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Utilizing scattering theory, we quantify the consequences of physical constraints that limit the
visibility of non-Hermitian effects in passive devices. The constraints arise from the fundamental
requirement that the system obeys causality, and can be captured concisely in terms of an internal
time-delay operator, which furthermore provides a direct quantitative measure of the visibility of
specific non-Hermitian phenomena in the density of states. We illustrate the implications by con-
trasting two prominent non-Hermitian effects, exceptional points and the non-Hermitian skin effect,
whose underlying extreme mode nonorthogonality turns out to be undetectable in the density of
states.

I. INTRODUCTION

Hermitian systems support orthogonal stationary
modes with identical, infinite, life times. If the Her-
miticity is of a fundamental nature, as in quantum me-
chanics, this plays an important role in guaranteeing
the dynamical stability of the system. The situation is
more complex in effectively non-Hermitian systems [1, 2],
for instance photonic systems with gain or loss [3–7],
where nonorthogonal modes of different life times ap-
pear. These systems attract considerable attention be-
cause they can display a wide range of phenomena that
can be exploited for unique applications, such as power
oscillations [8–10], unidirectional transport [11] and invis-
ibility [12], coherent absorption [13, 14], mode selection
[15] and lasing [16–21]. Many of these applications pur-
posefully utilize the life-time differences to enhance de-
sired modes relative to undesired modes—hence, achieve
a clear visibility of specific modes incorporating a partic-
ular functionality by their long life time. Furthermore,
many of these applications make explicit use of the mode
nonorthogonality. Prominent examples are enhanced
sensors [22–24] operating near exceptional points [25–27],
which are non-Hermitian degeneracies where eigenmodes
align, and directed amplifiers and sensors [28–32] facili-
tated by the non-Hermitian skin effect [33–37], a peculiar
feature of non-reciprocal systems where bulk modes be-
come systematically distorted towards one side.

The design of such systems has received further im-
petus by the realization that in non-Hermitian systems,
modes with predetermined frequencies, life times, and
mode profiles can be protected by generalised symme-
tries [38–42]. This leads to rich scenarios that transcend
Hermitian topological physics [43–45], both practically
[46] as well as in their mathematical complexity [47–49].
However, many of these symmetries can only be realized
in active systems, which incorporate components with
gain that require a sustained supply of energy and in-
troduce noise. For instance, parity-time (PT) symmetric
systems with balanced gain and loss [4, 5] can provide a
spectrum of infinite life-time modes, but these are intrin-
sically destabilised by the quantum noise in the active
regions [50–52]. Furthermore, present experimental re-

alizations of the non-Hermitian skin effect [53–57] all in-
voke active elements. Analogously, noise limits the preci-
sion of exceptional-point sensors [58], and non-adiabatic
transients from life-time differences limit the observabil-
ity of the half-integer Berry phase of these points [59, 60].
Even in the passive setting, many of the most coveted
non-Hermitian effects can be made visible only with spe-
cially tailored excitations. In view of these challenges,
it is highly desirable to base non-Hermitian functionality
on the generic scattering response of passive stationary
devices, which is encoded in the density of states.
In this work, we establish and evaluate a stringent fun-

damental constraint on this objective, which arises from
the requirement that the underlying microscopic physics
obeys causality [61]. This requirement is stronger than
just insisting on the dynamical stability of the modes in
the system (hence, on non-negative lifetimes), and takes
care of the fact that the system is not isolated, but cou-
ples to the components supplying the loss. However, the
constraints can be readily formulated in general terms,
and evaluated quantitatively in given systems. From this
we can determine general limits of the visibility of specific
non-Hermitian effects.
To establish these links systematically, we first formu-

late the constraints compactly by phrasing them in terms
of the language of scattering theory (Sec. II). Causality
is then encoded into the internal time-delay operator,
a central object from scattering theory that can be ob-
tained from the microscopic model. From this, one can
obtain the critical threshold value of overall losses that a
model necessarily needs to include to be realizable in a
passive device. These conditions can be classified by sym-
metries inherited from the effective Hamiltonian, which
establishes a systematic link between non-Hermitian and
Hermitian symmetry classes (Sec. III). To evaluate the
consequences in practical settings (Sec. IV), we exploit
that the time-delay operator directly determines the ex-
perimentally observed density of states, which serves as
a quantitative measure of the visibility of specific non-
Hermitian effects. We apply this to scenarios of par-
ticular theoretical and experimental interest, comprising
systems displaying exceptional points, the non-Hermitian
skin effect, and edge states. Remarkably, in the passive
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setting, the extreme mode nonorthogonality underlying
exceptional points and the skin effect cannot be detected
from the density of states. As we describe in the conclu-
sions (Sec. V), the results presented here invite attention
to the revisit the physical interpretation of mathemati-
cal features and classifications of non-Hermitian systems.
Appendices provide further background on the scattering
formalism, symmetry classification, and numerical results
backing up these conclusions.

II. GENERAL FORMULATION OF CAUSALITY
CONSTRAINTS

For concreteness, we base the considerations on
coupled-mode theory, which enjoys a wide range of appli-
cations from photonic to mechanical systems and mimics
the language of quantum mechanics. In this theory, one
employs a basis corresponding to a suitable set of bare
modes, often identified with individual components such
as resonators or waveguides, and collects their intrinsic
properties and couplings in a matrix H that serves as
an effective Hamiltonian. We assume that the elements
of H are frequency-independent, but note that effects
of additional frequency dispersion can be accounted for
by including auxiliary components [62]. This effective
Hamiltonian serves as the input to model and design ex-
periments, and also is the ubiquitous starting points for
theoretical considerations, such as about the role of sym-
metries in these systems, as specified further below. For
the moment, the key feature of the effective Hamiltonian
is that it can be non-Hermitian, H ̸= H†. On the basis
of the microscopic model, we capture this quantitatively
by writing the Hamiltonian in the form

H = H0 + iF − iγ, (1)

which separates out the Hermitian parts H0 = H†
0 , non-

trivial anti-Hermitian parts with iF = −(iF )†, as well
as an overall level of uniform scalar background losses
γ, which is determined by requiring trF = 0. As we
describe further below, the operator F governs the de-
sired non-Hermitian symmetries and effects, which then
become realizable in a passive device when γ exceeds a
certain threshold value γc.
To identify this threshold and establish the ensuing

limits on the visibility of non-Hermitian effects on phys-
ical grounds, we adopt a common measurement protocol
of the density of states, and probe the system from the
outside to detect its resonant response. Let us assume
that the system is uniformly coupled to the outside at a
coupling strength Γ. In the wide-band limit, where all
spectral features in the scattered signal are due to the
system, the scattering matrix is given by [63–66]

S(ω) = (1− iΓG(ω))(1 + iΓG(ω))−1, (2)

where G(ω) = (ω−H0−iF+iγ)−1 is the Greens function
of the system (see the Appendix for background of this

formalism). From the scattering perspective, the system
is passively realizable if it does not amplify any incoming
signal a, i.e., if ||Sa|| ≤ ||a||, irrespective of whether the
incoming signal is designed to couple into a specific mode
or not. This means that the operator combination S†S
has no eigenvalues exceeding 1, or equivalently, that the
expression 1−S†S is positive semidefinite. With Eq. (2),
this condition can be reformulated instructively by writ-
ing

1− S†S = 2ΓQΓ, (3)

where

QΓ = 2G(ω + iΓ)†(γ − F )G(ω + iΓ) (4)

is the celebrated time-delay operator [66–69], recovering
it in a form that remains valid in a non-Hermitian system
[70]. Via Eq. (3), its elements can be directly determined
in experiments from the scattering strength. For a pas-
sively realizable system we then have to demand that QΓ

is positive semidefinite.
This formulation is useful because it provides a unify-

ing perspective on different aspects of the system.
Firstly, it confirms that on the simplest level, a mi-

croscopic model can be physically realized in a passive
system when the combination γ − F itself is positive
semidefinite [71], hence, if γ is larger than the largest
eigenvalue of F . We denote the eigenvalues of F as fk,
so that γc = max fk. This constraint is both simpler and
stronger than requiring positive life times τk of all modes,
which are encoded in the eigenvalues Ωk = ωk − i/2τk
of the effective Hamiltonian H itself, and related mathe-
matical constraints such as the Lee-Wolfenstein and Bell-
Steinberger relations [71–73].
Secondly, the positive semidefiniteness of the delay

times guarantees causality of the system, which clarifies
the fundamental physical nature of the constraint, and
justifies to call γc the causality threshold.
Thirdly, the time-delay operator delivers a direct mea-

sure of the generic visibility of physical effects, the den-
sity of states ρ(ω) = (2π)−1 trQΓ(ω), which accounts for
the mode broadening by the intrinsic and radiative losses,
and via Eq. (3) is directly accessible from the experimen-
tal scattering signal [65, 69]. We read off that for fixed
H0 and F , the passive visibility of individual modes in
this measure is maximized for Γ = 0 and γ = γc, hence at
the causality threshold of a weakly probed system. Be-
low, we will use this measure to quantify the properties of
specific systems from different symmetry classes, whose
general features we describe next.

III. EVALUATION IN SPECIFIC SYMMETRY
CLASSES

Effectively non-Hermitian Hamiltonians appear in
many guises, and the physical symmetries of a system
translate into different mathematical forms that reflect
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FIG. 1. Complex eigenvalue spectrum Ωk (top) and density of
states ρ(ω) (bottom) for the effective Hamiltonian (5). The
couplings are fixed to b = c∗ = 0.4 − 0.3i, while (a) a =√
−bc − 0.2i (PT symmetric case), (b) a =

√
−bc (EP), (c)

a =
√
−bc + 0.1i (dynamically broken phase), and (d) a =√

−bc + 0.2 (symmetry explicitly broken). The thick lines
are for the limit of weak couplings Γ = 0, where the life
times are maximized. At the exceptional point, ρ(ω) is then
a simple Lorentzian, which does not reveal the extreme mode
nonorthogonality of the system. The thin lines are for finite
Γ = 0.1, where a squared-Lorentzian background of limited
contrast appears at the EP.

the context. E.g., the effective Hamiltonian may generate
the time evolution of a wavefunction in a slowly-varying
envelope coupled-mode description, which is analogous
to the Schrödinger equation, it may feature in the prop-
agation of a density matrix, or it may appear in a stabil-
ity analysis or Bogoliubov theory that includes complex-
conjugated fields [39, 40, 42]. In the identification of the
causality constraints above, we adopted the language of
scattering theory, and we therefore apply the correspond-
ing notions when identifying the symmetries of the sys-
tem [45, 74, 75]. Specifically, conventional time-reversal
(T) symmetry then entails H = H∗, and in a recipro-
cal system we have H = HT (we will refer to this as
the T′ symmetry). Furthermore, PT symmetry dictates
XHX = H∗, and a non-Hermitian charge-conjugation
(C) symmetry entails XHX = −H∗, involving in each
case a suitable unitary operator fulfilling X 2 = 1. We will
also consider variants of these systems with XHX = H†

(PTT′) and XHX = −H† (CT′), which constitute sepa-
rate symmetry classes when the system is non-reciprocal.

It should be noted that several of these symmetries
can only be realized for γ = 0. To extend them to
the passive setting, we hence assume that they hold for
H = H0+ iF , and then consider the same model at finite
γ, following the established example of passive PT sym-
metry [9]. The symmetry can then be realized passively
for γ ≥ γc. These symmetries can be combined in differ-
ent ways, leading to an extensive classification [39, 40],
where the cases above are of particular theoretical and
experimental interest. For instance, non-reciprocal sys-
tems with H = H∗ ̸= HT are the simplest setting in
which the non-Hermitian skin effect appears.

Before we address the visibility of such effects, let us
examine the general structure of the causality constraints
in these symmetry classes. We express this compactly in
terms of the symmetries inherited by the operator F cap-
turing the nontrivial non-Hermitian content of the model,

and refer to the Appendix for a detailed description in
terms of the block structure of this operator.
We start with the case of a PT-symmetric system.

From the definition of the symmetry in terms of the effec-
tive Hamiltonian, we see that the operator F then obeys a
Hermitian charge-conjugation symmetry, XFX = −F ∗,
as encountered in a superconductor [45]. This enforces
a symmetry of its spectrum, with eigenvalues appearing
in pairs ±|fk|. For a PTT′ symmetry, the operator F
displays a chiral symmetry, XFX = −F , again leading
to a spectral symmetry of its eigenvalues. Both variants
coincide if the system is reciprocal, H = HT , where F is
real and obeys time-reversal symmetry.

For systems with a C symmetry, F = XF ∗X displays
a generalized time-reversal symmetry, while CT′ entails
that F = XFX obeys a unitary symmetry, and hence
can be block-diagonalized into the symmetry sectors of
X . Finally, in a non-reciprocal system with passive T
symmetry, F = −FT , as is typical for a topologically
nontrivial superconductor in the so-called Majorana ba-
sis [45]. In all cases, we see that there is a systematic
link from a non-Hermitian symmetry class to a Hermi-
tian symmetry class.

This concludes or first main objective of formulating
a convenient general framework for the causality con-
straints. We now apply it to quantify the visibility of
non-Hermitian effects in concrete settings.

IV. OBSERVABILITY OF SPECIFIC
NON-HERMITIAN EFFECTS.

As mentioned in the introduction, exceptional points
(from here on EP’s), where eigenvalues collide in the com-
plex plane and eigenmodes align, are one of the most
prominent features of non-Hermitian systems. Their ef-
fects are most easily seen for modes of long life times,
such as in active photonic systems near the laser thresh-
old [16–19], which then are highly sensitive to pertur-
bations [22–24]. The enhanced sensitivity also applies
to the noise from spontaneous emission and response to
external driving, which at the EP results in an uncon-
ventional squared-Lorentzian lineshape [51, 76–79]. This
celebrated result has been original derived in the input-
output scattering formalisms of active systems [80, 81],
which analyzes S†S−1, and shows that the modified line
shape is linked to the drastic violation of mode orthogo-
nality at the EP.

To assess the observability of these features in the den-
sity of states of passive systems, we adopt the standard
reduced 2× 2 Hamiltonian

H =

(
a− iγ b
c −a− iγ

)
, (5)

where we initially allow for the most general case with
complex parameters a, b, and c. The causality constraint



4

In
−1

0

ρ(
ω)

Im
 Ω

Re Ω

ω
ω

n

0 2 4−4 −20
1

3

1

20

−5
0

5

I
−1

0

ρ(
ω)

Im
 Ω

Re Ω

ω0 2 4−4 −20
1

3

0 2 4−4 −20
1

4

ρ(
ω)

Im
 Ω

Re Ω

ω

−1

0
In

In

0
2

8

ρ(
ω)

Im
 Ω

Re Ω

ω
ω

n

1

20

−4
0

4

−1

0

0 2 4−4 −2

(a) (b)

ρn(ω)

ω
n

1

20

−4
0

4

ρn(ω)

ω
n

1

20

−4
0

4

ρn(ω)

ρn(ω)

ω
n

20

−5
0

5

ρn(ω)

ω
n

20

−5

5

ρn(ω)

1
0

n

ω
n

1

20

−4
0

4

ρn(ω)

Г=0.1Г=0 Г=0.1Г=0

pe
rio

di
c

op
en

1
ω

n

1

20

−5
0

5

ρn(ω)

FIG. 2. Absent signatures of the Non-Hermitian skin effect in the local and global density of states ρn(ω) and ρ(ω), illustrated
for systems of 20 sites with open (top) and periodic (bottom) boundary conditions at weak coupling Γ → 0 (left supanels/solid
curves) and moderate coupling Γ = 0.1 (right supanels/dashed curves). The system is modelled by Eq. (8) with v1 = −0.8i,
v2 = −0.2i, u±

1 = ū ∓ 0.4, u±
2 = 1, w = 0, and (a) ū = 0.8, (b) ū = 2. The physical density of states is compared to the

mathematical summed eigenvector profile In displaying the skin effect, and the complex eigenvalues Ω of H.

then follows from the matrix

F = (−i/2)
(
a− a∗ b− c∗

c− b∗ −a+ a∗

)
, (6)

giving the threshold value γc =
√

(Im a)2 + |b− c∗|2/4.
In Fig. 1 we show the threshold density of states ρ(ω)

for different scenarios at and away from the EP, which
occurs for a2 + bc = 0. In the figure, the EP signals
a spontaneous symmetry-breaking transition, where the
eigenvalue pair moves away from the spectral symmetry
line Imω = −γ. At the EP, this density of states is given
by

ρ(EP)(ω) =
1

π

|b|+ |c|
ω2 + (|b|+ |c|)2/4

. (7)

This is a simple Lorentzian normalized to 2, hence ac-
counts for both states in the same way as in a Hermitian
system with orthogonal states, irrespective of the actual
extreme mode nonorthogonality at the degeneracy. A
squared-Lorentzian background of limited contrast only
appears at finite coupling Γ (dashed lines). However,
this background comes with a negative spectral weight
that never exceeds 1/4 of the Lorentz contribution (see
Appendix), with the optimal contrast attained at Γ ∼ γc
where the density of states is already strongly suppressed
due to the much reduced lifetime to the states.

In other symmetry classes, functionality can arise col-
lectively from the bulk, or individually from particular
states. To determine their visibility we consider a flexi-
ble one-dimensional model encompassing a wide range of
paradigms [34, 38, 82–89], based on an effective Hamil-
tonian

Hnm = δn,mvn + δn,m−1u
−
n + δn,m+1u

+
m

+ δn,m−2wn + δn−2,mwm. (8)

The imaginary parts of the complex onsite-potentials vn
induce distributed losses, while the real parts allow to
define a corrugated potential. The couplings u±n can be
arranged to induce zero modes, and when they are non-
reciprocal they induce the non-Hermitian skin effect. For
the moment, we also include reciprocal real next-nearest
neighbour couplings wn as they allow to obtain the skin
effect from scalar losses and real magnetic fields [84], and
feature in some experiments [53].
All these effects appear in a periodic dimer arrange-

ment with a two-site unit cell, which induces a non-trivial
band structure governed by the Bloch Hamiltonian

H(k) =

(
v1 + 2w1 cos k u−1 + u+2 e

−ik

u+1 + u−2 e
ik v2 + 2w2 cos k

)
. (9)

With conventional periodic boundary conditions, k is
real, but to fulfill the open boundary conditions of a fi-
nite system one generically needs to combine spectrally
degenerate non-reciprocal modes with complex k [90–92].
Hence, the modes display an exponential spatial pro-
file distorted toward the edge, which is the essence of
the non-Hermitian skin effect. In the Hermitian limit,
these modes become conventional extended Bloch states,
with the possible exception of a finite number of edge
states that maintain an exponentially decaying profile.
This complex interplay of effects explains why the non-
Hermitian skin effect has received considerable attention.
In contrast, the causality constraints on the bulk and

edge modes are governed much more simply by the Bloch
version of the operator F ,

F (k) =

(
∆v ∆u∗1 +∆u2e

−ik

∆u1 +∆u∗2e
ik −∆v

)
, (10)

where ∆v = Im (v1 − v2)/2 and ∆un = −i(u+n − u−n
∗
)/2.

This is a standard Hermitian dimer chain with two sym-



5

metric bands, encompassing the Su-Schrieffer Heeger [93]
and Rice-Mele [94] models as special cases. These models
can support edge states, but they occur in the middle of
the spectrum, while we are interested in the upper edge
of the spectrum. Furthermore, being Hermitian, F does
not suffer from any complications of the skin effect, so
that this upper edge can be found from the Bloch ver-
sion. Therefore, in large systems the causality threshold

γc =
√
(∆v)2 + (|∆u1|+ |∆u2|)2 (11)

coincides for both types of boundary conditions, and
hence is also insensitive to the skin effect.

To assess how visible these effects are in the passive
setting, we use the spatially resolved density of states
ρn = Qnn/2π, again evaluated to the causality thresh-
old. Figure 2 illustrates this in different scenarios (see
the Appendix for further numerical results). The top
row shows results for a finite system with open boundary
conditions, where each panel further contrasts weak and
strong coupling Γ. In panel (a), the system supports an
edge state, which for Γ = 0 is clearly visible in the lo-
cal and total density of states, while no such edge state
exists in panel (b). In both panels, the eigenstates dis-
play the non-Hermitian skin effect, as quantified by the
summed profile In ≡ (UU†)nn of normalized eigenvec-
tors, collected in the diagonalizing matrix U . However,
this effect is completely absent in the density of states, to
the extent that it does not even appear as a background
effect at finite Γ. Indeed, the spatial profile of the bulk
density of states is similar to that in a system with pe-
riodic boundary conditions (bottom row), even though
the eigenfunctions and eigenvalue spectra of both cases
dramatically differ.

V. CONCLUSIONS

In summary, we have established general constraints
on the observability of non-Hermitian effects in pas-
sive devices, and evaluated the implications for promi-
nent paradigms, including exceptional points, the non-
Hermitian skin effect, and symmetry-protected edge
states. Some of the most widely sought-after features,
in particular the signatures of drastic mode nonorthogo-
nality, cannot be detected in the density of states. These
findings highlight the essential role of active elements in
devices that aim to exploit these signatures—which gen-
erally suffer from other complications, such as unavoid-
able material dispersion.

Being formulated in a unifying scattering approach,
the general results apply to various platforms, such as
photonic, mechanical and acoustic systems, electronic
circuits, or microwave networks, and can be readily used
to quantify the visibility of effects in a wide range of mod-
els. This also provides guidance for the design of passive
devices in which the visibility is maximized, and allows
to discard designs relying on effects whose observability
is severely limited.

More broadly, the results presented here imply that the
physics of passive non-Hermitian systems is governed not
just by the mathematical symmetry class of their effec-
tive Hamiltonian [39, 40, 42], but is also systematically
linked to an operator from a specific Hermitian symme-
try class, which can display its own distinct phases and
transitions — features that are not included in the ex-
isting classifications. For instance, there is a clear phys-
ical distinction between settings where a non-Hermitian
spectral symmetry applies with respect to the real axis
or the imaginary axis of the complex frequency plane.
This realization introduces additional richness into the
physical properties of these systems, whose role can also
be explored in active and non-linear settings, in partic-
ular when considering their quantum-limited sensitivity
to noise.
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Appendix A: Details of the derivation of general
expressions

The scattering matrix given in Eq. (2) can be derived
in several standard formalisms, see Refs. [63–66], which
also cover a range of applications and extensions. Here,
we present an explicit derivation in the instructive phys-
ical setting where each internal site is coupled with a
strength Γ to a dedicated single-channel waveguide (from
the formal steps, this physical derivation corresponds
closely to the mathematical one given in the introduc-
tion of Ref. [66]). We denote the real-space components
inside the system by ψint, and the incoming and out-
going travelling-wave components in the waveguides by
ain, aout. This scenario then translates into the wave-
matching equations

(ω −H)ψint = Γ(aout + ain) (A1)

(matching the wavefunctions) and

ψint = iaout − iain (A2)

(matching their derivatives in a manifestly flux-
conserving form). We multiply the second of these two
equations by ±iΓ and add the result to the first equation,
so that

(ω −H + iΓ)ψint = 2Γain, (A3)

(ω −H − iΓ)ψint = 2Γaout. (A4)
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Therefore,

aout = (ω −H − iΓ)(ω −H + iΓ)−1ain ≡ Sain. (A5)

From this we directly read off S, which in Eq. (2) is con-
veniently written in terms of the internal Green’s func-
tion, G(ω) = (ω −H)−1.

In experiments, the density of states can be inferred from this set-up by analyzing the losses into the system [65].
This is formalised by the left-hand side of Eq. (3), while theoretically the link is established using the relation to the
underlying Greens function [69]. The right-hand side then follows directly by inserting the scattering matrix into this
expression,

1− (ω −H† − iΓ)−1(ω −H† + iΓ)(ω −H − iΓ)(ω −H + iΓ)−1 (A6)

= (ω −H† − iΓ)−1[(ω −H† − iΓ)(ω −H + iΓ)− (ω −H† + iΓ)(ω −H − iΓ)](ω −H + iΓ)−1 (A7)

= 2Γ(ω −H† − iΓ)−1[i(H −H†)](ω −H + iΓ)−1 ≡ 2ΓQΓ, (A8)

where we then identify (ω −H + iΓ)−1 = G(ω + iΓ) and i(H −H†) = 2(γ − F ).

The resulting combination QΓ of Greens functions is pre-
cisely the time-delay operator [66, 69], written in a form
that remains valid in non-Hermitian systems [70]. We
note that in Hermitian systems, where the scattering ma-
trix S is unitary, the time-delay operator can also be
written as Q = −iS†dS/dω, as it was indeed introduced
originally by Wigner and Smith [67, 68].

Appendix B: Concrete forms of the symmetries of
the nontrivial non-Hermitian content F

In Sec. III, we identified the symmetries inherited by
the operator F in general terms. Here, we express this
symmetries concretely in terms of the block structure of
this operator. We again start with the case of a PT-
symmetric system. Taking X of the form of a Pauli-x
block matrix, as commonly done to reflect the physical
design with symmetrically placed balanced gain and loss
components, the effective Hamiltonian is of the form

H =

(
A− iγ B
B∗ A∗ − iγ

)
(B1)

with general subblocks A and B. The nontrivial non-
Hermitian content is captured by the operator

F =
−i
2

(
A−A† B −BT

B∗ −B† A∗ −AT

)
. (B2)

This displays the symmetries of a superconductor with a
Hermitian charge-conjugation symmetry, XFX = −F ∗,
and enforces the symmetry of its spectrum, with eigen-
values paired as ±|fk|.
For a PTT′ symmetry,

H =

(
A− iγ B
C A† − iγ

)
(B3)

where B = B† and C = C†. Therefore,

F =
−i
2

(
A−A† B − C
C −B A† −A

)
(B4)

now displays a chiral symmetry, XFX = −F , again lead-
ing to a spectral symmetry of its eigenvalues. The block
structures of the PT and PT′ variants coincide if the sys-
tem is reciprocal, H = HT , where F is real and obeys
time-reversal symmetry.
For systems with a C symmetry, one conventionally

chooses X of the form of a Pauli-z block matrix, as this
allows for cases with a nontrivial topological index ν =
trX . The effective Hamiltonian then has the structure

H =

(
iA− iγ B
C iD − iγ

)
(B5)

with real matrices A, B, C, D, and γ chosen such that
tr(A+D) = 0. This entails that

F =
−i
2

(
i(A+AT ) B − CT

C −BT i(D +DT )

)
= XF ∗X (B6)

displays a generalized time-reversal symmetry.
Analogously, for a system with CT′ symmetry,

H =

(
iA− iγ B
B† iD − iγ

)
(B7)

with general B and Hermitian A and D, once more obey-
ing tr(A+D) = 0. This entails that

F =

(
A 0
0 D

)
= XFX (B8)

is indeed block-diagonalized into the symmetry sectors of
X .
Finally, in a non-reciprocal system with passive T sym-

metry,

H =

(
A− iγ B
C D − iγ

)
(B9)

with real blocks A, B, C, D, and

F = (−i/2)
(
A−AT B − CT

C −BT D −DT

)
= −FT , (B10)

which indeed coincides with the block structure of the
Hamiltonian for a topologically nontrivial superconduc-
tor in the Majorana basis.
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Appendix C: Analytical discussion of the visibility of
exceptional points

Here, we provide further analytical details for the sig-
natures of mode nonorthogonality in the density of states
near an exceptional point, as obtained from the model
Hamiltonian Eq. (5). From the definitions, this density
of states can be written analytically as

ρ(ω) =
2Re [(a2 + bc)(γ + Γ + iω)]

π|a2 + bc+ (γ + Γ + iω)2|2

+
2γ|γ + Γ + iω|2

π|a2 + bc+ (γ + Γ + iω)2|2

− Γ(2|a|2 + |b|2 + |c|2)
π|a2 + bc+ (γ + Γ + iω)2|2

. (C1)

At the exceptional point a2 + bc = 0, this reduces to

ρ(EP)(ω) = ρ(1)(ω) + ρ(2)(ω), (C2)

ρ(1)(ω) =
2γ

π|γ + Γ + iω|2
, (C3)

ρ(2)(ω) = − Γ(|b|+ |c|)2

π|γ + Γ + iω|4
, (C4)

hence, the sum of a simple Lorentzian and a squared
Lorentzian, where the latter one only appears for finite
Γ. Equation (6) is obtained for Γ = 0, γ = γc = (|b| +
|c|)/2, where the width γ +Γ of the simple Lorentzian is
minimized in a passive system, and its weight

S1(Γ) =

∫ ∞

−∞
ρ(1)(ω)dω =

2γ

γ + Γ
(C5)

is maximized.

The squared Lorentzian carries a negative weight

S2(Γ) =

∫ ∞

−∞
ρ(2)(ω)dω = −Γ(|b|+ |c|)2

2(γ + Γ)3
. (C6)

Therefore, using again γ ≥ γc = (|b|+ |c|)/2, in a passive
system the relative weight

|S2(Γ)|
S1(Γ)

=
Γ(|b|+ |c|)2

4γ(γ + Γ)2
≤ Γγ

(γ + Γ)2
≤ 1

4
, (C7)

where the maximum is attained at γ = Γ = γc.
Following the same steps, we can also compare the rel-

ative peak heights of these two contributions,

|ρ(2)(0)|
ρ(1)(0)

=
Γ(|b|+ |c|)2

2γ(γ + Γ)2
≤ 1

2
, (C8)

which again is maximized at γ = Γ = γc. We note
that the density of states formally turns negative for
γ < γc/

√
2, which is less stringent than the causality

constraint.
Appendix D: Additional numerical results

In Sec. IV we showed numerical results for particu-
larly interesting scenarios in which the underlying non-
Hermitian effects are realized cleanly. To illustrate the
general nature of our findings, we show in Fig. 3 ad-
ditional results for the EP model (5), evaluated at pa-
rameters where PT and PTT′ symmetries are manifestly
broken also by the couplings. Analogously, we show addi-
tional results for the non-Hermitian skin effect, covering
the case where some bulk states in the open system have
moved away from the symmetry line in the complex plane
(Fig. 4), as well as parameter configurations in which the
all spectral symmetries are explicitly broken (Fig. 5), in-
cluding by next-nearest-neighbour couplings (Fig. 6).
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FIG. 4. (a) Analogous to Fig. 2, but for ū = 0.25, where the bulk modes in the system with open boundary conditions have
moved away from the symmetry line in the complex frequency plane. (b) Evolution of the eigenvalues with the parameter ū.
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[27] Ş. K. Özdemir, S. Rotter, F. Nori, and L. Yang, Parity–
time symmetry and exceptional points in photonics, Nat.
Mater. 18, 783 (2019).

[28] H. Schomerus, Nonreciprocal response theory of non-
Hermitian mechanical metamaterials: Response phase
transition from the skin effect of zero modes, Phys. Rev.
Research 2, 013058 (2020).

[29] J. C. Budich and E. J. Bergholtz, Non-Hermitian topo-
logical sensors, Phys. Rev. Lett. 125, 180403 (2020).

[30] C. C. Wanjura, M. Brunelli, and A. Nunnenkamp, Topo-
logical framework for directional amplification in driven-
dissipative cavity arrays, Nat. Commun. 11, 3149 (2020).

[31] A. McDonald and A. A. Clerk, Exponentially-enhanced
quantum sensing with non-Hermitian lattice dynamics,
Nat. Commun. 11, 5382 (2020).

[32] B. Midya, Topological directed amplification (2022),
arXiv:2206.11879 [physics.optics].

[33] N. Hatano and D. R. Nelson, Localization transitions in
non-Hermitian quantum mechanics, Phys. Rev. Lett. 77,
570 (1996).

[34] S. Yao and Z. Wang, Edge states and topological invari-
ants of non-Hermitian systems, Phys. Rev. Lett. 121,
086803 (2018).

[35] F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J.
Bergholtz, Biorthogonal bulk-boundary correspondence
in non-Hermitian systems, Phys. Rev. Lett. 121, 026808
(2018).

[36] C. H. Lee and R. Thomale, Anatomy of skin modes and
topology in non-Hermitian systems, Phys. Rev. B 99,
201103(R) (2019).

[37] D. S. Borgnia, A. J. Kruchkov, and R.-J. Slager, Non-
Hermitian boundary modes and topology, Phys. Rev.
Lett. 124, 056802 (2020).

[38] H. Schomerus, Topologically protected midgap states in
complex photonic lattices, Opt. Lett. 38, 1912 (2013).

[39] S. Lieu, Topological symmetry classes for non-Hermitian
models and connections to the bosonic Bogoliubov–de
Gennes equation, Phys. Rev. B 98, 115135 (2018).

[40] K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, Sym-
metry and topology in non-Hermitian physics, Phys. Rev.
X 9, 041015 (2019).

[41] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi,
L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zil-
berberg, and I. Carusotto, Topological photonics, Rev.
Mod. Phys. 91, 015006 (2019).

[42] H. Zhou and J. Y. Lee, Periodic table for topological
bands with non-Hermitian symmetries, Phys. Rev. B 99,
235112 (2019).

[43] M. Z. Hasan and C. L. Kane, Colloquium: Topological
insulators, Rev. Mod. Phys. 82, 3045 (2010).

[44] X.-L. Qi and S.-C. Zhang, Topological insulators and su-
perconductors, Rev. Mod. Phys. 83, 1057 (2011).

[45] C. W. J. Beenakker, Random-matrix theory of Majorana
fermions and topological superconductors, Rev. Mod.
Phys. 87, 1037 (2015).

[46] H. Price, Y. Chong, A. Khanikaev, H. Schomerus, L. J.
Maczewsky, M. Kremer, M. Heinrich, A. Szameit, O. Zil-
berberg, Y. Yang, B. Zhang, A. Alù, R. Thomale,
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