom, which represents a single basis function per electron orbital, and is 

given as27: 

𝜓@Q.(𝑟) = 𝜙@Q$ (𝑟)	𝑌Q.(𝜑, 𝜗)                                                (2.21) 
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Here, 𝑛 = 1,2	, … . . , 𝑙 = 0,… . 𝑛 − 1 and  𝑚 = −𝑙,… . . 𝑙 are quantum numbers,  𝜙@Q$ (𝑟) is the radial 

wavefunction and 𝑌Q.(𝜑, 𝜗) is a spherical harmonic wavefunction. In order to obtain a higher 

accuracy basis set, multiple-	𝜁 can be included by adding another radial wavefunctions for each 

atomic orbital. Double-	𝜁 basis sets (DZ) are constructed by using two basis functions for each 

atomic orbital. Further accuracy (multiple-	𝜁 polarised) can be obtained by including 

wavefunctions with different angular momentum corresponding to orbitals, which are unoccupied 

in the atom25.  

 

 

2.7.3 Calculating binding energy using the counterpoise method  
 
As mentioned above, the ground-state energy for different system configurations is calculated 

utilising the DFT approach, which is also used to calculate the binding energy between different 

parts of a system. However, performing such these calculations would not yield an accurate result, 

due to the localised nature of the LCOA basis sets, which are centred on the nuclei. When atoms 

are sufficiently close to each other, their basis functions are going to overlap. This effect, which is 

called the basis set superposition error (BSSE)28–30, increases as the atoms orientate themselves 

closer, thereby creating an effectively varying basis set against the interatomic distance.  

 

One obvious solution to the BSSE is the use of extremely large basis sets. This is, however, hardly 

feasible for the of the chemically interesting systems. The second approach is termed the 

counterpoise correction (CP), which is an approximate method proposed by Boys and Bernardi30. 

Assuming two molecular systems are denoted A and B, the energy of the interaction can be 

expressed as:  
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∆𝐸(𝐴𝐵) = 	𝐸OR − (𝐸O + 𝐸R)                                                (2.22) 

where 𝐸OR is the total energy for the dimer systems A and B, 𝐸O and 𝐸R are the energies of the 

isolated systems A and B. It is worth mentioning that to execute this correction in SIESTA, the 

ghost states (i.e., no nuclei and no electrons but empty basis set functions centred on them) have 

been used to evaluate the total energy of segregated systems A or B in dimer basis, with keeping 

the identical basis sets for three energies 31,32.  

∆𝐸(𝐴𝐵) = 𝐸OROR − (𝐸OOR + 𝐸ROR)                                            (2.23) 

Where the superscript 𝐴𝐵 means the whole basis set is used, and the subscripts denote the 

geometry. 𝐸OOR and 𝐸ROR are the energies of systems 𝐴 and 𝐵 are evaluated in the basis of the dimer. 

This approach is an important method to eliminate the BSSE and provide reliable and realistic 

results for different systems33. 

 

2.8 Calculation in Practice 
 
In this thesis, the SIESTA code is used to perform all the calculations, starting with constructing 

the geometrical configuration of the system, and choosing a suitable pseudopotential for each 

element, which can be distinctive for each exchange-correlation functional. Additionally, choosing 

an appropriate basis set for each element present in the calculation is a tradeoff between the speed 

of the calculation and the accuracy, which can be decided by the user. It is known that more 

accurate calculations need to be more computationally expensive, thus it takes a longer time and 

uses larger memory.  

 Since the energy functional can be fully calculated if the system’s density is known, a trial electron 

density 𝜌(@(+(SQ 	(𝑟) is considered as an initial guess at the beginning of the self-consistent field 

(SCF) cycle, as shown in Fig. 2.1. Then, the effective potential 𝑉3AA is determined, which is used 
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to solve the Kohn-Sham equation (2.17). This leads to find the Hamiltonian, which is then 

diagonalised to find the eigenfunctions and the new electron density 𝜌TUV(𝑟).  Hopefully, this 

𝜌TUV(𝑟) will be closer to the true ground state and is checked. In terms of self-consistency, if this 

new electron density 𝜌TUV(𝑟) agrees numerically with the density 𝜌WTWXWYZ	(𝑟) used for constructing 

the Hamiltonian, then the end of the loop has been reached. The loop is then exited and all the 

desired converged quantities, such as the total energy, the electronic band structure, density of 

states etc. are calculated. Otherwise, if the new density 𝜌TUV(	𝑟) does not agree with the starting 

density 𝜌(@(+(SQ 	(𝑟), a new input density is generated and starts another SCF cycle. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 

Compute energy, 
density of states… etc 

 

Self-Consistent? 
 

Compute Electron Density  
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Fig. 2.1: Schematic of the self-consistency process within SIESTA. 
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2.9 Conclusion  

I have discussed the theoretical background of density functional theory from the starting point of 

solving the Schrodinger equation, which was the major motivation for the development of the 

DFT. Besides the Born-Oppenheimer approximation of the nuclei, the two Hobenberg-Kohn 

theorems, and finally the Khan-Sham formalism. The functional forms of the exchange and 

correlation energy in the local density approximation and the generalised gradient approximation 

have been explained.  Finally, the SIESTA implementation of DFT has been presented in some 

detail, and the SIESTA’s components, such as the pseudopotentials approximation and Siesta basis 

set, have been illustrated.  
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Chapter 3 

 

3. Theory of single particle transport 

One of the significant issues in molecular electronics is how to connect the isolated molecule to 

semi-infinite leads. Such a system involves scattering processes either from the junction to leads 

or inside the molecule itself. There are different approaches to studying the electronic properties 

of such a junction. Here, I will describe the method used in the rest of this thesis based on scattering 

theory along with Green’s function techniques.  

 

3.1 Introduction 
 
One of the fundamental goals of molecular electronics is to explore and understand the electronic 

and thermal properties of molecular junctions, which consist of a molecule attached to electrodes, 

so that ballistic transport takes place through its energy levels. To achieve this goal, there are some 

basic concepts that should be considered in order to understand the electronic properties of 

molecular junctions, such as the scattering process of the electrode-molecule-electrode structure. 

One of the most powerful methodologies to study the scattering process in the molecular bridge is 

the Green’s function formalism.  

This chapter begins with a brief overview of the tight-binding model (TBM) for the description of 

quantum systems. Followed by the study of one-dimensional scattering theory and Green’s 

functions for different transport regimes. As an example, a one-dimensional structure with an 

arbitrary scattering region will be utilised to derive the most general formula for the transmission 

probability of electrons with energy 𝐸 traversing from one electrode to another. In addition, the 

Landauer formula is presented, which is a simple expression relating the transmission probability 
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of the electron to the electronic conductance in a one-dimensional structure with two terminals. 

Finally, to understand the origin of resonances in the transmission curve, different types of 

resonances with different quantum interference patterns will be displayed. 

 

3.2 Tight-binding model  
 
The tight-binding model (TBM) or the linear combination of atomic orbitals (LCAO) method is 

an approach to the calculation of electronic band structure using an appropriate set of wave 

functions based on the superposition of wave functions of isolated atoms existing at each atomic 

site. The TBM assumes that electrons can interact with its nearest neighbour sites1–3. In reality, 

atomic wave function decays exponentially as distance increases. Therefore, it is a reasonable 

approximation to consider only the nearest neighbour interaction to describe the system. The time- 

dependent Schrodinger equation is given by  

𝐻(𝑥)	Ψ(𝑥, 𝑡) = 𝑖ℏ	 L	
L+
Ψ(𝑥, 𝑡)                                              (3.1) 

where Ψ is the wave function of the quantum system, ℏ is the reduced Planck constant ( ,
%1

), and 𝐻 

is the Hamiltonian, which is given by: 

																																																																							𝐻(𝑥) = 6ℏ!

%.
	∇% + 𝑉(𝑥)                                                (3.2) 

We assume the wave function as a product of spatial and temporal terms 

							Ψ(𝑥, 𝑡) = 𝜙(𝑥)	𝜃(𝑡)                                              (3.3) 

The Schrodinger equation then becomes two ordinary differential equations: 

																																														 $
[(+)

	 \
\+
	𝜃(𝑡) = − (]

ℏ
                                                   (3.4) 

and    

                                𝐻	𝜙(𝑥) = 𝐸	𝜙(𝑥)		                                                (3.5)       
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The solution to equation (3.1) is  

																Ψ(𝑥, 𝑡) = 	𝜙(𝑥)	𝑒
+%,-
ℏ                                            (3.6) 

The most general solution is a linear combination of these solutions: 

																			Ψ(𝑥, 𝑡) = ∑ 𝜓88 	𝜙8(𝑥)	𝑒
+%,-
ℏ                                      (3.7) 

The wave function Ψ(𝑥)	can be written as a linear superposition of the form: 

																																							Ψ(𝑥) = ∑ 𝜓8 		𝜙8(𝑥)8                                             (3.8) 

𝜙8(𝑥) is a localized basis function on a particular site 𝑗, and 𝜓8 is the time-independent amplitude 

of the wave function on site 𝑗, and the probability of finding an electron on site 𝑗 is e𝜓8e
%. 

The Hamiltonian matrix elements can be expressed as: 

																								𝐻(8 = d𝜙((𝑥)e𝐻e∅8(𝑥)f = ∫𝑑𝑥	𝜙(∗(𝑥)𝐻	𝜙8(𝑥)                                 (3.9) 

The following section describes the model of chain of atoms, with a single orbital on each atom. 

Since the electrons interact with its nearest neighbour sites, all terms d∅( 	e	𝐻	e	∅8f with  |𝑖 − 𝑗| >

1	are small, and therefore neglected.  

Picking a particular atom on site 𝑗, the time- dependent Schrodinger equation is then given by:                                                                                  

																																	𝑖ℏ	 L_&
L+

=	𝜀8	𝜓8 + 𝐻8,86$𝜓86$(𝑡)+𝐻8,8a$𝜓8a$(𝑡)                            (3.10) 

where 𝜀8	 = 𝐻88 	is the onsite energy of atomic orbital 𝑗. 

 

3.2 One-dimensional (1-D) linear infinite chain 
 
To get a qualitative understanding of electronic structure, I will start with a simple TBM, which is 

a one-dimensional infinite chain of identical atoms with on-site energies 𝜀? and real hopping 

parameters −𝛾, as illustrated in Fig. 3.1 
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Fig. 3.1: Tight-binding model of a one-dimensional infinite crystalline chain with on-site 

energies 𝜀?	and couplings −𝛾. 

	

 

 
 
 

 
 
 

 

The time-independent Schrodinger equation can be written as follows: 

																																																																										𝐻⌉𝜓⟩ = 𝐸⌉𝜓⟩		                                                         (3.11)                                                                 
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⎜
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⎜
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⎞

                (3.12) 

 

Equivalently, 

                                                        			∑ 𝐻8Q𝜓Q = 𝐸𝜓8c
Qd6c                                                        (3.13) 

The Schrodinger equation reduces to  

																																																				𝜀e𝜓8−𝛾𝜓8a$ − 𝛾𝜓86$ = 𝐸𝜓8                                                  (3.14) 

This equation is satisfied for all 𝑗 from  −∞ to +∞. By using Bloch’s theorem, which states that 

the eigenstates of a crystalline chain are proportional to plane waves, we calculate the dispersion 

relation for this system by substituting a Bloch function 𝜓8 =
$
√g
𝑒(F8 (normalised eigenstate by its 

group velocity) into equation (3.14), which results in  

																																																							𝐸(𝑘) = 𝜀e − 2𝛾 cos 𝑘                                                        (3.15) 

The group velocity can be obtained by:  
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𝑣 = $
ℏ
	L]
LF
= %h iWT F	

ℏ
	                                                               (3.16) 

Since 𝑘 is the wavenumber, which is a continuous variable between -	𝜋 and 𝜋  (to avoid including 

the linearly dependent eigenstates).  The energy levels in the infinite system form a continuous 

band of energies, and the bandwidth is proportional to the hopping integral (4𝛾), as shown in Fig. 

3.2. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
3.3 One-Dimensional Scattering Theory  
 
 
This section starts with the bond current, which is the current passing through the bond between 

two atomic orbitals, and then goes to how to solve the Schrodinger equation by adding one 

impurity to the system, leading to the definition of the scattering matrix.  

 

3.3.1 Bond currents and conservation of probability 

Consider a one-dimensional infinite chain, in which all site energies 𝜀8 and bonds −𝛾8 are arbitrary, 

as shown in Fig. 3.3. In this case, the Hamiltonian matrix elements are 𝐻88 = 𝜀8 and 𝐻8,8a$ = −𝛾8.    

𝐸(𝑘) 

k

𝐸.S> = 𝜀? + 2𝛾 

𝐸.(@ = 𝜀? − 2𝛾 

−𝜋 

Bandwidth = 4𝛾 

Fig. 3.2: The dispersion relation of infinite linear chain. 

+𝜋 
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Fig. 3.3: Tight-binding model of a one-dimensional chain, in which all the site energies and 

bonds are arbitrary. 

 

 

 

 

 

The time-dependent Schrodinger equation is: 

	𝑖ℏ \
\+
|𝜓(𝑡)⟩ = 𝐻|𝜓(𝑡)⟩                                          (3.17) 

Picking a particular atom at site 𝑗, equation (3.17) can be rewritten as: 

𝑖ℏ \
\+
𝜓8(𝑡) = ∑ 𝐻8(𝜓((𝑡)(   

Or equivalently  

 

𝑖ℏ \
\+
𝜓8(𝑡) = 𝜀8 	𝜓8(𝑡) + 𝐻8,86$𝜓86$(𝑡)+𝐻8,8a$𝜓8a$(𝑡)                           (3.18) 

The probability for finding an electron on this site in time 𝑡 is: 

𝑃8(𝑡) = e𝜓8(𝑡)e
% = 𝜓8(𝑡)𝜓8∗(𝑡)                                       (3.19)    

In what follows, I will obtain the expression of the rate of change in occupation probability on 

site 𝑗		at time 𝑡.  

𝑖ℏ \
\+
	𝑃8(𝑡) = 𝑖ℏ �𝜓8(𝑡)	

\
\+
𝜓8∗(𝑡) + 𝜓8∗(𝑡)	

\
\+
𝜓8(𝑡)�                              (3.20) 
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Hence,  

\
\+
	𝑃8(𝑡) = 𝐽86$→8 − 𝐽8→8a$                                                       (3.21) 

where   𝐽86$→8 is the bond current from site  𝑗 − 1 to site 𝑗, 𝐽8→8a$ is the bond current from site 𝑗 

to site 𝑗 + 1, which can be expressed as:  

𝐽86$→8 =
(
ℏ
	 �𝐻86$,8∗ 	𝜓8(𝑡)𝜓86$∗ (𝑡) − 𝐻86$,8 	𝜓8∗(𝑡)	𝜓86$(𝑡)	�                               (3.22) 

		𝐽8→8a$ =
(
ℏ
	 �𝐻8,8a$	𝜓8∗(𝑡)	𝜓8a$(𝑡) − 𝐻8,8a$∗ 	𝜓8(𝑡)𝜓8a$∗ (𝑡)	�                               (3.23)            

Equation (3.21) is a law of conservation of probability, which means that the rate of change of the 

site occupation probability is equal to the current in minus the current out.  

Since 	𝐻8,86$∗ = 𝐻86$,8 , equation (3.22) can be written as:  

		𝐽86$→8 =
(
ℏ
	 �𝐻86$,8 		𝜓8(𝑡)	𝜓86$∗ (𝑡) 	− 𝐻86$,8∗ 	𝜓8∗(𝑡)	𝜓86$(𝑡)	�                           (3.24) 

By replacing 𝑗 by 𝑗 − 1 in equation (3.23), the expression for 𝐽86$→8 is obtained, which means 

equations (3.23) and (3.24) are mutually consistent. Since 	𝐻8,8a$ =	−𝛾8 , the bond current from 

site 𝑗 to 𝑗 + 1 can be expressed as:  

		𝐽8→8a$ =
%
ℏ
	𝐼𝑚�	𝛾8𝜓8∗(𝑡)	𝜓8a$(𝑡)	�                                             (3.25) 
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Fig. 3.4: Tight-binding model of one-dimensional crystalline chain with a single impurity at site  

𝑗 = 0.	            

 

3.3.2 Transport for crystalline chain with a single impurity  
 
It is useful to calculate the scattering matrix for a simple structure by adding a single impurity with 

on-site energy 𝜀$	between two semi-infinite one-dimensional crystalline leads, as shown in Fig. 

3.4. 

 

 

 

 

 
 

 

 

Based on the tight-binding model, in this system, the Hamiltonian and eigenvectors are as follows: 
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                     (3.26) 

 

The Schrodinger equations for this structure take the following forms:  

𝜀e𝜓8−𝛾𝜓86$−𝛾𝜓8a$ = 𝐸𝜓8                            for   j ≤-2                                                        (3.27) 

𝜀e𝜓6$−𝛾𝜓6% − 𝛾𝑓? = 𝐸𝜓6$                           for   j = -1                                                        (3.28) 

𝜀$𝑓? − 𝛾𝜓6$ − 𝛾𝜙$ = 𝐸𝑓?                               for    j =0                                                         (3.29) 

𝜀?𝜙$ − 𝛾𝑓? − 𝛾𝜙% = 𝐸𝜙$                                for    j =1                                                         (3.30) 

𝜀e𝜙8 − 𝛾𝜙86$ − 𝛾𝜙8a$ = 𝐸𝜙8                        for    j	≥ 2                                                       (3.31) 
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where 𝜓8 and 𝜙8 indicate the eigenvector amplitudes to the left and right of the impurity, 

respectively, and 𝑓? is the amplitude on the impurity. 

For j ≤	-2, where the system is crystalline chain the solution to equation (3.27) is as follows: 

																																																																							𝜓8 = 𝐴𝑒(F8 + 𝐵𝑒6(F8                                                (3.32) 

Similarly, for j	≥ 2, the solution to equation (3.31) is the following: 

																																																																									𝜙8 = 𝐶𝑒(F8 + 𝐷𝑒6(F8                                              (3.33)  

where 𝐴, 𝐵, 𝐶 and 𝐷 are arbitrary constants. The eigenvalues of this system can be obtained by 

substituting equations (3.32) and (3.33) into (3.27) and (3.31): 

																																																																								𝐸(𝑘) = 𝜀e − 2𝛾 cos 𝑘                                              (3.34) 

Function 𝜓8 has the mathematical property that it satisfies equation (3.27) for all	𝑗. For example, 

for	𝑗 = −1, it yields  

𝑓? = 𝜓? = 𝐴 + 𝐵                                                      (3.35)  

Similarly,	𝜙8 satisfies equation (3.31) for all 𝑗. For example, for 𝑗 = −1, it yields 

𝑓? = 𝜙? = 𝐶 + 𝐷                                                 (3.36) 

Subsequently, equation (3.29) can be written as follows: 

𝜀$𝜙? − 𝛾𝜓6$ − 𝛾𝜙$ = 𝐸𝜙?                                    (3.37) 

Hence (3.35) and (3.36) yield the following: 

								𝐴 + 𝐵 = 𝐶 + 𝐷                                                   (3.38) 
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As mentioned above, 𝜙8 satisfies equation (3.31) for all 𝑗, and setting 𝑗 = 0	gives the following: 

𝜀?𝜙? − 𝛾𝜙6$ − 𝛾𝜙$ = 𝐸𝜙?                                                                         (3.39) 

The comparison of equation (3.37) and (3.39) yields 

																																														(𝜀$ − 𝜀?)𝜙? − 𝛾(𝜓6$ − 𝜙6$) = 0                                  (3.40) 

By choosing 𝐴 = 1, 𝐵 = 𝑟, 𝐶 = 𝑡, 𝐷 = 0, we find  𝑡 = 1 + 𝑟, and substituting 𝜙?, 𝜓6$,	𝜙6$ into 

(3.40) yields 

																												𝑡 = $
$6l

                                                          (3.41) 

																																																																										𝑟 = l
$6l

                                                           (3.42) 

where                                                             𝛼 = 2/62$
%h(G(@F

                                                         (3.43) 

 𝑡 and 𝑟 are the transmission and reflection amplitudes respectively. To obtain the definition of the 

scattering matrix, if 𝑡 and 𝑟 are the transmission and reflection amplitudes associated with an 

incoming plane wave from the left, and similarly 𝑡m and 𝑟m are the amplitudes of transmitted and 

reflected waves due to the incoming wave from the right, collecting these amplitudes produces a 

scattering matrix 

𝑆 = �𝑟 𝑡m
𝑡 𝑟m�                                                                (3.44) 

As an example, for the single impurity problem  

𝑆 =
1

1 − 𝛼 �
𝛼 1
1 𝛼� 
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Note that 𝑆 is a unitary matrix, i.e., 𝑆𝑆∔ = 𝑆∔𝑆 = 𝐼. As a result, the sum of transmission and 

reflection probabilities is unity. 

𝑅(𝐸) + 𝑇(𝐸) = 1                                                             (3.45) 

where,                                       𝑇(𝐸) = |𝑡|% = $
($a|l|!)

	                                                           (3.46) 

𝑅(𝐸) = |𝑟|% = |l|!

($a|l|!)
                                                          (3.47) 

 

3.4 The Landauer Formula 

 

 

 

 

 

 

The Landauer formula is the standard theoretical model used to describe ballistic transport in a 

mesoscopic system3–6. It relates the transmission coefficient of the electron to the electronic 

conductance through one-dimensional structures with two terminals. To derive this formula, 

consider a system consisting of a scattering region (the ring model of 𝑁 sites with periodic 

boundary conditions, in which each atom possesses a single site of energy 𝜀?	with nearest 

neighbour couplings −𝛾) connected to two electrodes (leads), as shown in Fig. 3.5. For this model, 

the normalised eigenstates are  𝜓8@ =
$
√)
𝑒(F08, where 	𝑘@ =

%@1
)

. This shows that the number of 

𝑖(@ 
𝑟 

Right reservoir  
𝜇:  

Left reservoir 
𝜇M  𝑡 

Left lead  Right lead  
Scattering 

Region 

Fig. 3.5: A scattering region connected to two electrodes, which in turn are attached to two reservoirs 

with chemical potential  𝜇M and 𝜇:. 
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states with positive velocity per unite energy, that is called the density of states, is  ∆@
∆]
= )

,g1
, and 

the current carried by each state is g1
)

 . Thereby, the total current by the states in the energy interval 

∆𝐸 is 	$
,
	∆𝐸 (i.e., the current per unit energy is independent of 𝑘). Since each state is occupied by 

two electrons (one spin up and the other spin down), then 

 

																		∆𝐼 = %
,
	∆𝐸           for both spins                            (3.47) 

To study a real device, two ideal reservoirs located on the left and right of a scatterer are 

considered, which feed electrons of energy 𝐸 into the electrodes. They fill all the left and right-

moving states with an occupancy determined by the Fermi function 𝑓M(𝐸) and 𝑓:(𝐸) of the left 

and right leads, respectively. Therefore, the number of electrons per unit time, in an energy interval 

Δ𝐸,	incident on the scatterer from the left and right reservoirs is  ∆𝐼M =
%
,
		𝑓M(𝐸)∆𝐸 and ∆𝐼: =

%
,
	𝑓:(𝐸)∆𝐸, respectively. As shown in Fig. 3.5, electrons from the left reservoir can transmit into 

the right lead through the scattering region and electrons from the right reservoir can reflect into 

the right lead, the net electron current in the right lead is 

∆𝐼 = 𝑇(𝐸)	∆𝐼M − J1 − 𝑅(𝐸)M	∆𝐼:                                        (3.48) 

Since 

𝑅(𝐸) + 𝑇(𝐸) = 1 

𝐼 = %
,
	[𝑓M(𝐸) − 	𝑓:(𝐸)]	𝑇(𝐸)∆𝐸                                             (3.49)  
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where 𝑇(𝐸) and R(𝐸) are the transmission and reflection coefficients.	𝑓M(𝐸)	 and 	𝑓:(𝐸) are 

Fermi-Dirac distribution functions of the left and right reservoirs, which have the following form:  

𝑓M(𝐸) = �𝑒op]6]23qa$�
6$

                                       (3.50) 

𝑓:(𝐸) = �𝑒op]6]24qa$�
6$

                                        (3.51) 

Here 𝛽 = $
F5#

		, where  𝑇	is the temperature and 𝑘R is Boltzmann’s constant.	𝐸rM(	𝐸r:	)	is the Fermi   

energy of the left (right) reservoir. After integrating over all energies, the total electrical current 

entering the right reservoir is:  

𝐼 = %3
, ∫ 𝑑𝐸	𝑇(𝐸)c

6c
[𝑓M(𝐸) − 𝑓:(𝐸)]                                          (3.52) 

where 𝑒 is the electron charge. This equation is called the Landauer formula, and it is clear that 

𝐼 = 0 when 𝑓M(𝐸) = 𝑓:(𝐸) because only differences in the distributions contribute to the current. 

If applying the bias voltage on the left and right reservoirs, then 𝐸rM = 𝐸r +
3"
%
	 , 𝐸r: = 𝐸r −

3"
%

 

.This means that at zero temperature, but finite voltage: 

𝐼 = %3
, ∫ 		𝑑𝐸	𝑇(𝐸)	

]2a
"6
!

]26
"6
!

                                          (3.53) 

If 𝑇(𝐸)  does not vary significantly over an energy range, then the Fermi-Dirac functions can be 

Taylor expanded around the Fermi energy, thus the electrical conductance in the zero-voltage and 

finite temperature is: 

𝐺 = /
"
= 𝐺? ∫ 𝑑𝐸	𝑇(𝐸)c

6c �− \A(])
\]

�                              (3.54) 
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The quantity − \A(])
\]

		is a normalised probability distribution of width approximately 𝑘R𝑇, 	𝐺? is 

the quantum of conductance  

		𝐺? =
%3!

,
≈ 77		𝜇𝑆	                                            (3.55) 

In the limit of zero voltage and zero temperature, the conductance is proportional to the 

transmission coefficient evaluated at Fermi energy. 

𝐺 = 𝐺?𝑇(𝐸r)                                                 (3.56) 

 

3.5 Green’s Functions 

Green’s function is a powerful mathematical tool for studying the properties of nano-scale 

structures because it can be used to express all the observable properties of the system of interest. 

It is physical response due to a single point source in a periodic lattice. In other words, Green’s 

function is the impulse response of the Schrodinger equation. Therefore, Green’s function 

naturally carries all information about the wave-function evolution from one point to the other in 

a system7,8. In this section, I will focus how to construct the Green’s function for some systems.  

 
 
 
3.5.1 Green’s function of a doubly infinite chain 
 
In what follows, I will derive the Green’s function of the one-dimensional doubly infinite linear 

chain, as shown in Fig. 3.6.  
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Fig. 3.6: Tight-binding representation of one-dimensional infinite chain with on-site energies 𝜀? 

and couplings −𝛾. 

 

 

 

 

 

 

 

 

The general definition of the Green’s function 𝐺(𝐸) belonging to a Hamiltonian 𝐻	is:  

(𝐸𝐼 − 𝐻)𝐺(𝐸) = 𝐼                                                     (3.57) 

where 𝐼 is the unit matrix  

The solution to this equation can be written as:  

𝐺(𝐸) = 	 (𝐸 − 𝐻)6$                                        (3.57) 

Where 𝐺8s is the retarded Green’s function describes the response of a system3 at  point 𝑗	due to a 

source at 𝑝. To highlight the relationship between Green’s functions and wavefunctions, it is 

helpful to present the following notation:  

𝐺8s = 𝜓8
(s)																																																																												(3.59) 

where 𝐺8s	is Green’s matrix element belonging to the 𝑝+, column and 𝑗+,row, 𝜓8
(s) is the amplitude 

of column vector 𝜓(s) on site  𝑗 . 

Equation (3.57) can be written as  

																																																										∑ (𝐸𝐼 − 𝐻)8Q𝐺Qs(𝐸) = 𝛿8sc
Qd6c                                              (3.60) 

or equivalently  

																																																										∑ 	𝐻8Q	𝐺Qs(𝐸) = 𝐸𝐺8s(𝐸) − 𝛿8sc
Qd6c                                     (3.61) 

where 𝛿8s is Kronecker delta satisfying 𝛿8s = 1 if 𝑗 = 𝑝 and 𝛿8s = 0 if  𝑗 ≠ 𝑝. 
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Substituting equation (3.59) into equation (3.61), yields:  

																																																										∑ 	𝐻8Q		𝜓Q
(s) = 𝐸𝜓8

(s) − 𝛿8sc
Qd6c                                             (3.62) 

This is almost identical to Schrodinger equation, except the presence of the Kronecker delta on the 

right-hand side, equation (3.62) can be written as:  

𝜀?	𝜓8
(s) − 𝛾𝜓86$

(s) − 𝛾𝜓8a$
(s) = 𝐸𝜓8

(s) − 𝛿8s                               (3.63) 

I guess the solution to equation (3.63) is: 

𝜓8
(s) = 𝜙8	 = 𝐴	𝑒(F8 	 for    𝑗 > 𝑝                                         (3.64) 

𝜓8
(s) = 𝑓8	 = 𝐵	𝑒6(F8 	 for    𝑗 < 𝑝                                          (3.65) 

For 𝑗 = 𝑝 + 1, equations (3.63) and (3.64) yield 

𝜀?	𝜙sa$ − 𝛾𝜓s
(s) − 𝛾𝜙sa% = 𝐸𝜙sa$                                                (3.66)     

Since  𝜙8 satisfies equation (3.62) for all values of  𝑗, this yields                               
𝜀?	𝜙sa$ − 𝛾	𝜙s − 𝛾𝜙sa% = 𝐸𝜙sa$                                                   (3.67) 

Comparing equations (3.66) and (3.67), gives 

𝜓s
(s) = 𝜙s                                                          (3.68) 

The same procedure is used for 𝑗 = 𝑝 − 1, which results in  

𝜓s
(s) = 𝑓s                                                           (3.69) 

Hence, equations (3.68) and (3.69) yield the following: 

𝜓s
(s) = 𝜙s = 𝑓s                                                     (3.70)    

𝐴	𝑒(Fs = 𝐵	𝑒6(Fs, which yields 𝐴	 = 𝐶	𝑒6(Fs and 𝐵 = 𝐶	𝑒(Fs , hence  

𝜙8 = 𝐶𝑒(F(86s) and 𝑓8 = 𝐶𝑒6(F(86s)                                   (3.71) 

where 𝐶 is a constant. By combining these with equations (3.64) and (3.65) yields 
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𝜓8
(s) = 𝐶𝑒(F|86s|                                                      (3.72) 

To determine the value of the constant 𝐶, equation (3.63) is satisfied for the case 𝑗 = 𝑝, thus 

𝐶 = $
%(h iWT F

= $
(ℏg(])

                                                 (3.73) 

where 𝑣(𝐸) is the group velocity. Thus, the retarded Green’s function, which describes the two 

outgoing waves from the source 𝑝, is given by:  

𝐺8s(𝐸) = 𝜓8
(s) = 3%1|&+8|

(ℏg(])
                                               (3.74) 

It is worth mentioning that equation (3.74) is not the most general solution, because any solution 

of the Schrodinger equation could be added to 𝜓8
(s). Therefore, the most general solution is: 

𝐺8s(𝐸) = 𝜓8
(s) = 3%1|&+8|

(ℏg(])
+ 𝐴𝑒(F8 + 𝐵𝑒6(F8                                 (3.75) 

where 𝐴 and 𝐵 are arbitrary constants, choosing 𝐴 = 	− 3%1(&+8)

(ℏg
	 and 𝐵 = − 3+%1(&+8)

(ℏg
 , the Green’s 

function is obtained, which is called advanced Green’s function (the complex conjugate of the 

retarded Green’s function). 

𝐺8s(𝐸) = 𝜓8
(s) = − 3+%1(,)|&+8|

(ℏg(])
                                               (3.76) 

 

3.5.2 Green’s function of a semi-infinite linear chain  
 

 

 

 

 

 

Fig. 3.7: A semi-infinite linear chain with site energies 𝜀? and hopping elements −𝛾, which 

terminates at site 𝑗 = 𝑙. 
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To derive the Green’s function of a semi-infinite chain, consider the semi-infinite chain with site 

energies 𝜀? and hopping elements −𝛾, as shown in Fig.3.7, in which the chain terminates at site 

𝑗 = 𝑙	, where 𝑙 ≥ 𝑝. This leads to the following boundary condition 

𝜓Qa$
(s) = 0                                                                  (3.77) 

Fig. 3.7 shows the reflected plane wave 𝑒6(F8	will be created due to the hitting of the incoming 

plane wave 𝑒(F8	 to the end of the chain. Therefore, the reflected wave will be added to the retarded 

Green’s function 

𝐺8s(𝐸) =
3%1|&+8|

(ℏg(])
+ B	𝑒6(F8	                                              (3.78) 

where                                                      𝐵 = − 3%1(!;<!+8)

(ℏg(])
 

Hence, the retarded Green’s function takes the following form: 

𝐺8s(𝐸) = 𝜓8
(s) = 3%1|&+8|63+%1(&<8+!;+!)

(ℏg(])
                                      (3.79) 

On the other hand, if the chain terminates at site 𝑙 ≤ 𝑝, the boundary condition becomes 	

𝜓Q6$
(s) = 0	

Thus,	the	Green’s	function	is:	

𝐺8s(𝐸) = 𝜓8
(s) = 3%1|&+8|63%1(&<8+!;<!)

(ℏg(])
                                      (3.80) 

The Green’s function on the terminal site 𝑗 = 𝑙  due to the source at site 𝑝 = 𝑙 is: 

𝐺QQ(𝐸) = − 3%1(,)

h
                                                (3.81) 

which is called the surface Green’s function. 
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Fig. 3.8: A finite one-dimensional chain with on-site energies 𝜀! and hopping elements −𝛾. 

3.5.3 Green’s function of a finite one-dimensional chain 
 
To derive the Green’s function of a finite one-dimensional chain, consider a linear chain of 𝑁 tight-

binding sites with free-end boundary conditions, as shown in Fig. 3.8. Therefore, Green’s function 

should vanish at site 𝑗 = 0 and site 𝑗 = 𝑁 + 1.  

 

 

 

 

 

To achieve that, Green’s function should take the following expressions:  

𝐺8s(𝐸) = §
𝐴 sin 𝑘𝑗 																														,																𝑗 ≤ 𝑝																			
𝐵 sin 𝑘[𝑗 − (𝑁 + 1)] 						,																𝑗 ≥ 𝑝																					              (3.82) 

So, the boundary conditions will be satisfied, and the continuity at 𝑗 = 𝑝	yields  

𝐴 sin 𝑘𝑝 = 𝐵 sin 𝑘[𝑝 − (𝑁 + 1)] 

The constants 𝐴 and 𝐵 must be chosen as:  

𝐴 = 𝐶 sin 𝑘[𝑝 − (𝑁 + 1)]  and 𝐵 = 𝐶	 sin 𝑘𝑝                                     (3.83) 

where 𝐶 is a constant  

Hence, equation (3.82) can be rewritten as:  

𝐺8s(𝐸) = §𝐶 sin 𝑘
[𝑝 − (𝑁 + 1)] sin 𝑘𝑗 									𝑓𝑜𝑟						𝑗 ≤ 𝑝													

𝐶	 sin 𝑘𝑝 sin 𝑘[𝑗 − (𝑁 + 1)] 								𝑓𝑜𝑟								𝑗 ≥ 𝑝												  (3.84) 

Then 𝐶 can be obtained as:  

𝐶 = $
h	 iWT F	 iWT F()a$)	

                                                                     (3.85) 
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Fig. 3. 9: Tight-binding representation of an arbitrary scattering region attached to (1-D) leads. 

From equation (3.85), it is clear that the Green’s function diverges when sin 𝑘(𝐸) (𝑁 + 1) = 0,	 

i.e., when 𝑘(𝐸) = 𝑛𝜋 (𝑁 + 1)⁄ , where n is an integer. At the gap centre 𝐸 = 0,	where 𝑘 = 1
%
 , 𝐶 

diverges when 𝑁 is odd. For even 𝑁 (i.e., 𝑁 = 2𝑛), the magic number table can be expressed as:  

𝑀8s =
P&8(?)

t
                                                                   (3.86) 

	⟹	𝑀+, = 1
(−1)-./ sin 0+

"
	cos 0,

"
,												𝑗 ≤ 𝑝

(−1)-./ sin 0,
"
	cos 0+

"
,											𝑗 ≥ 𝑝		

                                    (3.87) 

This means that 𝑀+, = 0 if  𝑗	and 𝑝 are both odd or both even. Furthermore, for 𝑗 ≤ 𝑝, 𝑀+, = 0 if 𝑗 

is even or 𝑝 is odd and for 𝑗 ≥ 𝑝, 𝑀+, = 0 if  𝑝 is even or 𝑗 is odd. Otherwise, e𝑀𝑗𝑝e=1.  

 

3.6 Transport through an arbitrary scattering region 

To calculate the most general formula for the transmission coefficient of an arbitrary scattering 

region, I consider the structure shown in Fig. 3.9, which consists of two semi-infinite chains, in 

which the site energies and hopping elements in the left (right) lead are 𝜀Q(𝜀:) and −𝛾Q(−𝛾:), 

respectively. The leads are connected to the scattering region at sites 1 and 𝑁 by coupling −𝛼	and 

−𝛽.  

 

 
 

 

 

 

 

 

 



 75 

Our aim is to solve the Schrodinger equation 

																				∑ 𝐻8Q𝜓Q = 𝐸𝜓8c
Qd6c   

The eigenvector amplitudes will be denoted by 𝜓8 for the left lead, 𝜙8 for the right lead and 𝑓8 for 

the scattering region, in which the plane waves are normalized to unit current: 

𝜓8 =
$

√g3
	�𝑒(F38	 + 𝑟𝑒6(F38	�                                                                     (3.88) 

𝜙8 =
$

√g4
	�𝑡𝑒(F48	�                                                                                (3.89) 

The Schrodinger equation for this structure takes the following form:  

𝜀M𝜓8 − 𝛾M𝜓86$ − 𝛾M𝜓8a$ = 𝐸𝜓8                                     for 𝑗 < 0                                         (3.90) 

𝜀M𝜓? − 𝛾M𝜓6$ − 𝛼𝑓$ = 𝐸𝜓?                                           for 𝑗 = 0                                          (3.91) 

∑ 𝐻8Q𝑓Q − 𝛼𝜓?𝛿8$ − 𝛽𝜙)a$𝛿8) = 𝐸)
Qd$ 𝑓8                      for 1 ≤ 𝑗 ≤ 𝑁                                   (3.92)  

 𝜀:𝜙)a$ − 𝛾:𝜙)a% − 𝛽𝑓) = 𝐸𝜙)a$                            for  𝑗 = 𝑁 + 1                                   (3.93)  

 𝜀:𝜙8 − 𝛾:𝜙8a$ − 𝛾:𝜙86$ = 𝐸𝜙8                                 for 𝑗 > 𝑁 + 1                                    (3.94) 

Equation (3.92) could be re-written as: 

																																																																								|𝑓⟩ = 𝑔|𝑠⟩                                                                 (3.95) 

where 

	𝑔 = (𝐸𝐼 − 𝐻)6$ 

𝑔 is the Green’s function of an isolated scatterer. |𝑠⟩ is called the source which is a zero vector 

with non-zero elements in the connection points only (at site 𝑗=1	and	𝑗 = 𝑁).   

|𝑓⟩ =

⎝

⎜
⎛

𝑓$
𝑓%
.
.
𝑓)⎠

⎟
⎞

                                            |𝑠⟩ =

⎝

⎜
⎛
−𝛼𝜓?
𝑜
𝑜
𝑜

−𝛽𝜙)a$⎠

⎟
⎞
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For the junction shown in Fig. 3.9, |𝑓⟩	has only two non-zero elements due to the source. Thus, 

equation (3.95) can be written as:  

																																													� A/A=� = �
𝑔$$ 𝑔$)
𝑔)$ 𝑔))� ¬

−𝛼𝜓?
−𝛽𝜙)a$

­                                                     (3.96) 

																																																											𝑔®6$ � A/A=� = ¬ −𝛼𝜓?
−𝛽𝜙)a$

­                                                        (3.97)  

where 𝑔®6$ is the inverse of the	2 × 2	 sub matrix of Green’s function.  

By using the recurrence relation, we obtain the following: 

					𝛾M𝜓$ = 𝛼𝑓$ 

						𝛾:𝜙) = 𝛽𝑓) 

From equations (3.88) and (3.89), we find  

																																																														𝜙)a$ = 𝜙)𝑒(F4                                                   (3.98) 

																																																									𝜓$ =
$

√g3
[2𝑖 sin 𝑘M] + 𝜓?𝑒6(F3                                             (3.99) 

Hence, 

																																												¬ −𝛼𝜓?
−𝛽𝜙)a$

­ = Σ	 � A/A=� + ±
>	"%13
@A3

[%( iWT F3]

k
²                                        (3.100) 

where  

																																																											Σ = 	 ¬ΣM 𝑂
𝑂 Σ:

­                                                                  

ΣM =
6l!3%13

h3
  ,  Σ: =

6o!3%14

h4
		 are the self-energies associated with the left and right leads, 

respectively. Substituting equation (3.100) into equation (3.97) yields 

																																																			((𝑔®)6$ − Σ	) � A/A=� = ±
>	"%13
@A3

[%( iWT F3]

k
²                                       (3.101) 

Hence, 
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																																																																								� A/A=� = 𝐺 ±
>	"%13
@A3

[%( iWT F3]

k
²                                       (3.102) 

where  

																																																									𝐺 = ((𝑔®)6$ − Σ	)6$=¬𝐺$$ 𝐺$%
𝐺)$ 𝐺))

­                                      (3.103) 

From equation (3.102), 

																	𝑓) = 𝐺)$ 	
l3%13

√g3
	[2𝑖 sin 𝑘M] =

h4
o
	𝜙)                                        (3.104) 

Since  	∅) =
$

√g4
	 �𝑡𝑒(F4)	�, ℏ𝑣: = 2𝛾: sin 𝑘:	and ℏ𝑣M = 2𝛾M sin 𝑘M, I obtain the following: 

																																		𝑡 = 𝑖𝐺)$𝛼	𝛽𝑒(F3´
% iWT F3
h3

			´% iWT F4
h4

				𝑒6(F4	)                                         (3.105)       

																																	𝑇(𝐸) = |	𝑡	|% = 4 �l
! iWT F3
h3

� �o
! iWT F4
h4

�		|𝐺)$|%                                         (3.106)    

Since                                      |𝐺)$|% 	= µw=/
∆
µ
%
    

where            ∆= 1 − 𝑔$$	ΣM −	𝑔))	Σ: + ΣM	Σ:[𝑔$$		𝑔)) − 𝑔$)	𝑔)$] 

The transmission probability is  

                        																				𝑇(𝐸) = |	𝑡	|% = 4 �l
! iWT F3
h3

� �o
! iWT F4
h4

�		µw=/
∆
µ
%
                              (3.107) 

This equation is the most general formula used to calculate the transmission probability of any 

scattering region that is connected to different one-dimensional leads3.  

 

3.7 Basic features of the transport curve 

The key feature of electron transport through single molecules and phase-coherent nanostructures  

is emergence of transport resonance and anti-resonance associated with quantum interference9–13 . 

To gain a broad understanding of the properties of these resonances, it will be useful to briefly 

study some kinds of resonances including; Breit-Wigner resonance3,6,14 and Fano- resonance15–19.  
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3.7.1 Breit-Wigner Resonance 

Quantum interference between different paths of electrons gives rise to resonances or anti-

resonances in the transmission function. The constructive interference of electrons passing through 

a single molecular orbital can be expressed by the Breit-Wigner formula (the Lorentzian 

function)6: 

𝑇(𝐸) = <	x3	x4
(]620)!a(x3ax4)!

                                                        (3.108) 

where 𝑇(𝐸) is the transmission coefficient of the electrons, ΓM	and	Γ: describe the coupling of the 

molecular orbital to the electrodes. It is worth noting that Γ controls the width of the resonance, 

which means that if the couplings to the electrodes (𝛼 and 𝛽)	are small, the resonances will become 

narrow, as shown in Fig. 3.10.	𝜀@ = 𝐸@ − σ is an eigenvalue 𝐸@ of the molecular orbital shifted 

slightly by an amount σ due to the coupling of the orbital to the electrodes6. The transmission 

coefficient 𝑇(𝐸) has the maximum value 𝑇(𝐸)	=1 at 𝐸 = 𝜀@, in the case of a symmetric molecule 

is attached symmetrically to identical electrodes (ΓM = Γ:), as shown in Fig.3.11. In contrast, when 

the junction is asymmetric (e.g., ΓM ≫ Γ: ), the transmission function has the value  𝑇(𝜀@) = 	
<x4
x3	
,	 

which is much less than unity. In other words, the on-resonance transmission coefficient of 

asymmetric junction is lower than that of symmetric junctions. It is worth mentioning that this 

formula applies when the energy of the electron is close to an eigenvalue of the isolated molecule, 

and when the energy level spacing of the molecule 𝛿	is larger than the width of the resonance3.  
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Fig. 3.10: The effect of varying the coupling on the width of resonance.  

Fig.3.11: The transmission coefficient for a symmetric molecule attached symmetrically 

to identical leads (Γ"	 = Γ$). 
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Fig. 3.12: Tight binding model of Fano-resonance, where a doubly- infinite chain coupled to a 

pendant site 𝜀s by coupling integral −𝛼. 

 

3.7.2 Fano-Resonance  
 
Fano-resonances are widely known across many different branches of physics, which occurs when 

a bound state (e.g. a localized state located a pendant group of energy 𝜀s) interacts with the 

continuum of states15. It is described as phenomenon of constructive and destructive interferences 

between a bound state and the continuum. In other words, it is composed of an anti-resonance 

followed by a resonance with an asymmetric line profile. Fig. 3.12 shows a simple example of a 

system consists of a doubly infinite one-dimensional crystalline chain with site energies 𝜀?	and 

hopping elements −𝛾	coupled to the pendant site of energy 𝜀s	 by coupling integral −𝛼.  

 

 

 

 

 

 

 

Equation (3.108) is replaced by:  

𝑇(𝐸) =
4ΓM	Γ:

(𝐸 − 𝜀)% + (ΓM + Γ:)%
 

where                                     

𝜀 = 𝜀@ + 𝛼% J𝐸 − 𝜀sM¸  

This formula shows that when 𝐸 = 𝜀s, 𝜀 → ∞, the chain divides into two sections separated by an 

infinite tunnel barrier and therefore the transmission coefficient T(E) vanishes. It also shows that 

when 𝐸 − 𝜀 = 0 → (𝐸 − 𝜀@)J𝐸 − 𝜀sM − 𝛼% = 0, there are two solutions to this equation close to 
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Fig. 3.13: The transmission coefficient versus energy 𝐸 for different values of 𝛼 at 𝜀%= -0.5 

𝜀s and 𝜀@ . When 𝐸 = 𝜀@, the Breit-Wigner resonance occurs, whereas at 𝐸 = 𝜀s anti-resonance 

takes place forming a Fano resonance. Fig. 3.13 exhibits destructive QI at  𝐸 = 𝜀s, arising from 

Fano resonances associated with the pendant groups, for different values of 𝛼 = 0.1, 0.2	and 0.3 

which in turn determines the positions of the two resonances.  

It is worth mentioning that Fano-resonance can control electrical transport and lead to giant 

thermopowers and figure of merit in single-molecule devices6 .It has been observed in various 

quantum systems, such as nanowires, tunnel junctions and quantum dots20. 
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3.8 Conclusion  
 
In summary, a theory of single particle transport was discussed, which forms the main numerical 

tool for studying the charge transport through molecules. The theoretical basis for calculating 

electronic transport was described, including the study of one-dimensional scattering theory and 

Green’s functions for different transport regimes. In addition, the Landauer formula with a simple 

derivation was presented. The general methodology to calculate the transmission coefficient in a 

molecular junction for electrons passing from one electrode to the other was described. Finally, 

different types of resonances with different quantum interference patterns have been displayed. 
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Chapter 4 
 

 Tuning Fermi Level Alignment in Large Scale Self-Assembled Oligo 

(phenylene-ethynylene) Derivatives  

 
This work was carried out in collaboration with the group of Prof. Martin R. Bryce (Department 

of Chemistry, Durham University), who synthesized the SAMs that were used in this work and 

Prof. Christopher J. B. Ford (Department of Physics, University of Cambridge), who conducted 

the experiments. Theoretical work was carried out at Lancaster by myself.  This work was 

submitted in the name of  

“Tuning Fermi Level Alignment in Large Scale Self-Assembled Oligo (phenylene-ethynylene) 

Derivatives”  

Xintai Wang, Hanan Althobaiti, Shanglong Ning, Alaa Al-Jobory, Jan Girovsky, Hippolyte P.A.G. 

Astier, Luke J. O’Driscoll, Martin R. Bryce, Colin J. Lambert and Christopher J. B. Ford. 

 

The aim of this chapter is to examine the effects of orbital alignment in large-scale self-assembled 

monolayers (SAMs), with single-layer graphene (SLG) as a top electrode and gold as a bottom 

electrode, to provide asymmetry to a single-molecule junction. The SAMs are formed from 

oligo(phenylene-ethynylene) (OPE)-based molecular wires with different molecule-electrode 

contacts. OPE derivatives are molecules consisting of phenyl rings connected with triple bonds. 

They have a highly conjugated aromatic structure, due to the delocalization of the electrons along 

the molecular backbone. Such a structure results in the energy gap between the lowest unoccupied 

molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO) being smaller (~3 
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eV) than the HOMO – LUMO gap of saturated molecules (~ 7eV), leading to more efficient charge 

transport through the molecule. In this work, we design and simulate a three-terminal junction, in 

which the OPE derivatives, conjugated molecules with different anchoring groups, were integrated 

between the single-layer graphene (SLG) and the gold electrode to form SLG/molecule/Au 

junction. 

 

  
4.1 Motivation  
 
Molecular devices consisting of single or multiple molecules bridging two or more electrodes have 

attracted intense theoretical and experimental interest, due to their tunable and unique transport     

properties1,2.The testbeds for molecular-electronic measurements are either single-molecule 

junctions or large-scale molecular thin films formed from self-assembled monolayers (SAMs)3–6. 

The central challenge for single-molecule electronics is the uncertainty in the binding geometry of 

single molecules located between two metal electrodes. This uncertainty is reduced in SAMs, 

because molecules are fixed in specific conformations due to intermolecular forces between 

neighbouring molecules3,7–9. Recent studies have demonstrated that electron transport properties 

of molecular wires can be controlled by chemically varying their anchor groups to the electrodes, 

which causes a shift of molecular orbital alignment10–13. Understanding and controlling the orbital 

alignment of molecules placed between electrodes is essential in the design of applicable molecular 

electronic devices. The orbital alignment is determined both by the molecular backbone structure 

and the molecule-electrode interface. The energy levels alignment after the formation of a 

molecular tunnel junction is often poorly understood because spectroscopy inside junctions is not 

possible, which complicates the interpretation of the data generated by molecular junctions14. 

Therefore, controlling the alignment of molecular orbitals with respect to the Fermi level of the 
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electrodes is a major challenge in the field of molecular electronics. Recently, in an effort to 

overcome  this challenge, Xin et al. used the ionic-liquid gate to effectively modulate the alignment 

between molecular frontier orbitals and the Fermi energy level of graphene electrodes, thus tuning 

the charge transport properties of the junctions15. Famili et al. reported that an effective gate control 

was achieved using an ionic liquid, in which a strong gating electric field, generated from the 

electrical double layer (EDL) of ionic liquid, is vertically applied to the graphene/SAM/gold 

junctions, and thus tunes the energy levels of the SAM resulting in a significant conductance 

modulation in the molecular transistors16.  

 

This work sheds light on how to control electron transport within the HOMO-LUMO energy gap 

in molecular junctions. Most studies of molecular orbital alignment in molecular junctions involve 

tuning their energy levels via a back gate. However, this is difficult to achieve in scalable self-

assembled monolayers (SAMs), because SAM-based junctions are bottom-up designs, and the 

bottom metal electrode could screen out the electric field produced by a back gate15,17,18. On the 

other hand, the use of graphene in this study, as a conductive material, offers a possibility for 

gating SAMs via a top4,16,19 gate, because the ultra-thin nature of single-layer graphene (SLG) 

allows some of the electric field to penetrate through vertically20–22. 

 
 
4.2 Three-terminal junction 

Charge transport in molecular junctions has been studied extensively in both two- and three-

terminal configurations, because such junctions are excellent candidates for testing quantum 

transport theories and hold significant promise in terms of reaching the ultimate limit of device 

miniaturization23. Three-terminal device that feature an additional gate electrode, has established 
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the feasibility of actively tuning the charge transmission characteristics of molecular junctions5,24. 

It combines both the ability to form a stable single-molecule junction and the ability to shift the 

energy levels of the molecule by gating25. 

Control of the molecular conductance by a third electrode is not only a necessary requirement for 

integration of molecular devices in circuits, but also essential for a comprehensive study of 

transmolecular conduction26–32. As the gate electrode allows to repel and attract electrons, it can be 

used to oxidize and reduce molecules and investigate molecular transport properties for different 

charge states. Three-terminal devices have also been employed to reveal the fine structure of 

individual single-molecule magnets and the presence of magnetic anisotropy15,33,34. 

From an experimental point of view, three-terminal molecular devices (an example is shown in 

Fig. 4.1), have been fabricated by several approaches.  These include electromigration in which a 

metal wire is broken with an electric field35, shadow evaporation36 and electrochemical techniques 

such as mechanically controllable break junction (MCBJ)25. Despite the impressive progress made 

in this field, addressing three-terminal device still implies several technological challenges. The 

main challenge is certainly how to embed a single molecule between the source and drain 

electrodes in a reliable way and place the gate electrode a few angstroms away from the molecule 

to achieve the required gate field. In this chapter I present model of a three-terminal electrodes, 

where a molecule bridges the gap between two graphene electrodes and a gold electrode, which is 

explained in more detail in section 4.8.  
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Fig. 4.1: Three-terminal concept for nanoscale switch with source and drain and gate electrodes30. 

 

 

 

 

 

 

 

4.3 Molecular structure 
 
Charge transport in molecular junctions significantly depends on the chemical identity of the 

anchor groups and on the nature of the chemical interactions at the electrode-molecule interface37–

39. The ideal anchoring group would provide reproducible, well-defined binding, strong anchoring 

and a small contact resistance13,40. Fig. 4.2 shows a selection of anchoring groups that have been 

used in this chapter. In what follows, I will discuss the structure of these anchors and some of their 

properties. Several previous studies have shown that stable and reproducible single-molecule 

junctions are formed if thiol (-SH), methyl thioether (-SMe) and pyridyl (-Py) groups are used as 

anchoring groups41. Thiol (-SH) has been most widely employed as a terminal anchor groups due 

to its high binding energy to many metals, such as gold, copper and silver42. The strong interaction 

between (-SH) and the metal electrodes often leads to rather high conductance values. Another 

good candidate for anchoring group is pyridine (-C5H4N), which is stable under ambient conditions 

and does not require protective groups, meaning that it forms stable and reproducible molecular 
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junctions43. In this vein, Hong et al. reported that the mechanical stability and the probability of 

forming a junction is highest for (-Py), followed by (-SH)41. 

Thioacetates (-SAc), which have the molecular formula (-S-COCH&),	are archetypal masked 

thiols, as they can be deprotected under mild conditions to form thiolates44. Notably, thioacetates 

spontaneously cleave in the presence of gold to form the direct Au–S bonds that would be expected 

from thiols43,45.  

Another simple functional group which has been utilised for anchoring is thioether (-SMe), in 

which the sulfur is bonded to the methyl group (-S-CH&). It has seen increasing use in recent years 

as it allows for strong Au–S interactions (albeit weaker than those between thiols and gold).  An 

important difference between (–SMe) and (–SAc) anchoring groups is that the methyl group is 

retained upon binding to a gold surface whereas the acetate group is not43.  

 

Carbazole was selected in this study as a support for of the additional anchors (-SMe). It consists 

of two benzene rings fused together on either side of a pyrrole ring, that is a five-membered ring 

in which the heteroatom has at least one pair of non-binding valence shell electrons46. 
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In the present work, I investigate 6 different molecules with oligo(phenylene-ethynylene) (OPE) 

backbones, the chemical structures of which are shown in Fig. 4.3. Molecule 1 has acetyl-protected 

thiol (-SAc) terminal group at one end and is benzene terminated at the other end.  Thiols are 

known to have strong affinity with gold, whereas benzene has negligible affinity to gold9,47.  

Molecules 2 and 3 are SAc terminated at one end and have a para- or meta- connected terminal 

pyridine group respectively at the other end. Pyridine is known to have a strong affinity to gold in 

either of these connectivities. Molecules 4 and 5 are symmetrical designs, with SAc terminal 

groups at both ends (in para positions). Molecule 5 contains an additional PE repeat unit compared 

to the other species in this study. Molecule 6 has a pyridine group at each end in the para position, 

and a methyl thioether (-SMe)-based tetrapodal group at one end48.  

a b c d e 

Fig. 4.2: Selected anchors groups used in the formation of OPE molecular junctions, for simplicity, 

anchors groups are shown attached to a benzene ring unless they already form part of the terminal 

aromatic system (e.g., pyridine derivatives)35. a: Thiol (-SH), b: Pyridine (-C5H4N), c: Thioacetate 

(-SAc), d: Thioether (-SMe), e: Carbazole-based tetrapod x=CH, N. 
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The optimized geometry and ground state Hamiltonian of each structure in this chapter was 

obtained using the SIESTA implementation of density functional theory (DFT)49,50, which has 

been presented in detail in chapter 2. SIESTA employs the norm-conserving pseudo-potentials to 

account for the core electrons and linear combinations of atomic orbitals to construct the valence 

states.  The local density approximation (LDA) of the exchange and correlation functional by 

Ceperley and Adler is used along with double- polarized (DZP) basis sets. The real-space grid was 

defined by a plane wave cut-off of 250 Rydbergs. The optimum geometries of the isolated 

molecules 1-6 were obtained by relaxing the molecules until all forces on the atoms were less than 

0.01 eV / Å as shown in Fig. 4.4. Results were also computed using the generalized gradient 

VG
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Fig. 4.3: Chemical structures of the OPE-based molecules. 1, 2 and 3 are asymmetric molecules 

with different anchor groups involving thioacetate and pyridine, while 4 and 5 are symmetric 

molecules having PE repeat unit with thioacetate anchors from both ends. 6 is OPE2 backbone 

with the carbazole-based anchor groups including 4 thioether linkers.	
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approximation with the Perdew-Burke-Ernzerhof parameterization (GGA-PBE) and it was found 

that the resulting transmission functions were comparable with those obtained using LDA.  
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Fig. 4.4: Fully relaxed isolated molecules 1-6. Key: C = grey, H = white, O = red, S = yellow, 

N=blue.  
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4.4 Frontier orbitals 
 
To gain a deeper insight into the electronic properties of these structures (see Fig. 4.4), the DFT 

based methods discussed in chapter 2 have been used. The gas-phase electronic structures of all 

molecules were investigated to explore the distribution and composition of the frontier molecular 

orbitals. Plots of the frontier orbitals for the studied molecules 1-6 (see Fig. 4.4) are given in Figs. 

4.5-4.10. The highest occupied molecular orbitals (HOMO), lowest unoccupied orbitals (LUMO), 

HOMO-1 and LUMO+1 along with their energies are calculated. By comparing the topology of 

the HOMO and LUMO orbitals of 1-6 molecules, one could notice that the HOMOs and LUMOs 

are extended across the backbone for each molecule, which suggests that they might act as 

electron-electron channels.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

LUMO+1 E = –1.26 eV 
HOMO–1 E = –4.97 eV 

LUMO E = –2.12 eV HOMO E = –4.41 eV 

EF = –2.83 eV 

Fig. 4.5: Wave function for 1. Top panel: Fully optimised geometry of 1. Lower panel: HOMO, 

LUMO, HOMO–1 and LUMO+1 along with their energies. 
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LUMO+1 E = –1.25 eV 
HOMO–1 E = –5.08 eV 

LUMO E = –2.11 eV HOMO E = –4.83 eV 

EF = –3.09 eV 

Fig. 4.6: Wave function for 2. Top panel: Fully optimised geometry of 2. Lower panel: 

HOMO, LUMO, HOMO–1 and LUMO+1 along with their energies. 
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LUMO+1 E = –1.20 eV HOMO–1 E = –5.10 eV 

LUMO E = –2.00 eV HOMO E = –4.71 eV 

EF = –3.10 eV 

Fig. 4.7: Wave function for 3. Top panel: Fully optimised geometry of 3. Lower panel: HOMO, 

LUMO, HOMO–1 and LUMO+1 along with their energies. 
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LUMO+1 E = –1.15 eV HOMO–1 E = –5.25 eV 

LUMO E = –2.28 eV HOMO E = –4.88 eV 

EF = –2.93 eV 

Fig. 4.8 : Wave function for 4. Top panel: Fully optimised geometry of 4. Lower panel: HOMO, 

LUMO, HOMO–1 and LUMO+1 along with their energies. 

 
 
 
 
 
 
 
 

 

 

 

 

  

 

 

 

 

 

 
 
 

 

 

 



 98 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

LUMO+1 E = –1.65 eV HOMO–1 E = –5.11 eV 

LUMO E = –2.46 eV HOMO E = -4.72 eV 

EF = –3.96 eV 

Fig. 4. 9: Wave function for 5. Top panel: Fully optimised geometry of 5. Lower panel: HOMO, 

LUMO, HOMO–1 and LUMO+1 along with their energies. 
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LUMO+1 E = –1.63 eV HOMO–1 E = –4.21 eV 

LUMO E = –2.60 eV HOMO E = –4.07 eV 

EF = –3.37 eV 

Fig. 4.10: Wave function for 6. Top panel: Fully optimised geometry of 6. Lower panel: HOMO, 

LUMO, HOMO–1 and LUMO+1 along with their energies. 
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4.5 Binding energy 
 
The binding energy of anchor groups to the electrode plays a crucial role in determining the 

strength of molecule–electrode coupling, crucially impacting the chemical stability of the junction 

as well as its charge transport properties11. Since the different anchor groups possess different 

coupling strengths, in what follows, the optimum binding distance between the anchor groups and 

electrodes will be calculated using DFT and the counterpoise method, which removes basis set 

superposition errors (BSSE), as it is described in section 2.7.3 of chapter 2. The binding distance 

z is defined as the distance between the top or bottom surface and the anchor group (see the black 

double-arrow on the right panel of Figs. 4.11- 4.16). 

If one of the compounds 1-6 is defined as entity A and the single-layer graphene (SLG) or gold 

electrode as entity B. The ground-state energy of the total system is calculated using SIESTA and 

is denoted	Eyzyz. The energy of each entity is then calculated in a fixed basis, which is achieved in 

SIESTA using ghost atoms; (basis set functions which have no electrons or protons). Hence, the 

energy of the individual molecule 1-6 in the case of the fixed basis is defined as Eyyz and for the 

graphene/gold as Ezyz. The energy difference Δ(𝑧) between the isolated entities and their total 

energy when placed a distance 𝑧 apart is then calculated using the following equation: 

Energy	difference = 	Δ(𝑧) = Eyzyz − Eyyz − Ezyz                                   (4.1) 

 

Since the junction modelled in this study is asymmetric, in the following, I will calculate the 

binding energy between anchors and two different contact electrodes (i.e., gold and graphene).  

 

 

 



 101 

4.5.1 Binding energy on graphene sheet  
 
In this section, the binding energies and their corresponding optimum distances are calculated 

between the graphene surface and phenyl, pyridine (Py), thioacetate (SAc) anchors, as shown in 

Figs. 4.11-4.13.  

 

Fig. 4.11 shows the binding energy as a function of the distance between the graphene surface and 

the phenyl ring (Gr-Phenyl), where the optimum distance (i.e., the minimum of the binding energy 

curve) is found to be 	𝑧 = 	2.4	𝐴?, with binding energy of approximately 0.11 eV. Fig.  4.12 

exhibits the optimum distance between graphene and pyridine (Gr-Py) to be 𝑧 = 	2.7𝐴?, at 

approximately 0.14 eV, and the equilibrium distance between the thioacetate anchor and graphene 

(Gr-SAc) is obtained to be 𝑧 = 	5.7𝐴? ,	at approximately 0.09 eV, as shown in Fig. 4.13. The 

comparison between these Figs. reveals that the binding energies of graphene sheet to phenyl ring, 

Py and SAc anchor groups follow the trend e𝐸P56{|e 		> e𝐸P56s,3@|Qe 	> |𝐸P56COE|	.		  
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z 

(Å) 

Z 

(Å) 

Fig. 4.11: Phenyl ring (molecule 1) on a graphene surface (Right panel). Energy difference of 

phenyl anchor to graphene as a function of molecule-contact distance. The equilibrium distance 

corresponds to the energy minimum and is found to be approximately 2.4	Å (Left panel). 

 

Fig. 4.12: Pyridine anchor (molecule 2) on a graphene surface (Right panel). Energy 

difference of pyridine anchor to graphene as a function of molecule-contact distance. The 

equilibrium distance is approximately 2.7	Å (Left panel). 
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z 

(Å) 

Fig. 4.13: Thioacetate anchor (molecule 2) on a graphene surface (Right panel). Energy difference 

of thioacetate anchor to graphene as a function of molecule-contact distance. The equilibrium 

distance is approximately 5.7	Å (Left panel). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5.2 Binding energy on a gold surface 
 
In the following, the binding energies are evaluated to find the optimum binding distance between 

the gold electrode and Py, thiol, SMe anchors, as shown in Figs. 4.14-4.16, where the right panels 

show the structure of the molecule linked to the gold electrode via anchor group, and the left 

panels represent the binding energy plots as a function of the optimum binding distance z. Fig. 

4.14 shows that the optimum binding distance between the Py anchor group and the Au to be 2.5 

Å, and the B.E is found to be approximately 0.42 eV. This result is in goo.d agreement with the 

literature review48,51.  
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z 

(Å) 
Fig. 4.14: Pyridine anchor (molecule 2) on a gold surface (Right panel). Energy difference 

of pyridine anchor to gold as a function of molecule-contact distance. The equilibrium 

distance is approximately 2.5	Å (Left panel). 

To calculate the optimum distance between the Au and thiol anchor, the acetate anchor has been 

released, as shown in Fig. 4.15, which is found to be 2.7 Å, with approximately 0.85 eV in excellent 

agreement with the 0.8 eV in the literature52. This indicates that the binding energy of a thiol anchor 

group is approximately 2 times stronger than that of the Py anchor to the Au electrode. This is 

reasonable as thiol anchor provides strong electronic coupling to the gold surface through Au-S 

bond formation (strong covalent bond).   

 

To determine the binding energy of four thioethers (SMe) to the Au, the two carbazole units in 

molecule 6 are parallel to the gold surface, as shown in the right panel of Fig. 4.16.  The left panel 

of the same figure displays that each SMe contributes approximately 0.2 eV to the total binding 

energy at equilibrium distance of about 4.2 Å. This suggests that the use of multiple thioethers 

results in strong anchoring to a gold surface, where four thioethers make a contribution comparable 

to that expected from a thiol48. 

 

 

 

 

 

 

 

 

 

 



 105 

z 

(Å) 

(Å) 

z 

Fig. 4.15: Thiol anchor (molecule 2) on a gold surface (Right panel). The acetate group has 

been released. Energy difference of thiol anchor to gold as a function of molecule-contact 

distance. The equilibrium distance is approximately 2.7 Å (Left panel). 

 

Fig. 4.16:Thioether anchor (molecule 6) on a gold surface (Right panel). Energy difference of 

thioether anchor to flat gold as a function of molecule-contact distance. The equilibrium distance 

is approximately 4.2	Å (Left panel).  
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Table 4.1 represents the optimum separation distance and binding energy for five different anchor 

groups bind to graphene or gold electrodes. The comparison between them shows that the thiol 

anchor is coupled to Au (0.85 eV) more strongly compared to other anchors. In addition, the B.E. 

of Au to thiol, Py and SMe are 0.85 eV, 0.42 eV and 0.20 eV, respectively, whereas the B.E. of 

Gr to Py, phenyl and SAc are significantly weaker (0.14 eV, 0.11 eV and 0.09 eV, respectively). 

In other words, these anchors bind much more weakly to the Gr surface than to Au due to the fact 

that Van der Waals interactions between anchors and Gr are weak. For example, pyridine binds 

more strongly to Au (0.42 eV) than to graphene (0.14 eV), suggesting that pyridine is more likely 

to interact with a metallic surface than non-metallic. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Table 4.1: Summary of the energy-difference calculations (Figs. 4.11-4.16) for graphene-molecule 

(Gr-M) and gold-molecule (Au-M) contacts. z is the equilibrium distance and ∆(z) is the 

corresponding minimum energy difference.  

Material-contact  ∆(z) (eV) z (Å) 

Gr-Phenyl 0.11 2.4 

Gr-Py 0.14 2.7 

Gr-SAc 0.09 5.7 

Au-Py 0.42 2.5 

Au-SH 0.85 2.7 

Au-SMe 0.20 4.2 
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4.6 Optimised DFT structures of compounds within their junctions 
 
Using the optimised structures and geometries for the compounds obtained as described above, I 

again employed the SIESTA code to calculate self-consistent optimised geometries, ground-state 

Hamiltonians and overlap matrix elements for each graphene-molecule-gold junction. The 

optimised structures were then used to compute the transmission curve for each compound, where 

a double-zeta-plus-polarization (DZP) basis set, with norm-conserving pseudopotentials was 

employed and the Hamiltonian and overlap matrices were calculated on a real space grid defined 

by a plane wave cutoff of 250 Ry. The local density approximation (LDA) of the exchange and 

correlation functional was used in all calculations, which is found to be comparable with those 

obtained using GGA. Figs. 4.17-4.22 illustrate the studied molecules in asymmetric junctions (i.e., 

Gr and Au contacts), in which the molecule is sandwiched between Gr and Au electrodes. Chap.2). 

The gold electrodes consist of five layers of (111) gold with each layer containing 25 gold atoms. 

To model the periodicity in the graphene, which consists of 110 atoms, the unit cell was repeated 

using a Bravais lattice with 50 k-points in 𝑦 direction. Note that there is a tilt-angle range for each 

compound, which is presented in section 4.7. In this study, I investigate an asymmetric junction, 

that can be implemented by placing a single molecule between single-layer graphene (SLG) and 

gold surface. Fig. 4.17 shows the molecule 1, which is an asymmetric molecule, sandwiched 

between the graphene sheet and the Au electrode, such that the thioacetate anchor is oriented 

towards the Au, and the phenyl ring is directed towards the graphene. Since the thioacetate cleaves 

in the presence of gold, a direct bond is formed between S and Au. 
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As mentioned above, molecule 2 is asymmetric (i.e., terminated with different anchors: thioacetate 

and Py), and thus flipping it results in two different configurations labelled a and b as shown in 

Fig. 4.18. In configuration a, molecule 2 is attached to the Gr sheet via pyridyl and the Au through 

thiol, which results from the cleavage of thioacetate with Au. In configuration b (the opposite of 

configuration a), molecule 2 is flipped so that the thioacetate binds to the Gr sheet and pyridyl to 

Au. The same procedure is repeated for molecule 3, which is the same as molecule 2, but the 

pyridyl is located in meta position rather than para, leading to the possible binding configurations 

a and b, as shown in Fig. 4.19.  

 

 

 

 

 

 

 

2b 

 
 

2a 

  

1 

Fig. 4.17: Schematic illustration of an asymmetric junction containing a single molecule 1. The 

top contact is single-layer graphene (SLG) and the bottom contact is gold. Note: here the 

molecule is asymmetric as well as the contacts (i.e., Gr and Au). 
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As molecules 4 and 5 are symmetric molecules (terminated by thioacetate at each end), there will 

be one case for the junction, where the thioacetate is linked to the Gr sheet and the thiol is linked 

to the Au, as shown in Figs. 4.20 and 4.21. It should be noted that although molecules 4 and 5 are 

originally symmetric, the thioacetate group easily dissociates in the presence of Au to form Au-S, 

which eventually ends up as an asymmetric molecule with asymmetric contacts.    

 

 

 

 

 

 
 

 

3a 3b 

    

Fig. 4.18: Schematic illustration of asymmetric molecular junctions for a and b. a and b show 

how the molecule 2 flips between the Gr sheet and Au. a is when Py is linked to the Gr and b is 

when thioacetate is linked to the Gr. (Note: 2a and 2b molecular junctions are doubly asymmetric). 

 

Fig. 4.19: Schematic illustration of asymmetric molecular junctions for a and b. a and b show 

how the molecule 3 flips between the Gr sheet and Au. a is when Py is linked to the Gr and b is 

when thioacetate is linked to the Gr (again these molecular junctions are doubly asymmetric). 
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Fig. 4.22 shows molecule 6 is positioned parallel to the Au, in which the four SMe anchors are 

oriented towards the Au surface and the Py anchor is directed towards the Gr sheet. It is worth 

  

4 

  

  
5 

  

Fig. 4.20: Schematic illustration of an asymmetric junction containing a single molecule 4. The top 

contact is single-layer graphene (SLG) and the bottom contact is gold. Note: here thiol is linked to 

Au (due to the cleavage of the thioacetate in the presence of Au), and thioacetate is linked to Gr.   

 

Fig. 4.21: Schematic illustration of an asymmetric junction containing a single molecule 5. The 

top contact is single-layer graphene (SLG) and the bottom contact is gold. Again, thiol here is 

linked to Au (due to the cleavage of the thioacetate in the presence of Au), and thioacetate is linked 

to Gr. 
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noting that the torsion angle between the central benzene ring and the two carbazole units is 

approximately 37?. 

 

 

 

 

 

 

 

 

 

 

 
4.7 The tilt angle (𝛉)  
 
In this section, I shall determine the tilt angle 𝜃	of each compound between SLG and gold contacts, 

which corresponds to the experimentally measured most-probable break-off distance. A theoretical 

model of how the tilt angle varies between the SLG and Au substrate is shown in Fig. 4.23 

 

 

 

 

 

 

 

  

6 

  

Fig. 4.22: Schematic illustration of an asymmetric junction containing a single molecule 6. 

The top contact is single-layer graphene (SLG) and the bottom contact is gold. Here, 4 SMe 

are linked to Au and Py is linked to Gr.  
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Table 4.2 shows a range of tilt angles calculated from the film thickness for each molecule. Break-

off distance values suggest that compounds 1, 2a, 3a, 4, 5 and 6 tilt at an angle θ ranging from 35o 

to 45o, compound 2b tilt at 65o to 75o, and 3b tilt at 10o to 20o as shown in Figs. 4.24-4.29. 

 

 

 

 

 

 

 

 

 

𝜽 Molecule  

single-layer graphene (SLG) 

Gold substrate 

Fig. 4.23: Schematic representation of the tilt angle model (𝜃),  which varies between the 

graphene sheet and the substrate gold. 
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Table 4.2: Experimental break-off distance (film thickness), and equivalent tilt angle (θ) 

Compound 
Experimental film 

thickness (nm) 
 

Equivalent 
experimental tilt 

angle (θ) 
 

  

1 0.8 35o-45o    

2a  
1.05 

 

35o-45o    

2b 65o-75o    

3a  
0.7 

 

35o-45o    

3b 10o-20o    

4 1.1 35o-45o    

5 1.7 35o-45o    

6 0.8 37o-48o    

θ 

1    

Fig. 4.24: Schematic illustration of Au/1/SLG junction with a tilt angle θ ≈ 40o for molecule 1 

between Gr sheet and gold. 
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2a    2b    

3a    3b 
    

Fig. 4.25: Schematic illustration of Au/2a and 2b/SLG junctions with tilt angles of θ ≈ 40o and 

70o respectively for 2a and 2b between Gr sheet and gold 

Fig. 4.26: Schematic illustration of Au/3a and 3b/SLG junctions with tilt angles of θ ≈ 40o and 

15o respectively for 3a and 3b between Gr sheet and gold. 
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6 

5    

4    

Fig. 4.27: Schematic illustration of Au/4/SLG junction with a tilt angle of θ ≈ 40o for molecule 4 

between Gr sheet and gold. 

Fig. 4.28: Schematic illustration of Au/5/SLG junction with a tilt angle of θ ≈ 40o for molecule 

5 between Gr sheet and gold. 

Fig. 4.29: Schematic illustration of Au/6/SLG junction with a tilt angle of θ ≈ 42o for molecule 

6 between Gr sheet and gold. 
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4.8 Model of three-terminal junction 
 
In this study, I modelled the three-terminal junction shown in Fig. 4.30, where a single molecule 

is sandwiched between the three contacts. The in-plane periodicity of the graphene sheet and the 

molecular layer is achieved by repeating the unit cell using a Bravais lattice with 50k points in the 

y-direction (see upper black arrow). The gold electrode is modelled as a nanowire attached to each 

molecule. Fig. 4.30 shows the top contact is SLG and is divided into two electrodes (electrode 1 

and electrode 2), whereas the bottom contact is Au (electrode 3). In this case, there are three paths 

of charge transport between these terminals: the direct path, where the electrons of energy 𝐸 flow 

directly from terminal 1 to 2. Path 1-3 for electrons passing from the top-left electrode (lead 1) to 

the bottom electrode (lead 3), and path 2-3 for electrons travelling from the top-right electrode 

(lead 2) to the bottom electrode (lead 3), as shown in Fig. 4.30.  

                                                                   

 

 

 

 

 

 

 

 

 

 

1-3  

y-direction  

2-3  

1-2 Electrode 2 Electrode 1 

    

  

Electrode 3 

Fig. 4.30: Schematic illustration of a three-terminal junction with periodic boundary conditions along 

the y-axis. The direct path 1-2: electrons of energy 𝐸 flow directly from electrode 1 to 2, path 1-3: 

electrons passing from the top-left electrode (lead 1) to the bottom electrode (lead 3), and path 2-3: 

electrons travelling from the top-right electrode (lead 2) to the bottom electrode (lead 3). 



 117 

 
4.9 Transport calculations in a three-terminal junction 
 
To calculate the transmission coefficient 𝑇(𝐸)of electrons of energy E passing from the graphene 

to the gold or vice versa, a mean-field Hamiltonian and an overlap matrix were extracted from the 

converged DFT calculation and combined with the Gollum transport code53. In what follows, I 

shall investigate the charge transport behaviour of the studied molecules 1-6, whose structures are 

shown in Fig. 4.4, through an asymmetric junction (i.e., SLG and Au) with two different structures 

of Au (i.e., flat and cluster). 

 

 

4.9.1 Au flat surface 
 
As mentioned above, in the three-terminal junction, there are two transmission pathways 1-3 and 

2-3 describing the transport between the gold and graphene electrodes (see Fig. 4.31). Since the 

electron pathways 1-3 and 2-3 have an equal length and therefore yield almost identical 

transmission coefficients 𝑇(𝐸), their average is taken, as shown in Figs. 4.32-4.37. Fig. 4.32 shows 

the average transmission coefficient 𝑇(𝐸)	for molecule 1, whose tilt angle is approximately 40o. 

This Fig. also reveals that the charge transport through the thiol-terminated molecule takes place 

in the tail of the HOMO resonance. 
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Electrode 1 Electrode 2 

Electrode 3 

y-direction  

  

1-3  

1-2 

2-3  

Fig. 4.31: Top panel: Schematic illustration of a three-terminal Au/1/SLG junction with 

periodic boundary conditions along the y-axis. The top contact is SLG and is divided into 

two electrodes (electrode 1 and electrode 2), whereas the bottom contact is Au (electrode 3). 

Bottom panel: An example of zero-bias transmission coefficient 𝑇(𝐸)	curves: 1-3 and 2-3 

have an equal path length, and therefore have identical curves (black and blue lines). 
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As previously mentioned, 2 has two different anchors (SAc and Py), meaning that there are two 

approaches to linking the electrodes in the junction. 2a is when the thiol binds to Au and pyridine 

binds to SLG, and 2b, by flipping the molecule in the junction, is when the pyridine attaches to Au 

and the thioacetate to the SLG as shown in the top panel of Fig. 4.33. The two anchors are well- 

known to move energy levels relative to the Fermi energy in an opposite direction. In other words, 

 

  

Electrode 1 Electrode 2 

Electrode 3 1 

y-direction  

  

Fig. 4.32: Top panel: Schematic illustration of a three-terminal Au/1/SLG junction with periodic 

boundary conditions along the y-axis, as in Fig. 4.31. Bottom panel: Zero-bias transmission 

coefficient 𝑇(𝐸) averaged over the values for paths 1-3 and 2-3 shown in Fig. 4.31. 
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SAc produces HOMO-dominated junctions, whereas Py produces LUMO-dominated junctions. In 

our case the binding energy of thiol to the Au is stronger than that of Py to the SGL (case 2a) and 

the DFT-predicted Fermi energy sits so close to the HOMO resonance. The bottom panel of Fig. 

4.33 shows that 2b yields a lower conductance, because the separation between the Au and SLG 

electrodes is larger than in 2a. 

 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

  

Electrode 1 Electrode 2 

Electrode 3 2a 

y-direction  

    

Electrode 1 Electrode 2 

Electrode 3 2b 

y-direction  

  

Fig. 4.33: Top panel: Schematic illustration of a three-terminal Au/2a or 2b/SLG junction with 

periodic boundary conditions along the y-axis. Bottom panel: Zero-bias transmission coefficients 

T(E) of molecule 2 as a function of energy. 
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Similarly, 3 also has two possibilities in the junction. Configuration 3a occurs when the thiol binds 

to Au and pyridine binds to SLG, and 3b occurs when the molecule is flipped in the junction, with 

the pyridine binding to Au and the thioacetate binding to the SLG as shown in the top panel of Fig. 

4.34. Since the separation distance between the Au and SLG in 3b is larger than in 3a, the 

conductance in case 3b is lower than that of case 3a.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Electrode 1 Electrode 2 

Electrode 3 3a 

y-direction  

    

Electrode 1 Electrode 2 

Electrode 3 3b 

y-direction  

  

Fig. 4.34: Top panel: Schematic illustration of a three-terminal Au/3a or 3b/SLG junction with 

periodic boundary conditions along the y-axis. Bottom panel: Zero-bias transmission coefficients 

T(E) of molecule 3 as a function of energy. 
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Electrode 1 Electrode 2 

Electrode 3 4 

y-direction  

  

Fig. 4.35: Top panel: Schematic illustration of a three-terminal Au/4/SLG junction with periodic 

boundary conditions along the y-axis. Bottom panel: Zero-bias transmission coefficient T(E) of 

molecule 4 as a function of energy. 

The bottom panel of Fig. 4.35 shows the transmission coefficient  𝑇(𝐸) as a function of energy E 

for molecule 4. It reveals that molecule 4 is a HOMO-dominated, because both anchors (SAc and 

thiol) are pinning in the same direction toward HOMO resonance.   
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Similarly, the bottom panel of Fig. 4.36 shows the transmission coefficient  𝑇(𝐸) as a function of 

energy for SAM 5. The HOMO resonance is predicted to be pinned near the Fermi Level of the 

electrodes due to the presence of the thiol and thioacetate anchor groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 
 
 

  

Electrode 1 Electrode 2 

Electrode 3 5 

y-direction  

  

Fig. 4.36: Top panel: Schematic illustration of a three-terminal Au/5/SLG junction with periodic 

boundary conditions along the y-axis. Bottom panel: Zero-bias transmission coefficient T(E) of 

molecule 5 as a function of energy. 
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Electrode 1 Electrode 2 

Electrode 3 6 

y-direction  

  

Fig. 4.37: Top panel: Schematic illustration of a three-terminal Au/6/SLG junction with periodic 

boundary conditions along the y-axis. Bottom panel: Zero-bias transmission coefficient 𝑇(𝐸)	of 

molecule 6 as a function of energy. 

The bottom panel of Fig. 4.37 exhibits a different attitude of molecule 6 compared to the 5 previous 

molecules, as molecule 6 is a LUMO-dominated at the DFT-predicted Fermi energy (E-EFDFT=0 

eV). This behaviour can be attributed to the presence of the four SMe anchors that bind to Au and 

Py that binds to the SGL. In other words, these linkers are LUMO-dominated anchors.  
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Figs. 4.38- a and -b show the transmission coefficients 𝑇(𝐸)	of studied molecules 1-6 as a function 

of energy. As shown in Fig. 4.38-a, HOMO resonance is predicted to be pinned near the Fermi 

Level of the electrodes for molecules 1-5. While the LUMO resonance is predicted to be pinned 

near the Fermi Level of the electrodes for 6, as shown in Fig. 4.38-b. It is clear that molecule 5 

possesses the lowest conductance among the 5 studied molecules (see Fig. 4.38-a), this trend is 

expected, because molecule 5 has a longer tunnelling length compared to the others.  

 

 

 

 

 

 
 
 
 
 
 

a b 

Fig. 4. 38. a: Zero-bias transmission coefficient 𝑇(𝐸)	of molecules 1-5 as a function of energy. 

The HOMO resonance is predicted to be pinned near the DFT-predicted Fermi energy. b: For 

side-by-side comparison with the other transmission coefficients, this shows the zero-bias 

transmission coefficient 𝑇(𝐸)	of 6, reproduced from Fig. 4.37. The LUMO resonance is 

predicted to be pinned near the DFT-predicted Fermi energy (flat Au substrate). Note: All the 

transmission curves here for a flat Au surface. 
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4.9.2 Au-cluster 
 
To probe the effect of changing the shape of the Au surface on the alignment of the Fermi level, 

the above transmission function simulations were repeated with the molecules bound to a gold 

atomic cluster rather than a flat Au substrate (see Figs. 4.39-4.44). Fig. 4.39 demonstrates that the 

transport is still HOMO dominated for molecule 1, this means that molecule 1 is insensitive to the 

shape of the Au surface. 
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Electrode 3 
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0 0.4 0.8 1.2
E-EDFTF (eV)

10-6

10-4

10-2

100

T
(E
)

1

Fig. 4.39: Top panel: Schematic illustration of a three-terminal Au/1/SLG junction with periodic 

boundary conditions along the y-axis. The top contact is SLG and is divided into two electrodes 

(electrode 1 and electrode 2), whereas the bottom contact is an add-atom Au (electrode 3). Bottom 

panel: Zero-bias transmission coefficient 𝑇(𝐸)	of molecule 1 as a function of energy (insensitive 

case). 
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As discussed above, for molecule 2 there are two cases 2a and 2b, and the average of their 

transmission curves was taken, as shown in the bottom panel of Fig. 4.40. The average 

transmission curve in this figure reveals that the charge transport in these junctions is a LUMO 

dominated rather than HOMO, which indicates that changing the Au surface from flat to a cluster 

switches the dominant transport from HOMO to LUMO. Therefore, this proves that molecule 2 is 

sensitive to the shape of the Au surface.  
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Fig. 4.40: Top panel: Schematic illustration of a three-terminal Au/2a or 2b/SLG junction with 

periodic boundary conditions along the y-axis. The top contact is SLG, whereas the bottom contact 

is an add-atom Au. Bottom panel: Zero-bias transmission coefficient 𝑇(𝐸)	of molecule 2 as a 

function of energy (sensitive case).  Note: the transmission curve is the average of 2a and 2b 

curves. 
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Similarly, molecule 3 has two configurations 3a and 3b, and the average of their transmission 

coefficient curves was taken, as shown in the bottom panel of Fig. 4.41, indicating that the electron 

transport takes place through the LUMO resonance, which means that molecule 3 is also sensitive 

to the shape of the Au surface.  
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Fig. 4.41: Top panel: Schematic illustration of a three-terminal Au/3a or 3b/SLG junction with 

periodic boundary conditions along the y-axis. The top contact is SLG, whereas the bottom 

contact is an add-atom Au. Bottom panel: Zero-bias transmission coefficient 𝑇(𝐸)	of molecule 

3 as a function of energy (sensitive case). Note: the transmission curve is the average of 3a and 

3b curves.   
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Fig. 4.42 shows the transmission curve for molecule 4, which points out that the transport is still 

HOMO dominated, as has been previously reported (see Fig. 4.35), demonstrating that molecule 

4 is insensitive to the shape of the Au surface. 
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Fig. 4.42: Top panel: Schematic illustration of a three-terminal Au/4/SLG junction with 

periodic boundary conditions along the y-axis. The top contact is SLG, whereas the bottom 

contact is an add-atom Au. Bottom panel: Zero-bias transmission coefficient 𝑇(𝐸)	of 

molecule 4 as a function of energy (insensitive case). 
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Fig. 4.43 shows the transmission curve for molecule 5, which also reveals that the electrons near 

the Fermi energy transmitted through the tail of the HOMO, as has been previously reported (see 

Fig. 4.36), indicating that changing the shape of the Au surface does not have an influence on the 

alignment of Fermi level for this molecule.   
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Fig. 4.43: Top panel: Schematic illustration of a three-terminal Au/5/SLG junction with periodic 

boundary conditions along the y-axis. The top contact is SLG, whereas the bottom contact is an 

add-atom Au. Bottom panel: Zero-bias transmission coefficient 𝑇(𝐸)	of molecule 5 as a function 

of energy (insensitive case). 
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Fig. 4.44 shows the calculated transmission coefficient of molecule 6, which implies that the 

LUMO resonance pinned close to the DFT-predicted Fermi energy. A similar behavior was 

obtained in the flat Au substrate, as discussed above (see Fig. 4.37), which means molecule 6 is 

insensitive to the shape of the Au surface. 
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Fig. 4.44: Top panel: Schematic illustration of a three-terminal Au/6/SLG junction with periodic 

boundary conditions along the y-axis. The top contact is SLG, whereas the bottom contact is an 

add-atom Au. Bottom panel: Zero-bias transmission coefficient 𝑇(𝐸)	of molecule 6 as a function 

of energy (insensitive case). 
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The above transmission function calculations of molecules 1-6 (Figs. 4.39-4.44) are summarized 

in Figs.4.45-a and -b. These curves demonstrate that 1, 4, 5 and 6 are insensitive molecules to the 

shape of the Au surface whereas the rest are sensitive. Molecules 2 and 3 are the sensitive ones 

(which have pyridyl anchors), because they switch from HOMO to LUMO by changing the Au 

substrate from flat gold to a cluster. (See Figs. 4.38, 4.45).  It is well known that the position of 

the energy levels relative to the Fermi energy depends on charge transport between the electrode 

and the molecule, which means if the electrons transfer from the electrode to the molecule, the 

energy level goes down and vice versa. For molecules 2 and 3, which have Py anchor, the electrons 

transfer from the gold cluster to the molecule, hence the energy level goes down, which leads to 

switching the transport from HOMO to LUMO. In other words, the charge transfer for these 

molecules depends on the shape of the gold electrode 

 

 

 

 

 

b a 

Fig. 4.45. a: Zero-bias transmission coefficient T(E) of molecules 1, 4 and 5 as a function of energy, 

the HOMO resonance is predicted to be pinned near the DFT-predicted Fermi energy. b: Zero-bias 

transmission coefficient 𝑇(𝐸)	of 2, 3 and 6, the LUMO resonance is predicted to be pinned near 

the DFT-predicted Fermi energy (add-atom Au substrate). 

 



 133 

4.10 Conclusion 
 
In this chapter, the charge transport mechanism of six OPE-based molecules has been studied using 

a three-terminal junction. The binding energies between different anchors including (SH, Py, SMe 

and SAc) and two-contact electrodes (Au and Gr) have been explored, and the results indicate that 

the thiol anchor exhibits strong binding to the Au compared to the others due to the strong covalent 

bond. In terms of the electrode material, these anchors bind much weakly to the Gr sheet than to 

Au due to the weak Van der Waals interactions between Gr and anchors. To probe the impact of 

the shape of the Au surface on the alignment of the molecular energy levels relative to the Fermi 

energy level of the electrode, I first studied the charge transport behaviour through 

SLG/molecule/Au-flat. I have demonstrated that the transmission coefficients near the DFT-

predicted Fermi energy (E-EFDFT=0 eV) for molecules 1-5 are HOMO-dominated, whereas 6 is 

LUMO-dominated due to the presence of SMe and Py anchors. Then, I repeated the transmission 

function calculations, where the molecules were bound to a gold atomic cluster. I found that the 

HOMO resonance is pinned near the DFT-predicted Fermi energy (E-EFDFT=0 eV), while for 

molecules 2, 3 and 6 the LUMO resonance is pinned near the DFT-predicted Fermi energy (E-

EFDFT=0 eV). This indicates that 4 molecules are insensitive to the shape of the Au surface, whereas 

two are sensitive. Molecules 2 and 3 (pyridyl anchors) are sensitive, because they switch from 

HOMO to LUMO by changing the Au substrate from flat gold to a cluster. In other words, the 

relative position of 𝐸r for molecules 2 and 3 depends on whether the gold is flat or possesses a 

gold cluster at the molecule-gold contact. 
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Chapter 5 

The Thermoelectric Properties of Oligo (phenylene-ethynylene) Derivatives  

The measurement of the Seebeck coefficient in molecular junctions offers complementary 

information to conductance measurements and is becoming essential for the understanding of 

transport processes at the nanoscale. In this chapter, the thermoelectric properties of the molecules 

discussed in chapter 4, oligo (phenylethylene) OPE-based molecules, are examined theoretically. 

I demonstrate that changing the shape of the gold surface can affect the sign of the Seebeck 

coefficient. 

 

 5.1 Introduction 

Thermoelectricity enables direct conversion of waste heat into electric energy and open a new way 

to harvest new environmentally friendly energy for energy-saving recycling1–3. Studies of charge 

and heat transport in single-molecule junctions are of great fundamental importance as they 

provide additional insights into the electronic structure of junctions and their transport properties1. 

It is worth mentioning that the thermoelectric properties of single-molecule junctions can be 

modified by manipulating their transport properties such as increasing the length of the molecule 

4–6, changing the molecule-electrode coupling geometry7,8 and chemical doping of the molecule9,10. 

This chapter aims to explore the effect of changing the shape of the gold surface on the sign of the 

Seebeck coefficient of the molecules studied in chapter 4. In what follows, I will present a brief 

overview of the Seebeck coefficient as a physical concept. Subsequently, the Seebeck coefficient 
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is investigated for molecules 1-6 trapped between SLG and the flat Au surface. Finally, it is 

examined again by changing the shape of Au from flat to cluster. 

5.2 Seebeck coefficient 

As mentioned above, thermoelectric effect describes the direct conversion between thermal and 

electric energies, when there is a temperature difference ∆𝑇and voltage difference ∆𝑉across, 

leading to an electric current 𝐼 and heat current 𝑄	passing through a system. Therefore, in the 

regime of linear response, the electric current 𝐼 and heat flow 𝑄 are related to the temperature 

∆𝑇	and voltage differences  ∆𝑉 by the following equation11 

																																																	� /}� =
%
,
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where 𝑇 is the reference temperature, 𝑒	is the electronic charge 
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In this expression 𝑇(𝐸) is the transmission coefficient for electrons of energy 𝐸 passing through 

the molecule from one electrode to other, and 𝑓(𝐸, 𝑇) is the Fermi energy distribution defined as 

𝑓(𝐸, 𝑇) = 	 �𝑒(]6]2) F5#⁄ + 1�
6$

 where 𝑘R 	is Boltzmann’s constant.  

When ∆𝑇 = 0, equation (5.1) yields for the electrical conductance 
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Similarly, when 𝐼 = 0 equation yields for the Seebeck coefficient  
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When the temperature is low enough, 𝑇(𝐸) varies approximately linearly with 𝐸 on the scale of 

𝑘R𝑇, then these expressions take the form  

𝐺 ≈ �%3
!

,
� 	𝑇(𝐸r)	                                                         (5.5) 

𝑆 ≈ −𝛼|𝑒|	𝑇	 �\Q@#(])
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                                               (5.6) 

where 𝛼 = 	�F5
3
�
% 1!

&
= 2.44 × 1060	𝑊Ω𝐾6% is the Lorentz number.   

From Equation (5.6), it is clear that the Seebeck coefficient is proportional to the slope of the 

natural logarithm of the transmission coefficient at the Fermi level. Consequently, 𝑆 is enhanced 

by increasing the slope of 𝑙𝑛𝑇(𝐸) near 𝐸 = 𝐸r. The sign of  𝑆 can be positive or negative, 

depending on the sign of the slope of the transmission function at the Fermi energy EF . In other 

words, it is related to the nature of the charge carriers: 𝑆 is positive for hole-dominated transport 

and negative for electron-dominated transport13,14. Therefore, measurements of the Seebeck 

coefficient of molecular junctions (MJs) are of great importance in determining the dominant 

transport mechanism and the location of frontier molecular orbitals in MJs15–17. 

To calculate the Seebeck coefficient for six OPE-based molecules, whose structures are shown in 

Fig. 4.4, I used DFT combined with the quantum transport code Gollum. In what follows, I will 

study the Seebeck coefficient of the studied molecules 1-6, through an asymmetric junction (i.e., 

SLG and Au) with two different structures of Au (flat and cluster). 

5.3 Au-flat surface 
 
As discussed above, the slope of the transmission coefficient 𝑇(𝐸) determines the sign and 

magnitude of the Seebeck coefficient 𝑆. In other words, whether the curve is HOMO or LUMO 
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dominated. Fig. 5.1 shows Seebeck coefficient 𝑆 (thermopower) over a range of Fermi energies at 

room temperature for molecules 1, which is positive at DFT-predicted Fermi E-EFDFT=0 eV, and 

this is due to the fact that this molecule is a HOMO-dominated (see Fig. 4.32).  
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Fig. 5.1: Top panel: Schematic illustration of a three-terminal Au/1/SLG junction. The top 

contact is SLG, whereas the bottom contact is a flat Au. Bottom panel: the room-temperature 

Seebeck over a range of Fermi energies 𝐸r	relative to the DFT-predicted Fermi energy 𝐸Nr# for 

molecule 1. 
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For molecule 2, since this molecule has two junctions 2a and 2b (resulting from an inverting of 

molecule 2) and possess HOMO dominated transmission curves as shown in Fig. 4.33, the Seebeck 

coefficients are positive at the DFT-predicted Fermi energy (E-EFDFT= 0 eV), as shown in Fig. 5.2. 
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Fig. 5.2: Top panel: Schematic illustration of a three-terminal Au/2a or 2b/SLG junction. The 

top contact is SLG, whereas the bottom contact is a flat Au. Bottom panel: the room-temperature 

Seebeck over a range of Fermi energies 𝐸r	relative to the DFT-predicted Fermi energy 𝐸Nr# 	for 

molecule 2. 
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Similarly, as the HOMO resonances are closer to the DFT-predicted Fermi energy (E-EFDFT=0 eV) 

for junctions 3a and 3b (resulting from an inverting molecule 3), as shown in Fig. 4.34, the Seebeck 

coefficients are positive in the vicinity of the DFT-predicted Fermi energy as shown in Fig. 5.3. 
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Fig. 5.3: Top panel: Schematic illustration of a three-terminal Au/3a or 3b/SLG junction. The 

top contact is SLG, whereas the bottom contact is a flat Au. Bottom panel: the room-temperature 

Seebeck over a range of Fermi energies 𝐸r	relative to the DFT-predicted Fermi energy 𝐸Nr# 	for 

molecule 3. 
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Again, molecule 4 is a HOMO-dominated due to the presence of thiol and thioacetate anchors, 

(see Fig. 4.35), which suggests that the Seebeck coefficient at the DFT-predicted Fermi energy (E-

EFDFT=0 eV) is positive, as shown in Fig. 5.4. 
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Fig. 5. 4: Top panel: Schematic illustration of a three-terminal Au/4/SLG junction. The top 

contact is SLG, whereas the bottom contact is a flat Au. Bottom panel: the room-temperature 

Seebeck over a range of Fermi energies 𝐸r	relative to the DFT-predicted Fermi energy 

𝐸Nr# 	for molecule 4. 
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Molecule 5, which contains an additional PE repeat unit compared to molecule 4, also has a 

HOMO-dominated transport (see Fig. 4.36), leading to a positive Seebeck coefficient around the 

DFT-predicted Fermi energy as shown in Fig. 5.5. 
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Fig. 5.5: Top panel: Schematic illustration of a three-terminal Au/5/SLG junction. The 

top contact is SLG, whereas the bottom contact is a flat Au. Bottom panel: the room-

temperature Seebeck over a range of Fermi energies 𝐸r	relative to the DFT-predicted 

Fermi energy 𝐸Nr# 	for molecule 5. 
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As discussed in chapter 4, molecule 6 is a LUMO dominated due to the presence of the four SMe 

and Py anchors, and since the sign of the Seebeck coefficient is determined by the slope of the 

transmission coefficient near the Fermi energy, the switching of the transport from HOMO to 

LUMO-dominated, as we move from 1-5 to 6, causes a change in the sign of Seebeck coefficient 

(positive to negative) as shown in Fig. 5.6.  
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Fig. 5.6: Top panel: Schematic illustration of a three-terminal Au/6/SLG junction. The top 

contact is SLG, whereas the bottom contact is a flat Au. Bottom panel: the room-

temperature Seebeck over a range of Fermi energies 𝐸r	relative to the DFT-predicted 

Fermi energy 𝐸Nr# 	for molecule 6. 
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As discussed earlier in this chapter, the Seebeck coefficient for molecules 1-5 is found to be 

positive at DFT-predicted Fermi E-EFDFT=0 eV as shown in Fig. 5.7-a, due to the fact that these 

molecules are HOMO-dominated. In contrast, Fig. 5.7-b proves the Seebeck coefficient is negative 

at E-EFDFT=0 eV for molecule 6, because it is a LUMO-dominated molecule. 
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Fig. 5.7: a: Room-temperature Seebeck coefficients over a range of Fermi energies 𝐸r	relative to 

the DFT-predicted Fermi energy 𝐸Nr# 	of molecules 1-5. A positive Seebeck coefficient is 

obtained at the DFT-predicted Fermi energy. b: Room-temperature Seebeck coefficient over a 

range of Fermi energies 𝐸r	relative to the DFT-predicted Fermi energy 𝐸Nr# 	of molecule 6. A 

negative Seebeck coefficient is obtained at the DFT-predicted Fermi energy. (Note: Simulations 

here for a flat Au surface). 
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Table 5.1 shows the Seebeck coefficient values at DFT-predicted Fermi E-EFDFT= 0 eV for the six 

molecules which are positive and similar in the range between 318 and 346 𝜇	𝑉 𝐾⁄  for 1-5, while 

being negative, approximately −157.8	 𝜇	𝑉 𝐾,⁄ 	for molecule 6.  

 

 

 

 

 

 

 

 
 
5.4 Au-cluster  
 
As it discussed in section 4.9.2, the shape of the Au electrode can affect the alignment of the 

HOMO and LUMO levels of the junction with respect to the Fermi level of the electrodes (i.e, 

molecules 2 and 3), and since the sign of the Seebeck coefficient is dependent upon the position 

of the molecular energy levels (i.e., HOMO and LUMO) with respect to the Fermi level, the above 

Seebeck coefficient calculations were repeated, in which the molecules are bound to a gold 

atomic	cluster rather than a flat Au substrate (see Figs. 5.8-5.13). As noted previously, molecule 1 

remains HOMO-dominated after changing the shape of Au, in other words, molecule 1 is 

insensitive to the shape of the Au electrode, indicating that 𝑆	remains positive at DFT-predicted 

Fermi, as shown in Fig. 5.8. In contrast, molecules 2 and 3 were found to be sensitive to the Au 

 

Compound 𝑺	(𝝁	𝑽 𝑲⁄ ) 

1 + 346.3 

2 + 331.3 

3 + 341.1 

4 + 336.9 

5 + 318.6 

6     -157.8 

Table 5. 1: Seebeck coefficient 𝑆	at DFT-predicted Fermi E-EFDFT=0 eV for molecules 1-6, which 

are bond to the flat Au and SLG. 



 153 

shape. In other words, the Fermi level being closer to LUMO than to the HOMO (see Figs. 4.40, 

4.41), leads to the switch of the sign of 𝑆	from positive to negative at E-EFDFT=0 eV, as shown in 

Figs. 5.9 and 5.10. For molecules 4 and 5, the transport remains HOMO-dominated (see Figs. 4.42, 

4.43), which means the sign of 𝑆	remains positive at E-EFDFT=0 eV, as shown in Figs. 5.11 and 

5.12. Similarly, molecule 6 keeps unchanged in the two structures of Au (LUMO-dominated), 

meaning 𝑆 is negative as shown in Fig. 4.13.  
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Fig. 5. 8: Top panel: Schematic illustration of a three-terminal Au/1/SLG junction. The top 

contact is SLG, whereas the bottom contact is an add-atom Au. Bottom panel: Room-

temperature Seebeck over a range of Fermi energies 𝐸r	relative to the DFT-predicted Fermi 

energy 𝐸Nr# 	for molecule 1 
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Fig. 5. 9 : Top panel: Schematic illustration of a three-terminal Au/2/SLG junction. The top 

contact is SLG, whereas the bottom contact is an add-atom Au. Bottom panel: the average 

room-temperature Seebeck over a range of Fermi energies 𝐸r	relative to the DFT-predicted 

Fermi energy 𝐸Nr# 	for molecule 2. 
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Fig. 5.10: Top panel: Schematic illustration of a three-terminal Au/3/SLG junction. The 

top contact is SLG, whereas the bottom contact is an add-atom Au. Bottom panel: the 

average room-temperature Seebeck over a range of Fermi energies 𝐸r	relative to the DFT-

predicted Fermi energy 𝐸Nr# 	for molecule 3. 
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Fig. 5.11: Top panel: Schematic illustration of a three-terminal Au/4/SLG junction. The top 

contact is SLG, whereas the bottom contact is an add-atom Au. Bottom panel: Room-

temperature Seebeck over a range of Fermi energies 𝐸r	relative to the DFT-predicted Fermi 

energy 𝐸Nr# 	for molecule 4. 
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Fig. 5.12: Top panel: Schematic illustration of a three-terminal Au/5/SLG junction. The top 

contact is SLG, whereas the bottom contact is an add-atom Au. Bottom panel: Room-

temperature Seebeck over a range of Fermi energies 𝐸r	relative to the DFT-predicted Fermi 

energy 𝐸Nr# 	for molecule 5. 
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The above 𝑆	calculations are summarized in Figs. 5.14-a and -b, which illustrate that the Seebeck 

coefficient is positive at the DFT-predict Fermi energy (E-EFDFT=0 eV) for molecules 1,4 and 5 

owing to the fact that the transport takes place through the HOMO. Whereas molecules 2, 3 and 6 
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Fig. 5.13: Top panel: Schematic illustration of a three-terminal Au/6/SLG junction. The 

top contact is SLG, whereas the bottom contact is an add-atom Au. Bottom panel: Room-

temperature Seebeck over a range of Fermi energies 𝐸r	relative to the DFT-predicted Fermi 

energy 𝐸Nr# 	for molecule 6. 
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have a negative 𝑆 and this suggests that the sign of Seebeck coefficients switched from 

positive to negative for molecules 2 and 3 by changing the shape of Au from flat to a 

cluster due to their switching from HOMO to LUMO dominated transport. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.2 shows the Seebeck coefficient values at DFT-predicted Fermi E-EFDFT=0 eV for 1-6 

molecules. As previously mentioned, the sign of 𝑆 switched from positive to negative for 

molecules 2 and 3, -64.7 and -238.5  𝜇	𝑉 𝐾⁄  respectively.   
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Fig. 5.14: a: Room-temperature Seebeck over a range of Fermi energies 𝐸r	relative to the DFT-

predicted Fermi energy 𝐸Nr# 	of molecules 1, 4 and 5. A positive Seebeck coefficient is obtained at 

the DFT-predicted Fermi energy. b: Room-temperature Seebeck over a range of Fermi energies 

𝐸r	relative to the DFT-predicted Fermi energy 𝐸Nr# 	of molecules 2, 3 and 6. A negative Seebeck 

coefficient is obtained at the DFT-predicted Fermi energy. (Note: Simulations here for Au cluster). 
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As a comparison of Seebeck coefficients 𝑆, at the DFT-predicted Fermi E-EFDFT=0 eV, between 

flat Au and cluster for molecules 1-6, table 5.3 shows the Seebeck coefficients transform from 

positive to negative for molecules 2 (~ + 331.3 to - 64.7	𝜇𝑉/𝐾) and 3 (~ + 341.1 to -238.5 𝜇𝑉/𝐾)	

by changing the shape of Au from a flat to cluster, while the sign of 𝑆 does not change for the rest 

of molecules, and the magnitude of 𝑆 is similar for molecules 1 and 5, with significant improving 

for molecules 4  (~ + 336.9 to +489.5 𝜇𝑉/𝐾) and 6  (~ -157.8  to -289.5 𝜇𝑉/𝐾).	

 
 
 
 
 
 
 

Table 5. 2: Seebeck coefficient 𝑆	at DFT-predicted Fermi E-EFDFT=0 eV for molecules 1-6, which 

are bond to Au cluster and SLG. 

Compound 𝑺	(𝝁	𝑽 𝑲⁄ ) 

1 + 333 

2 -64.7 

3 -238.5 

4 +489.5 

5 + 322 

6     -289.5 
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5.5 Conclusion 

In summary, the room-temperature Seebeck coefficients of six OPE-based molecules have been 

investigated using two different shapes of Au electrode: flat and cluster. The results indicate that 

the Seebeck coefficient is positive for molecules 1-5 and negative for molecule 6 when the 

molecules are trapped between flat Au and SLG, and by changing the shape of Au from flat to 

cluster, the Seebeck coefficient is switched from positive to negative for molecules 2 and 3. In 

other words, the relative position of 𝐸r	for molecules 2 and 3 can be determined by the shape of 

the gold surface, if it is flat or a gold cluster.  

 

 

 

                                                                                                                                      	
 

𝑺	(𝝁	𝑽 𝑲⁄ )			 

Compound Au-flat Au-cluster 

1 + 346.3 + 333 

2 + 331.3 -64.7 

3 + 341.1 -238.5 

4 + 336.9 +489.5 

5 + 318.6                     + 322 

6    -157.8          -289.5 

Table 5. 3: Comparison of Seebeck coefficients  𝑆	 between Au-flat and cluster at DFT-predicted 

Fermi E-EFDFT=0 eV for molecules 1-6 
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Chapter 6 

6. Conclusion and Future Work 

 
6.1 Conclusion  
 
This thesis is composed of the following chapters: 

Chapter 1 was a brief overview of molecular electronics and the thesis outlines.  

Chapter 2 introduced general concepts of DFT and its implementation SIESTA code, which I 

have used in this thesis to calculate the electronic and thermoelectric properties of single-molecule 

junction.  

Chapter 3 described the single particle theory based on the scattering theory and equilibrium 

Green’s function, and relating topics such as Landauer formulism, with some examples of how to 

calculate the transmission coefficient for different systems using the Hamiltonian and Green’s 

functions.  

Chapter 4 presented the theoretical results of six oligo(phenylene-ethynylene) OPE-based 

molecules that were trapped between the single-layer graphene (SLG) and the gold electrode to 

form SLG/molecule/Au junction. I investigated six OPE-based molecules with different anchor 

groups including thiol, pyridine, thioether and thioacetate. To calculate the electronic and 

thermoelectric properties, I simulated a three-terminal junction, in which the top contact is single-

layer graphene (SLG) and the bottom contact is gold to provide an asymmetric junction. The 

optimal binding distances between the contacts (i.e., Au and SLG) and the different anchor groups 

were obtained by calculating their binding energies as a function of distance, and the results reveal 

that thiol exhibits the strongest binding to the Au compared to the others due to its strong covalent 

bond. Regarding the surface material, calculations demonstrate that the studied anchors bind much 
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weakly to the Gr sheet than to Au due to their weak interactions with Gr (i.e., non-covalent bond). 

Furthermore, I also explored the electronic properties of six OPE-based molecules using two 

different shapes of Au electrode: flat and cluster. First, I studied the charge transport behaviour 

through a SLG/molecule/ Au-flat junction. I have shown the transmission coefficients for 

molecules 1-5 are dominated by a HOMO resonance in the vicinity of the DFT-predicted Fermi 

energy (E-EFDFT=0 eV). In contrast, the transmission through molecule 6 is dominated by a LUMO 

resonance (due to the presence of SMe and Py anchors). Secondly, I repeated the transmission 

function calculations, where the molecules were bound to a gold atomic cluster. The simulations 

suggest that molecules 1, 4 and 5 remain HOMO-dominated at the DFT-predicted Fermi energy, 

whereas molecules 2, 3 and 6 are a LUMO- dominated at the DFT-predicted Fermi energy. This 

hints that four molecules (i.e., 1, 4, 5 and 6) are insensitive to the shape of the Au surface, whereas 

two are sensitive (i.e., 2 and 3), due to their switching from HOMO to LUMO-dominated transport. 

In other words, the shape of the gold surface, whether it is flat or possesses a gold cluster at the 

molecule-gold contact, determines the relative position of 𝐸r for molecules 2 and 3.  

Chapter 5 explored the thermoelectric properties of the studied molecules in chapter 4. The impact 

of the shape of the Au electrode (i.e., flat and cluster) on the sign of the Seebeck coefficient is also 

probed. With flat gold, the Seebeck coefficient is positive for molecules 1-5 and negative for 

molecule 6, while it switches from positive to negative for molecules 2 and 3 by changing the gold 

electrode from flat to cluster.  
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6.2 Future Work  

In this thesis I have investigated the electron transport of the self-assemble monolayer (SAMs) for 

the OPE- based molecules that trapped between the single-layer graphene (SLG) and the gold 

electrode to form SLG/molecule/Au junction. For the future, one can envisage extending this work 

in a number of directions. First it would be interesting to replace the asymmetry 

Au/molecule/graphene junction by symmetry such as graphene/molecule/graphene junction to 

explore how the results would change. One interesting study would be an assessment of transport 

properties when OPE-based molecules are terminated by other anchor groups such as amine 

(NH2), cyano (CN) and BDT. It would also be of interest to investigate the electronic properties 

of different molecules such as fullerene 𝐶�k1 and porphyrin 2. Recently, phonon transport properties 

in three-terminal systems have drawn increasing attention due to the potential applications in 

thermal devices3. Therefore, it would be worth to utilise methods for computing phonon transport 

through three-terminal system to obtain the contribution from phonon to thermal conductance. 

Another interesting aspect is utilizing alternative electrode material, including superconducting 

and semiconductor electrodes4,5. In addition, hybrid superconductor-semiconductor nanowire 

structures have recently become a topic of intense interest6. They have opened new research 

avenues in quantum transport, that may lead to new quantum effects. Finally, the spin transport in 

the presence of three ferromagnetic electrodes7, as well as a combination of superconducting and 

ferromagnetic electrodes, may be worthy of investigation. 
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