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Abstract

Although most models for rainfall extremes focus on pointwise values, it is aggregated

precipitation over areas up to river catchment scale that is of the most interest. To

capture the joint behaviour of precipitation aggregates evaluated at different spatial scales,

parsimonious and effective models must be built with knowledge of the underlying spatial

process. Precipitation is driven by a mixture of processes acting at different scales and

intensities, e.g., convective and frontal, with extremes of aggregates for typical catchment

sizes arising from extremes of only one of these processes, rather than a combination of

them. High-intensity convective events cause extreme spatial aggregates at small scales

but the contribution of lower-intensity large-scale fronts is likely to increase as the area

aggregated increases. Thus, to capture small to large scale spatial aggregates within a
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single approach requires a model that can accurately capture the extremal properties of

both convective and frontal events. Previous extreme value methods have ignored this

mixture structure; we propose a spatial extreme value model which is a mixture of two

components with different marginal and dependence models that are able to capture the

extremal behaviour of convective and frontal rainfall and more faithfully reproduces spatial

aggregates for a wide range of scales. Modelling extremes of the frontal component raises

new challenges due to it exhibiting strong long-range extremal spatial dependence. Our

modelling approach is applied to fine-scale, high-dimensional, gridded precipitation data.

We show that accounting for the mixture structure improves the joint inference on extremes

of spatial aggregates over regions of different sizes.

Keywords— extreme precipitation; mixture modelling; spatial aggregates; spatial conditional

extremes

1 Introduction

1.1 Motivation

In light of climate change, there is a real need to assess the resilience of national infrastructure to

extreme rainfall, both now and under future warming scenarios. This requires knowledge of extreme

rainfall behaviour at a range of scales and durations, from the very small and short (about 1km and

10 minutes) for building design and urban drainage, up to thousands of square kilometres and days for

river catchments and flooding defence. Acquiring such knowledge is very difficult as observations tend

to be sparse spatially, with time series too short in length to reliably inform practitioners about future

risk. Climate models can provide spatially complete data for both the present and the future, but

when run at resolutions that are too coarse to resolve convection they struggle to reproduce realistic

extreme rainfall (Weller et al., 2013). With the advent of convection permitting models (CPMs) run

at resolutions that can explicitly represent convection, albeit only at the larger scales, the realism of

extreme rainfall is much improved particularly in summer when convection is the dominant mechanism

(Kendon et al., 2012; Chan et al., 2014; Kendon et al., 2021). However, such CPMs are very expensive

to run and thus currently produce data records which are of insufficient length to characterise extreme

rainfall with high precision particularly if considering the area affected by extreme rainfall.
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Building a parsimonious model for extreme precipitation at multiple spatial scales is difficult, as

the important aspects of the underlying processes that drive the extremal behaviour of precipitation

change with spatial resolution. Extreme precipitation is caused by a mixture of known and well-

understood processes. The primary drivers are convection, which produces spatially localised, high-

intensity precipitation events over short time scales (Schroeer et al., 2018), and processes that cause

large scale extreme events, e.g., frontal systems producing stratiform precipitation of lower intensity but

affecting a much larger area for a longer duration (Berg et al., 2013; Catto and Pfahl, 2013; Gregersen

et al., 2013); Figure 1 shows observations of these two classes of process. The distinction between these

two types of events and their space-time characteristics is an important consideration when modelling

the upper-tail behaviour of aggregates of rain over different spatial scales; we highlight major differences

in the marginal, and extremal dependence, structures of both processes in our application, and show

that the relative contribution of frontal events to extreme spatial aggregates of precipitation increases

with the size of the region over which aggregates are made. In addition, future changes due to global

warming may not affect these two mechanisms equally.

Whilst inference on precipitation extremes can be conducted at different spatial resolutions sep-

arately (Institute of Hydrology, 1999), ideally we would adopt an approach that can be used for joint

estimation of these variables at multiple spatial scales simultaneously; the benefits include a framework

for modelling dependence between aggregates over different regions and physically consistent inference,

i.e., a natural ordering for quantiles of aggregates over nested regions (Richards et al., 2022a). Moreover,

this approach has the potential to increase the reliability of inference on aggregates at lower-resolution

spatial scales as more data will be used for modelling.

In this work we focus on the spatial aggregation of short duration (hourly) extreme rainfall and

the modelling of the mixture between convective and non-convective rainfall, showing how that mixture

depends on aggregation scale. We restrict the spatial scales considered to the native resolution of the

CPM used (2.2km) up to that of UK river catchments, the largest being the Severn at 11, 000km2,

in anticipation of future work that will consider the issues of aggregation over time and how future

extreme rainfall might change in the future.
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Figure 1: Observed extreme fields identified as convective (top) and non-convective (bottom)
(mm/hr).

1.2 Data

We analyse average hourly precipitation rates (mm/hour) taken from the UKCP18 CPM projec-

tions (Kendon et al., 2019, 2021), 1981–2000. Richards et al. (2022a) consider the same data on the

coarser resolution 5km × 5km grid, but data we use are on the finer resolution native climate model

grid over a much larger spatial domain and the number of sampling locations increases from 934 to

7526. The sampling locations are 2.2× 2.2 km2 grid boxes and the spatial domain S of interest is the

southern U.K., approximately centred at Northampton and covering an area of 198 × 231 km2 with

data only sampled over land. The study domain S is illustrated in Figure 2.

Each observation corresponds to the average precipitation over a grid-box. As extreme hourly

precipitation is more likely to occur in summer, we use June–August observations only, yielding 43200

fields and eliminating the need to include seasonality effects; Figure 1 illustrates six such fields with

the top, and bottom, rows of panels displaying events that produce extreme spatial aggregates over
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Figure 2: A map of elevation (m) for the spatial domain S of interest.

small, and large, scales respectively. We follow Richards et al. (2022a) and treat the centre of each

grid box as a sampling location, and use the great-circle distance metric. We also set all values of the

data less than 1× 10−5mm/hour to zero, since this level of precipitation would be recorded as zero by

a rain gauge.

1.3 Overview

Richards et al. (2022a) develop methodology for joint inference on precipitation extremes at

different spatial scales; they consider a spatial process {Y (s) : s ∈ S} for some spatial domain S ⊂ R2,

and let data used for modelling be observations yt = (yt(s1), . . . , yt(sd))
T at times t ∈ T = {1, . . . , n}

and sampling locations S = (s1, . . . , sd) ⊂ S. Specifically, they perform inference on the upper-tail of

the aggregate variable

R̄A =
1

|A|

∫
A
Y (s)ds, (1)

where A ⊂ S is a sub-region of interest. To achieve this, they propose a model for the extremal

behaviour of {Y (s) : s ∈ S} by adapting the spatial conditional extremes approach, first proposed by

Wadsworth and Tawn (2022) and with extensions by Tawn et al. (2018); Shooter et al. (2019, 2021a,b);

Huser and Wadsworth (2020); Simpson and Wadsworth (2021) and Simpson et al. (2022). Realisations

taken from this model are used to conduct inference on R̄A for numerous regions A ⊂ S simultaneously.

Whilst the approach of Richards et al. (2022a) improved on previous approaches by ensuring self-

consistent inference across different sub-regions of interest and flexible extremal dependence modelling,
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they make the restrictive assumption that both the marginal and dependence behaviour of the data

generating process is constant over time which, as we illustrate in Section 2, is a poor assumption for

precipitation; we adapt their approach and propose separate models for convective and non-convective

precipitation, and illustrate throughout the paper that this distinction is necessary due to the disparity

between both the marginal and dependence behaviour of extreme events arising from the two classes of

process. Alongside new parametric forms for the dependence parameters of the Wadsworth and Tawn

(2022) model, further extensions of the approach of Richards et al. (2022a) include an approach for

simulating events from processes which suffer particularly badly from boundary effects due to their

long-range dependence, e.g., non-convective events.

Although we employ a conditional approach to model extremal dependence within the process

Y (s), other models have been applied in this context, e.g., max-stable processes (Coles, 1993; Padoan

et al., 2010; Westra and Sisson, 2011; Reich and Shaby, 2012), Pareto processes (Palacios-Rodŕıguez

et al., 2020; de Fondeville and Davison, 2022) and censored Gaussian copulas (Sang and Gelfand, 2010;

Thibaud et al., 2013). These models make restrictive assumptions about extremal dependence which

are not satisfied by our data, described in Section 2.4; moreover, Richards et al. (2022a) illustrate that

modelling Y (s) with the same extremal dependence as a max-stable or Pareto process leads to severe

bias in estimates of return-levels for R̄A.

The structure of the paper is as follows. Section 2 describes an algorithm for classifying observed

fields into convective or non-convective precipitation events, and gives an overview of our mixture

model setup. Details for modelling the extremes of mixture components are provided in Section 3,

and the inference framework is described in Section 3.3.3. We simulate from the two fitted models for

both classes of data using a procedure described in Section 4, and then combine realisations from both

models to estimate the upper-tail behaviour of R̄A. To illustrate the improvements to modelling R̄A

that our approach provides to that detailed by Richards et al. (2022a), we apply both methods to the

precipitation data described in Section 1.2.
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2 Mixture process

2.1 Mixture component classification

We classify observation times t ∈ T for the entire observed fields {yt(s) : s ∈ S, t = 1, . . . , n} into

two sets, denoted C and N , which correspond to “convective” and “non-convective” times, respectively;

that is, if t ∈ C, then the observed field {yt(s) : s ∈ S} is a convective event, and similarly for non-

convective events. For the classification, we use Algorithm 1, developed at the Met Office Hadley

Centre, U.K., for summer precipitation data with gridded sampling locations (Kendon et al., 2012).

At time t, the algorithm makes its classification based on the gradient of the surface of yt(s) in a

neighbourhood around si for all sites si ∈ S, as convective rainfall are highly localised and so large

gradients are expected if convection is present. Gradients are calculated using the difference between

precipitation rates at adjacent grid-boxes in a ng × ng grid centred at si, denoted Li, as the data are

observed on a regular grid. If it is not possible to create Li, e.g., at the edges of S, then si is removed.

Any field not identified as convective is automatically classified as non-convective; this includes any

fields with no rain at any s ∈ S.

Algorithm 1 Identify convective fields

[Hyperparameters]: gradient thresholds gl > 0, gu > gl, proportion of large rainfall p∗ ∈ [0, 1],
neighbourhood size ng ∈ {2d∗ − 1, d∗ ∈ N}
[Data]: Observations {yt(s) : s ∈ S, t ∈ T}
For all t = 1, . . . n:

1. For all i = 1, . . . , d:
(a) Identify the ng × ng local neighbourhood Li for si, defined in Section 2.
(b) Evaluate all differences Gi = {yt(sj)− yt(sk) : sj, sk ∈ Li}.
(c) Calculate the proportion pg,i = |{g ∈ Gi : g ≥ gu}|/|{g ∈ Gi : g ≥ gl}|.
(d) If pg,i ≥ p∗, then label yt(si) as convective.

2. If any elements of {yt(s) : s ∈ S} are labelled as convective, then the entire field is
classified as convective, i.e., t ∈ C. Otherwise, t ∈ N .

Algorithm 1 involves four hyperparameters, which we take to be gl = 0.01, gu = 1 and p∗ = 0.2

and ng = 9; these were tuned by the Met Office through visual inspection, and specifically for the

climate model we consider (Roberts, N. and Kendon, E., 2020, personal communication). The most

critical hyperparameters are gu and p∗; if gu is set too low or p∗ too high, then stratiform, or frontal,

precipitation may be classified as convective; the lower threshold gl simply removes the effect of any

grid-cells with very little rainfall, i.e., drizzle, and ng determines the size of the region around site si for

7



which the surface of yt(s) is considered. With these hyperparameters, the algorithm gives |C| = 17724

convective, and |N | = 25976 non-convective, fields of our data, with examples of both classes presented

in Figure 1; these selected fields were randomly sampled from fields which gave site-wise maxima for

their respective processes. Note that the 1481 fully-dry fields, where there is zero rainfall at all sites,

are classified as non-convective. Fields identified as being non-convective appear smoother over space

and with much lower marginal magnitude than the convective fields; note the difference in the scales

of Figure 1.

2.2 Mixture model

We assume that, for each t ∈ T, the entirety of the process {Yt(s) : s ∈ S} can be described by

one of two mixture components, denoted by {YC,t(s) : t ∈ C} and {YN ,t(s) : t ∈ N}, that describe

convective and non-convective rainfall, respectively. If t ∈ C, then Yt can be described solely by YC,t,

rather than a mixture of both components, and similarly for t ∈ N and YN ,t. Differences in the

marginal and dependence behaviour of the two mixture components can be observed in Figures 1 and

3, respectively, and so we propose different marginal and dependence models for YC,t and YN ,t. We

assume that, for each C and N process, both the marginal behaviour and dependence structures are

stationary with respect to time; that is, the process {YC,k(s)} is identically distributed to {YC,l(s)}

for all l, k ∈ C, and similarly for the non-convective process YN ,t. We then define the mixture process

{YM,t(s)} by

{YM,t(s) : s ∈ S} =


{YC,t(s) : s ∈ S}, with probability pC ,

{YN ,t(s) : s ∈ S}, with probability 1− pC ,
(2)

where pC ∈ [0, 1]. We estimate pC empirically using |C|/(|C|+|N |) and Algorithm 1 gives p̂C ≈ 39.9%. As

our interest lies only in spatial aggregates, we do not model temporal dependence in either component

of YM,t but account for this dependence through use of a block bootstrap in Section 5; henceforth we

drop the time index from notation and use the shorthand YM := {YM(s) : s ∈ S} (and similarly for

YC and YN ).

We compare two modelling approaches for {Y (s)}: an approach using the existing model devel-

oped by Richards et al. (2022a), which we denote throughout by {YE(s)} or the shorthand YE , which
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ignores any mixture structure in Y ; and our improved approach which uses model (2). Note that YE

and YM are equivalent when pC = 0 or pC = 1, or if YC(s) = YN (s) for all s ∈ S. Although observations

of the process Y (s) are assumed to arise from some probabilistic mixture, we are able to pre-classify

observations from each mixture component; in this regard, our approach differs from standard methods

using mixture models. Whilst there has been some recent focus on incorporating mixture structures

into multivariate extremal dependence models (Simpson et al., 2020; Tendijck et al., 2021), very few

methods has been proposed for mixture modelling of spatial extremes; the available models are typi-

cally restricted to a single extremal dependence class (Hazra and Huser, 2021), which, as we illustrate

in Section 5.2, make them inappropriate for our data. Although model (2) is mathematically simple,

from an applied perspective it represents an important and novel step towards flexible mixture mod-

elling of spatial extremes. In Section 5.3, we illustrate that the inclusion of the “rudimentary” mixture

structure in eq. (2) leads to a better model fit and improved inference on the extremes of R̄A.

2.3 Model justification

Model (2) introduces separate mixture components that describe both convective and non-

convective events over the entire spatial domain S. The assumption that an entire spatial field, i.e.,

any instantaneous precipitation event observed over S, can be neatly classified into distinct categories

is unlikely to be valid in general, particularly as |S| increases; for very large |S|, we may observe

convective and non-convective events occurring simultaneously within S or even multiple independent

convective events. We aim to counter these concerns by focusing on only events leading to extreme

precipitation aggregates and by restricting the scale of the domain S to that of river catchments, which

in the UK has an area of less than 11, 000km2. In Section 2.4, we highlight differences in the empirical

extremal dependence structure of the two classes of data determined using Algorithm 1.

For an observed field, Algorithm 1 first identifies individual grid-boxes, i.e., sites, as convective

(Step 1d of Algorithm 1); it then classifies the entirety of the field as convective (Step 2 of Algorithm 1),

if at least one grid-cell is convective. Theoretically, this can lead to situations where entire fields

are classified as convective courtesy of a single site (although we did not find this in practice). We

investigate the proportion of convective grid-cells within a field to determine if the assumption of

model (2), that a field at time t is either wholly convective or non-convective but never a mixture

of both, is appropriate for the data. As our interest lies in the extremes of R̄A, we calculate the
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proportion of large values of empirical spatial aggregates (of different sizes) that are contributed to

by convective sites, whenever any convective rainfall is present in the field; this is achieved via the

heuristic described in Algorithm 2. If the estimated proportion is significantly less than one, then this

would be an indication of there being mixing of the two rainfall types within extreme spatial aggregates

and evidence to suggest that the model (2) cannot be reasonably assumed for the data.

Algorithm 2 Empirical proportion of convective rainfall leading to extreme spatial aggregates

[Hyperparameters]: radius r > 0 [r ∈ {30, 85}km], number of samples [M = 50]
[Data]: All replications with t ∈ C temporal replications

1. For all t ∈ C:
(a) Repeat for M samples:

i. Sample a spatial location uniformly over the domain sc ∈ S.
ii. Compute sample total of hourly rainfall rate over all sites within a radius r.

iii. Compute sample total of hourly rainfall rate over all sites identified as convective
(using Step 1d of Algorithm 1) within a radius r.

2. Keep only values where samples from Step 1(a)ii exceed the empirical 90% quantile over
all corresponding M × C samples.

3. Compute proportions of extreme total hourly rainfall contributed to by convective sites,
i.e., divide samples in Step 1(a)iii by those from Step 1(a)ii.

Ideally, for Algorithm 2 we would create samples of extreme aggregates over a specific aggregate

region; however, this would leave very few samples available for estimation of the required proportion.

We instead make an assumption of stationarity, i.e., that the distribution of the proportion of interest

is constant over space and time; this allows us to pool information across sites and observations. Then

to create a sample of spatial aggregates which is independent of the position of the aggregate region,

we randomly sample a centre and evaluate the spatial average over a circular region with radius r > 0

and repeat this process M times for each convective field. We then consider only the largest values

within the sample of the aggregates, i.e., those that exceed the sample 90% quantile, and compute the

proportion of their total value contributed to by observed values at convective grid-cells. We chose

M = 50, large enough that reasonably-sized samples were created, with larger values not providing

a significant change in the results. We found strong evidence that, for a range of radii (r = 30km,

r = 85km and the whole study domain), the majority of extreme aggregates are driven by mostly

convective rainfall, with the median estimate of the proportion for small and large aggregate regions

being 0.92, 0.81 and 0.78, respectively. Hence we proceed under the assumption that model (2) is

appropriate for the data.
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2.4 Exploratory analysis for mixture components

We expect the two mixture components defined in eq. (2) to exhibit different extremal depen-

dence structures, as they describe very different rainfall processes: convective and non-convective rain-

fall. We quantify extremal dependence for a process {Y (s)} using the upper tail index χ(sA, sB) :=

limq↑1 χq(sA, sB) (Joe, 1997) for all sA, sB ∈ S, defined by

χq(sA, sB) = Pr
{
Y (sB) > F−1Y (sB)(q) | Y (sA) > F−1Y (sA)

(q)
}
, (3)

where F−1Y (sA)
denotes the quantile function of Y (sA). The measure χ(sA, sB) determines the extremal

dependence class; if χ(sA, sB) > 0 or χ(sA, sB) = 0, then Y (sA) and Y (sB) are asymptotically depen-

dent or asymptotically independent, respectively (Coles, 2001). Richards et al. (2022a) found evidence

that convective hourly rainfall exhibits asymptotic independence at the smallest observable spatial

distances, i.e., χ(sA, sB) = 0 for sites sA, sB ∈ S separated by at least 2.2km, inferring that extreme

events of YC become increasingly more localised as the magnitude of the events gets larger. However,

we find that non-convective events exhibit asymptotic dependence at short-range and asymptotic in-

dependence at long-range. To illustrate the need for different extremal dependence structures for both

classes of rainfall, we compute empirical estimates χ̂q(sA, sB) of eq. (3) for both classes of data; Figure 3

presents these for all pairs of a subset of 400 sites randomly sampled over S and with q = 0.98 and

q = 0.995. We observe that non-convective rainfall (brown points) exhibits much stronger extremal

dependence than convective rainfall (green points), as values of χq(sA, sB) decay much slower with

distance for the brown points than the green points. We also observe that, as q increases, χq(sA, sB)

appears to tend to zero at a much faster rate for convective rainfall; our model fits in Section 5.2

suggest that the assumption of short-range asymptotic dependence, i.e., χ(sA, sB) > 0 for close sA and

sB, may be appropriate only for non-convective rainfall. We adapt the approach of Richards et al.

(2022a) and, in Section 3, propose slightly different parametric sub-models for the two processes to

accommodate the differences in their extremal dependence structure.
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Figure 3: Empirical estimates of pairwise extremal dependence strength χ̂q(sA, sB) of eq. (3)
for q = 0.98 (left) and q = 0.995 (right) sA, sB ∈ S against great-circle distances h(sA, sB) :=
‖sA − sB‖, which are given in km. The green and brown points correspond to estimates for
convective and non-convective realisations, respectively.

3 Modelling extremes of each mixture component

3.1 Overview

Following Richards et al. (2022a), we adopt a two-step modelling approach. We first standardise

the data using the marginal model described in Section 3.2; this model is presented for a generic

stationary process {Y (s) : s ∈ S}, but is fitted separately for each of the processes YC , YN and YE .

The marginal fits are used to perform site-wise standardisation of data to standard Laplace margins;

we denote these standardised processes by XC , XN and XE .

To characterise extremal dependence, we use the spatial conditional extremes framework (Wadsworth

and Tawn, 2022); this is detailed for a generic standardised process {X(s) : s ∈ S} in Section 3.3.1,

but is applied, separately, to each of XC , XN and XE . Slight differences in modelling choices are

made for the three processes, i.e., choices of parametric forms for some dependence functions and

hyper-parameters for simulation; discussions of these differences are provided in Sections 3.3.2 and 4.2,

respectively.

3.2 Marginal model

We model the site-wise marginals of {Y (s) : s ∈ S} using three components: generalised Pareto

tails (Coles, 2001, p. 75) above some high threshold qλ(s), the (1− λ)−quantile of Y (s), the empirical

distribution for the bulk and a discrete mass at the lower tail, denoted p(s), which corresponds to the
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probability that no rain occurs at site s ∈ S. The distribution function of Y (s), for all s ∈ S, is

FY (s)(y) =



p(s), if y = 0,

{1− λ− p(s)}
FY+(s)(y)

FY+(s){qλ(s)}
+ p(s), if 0 < y ≤ qλ(s),

1− λ
[
1 + ξ{y−qλ(s)}

υ(s)

]−1/ξ
+

, if y > qλ(s),

(4)

where [x]+ = max{x, 0}, and where ξ ∈ R, υ(s) > 0 and p(s) ≥ 0, 0 < λ < 1 and FY+(s)(y)

denotes the empirical distribution function of strictly positive values of Y (s); we further require that

p(s) + λ < 1, suggesting that our marginal model is unlikely to perform well if p(s) is close to 1, as only

a small number of observations would then be available to estimate the generalised Pareto distribution

parameters.

The marginal parameter functions p(s), qλ(s) and υ(s) are represented through a basis of thin-

plate splines. We estimate p(s) using a logistic generalised additive model (Wood, 2006) and estimate

qλ(s) for all s ∈ S using additive quantile regression (Fasiolo et al., 2021); the latter technique is

computationally expensive and so we use only a subset of sites for estimation. Richards et al. (2022a)

propose a technique for estimating qλ(s) by fitting a thin-plate spline through point-wise estimates

of qλ(s) for each s ∈ (s1, . . . , sd); however, our approach better accounts for uncertainty in the spline

estimates as more data are used in their estimation, i.e., all observations at a single site rather than a

single quantile estimate. The scale parameter υ(s) is estimated by fitting a generalised Pareto, with

parameters represented as additive functions, to the exceedances of qλ(s), i.e., Y (s) − qλ(s), with a

fixed shape parameter ξ for all s ∈ S (Youngman, 2019). Our choice to fix ξ over space was fully

supported by our data and is a common approach taken when modelling spatial characteristics of

extreme rainfall as it reduces the risk of having parameter identifiability issues (Thibaud et al., 2013;

Zheng et al., 2015; Saunders et al., 2017; Brown, 2018).

Exploratory analysis of the data reveals that elevation is an important covariate in the marginal

behaviour of precipitation, an observation supported by Coles and Tawn (1996); Cooley et al. (2007)

and Cooley and Sain (2010). Hence, we allow p(s), qλ(s) and log υ(s) to vary with both location and

elevation; separate spline bases are used for both. Each spline consists of as few basis functions as

possible, i.e., four, to ensure that the parameter surfaces are relatively smooth; this is to make the
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marginal fits physically interpretable and to reduce over-fitting. Our approach for inference differs

from that proposed by Richards et al. (2022a) in that we allow the margins to change with elevation.

3.3 Extremal dependence model

3.3.1 Generic model

We model extremal dependence of the standardised process {X(s) : s ∈ S}, given that it is

extreme for some s ∈ S, by conditioning on the process being above some high threshold u at a specified

site sO ∈ S for each sO ∈ S. The process {X(s)} is assumed to be stationary with dependence a

function of distance, i.e., h(sA, sB) = ‖sA−sB‖ for sA, sB ∈ S, and some distance metric ‖·‖. Following

Wadsworth and Tawn (2022), we assume that there exists normalising functions α : [0,∞) 7→ [0, 1],

with α(0) = 1, and β : [0,∞) 7→ [0, 1], such that for each sO ∈ S, as u→∞,

({
X(s)− α{h(s, sO)}X(sO)

{X(sO)}β{h(s,sO)} : s ∈ S
}
, X(sO)− u

) ∣∣∣∣∣
(
X(sO) > u

)
d−→

({
Z(s|sO), s ∈ S

}
, E

)
,

(5)

where E is a standard exponential variable, the process {Z(s|sO)} is non-degenerate for all s ∈ S where

s 6= sO and it is independent of E. That is, there is convergence in distribution of the normalised

process to the residual process Z(s|sO) which satisfies Z(sO|sO) = 0 almost surely.

We also follow Wadsworth and Tawn (2022) and take the parametric form for α(h) of

α(h) =


1, h ≤ ∆,

exp(−{(h−∆)/κα1}κα2 ), h > ∆,

where ∆ ≥ 0 and κα1 , κα2 > 0. This function determines the strength and class of extremal dependence

within {X(s)}, see eq. (3); allowing asymptotic dependence up to distance ∆ from sO, and asymptotic

independence thereafter, with strength of dependence decreasing with h. Setting ∆ = ∞ and β(h) =

0 for all h ≥ 0 corresponds to X having the same dependence structure as an r−Pareto process

conditional on exceedances at a single site (de Fondeville and Davison, 2022).

Richards et al. (2022a) impose that the residual process Z(s|sO) for s ∈ S has delta-Laplace mar-

gins with location, scale and shape parameters determined by the spatial functions µ : [0,∞) 7→

R, σ : [0,∞) 7→ [0,
√

2] and δ : [0,∞) 7→ [1,∞), respectively. We denote this by Z(s|sO) ∼
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DL(µ{h(s, sO)}, σ{h(s, sO)}, δ{h(s, sO)}), where the delta-Laplace density is

f(z) = δ{2kσΓ(1/δ)}−1 exp{−|(z − µ)/(kσ)|δ} (6)

for z ∈ R, µ ∈ R, σ > 0 and δ > 0, and where Γ denotes the standard gamma function and k2 =

Γ(1/δ)/Γ(3/δ). Dependence within Z(s|sO), for each sO ∈ S, is modelled using a standard Gaussian

process with a stationary Matérn correlation function, denoted ρ (see Section B.4 of Richards et al.

(2022b)), with Z(sO|sO) = 0 almost surely. We adopt the same parametric forms for β, µ, σ, and δ as

Richards et al. (2022a), unless stated otherwise in Section 3.3.2; full details are provided in Section A

of Richards et al. (2022b). These parametric forms allow the extremal dependence model for {X(s)}

to exhibit perfect independence at long-range as α(h) → 0, β(h) → 0, µ(h) → 0, σ(h) →
√

2 and

δ(h)→ 1 when h→∞.

The function h(s, sO) accounts for potential geometric anisotropy in the extremal dependence

structure of {X(s)}. As Richards et al. (2022a), we define the distance metric ‖sA−sB‖ as an elliptical

transformation of (sA, sB) ∈ S × S before finding the great-circle, or spherical, distance between sA

and sB (Richards et al., 2022b, eq. S.2); the metric is parametrised by θ ∈ [−π/2, 0] and L > 0 which

control the rotation and coordinate stretching effect, respectively, with L = 1 being isotropy.

3.3.2 Differences for non-convective component

We apply the model described in Section 3.3.1 to each of XC , XN and XE . For XC and XE , we

use exactly the same parametric forms for the dependence functions as proposed by Richards et al.

(2022a), which are provided in Section A of Richards et al. (2022b); for XN , we adapt the β and σ

functions, denoting these new forms βN and σN .

The β function advocated by Richards et al. (2022a) for XC , say βC , satisfies βC(0) = 1 and allows

the convective process to exhibit spatial roughness dependent on the magnitude of X(sO). Whilst this

is a desirable property for a process generating convective precipitation events, it is not required for

XN , which generates much smoother spatial events than XC ; this claim is supported by observations

of YC and YN in Figure 1. For βN , we adopt the approach of Shooter et al. (2021b) and let

βN (h) =
κβ1h

κβ2 exp(−h/κβ3)

maxh∗>0{h
κβ2
∗ exp(−h∗/κβ3)}

, κβ1 ∈ [0, 1], κβ2 > 0, κβ3 > 0, (7)
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so 0 ≤ βN (h) ≤ 1 for all h ≥ 0 and βN (h) → 0 as h → ∞ with βN (0) = 0. In our application, we

considered both forms of β for XN , but found that eq. (7) provided a better fitting model.

The scaling function σC gives long-range independence. However, non-convective events can have

a very large spatial extent, e.g., up to 1000km (Houze Jr, 1997). Long-range independence is not

required for XN when the domain of interest S is small enough, as in our application in Section 5. To

ensure a better fitting model for XN , we let the scale function σN be

σN (h) = κσ3 [1− exp{−(h/κσ1)κσ2}] , κσ1 > 0, κσ2 > 0, κσ3 > 0,

which is equivalent to σC when κσ3 =
√

2.

3.3.3 Inference

Inference for each of the three extremal dependence models is conducted using the pseudo-

likelihood procedure proposed by Richards et al. (2022a), which they illustrate works well for models

of this type and for application to precipitation data. Full details of the inference procedure are

given in Richards et al. (2022b, Section B). This technique requires selection of a sub-sample of ds

triples of sampling locations, subject to the maximum pairwise distances subceeding a value of hmax

km. Maximisation of a pseudo-likelihood is then conducted using observations of the process via a

triple-wise censored likelihood; the latter is required to handle point masses in the marginals of X(s)

caused by zeroes in the marginals of Y (s). The censoring threshold for X(s), denoted c(s), is found by

transforming p(s) to the Laplace scale, i.e., c(s) = F−1L {p(s)}, where FL denotes the standard Laplace

distribution. We apply this approach and use different values of hmax and ds for each of the three

processes; further details are provided in Section 5.2. Inference is conducted for model (5) by fixing

a high threshold u > 0 and assuming that the limiting relation of eq. (5) holds exactly; the value of

u differs between the three processes. Finding a threshold such that Z(s|sO) and E, defined in eq.

(5), are independent may be infeasible with mixtures of different dependence present in X(s), e.g.,

for XE(s). This provides further support for our use of separate extremal dependence models for the

mixture components, as the assumptions made in eq. (5) are more likely to hold when applied to XN

and XC , rather than XE , and at lower thresholds u (and thus allows us to use more data for inference);

we find the latter to be the case in our analysis.
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4 Simulating events

4.1 Efficient simulation

We now consider simulation of {Y (s) : s ∈ S} on a dense discrete set of sites, denoted S ⊆ S;

we further distinguish between the continuous aggregate region A and a discretized version A ⊆ A,

which must satisfy A ⊂ S. Typically, we would take S to be the set of sampling locations, such that

S := s, and we do so hereafter. When |S| is large, e.g., |S| > 5, 000 as with our data, it may be too

computationally expensive to simulate a large number of replicates of {Y (s) : s ∈ S} in order to do

reliable inference on the upper-tail behaviour of R̄A. It may not be entirely necessary to simulate Y

over all of S if our interest lies in aggregates over sufficiently small regions; we can instead simulate

fields of Y on a sub-region Sτ ⊂ S; we define this set for τ > 0 by

Sτ =

{
s ∈ S : min

sA∈A
{‖s− sA‖} ≤ τ

}
, (8)

i.e., so A ⊂ Sτ . Richards et al. (2022a) chose τ so that there was a predetermined small probability

of observing a large event at any s ∈ A given that there is an extreme event at any single site outside

of Sτ . We also introduce a set of conditioning sites Ac = Sτ ∪ S+, where S+ ∩ S = ∅ for a set S+

to be defined, and create realisations of {Y (s) : s ∈ Sτ} given that the process is extreme at sO ∈ Ac.

Illustrations of A, S, Sτ , S+ and Ac for our application are presented in Figure 4 and a heuristic for

choosing both Sτ and Ac is given in Section 4.2; these sets vary over the three processes.

When considering aggregates over a fixed region A ⊂ Sτ , the simulation procedure proposed by

Richards et al. (2022a) never generates events for which the conditioning site, sO in Ac, lies outside

of the boundaries of Sτ . When the process exhibits particularly strong extremal spatial dependence,

such as for non-convective rainfall, we may bias the upper-quantiles of the distribution of R̄A if we set

Ac = Sτ , i.e., S+ = ∅, since we are ignoring events which could be large somewhere outside of Sτ

but still impact the upper-tails of the aggregate over A. So we need to account for the possibility of

an extreme at conditioning sites sO /∈ S that are far from A to avoid this problem. When we require

that S+ 6= ∅ we construct S+ to ensure that Ac contains additional, randomly selected, synthetic

conditioning sites located outside of S.
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To simulate from the fitted models for YC , YN and YE , we need to extend the procedure proposed

by Richards et al. (2022a) due to long-range dependence features of frontal rain; we present this

technique for a generic Y and X, but this approach can be applied to any of the three processes

considered. To simulate a realisation of Y (s) at a site s ∈ Sτ , we draw a realisation of

Y (s)

∣∣∣∣ {max
s∈S

(
F−1L [FY (s){Y (s)}]

)
> v

}
≡ F−1Y (s)[FL{X(s)}]

∣∣∣∣ [max
s∈S
{X(s)} > v

]
, (9)

using models (4) and (5) and for v ≥ u, with probability

Pr

{
max
s∈S

(
F−1L [FY (s){Y (s)}]

)
> v

}
,

and otherwise draw a realisation from the observed Y (s) subject to max
s∈S

(
F−1L [FY (s){Y (s)}]

)
< v. To

draw b ∈ N realisations of process (9), we use Algorithm 3, which adjusts Algorithm 1 of Richards et al.

(2022a) to account for the introduction of Ac and Sτ . We use importance sampling to approximately

draw realistions from the distribution conditional on max
s∈S
{X(s)} being large; we first simulate a

population of b′ replicates and then sub-sample b < b′ replicates using an importance sampling scheme.

Algorithm 3 Simulating conditional spatial fields corresponding to formulation (9)

1. For i = 1, . . . , b′ with b′ > b denoting the replicate population size:
(a) Draw a conditioning location s

(i)
O from Ac with equal probability 1/|Ac|.

(b) Simulate E(i) ∼ Exp(1) and set xi(s
(i)
O ) = v + E(i).

(c) Simulate a field {zi(s|s(i)O ) : s ∈ Sτ} from the residual process model.

(d) Set xi(s) = xi(s
(i)
O )α{h(s, s

(i)
O )}+ {xi(s(i)O )}β{h(s,s

(i)
O )}{zi(s|s(i)O )} for each s ∈ Sτ .

2. Assign each simulated field {xi(s) : s ∈ Sτ} an importance weight of{[∑
s∈Sτ 1{xi(s) > v}

]−1
, if

∑
s∈Sτ 1{xi(s) > v} > 0,

0, otherwise,

for i = 1, . . . , b
′
.

3. Sub-sample b realisations from the collection of replicates with probabilities proportional
to their assigned importance weights.

4. For all s ∈ Sτ , transform xi(s) to yi(s) using the marginal transformation in eq. (4). Note
that if xi(s) ≤ c(s), we set yi(s) = 0; however, yi(s

′
) is above its FL(v)-th quantile for

some s
′ ∈ Sτ .

Using Algorithm 3, we can draw realisations of {YC(s) : s ∈ Sτ} and {YN (s) : s ∈ Sτ} and then

use these to derive samples of {YM(s) : s ∈ Sτ} by drawing from the samples of {YC(s) : s ∈ Sτ}
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and {YN (s) : s ∈ Sτ} with probabilities pC and 1 − pC , respectively, see eq. (2), which are estimated

empirically. Approximate realistions of R̄A are derived by taking replicates of Y and computing the

average of {Y (s) : s ∈ A}; we denote estimates of R̄A derived using YM and YE by R̄M,A and

R̄E,A, respectively. Although the approach we have described is tailored to a specific aggregate region

A ⊂ Sτ , our interest may lie in aggregates over multiple regions A1, . . . ,Am for m ∈ N. To ensure

that we can perform joint inference on aggregates at multiple scales, we can simulate replicates of Y

with A ⊇ ∪mi=1Ai; replicates of aggregates of Y over the sub-regions A1, . . . ,Am are then derived from

a common collection of replicates.

4.2 Choosing Sτ and Ac

We begin by considering the dense sub-region Sτ of locations at which realisations of Y (s) are to

be simulated, ensuring that A ⊂ Sτ ⊆ S, and then subsequently choose S+ to build Ac ⊇ Sτ ; recall

that Ac = Sτ ∪ S+ is the set of all possible conditioning sites used in simulation. Note that, in both

cases, Sτ and Ac should be chosen as large as is computationally feasible. For Step 2 of Algorithm 3,

we require that ∑
s∈Sτ

1{xi(s) > v} ≈
∑
s∈S

1{xi(s) > v}, (10)

to account for the conditioning event in eq. (9); we can improve the accuracy of this approximation by

ensuring that sites in Sτ are sufficiently spread out across S. We first set Sτ according to eq. (8), as we

expect extreme events within A to have the largest impact on the tail behaviour of R̄A. If this choice

of Sτ does not give a good approximation in eq. (10), then we additionally sample ns sites uniformly

at random across S \ Sτ and add these to Sτ .

In our application, we found that setting S+ := ∅ ⇒ Ac := Sτ was a reasonable choice to make

for YC and YE , as no improvement in our inference for R̄A was achieved by using Ac ⊃ Sτ . However,

this was not true for YN , which exhibits strong extremal dependence at even the greatest distances

within Sτ . For such processes, we need to artificially increase the maximum possible distance between

sites in Ac and A, to ensure that any possible conditioning site sO that could contribute to an extreme

event of R̄A is available in Ac. To this end, we construct Ac by taking S+ to be a set of nc sites,

sufficiently far from A, where data are not observed. We create S+ via a brute-force approach; we add

independent Gaussian noise to the coordinates of a site in the centre of A, rejecting any new points
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Figure 4: Regions A and S that correspond to discretized versions of the aggregate region A
and study domain S, respectively; regions Sτ ,Ac and S+ = Ac \ S are used in Algorithm 3
for simulating model realisations. The aggregate region A encompasses four sub-regions, with
corresponding areas (179, 1263, 3257, 6200) km2, that are coloured orange, blue, green, yellow;
sub-regions include both the coloured and interior points and are numbered 1 to 4 in Figures 8
and S9. The grey and black points denote Sτ \ A and S \ Sτ , respectively. The nc = 1250
purple points, outside of the boundaries of S, correspond to S+, and the region Sτ encompasses
all points within distance τ = 27.5km outside of A and ns = 500 additional randomly-sampled
points within S; these values mean that |Sτ | = 3625 and |Ac| = 4875.
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that lie within the boundaries of S, see Figure 4.

Suitable values for the constants ns, τ and nc, and the variance of the noise term used to create S+,

can be chosen through validation techniques, such as model fit diagnostics for the aggregate variable

(Figures 8 and S9); if the fits look poor, one can repeatedly increase the value of these constants until

no significant changes in fit are observed.

5 Application

5.1 Marginal analysis

Marginal analysis is conducted by fitting the model described in Section 3.2 to each of the three

datasets, i.e., convective, non-convective, and pooled. We set λ = 0.005 in eq. (4) for all three processes

and use a subset of 500 sites sampled randomly over S to estimate qλ(s); more sites were considered,

but no significant difference was observed in the inference. The same sites are used for all processes and

are illustrated in Figure S1 (Richards et al., 2022b); we ensure that sampled sites proportionately cover

the distribution of elevation values by sampling sites with probability according to the approximate

empirical distribution of elevation measurements. We use all sampling locations to estimate p(s), υ(s)

and ξ. Richards et al. (2022b, Figures S2–S4) give estimates for the parameters of the marginal models

and 20-year marginal return level estimates for convective, non-convective and all rainfall, respectively,

with estimation of the return levels accounting for the differing length of the observation record for

each process. We observe similar patterns in estimates of p(s) and qλ(s) for each of the three processes,

with p(s) and qλ(s) decreasing and increasing with elevation, respectively.

There are differences between the estimates of υ(s) and the 20-year return levels for the three

processes; whereas for YN both increase with elevation, for YC and YE , we observe spatially smooth

estimates of both, with larger values in the east of the domain (see Figures S2 and S4), indicating

that the physical processes driving convection are only weakly affected by orography, unlike frontal

rain (see Figure S3). The 20-year return levels for YC and YE are much higher than for YN , which is

consistent with their different physical properties. This property also holds for all larger return levels

since the median shape parameter estimates (95% confidence interval), across all bootstrap samples,

for convective, non-convective and all rainfall are ξ̂C = 0.226 (0.201,0.245), ξ̂N = −0.074 (−0.108,

−0.03) and ξ̂E = 0.286 (0.266,0.307), respectively. Although Richards et al. (2022a) allow ξ to vary
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with location, our inference for the marginal tails of all rainfall agree with theirs as our estimate,

ξ̂C = 0.226, falls within the range of their estimates; similar agreement is found with results by Chan

et al. (2014) and Hosseinzadehtalaei et al. (2020), and the estimate is not inconsistent with the range

of feasible values for extreme precipitation proposed by Martins and Stedinger (2000). Note that the

change in the shape estimate from 0.286 for all rainfall to 0.226 for convective rainfall supports our

assumptions that, marginally, YE is a mixture of processes.

To assess the fit of the generalised Pareto additive models, we present Q-Q plots of the marginal

fits for each of YC , YN and YE at five randomly sampled locations in the Supplementary Material

(Richards et al., 2022b, Figures S5–S7). These figures show good individual fits for each of the processes

at most locations; some slight biases in return level estimates are found at certain locations near

the boundaries of the domain, but we found that this did not compromise the overall marginal fit

or the inference on spatial aggregates. To evaluate the fit over all locations, we use a pooled Q-

Q plot (Heffernan and Tawn, 2001), transforming all data onto standard exponential margins using

the fitted model; these plots are also given in these figures. Again, we observe good fits for each

process. Confidence intervals for the Q-Q plots are estimated using the following bootstrap procedure:

we create 250 bootstrap samples of the data using the stationary bootstrap approach of Politis and

Romano (1994) with expected block size of 48 hours. With qλ(s) treated as fixed across all samples,

we then estimate υ(s) and ξ for each bootstrap sample. For the pooled diagnostic plot, we apply the

marginal transformation to the original data using the 250 estimated marginal parameter sets.

5.2 Extremal dependence modelling

We proceed by fitting the extremal dependence models described in Section 3.3 separately to

each process. We use a different exceedance threshold, i.e., u in eq. (5), for each process; the 96%

quantile for XC and the 99% quantile for XE and XN . The thresholds were chosen so that the limiting

assumptions in eq. (5) were applicable; other choices were considered but these led to poorer inference

on the extremal behaviour of spatial aggregates, which we quantified using the measures and diagnostics

described in Section 5.3. Ideally, for XE we would set u such that the number of observations used for

inference was identical to the mixture approach to provide a fair comparison. However, we found that

using such a threshold led to poorer inference for XE , with significant evidence that assumptions in

eq. (5) fail for any lower threshold choice.
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Inference is conducted using the stratified sampling regime described in Section 3.3. We use the

same value of ds for all three fitted models; we follow Richards et al. (2022a) and set ds = 5000.

Different values of hmax were also taken: 35km for XE and XC and 250km for XN , with the latter

reflecting the long-range extremal dependence of XN . Inference for all three extremal dependence

models was conducted using different sub-samples of sampling locations. For XN , we tried both

parametric forms of β, i.e., βN in eq. (7) and the form described in Richards et al. (2022b); with βN

giving a better fit, we present findings for this form only. Parameter estimates for all models are given

in Richards et al. (2022b). For XE and XC , we found that fixing κδ4 = κβ3 = 1 and ∆ = 0 did not

restrict the quality of either fit.

In Figure 5, we fix a conditioning site sO in the centre of the domain and evaluate all dependence

functions for each process at each pairwise anisotropic distance, i.e., h(si, sO) for si ∈ S and i =

1, . . . , d; these are then plotted against the great-circle distances in the original coordinate system,

denoted h∗{si, sO}; as the anisotropy transformations differ for the three processes, we cannot compare

estimates of their respective dependence functions in the original space, i.e., as functions of h{si, sO}.

Figure 5 indicates that there are similarities within the extremal dependence structures of XC and XE ,

as most of the functions are approximately equal with slight differences for µ and δ. In contrast, there

are widely different estimated structures for the α and β functions for XN , with α decaying much

slower and independence not being achieved for any pairs of sites within S.

The estimate of ∆ = 6.81km given in Table 1 suggests that the process XN is asymptotically

dependent up to this distance in the anisotropic setting, which corresponds to roughly 7.04km in

the original coordinate system. Evidence of asymptotic dependence, even at short-range, has not

been found previously using the spatial conditional extremes modelling approach (Wadsworth and

Tawn, 2022; Huser and Wadsworth, 2020; Simpson and Wadsworth, 2021; Shooter et al., 2021a). As

extremal dependence is predominantly exhibited through the α function, this suggests that extreme

realisations of XN are much smoother than extreme events drawn from the other two processes, which

agrees with our understanding of convective and non-convective precipitation. Keef et al. (2013)

identify additional constraints for the Heffernan and Tawn (2004) framework, which lessen the risk of

both parameter identifiability and inconsistency issues, and which in the spatial context correspond to

β(h) = 0 whenever α(h) = 1; our fitted model breaks this constraint with 0 < β < 0.003 for 0 < h ≤ ∆,
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but this minor deviation is not problematic.
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Figure 5: Estimates of extremal dependence functions evaluated at h(si, sO) for i = 1, . . . , d,
i.e., anisotropic distances, against great-circle distances h := h∗(si, sO), which are given in km.
The conditioning site sO is in the centre of the spatial domain S and the colours correspond to
the estimates for the different spatial processes; these are green, orange and blue for convective
(green), non-convective (orange) and all rainfall (blue), respectively. Dependence functions α
and β determine the strength of extremal dependence within the standardised process X(s),
whilst (µ, σ, δ) and ρ control the marginal and dependence properties, respectively, of the resid-
ual process Z(s|sO).

To compare the model fits of YC , YN and YE , we propose the following diagnostic that we present

for a generic process. We investigate how the “conditional process”

{Y (s) : s ∈ S} | (Y (sO) = y(l))

changes with distance h∗(s, sO) for s, sO ∈ S, where y(l) denotes the l-year return level for Y (sO).

Figure 6 gives point-wise estimates for the median, and the 2.5% and 97.5% marginal quantiles, for

l = 1 and 50; these are obtained from 50, 000 realisations from the fitted model. To achieve the largest

possible distances, sO is chosen to be on the boundary of S and, to ease comparison, we consider a

transect of points in S only. We take into account the respective length of observation periods when

evaluating the respective l−year return levels, e.g., for YC we take y(l) = F−1YC(sO){1 − 1/(l × |C|/20)}

and similarly for YN and YE . The diagnostics for YC and YE are almost identical, with the conditional
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medians of the respective processes both decaying quickly with distance. For YN , the conditional

median decays fairly slowly, with non-zero values at even the largest distances.
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Figure 6: Summary statistics for {Y (s) : s ∈ S} | {Y (sO) = y(l)} (mm/hr) against distance
h∗(s, sO) (km), with y(l) the l = 1 and l = 50 years return level in the left and centre panels,
respectively; the process is considered along a transect of points (right) only. Solid lines corre-
spond to estimates for conditional medians, dashed lines denote 95% confidence intervals. Lines
are coloured green, brown and blue for convective, non-convective and all rainfall, respectively.
Right: brown and blue points denote the transect and sO, respectively.

Figure 7 presents realisations of {Y (s) : s ∈ S} | {Y (sO) > F−1Y (sO)(0.99)} for YC and YN , where

each sO was uniformly sampled over S, with their locations identified; similar plots are given for YE

in Richards et al. (2022b, Figure S8). There are similarities for YC and YE , with characteristics we

anticipated for convective rainfall, i.e., high intensity, spatially localised events with a large proportion

of the domain S being dry. In contrast, YN produces events that are much smoother spatially, cover

a much large area, and are lower in their intensity.

5.3 Inference on spatial aggregates

For each process, we draw b = 5.5 × 105 realisations using Algorithm 3, with the number of

population replicates, b
′
, being increased until the estimated quantiles of R̄A were stable; we used

b
′

:= 8b for YC and YE , and b
′

= 8b for YN . Regions Sτ ,Ac and A, described in Section 4.2, are

illustrated in Figure 4 with S := s; the sets A and Sτ are not changed over the processes, but we take

Ac = Sτ for YC and YE and for YN we create Ac using the heuristic described in Section 4.2, with

S+ := Ac \ Sτ illustrated by the purple points in Figure 4. Using these regions, we create samples

of {YM(s) : s ∈ Sτ} for different regions A (see Figure 4) by drawing from {YC(s) : s ∈ Sτ} and

{YN (s) : s ∈ Sτ} with estimated probability p̂C and 1− p̂C , respectively.
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Figure 7: Extreme precipitation fields (mm/hr). Realisations from the fitted models for ex-
ceedances over the 0.99 quantile at conditioning site sO for convective (top) and non-convective
(bottom) events. The conditioning sites sO are given by the red crosses. Scales differ within
each panel and row.

We take R̄M,A to denote samples from R̄A created using our new modelling approach and R̄E,A

for samples using the single process approach of Richards et al. (2022a). To compare mixture and

non-mixture approaches, we present Q-Q plots in Figures 8 and S9 (Richards et al., 2022b) for spatial

aggregates. In Figure S9, we assess the fit of individual mixture components YC and YN by using

Q-Q plots of the variables R̄C,A := |A|−1
∫
A YC(s)ds ≈ |A|

−1∑
s∈A YC(s) and similarly for R̄N ,A. For

Figure 8, we compare Q-Q plots for both R̄M,A and R̄E,A. Point-wise confidence interval estimates for

the quantiles on these figures are created using a bootstrap technique. Specifically, we obtain a sample

of 50 parameter estimates for each of model XC and XN by first applying a stationary bootstrap

(Politis and Romano, 1994) to observations of the process with expected block size of 48 hours, and

then fitting the extremal dependence model of Section 3.3, i.e., with the same hmax and ds, but using

different triples of sampling locations. For each of the 50 parameter estimates for XC and XN , we draw

5.5×105 realisations of {YM(s) : s ∈ Ac}, with Ac and Sτ consistent across parameter estimates. Our
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implementation does not account for the classification uncertainty as we believe that incorporating its

uncertainty does not justify the computational expense given the precision with which pC is estimated.

Figures 8 and S9 show good fits for all components of both modelling approaches, with slight

underestimation for the smaller quantiles of R̄N ,A. It appears that R̄M,A provides slightly better fits

than the corresponding R̄E,A for most of the tail, particularly for the largest regions (3 and 4); indicating

an improvement over the approach of Richards et al. (2022a). To help understand these observed

differences in fit, we estimate the proportion pM(r(l),A) of non-convective events that contribute

to R̄M,A > r(l), where here r(l) denotes the 99% and 99.5% quantile of the simulated R̄M,A. The

proportion pM(r(l),A) increases with the size of A; for the 99% quantile, pM(r(l),A) increases from

0.029 to 0.052 for the smallest and largest regions, respectively, and for the 99.5% quantile, the values

increase from 0.004 to 0.040. Neither the models for R̄M,A nor R̄E,A are able to capture the very

largest empirical quantiles when A is the smallest region, region 1. This discrepancy was caused by

two potentially spurious events that produced large values for the average over region 1, at consecutive

hours (Whitall, M., 2021, personal communication).

As the differences in Figure 8 are difficult to observe by eye, we better quantify our assertion

that modelM fits better than model E , through a comparison using a metric adapted from a measure

of Varty et al. (2021). Let Q(p;W ) : [0, 1] 7→ R+ denote the sample p-th quantile of random variable

W and R̃A denote the observed spatial aggregate; we define measures of the expected deviance in the

Q-Q plot for W against R̃A from the line y = x,

Λi(W ) =
1

m

m∑
j=1

|Q(pj ;W )−Q(pj ; R̃A)|i, for i = 1, 2, (11)

described through the mean absolute and mean squared distances Λ1 and Λ2, respectively, where

{0 < p1 < · · · < pm < 1} is a grid of m (m ≥ 2) equally spaced values with pm = 1 − (p2 − p1).

As our interest lines in the upper-tails of R̄A, we set p1 close to one. We evaluate Λ1 and Λ2 for

W := R̄M,A and W := R̄E,A, and for each region A illustrated in Figure 4, with p1 = 0.99 and

m = 432, i.e., the number of observations of R̃A that exceed the 0.99-quantile; this is done for each

sample of bootstrapped parameter estimates, see above. These goodness-of-fit diagnostics are given in

Table 1, with smaller values indicating a best fit under that metric; our approach provides better fits
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Figure 8: Q-Q plots for the model, and empirical, of average rainfall rate (mm/hr) over regions
of increasing size. Top: new approach with R̄M,A, bottom: existing approach with R̄E,A. The
considered quantiles range from the 0.8-quantile to a value corresponding to the respective 20
year return level. Blue dashed lines denote point-wise 95% quantile estimates. Regions 1–4
correspond to those illustrated in Figure 4. The blue and red horizontal lines denote the 99%
and 99.5% quantiles of the respective simulated aggregates.

for all four regions.

6 Discussion

We have presented a simple but effective mixture model extension of the approach proposed by

Richards et al. (2022a) for modelling the extremes of spatial aggregates of precipitation over a wide

range of spatial scales. We classify observed fields as being either convective or non-convective, fit

separate spatial models to each dataset and then simulate from both models and combine samples to

explore the upper-tail behaviour of R̄A. Fits of our spatial models reveal major differences between the

extremal dependence structures of convective and non-convective precipitation events, with evidence

to suggest that the latter process may exhibit short-range asymptotic dependence but long-range
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Table 1: Median estimates (0.025 and 0.975 quantile estimates) of aggregate diagnostics Λ1 and
Λ2, defined in eq. (11), over all bootstrap samples (2 decimal places).

A
1 2 3 4

Λ1(R̄M,A) 0.46 (0.23, 0.73) 0.12 (0.07, 0.31) 0.15 (0.09, 0.37) 0.12 (0.07, 0.32)
Λ1(R̄E,A) 0.78 (0.52, 1.02) 0.32 (0.11, 0.53) 0.22 (0.11, 0.41) 0.23 (0.10, 0.40)

Λ2(R̄M,A) 1.12 (0.45, 1.79) 0.04 (0.01, 0.15) 0.05 (0.03, 0.21) 0.03 (0.01, 0.18)
Λ2(R̄E,A) 1.70 (1.17, 2.80) 0.13 (0.02, 0.43) 0.08 (0.03, 0.26) 0.08 (0.02, 0.21)

asymptotic independence. Our mixture modelling approach was compared against an approach where

the mixture structure is ignored and we found that the former was able to better capture the extremal

behaviour of aggregates over very large spatial regions. We now discuss some further extensions that

can be made to improve the model.

In Section 5.3, we identified two consecutive convective events that provided the two largest

values of the empirical average rainfall R̄A over the smallest aggregate region A, denoted region 1;

neither the new nor old model for R̄A were able to capture the characteristics of these two events. The

consecutive nature of the values suggests that there may be a temporal aspect to the data that we

cannot currently capture with the model. The data themselves are aggregates of continuous-in-time

precipitation over a temporal interval of one hour and a spatial grid-box. Hence, two spatially identical

storms can produce different hourly values simply by moving at different speeds through a grid-box.

Potential model extensions would incorporate the speed of a storm as a covariate in the model or build

a conditional spatial-temporal model (Simpson and Wadsworth, 2021) adapted for precipitation.

We classified entire observed fields as convective or not regardless of the amount of convective

rainfall properties across S, or the presence/proportion of non-convective rainfall within the same

spatial domain. The classification of the whole field into one of two processes appears to work well as

we observe distinctly different structures for the two identified components. A more realistic approach

is to accommodate spatial mixing of convective and non-convective rainfall across S within a single

field. This may require modelling of extremal dependence between rain types and a framework for

simulating different types of event within the same region.

The classification technique is deterministic and so improvements may be achieved by adopting

a more probabilistic approach with labelling of mixture components conducted within inference. In
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this vein, Tendijck et al. (2021) have developed mixture models in a conditional extremes setting by

allowing the α and β functions to change with the mixture component, but only in a bivariate context.

For the residual process Z(s|sO), a Dirichlet mixture of Gaussian processes (Duan et al., 2007) could

be used, rather than a single process. This would have the added benefit of the model not being limited

to only two mixture components. Instead, a number of mixture components could be used, each with

their own dependence structure; that is, we could model more than two “types” of extreme rainfall.

In the context of modelling spatial extremes, Hazra and Huser (2021) advocate the use of Dirichlet

mixtures of Student’s-t processes.

This work is an important step towards protecting society from the impacts of extreme rainfall

through the facilitation of more precise estimation of rainfall hazards from short-run climate model

simulations. For this work to be appropriate in the future, we must accommodate future climate

change into both the marginal and extremal dependence structures of the underlying process, which

could be achieved through the use of linear or additive regression models. Further non-stationarity

in the extremal dependence structure may be handled through the inclusion of other meteorological

covariates, e.g., wind-speed, which is likely to have a large impact on the anisotropy in YM. Finally, we

recognise that it is not only the extremes of hourly-spatial aggregates that contribute to river flooding,

but also the extremes of aggregates taken over temporal windows of varying length. In order to adapt

our approach to allow for modelling of spatio-temporal aggregates, we would require a conditional

spatial-temporal dependence model (Simpson and Wadsworth, 2021).
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