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i. Abstract 

In this thesis, several examples of responsive liquid crystal elastomer 

microparticles are reported, as well as chiral nematic films. Bipolar nematic liquid 

crystal elastomer particles were of significant interest due their reversible shape 

change at the liquid crystal to isotropic phase transition. Furthermore, a 

spontaneous deformation of spherical droplets into spindle shaped particles upon 

irradiation with UV light was investigated. The spontaneous deformation and 

resulting particle surface morphology was studied to elucidate the phenomenon. 

Droplets and particles were subjected to external stimuli such as temperature and 

magnetic fields to produce samples with polar alignment not seen before in the 

literature.  

In addition, a microfluidic method is reported for the introduction of nanoparticles 

into bipolar nematic droplets with greater control of both droplet diameter as well 

as the number of nanoparticles within droplets compared to methods previously 

reported. To achieve this, polymer nanoparticles were dyed with fluorescent dye 

and suspended in organic solvent so that they were compatible with the 

microfluidic inner phase containing nematic monomer, photoinitiator and 

crosslinker in chloroform, to which they were added. After photopolymerisation, 

yielding nanoparticle infiltrated elastomer microparticles, we demonstrated, for 

the first time, a reversible shape change response to temperature of nematic 

elastomer microparticles with localised nanoparticles, an initial step for 

applications of these materials within areas such as micromechanics and soft 

robotics. 

Finally, doped chiral nematic systems were produced in the form of elastomer film 

and microparticle optical reflectors, and in some cases the dopant was extracted 

to produce chiral imprinted elastomers. Chiral doped monomer systems with 

tuneable selective reflection colours across the whole visible spectrum at room 

temperature are reported along with their responsiveness to temperature and 

pressure. Elastomer microparticles exhibited high quality optical properties after 

polymerisation, due to preserved internal mesogen alignment stemming from the 

particle size, monodispersity and overall quality of the droplets produced using 

our microfluidic method. 
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Vd  Volume of droplet  

Vi  Volume of inner phase 

Vis Visible 

VNP  Volume of nanoparticle suspension 

vol%   Volume percent 

W Width 
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ɾ Interfacial tension 

ɝÎ Birefringence 
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vii. List of Accompanying Material 

Accompanying this thesis are Videos 1 ɀ 13 discussed in Chapter 3. Video captions 

can be found below, as well as in the accompanying material. 

Video 1: Video taken in brightfield transmission mode at 200x magnification of 

droplets of M1-MF81. Upon polymerisation into E1-MF81 an instant geometry 

deformation occurred. 

Video 2: Video taken in brightfield transmission mode at 200x magnification of 

nematic elastomer microparticles E1-MF81 in the ten minutes after 

polymerisation, sped up 64x. Showing the microparticles move to pack more 

densely.  

Video 3: Video taken in brightfield transmission mode at 200x magnification of 

droplets of M2-MF80. Upon polymerisation into E2-MF80 an instant geometry 

deformation occurred. 

Video 4: Video taken in brightfield transmission mode at 200x magnification, 

zoomed, cropped, and sped up 64x showing spindle shaped particles of E1-MF81 

undergoing a reversible shape change during a second heat/cool cycle from  

25 ɀ 140 ɀ 40 °C, controlled at 10 °C/min.  

Video 5: Video taken in brightfield transmission mode at 200x magnification, 

zoomed, cropped, and sped up 64x showing spindle shaped particles of E2-MF80 

undergoing a reversible shape change during a second heat/cool cycle from  

25 ɀ 140 ɀ 40 °C, controlled at 10 °C/min.  

Video 6: Video taken in brightfield transmission mode at 200x magnification of 

droplets of M1-MF83 after being aligned on three stacked N42 bar magnets where 

the magnetic field was aligned vertical (ᴻ Ɋ with respect to the video. Upon 

polymerisation into E1-MF83 an instant geometry deformation occurred in the 

direction of the magnetic field.  

Video 7: Video taken in brightfield transmission mode at 200x magnification of 

droplets of M2-MF89 after being aligned on three stacked N42 bar magnets where 

the magnetic field was aligned vertically (ᴻ Ɋ with respect to the video. Upon 
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polymerisation into E2-MF89 an instant geometry deformation occurred in the 

direction of the magnetic field.  

Video 8: Video taken in brightfield transmission mode at 200x magnification and 

sped up 64x showing spindle shaped particles of E1-MF85 after being placed on a 

N42 ring magnet where the magnetic field was aligned horizontal (OɊ with respect 

to the video. Particles aligned with the magnetic field. 

Video 9: Video taken in brightfield transmission mode at 200x magnification and 

sped up 64x showing spindle shaped particles of E1-MF85 on top of a N42 ring 

magnet where the magnetic field was rotated 90 ° to be vertical (ᴻ Ɋ with respect to 

the video. Particles rotated to align with the magnetic field. 

Video 10:  Video taken in brightfield transmission mode at 200x magnification and 

sped up 64x showing spindle shaped particles of E1-MF97 on top of a N42 ring 

magnet where the magnetic field was rotated 180 ° to be vertical (Ȣ Ɋ with respect 

to the video. Particles did not rotate 180° with the magnetic field. 

Video 11:  Video taken in brightfield transmission mode at 200x magnification and 

sped up 64x showing spindle shaped particles of E2-MF88 after being placed on a 

N42 ring magnet where the magnetic field was aligned vertical (ᴻɊ with respect to 

the video. Particles aligned with the magnetic field. 

Video 12:  Video taken in brightfield transmission mode at 200x magnification and 

sped up 64x showing spindle shaped particles of E2-MF88 on top of a N42 ring 

magnet where the magnetic field was rotated 90 ° to be horizontal (O Ɋ with 

respect to the video. Particles rotated to align with the magnetic field. 

Video 13:  Video taken in brightfield transmission mode at 200x magnification and 

sped up 64x showing spindle shaped particles of E2-MF88 on top of a N42 ring 

magnet where the magnetic field was rotated 180 ° to be horizontal (ᴺɊ with 

respect to the video. Spindle shaped particles did not rotate 180° with the 

magnetic field, however crescent shaped ones did rotate with the magnetic field. 
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1 Introduction  

1.1 Thesis Overview 

This thesis centres around the investigation of various responsive liquid 

crystalline systems, from actuating nematic elastomer microparticles, to colour 

changing chiral nematic films. 

Chapter 1 provides the fundamental background within the field, to give a basis 

for the discussions within this thesis. The nematic and chiral nematic phases are 

introduced in the context of phase structure and properties in bulk mixtures, 

elastomer films and systems within spherical confinement. The addition of 

nanoparticles to nematic systems is explored within the literature to provide a 

foundation for investigations later in this thesis. Chapter 2 introduces droplet 

production methods, particularly the microfluidic method and details how this 

method was used to produce monodisperse samples of droplets in the micrometre 

size range below 50 ʈm. In the following Chapter 3, production of bipolar nematic 

droplets and their response to external stimuli is discussed. Droplets were 

photopolymerised to produce bipolar nematic elastomer microparticles in 

different geometries, including spherical and spindle shaped. The morphology and 

responsiveness of the elastomer microparticles was then investigated. In chapter 

4, the nanoparticle infiltration of bipolar nematic droplets is detailed. Several 

methods for the nanoparticle infiltration of droplets are discussed before 

photopolymerisation to produce nematic elastomer microparticles containing 

nanoparticles. In chapter 5 chiral nematic systems are discussed in the context of 

monomer mixtures doped with a chiral dopant, used to produce chiral nematic 

films, droplets and elastomer particles. Optical properties of the systems and the 

response of these to external stimuli were investigated. Penultimately, Chapter 6 

provides the conclusions of this thesis. Finally, the experimental procedures are 

found in chapter 7, which details the experimental setup and parameters for 

producing all of the materials discussed within this thesis.  
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1.2 Liquid Crystal Phases 

The liquid crystalline state exists between a solid crystalline state and an isotropic 

liquid state. Liquid crystals exhibit orientational order and hence have more order 

than an isotropic liquid, but less order than a crystalline solid, which exhibits both 

orientational and positional order. The degree of order present in liquid crystals 

allows for unique properties. Liquid crystal phases share some of the properties of 

a crystalline solid, whilst being fluid.1 

In thermotropic liquid crystal phases, there are two main types of molecules, 

known as mesogens, which promote liquid crystalline order. They are 

characterised by their anisometric shapes, and known as calamitic (rod-like), and 

discotic (disc-like). For example, Figure 1a shows the general structure of a 

calamitic, rod-like, liquid crystal molecule. The two core groups, 1 and 2, are often 

ÂÅÎÚÅÎÅ ÒÉÎÇÓ ×ÉÔÈ Á ÌÉÎËÅÒȟ σȟ ÃÏÎÎÅÃÔÉÎÇ ÔÈÅ Ô×ÏȢ 2 ÁÎÄ 2ȭ ÒÅÐÒÅÓÅÎÔ ÅÎÄ ÇÒÏÕÐÓȢ 

Changing the structure of the mesogen by altering 1, 2, 3 or R groups will vary the 

order and properties of the liquid crystal. MolecÕÌÅÓ ÉÎÔÅÒÁÃÔ ÂÙ ÖÁÎ ÄÅÒ 7ÁÁÌÓȭ 

forces, which due to the anisometric shape of molecules, favours a common 

direction for the molecular axes to point in, known as the director (n), represented 

in Figure 1b.1,2 Figure 1c shows an example of a calamitic mesogen, 5CB which 

displays a liquid crystal phase at room temperature, it can be seen that a rod-like 

shape is present due to the core of the molecule being composed of 2 bound 

benzene rings. 

 

Figure 1: Cartoon representation of a general rod-like molecule (a) where 1 and 2 represent two 
ÃÏÒÅ ÇÒÏÕÐÓȟ ÏÆÔÅÎ ÂÅÎÚÅÎÅ ÒÉÎÇÓȟ ×ÉÔÈ Á ÌÉÎËÅÒȟ σȟ ÃÏÎÎÅÃÔÉÎÇ ÔÈÅ Ô×ÏȢ 2 ÁÎÄ 2ȭ ÒÅÐÒÅÓÅÎÔ ÔÅÒÍÉÎÁÌ 

chains which are usually hydrocarbon chains; cartoon representation of the nematic phase (b) 
where n represents the director. Redrawn from ref. 3. Molecular structure of 5CB (c). 

 

n 

3 2ȭ 1 R 2 

a) b) 

c) 
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There are several measures of orientational order, the order parameter (S) is 

commonly used to describe the degree of order in a uniaxial liquid crystal system 

and is calculated using Equation 1. Pointed brackets represent an average taken 

ÏÖÅÒ ÍÁÎÙ ÍÏÌÅÃÕÌÅÓ ÉÎ ÔÈÅ ÓÙÓÔÅÍ ÁÎÄ ʃ ÄÅÎÏÔÅÓ ÔÈÅ ÁÎÇÌÅ ÂÅÔ×ÅÅÎ ÔÈÅ ÄÉÒÅÃÔÏÒ 

and the orientation of a single molecule. A perfectly aligned crystal is described by 

S = 1, whereas S = 0 describes an isotropic material with no order. A typical liquid 

crystal has more order than an isotropic material, but less than in a perfect crystal 

and hence in liquid crystalline materials the order parameter lies between 0.3 and 

0.8.3  

 

Ὓ ộ
σ

ς
ÃÏÓʃ

ρ

ς
Ớ 

Equation 1: To calculate the order parameter. 

 

Order of the liquid crystal is lost upon the transition from the liquid crystal state 

into an isotropic liquid, which is known as the clearing point (Tc, or TNI in nematic 

systems).  

 

1.2.1 The Nematic Phase 

There are several types of liquid crystal phases, known as mesophases, which 

differ by the degree of order. The nematic phase is the least ordered of all the liquid 

crystal phases,4 and will be investigated in this project. In the nematic phase, 

mesogens possess long-range orientational order, with the long molecular axes of 

mesogens, on average, pointing in the direction of the director, however no layered 

arrangement is present. 

 

1.2.1.1 Anisotropic Properties 

Anisotropy is the quality of a material having differing properties depending on 

the direction at which the property is measured in and arises in liquid crystal 

systems due to both the anisometric shape of molecules and the small degree of 
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order, described by S, compared to isotropic liquids. Anisotropy gives rise to useful 

properties which can be exploited for characterisation and alignment. 

 

1.2.1.1.1 Birefringence 

In isotropic materials the refractive index of the material is the same independent 

of the direction in which it is measured. This means that polarised light travels 

through an isotropic material at the same rate in any direction. However, in liquid 

crystalline materials, optical anisotropy, known as birefringence, is present due to 

the refractive index of the material being different depending on the direction of 

polarisation. Equation 2 ÓÈÏ×Ó ÔÈÁÔ ÔÈÅ ÂÉÒÅÆÒÉÎÇÅÎÃÅ ɉɝn) in a uniaxial nematic 

can be quantified as the difference between the refractive index of a material 

where light is polarised parallel to the director (n )᷆ and the refractive index where 

light is polarised perpendicular to the director (nṶ).3,5 The refractive indices apply 

at optical wavelengths, hence at frequencies ~1015 Hz, and are determined by 

anisotropic atomic and molecular polarisabilities. 

 

ɝὲ ὲ᷆ ὲ  

Equation 2: To calculate birefringence. 

 

Birefringence can be exploited to characterise liquid crystal mesophases under 

polarised optical light microscopy (POM).  

 

1.2.1.1.2 Dielectric and Diamagnetic Anisotropy 

Dielectric materials are those which can be polarised in an electric field. The 

dielectric permittivity measures the polarisability of the dielectric material. 

Uniaxial liquid crystalline materials possess different dielectric permittivity values 

depending on directionality. Similar to in birefringence, the difference between the 

dielectric permittivity  parallel to the director (ʀ᷆), and the dielectric permittivity  

which is perpendicular (ʀṶ) to the director describes ÔÈÅ ÄÉÅÌÅÃÔÒÉÃ ÁÎÉÓÏÔÒÏÐÙ ɉɝʀɊ, 

as described in Equation 3. Dielectric constants are generally measured with 
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oscillating electric fields at low frequencies, typically 100 Hz to 100 kHz. At these 

frequencies thermally frustrated partial molecular reorientation contributes to 

the anisotropic permittivity values, as well as the atomic and molecular 

polarisabilities. 

 

ɝʀ ʀ᷆ ʀ 

Equation 3: To calculate dielectric anisotropy. 

 

Dielectric anisotropy gives rise to the ability of liquid crystals to align with electric 

fields. Where the dielectric anisotropy is positive the director will align parallel to 

the field, and if the dielectric anisotropy is negative the director will align 

perpendicular with the field above a certain value for the applied field.3,6,7  

Furthermore, the majority of liquid crystalline materials are diamagnetic. 

$ÉÁÍÁÇÎÅÔÉÃ ÁÎÉÓÏÔÒÏÐÙ ɉɝʔ) is present in uniaxial nematic liquid crystals due to 

the magnetic susceptibility parallel to the director (ʔ᷆) being different to the 

magnetic susceptibility perpendicular to the director (ʔṶ). The difference in these 

values describes the diamagnetic anisotropy, as shown in Equation 4. In calamitic 

nematic systems the magnetic susceptibilities are negative and ʔṶ is usually 

greater than ʔ᷆, hence the diamagnetic anisotropy is usually positive. Molecular 

axes can be aligned in a magnetic field by exploiting this anisotropy, allowing for 

monodomain alignment of samples to be obtained. Magnetic alignment of 

mesogens is favourable as it reduces the free energy by aligning the director 

ÐÁÒÁÌÌÅÌ ÔÏ ÔÈÅ ÍÁÇÎÅÔÉÃ ÆÉÅÌÄ ×ÈÅÎ ɝʔ is positive and perpendicular when it is 

negative.8ɀ10  

 

ɝʔ ʔ᷆ ʔ 

Equation 4: To calculate diamagnetic anisotropy. 
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1.2.1.1.3 Elasticity 

The lowest energy state of a liquid crystalline system is where there is uniform 

director present, however without the presence of external fields or alignment 

layers this is rarely observed. The director field is elastic, allowing for distortions 

of the director field to occur which can happen by bending, twisting or splaying. 

The bend deformation is a result of the director turning in its plane; the twist 

deformation is a result of the director turning around a perpendicular axis; and 

the splay deformation is a result of a tapered spreading of the director resulting in 

a wedge shaped director profile (Figure 2).3 Each elastic distortion has an elastic 

constant associated with it, K11, K22 and K33 for bend, twist and splay respectively. 

The elastic constants are used to calculate the overall contribution to the free 

energy per unit volume (FV), using the Frank free energy density equation 

(Equation 5), where n is the director.11 

 

Ὂ
ρ

ς
ὑ Ͻɳὲ

ρ

ς
ὑ ÎϽᶯ ὲ

ρ

ς
ὑ Î ᶯ ὲ  

Equation 5: Frank free energy density equation.3 

 

Figure 2: Cartoon representation of bend (a), twist (b) and splay (c) deformations of the director 
field where arrows denote the local director. Redrawn from ref. 3. 

 

1.2.1.2 Texture and Alignment 

Due to birefringence, liquid crystalline mesophases can be characterised under 

polarised light optical microscopy (POM). In POM, the sample is placed between 

two polarisers which are crossed 90° to each other. If the light was shone only 

through the crossed polarisers, or through an isotropic material, the light would 

be extinguished and blackness would be observed. However, in a birefringent 

material colours are observed. The colours observed when a birefringent layer is 

a)                                                             b)                                      c) 



 7 

placed between crossed polarisers are due to optical interference effects within 

the nematic layer because light polarised along the director travels at a different 

speed compared to light polarised perpendicular to the director. In unaligned 

samples, areas where the director changes in the sample result in a so called 

ȬÄÅÆÅÃÔȭȢ Defects are associated with abrupt spatial variations in the director 

alignment direction, hence they are areas where a single director cannot be 

determined. Defects are characterised by highly localised melting, on the 

nanometre scale, and a thus a loss of nematic order. Point and line defects occur 

where the director field aligns with either polariser and is observed as blackness 

within the sample, the pattern of these lines, give rise to characteristic textures for 

each mesophase.3 For example, a uniaxial nematic phase gives rise to a schlieren 

texture, Figure 3 shows a cartoon representation of how the orientation of the 

mesogens with respect to the crossed polarisers gives rise to both 2 and 4-brushed 

schlieren brushes which make up the texture. 

 

Figure 3: Cartoon representation of how mesogen orientation in a calamitic nematic produces 
defects (a) and with respect to crossed polarisers (vertical and horizontal with respect to page) 

produces to a schlieren texture with 2 and 4 brushes (b). Redrawn from ref. 3. 

 

Figure 4 shows an example nematic schlieren texture where both 4-brushed 

(example highlighted in red) and 2-brushed (example highlighted in yellow) 

schlieren can be seen.  

 

a) 

 

 

b) 
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Figure 4: Polarised photomicrograph of a nematic phase liquid crystal displaying schlieren 
texture. Both 4-brushed (circled in red) and 2-brushed (circled in yellow) schlieren can be seen. 

Reproduced from ref. 12. 

 

Defects are high energy areas and hence the lowest energy state for the director 

field is where it has a monodomain structure, with uniform director alignment 

over large distances. A monodomain structure can be promoted in thin films by 

treated alignment layers.1,3 For example, rubbed polyimide can be utilised to 

successfully uniformly align mesogens between the two alignment layers. Rubbing 

the surface of the polymer orients the polymer chains parallel to the glass cell and 

introduces grooves. When the liquid crystalline material is introduced it flows into 

the cell along the grooves and the orientation of the polymer is transferred to the 

mesogens.13,14 Hence, the rubbed polymer surface promotes mesogens to align 

parallel to the surface, this is known as homogeneous, or planar, alignment and is 

shown in Figure 5a.  

The alignment cell surface can also be treated with a surfactant, for example 

octadecyltrichlorosilane or lecithin. The liquid crystalline material interacts with 

the surfactant on the surface via ÖÁÎ ÄÅÒ 7ÁÁÌÓȭ ÆÏÒÃÅÓȟ ÔÏ ÁÌÉÇÎ ÔÈÅ ÍÅÓÏÇÅÎs so 

that they are perpendicular to the surface, this is known as homeotropic alignment 

and is shown in Figure 5b.15  
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Figure 5: Cartoon representation of homogeneous (a) and homeotropic (b) alignment of nematic 
mesogens in an alignment cell where black bars represent the top and bottom of the alignment 

cell. Redrawn from ref. 3. 

 

Alignment of mesogens can also be achieved by the use of external fields, such as 

electric or magnetic fields, due to their dielectric and diamagnetic anisotropy as 

discussed in the previous subsection.3,6,7,9,10 In this thesis the responsiveness of 

nematic liquid crystals to magnetic fields will be investigated.  

 

1.2.2 The Chiral Nematic Phase 

1.2.2.1 Phase Structure 

Introducing chirality into a nematic system, either by using a chiral nematogen or 

by introducing a chiral dopant that does not itself have to be liquid crystalline, for 

example CB15 (structure shown in Figure 6) is a common chiral dopant, may lead 

to a chiral nematic phase. In the chiral nematic phase, the asymmetry arising due 

to chirality promotes a periodic rotation in the director throughout the system.3  

 

Figure 6: Molecular structure of chiral dopant CB15. 

 

The rotation in the system makes up a helical superstructure (Figure 7) which has 

a handedness based upon the enantiomer of the chiral component. The pitch, P, 

describes one full rotation of the director and, therefore, the structure is repeated 

every half pitch. In doped systems the helical twisting power (HTP) can be 

described by Equation 6 which measures the degree to which the dopant 

a)                                               b) 
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influences the twist of the helix. A positive HTP value indicates a right-handed 

helix and a negative value indicates a left-handed helix.16,17 HTP shows that the 

pitch (P) can be tuned by altering the dopant concentration (cd). Chiral dopants 

with relatively high HTP values are desirable so high dopant concentrations are 

not required to alter the helical pitch. The dopant acts as an impurity and therefore 

the higher the concentration of dopant, the lesser the phase stability. 

 

ὌὝὖ 
ρ

ὖ ὧ
 

Equation 6: To calculate helical twisting power of chiral dopant. 

 

Figure 7: Cartoon representation of a helical macrostructure in the chiral nematic phase with 
pitch P, the rotation of the director denoted by arrows. Redrawn from ref. 3. 

 

Temperature affects the pitch of the helix, this is due to an increase in temperature 

increasing the energy of the mesogens, which in turn increase the angle at which 

the director changes direction, and hence tightens the pitch.18  

 

1.2.2.2 Texture and Alignment 

As in the nematic phase, alignment cells can be utilised to align mesogens in the 

chiral nematic phase so that they exhibit either homogeneous or homeotropic 

P 
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alignment, commonly known as uniform lying helix (ULH) alignment. This orients 

the chiral helices so that the helical axis is perpendicular to the mesogenÓȭ 

alignment, as represented in Figure 8. 

 

Figure 8: Cartoon representation of homogeneous (a) and ULH (b) alignment in the chiral 
nematic liquid crystal phase. 

 

The chiral nematic phase can be characterised under POM due to the characteristic 

textures which are observed. The textures depend on the alignment in the sample, 

photomicrographs of chiral nematic textures are shown in Figure 9. A Grandjean 

ÔÅØÔÕÒÅ ɉÁɊ ÃÏÎÔÁÉÎÉÎÇ ȬÏÉÌÙ ÓÔÒÅÁËÓȭ ÁÒÉÓÅÓ ÉÎ ÃÈÉÒÁÌ ÎÅÍÁÔÉÃ ÓÙÓÔÅÍÓ ×ÉÔÈ 

homogeneous alignment, whereas a fingerprint texture (b) occurs with ULH 

alignment. Where there is random orientation of helices within non-aligned 

systems, focal-conic (c) textures arise.3,19 

 

Figure 9: Polarised photomicrographs showing the Grandjean (a)20, fingerprint (b) 21 and focal 
conic (c)19 textures of the chiral nematic phase. 

 

1.2.2.3 Selective Reflection 

When incident light with wavelengths of the same order as the chiral pitch 

interacts with chiral nematic systems with homogenous alignment, an important 

optical property is observed, known as selective reflection. Circularly polarised 

light with the opposite handedness as the chiral helix is able to propagate along 

a)                                                 b) 

a)                  b)                         c) 
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the helix and is transmitted through the sample. However, polarised light of the 

same handedness as the chiral helix cannot propagate along the chiral helix and is 

reflected, hence the term selective reflection. The central reflection wavelength of 

the reflected light (ʇ) is proportional to the chiral pitch (P) and can be described 

using the Bragg reflection law (Equation 7), where ὲ is the average refractive 

index.3 If the wavelength of the reflected light is within the visible region then the 

sample is observed as being coloured. As the wavelength of selective reflection is 

dependent on the chiral pitch, altering the chiral pitch, for example as a result of 

temperature changes, varies the colour of the reflector. 

  

‗  ὲ ὖÃÏÓ— 

Equation 7: Bragg reflection law.22 

 

Selective reflection depends upon the birefringence of the material, the 

wavelength of the reflected light must lie between nṶP and n P᷆. Hence, the larger 

ÔÈÅ ÂÉÒÅÆÒÉÎÇÅÎÃÅȟ ɝn, the broader the reflection wavelength band.3,23 

 

1.3 Liquid Crystal Polymers and Elastomers 

1.3.1 Liquid Crystal Polymers 

Polymers are high molecular weight molecules which are composed of repeating 

subunits, known as monomers, covalently bound together. Polymers in the  

solid-state may be semi-crystalline, and display a melting point, or be in an 

amphorous glassy state with low or no degree of crystallinity. The glass transition 

temperature (Tg) is the temperature at which the phase of the polymer changes 

from a viscoelastic state to a glass state. The properties of the polymer vary 

depending on the monomer, chain length and synthesis. Polymerisation of 

monomers, for example acrylate monomers, can be initiated by a radical initiator 

such as thermal initiator azobisisobutyronitrile; or photoinitiator  

diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide. Thermal initiators decompose 

to produce radicals at elevated temperature which can initiate free-radical 
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polymerisation, whereas photoinitiators decompose upon irradiation with 

ultraviolet (UV) light to produce radicals. 

If a mesogen contains a polymerisable unit, such as an acrylate group, and upon 

polymerisation displays a liquid crystal phase, then this is known as a liquid crystal 

polymer. To maintain mesogen alignment polymerisation is performed within the 

nematic phase, hence photoinitiation is generally preferred as the temperature of 

the system can be altered to maintain the liquid crystal phase. Upon 

polymerisation, the mesogen alignment is retained in the resulting polymer. 

There are two types of liquid crystal polymer, main chain and side chain. 

Monomers which produce main chain liquid crystal polymers are bifunctional and 

upon polymerisation become incorporated into the polymer backbone with linker 

groups between mesogens, as depicted in Figure 10a. Side chain liquid crystal 

polymers are those where a mesogenic unit is bound to a spacer unit, which is then 

bound to a polymer backbone. The mesogen unit in side chain liquid crystal 

polymers can either be attached laterally (side-on to the polymer chain) or 

terminally (end-on to the polymer chain), as represented in Figure 10b & c. 

 

Figure 10: Cartoon representation of a main chain (a) and side chain (b & c) liquid crystal 
polymers with lateral (b) and terminal (c) mesogen (blue) attachment. Linker groups shown in 

red, spacer groups in orange and the polymer backbone in green. 

 

A nematic phase is promoted by lateral attachment of mesogen in side chain liquid 

crystal polymers. The lateral attachment of mesogen allows for greater coupling 

between the mesogen and polymer backbone, giving rise to greater anisotropy 

within the polymer backbone. As the mesogens take up more space on the polymer 

backbone compared to when terminally attached, the polymer chain is drawn out 

b)                    c) 

a) 
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into an elongated coil conformation in the direction of the director.13,24 Figure 11 

shows the molecular structure of a monomer where the mesogen is attached 

laterally. The mesogenic unit is made up of a rigid core of three benzene rings with 

hydrocarbon terminal chains at each end. From the centre benzene ring, the spacer 

group is bound which attaches the mesogenic unit to the polymerisable acrylate 

group, bound to the other end. 

 

Figure 11: Molecular structure of a reactive mesogenic monomer where the mesogen is attached 
laterally to the polymerisable acrylate group via a spacer group. 

 

As well as the mesogen itself, the spacer group and polymer backbone influence 

the thermal properties of the liquid crystal polymer. A shorter spacer group 

increases coupling of the mesogen and polymer backbone, which increases the 

anisotropy of the polymer, compared to liquid crystal polymers with longer spacer 

groups. Increasing the spacer length decreases the Tg due to greater decoupling of 

the mesogen and polymer backbone, resulting in a lower order parameter. The Tg 

of a system also decreases with increasing polymer backbone flexibility. The 

mechanical properties of the polymer backbone, and therefore flexibility, are 

altered with composition, for example polysiloxanes (Figure 12b) are more 

flexible so have a lower Tg, and therefore wider phase stability, than polyacrylates 

(Figure 12a). Despite this, polyacrylates are an example of a flexible polymer 

backbone and therefore their suitability for liquid crystal polymers to be 

investigated in this project is high due to relatively low Tg values, and facile 

synthesis by free-radical polymerisation.3,25,26  
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Figure 12: Molecular structures of repeat units of polyacrylate (a) and polysiloxane (b). 

 

1.3.2 Liquid Crystal Elastomers 

In liquid crystal polymers without crosslinking the mesogen alignment is retained, 

upon clearing into the isotropic phase and cooling back to the nematic phase, 

alignment is usually lost. Introducing a small amount (for example 10 mol% with 

respect to monomer) of crosslinking groups between liquid crystal polymer chains 

creates an elastic polymer network with a degree of shape memory. The shape 

memory allows for the liquid crystal elastomer to retain alignment through 

clearing to the isotropic phase and returning to the liquid crystal phase.27  

 

1.3.3 Nematic Liquid Crystal Elastomers 

A nematic liquid crystal elastomer is represented in Figure 13a which shows a 

diagram of a nematic liquid crystal elastomer where the blue rods represent 

mesogenic units and the black lines the polymer backbone with crosslinking.  

 

Figure 13: Cartoon representation of a lateral side chain liquid crystal elastomer (a) changing 
shape into a random coil (b) when passing through its phase transition temperature; 

photomicrographs showing a measured liquid crystal elastomer exhibiting a shape change, 
denoted by a decrease in area, when heated from 22.8 °C (c) to 74.4 °C (d). Photomicrographs 

reproduced from ref. 28. 

Tc 

a) b) 

c) d) 

a) b) 

n n
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Monodomain nematic elastomer films have been shown to display a change in 

shape when the temperature is increased above its TNI. When the temperature is 

returned into the nematic phase, the film returns to its original elongated shape.24 

Figure 13a & b show a laterally attached side chain liquid crystal elastomer around 

the phase transition temperature. When the elastomer is heated above the TNI and 

order is lost as the film becomes isotropic, the polymer chains adopt a random coil 

configuration and the elongation of the polymer network is lost. This is observed 

as a shape change. Once the temperature is returned, the mesogens reassemble 

and return the film to an elongated configuration from a random coil. Contrary to 

laterally attached systems, in elastomers where mesogen are attached terminally 

the mesogens are aligned perpendicular to the polymer backbone and therefore 

less anisotropy is transferred to the polymer chains and hence the degree of 

actuation response is lesser.13,27 

An example of a shape change response to temperature can be seen in  

Figure 13c & d which shows the width of an aligned liquid crystal elastomer film 

decreasing when the sample is heated from 22.8 °C to 74.4 °C due to loss of 

alignment.28 A reversible shape changing response to temperature allows for 

applications of liquid crystal elastomers as soft actuators which can be used for 

example as switches and valves in micromachinery.29,30  

 

1.3.4 Chiral Nematic Liquid Crystal Elastomers 

Chiral nematic elastomers can be produced by the polymerisation of a crosslinker 

with either a chiral liquid crystalline monomer or chiral nematic mixture of an 

achiral liquid crystalline monomer with a chiral dopant. Similar to the  

non-polymeric systems discussed previously, chiral nematic polymers and 

elastomers exhibit selective reflection which can be within the visible range, 

depending on the length of the helical pitch.3  

Notably, the selective reflection in chiral nematic elastomers is responsive to 

mechanical stimuli. Mechanical deformation of chiral nematic elastomer films, for 

example by stretching or compressing, can cause a colour change of the films in 

monodomain parallel aligned samples. The chiral pitch is physically compressed 

upon stretching or manual compression, which reduces the wavelength of light 
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reflection, causing a blue-shift in selective reflection.31ɀ33 This allows for tuning of 

the selective reflection wavelength by not only CB15 concentration, but also by 

mechanical force. For example, Finkelmann et al produced dye-containing chiral 

nematic liquid crystal elastomer films which, when stretched, changed colour from 

orange to blue.31 This colour change was due to the film thickness shortening upon 

stretching, compressing the chiral helices and hence causing a blue-shift in the 

selectively reflected light. This colour changing response to mechanical stimuli in 

chiral nematic elastomer films has also been reported for chiral imprinted  

films.34ɀ38 Responsiveness to compression gives rise to the application of pressure 

sensors for chiral nematic elastomer films which selectively reflect within the 

visible region of light.31ɀ33,39 

 

1.4 Liquid Crystal Droplets and Elastomer Microparticles 

When a liquid crystal system is confined in a spherical geometry, as in a liquid 

crystal droplets, a number of unique properties arise. Droplets can be produced by 

several methods, including suspension of one immiscible phase within another or 

by microfluidics. These two main droplet production methods are discussed in 

chapter 2. Droplets of mesogenic monomer can be produced which contain 

photoinitiator and a crosslinker which can then go on to be polymerised to yield 

liquid crystalline elastomer particles. 

 

1.4.1 Nematic Droplets 

As in planar systems, nematic microdroplets exhibit two main surface anchoring 

conditions of the mesogens relative to the surface, either parallel or perpendicular. 

Figure 14 shows 2-dimensional cartoon representations of how the mesogens 

align with respect to the spherical droplet surface in parallel (a) and  

ÐÅÒÐÅÎÄÉÃÕÌÁÒ ɉÂɊ ÓÕÒÆÁÃÅ ÁÎÃÈÏÒÉÎÇ ÃÏÎÄÉÔÉÏÎÓȢ 4ÈÅ ÃÏÍÐÏÓÉÔÉÏÎ ÏÆ ÔÈÅ ÄÒÏÐÌÅÔÓȭ 

dispersion medium is known to promote certain surface anchoring conditions. 

Sodium dodecyl sulfate (SDS) in water will promote perpendicular surface 

anchoring, for a radial configuration, by creating a pseudo-hydrophobic 

environment around the droplet.40,41 On the other hand, polyvinyl alcohol in water 

will promote parallel surface anchoring, for a bipolar configuration.42,43 
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Figure 14: Cartoon representation of parallel (a) and perpendicular (b) surface anchoring in 
nematic liquid crystal microdroplets. Redrawn from ref. 44. 

 

There are many possible director configurations in nematic systems such as 

monodomain, bipolar, twisted bipolar, concentric and radial, although many more 

can arise. Several configurations are represented in Figure 15. The director 

configuration which arises depends on the size of the droplet and the elastic 

energies of the systems. Hence, certain configurations are more likely to occur 

than others based on these parameters.  

 

Figure 15: Cartoon representation of monodomain (a), bipolar (b), twisted bipolar (c),  
concentric (d) and radial (e) director configurations of spherically confined nematic systems. 

Redrawn from refs. 45, 46 & 47. 

 

The size of the droplet has a strong influence on the director configuration in 

droplets as the elastic energy, FV discussed previously (Equation 5), is 

proportional to the droplet radius and can be described as FV = rK where r is the 

droplet radius and K is the bulk elastic constant. The single constant, K, is used so 

as to combine the effects of K11, K22 and K33. Furthermore, the surface energy of 

the droplet is proportional to the squared radius and can be described as  

ÁɊ ÂɊ ÃɊ 

ÄɊ ÅɊ 
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FS = WEr2 where WE is the anchoring energy. Consequently, the director 

configuration of very small droplets (<1 ʈm) is governed by the bulk elastic energy 

to a greater degree than the surface energy and vice versa. Satisfying surface 

anchoring conditions in smaller droplets would require larger, and higher energy, 

bend and splay deformations to the director field compared to larger droplets. 

Hence, for droplets <1 ʈm, a monodomain nematic director configuration (Figure 

15a) may be accessible to minimise the free energy by preventing the large, 

energetically costly, bend and splay deformations of the director field which are 

associated with the smaller droplet diameter.45,47 

In larger micrometre sized droplets, the surface anchoring conditions have a 

greater influence on the director configuration. In parallel aligned droplets, the 

lowest energy director configuration is the bipolar configuration (Figure 15b). As 

the linear director cannot perfectly lie parallel to the curved surface of a  

3-dimensional sphere, a pair of topological defects, known as boojums, arise at 

opposite poles of the droplet.42,48 Splay deformations are present about the defects 

with energy determined by the magnitude of elastic constant K11, and the bend 

deformation, with elastic constant K33, dominates the remaining areas within the 

droplet due to the curvature of the defect field between boojums in a bipolar 

system. The balance between these elastic energies determines the lowest energy 

configuration of a system, with a high K33/K 11 value leading to a bipolar 

configuration. Whereas, if K11/K 33 > 0.7 a concentric configuration with mesogen 

aligned in concentric rings which become smaller inside the droplet and a defect 

line through the centre (represented in Figure 15d) is promoted instead, due to 

the lower free energy arising from increased splay energy contribution compared 

to bend energy. Furthermore, if the twist elastic energy (K22) is small enough, a 

twisted bipolar configuration (Figure 15c) may be favoured to reduce the overall 

free energy of the system.46 

In a spherical environment with perpendicular surface anchoring, a radial 

configuration (Figure 15e) is favoured which results in a topological defect 

inevitably forming in the centre of the sphere. The only elastic deformation 

present in a radial configuration is splay.42  
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Figure 16: Cartoon representation of a bipolar director configuration (a) transitioning to a radial 
configuration (c) via an escaped radial configuration (b) in a nematic droplet with the addition of 

surfactant. 

 

These are some of the common director configurations of a nematic in spherical 

confinement. Many more configurations are possible, including transition 

configurations as one director configuration transforms into another, for example, 

Á ÓÏ ÃÁÌÌÅÄ ȬÅÓÃÁÐÅÄ ÒÁÄÉÁÌȭ ÃÏÎÆÉÇÕÒÁÔÉÏÎ ÅØÉÓÔÓ ÁÓ Á ÂÉÐÏÌÁÒ ÄÉÒÅÃÔÏÒ ÃÏnfiguration 

transitions to a radial director  configuration (Figure 16). One method for 

transitioning the director field from bipolar to radial was performed by changing 

the surface anchoring conditions by introducing surfactant, such as SDS, into the 

aqueous dispersion medium. As it is polar, water will promote parallel surface 

anchoring however introducing surfactant, which creates a pseudo-hydrophobic 

environment around droplets, changes the surface anchoring conditions to 

promote perpendicular alignment. As the concentration of surfactant is increased 

ÔÈÅ ÂÉÐÏÌÁÒ ÃÏÎÆÉÇÕÒÁÔÉÏÎ ÔÒÁÎÓÉÔÉÏÎÓ ÔÏ Á ÓÏ ÃÁÌÌÅÄ ȬÅÓÃÁÐÅÄ ÒÁÄÉÁÌȭ ÃÏÎÆÉÇÕÒÁÔÉÏÎ, 

before transitioning to a radial configuration at higher concentrations.48,49  

Spherically confined nematic systems give rise to characteristic textures when 

ÏÂÓÅÒÖÅÄ ÕÎÄÅÒ 0/-Ȣ 2ÁÄÉÁÌÌÙ ÁÌÉÇÎÅÄ ÄÒÏÐÌÅÔÓ ÇÉÖÅ ÒÉÓÅ ÔÏ Á ÓÏ ÃÁÌÌÅÄ Ȭ-ÁÌÔÅÓÅ 

ÃÒÏÓÓȭ ÔÅØÔÕÒÅ, where a dark brush occurs when the director is parallel to either of 

the 90° crosse polarisers. Whereas bipolar droplets not only exhibit a Maltese 

ÃÒÏÓÓ ÔÅØÔÕÒÅȟ ÂÕÔ ÁÌÓÏ Á ÓÏ ÃÁÌÌÅÄ ȬÂÁÓÅÂÁÌÌȭ ÔÅØÔÕÒÅ ɉFigure 17) dependent upon 

the orientation of the droplet with respect to the crossed polarisers. For 

ÏÂÓÅÒÖÁÔÉÏÎ ÏÆ Á ÂÉÐÏÌÁÒ ÄÒÏÐÌÅÔȭÓ -ÁÌÔÅÓÅ ÃÒÏÓÓ ÔÅØÔÕÒÅ ÔÈÅ ÐÏÌÁÒ ÁØÉÓ ÏÆ ÔÈÅ 

droplet must be in a plane perpendicular to the plane of the crossed polarisers, any 

deviation from this orientation will give rise to the baseball texture. Hence, it is far 

more likely that a baseball texture, rather than a Maltese cross texture, is 

observed.47,50  

 

Surfactant Surfactant 
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Figure 17: Theoretically calculated images of so called 'Maltese cross' texture (a) and 'baseball' 
texture (b), scale bar 2 µm. Reproduced from ref. 50.  

 

1.4.2 Nematic Elastomer Microparticles 

Polymerisation of nematic droplets containing monomer, crosslinker and 

polymerisation initiator (e.g. a photo or thermal initiator) can yield nematic 

elastomer particles. Similar to nematic elastomer films, these may be capable of an 

actuation response to temperature changes about the TNI. 

Taylor produced small micrometre sized bipolar elastomer particles, from bipolar 

nematic droplets produced by microfluidics (method discussed in the next 

chapters), which showed actuating properties.51 The particles exhibit a reversible 

shape change, contracting in the direction of the director, as a response to 

temperature changes about their TNI. Thus, the elastomer microparticles elongate 

in the direction perpendicular to the polar axis, which follows the director, and 

contract in the direction parallel to the polar axis.51,52 Figure 18 shows this 

reversible shape change in a population of nematic elastomer microparticles. The 

highlighted microparticle flattens vertically and elongates horizontally with 

respect to the observer. This property gives rise to applications of bipolar nematic 

liquid crystal particl es as soft microactuators in numerous applications including 

micromechanics, soft robotics, photonics and as artificial muscles.29,30,53,54 

 

Figure 18: Brightfield photomicrographs, taken in transmission mode, of nematic elastomer 
particles of M1 at 100x magnification: in the nematic phase at 100 °C (a); in the isotropic phase at 
130 °C (b); and returned to the nematic phase at 100 °C (c). Scale bars 50 µm. Reproduced from 

ref. 51. 

a) b) 

a) c) b) 
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As well as spherical particles, examples of anisometric liquid crystal polymer 

particles have been reported. For example, droplets of a mesogenic monomer with 

non-polymerisable 5CB have been produced. Upon polymerisation, the mesogenic 

monomer formed a polymer network, however as 5CB is non-polymerisable it was 

not incorporated into the network. This meant that the 5CB could be removed after 

polymerisation, causing the particles to deform from spherical to spindle shaped 

due to the volume reduction. Due to a lack of crosslinking however, these particles 

did not actuate.55ɀ57  

Finally, 10 ʈm anisometric nematic elastomer particles have also produced by a 

two-step polymerisation method.58ɀ60 Liu et al produced partially polymerised 

ȬÄÒÏÐÌÅÔÓȭ ÏÆ a mesogenic monomer, chain extender, crosslinker and photoinitiator 

mixture, by dispersion polymerisation. These partially polymerised droplets were 

ÔÈÅÎ ÅÍÂÅÄÄÅÄ ÉÎÔÏ Á 06! ÆÉÌÍ ×ÈÉÃÈ ×ÁÓ ÓÔÒÅÔÃÈÅÄȟ ÁÎÄ ÔÈÅ ÓÔÒÅÔÃÈÅÄ ȬÄÒÏÐÌÅÔÓȭ 

were polymerised a second time by photopolymerisation to yield nematic 

elastomer microparticles which maintained their anisometric shape. As these 

particles were crosslinked, they were able to undergo actuation upon heating and 

cooling about their phase transition temperature, shown in Figure 19.58  

 

Figure 19: Brightfield photomicrographs showing the actuation of stretched nematic elastomer 
microparticles as a response to temperature change about the TNI. Reproduced from Liu et al.58 

 

1.4.3 Chiral Nematic Droplets and Elastomer Microparticles 

Production of chiral nematic droplets allows for the spherical confinement of the 

characteristic helical superstructure of the phase. Much like chiral nematic 

mixtures and films, chiral nematic droplets can be produced from a chiral 

mesogen, or from an achiral mesogen doped with a chiral dopant.  

 

Heat above TNI 

Cool below TNI  
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Figure 20: Cartoon representation of radial chiral nematic helical structure within a parallel 
aligned droplet. Redrawn from ref. 61. 

 

Chiral nematic systems where the mesogens have parallel surface anchoring 

within spherical confinement may give rise to a radial helical structure  

(Figure 20). However, similarly to nematic droplets, the director configuration will 

depend on the fine balance of surface and elastic energies as well as droplet size. 

The radial chiral nematic configuration is characterised under POM by the 

observed texture. In systems with a longer pitch, in the micrometre range, a 

fingerprint texture is observed (Figure 21a). In systems with shorter helical pitch, 

on the same order as visible light, a Maltese cross texture is observed, arising due 

to the central topological defect (Figure 21b).61  

 

Figure 21: Polarised photomicrographs of chiral nematic droplets showing fingerprint (a) and 
Maltese cross textures (b). Reproduced from ref. 61.  

 

Much like chiral nematic mixtures and films, chiral nematic droplets, where the 

helices are radially aligned and have a pitch within the visible region, are capable 

of selective reflection of visible light.62,63 Under reflectance microscopy, selective 

b) a) 
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reflection is observed as a central coloured spot within the droplet. The selective 

reflection colour is seen in the centre as this is the point where the of incident light 

meets the chiral helices at 0°, and so the Bragg reflection law (Equation 7, section 

1.2.2.3) shows that this must be the area reflecting the longest wavelength. As in 

films, the colour of the selective reflection is proportional to the helical pitch. 

Further to the selective reflection colour, which is usually observed under 

reflectance microscopy as a central spot within the droplet or particles, photonic 

cross-communication can occur. Photonic cross-communication is characterised 

by bright coloured reflection lines which appear to radiate out from the centre of 

droplets, an example is shown in Figure 22 showing droplets produced by  

Fan et al.64 The cross-communication occurs as a result of the spherical symmetry 

and optical Bragg reflection in a monodisperse hexagonally close-packed chiral 

nematic system. The interference reflects the packing symmetry of the hexagonal 

lattice, with cross coupling lines in Figure 22 originating from strong reflections 

and interferences involving both nearest and next nearest neighbours. Photonic 

cross-communication been reported in several chiral nematic systems, including 

those reported by Noh et al and Geng et al, who proposed the mechanism by which 

photonic cross-communication works. More recently examples were produced 

Peterson et al.22,64ɀ66  

 

Figure 22: Photomicrograph, taken in reflection mode through crossed polarisers, of a 
monolayer of chiral nematic droplets displaying central selective reflection spots and photonic 

cross-communication lines. Reproduced from ref. 64Ȣ 3ÃÁÌÅ ÂÁÒ ρππ ʈÍȢ 

 

Figure 23 shows a cartoon representation of the angle between incident light and 

ÔÈÅ ÈÅÌÉÃÁÌ ÐÉÔÃÈ ÁÔ ʃ Ѐ πЈ ÁÓ ×ÅÌÌ ÁÓ ÁÔ ʃ Ѐ τυЈȢ )Ô ÃÁÎ ÂÅ ÓÅÅÎ ÔÈÁÔ ×ÈÅÒÅ ʃ Ѐ πЈ ÔÈÅ 






























































































































































































































































































































































































































































































