
Efficient computation of the volume of a polytope in
high-dimensions using Piecewise Deterministic Markov Processes

Augustin Chevallier Frédéric Cazals Paul Fearnhead
Lancaster University Inria and Université Côte d’Azur Lancaster University

Abstract

Computing the volume of a polytope in
high dimensions is computationally chal-
lenging but has wide applications. Cur-
rent state-of-the-art algorithms to compute
such volumes rely on efficient sampling of
a Gaussian distribution restricted to the
polytope, using e.g. Hamiltonian Monte
Carlo. We present a new sampling strategy
that uses a Piecewise Deterministic Markov
Process. Like Hamiltonian Monte Carlo,
this new method involves simulating trajec-
tories of a non-reversible process and inher-
its similar good mixing properties. How-
ever, importantly, the process can be simu-
lated more easily due to its piecewise linear
trajectories — and this leads to a reduc-
tion of the computational cost by a factor
of the dimension of the space. Our experi-
ments indicate that our method is numeri-
cally robust and is one order of magnitude
faster (or better) than existing methods us-
ing Hamiltonian Monte Carlo. On a sin-
gle core processor, we report computational
time of a few minutes up to dimension 500.

1 INTRODUCTION

1.1 Volume of polytopes

High dimensional integration and sampling is a per-
vasive challenge in modern science. A subproblem
of prime importance consists of computing the vol-
ume of a polytope, a bounded convex set of Rd de-
fined as the intersection of a fixed set of half spaces

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

(H-polytope) or the convex hull of a finite set of
vertices (V-polytope). This challenge, of estimating
the volume of a set, is closely related to problems in
Statistics of computing marginal likelihoods (Fong
and Holmes, 2020) or Bayes factors for comparing
competing models (Gelman and Meng, 1998; Friel
and Wyse, 2012). It is also related to problems in
Physics of estimating partition functions and free
energies (Christ et al., 2010).

Other applications appear across a range of disci-
plines. For example, in systems biology, the study
of genome wide metabolic models based on sys-
tems of ODEs requires studying polytopes defined as
the intersection between a hyperplane and the null
space of a stoichiometrymatrix (Haraldsdóttir et al.,
2017; Chalkis et al.). In robotics, the computation
of reachable sets for time-varying linear systems is
based upon special polytopes called zonotopes (Al-
thoff et al., 2011). In finance, the cross sectional
score of a portfolio is defined from the intersection
between a simplex (representing assets) and hyper-
planes or ellipsoids (Calès et al., 2018). In artificial
intelligence, ReLU networks can be characterized by
the conjunction of a set of linear inequalities which
define a polytope in the input domain known as the
activation condition (Păsăreanu et al., 2020). In a
related vein, the regularization of neural networks
using piecewise affine functions involves the evalua-
tion of the volume of polytopes defined by intersec-
tions of these hyperplanes (Robinson, 2021).

Complexity-wise, computing the volume is #-P hard
irrespective of the representation of the polytope (H-
polytope or V-polytope) (Dyer and Frieze, 1988).
Intuitively, any deterministic algorithm using a poly-
nomial number of points and computing the corre-
sponding convex hull omits an exponentially large
fraction of the volume. This observation prompted
the development of approximation algorithms deliv-
ering (ε, δ) approximations, that is volume approxi-
mations within a factor 1 + ε with a probability at

least 1 − δ (Bárány and Füredi, 1987; Levy, 1997).
The complexity of such algorithms is measured by
the number of calls to an oracle stating whether a
point is inside the polytope, or alternatively comput-
ing the intersection between a line and the polytope
boundary. Remarkably, over the years, the complex-
ity has been lowered from O?(d23) (Dyer et al., 1991)
to O?(d5) (Kannan et al., 1997) using a sequence of
balls intersecting the convex body, then from O?(d4)
(L. Lovász and Vempala, 2006) to O?(d3) (Cousins
and Vempala, 2015b) using a sequence of smooth
probability densities restricted to the convex body.
The reader is referred to Lee and Vempala (2018)
for the full history.

Importantly, it should be stressed that the backbone
of such algorithms is a telescoping product (Section
2) whose individual terms are the ratio of the inte-
grals (i) of Gaussians on the polytope, or (ii) of the
identity function integrated on the intersection be-
tween the polytope and a convex body. The former
strategy is theoretically faster but the latter puts
less burden on the samplers–see next section, since
uniform distributions are used.

While the previous works are remarkable from the
theoretical standpoint, it is difficult to turn these al-
gorithms into effective implementations. This task
is indeed challenging due to possibly huge constants
in the complexities and un-realistic worst cases.
This state of affairs recently motivated the devel-
opment of strategies relaxing the theoretical guaran-
tees, based on novel algorithmic and statistical tech-
niques (Cousins and Vempala, 2016; Chalkis et al.,
2019; Chevallier et al., 2022; Chalkis and Fisikopou-
los, 2020). While these methods are not provably
correct in general, their performances in terms of
accuracy and running time have proven satisfactory.

1.2 Samplers

The most recent volume computation algorithms
mentioned above rely on a procedure that samples
a Gaussian distribution restricted to the polytope.
The standard way to sample a probability distribu-
tion π is to build a Markov chain with invariant dis-
tribution π.

For sampling from a Gaussian distribution restricted
to a compact region, a number of Markov chains
have been proposed, including the Ball Walk sam-
pler (Lovász and Kannan, 1999), the Hit and Run
and coordinate Hit and Run samplers (Lovász, 1999;
Lovász and Vempala, 2003; Lovász and Vempala,
2004; Haraldsdóttir et al., 2017), and Hamiltonian
Monte Carlo (Pakman and Paninski, 2014; Cheval-

lier et al., 2022).

The Ball Walk is a simple Markov chain where the
next point is proposed in a ball centered around the
current point. If the proposed point is outside of the
polytope, or if it rejected by Metropolis-Hasting, the
chain stays at the current point.

By comparison, Hit and Run is a rejection free al-
gorithm: a line passing through the current point
is chosen at random, and the next point is sampled
from the intersection of this line and the inside of
the polytope. While this Hit and Run mixes faster
than the Ball Walk sampler, it can get stuck in cor-
ners (Lovász and Vempala, 2004; Chevallier et al.,
2022). The computational cost of Hit and Run can
be reduced by restricting the lines chosen to axis–
coordinate Hit and Run.

Hamiltonian Monte Carlo can also be viewed as a re-
jection free method. It produces trajectories that are
based on Hamiltonian dynamics for a physical sys-
tem whose potential energy is defined by the Gaus-
sian distribution within the polytope, and reflects
the trajectory if it hits the boundary of the polytope.
This sampler does not get stuck in corners like Hit
and Run and has a very good mixing. However, un-
like Hit and Run, the computation of the intersection
of the trajectories and the boundary requires inverse
trigonometric functions, and the computational cost
cannot be reduced like Coordinate Hit and Run.

Another sampler is based on the billiard walk
(Gryazina and Polyak, 2014), which can be seen as a
special case of HMC for uniform distributions, and
is amenable to a computational complexity reduc-
tion similar to the one of coordinate Hit and Run
(Chalkis et al., 2019). This sampler can only target
uniform distributions and not Gaussians.

Finally, a new class of samplers based on Piece-
wise Detereministic Markov Processes (PDMPs) has
emerged in the computational statistics community
(Fearnhead et al., 2018). Recall that a PDMP is
a deterministic process in-between random jump
events, which occur at a certain rate. Hamiltonian
Monte Carlo can actually be seen as a PDMP. How-
ever, Hamiltonian Monte Carlo relies entirely on the
Hamiltonian flow to preserve the target measure,
while most of the PDMP samplers developed to date
have straight paths. The target measure is then pre-
served by changing direction at opportune random
times. These methods are non reversible, which pre-
vents the diffusive behavior of reversible chains, and
have good properties in high dimension (Bierkens
et al., 2019).

2

1.3 Contributions

In this work we introduce the use of a PDMP,
the Bouncy Particle Sampler (Bouchard-Côté et al.,
2018), to sample from a Gaussian restricted to a
polytope within algorithms for calculating the vol-
ume of the polytope. Like Hamiltonian Monte Carlo,
the Bouncy Particle Sampler has good mixing prop-
erties. Moreover, we show how we can re-use many
calculations so that it has a much lower computa-
tional overhead. The key idea is that the main com-
putation in sampling from a polytope is checking
whether and when a trajectory hits the boundary of
the polytope. For the Bouncy Particle Sampler, the
trajectories are straight lines. We can use properties
of how the trajectories change, for example after re-
flecting off a boundary, to reduce the cost of recalcu-
lating when the trajectory will next hit a given face
of the boundary of a d-dimensional polytope from
O(d) to O(1).

We provide detailed experiments up to dimension
500, and a comparison with Hamiltonian Monte
Carlo up to dimension 100. These show that our
method can be an order of magnitude faster, for
the same level of precision, as the current best al-
gorithms using Hamiltonian Monte Carlo.

2 VOLUME ESTIMATION
ALGORITHMS

Without loss of generality, we consider a polytope H
in d dimensions with the origin 0 strictly inside H.
We define the polytope H through a d× d matrix A
and a d-vector b:

H = {x | ∀i, (Ax)i ≤ bi}.

We wish to estimate the volume of H,

V ol(H) =

∫
H

dx.

Our approach is based on the algorithm of Cousins
and Vempala (2016). Consider a sequence of
isotropic Gaussians with marginal variances σ2

0 <
σ2
1 < ... < σ2

m. Let fi denote the density of the
Gaussian with variance σi. We discuss the choice
of the variances below, but Cousins and Vempala
(2016) assumes that σm is sufficiently large so that
the Gaussian of variance σm is nearly flat on H.

These assumptions mean that∫
H

fm(x)dx =

(
1√

2πσm

)d ∫
H

exp

{
−1

2σ2
m

‖x‖2
}
dx

≈
(

1√
2πσm

)d

V ol(H).

Thus the volume of H can be rewritten as:

V ol(H) ≈ (2πσ2
m)d/2

∫
H

fm(x)dx

= (2πσ2
m)d/2

∫
H

f0(x)dx

m∏
i=1

∫
H
fi(x)dx∫

H
fi−1(x)dx

We can rewrite each ratio in the product as:∫
H
fi(x)dx∫

H
fi−1(x)dx

=

∫
H

fi(x)

fi−1(x)

fi−1(x)∫
H
fi−1(y)dy

dx, (1)

which is just the expectation of fi(X)
fi−1(x)

where X

is distributed as a Gaussian with variance σ2
i−1 re-

stricted to H. Finally, Cousins and Vempala (2016)
assumes σ0 is sufficiently small that almost all the
mass of the Gaussian with variance σ2

0 lies within in
H. This means that

∫
H
f0(x)dx ≈ 1.

This leads to the following approach to estimate
V ol(H):

(1) Choose m, the variances σ2
0 < · · · < σ0

m and
Monte Carlo sizes N1, . . . , Nm.

(2) For each i = 1, . . . ,m, use an MCMC algorithm,
or other, to get Ni draws x(i)1 , . . . , x

(i)
Ni

from a
Gaussian with variance σ2

i−1 restricted to H.

(3) For each i = 1, . . . ,m construct the estimator
of (1) as

Îi =
1

Ni

Ni∑
j=1

fi(x
(i)
j)

fi−1(x
(i)
j)

. (2)

(4) Estimate log{V ol(H)} as

d

2
(2πσ2

m) +

m∑
i=1

log(Îi). (3)

In the original algorithm of Cousins and Vempala
(2015a), the number of phases, the variances σi and
the number of steps per phase were chosen deter-
ministically, leading to a O?(d3) complexity. In the
practical implementation of Cousins and Vempala
(2016), a heuristic was added to find a better se-
quence of Gaussians, reducing the number of steps.

3

In addition, to reduce the number of steps Ni, a con-
vergence diagnosis based on a heuristic was added.
It uses a sliding window of size W (tied to the mix-
ing time of the random walk) to estimate the ratio
of Eq. 2. The number of samples Ni is therefore
not a fixed number, and tuning W is a non trivial
issue (Chevallier et al., 2022). Currently the best
implementations of this approach (Chevallier et al.,
2022), uses Hamiltonian Monte Carlo (Neal, 2011)
to sample from the restricted Gaussians in step (2).

In this work, we improve this algorithm in three re-
spects.

First, in using the first Gaussian, σ0 is chosen so
that the Gaussian with variance σ2

0 has probability
mass of between cmin and cmax within H. Prac-
tically, we use cmin = 0.1 and cmax = 0.2. This
introduces an additional term to the estimator – we
need to add an estimate of the log of the probability
mass that f0 places with H to (3). To estimate this
probability mass, we sample points from the Gaus-
sian and use rejection sampling. The advantage of
this adaptation is that it allows us to take a much
larger variance, σ2

0 , for the initial Gaussian, and thus
a smaller value of m.

Second, we remove the stopping criterion on the win-
dow size used as a proxy for the number of sam-
ples Ni. The size of the sliding windows W has
to be tuned, which proved complicated to do. Fur-
thermore, the target precision was not reliably ob-
tained. We use a different strategy where a global
given computational budget N is used (outside of
the tuning phase of the random walks). For each
Gaussian of variance σi, we compute essi the Ef-
fective Sample Size (ESS) per iteration of the ran-
dom walk using the method described in (Team,
2016, Section 16.4.2). Then we choose the target
number of samples (Ni)i≤m such that each ratio
has about the same number of independent sam-
ples, i.e. Ni × essi ≈ Nj × essj for all i and j,
and

∑m
i=1Ni = N .

Third, as explained in the next section, we introduce
a novel strategy to sample the Gaussians.

3 RESTRICTED GAUSSIAN
SAMPLING USING PIECEWISE
DETERMINISTIC MARKOV
PROCESSES (PDMP)

wtf

3.1 Bouncy Particle Sampler on
Unbounded Space

We describe the PDMPs, and proceed with the
Bouncy Particle Sampler on an unbounded space.

PDMP. A PDMP, zt, is a continuous time Markov
process defined by:

1. a deterministic flow φt(z),

2. a jump rate λ(z), and

3. a jump kernel q(·|z).

The process zt follows the deterministic flow until a
jump event happens. Jumps happen with probabil-
ity λ(z(t))dt + o(dt) in the interval [t, t + dt]. If a
jump event happens at time t, the process zt jumps
using the jump kernel q:

zt ∼ q(· | zt−),

where zt− = lims→t,s<t zs.

Bouncy Particle Sampler. For a given target
density π on Rd, the state space of the Bouncy Par-
ticle Sampler is extended by adding a velocity vector,
yielding the state space:

E = Rd × Rd.

Thus the state of our PDMP is z = (x, v) and the
target density becomes µ(x, v) = π(x)pv(v) where
pv(·) is the density of a multivariate normal of mean
0 and covariance matrix Id. The Bouncy Particle
Sampler is defined as follow:

1. φt(x, v) = (x+ tv, v),

2. λ(x, v) = max(0,−〈∇x(log π)(x), v〉), and

3. q(·|z) = δR(z) with

R(x, v) =

(
x, v − 2

〈v,∇x(log π)(x)〉
‖∇x(log π)(x)‖2

∇x(log π)(x)

)
(4)

Note that the latter formula corresponds to a reflec-
tion of vector v with respect to the gradient of the
potential. In practice, computing the jump times
requires simulating a Poisson process of intensity
λ(zt). This is done by sampling u from an expo-
nential law of rate 1, then solving for t the equation∫ t

0

λ(zs)ds = u.
4

For a Gaussian target of the form π(x) ∝
exp(−a‖x‖2), finding the event times amounts to
solving:∫ t

0

max(0, 2a(〈x, v〉+ s〈v, v〉))ds = u, (5)

which gives a quadratic equation.

3.2 Bouncy Particle Sampler Restricted to
a Polytope

The Bouncy Particle Sampler just introduced re-
quires the target density to be continuous and al-
most everywhere differentiable. Therefore restric-
tion of a Gaussian to a polytope requires adding
jumps whenever the process reaches the boundary
(Bierkens et al., 2018). We will write qb(· mod z)
the jump kernel at the boundary.

Our target density is of the form

π(x) ∝ exp(−a‖x‖2)1H(x),

for some constant a that depends on the variance of
the Gaussian, and where 1H is the indicator func-
tion of H. At a point x of the boundary ∂H,
we write n(x) the outward normal, V+

x = {v ∈
V|〈n(x), v〉 ≥ 0} the set of outgoing velocities, V−x =
{v ∈ V|〈n(x), v〉 < 0} the set of in-going velocities.
Then the process will target the correct distribution
if the jump kernel at the boundary qb satisfies the
following condition (Bierkens et al., 2018):∫

V−
x

〈n(x), u〉qb(x, v|u)du = −〈n(x), v〉, (6)

where x is on the boundary, n(x) the outward normal
at x, and v ∈ V+ an outgoing velocity. The simplest
dynamics that satisfy (6) are to reflect the trajectory
off the boundary, so the new velocity becomes v′
with

v′ = v − 2
〈n, v〉
‖n‖2

n, (7)

with n the normal to the boundary that was hit.

Finally, the Bouncy Particle Sampler is not always
ergodic (Bouchard-Côté et al., 2018). To ensure er-
godicity, we add a refresh event with constant rate
λrefresh (Bouchard-Côté et al., 2018). At refresh
events, the velocity is resampled from its marginal
invariant distribution, the multivariate normal dis-
tribution.

The full algorithm is described in Algorithm 1, and
an example trajectory can be found in Figure 1.

Algorithm 1 Bouncy Particle Sampler (BPS).
while t ≤ tmax do

compute τH the intersection time with H
compute τevt the next event time by solving (5).

compute τrefresh the next refresh event time
set τ = min(τH , τevt, τrefresh)
set x = x+ τv
set t = t+ τ
if τ = τH then

let n be the normal of the boundary at inter-
section
set v = v − 2 〈n,v〉‖n‖ n (Eq. 7)

if τ = τevt then
set v = R(x, v) (Eq. 4)

if τ = τrefresh then
resample v

Figure 1: Example BPS trajectory. in the 2d
cube [−1, 1]2, Gaussian of variance σ = 1. Blue:
PDMP jump events, Red: reflections on the bound-
ary, Green: refresh events

5

3.3 Efficient Implementation

An important feature of the Bouncy Particle Sam-
pler is that the velocity is constant between events
which leads to deterministic trajectories that are
straight-lines. This makes it possible to substan-
tially reduce the computational cost of calculating
the times at which the trajectory will hit a boundary.
By pre-calculating suitable matrix vector products
we can reduce the cost of calculating when the pro-
cess next hits a boundary from O(dk), where k is the
number of hyperplanes that definesH, to O(d). This
efficient implementation is not possible, for Hamilto-
nian Monte Carlo samplers due to its non-constant
velocity.

Starting from a point x with velocity v, the inter-
section time τi for hyperplane i is the solution of
(A(x + tv))i = bi, in other words τi = bi−(Ax)i

(Av)i
.

Finding the intersections for all hyperplanes requires
computing the products Ax and Av, which leads to
a complexity of dk. However, in our cases, we keep
track of the values of Ax and Av and update them
without having to fully recompute the matrix vector
product. To update the value of Ax for each event,
we use

A(x+ τv) = Ax+ τAv.

Two cases are faced:

Case 1: Reflection on the boundary. First, if
the event is a reflection on the boundary with up-
dated velocity v′, we have

Av′ = Av − 2
〈n, v〉
‖n‖

An.

By precomputing An for each hyperplane of the
polytope, we can avoid the matrix multiplication.

Case 2: PDMP jump event. The new velocity v′
is the reflection of v with respect to the gradient of
the potential. In the case of Gaussians, the gradient
is colinear with x. Hence v′ = v − 2 〈x,v〉‖x‖ x, and we
can write

Av′ = Av − 2
〈x, v〉
‖x‖

Ax.

Since Ax is known, we can also avoid the matrix-
vector product.

Finally, note that for a refresh event, we have no
choice but to recompute the matrix-vector product.
In practice the proportion of events that are of this
type is small.
Remark 1. In Chalkis et al., a similar strategy
is used for reflection on the boundary, in a setting
where there is no PDMP jump event.

3.4 Tuning parameters of the Bouncy
Particle Sampler

The Bouncy Particle Sampler has two parameters
that requires to be tuned. We describe here the au-
tomatic tuning strategy we implemented.

The Bouncy Particle Sampler is currently described
as a continuous time process. To extract points from
the trajectory zt, we add another Poisson rate λout.
Each time an event happens with respect to this
Poisson process, the current point zt is passed to
the volume computation algorithm. To tune λout,
we use the following heuristic: to get a sample inde-
pendent from the starting point, we require d events
(see Cases 1 and 2 above) to happen. Hence, we
automatically tune λout at runtime so that there is
on average d events between points passed to the
volume algorithm.

Furthermore, as noted before, we have a refresh rate
λrefresh, whose tuning is important for the mix-
ing time. To tune this parameter, we use an opti-
mization procedure described in more details in Sec-
tion 4.2.

4 EXPERIMENTS

This section presents experimental results. The
reader is referred to the Supporting Information
(Section A) for implementation notes and comments
on the multiprecision issues.

4.1 Setup and statistics of interest

Polytopes. We study our algorithm for three
polytopes where the exact volume is known:

• The cube, −1 ≤ xi ≤ 1, for i = 1, . . . , d.
• The standard simplex (∆std),

∑
xi ≤ 1, xi ≥ 0.

• The isotropic simplex (∆iso), a simplex which is
also a regular polytope.

Targeting a given error. Assessing the complex-
ity of our algorithm as a function of the dimension–
for a given polytope, requires finding the number of
samples for which a target error on the volume esti-
mate is obtained. To this end, consider a minibatch
of repeats (24 in our case to exploit brute force par-
allelism on our computer), each using N samples.
We run a binary search on N to obtain the smallest
value for which the median error of the minibatch
lies in the interval 4%±1%. (Nb: to speed up calcu-
lations, the binary search is also exited if the number

6

of samples between two consecutive runs varies less
than 5%.)

In this experiment, the dimensions d =
50, 70, 100, 140, 175, 250 are used for each poly-
tope. For a given statistic of interest (the median
running time or the final number of samples N), we
then perform a linear regression in log log scale, to
assess the polynomial scaling of the statistic.

The output of each computation contains

• the final estimation of the volume,

• the run-time (in seconds), and

• the number of times the precision had to be
increased to stay in the polytope.

Using a fixed number of samples. To com-
pare PDMP against state-of-the-art volume algo-
rithms based on Hamiltonian Monte Carlo (Cheval-
lier et al., 2022), we resort to experiments at a fixed
number of samples. The volume computation is
launched for dimension d = 100, 500, using sample
sizes N = 105, 106, 107 – the latter for d = 500 only.

Computer used. Calculations were run on a
desktop DELL Precision 7920 Tower (Intel Xeon Sil-
ver 4214 CPU at 2.20GHz, 64 Gb of RAM), under
Linux Fedora core 34.

4.2 Tuning

Based on the results in Deligiannidis et al. (2018),
heuristically, a small refresh rate will lead to bet-
ter mixing for individual coordinates of the samples,
whereas a higher refresh rate will mean better mix-
ing for functionals such as the norm of the position.
In our case, bouncing on the boundary of the poly-
tope can play a similar role to refreshing the velocity.
Hence we expect the optimal refresh rate to depend
on the variance of the sampled restricted Gaussian.

Thus we compute the ESS for the projection on each
coordinate, and take the minimum, which we call
essmin. Further we compute essnorm, the ESS as-
sociated to the norm of our samples. If essmin <
essnorm, we decrease the refresh rate λrefresh, and
if essmin > essnorm, we increase the refresh rate.

However, refreshing the velocity is expensive, since
it requires recomputing the matrix-vector product
Av, with a cost of O(d2) instead of O(d) for other
events. Thus the new refresh rate is only accepted if
it leads to a higher ESS per second, with the overall

Figure 2: ESS optimization of the resfresh rate
λrefresh. Model: cube of dimension 100. We show
in red the ESS per second and in blue the ESS per
sample around the optimized value for λrefresh. The
ESS is computed with 10000 samples. The solid red
and blue lines are the avarage of the ESS and the en-
velop represents the standard deviation of the ESS.

ESS being min(essmin, essnorm). If not, the tuning
is stopped (Fig. 2).

The number of consecutive samples used to evaluate
the ESS results from a tradeof between the quality
of the tuning, which increases with number of sam-
ples, and the time spent tuning the walk with In our
experiments, the number of consecutive samples is
restricted by runs in dimension 500, which leads us
to use 100 consecutive samples to evaluate the ESS.
is advised.

4.3 Results

PDMP: complexity. The experiments at pre-
scribed error rate show a clear polynomial time com-
plexity (Fig. 3), with a scaling around O(d3.5) for
the three test polytopes (Table 1). In particular,
we can see that the time complexity is close to the
number of samples times d2. This is consistent with
intuition, since each sample requires on average O(d)
events, and each event (except for refresh events) re-
quires O(d) computations.

PDMP versus HMC: complexity. Hamilto-
nian Monte Carlo based methods require the spec-
ification of a so-called window size used to deter-
mine convergence of the ratio of (1) (Chevallier et al.,
2022). In the sequel, we use two window sizes:

• Low profile comparison: the window size W =
7

Time Num. samples
model slope R2 slope R2

cube 3.77 0.96 1.94 0.88
∆iso 3.52 1.00 1.72 0.99
∆std 3.18 0.99 1.37 0.96

Table 1: Linear regression in log log scale for
the three polytopes. First variable regressed:
running time (seconds); second variable: number of
samplesN used to obtain a prescribed error estimate
on the volume.

Figure 3: Complexity of PDMP studied using
the smallest number of samples achieving a
target error estimate for each polytope. Di-
mensions used: d = 50, 70, 100, 140, 175, 250. Plots
are in log log scale. (Top) Time as a function of
dimension (Bottom) Number of samples as a func-
tion of dimension. See also Table 1.

250 is used to compare Hamiltonian Monte
Carlo against PDMP with 105 samples – short-
hand: HMC1;

• High profile comparison: the window size W =
250 + d

√
d is used to compare Hamiltonian

Monte Carlo against PDMP with 106 samples –
short-hand: HMC2.

Two facts stand out (Tables S3 and S4). On the one
hand, for the three polytopes, the two algorithms
compared yield equivalent error estimates. On the
other hand, PDMP yields a speedup between one
and two orders of magnitude over HMC. To be pre-
cise, in dimension d = 100 e.g.: between ∼ 56 and
135 for the low profile comparison, and between ∼ 14
and 44 for the high profile comparison. This com-
parison shows the superiority of linear trajectories
over curved ones in HMC.

As a final analysis, we challenge PDMP with calcula-
tions up to dimension d = 500, using a fixed number
of samples (Tables S5 and S6). Obtaining a rela-
tive error below 10% now requires using a number
of samples N one order of magnitude larger. Still,
with a running time of the order of hours, such large
dimensions remain tractable.

Cooling schedules: using Gaussians versus
balls. As mentioned in the Introduction, an al-
ternative algorithm uses balls intersected with the
polytope instead of Gaussians restricted to the poly-
tope (Chalkis et al., 2019). Since this algorithm only
requires uniform sampling, the simpler billiard walk
sampler can be used (Chalkis et al., 2019). It should
be noted than our sampling strategies are essentially
the same than the one provided in Chalkis et al.
(2019), the main difference being that our random
walk handle Gaussians while still having a low com-
putational complexity.

Ball cooling essentially amounts to changing the
functions fi in Eq. (2) from Gaussian densities to
indicator functions of balls. In that case, the ratio
found in Eq. (2) is exactly 0 or 1. In principle, this
should lead to a higher variance of Îi of Eq. (2) than
for Gaussians, which would be less efficient. This is
consistent with known theoretical results (Kannan
et al., 1997; Cousins and Vempala, 2015b) which
seems to indeed indicate a greater efficiency of the
Gaussian cooling compared to balls.

Interestingly, the implementation provided in the
preprint Chalkis et al. (2019) yields better re-
sults, which contradicts theory (Kannan et al., 1997;
Cousins and Vempala, 2015b). This calls for further
analysis in two directions. The first is the analysis
of the cooling schedule based on a sequence of balls
(Chalkis et al., 2019) versus a sequence of Gaussians
(Cousins and Vempala, 2016). The second one is the

8

tuning of the random walk generating samples (in
our case: refresh rate λrefresh, output rate λoutput).

We believe that two things might be happening.
First, the tuning strategy used for balls might out-
perform ours, which is expensive since it relies on cal-
culating the ESS. Second, we rely on the sequence of
Gaussians provided by Cousins and Vempala (2016),
while a new one, possibly more optimal for balls, is
used in Chalkis et al. (2019).

5 CODE AVAILABILITY

Visit the github repo https://github.com/augustin-
chevallier/PolytopeVolume.

6 CONCLUSION

Recent developments for polytope volume calcu-
lation algorithms have exploited two strategies,
namely using a sequence of Gaussians or a sequence
of balls intersecting the polytope. Our work presents
improvements for the former, yielding a substantial
speedup (more than one order of magnitude on run-
ning times) over state-of-the-art HMC based meth-
ods. On the other hand, recent work in the lat-
ter vein has resulted in faster and more accurate
results (Chalkis et al., 2019), an unexpected obser-
vation given the theoretical bounds known to date
for both classes of methods. An interesting avenue
for future work will therefore consist of hybridising
both approaches.

For convex bodies with piecewise C1 boundaries, our
algorithm could also be applied. While the improve-
ment to the oracle complexity might not apply, the
intersection of linear trajectories with the boundary
would improve on HMC.

On the practical aspect, there are a few improve-
ments that could be made in future work. The most
obvious one would be to re-use the points sampled
at previous phases using importance sampling. The
second would be to introduce a way of refreshing ve-
locities that do not require recomputing the matrix-
vector product.

Polytope volume calculations algorithms first under-
went major improvements in the theoretical realm
(with bounds on the mixing times but algorithms
lacking efficiency in practice), and more recently in
the practical realm (with efficient algorithms lack-
ing theoretical bounds). Combining both is clearly
an outstanding challenge ahead.

Acknowledgments. We thank Sylvain Pion for

stimulating discussions on numerical issues.

This work has been partially supported by the
French government, through the 3IA Côte d’Azur
Investments in the Future project managed by the
National Research Agency (ANR) with the reference
number ANR-19-P3IA-0002, and EPSRC grants
EP/R034710/1 and EP/RO18561/1.

References

M. Althoff, C. L. Guernic, and B. Krogh. Reachable
set computation for uncertain time-varying linear
systems. In Proceedings of the 14th International
Conference on Hybrid Systems: Computation and
Control, pages 93–102, 2011.

I. Bárány and Z. Füredi. Computing the volume is
difficult. Discrete and Computational Geometry,
2(4):319–326, 1987.

J. Bierkens, A. Bouchard-Côté, A. Doucet, A. Dun-
can, P. Fearnhead, T. Lienart, G. Roberts,
and S. J. Vollmer. Piecewise deterministic
markov processes for scalable Monte Carlo on
restricted domains. Statistics & Probability
Letters, 136:148–154, 2018. ISSN 0167-7152. doi:
https://doi.org/10.1016/j.spl.2018.02.021. URL
https://www.sciencedirect.com/science/
article/pii/S016771521830066X. The role of
Statistics in the era of big data.

J. Bierkens, K. Kamatani, and G. O. Roberts. High-
dimensional scaling limits of piecewise determinis-
tic sampling algorithms, 2019. arXiv.1807.11358.

A. Bouchard-Côté, S. J. Vollmer, and A. Doucet.
The bouncy particle sampler: A nonreversible
rejection-free Markov Chain Monte Carlo method.
Journal of the American Statistical Association,
113(522):855–867, 2018. doi: 10.1080/01621459.
2017.1294075. URL https://doi.org/10.1080/
01621459.2017.1294075.

L. Calès, A. Chalkis, I. Emiris, and V. Fisikopou-
los. Practical volume computation of structured
convex bodies, and an application to model-
ing portfolio dependencies and financial crises.
arXiv:1803.05861, 2018.

A. Chalkis and V. Fisikopoulos. volesti: Volume
approximation and sampling for convex polytopes
in R. arXiv:2007.01578, 2020.

A. Chalkis, V. Fisikopoulos, E. Tsigaridas, and
H. Zafeiropoulos. Geometric algorithms for sam-
pling the flux space of metabolic networks. In
E. C. de Verdiere and K. Buchin, editors, 37th
International Symposium on Computational Ge-
ometry (SoCG 2021), 2021.

9

https://github.com/augustin-chevallier/PolytopeVolume
https://github.com/augustin-chevallier/PolytopeVolume
https://www.sciencedirect.com/science/article/pii/S016771521830066X
https://www.sciencedirect.com/science/article/pii/S016771521830066X
https://doi.org/10.1080/01621459.2017.1294075
https://doi.org/10.1080/01621459.2017.1294075

A. Chalkis, I. Z. Emiris, and V. Fisikopoulos. A
practical algorithm for volume estimation based
on billiard trajectories and simulated annealing.
arXiv preprint arXiv:1905.05494, 2019.

A. Chevallier, S. Pion, and F. Cazals. Improved
polytope volume calculations based on Hamilto-
nian Monte Carlo with boundary reflections and
sweet arithmetics. J. of Computational Geom-
etry, NA, 2022. URL https://hal.inria.fr/
hal-03048725.

C. D. Christ, A. E. Mark, and W. F. Van Gunsteren.
Basic ingredients of free energy calculations: a re-
view. Journal of Computational Chemistry, 31(8):
1569–1582, 2010.

B. Cousins and S. Vempala. Bypassing KLS:
Gaussian cooling and an o∗(n3) volume algo-
rithm. In Proceedings of the Forty-Seventh An-
nual ACM Symposium on Theory of Comput-
ing, STOC ’15, page 539–548, New York, NY,
USA, 2015a. Association for Computing Ma-
chinery. ISBN 9781450335362. doi: 10.1145/
2746539.2746563. URL https://doi.org/10.
1145/2746539.2746563.

B. Cousins and S. Vempala. Bypassing KLS: Gaus-
sian cooling and an O∗(n3) volume algorithm. In
ACM STOC, pages 539–548. ACM, 2015b.

B. Cousins and S. Vempala. A practical volume algo-
rithm. Mathematical Programming Computation,
8(2):133–160, 2016.

G. Deligiannidis, D. Paulin, A. Bouchard-Côté,
and A. Doucet. Randomized Hamiltonian Monte
Carlo as scaling limit of the bouncy particle sam-
pler and dimension-free convergence rates, 2018.
arXiv:1808.04299.

M. Dyer and A. Frieze. On the complexity of com-
puting the volume of a polyhedron. SIAM Journal
on Computing, 17(5):967–974, 1988.

M. Dyer, A. Frieze, and R. Kannan. A random
polynomial-time algorithm for approximating the
volume of convex bodies. Journal of the ACM
(JACM), 38(1):1–17, 1991.

P. Fearnhead, J. Bierkens, M. Pollock, and G. O.
Roberts. Piecewise Deterministic Markov Pro-
cesses for Continuous-Time Monte Carlo. Statis-
tical Science, 33(3):386 – 412, 2018. doi: 10.1214/
18-STS648. URL https://doi.org/10.1214/
18-STS648.

E. Fong and C. C. Holmes. On the marginal like-
lihood and cross-validation. Biometrika, 107(2):
489–496, 2020.

N. Friel and J. Wyse. Estimating the evidence–a re-
view. Statistica Neerlandica, 66(3):288–308, 2012.

A. Gelman and X.-L. Meng. Simulating normalizing
constants: From importance sampling to bridge
sampling to path sampling. Statistical Science,
13:163–185, 1998.

E. Gryazina and B. Polyak. Random sampling: Bil-
liard walk algorithm. European Journal of Oper-
ational Research, 238(2):497–504, 2014.

H. Haraldsdóttir, B. Cousins, I. Thiele, R. Fleming,
and S. Vempala. CHRR: coordinate hit-and-run
with rounding for uniform sampling of constraint-
based models. Bioinformatics, 33(11):1741–1743,
2017.

R. Kannan, L. Lovász, and M. Simonovits. Random
walks and an o∗(n5) volume algorithm for convex
bodies. Random Structures & Algorithms, 11(1):
1–50, 1997.

L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, and
C. Yap. Classroom examples of robustness prob-
lems in geometric computations. Computational
Geometry, 40(1):61–78, 2008.

L. L. Lovász and S. Vempala. Simulated annealing
in convex bodies and an O∗(n4) volume algorithm.
Journal of Computer and System Sciences, 72(2):
392–417, 2006.

Y. T. Lee and S. S. Vempala. Convergence rate of
Riemannian Hamiltonian Monte Carlo and faster
polytope volume computation. In STOC, pages
1115–1121. ACM, 2018.

S. Levy. Flavors of Geometry. Cambridge University
Press, 1997.

L. Lovász. Hit-and-run mixes fast. Mathematical
Programming, Series B, 86:443–461, 12 1999. doi:
10.1007/s101070050099.

L. Lovász and R. Kannan. Faster mixing via aver-
age conductance. In Proceedings of the Thirty-first
Annual ACM Symposium on Theory of Comput-
ing, STOC ’99, pages 282–287, New York, NY,
USA, 1999. ACM. ISBN 1-58113-067-8. doi:
10.1145/301250.301317. URL http://doi.acm.
org/10.1145/301250.301317.

L. Lovász and S. Vempala. Hit-and-run is fast and
fun. preprint, Microsoft Research, 2003.

L. Lovász and S. Vempala. Hit-and-run from a
corner. In Proceedings of the Thirty-sixth An-
nual ACM Symposium on Theory of Computing,
STOC ’04, pages 310–314, New York, NY, USA,
2004. ACM. ISBN 1-58113-852-0. doi: 10.1145/
1007352.1007403. URL http://doi.acm.org/
10.1145/1007352.1007403.

10

https://hal.inria.fr/hal-03048725
https://hal.inria.fr/hal-03048725
https://doi.org/10.1145/2746539.2746563
https://doi.org/10.1145/2746539.2746563
https://doi.org/10.1214/18-STS648
https://doi.org/10.1214/18-STS648
http://doi.acm.org/10.1145/301250.301317
http://doi.acm.org/10.1145/301250.301317
http://doi.acm.org/10.1145/1007352.1007403
http://doi.acm.org/10.1145/1007352.1007403

R. Neal. MCMC using Hamiltonian dynamics. In
S. Brooks, A. Gelman, G. L. Jones, and X.-L.
Meng, editors, Handbook of Markov chain Monte
Carlo, pages 113–162. Chapman & Hall/CRC,
2011.

A. Pakman and L. Paninski. Exact Hamiltonian
Monte Carlo for truncated multivariate Gaus-
sians. Journal of Computational and Graphical
Statistics, 23(2):518–542, 2014.

C. Păsăreanu, H. Converse, A. Filieri, D., and
Gopinath. On the probabilistic analysis of neu-
ral networks. In Proceedings of the IEEE/ACM
15th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems,
pages 5–8, 2020.

H. Robinson. Approximate piecewise affine decom-
position of neural networks. IFAC-PapersOnLine,
54(7):541–546, 2021.

S. D. Team. Stan modeling language user’s guide
and reference manual. http://mc-stan.org/,
2016. Version 2.14.0.

11

http://mc-stan.org/

Supplementary Material:
Efficient computation of the volume of a polytope in

high-dimensions using Piecewise Deterministic Markov Processes

A IMPLEMENTATION AND MULTIPRECISION

A.1 Code overview

Our code is written in C++, using the number types discussed below. ESS calculations were carried out
using the Autoppl library https://github.com/JamesYang007/autoppl.

A.2 Multiprecision

Trajectories escaping the polytope. As noted in Chevallier et al. (2022), Hamiltonian Monte Carlo
trajectories can escape the polytope due to numerical issues – a phenomenon becoming prevalent in high
dimension. The solution introduced in Chevallier et al. (2022) is to recompute a trajectory leaving the convex
by using interval arithmetic with increased precision.

Since the trajectory escaping the polytope can lead to a completely wrong estimate at best, and a crash
of the program at worse, a similar strategy is used in this work. Assuming the Tk are the output times of
the trajectories that are passed to the volume algorithm (i.e. the sequence used by the volume algorithm is
(xTk

)k∈N), the strategy is as follow:

1. at time Ti, save the state of the Bouncy Particle Sampler: xTi
and vTi

, but also the state of the random
generator;

2. compute the trajectory using double precision until time Ti+1;

3. if xTi+1
is in the polytope, nothing needs to be done;

4. else:

(a) roll back the state of the Bouncy Particle Sampler to time Ti.
(b) increase the precision of real numbers used in the previous step.
(c) compute the trajectory until time Ti+1.
(d) repeat until xTi+1

is in the polytope.

It should also be noticed that precision cannot be increased indefinitely. As a fallback, if the required
precision reaches a certain threshold, we go back to time Ti and sample a new velocity. In the Experiments
below, we report on these outcomes using two statistics:

• #M : the number of times the else above is entered.

• #R: the number of times the precision limit is reached.

Number types. To handle precision refinements, we use the number type
boost::multiprecision::mpfr_float.

Numerical values for volumes. Multiprecision is also required to compute the volume, in two guises.
On the one hand, the exact volume of the polytopes used in our tests cannot be represented using double

https://github.com/JamesYang007/autoppl

precision, when increasing the dimension. On the other hand, high precision floating points must be used
when computing the exponential of the sum of the log of the ratios

∑m
i=1 log(Îi). To handle these difficulties,

we use the number type
boost::multiprecision::cpp_dec_float, which makes it possible to specify the number of decimal digits
used.

B RESULTS

B.1 Comparisons at a fixed error rate

• Table S1 and Table S2 present the full results corresponding to the protocol Targeting a given error
from Section 4.

N Algo. model d ε V ol min Ṽ max Ṽ med(Ṽ) stdev(˜V ol) med(errr) stdev(errr)
24 PDMP-N9.7e+04 cube 50 NA 1.126e+15 1.04e+15 1.292e+15 1.129e+15 5.653e+13 3.089E-02 3.410E-02
24 PDMP-N1.6e+05 cube 70 NA 1.181e+21 1.106e+21 1.296e+21 1.155e+21 5.099e+19 3.563E-02 2.459E-02
24 PDMP-N1.7e+05 cube 100 NA 1.268e+30 1.125e+30 1.423e+30 1.254e+30 6.966e+28 3.075E-02 3.619E-02
24 PDMP-N2.9e+05 cube 140 NA 1.394e+42 1.245e+42 1.553e+42 1.386e+42 8.808e+40 5.590E-02 2.983E-02
24 PDMP-N1.2e+06 cube 175 NA 4.789e+52 4.469e+52 5.235e+52 4.825e+52 2.368e+51 4.301E-02 2.697E-02
24 PDMP-N2.2e+06 cube 250 NA 1.809e+75 1.662e+75 1.968e+75 1.81e+75 7.275e+73 2.300E-02 2.593E-02
24 PDMP-N3.9e+05 ∆iso 50 NA 3.421e+21 3.173e+21 3.65e+21 3.419e+21 1.127e+20 2.462E-02 1.968E-02
24 PDMP-N5.8e+05 ∆iso 70 NA 1.658e+30 1.529e+30 1.888e+30 1.64e+30 7.302e+28 3.066E-02 2.955E-02
24 PDMP-N1.2e+06 ∆iso 100 NA 1.771e+43 1.648e+43 1.847e+43 1.783e+43 4.733e+41 1.739E-02 1.675E-02
24 PDMP-N2.3e+06 ∆iso 140 NA 4.167e+60 3.855e+60 4.441e+60 4.223e+60 1.73e+59 3.069E-02 2.139E-02
24 PDMP-N3.4e+06 ∆iso 175 NA 6.607e+75 5.94e+75 6.928e+75 6.66e+75 2.726e+74 2.896E-02 2.755E-02
23 PDMP-N5.4e+06 ∆iso 250 NA 2.466e+108 2.22e+108 2.762e+108 2.466e+108 1.223e+107 2.916E-02 3.131E-02
24 PDMP-N5.8e+05 ∆std 50 NA 3.288e-65 3.136e-65 3.525e-65 3.254e-65 1.144e-66 2.917E-02 1.702E-02
24 PDMP-N8.7e+05 ∆std 70 NA 8.348e-101 7.864e-101 9.148e-101 8.437e-101 3.563e-102 2.716E-02 2.651E-02
24 PDMP-N9.7e+05 ∆std 100 NA 1.072e-158 9.614e-159 1.191e-158 1.084e-158 5.896e-160 2.851E-02 3.276E-02
24 PDMP-N2.3e+06 ∆std 140 NA 7.428e-242 6.621e-242 7.962e-242 7.264e-242 3.31e-243 3.717E-02 3.101E-02
24 PDMP-N3.3e+06 ∆std 175 NA 8.893e-319 8.029e-319 9.465e-319 8.672e-319 4.164e-320 4.609E-02 2.545E-02
24 PDMP-N4.7e+06 ∆std 250 NA 3.093e-493 2.751e-493 3.611e-493 3.062e-493 2.114e-494 5.489E-02 3.935E-02

Table S1: Statistics on volumes and their estimates. See text for details.

N Algo. model d ε med(#O/#S) stdev(#O/#S) med(#M) med(#R) med(time) stdev(time)
24 PDMP-N9.7e+04 cube 50 NA 5.502E+01 1.120E+00 0 0 3.980E+00 1.349E-01
24 PDMP-N1.6e+05 cube 70 NA 7.661E+01 1.683E+00 0 0 1.257E+01 3.556E-01
24 PDMP-N1.7e+05 cube 100 NA 1.075E+02 2.906E+00 0 0 2.497E+01 8.915E-01
24 PDMP-N2.9e+05 cube 140 NA 1.525E+02 4.738E+00 0 0 7.820E+01 2.079E+00
24 PDMP-N1.2e+06 cube 175 NA 1.870E+02 6.107E+00 0 0 4.523E+02 9.362E+00
24 PDMP-N2.2e+06 cube 250 NA 2.655E+02 6.158E+00 0 0 1.774E+03 4.370E+01
24 PDMP-N3.9e+05 ∆iso 50 NA 5.325E+01 4.078E-01 0 0 1.153E+01 1.755E-01
24 PDMP-N5.8e+05 ∆iso 70 NA 7.398E+01 7.903E-01 0 0 3.078E+01 7.514E-01
24 PDMP-N1.2e+06 ∆iso 100 NA 1.049E+02 1.349E+00 0 0 1.126E+02 1.651E+00
24 PDMP-N2.3e+06 ∆iso 140 NA 1.473E+02 2.441E+00 0 0 4.331E+02 5.064E+00
24 PDMP-N3.4e+06 ∆iso 175 NA 1.815E+02 2.603E+00 0 0 9.097E+02 1.406E+01
23 PDMP-N5.4e+06 ∆iso 250 NA 2.594E+02 2.725E+00 0 0 2.944E+03 5.608E+01
24 PDMP-N5.8e+05 ∆std 50 NA 5.287E+01 4.716E-01 0 0 1.663E+01 2.769E-01
24 PDMP-N8.7e+05 ∆std 70 NA 7.310E+01 5.935E-01 0 0 4.453E+01 8.768E-01
24 PDMP-N9.7e+05 ∆std 100 NA 1.039E+02 8.778E-01 0 0 9.153E+01 1.698E+00
24 PDMP-N2.3e+06 ∆std 140 NA 1.444E+02 1.641E+00 0 0 4.197E+02 4.341E+00
24 PDMP-N3.3e+06 ∆std 175 NA 1.799E+02 1.238E+00 0 0 8.625E+02 1.202E+01
24 PDMP-N4.7e+06 ∆std 250 NA 2.560E+02 1.543E+00 0 0 2.481E+03 2.766E+01

Table S2: Misc statistics. The columns read as follows: ε: precision target (NA for PDMP) #S: num
samples. #O/#S: num calls to the oracle per sample #M : number of multi-precision refinements. #R:
number of calls to resample.

13

B.2 Comparisons at a fixed number of samples

• Tables S3 and S4 present a comparison between HMC and PDMP, in dimensions d = 50 and d = 100.

• Table S5 and Table S6 present the full results corresponding to the protocol Using a fixed number of
samples from Section 4.

Algorithm Model med(errr) med(time)
HMC1 cube 3.563E-02 1.076E+02
HMC2 cube 2.363E-02 1.452E+02
PDMP-105 cube 2.731E-02 4.025E+00
PDMP-106 cube 2.248E-02 3.583E+01
HMC1 ∆iso 5.191E-02 1.164E+02
HMC2 ∆iso 3.181E-02 1.798E+02
PDMP-105 ∆iso 4.751E-02 3.712E+00
PDMP-106 ∆iso 2.394E-02 2.877E+01
HMC1 ∆std 6.691E-02 2.302E+02
HMC2 ∆std 5.715E-02 3.655E+02
PDMP-105 ∆std 4.624E-02 3.702E+00
PDMP-106 ∆std 2.760E-02 2.907E+01

Table S3: Comparison PDMP versus HMC in dimension d = 50. Results are for cube, isostropic-
simplex (∆iso) and standard-simplex (∆std). HMC- Hamiltonian Monte Carlo based methods from Chevallier
et al. (2022); PDMP – this work with sample sizes N = 105 and N = 106. HMC1: W = 250; HMC2:
W = 250 + d1.5

Algorithm Model med(errr) med(time)
HMC1 cube 4.221E-02 9.122E+02
HMC2 cube 2.274E-02 1.765E+03
PDMP-105 cube 4.421E-02 1.506E+01
PDMP-106 cube 2.104E-02 1.261E+02
HMC1 ∆iso 5.782E-02 7.285E+02
HMC2 ∆iso 3.469E-02 1.671E+03
PDMP-105 ∆iso 6.347E-02 1.368E+01
PDMP-106 ∆iso 3.324E-02 9.637E+01
HMC1 ∆std 8.130E-02 1.755E+03
HMC2 ∆std 4.200E-02 4.424E+03
PDMP-105 ∆std 1.054E-01 1.350E+01
PDMP-106 ∆std 2.856E-02 9.465E+01

Table S4: Comparison PDMP versus HMC in dimension d = 100. Results are for cube, isostropic-
simplex (∆iso) and standard-simplex (∆std). HMC- Hamiltonian Monte Carlo based methods from Chevallier
et al. (2022); PDMP – this work with sample sizes N = 105 and N = 106. HMC1: W = 250; HMC2:
W = 250 + d1.5

14

N Algo. model d ε V ol min Ṽ max Ṽ med(Ṽ) stdev(˜V ol) med(errr) stdev(errr)
48 PDMP-N10**5 cube 100 NA 1.268e+30 1.08e+30 1.505e+30 1.253e+30 8.121e+28 4.421E-02 4.029E-02
48 PDMP-N10**6 cube 100 NA 1.268e+30 1.189e+30 1.332e+30 1.259e+30 3.594e+28 2.104E-02 1.544E-02
48 PDMP-N10**5 cube 500 NA 3.273e+150 1.193e+150 6.295e+150 2.656e+150 1.173e+150 2.955E-01 2.033E-01
48 PDMP-N10**6 cube 500 NA 3.273e+150 2.289e+150 4.084e+150 3.197e+150 4.064e+149 9.948E-02 6.933E-02
24 PDMP-N10**7 cube 500 NA 3.273e+150 2.868e+150 3.593e+150 3.25e+150 1.666e+149 3.969E-02 3.274E-02
48 PDMP-N10**5 ∆iso 100 NA 1.771e+43 1.31e+43 2.145e+43 1.697e+43 1.819e+42 6.347E-02 6.675E-02
48 PDMP-N10**6 ∆iso 100 NA 1.771e+43 1.586e+43 1.948e+43 1.754e+43 8.567e+41 3.324E-02 2.850E-02
48 PDMP-N10**5 ∆iso 500 NA 9.235e+216 1.311e+216 2.292e+217 5.133e+216 4.806e+216 5.364E-01 3.031E-01
48 PDMP-N10**6 ∆iso 500 NA 9.235e+216 4.967e+216 1.38e+217 9.04e+216 1.938e+216 1.410E-01 1.284E-01
24 PDMP-N10**7 ∆iso 500 NA 9.235e+216 7.16e+216 1.123e+217 9.113e+216 9.188e+215 4.407E-02 6.582E-02
48 PDMP-N10**5 ∆std 100 NA 1.072e-158 7.873e-159 1.537e-158 1.081e-158 1.752e-159 1.054E-01 9.916E-02
48 PDMP-N10**6 ∆std 100 NA 1.072e-158 9.567e-159 1.177e-158 1.085e-158 5.308e-160 2.856E-02 2.991E-02
48 PDMP-N10**5 ∆std 500 NA 8.196e-1135 1.431e-1135 2.249e-1134 5.193e-1135 4.255e-1135 4.676E-01 3.004E-01
48 PDMP-N10**6 ∆std 500 NA 8.196e-1135 4.838e-1135 1.546e-1134 7.885e-1135 1.859e-1135 1.504E-01 1.487E-01
24 PDMP-N10**7 ∆std 500 NA 8.196e-1135 7.02e-1135 1.037e-1134 8.099e-1135 7.98e-1136 7.312E-02 6.213E-02

Table S5: Statistics on volumes and their estimates. See text for details.

N Algo. model d ε med(#O/#S) stdev(#O/#S) med(#M) med(#R) med(time) stdev(time)
48 PDMP-N10**5 cube 100 NA 1.084E+02 3.456E+00 0 0 1.506E+01 4.787E-01
48 PDMP-N10**6 cube 100 NA 1.094E+02 3.739E+00 0 0 1.261E+02 3.464E+00
48 PDMP-N10**5 cube 500 NA 5.187E+02 5.499E+00 0 0 1.127E+03 6.796E+01
48 PDMP-N10**6 cube 500 NA 5.155E+02 4.751E+00 0 0 6.595E+03 6.420E+02
24 PDMP-N10**7 cube 500 NA 5.123E+02 5.283E+00 0 0 5.729E+04 1.107E+04
48 PDMP-N10**5 ∆iso 100 NA 1.070E+02 1.309E+00 0 0 1.368E+01 3.791E-01
48 PDMP-N10**6 ∆iso 100 NA 1.047E+02 1.054E+00 0 0 9.637E+01 1.424E+00
48 PDMP-N10**5 ∆iso 500 NA 5.240E+02 3.540E+00 0 0 7.503E+02 4.174E+01
48 PDMP-N10**6 ∆iso 500 NA 5.114E+02 2.122E+00 0 0 3.112E+03 2.659E+02
24 PDMP-N10**7 ∆iso 500 NA 5.092E+02 2.132E+00 0 0 2.328E+04 2.978E+03
48 PDMP-N10**5 ∆std 100 NA 1.061E+02 1.022E+00 0 0 1.350E+01 2.935E-01
48 PDMP-N10**6 ∆std 100 NA 1.037E+02 6.735E-01 0 0 9.465E+01 9.332E-01
48 PDMP-N10**5 ∆std 500 NA 5.179E+02 3.678E+00 0 0 7.727E+02 6.141E+01
48 PDMP-N10**6 ∆std 500 NA 5.053E+02 2.175E+00 0 0 3.175E+03 1.058E+02
24 PDMP-N10**7 ∆std 500 NA 5.050E+02 1.624E+00 0 0 2.744E+04 3.650E+03

Table S6: Misc statistics. The columns read as follows: ε: precision target (NA for PDMP) #S: num
samples. #O/#S: num calls to the oracle per sample #M : number of multi-precision refinements. #R:
number of calls to resample.

B.3 PDMP versus HMC: numerics.

In section 4.3, we compared PDMP and HMC regarding complexity issues.

Another important issue is that of numerical robustness faced by geometric algorithms in general Kettner
et al. (2008). Along with the volumes, we monitor the number of multi-precision refinements – Table S2. In
sharp contrast with the method based on Hamiltonian Monte Carlo Chevallier et al. (2022), such refinements
are not triggered by the PDMP sampler – the statistic #M is null and therefore so is #R. We conjecture
that multiprecision is required with HMC due to intersections between curved trajectories and the polytope
boundary, requiring the (numerically challenging) computation of an arctan.

15

	INTRODUCTION
	Volume of polytopes
	Samplers
	Contributions

	VOLUME ESTIMATION ALGORITHMS
	RESTRICTED GAUSSIAN SAMPLING USING PIECEWISE DETERMINISTIC MARKOV PROCESSES (PDMP)
	Bouncy Particle Sampler on Unbounded Space
	Bouncy Particle Sampler Restricted to a Polytope
	Efficient Implementation
	Tuning parameters of the Bouncy Particle Sampler

	EXPERIMENTS
	Setup and statistics of interest
	Tuning
	Results

	CODE AVAILABILITY
	CONCLUSION
	IMPLEMENTATION AND MULTIPRECISION
	Code overview
	Multiprecision

	RESULTS
	Comparisons at a fixed error rate
	Comparisons at a fixed number of samples
	PDMP versus HMC: numerics.

