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Abstract

In this paper we study the lattice of restricted subalgebras of a restricted
Lie algebra. In particular, we consider those algebras in which this lattice is
dually atomistic, lower or upper semimodular, or in which every restricted
subalgebra is a quasi-ideal. The fact that there are one-dimensional subalge-
bras which are not restricted results in some of these conditions being weaker
than for the corresponding conditions in the non-restricted case.
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1. Introduction

The relationship between the structure of a group and that of its lattice
of subgroups is highly developed and has attracted the attention of many
leading algebraists. According to Schmidt ([18]), the origin of the subject
can be traced back to Dedekind, who studied the lattice of ideals in a ring of
algebraic integers; he discovered and used the modular identity, which is also
called the Dedekind law, in his calculation of ideals. Since then modularity
and lattice conditions related to it have been studied in a number of contexts.
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The lattice of submodules of a module over a ring is modular, and hence so is
the lattice of subgroups of an abelian group. The lattice of normal subgroups
of a group is also modular, but the lattice of all subgroups is not in general.

A lattice L is modular if A ∪ (B ∩ C) = (A ∪ B) ∩ C for all A,B,C ∈ L
with A ⊆ C. Groups whose subgroup lattice is modular are called M-groups.
These are known modulo the Tarski monster groups (infinite groups in which
every proper non-trivial subgroup has prime order). Locally finite M-groups
and those with elements of infinite order were investigated in 1941 and 1943
by Iwasawa. The classification was completed by Schmidt who, in 1986,
characterised the periodic M-groups.

A lattice L is upper semimodular if A is maximal in A∪B whenever A∩B
is maximal in B for A,B ∈ L. It is lower semimodular if A ∩ B is maximal
in B whenever A is maximal in A ∪ B for A,B ∈ L. In 1951, Ito showed
that the subgroup lattice of a finite group G is lower semimodular if and only
if G is supersoluble and induces an automorphism group of at most prime
power order in every chief factor of G. Groups with an upper semimodular
subgroup lattice were studied by Sato in 1949 but, according to Schmidt, are
not considered as important as there is no related class of groups which is
significant from a group-theoretic point of view. All of the above references,
together with a comprehensive discussion of the state of questions concerning
the subgroup lattice in 1994 can be found in Schmidt ([18]).

The study of the subalgebra lattice of a finite-dimensional Lie algebra
was popular in the 1980’s and in the 90’s (see, for example, [3, 7, 8, 9, 10, 11,
13, 14, 25, 26, 27, 28, 29, 30]), but interest then waned. The likely reason is
that most of the conditions under investigation were too strong and so few
algebras satisfied them. However, the lattice of restricted subalgebras of a
restricted Lie algebra is fundamentally different; for example, not every ele-
ment spans a one-dimensional restricted subalgebra. Thus, one could expect
more interesting results to hold for restricted algebras and, as we shall see,
this is indeed the case.

In Section 2 we fix some notation and terminology and introduce some
results that are needed later. We also prove a result which is a slightly weaker
version of a result of Scheiderer for fields of characteristic zero, but which
is valid over any field. This concerns dually atomistic Lie algebras; that is,
ones in which every subalgebra is an intersection of maximal subalgebras.
In Section 3 we first study restricted Lie algebras that are dually atomistic
in the sense that every restricted subalgebra is an intersection of maximal
restricted subalgebras. We show that such algebras over an algebraically
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closed field of positive characteristic are solvable or semisimple, and then
characterise the solvable ones more precisely. It turns out that they are
more abundant than in the non-restricted case. We then investigate those
restricted Lie algebras all of whose subalgebras (not necessarily restricted) are
intersections of maximals. It is shown that if the ground field is algebraically
closed then there are no such algebras that are perfect.

The objective in Section 4 is to study restricted Lie algebras L in which
every restricted subalgebra is a restricted quasi-ideal; that is, such that
[S,H] ⊆ S + H for all restricted subalgebras S,H of L. These are char-
acterised over an algebraically closed field of characteristic different from 2,
and the nilpotent ones more generally over a perfect field of characteristic
different from 2. In this regard, we also mention that restricted Lie algebras
over perfect fields all of whose restricted subalgebras are ideals were char-
acterised by the second author in [19]. Section 5 then goes on to consider
J-algebras and lower semimodular restricted Lie algebras. The main result
here is the same as for the corresponding situation as in the non-restricted
case if the underlying field is algebraically closed, but it is pointed out that
the assumption of algebraic closure cannot be omitted.

The final section is devoted to studying upper semimodular restricted Lie
algebras. It is shown that, over an algebraically closed field, such an algebra
is either almost abelian or nilpotent of class at most 2. This is proved by
considering first upper semimodular restricted Lie algebras that are generated
by their one-dimensional restricted subalgebras. It is also shown that over
such fields the conditions that L is modular, L is upper semimodular and
every restricted subalgebra of L is a quasi-ideal are equivalent.

2. Preliminaries

Here we fix some notation and terminology and introduce some results
that will be needed later. Unless otherwise stated, throughout the paper
all algebras are supposed finite-dimensional. Let L be a Lie algebra over a
field F. As usual, the derived series for L is defined inductively by L(0) = L,
L(k+1) = [L(k), L(k)] for k ≥ 0, L(∞) = ∩k≥0L

(k); L is solvable if L(∞) = 0.
Similarly, the lower central series is defined inductively by L1 = L, Lk+1 =
[Lk, L] for k ≥ 1; L is nilpotent if Lk = 0 for some k ≥ 1. Also, L is said to
be supersolvable if it admits a complete flag made up of ideals of L, that is,
there exists a chain

0 = L0 ( L1 ( · · · ( Ln = L
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of ideals of L such that dimLj = j for every 0 ≤ j ≤ n. The centre of L is
denoted by Z(L), and CB(A) = {x ∈ B : [x,A] = 0} denotes the centraliser
in a subalgebra B of another subalgebra A. Also, the ascending central series
is defined inductively by C1(L) = Z(L), Cn+1(L) = {x ∈ L : [x, L] ⊆ Cn(L)}.
The nilradical N(L) is defined to be the maximal nilpotent ideal, and the
solvable radical, denoted by R(L), is defined to be the maximal solvable
ideal. For every x ∈ L, the adjoint map of x is defined by ad(x) : L → L,
a 7→ [x, a]. If S is a subalgebra of L, then the largest ideal of L contained in
S is called the core of L and is denoted by SL. The Frattini subalgebra F (L)
of L is the intersection of all maximal subalgebras of L; the Frattini ideal of
L is φ(L) = F (L)L. The abelian socle, Asoc(L), is the sum of the minimal
abelian ideals of L. We will denote algebra direct sums by ⊕, whereas direct
sums of the vector space structure alone will be written as +̇.

We say that L is dually atomistic if every subalgebra of L is an intersection
of maximal subalgebras of L. The Lie algebra L is said to be almost abelian
if L = Fx+̇A, where A is an abelian ideal of L and ad(x) acts as the identity
map on A. Scheiderer proved in [17] that, over a field of characteristic zero,
every dually atomistic Lie algebra is abelian, almost abelian or simple. Here
we establish a slightly weaker version of this which is valid over any field.

Proposition 2.1. If L is a dually atomistic Lie algebra over any field then
L is either abelian, almost abelian or semisimple.

Proof. Let L be dually atomistic and suppose that L is not semisimple. Then
Asoc(L) 6= 0 and L splits over Asoc(L), by [24, Theorem 7.3]. Furthermore,
the minimal abelian ideals of L are one-dimensional, by [17, Lemma 1], so
we can write L = (Fa1⊕· · ·⊕Fan)+̇B, where Fai is a minimal ideal of L for
each 1 ≤ i ≤ n, B is a subalgebra of L, and n ≥ 1.

Let M be a maximal subalgebra of L with a1 6∈ M . We shall show
that L(∞) ⊆ M . Now L = Fa1 + M , so M has codimension one in L.
It follows that L/ML is as described in [2, Theorems 3.1 and 3.2]. Also,
[Fa1,ML] ⊆ Fa1 ∩M = 0. We consider the three cases given in [2, Theorem
3.1] separately.

Case (a): Here L/ML is one-dimensional, so M = ML and L2 ⊆M .
Case (b): Here L/ML is two-dimensional, so L = Fa1 + Fm+ML where

m ∈M \ML. Now L2 ⊆ Fa1 +ML and L(2) ⊆ML ⊆M .
Case (c): Here L/ML ' Lm(Γ). If m is odd then Lm(Γ) is simple. But

(Fa1 +ML)/ML is a one-dimensional ideal of L/ML, which is a contradiction.
Hence m is even, in which case Lm(Γ) = Fx+Lm(Γ)2, where Lm(Γ)2 is simple.
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Put L/ML = L̄, and so on. Then L̄ = Fā1 ⊕ L̄2 and [L̄, ā1] = 0̄; that is,
[L, a1] ⊆ML, whence L2 ⊆M .

In any case we have established that, for any maximal subalgebra M of
L, either a1 ∈ M or L(∞) ⊆ M . Suppose that L(∞) 6= 0. Then L(∞) 6= Fa1

(since (Fa1)2 = 0), so there is an element x ∈ L(∞) \ Fa1. Let M be a
maximal subalgebra containing x+a1. Then either a1 ∈M or L(∞) ⊆M . In
each case, Fx+Fa1 ⊆M . It follows that F(x+a1) cannot be an intersection
of maximal subalgebras of L, a contradiction. Hence, L(∞) = 0 and L is
solvable. The result now follows from [17, Lemma 1].

We shall need the following result which is due to Grunewald, Kunyavskii,
Nikolova and Plotkin for p > 5. However, the same proof works for p > 3 by
using the Corollary in page 180 of [20]. A. Premet has pointed out that the
result is also valid for p = 3, but that it relies on results that have not yet
been published, so we omit this case.

Lemma 2.2. Every simple Lie algebra L over an algebraically closed field F
of characteristic p > 3 contains a subalgebra S containing an ideal T of S
such that S/T ∼= sl(2,F).

Proof. The proof is the same as for [12, Lemma 3.2] with the reference to
[31, Part II, Corollary 1.4] replaced by [20, page 180, Corollary].

In what follows we shall be studying the lattice of restricted subalgebras
of a restricted Lie algebra. Let L be a restricted Lie algebra over a field of
characteristic p > 0. For a subset S of L, we denote by 〈S〉p the restricted
subalgebra generated by S. We say that L is cyclic if L = 〈x〉p for some
x ∈ L. An element x ∈ L is said to be semisimple if x ∈ 〈x[p]〉p and toral if
x[p] = x. An abelian restricted Lie algebra consisting of semisimple elements
is called a torus. An element x ∈ L is said to be p-nilpotent if x[p]n = 0 for
some n > 0 (in this case, the minimal n with such a property is called the
order of x), and L is said to be p-nilpotent if there exists n > 0 such that
x[p]n = 0 for every x ∈ L. A restricted ideal I of L is said to be strongly
abelian if I is abelian and x[p] = 0 for all x ∈ L. We also introduce as
“restricted analogues” of earlier concepts, Fp(L), the Frattini p-subalgebra
of L, to be the intersection of the maximal restricted subalgebras of L, and
φp(L), the Frattini p-ideal of L, to be the largest restricted ideal of L which
is contained in Fp(L). We say that L is φp-free if φp(L) = 0. The abelian
p-socle, Apsoc(L), is the sum of the minimal abelian restricted ideals of L. To
avoid tedious repetition we shall therefore often omit the word ’restricted’.
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3. Dually atomistic Lie algebras

We say that a restricted Lie algebra L is dually atomistic if every restricted
subalgebra of L is an intersection of maximal restricted subalgebras of L. It
is easy to see that if L is dually atomistic then so is every factor algebra of
L, and if L is dually atomistic then it is φp-free.

Lemma 3.1. Let L be a dually atomistic restricted Lie algebra. Then:

(i) N(L) is abelian;

(ii) M ∩N(L) is a restricted ideal of L for every maximal restricted subal-
gebra M of L; and

(iii) for every subspace S of N(L), 〈S〉p is a restricted ideal of L.

Proof. (i) N(L)2 ⊆ φp(L) = 0 by [24, Theorem 6.5] and [15, Theorem 3.5].
(ii) The result is clear if N(L) ⊆ M , so suppose that N(L) 6⊆ M . Then

L = N(L) +M and

[L,N(L) ∩M ] = [N(L) +M,N(L) ∩M ]

⊆ N(L)2 +N(L) ∩M2 ⊆ N(L) ∩M,

using (i).
(iii) By (i), every subspace of N(L) is a subalgebra of L. Let S be any

subspace of N(L). Then

〈S〉p = 〈S〉p ∩N(L) =

( ⋂
M∈M

M

)
∩N(L) =

⋂
M∈M

(M ∩N(L)),

where M is the set consisting of all maximal restricted subalgebras of L
containing 〈S〉p. Therefore, 〈S〉p is an intersection of restricted ideals of L,
by (ii), and so is itself a restricted ideal of L.

Proposition 3.2. Let L be a dually atomistic restricted Lie algebra over an
algebraically closed field F. Then L is solvable or semisimple.

Proof. Suppose that L is not semisimple. Then L = N(L)+̇B = A1 ⊕
· · · ⊕ An+̇B, where B is a restricted subalgebra of L and A1 ⊕ · · · ⊕ An =
Apsoc(L) 6= 0, by [15, Theorems 3.4 and 4.2]. If B = 0, then L is nilpotent
and we are done. Assume therefore that B 6= 0.

Suppose first that N(L) = Z(L). Then, L = Z(L) ⊕ B and L2 ⊆ B.
Then we must have that N(L) = R(L). For, otherwise, there is a minimal
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ideal A/N(L) of L/N(L) with A ⊆ R(L). But A is nilpotent, which is a
contradiction. Thus, B is semisimple and Z(L) 6= 0. Let M be a maximal
restricted subalgebra of L. If Z(L) is not contained in M then M + Z(L)
is a restricted subalgebra properly containing M , so L = M + Z(L) and
〈B2〉p = 〈L2〉p ⊆ M , since L2 ⊆ M and M is restricted. Hence, either Z(L)
or 〈B2〉p is inside M .

Let z ∈ Z(L) and b ∈ 〈B2〉p, and let M be a maximal restricted subalge-
bra containing 〈z+b〉p. Then z, b ∈M , so we must have 〈z〉p+〈b〉p = 〈z+b〉p.
But then b =

∑n
i=0 λi(b

[p]i + z[p]i), so b =
∑n

i=0 λib
[p]i and

∑n
i=0 λiz

[p]i = 0.
If b is not semisimple, then λ0 = 1 which implies that z is semisimple, from
the second sum. This must hold for every choice of z ∈ Z(L), so Z(L) is
a torus of L, by [23, Chapter 2, Theorem 3.10]. A similar argument shows
that if z is not semisimple then every b must be, in which case 〈B2〉p is
a torus of L. Hence, either Z(L) or 〈B2〉p is a torus. In the latter case,
〈B2〉p is abelian, contradicting the fact that B is semisimple. In the former
case, both Z(L) and 〈B2〉p have a toral element: z and b, say. But then
〈z〉p + 〈b〉p = Fz + Fb 6= F(z + b) = 〈z + b〉p, a contradiction.

Therefore suppose that N(L) 6= Z(L). Then there is a minimal restricted
ideal A with A ⊆ N(L) and A ∩ Z(L) = 0. Moreover, if a ∈ A, we have
that a[p] ∈ A ∩ Z(L), so A = Fa with a[p] = 0, by Lemma 3.1(iii). Let
M be a maximal restricted subalgebra of L such that a /∈ M . We have
L = M+̇A, by [15, Lemma 2.1], so M has codimension one in L, and, as
in Proposition 2.1, 〈L(∞)〉p ⊆ M . It follows that 〈L(∞)〉p ∩ A = 0. Choose
x ∈ 〈L(∞)〉p. Then [x, a] ∈ L(∞) ∩ A = 0. If 〈x + a〉p = 〈x〉p + 〈a〉p, then

we have a =
∑n

i=0 λi(x + a)[p]i = λ0a +
∑n

i=0 λix
[p]i . Hence λ0 = 1 and x

is semisimple. It follows from [23, Chapter 2, Theorem 3.10] that 〈L(∞)〉p is
abelian. But this means that L is solvable.

For a field F of characteristic p > 0, we will denote by F[t, σ] the skew
polynomial ring over F in the indeterminate t with respect to the Frobenius
endomorphism σ of F. We recall that F[t, σ] is the ring consisting of all
polynomials f =

∑
i≥0 αit

i with respect to the usual sum and multiplication
defined by the condition t · α = αpt for every α ∈ F.

Proposition 3.3. Let L be a solvable restricted Lie algebra over any field
F. If L is dually atomistic then L = (Z(L)⊕ I)+̇Fb, where b is toral, I is a
strongly abelian restricted ideal of L, ad(b) acts the identity on I, and

Z(L) ' L/〈f̄1〉p ⊕ · · · L/〈f̄r〉p,
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where L = 〈x〉p is a free cyclic restricted Lie algebra and f̄i =
∑s

k=0 αkx
[p]k

is an element of L such that fi =
∑s

k=0 αkt
k is an irreducible element of the

ring F[t, σ].

Proof. Suppose first that L is dually atomistic. The nilradical N(L) of L
is non-zero and abelian by Lemma 3.1(i). As L is φp-free, L = N(L)+̇B
for some restricted subalgebra B of L, and N(L) = Apsoc(L) := A, by [15,
Theorems 3.4 and 4.2]. Now, if L is abelian then L = A and the desired
conclusion follows from [16, Proposition 3.1]. Suppose then that L is non-
abelian. Let a ∈ A. Then CB(A) is a restricted ideal of L and CB(A)∩A = 0,
so CB(A) = 0 and B acts faithfully on A. Also ad2(a) = 0 and so ad(a[p]) = 0,
whence a[p] ∈ Z(L) for all a ∈ A.

We can write A = A1⊕· · ·⊕An, where Ai is a minimal abelian restricted
ideal of L for 1 ≤ i ≤ n. Moreover, Ai ' L/〈f̄i〉p, where f̄i =

∑
k≥0 αkx

[p]k is

an element of L such that fi =
∑

k≥0 αkt
k is an irreducible element of the ring

F[t, σ], by Lemma 3.1(iii) and [16, Proposition 3.1]. Let A1⊕· · ·⊕Ar = Z(L),
where we allow that r could be 0. Since B acts faithfully on A we cannot
have r = n. Then [B,A] = Ar+1 ⊕ · · · ⊕ An = Fxr+1 ⊕ · · · ⊕ Fxn. We

have x
[p]
i = αxi for some α ∈ F and so, as xi is not central, we deduce that

x[p] = 0. As a consequence, [B,A] := I is a strongly abelian restricted ideal
of L. Moreover, CB(xi) is a restricted ideal of L, so CB(xi) = 0 for each
r + 1 ≤ i ≤ n. Let b1, b2 ∈ B. Then [bi, xn] = λixn for some 0 6= λi ∈ F,
i = 1, 2. But then [λ2b1 − λ1b2, xn] = 0, whence b1 and b2 are linearly
dependent and B is one-dimensional. Choose B = Fb such that [b, xn] = xn.
Let b[p] = µb. Then

xn = [b[p], xn] = µ[b, xn] = µxn,

so µ = 1 and b is toral. Finally, it follows from Lemma 3.1(iii) that ad(b)
acts the identity on I, completing the proof.

The following example shows that the converse of Proposition 3.3 is not
true in general.

Example 3.4. Let L = Fz ⊕ Fx ⊕ Fb be the restricted Lie algebra over a
field F of characteristic p > 0 with [b, x] = b, [x, z] = [b, z] = 0, b[p] = b, and
x[p] = y[p] = 0. Then 〈x + z〉p ⊆ N(L) = Fz ⊕ Fx, but 〈x + z〉p is not a
restricted ideal of L. Therefore L is not dually atomistic by Lemma 3.1(iii).
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We introduce another piece of notation before presenting the following re-
sults. We say that a Lie algebra is restricted dually atomistic if it is restricted
and every subalgebra is an intersection of maximal subalgebras.

Proposition 3.5. Let L be a perfect restricted dually atomistic Lie algebra
over any field F of characteristic p > 0. Then every subalgebra of L is
restricted.

Proof. Arguing as in [15, Lemma 3.7], it is immediate to prove that every
maximal subalgebra of L is self-idealising. It follows from [15, Lemma 3.9]
that every maximal subalgebra of L is restricted. The result now follows
from the fact that L is dually atomistic.

Theorem 3.6. There are no perfect restricted dually atomistic Lie algebras
over an algebraically closed field.

Proof. Suppose that L is a counterexample of minimal dimension. By Propo-
sition 3.5, L is simple as a Lie algebra, and hence its absolute toral rank is just
the dimension of a maximal torus T (cf. [22, §1.2]). Given two linearly inde-
pendent elements x, y ∈ T , Proposition 3.5 forces 0 6= (x+λy)[p] ∈ F(x+λy)
for all λ ∈ F, but this cannot happen since F is algebraically closed. Hence,
L has absolute toral rank 1.

Now, if F has characteristic p = 2, 3, then [21, Theorem 6.5] yields that
L is solvable or isomorphic to sl(2,F) or to psl(3,F). Otherwise, L has a
restricted subalgebra with a quotient isomorphic to sl(2,F), by Lemma 2.2
and Proposition 3.5. But both sl(2,F) and psl(3,F) have elements which are
neither semisimple nor p-nilpotent, which clearly contradicts Proposition 3.5.

As well as the three-dimensional non-split simple Lie algebra, which is
dually atomistic in the characteristic zero case, there exist other perfect du-
ally atomistic simple restricted Lie algebras over a perfect field which is not
algebraically closed. For example, let L be the seven-dimensional simple Lie
algebra over a perfect field of characteristic 3 constructed by Gein in [8, Ex-
ample 2]. This algebra L can be endowed with a p-mapping such that every
element is semisimple. Any two linearly independent elements of L generate
a three-dimensional non-split restricted subalgebra which is maximal in L.
Any second-maximal restricted subalgebra is then one-dimensional, and ev-
ery one-dimensional restricted subalgebra S is inside more than one maximal
restricted subalgebra whose intersection is S.
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We finish this section by studying the so-called atomistic restricted Lie
algebras, those in which every restricted subalgebra is generated by minimal
restricted subalgebras.

Proposition 3.7. Let F be an algebraically closed field of characteristic p >
0. A restricted Lie algebra L over F is atomistic if and only if every p-
nilpotent cyclic restricted subalgebra is one-dimensional.

Proof. Note that L is atomistic if and only if all its cyclic restricted sub-
algebras are atomistic. Consider the cyclic restricted subalgebra C, whose
semisimple elements form a torus T , and whose p-nilpotent elements form a
p-nilpotent restricted subalgebra P . By [23, Chapter 2, Theorem 3.6], T is
atomistic. From [23, Chapter 2, Theorem 3.5], it follows that C = T ⊕P , so
C is atomistic if and only if P is atomistic. But this is equivalent to requiring
that dimP = 1 ([16, Theorem 3.8]). The result follows.

4. Restricted quasi-ideals

A restricted subalgebra S of L is called a restricted quasi-ideal of L if
[S,H] ⊆ S+H for all restricted subalgebras H of L. Clearly, every restricted
subalgebra that is a quasi-ideal is also a restricted quasi-ideal.

Denote by L[p] the restricted subalgebra generated by all the elements
x[p], with x ∈ L.

Lemma 4.1. If S is a restricted subalgebra of L, then SL is a restricted ideal
of L

Proof. Simply note that (SL)[p] is an ideal of L inside S.

Proposition 4.2. If F is perfect then L[p] is a restricted quasi-ideal if and
only if it is an ideal of L.

Proof. Suppose that L[p] is a restricted quasi-ideal of L. Then, for all x ∈ L

[L[p], x] ⊆ L[p] + 〈x〉p = L[p] + Fx,

so L[p] is a quasi-ideal. Suppose that L[p] is not an ideal of L, and factor out
(L[p])L, so we can assume that L[p] is core-free. Then, by [1, Theorem 3.6],
there are three possibilities which we will consider in turn.

Suppose first that L[p] has codimension 1 in L. Define (L[p])i as in [2,
(5)]. Then every element x ∈ L can be written as x = xs + xn, where xs
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is semisimple and xn is p-nilpotent, by [23, Theorem 3.5]. Moreover, all
semisimple elements belong to L[p], so L = L[p] + Fx for some p-nilpotent
element x. Suppose that x[p]k = 0. Now (L[p])i = {y ∈ L[p] | [y,i x] ∈ L[p]} for
i ≥ 0, by [2, Lemma 2.1(b)]. Hence [y,ph x] = [y, x[p]h ] = 0 for h ≥ k. Also,
(L[p])0 = L[p] and (L[p])i+1 ⊆ (L[p])i for i ≥ 0, so (L[p])L = ∩∞i=0(L[p])i = L[p],
by [2, Lemma 2.1], contradicting the fact that L[p] is not an ideal of L.

On the other hand, [1, Theorem 3.6(c)] cannot hold, as the three-dimensional
simple Lie algebra W (1, 2)2 over a field of characteristic 2 is not restrictable.
To see this simply note that the derivation ad2(x) is not inner.

Finally, suppose that [1, Theorem 3.6(d)] holds. Then L = L2 +Fy where
ad(y) acts as the identity map on L2 and L[p] = Fy. Let x ∈ L2. We have
adp(y) = ad(y) and adp(x) = 0 for every x ∈ L2. Therefore, as L is centerless,
the p-mapping of L is determined by the conditions y[p] = y and x[p] = 0.
This implies that L[p] = L, a contradiction.

The converse is straightforward.

Proposition 4.3. Let L be a restricted Lie algebra such that every restricted
subalgebra of L is a restricted quasi-ideal. Then L2 ⊆ L[p]. It follows that
L3 = Lp+1; in particular, if L is nilpotent, then L has nilpotency class at
most 2.

Proof. By Proposition 4.2, L[p] is a restricted ideal. Put L = L/L[p]. Then
L[p] = 0 and every subalgebra of L is a quasi-ideal. If L is not abelian then
it is almost abelian, by [1, Theorem 3.8], so L = L2 + Fy, where ad(y) acts
as the identity map on L2. But then, if 0 6= x ∈ L2, then 0 = [y[p], x] = x, a
contradiction. It follows that L2 = 0, so L2 ⊆ L[p]. Now, if p 6= 2, then we
are done. Assume then that p = 2, and suppose, by contradiction, that L
has nilpotency class n > 2. Set H = L/Cn−3(L), which has nilpotency class
3. By [4, Chapter 16, Proposition 1.1], H does not satisfy the second Engel
condition, and therefore there exist x, y ∈ H such that [x, y[2]] = [[x, y], y] 6=
0. Set x̃, ỹ to be preimages of x, y in L, and note that x̃[2]2 , ỹ[2]2 , [x̃[2], ỹ[2]] ∈
Cn−3(L). Then, by hypothesis we can write [x, y[2]] = λ1x+λ2x

[2] +λ3y
[2] for

some λi ∈ F, i = 1, 2, 3. Also, we have that [[x, y[2]], z] = 0 for any z ∈ H.
For z = y[2] we obtain that λ1 = 0, for z = x we have λ3 = 0 and, finally,
for z = y we get [x[2], y] = 0. Now, write [x, y] = λ4x+ λ5x

[2] + λ6y + λ7y
[2],

for some λi ∈ F, i = 4, . . . , 7. But then [x, y[2]] = [[x, y], y] = λ4[x, y],
and 0 = [[x, y], y[2]] = λ4[x, y[2]]. Consequently, λ4 = 0 and [x, y[2]] = 0, a
contradiction.
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Lemma 4.4. Let L be a restricted Lie algebra over an algebraically closed
field of characteristic p > 0 in which every restricted subalgebra is a restricted
quasi-ideal. If H is a Cartan subalgebra of L, then L has root space decom-
position

L = H+̇(⊕α∈Φ(Lα+̇L−α)⊕β∈Ψ Lβ),

where Φ is the set of roots α for which −α is also a root, and Ψ is the
remaining set of roots.

Proof. Let T be a maximal torus, H = CL(T ) and let L = H+̇α∈ΠLα be the
corresponding root space decomposition. Then

[xα, xβ] = λxα + µxβ + h for some h ∈ H,

since L
[p]
α ⊆ H for all α ∈ Π, by [23, Corollary 4.3]. But [Lα, Lβ] ⊆ Lα+β, so,

either [Lα, Lβ] = 0 or [Lα, Lβ] ⊆ H and α+ β = 0. If [Lα, Lβ] = 0 for α 6= β
then [L−α, Lβ] = 0 also, giving the root space decomposition claimed.

Suppose that every restricted subalgebra of L is a restricted quasi-ideal.
Let S be the subspace spanned by the semisimple elements of L and let P be
the subspace spanned by the p-nilpotent elements of L. Then S and P are
subalgebras of L, since [x, y] ∈ 〈x〉p + 〈y〉p, and, if F is perfect, L = S + P .
Moreover, both are restricted, since

(λx+ µy)[p] = λpx[p] + µpy[p] +

p−1∑
i=1

si(x, y),

and x[p], y[p] are semisimple (respectively, p-nilpotent) if so are x, y, and
si(x, y) ∈ 〈x, y〉p.
Proposition 4.5. Let L be a nilpotent restricted Lie algebra over a perfect
field of characteristic different from 2. Then every restricted subalgebra of L
is a restricted quasi-ideal of L if and only if L = S ⊕ P , where S is a toral
ideal and P is a p-nilpotent ideal in which every restricted subalgebra is a
restricted quasi-ideal.

Proof. Suppose that every restricted subalgebra of L is a restricted quasi-
ideal of L. By Proposition 4.3, L3 = 0 and L[p] ⊆ Z(L). Then, for all
x, y ∈ L, (x + y)[p] = x[p] + y[p], so S, P are just the sets of semisimple and
p-nilpotent elements of L respectively. Then S ∩ P = 0 and S ⊆ Z(L). It
follows that L = S ⊕ P and that S is toral.

The converse is straightforward.
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Corollary 4.6. Let L be a restricted Lie algebra over an algebraically closed
field of characteristic different from 2 in which every restricted subalgebra of
L is a restricted quasi-ideal of L. Then L has a Cartan subalgebra H such
that H = S ⊕ P where S is a torus and P is the set of p-nilpotent elements
in H, and L = S+̇N where N is an ideal, N3 = 0 and N [p] ⊆ Z(H).

Proof. We have that L has the form given in Lemma 4.4 and H = S ⊕ P ,
by Proposition 4.5. Now L2

α = L2
−α = L2

β = 0 since 2α, −2α and 2β are
not roots. For every h ∈ H, α ∈ Π = Φ ∪ Ψ, we have that [h, xα] ∈
(〈h〉p+〈xα〉p)∩Lα, so [h, xα] = λxα for some λ ∈ F; that is, h acts semisimply

on Lα. Also α(x
[p]
α ) = 0, by [23, Chapter 2, Corollary 4.3 (4)]. It follows that

[x
[p]
α , x−α] = 0. Similarly, [x

[p]
−α, xα] = 0. Now [xα, x−α] ∈ 〈x[p]

α 〉p+〈x[p]
−α〉p, so, if

N = P +
∑

α∈Φ(Lα+L−α)+
∑

β∈Ψ Lβ we have N3 = 0 and N [p] ⊆ Z(H).

5. J-algebras and lower semimodular restricted Lie algebras

For this section, it will be useful to have the following result.

Lemma 5.1. Let L be a restricted Lie algebra over an algebraically closed
field of characteristic p > 0. If L is supersolvable, then L admits a complete
flag made up of restricted ideals of L.

Proof. Plainly, it is enough to show that L has a one-dimensional restricted
ideal, from which the conclusion will follow by induction. Suppose dimL > 1,
the claim being trivial otherwise. Consider a complete flag

0 = L0 ( L1 ( · · · ( Ln = L

of ideals of L. If the ideal L1 is restricted, then we are done. Thus we can
suppose that there exists x ∈ L1 such that x[p] /∈ L1. As L1 is an abelian ideal,
the restricted subalgebra H generated by x[p] is contained in the centre of
L. Since the ground field is algebraically closed, by [23, Chapter 2, Theorem
3.6] we see that H contains a toral element t. We conclude that I = Ft is a
one-dimensional restricted ideal of L, as desired.

Note that the assumption that the ground field is algebraically closed is
essential for the validity of Lemma 5.1. In fact, over arbitrary fields of pos-
itive characteristic, there can be cyclic restricted Lie algebras of arbitrary
dimension with no non-zero proper restricted subalgebras (cf. [16, Proposi-
tion 3.1]).
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Let L be a restricted Lie algebra. A restricted subalgebra U of L is
called lower semimodular in L if U ∩B is maximal in B for every restricted
subalgebra B of L such that U is maximal in 〈U,B〉p. We say that L is lower
semimodular if every restricted subalgebra of L is lower semimodular in L.

If U , V are restricted subalgebras of L with U ⊆ V , a J-series (or Jordan-
Dedekind series) for (U, V ) is a series

U = U0 ( U1 ( . . . ( Ur = V

of restricted subalgebras such that Ui is a maximal subalgebra of Ui+1 for
0 ≤ i ≤ r−1. This series has length equal to r. We shall call L a J-algebra if,
whenever U and V are restricted subalgebras of L with U ⊆ V , all J-series
for (U, V ) have the same finite length, d(U, V ). Put d(L) = d(0, L).

Proposition 5.2. For a solvable restricted Lie algebra L over an algebraically
closed field of characteristic p > 0 the following are equivalent:

(i) L is lower semimodular;

(ii) L is a J-algebra; and

(iii) L is supersolvable.

Proof. (i)⇒(ii): This is just a lattice theoretic result (see [6, Theorem V3]).
(ii)⇒(iii): We first show by induction on dimL that there exists a series of
restricted subalgebras from 0 to L having length dimL. Suppose L 6= 0. As
L is solvable, it holds that 〈L(1)〉p 6= L; otherwise, L(1) = 〈L(1)〉(1)

p = L(2) 6= 0,
a contradiction. Then the inductive hypothesis ensures the existence of a
series of restricted subalgebras

U = U0 ( U1 ( . . . ( Ur = 〈L′〉p

with dimUi = i for all 0 ≤ i ≤ r. Moreover, as L/〈L′〉p is abelian, Lemma
5.1 yields the claim.

Now, by hypothesis, all J-series of restricted subalgebras from 0 to L
have length dimL, and consequently all maximal restricted subalgebras have
codimension one in L. On the other hand, if H is a maximal subalgebra of L
which is not restricted, then pick an element x of H such that x[p] /∈ H. Then
H + Fx[p] is a subalgebra of L properly containing H, so H + Fx[p] = L by
the maximality of H. Therefore, every maximal subalgebra has codimension
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one in L, which allows to conclude that L is supersolvable, by [5, Theorem
7].

(iii)⇒(i): Let U,B be restricted subalgebras of L such that U is maximal
in 〈U,B〉p. By Lemma 5.1, U has codimension 1 in 〈U,B〉p, which forces
〈U,B〉p = U + B. It follows that dim(B/(U ∩ B)) = dim((U + B)/U) = 1,
whence U ∩B is maximal in B, completing the proof.

Note that the assumption of solvability is actually needed in the previous
result. In fact, consider the restricted Lie algebra L = sl(2,F) over an alge-
braically closed field F of characteristic p > 2. Then all J-series of restricted
subalgebras of L have length 3, despite the fact that L is simple.

6. Upper semimodular restricted Lie algebras

Let L be a restricted Lie algebra. We say that a restricted subalgebra S
of L is upper semimodular in L if S is maximal in 〈S, T 〉p for every restricted
subalgebra T of L such that S∩T is maximal in T . The restricted Lie algebra
L is called upper semimodular if all of its restricted subalgebras are upper
semimodular in L.

This section is devoted to studying the structure of upper semimodular
restricted Lie algebras over algebraically closed fields. In particular, our main
aim of this section is to prove the following result:

Theorem 6.1. Let L be a restricted Lie algebra over an algebraically closed
field. The following conditions are equivalent:

(i) L is upper semimodular;

(ii) L is modular;

(iii) every restricted subalgebra of L is a restricted quasi-ideal.

Moreover, if one of the previous statements holds, then L is either almost
abelian or nilpotent of class at most 2.

We start with some preliminary results.
Let L be an almost abelian Lie algebra over a field F of characteristic

p > 0. Then L = Fx+̇A, where A is an abelian ideal and ad(x) acts as the
identity map on A. It is immediate to check that L is restrictable and also
centerless, so it admits a unique p-mapping by [23, Chapter 2, Corollary 2.2].
Explicitly, this p-mapping is given by a[p] = 0 for all a ∈ A and x[p] = x.
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Lemma 6.2. Let L be an upper semimodular restricted Lie algebra over
an algebraically closed field of characteristic p > 0. If L is generated by
two distinct one-dimensional restricted subalgebras X and Y , then L is two
dimensional.

Proof. Let Z be a non-zero proper restricted subalgebra of L. Assume first
that X ⊆ Z, Y 6⊆ Z. As X ∩ Y = 0 is maximal in Y , X must be maximal in
L, yielding Z = X. Assume now that X, Y 6⊆ Z and take a one-dimensional
restricted subalgebra Z ′ of Z. By the previous case, 〈X,Z ′〉p = L. Since
X ∩Z ′ = 0 is maximal in X, Z ′ is maximal in L and Z = Z ′. Thus, all non-
zero proper restricted subalgebras of L are one dimensional, and it follows
from [32, Lemma 1.6] that L is two dimensional.

Lemma 6.3. Let F be an algebraically closed field of characteristic p > 0. Let
L be a non-abelian upper semimodular restricted Lie algebra over F generated
by three one-dimensional restricted subalgebras. Then, L is centerless.

Proof. Let Fx, Fy, Fz be three distinct one-dimensional restricted subal-
gebras generating L and suppose, by contradiction, that Z(L) 6= 0. Note
that we can take x to be either toral or such that x[p] = 0. By Lemma 6.2
and without loss of generality, we may also assume x ∈ Z(L) and that
〈y, z〉p is almost abelian, with [y, z] = z, y[p] = y and z[p] = 0. If x[p] = 0,
then 〈x + z〉p ∩ Fy = 0 is maximal in 〈x + z〉p, but Fy is not maximal in
〈x+ z, y〉p = L, a contradiction. On the other hand, if x is toral, then

x ∈ 〈x− z〉p ⊆ 〈x+ y, y + z〉p,

so 〈x + y, y + z〉p = L. Now 〈x + y〉p ∩ 〈y + z〉p = 0 is maximal in 〈x + y〉p,
but 〈y + z〉p is not maximal in L, a contradiction.

Proposition 6.4. Let F be an algebraically closed field of characteristic p >
0. Any upper semimodular restricted Lie algebra L over F generated by its
one-dimensional restricted subalgebras is either abelian or almost abelian.

Proof. By Lemma 6.2, all the restricted subalgebras of L generated by two
one-dimensional restricted subalgebras are abelian or almost abelian. Sup-
pose that 〈y, x1〉p is almost abelian, where Fy,Fx1 are restricted subalgebras

of L with [y, x1] = x1, y[p] = y and x
[p]
1 = 0. Write L = 〈y, x1, . . . , xs〉p,

where y, x1, . . . , xs are linearly independent.We claim that 〈y, xi〉p is almost
abelian for i = 2, . . . , s. Suppose otherwise that [y, xi] = 0 for some i 6= 1.
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By Lemma 6.3, we must have [x1, xi] 6= 0. Then 〈x1, xi〉p would be almost
abelian and [x1, xi] = λx1 for some λ ∈ F, λ 6= 0. But then y + λ−1xi ∈
Z(〈y, x1, xi〉p) = 0 by Lemma 6.3, a contradiction. Note also that [y, xi] /∈ Fy,
as otherwise y[p] = 0. Therefore, we can clearly assume that [y, xi] = xi. For
i 6= j write [xi, xj] = αijxi + βijxj. We have

0 = [[y, xi], xj] + [[xi, xj], y] + [[xj, y], xi]

= αijxi + βijxj − αijxi − βijxj + αijxi + βijxj

= αijxi + βijxj,

hence αij = βij = 0.
Therefore, L = 〈x1, . . . , xs〉p+̇Fy is an almost abelian restricted Lie alge-

bra of dimension s+ 1, as desired.

Note that the hypothesis of F being algebraically closed is essential for
our results. Indeed, the Lie algebra L over a perfect field of characteristic 3
given by Gein in [8, Example 2], with the p-mapping indicated in Section 3,
is upper semimodular, generated by its minimal restricted subalgebras and
semisimple. The reader could ask if, ruling out the hypothesis of F being
algebraically closed, any upper semimodular restricted Lie algebra generated
by its minimal restricted subalgebras would be abelian, almost abelian or
semisimple, in a way somehow similar to the situation in the ordinary Lie
algebra setting (see [10]). However, this is not the case either: the restricted
Lie algebra Fx ⊕ L, with x[p] = 0, is generated by its minimal restricted
subalgebras and it is upper semimodular, but it is neither abelian, nor almost
abelian, nor semisimple. Furthermore, it is even possible to pick a modular
restricted subalgebra of Fx⊕L which does not lie in any of these three cases.

Proposition 6.5. Let F be an algebraically closed field of characteristic p >
0, and let L be an upper semimodular restricted Lie algebra over F. Let
B be the restricted subalgebra generated by the one-dimensional restricted
subalgebras of L. If B is almost abelian, then L = B.

Proof. Assume L 6= B. By Proposition 3.7, there exists a p-nilpotent element
x ∈ L of order 2. Write B = A+̇Fy, where A is a strongly abelian restricted
ideal of B, and y is a toral element which acts as the identity map on A.
Since x[p] ∈ A, we have adp(x)(y) = [x[p], y] = −x[p]. Set w = adp−1(x)(y),
and note that [x,w] = −x[p] and [x[p], w] = [x,w[p]] = 0.
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As 〈x〉p ∩ 〈x[p], y〉p = Fx[p] is maximal in 〈x[p], y〉p = Fx[p] + Fy, one has
that 〈x〉p must be maximal in 〈x, x[p], y〉p = 〈x, y〉p. We have

〈x〉p ( 〈x,w〉p ⊆ 〈x, y〉p.
It follows that y ∈ 〈x,w〉p = 〈x〉p+〈w〉p, from which [x, y] = λ[x,w] = −λx[p],
for some λ ∈ F. But then

−x[p] = adp(x)(y) = −λadp−1(x)(x[p]) = 0,

a contradiction. Therefore, L = B and L is almost abelian.

Theorem 6.6. Let F be an algebraically closed field of characteristic p > 0.
Any upper semimodular restricted Lie algebra L over F is either abelian,
almost abelian or of the form

L = 〈x1, . . . , xr, B〉p,

where xi is p-nilpotent of order ni > 1 for all i = 1, . . . , r, B is an abelian
restricted subalgebra and [L,L] ⊆ 〈x1, . . . , xr〉p.

Proof. Let B be the restricted subalgebra generated by the one-dimensional
restricted subalgebras of L. By Proposition 6.4, B is either abelian or almost
abelian. If L 6= B, then B is abelian by Proposition 6.5, and every xi /∈ B is
p-nilpotent of order ni > 1 by Proposition 3.7.

To prove that [L,L] ⊆ 〈x1, . . . , xr〉p, it suffices to see that [xi, b] ∈ 〈xi〉p,
for i = 1, . . . , r and b ∈ B such that 〈b〉p is one-dimensional. Take such
a b ∈ B. If b ∈ 〈xi〉p, then we are done. Otherwise, 〈xi〉p ∩ 〈b〉p = 0 is
maximal in 〈b〉p = Fb, and then 〈xi〉p must be maximal in 〈xi, b〉p. Write
w = adr−1(xi)(b) 6= 0, where r is such that adr(xi)(b) = 0. We have the
following chain of inclusions

〈xi〉p ⊆ 〈xi, w〉p ( 〈xi, b〉p.

Then, w ∈ 〈xi〉p. Assume now that adr−k(xi)(b) ∈ 〈xi〉p for some k > 1, and
set w′ = adr−k−1(xi)(b). Again, it is clear that

〈xi〉p ⊆ 〈xi, w′〉p ⊆ 〈xi, b〉p,

where one inclusion has to be an equality. By assumption, if b ∈ 〈xi, w′〉p =
〈xi〉p + 〈w′〉p, then [xi, b] ∈ 〈xi〉p. Therefore w′ ∈ 〈xi〉p, and by induction we
have that [xi, b] ∈ 〈xi〉p.
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Note that, although any abelian or almost abelian restricted Lie algebra
is upper semimodular, the converse of Theorem 6.6 does not hold, as the
following example shows.

Example 6.7. Let L = 〈x, y, z〉p with x[p]2 = y[p] = z[p] = 0 and [x, y] = z as
the only non-zero product. Then the restricted subalgebra B = Fx[p]⊕Fy⊕
Fz generated by all the one-dimensional restricted subalgebras is abelian.
However, L is not upper semimodular, as 〈x〉p ∩ Fy = 0 is maximal in Fy,
but 〈x〉p is not maximal in 〈x, y〉p = L.

Proposition 6.8. Let F be an algebraically closed field of characteristic p >
0, and let L be an upper semimodular restricted Lie algebra over F. Then, L
is almost abelian or nilpotent.

Proof. Assume that L is not almost abelian. Let T be a torus of L. By [23,
Chapter 2, Theorem 3.6], T has a basis consisting of toral elements and there-
fore T ⊆ B, in the notation of Theorem 6.6. Consequently, every semisim-
ple element of L belongs to B, and the restricted subalgebra T formed by
the semisimple elements of L is the unique maximal torus of L. Suppose,
by contradiction, that L is not nilpotent. Consider the Cartan subalgebra
H = CL(T) and the associated root space decomposition L = H+̇(

∑
α∈Φ Lα).

Then there exists α ∈ Φ and a toral element t ∈ T such that α(t) 6= 0. Let
x ∈ Lα, x 6= 0. By [23, Chapter 2, Corollary 4.3(1)], we have [t, x] = α(t)x
and α(t) ∈ GF(p). Thus one has

(t+ x)[p] = t+ x[p] + α(t)p−1x = t+ x[p] + x.

Moreover, by [23, Chapter 2, Corollary 4.3(3)] we have that x[p] ∈ H and so
[t, x[p]] = 0. By induction, it follows that

(t+ x)[p]n = t+
n∑
i=0

x[p]n (1)

for every n > 0. Now, by [23, Chapter 2, Theorem 3.4] we see that (t+x)[p]n ∈
T for some sufficiently large n, and so we deduce from (1) that x ∈ H, a
contradiction.

Corollary 6.9. Let F be an algebraically closed field of characteristic p > 0,
and let L be an upper semimodular restricted Lie algebra over F. Then, L is
also lower semimodular and a J-algebra.
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Proof. It follows from Proposition 6.8 and Proposition 5.2.

Proposition 6.10. Let F be an algebraically closed field of characteristic
p > 0, and let L be an upper semimodular restricted Lie algebra over F.
Then, every restricted subalgebra of L is a restricted quasi-ideal.

Proof. By Proposition 6.8, L is either almost abelian or nilpotent. If L
is almost abelian, then we are done, so suppose that it is nilpotent. Let
x, y ∈ L. If x, y are semisimple, then we have that x, y ∈ B and [x, y] =
0. If x is semisimple and y is p-nilpotent, then x ∈ B and we get that
[x, y] ∈ 〈y〉p as in the proof of Theorem 6.6. If x, y are p-nilpotent, we
claim that [x, y] ∈ 〈x〉p + 〈y〉p. Indeed, let s be the sum of their orders of
p-nilpotency. We will proceed by induction on s. If s = 2, then x, y ∈ B and
therefore 〈x, y〉p ⊆ 〈x〉p + 〈y〉p. Fix now s > 2, and assume that x[p] 6= 0.
If x ∈ 〈x[p], y〉p, it holds that 〈x, y〉p = 〈x[p], y〉p is contained in 〈x[p]〉p + 〈y〉p
by induction. Otherwise, 〈x[p]〉p = 〈x〉p ∩ 〈x[p], y〉p is maximal in 〈x〉p, so
〈x[p], y〉p is maximal in 〈x, y〉p. Then 〈x[p], y〉p has codimension one in 〈x, y〉p
and 〈x, y〉p = 〈x〉p + 〈x[p], y〉p. But by induction, 〈x[p], y〉p ⊆ 〈x[p]〉p + 〈y〉p.

Now take x, y two arbitrary elements in L and consider their Jordan-
Chevalley decompositions, x = xs+xn and y = ys+yn. The above arguments

show that [x, y] ∈ 〈xn〉p + 〈yn〉p. Since x
[p]r

s ∈ 〈x〉p and y
[p]t

s ∈ 〈y〉p for r and t
large enough and xs, ys are semisimple, we get that xn ∈ 〈x〉p and yn ∈ 〈y〉p.
It follows that [x, y] ∈ 〈x〉p + 〈y〉p.

The following simple lemma is all what is left to prove Theorem 6.1. We
need an easy consideration first.

Let X be a restricted quasi-ideal of a restricted Lie algebra L. Then,
for every restricted subalgebra Y of L, it holds that X + Y = 〈X, Y 〉p is a
restricted subalgebra of L.

Lemma 6.11. Let L be a restricted Lie algebra in which every restricted
subalgebra is a restricted quasi-ideal. Then, L is modular, and consequently,
upper semimodular and lower semimodular.

Proof. Let X, Y and Z be restricted subalgebras of L such that X ⊆ Z.
Take z ∈ 〈X, Y 〉p ∩ Z = (X + Y ) ∩ Z, and write z = x + y for some x ∈ X,
y ∈ Y . Then x ∈ Z, yielding that y ∈ Y ∩Z. Therefore, z ∈ X + (Y ∩Z) =
〈X, Y ∩ Z〉p. Then, L is modular.
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It is now a simple matter to prove the main result of this section:

Proof of Theorem 6.1. It follows from the combination of Proposition 6.8,
Proposition 6.10, Proposition 4.3 and Lemma 6.11.
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