Igbo Diacritic Restoration using Embedding Models.

Ezeani, Ignatius and Hepple, Mark and Onyenwe, Ikechukwu E. and Chioma, Enemouh (2018) Igbo Diacritic Restoration using Embedding Models. In: NAACL-HLT (Student Research Workshop). UNSPECIFIED, pp. 54-60.

Full text not available from this repository.

Abstract

Igbo is a low-resource language spoken by approximately 30 million people worldwide. It is the native language of the Igbo people of south-eastern Nigeria. In Igbo language, diacritics - orthographic and tonal - play a huge role in the distinguishing the meaning and pronunciation of words. Omitting diacritics in texts often leads to lexical ambiguity. Diacritic restoration is a pre-processing task that replaces missing diacritics on words from which they have been removed. In this work, we applied embedding models to the diacritic restoration task and compared their performances to those of n-gram models. Although word embedding models have been successfully applied to various NLP tasks, it has not been used, to our knowledge, for diacritic restoration. Two classes of word embeddings models were used: those projected from the English embedding space; and those trained with Igbo bible corpus (≈ 1m). Our best result, 82.49%, is an improvement on the baseline n-gram models.

Item Type:
Contribution in Book/Report/Proceedings
Additional Information:
DBLP License: DBLP's bibliographic metadata records provided through http://dblp.org/ are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.
ID Code:
183643
Deposited By:
Deposited On:
11 Jan 2023 17:00
Refereed?:
Yes
Published?:
Published
Last Modified:
11 Jan 2023 17:00