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Abstract: Sorting out organic molecules with high thermopower is essential for understanding molecular thermoelectrics. The 

intermolecular coupling offers a unique chance to enhance the thermopower by tuning the bandgap structure of molecular 

devices, but the investigation of the intermolecular coupling in bulk materials remains challenging. Herein, we investigated the 

thermopower of diketopyrrolopyrrole (DPP) cored single-molecule junctions with different coupling strengths by varying the 

packing density of the self-assembled monolayers (SAM) using a customized scanning tunneling microscope break junction 

(STM-BJ) technique. We found that the thermopower of DPP molecules could be enhanced up to one order of magnitude with 

increasing packing density, suggesting that the thermopower increases with larger neighboring intermolecular interactions. The 

combined density functional theory (DFT) calculations revealed that the closely-packed configuration brings stronger 

intermolecular coupling and then reduces the HOMO-LUMO gap, leading to an enhanced thermopower. Our findings offer a 

new strategy for developing organic thermoelectric devices with high thermopower. 

Keywords: single-molecule electronics, single-molecule junctions, thermopower, thermoelectric devices, 

intermolecular coupling 

 

INTRODUCTION 

Thermoelectric materials offer the opportunity for direct conversion of heat into electric energy via Seebeck 

effects [1-4], and the efficiency of thermoelectric devices can be evaluated through the dimensionless figure 

of merit ZT = GS
2
T/κ, where G is the electrical conductance, S is the Seebeck coefficient, T is the 

temperature, and κ = κel + κph is the thermal conductance due to electrons (κel) and phonons (κph) [5]. 

Compared with inorganic thermoelectric materials, molecular thermoelectric materials exhibit lower thermal 

conductivity (κph) and higher flexibility with tunable electronic structures [6-9], some pioneering theoretical 

works even suggested that molecular thermoelectric devices can reach the highest ZT value up to be 5.9 [10]. 

However, the experimental determined Seebeck coefficients of the molecule-scale thermoelectric materials 

are still much lower than theoretical predictions [11-13]. Strategies to enhance the Seebeck coefficient are 

crucial for developing high thermoelectric performance devices at the single-molecule scale. 

To increase the ZT of the molecular devices [14], various strategies have been investigated to improve 
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the thermopower, including varying molecular length of organic building blocks [11, 15, 16], changing 

connectivity of molecular cores [17-20], tuning molecule-electrode coupling [21], exploring different anchor 

groups [22] and substituent groups [23], etc. More importantly, theoretical advances revealed that the 

intermolecular interactions, such as π-π stacking, will enhance ZT by suppressing the phonon contribution to 

lowering the thermal conductance [12], suggesting that the intermolecular interactions are essential for the 

design of molecular devices with high ZT [24, 25]. However, the role of intermolecular interactions in the 

thermopower of molecular devices has not yet been experimentally investigated, which is mainly due to the 

challenges in the control of intermolecular interactions at the single-molecule level. Previous studies have 

demonstrated that the - interaction between the porphyrins in the mixed self-assembled monolayers 

(SAMs) decreases with reducing the concentration of porphyrin during the assembling process [26], which 

offers the strategy to tune intermolecular couplings by varying packing density in the SAMs and explore 

how the presence of intermolecular coupling affect the thermoelectric properties from molecular level [27-

29]. 

In this work, we investigated the Seebeck coefficient of diketopyrrolopyrrole (DPP) molecular 

junctions by varying the packing density of their SAMs. The three target DPPs of difuranyl-DPP (F-DPP), 

dithienyl-DPP (T-DPP), dithiazolyl-DPP (Thia-DPP) with p-methylthiobenzenes at both ends were shown 

in Figure 1A. To explore the effect of packing density on thermoelectric properties of the single-molecule 

junctions, we assembled the molecule on a gold surface through immersion in different solutions with 

different concentrations [30]. We found that the Seebeck coefficients of all DPPs increase with growing 

molecular packing density. Besides, density functional theory (DFT) based calculations revealed that 

stronger intermolecular coupling associated with higher packing densities generally reduces the energy gap 

and leads to an enhanced thermpower on DPP molecules. 

 

RESULTS 

A customized scanning tunneling microscope break junction (STM-BJ) instrument [31, 32] was used to 

simultaneously measure the conductance and thermopower of the single-molecule junctions at room 

temperature (Figure 1b). A Peltier device mounted under the substrate was used as a heater to establish a 

stable temperature difference (ΔT = Tsubstrate – Ttip) between the tip (at room temperature, ~298 K) and the 

substrate (heated) [11, 33]. The thermopower measurement was performed for four temperature differences 

(ΔT = 0, 5, 10 and 15 K). To obtain a statistical distribution of ΔV of an Au-Molecule-Au junction, we have 

collected more than 1000 consecutive data at each ΔT and selected those that sustained a molecular junction 

through the entire “hold” period (See SI section 3 for more details). 
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Figure 1. Schematic diagram of experimental setup and Seebeck coefficient measurement. 

(a) Molecular structures of DPP derivatives studied in this work. 

(b) Schematic of the experimental setup. Closely packed molecules enhance the Seebeck coefficient due to stronger intermolecular coupling. 

(c) Typical measured individual thermovoltage traces and histograms for single F-DPP molecule with 1mM immersion concentration at a 

series of ΔT (0 K, 5 K, 10 K, and 15 K). 

(d) Histograms of single F-DPP molecule thermoelectric voltage measurements with different immersion concentrations (0.01 mM, 0.1 mM, 1 

mM). Gaussian fits were plotted in a black dash curve. The horizontal black dash line indicates the baseline of thermoelectric voltage at ΔVth = 

0. The Seebeck coefficients were obtained from the thermovoltage as a function of ΔT. Solid lines are the linear fitting. 

The typical individual thermovoltage traces and histograms are shown in Figure 1c for single F-DPP 

molecule (1mM immersion concentration). It is found that a larger temperature difference brings 

significantly higher ΔV, which could be further demonstrated at the distribution histograms of the individual 

traces (right panel of Figure 1c). To quantitatively determine the Seebeck coefficient, we constructed the 

distribution histograms of thermovoltage at different temperature differences (Figure 1d) from more than 

1000 individual traces, and the most probable thermovoltage could be determined from the Gaussian fitting 

of the distribution. Because the fluctuation of the molecular junction configurations inevitably occurs during 

the measurement process, the thermoelectric voltage from different trapped molecular junctions might 

exhibit different distributions [11]. By fitting the slope of the most-probable thermovoltage value versus the 

temperature differences, the Seebeck coefficient could be determined to be -18.05 ± 1.64  V/K (See SI 

section 3 for more measuring and data processing details). 

To investigate the role of packing density in SAMs, the Seebeck coefficient was measured for F-DPP 

with increasing packing densities through immersing the gold electrode into corresponding 0.01 mM, 0.1 

mM, and 1.0 mM molecule solutions. The previous work had revealed that molecular interaction in the 

SAMs could be controlled by modulating the concentration of solution during the assembling process [26]. 

The X-ray photoelectron spectroscopy (XPS) semiquantitative analysis was conducted to confirm chemical 

composition of molecular monolayer and its atomic ratio [34]. The results suggest that more molecules 

existed on the gold sample under the immersion of the molecule solutions with increased concentration, 

based on the atomic concentration of the S 2p peak signal (See SI section 2.2.2 for more details), and the 

XPS analysis indeed had demonstrated the formation of Au-S bonds in the SAMs.  
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Besides, analytical electrochemistry was also used to quantitatively determine how much gold surface 

was covered with F-DPP molecules at different immersion concentrations, according to a method modifed 

from a previously published work [35]. The gold electrode with molecules assembled on was used as a 

working electrode, and a cyclic voltammetry (CV) was performed in 2.5 mM K3Fe(CN)6/K4Fe(CN)6 solution 

containing 0.1 M KNO3 as the supporting electrolyte with a sweep rate of 100 mV/s, and the potential was 

controlled between -0.2 to 0.6 V to avoid other redox reactions from assembled F-DPP. A typical CV at 

different immersion concentrations was obtained (Figure 2a), there are apparent redox peaks from 

K3Fe(CN)6/K4Fe(CN)6 in all cases. The current at the region with potential over redox peak was mainly 

controlled by reactants diffusion, and the diffusion areas could be obtained by applying the Cottrell equation 

[36] (See SI section 2.2.1 for more details). The diffusion areas of the bare gold electrode (without molecules 

assembled) were determined to be 0.0051cm
2
, while it decreased to 0.0036 cm

2
 for molecule-assembled gold 

electrode with 1mM immersion concentration (Table 1). The diffusion areas could reflect the assembled-

molecule-occupied electrode areas, because SAMs with higher packing density left fewer areas for redox 

reaction and diffusion. Finally, the SAM surface coverage fraction of assembled molecules with different 

immersion concentrations was obtained according to the diffusion area compared to bare gold (Table 1 and 

inset of Figure 2b), varying from 7.84% (0.01 mM immersed F-DPP) to 29.41% (1 mM immersed F-DPP). 

In addition, a micro thermal gravimetric analyzer (-TGA) [37] was also applied to determine their packing 

density differences (See SI Section 2.2.3 for more details). All these characterizations indeed proved that the 

packing density could be controlled by modulating the immersion concentration during the assembling 

process. 

Table 1. Immersion concentration-dependent surface coverage of F-DPP SAMs 

 

 

 

 

 

 

 
Figure 2. CV characterization on SAM surface coverage and Seebeck coefficient of three types of DPP 

(a) CV measurements with F-DPP assembled gold as the working electrode at different immersion concentrations in 2.5 mM 

K3Fe(CN)6/K4Fe(CN)6 containing 0.1 M KNO3 as the supporting electrolyte, standard calomel and Pt working as reference and counter 

electrode respectively. (Inset: surface coverage fraction of self-assembled F-DPP as a function of immersion concentration.) 

(b) Experimentally measured Seebeck coefficient value for F-DPP (blue squares), T-DPP (brown cycles) and Thia-DPP (magenta triangles). 

Error bars are the standard deviation in Gaussian fitting of thermoelectric voltages. The solid line indicates that the absolute Seebeck 

coefficient of the three DPPs increases with solution concentration. The green dashed line indicated that the Seebeck coefficient S = 0. 

 

It is found that the Seebeck coefficients of a single F-DPP molecule at increasing packing densities are 

-2.16 ± 0.29 V/K (0.01 mM), -9.30 ± 1.08 V/K (0.1 mM) and -18.05 ± 1.64 V/K (1 mM) (Figure 2b and 

Table 2). These showed that the Seebeck coefficients of F-DPP maintain the same sign (negative) and 

Immersion 

concentration 

CV analysis for SAM surface coverage 

Diffusion area from Cottrell equation(cm2) SAM fraction of surface coverage (%) 

0 

0.01 mM 

0.0051 

0.0047 

0 

7.84 

0.1 mM 0.0045 11.76 

1 mM 0.0036 29.41 
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increase dramatically with the increase of molecular packing density. More importantly, the Seebeck 

coefficient of the single-molecule junction could be enhanced near one order of magnitude, which is much 

larger than the mainstream tunning method called destructive quantum interference (DQI) with only two 

times enhancement up to now [20]. Furthermore, we observed a similar trend for T-DPP and Thia-DPP. 

The Seebeck coefficient of T-DPP varied from -8.65 ± 0.82 V/K (0.01mM) to -12.55 ± 0.47 V/K (1mM), 

and Thia-DPP varied from +9.89 ± 0.77 V/K (0.01mM) to +11.76 ± 2.12 V/K (1mM) (See SI section 3 

for more details). Interestingly, the sign of the Seebeck coefficient of Thia-DPP is opposite to F-DPP and 

T-DPP, meaning that altering the adjacent aromatic rings of the DPP core can influence the dominant 

frontier orbital of charge transport through the molecules. The negative Seebeck coefficient suggested that 

the Fermi level (EF) of F-DPP and T-DPP is closer to the LUMO level, and the transport is electron-

dominated; the positive Seebeck coefficient suggested that the EF of Thia-DPP is closer to the HOMO level, 

and transport is hole-dominated [38]. This trend is as same as that observed in oxidized oligothiophenes 

derivatives, in which the dominant charge carriers changed from holes to electrons with increasing molecular 

length [16]. 

Table 2. Single-molecule Seebeck coefficient and conductance measurements.  

 

Compounds with different immersion 

concentration 
Seebeck coefficient (V/K) Measured Conductance (log(G/G0)) 

0.01 mM F-DPP -2.16 ± 0.29 -4.03 

0.1 mM F-DPP -9.30 ± 1.08 -4.00 

1 mM F-DPP -18.05 ± 1.64 -3.93 

0.01 mM T-DPP -8.65 ± 0.82 -4.44 

0.1 mM T-DPP -9.47 ± 0.74 -4.39 

1 mM T-DPP -12.55 ± 0.47 -4.21 

0.01 mM Thia-DPP  +9.89 ± 0.77 -4.52 

0.1 mM Thia-DPP +11.53 ± 1.01 -4.47 

1 mM Thia-DPP  +11.76 ± 2.12 -4.41 

 

To elucidate the origin of the experimentally observed trends, we investigated the transport properties 

of F-DPP, T-DPP and Thia-DPP junctions connected to the gold source and drain electrodes via -SMe 

groups as shown in Figure 3a-c (See more binding configurations for F-DPP, T-DPP and Thia-DPP in SI 

Figure S9-S11) using DFT combined quantum transport theory (see SI section 4). The material-specific 

mean-field Hamiltonian of each geometry obtained from SIESTA [39] was combined with quantum 

transport code Gollum [40] to obtain the electronic transmission coefficient, which controls electrical and 

thermoelectric properties.  

To investigate the dependence of conductance and Seebeck coefficients on the packing density, we 

calculated the transport properties for junctions containing either a single-molecule (i.e., a monomer junction) 

or in the presence of two nearby molecules (i.e., optimized geometry of trimer junction is shown in Figure 

3a-c). We found that the trimer junctions have smaller HOMO-LUMO gaps than monomers due to the 

splitting of HOMO and LUMO peaks caused by the interaction with nearby molecules [41]. The modelling 

demonstrates that the reduced HOMO-LUMO gap of the trimer generally increases the slope of transmission 

coefficients. Consequently, for a wide range of Fermi energies within the HOMO-LUMO gaps, the Seebeck 

coefficients of trimers are greater than or equal to monomers, and trimers have similar or higher conductance 

than the monomers (See SI Figure S9-S12 for more details). These features are in qualitative agreement with 

the observed experimental trends (See SI Figures S5 and S6 for conductance measurements). DFT has 

difficulties in predicting the correct HOMO-LUMO gaps [42], charge transfer and Coulomb interaction for 

charged systems and particularly for these strong acceptor DPP-cores [43, 44]. On the other hand, the Fermi 

energy is located somewhere inside the HOMO-LUMO gap. Therefore, to compare results for monomer and 
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trimer molecular junctions, we aligned their mid-gap of the conductance curve (Figure 3d-f). The electrical 

conductance for F-DPP trimer (solid curve) and F-DPP monomer (dotted curve) remain in the same value 

(close to 10
-4

 G0), and those for T-DPP, Thia-DPP trimers and T-DPP, Thia-DPP monomers possess the 

conductance around 10
-4

-10
-4.5 

G0, which demonstrated a considerable consistency with the experimental 

data.  

The corresponding Seebeck coefficients are displayed in Figure 3g-i. In terms of the net Voronoi charge 

distribution shown in Table S2, the Thia-DPP molecule gains more electrons than F-DPP and T-DPP, 

which could induce more vital Coulomb interaction for the negatively charged molecule, moving the energy 

levels upwards and pushing the HOMO closer to the Fermi energy. Indeed, if the Fermi energy is slightly 

below the mid-gap position for Thia-DPP, then the sign of the Seebeck coefficient would be positive, as 

shown to the left of the crossing point (S = 0 and EF = -0.3 eV) in the Seebeck plot of Figure 3i, which also 

reveals a higher Seebeck coefficient for the trimer junctions. Conversely, for F-DPP and T-DPP, the right 

sides of the crossing point of S = 0 have a negative Seebeck coefficient and greater magnitudes for the 

trimers (Figure 3g and Figure 3h). Figure 3g-i clearly showed that the Seebeck coefficient for the trimer 

junctions (solid lines) typically has a higher magnitude than the monomers (dotted lines), in agreement with 

the experimental trends. 

 
Figure 3. DFT calculated electrical and thermoelectric properties of the three DPP derivatives attached to gold electrodes via -SMe 

anchor groups, the distance between the central backbone and adjacent molecules is around 3.3 to 3.6 Å for F-DPP, T-DPP and Thia-

DPP trimers. 

(a-i) Models for F-DPP, T-DPP and Thia-DPP respectively. The solid line corresponds to three molecules in the junction (i.e., a trimer), and 

the dotted line corresponds to a single molecule in the junction (i.e., a monomer). 
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 (d-f) The calculated room-temperature electrical conductance of F-DPP, T-DPP and Thia-DPP as a function of the Fermi energy EF relative 

to the Mid-Gap Eg. The solid lines represent trimers and dashed lines represent monomers. 

(g-i) The calculated room-temperature Seebeck coefficients of F-DPP, T-DPP and Thia-DPP as a function of Fermi energy EF  with the same 

shifting corresponding to conductance. The solid lines represent trimers and dashed lines represent monomers. 

 

DISCUSSION 

In conclusion, we experimentally investigated the Seebeck coefficients of a series of single DPP derivatives 

varying the packing density of SAMs on electrode surface using a modified STM-BJ technique. We 

discovered that the conductance channel of molecules could be changed from LUMO-dominated to HOMO-

dominated by altering the adjacent aromatic rings of the DPP core. More importantly, the thermopower of 

molecular junctions could be enhanced by up to one order of magnitude via the increase of the packing 

density in SAMs. Combined DFT calculation revealed that the higher packing density leads to more 

substantial intermolecular coupling effects, which reduces the HOMO-LUMO gap and increases the Seebeck 

coefficient. Our results revealed that intermolecular coupling is of fundamental importance for designing 

highly efficient molecular thermoelectric devices and materials in the future. 

 

MATERIALS AND METHODS 

Materials 

The target molecules were synthesized according to the previous reports [45-47].
 
For more details, see 

section S1.1. To obtain SAMs of different packing densities, the gold substrates, which are prepared by 

coating 200 nm Au film on silicon wafers, were immersed into 0.01, 0.1, 1 mM molecule solution using the 

solvent of 1,2,4-trichlorobenzene (TCB, 99.9%, Sigma Aldrich) for 4 hours. After that, the surface of the 

gold substrates with the assembled monolayer was rinsed by TCB and dried with N2 gas. 

Single-molecule conductance and Seebeck coefficient measurement 

The single-molecule conductance and Seebeck coefficient measurements were performed using the 

home-built STM-BJ technique as described in previous reports [31]. The temperature was modulated by 

Proportion Integral Differential (PID) control. Single-molecule junctions were fabricated following the 

electrical conductance measurement [48]. Once the conductance plateau was determined, the tip would be 

hovered and the tip/substrate distance fixed, followed by cutting off the bias voltage and the current 

amplifier. Instead, the voltage amplifier was connected to record the thermovoltage directly. After a period 

of time interval, the voltage amplifier would be cut off while the current amplifier is switched back to 

measure the conductance again. During the experiment, the tip withdrew from the sample until the tunneling 

current decreased to achieve the given threshold value. For further details, see section S3 in SI. 

Computational methods 

The optimized geometry and ground state Hamiltonian and overlap matrix elements of each structure 

were self-consistently obtained using the SIESTA implementation of density functional theory (DFT) [39]. 

SIESTA employs norm-conserving pseudo-potentials to account for the core electrons and linear 

combinations of atomic orbitals to construct the valence states. The generalized gradient approximation 

(GGA) of the exchange and correlation functional is used with the Perdew-Burke-Ernzerh of 

parameterization (PBE), a double-ζ polarized (DZP) basis set, a real-space grid defined with an equivalent 

energy cut-off of 200 Ry [49]. The geometry optimization for each structure is performed to the forces 

smaller than 10 meV/Ang. 
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The mean-field Hamiltonian obtained from the converged DFT calculation was combined with our 

home-made implementation of the non-equilibrium Green’s function method, Gollum [40], to calculate the 

phase-coherent, elastic scattering properties of each system consisting of left gold (source) and right gold 

(drain) leads and the scattering region (molecule F-DPP, T-DPP and Thia-DPP). The transmission 

coefficient      for electrons of energy    (passing from the source to the drain) is calculated via the 

relation:  

                                   (1) 

In this expression,           (            
    ) describe the level broadening due to the coupling 

between left (L) and right (R) electrodes and the central scattering region,         are the retarded self-

energies associated with this coupling and                   
   is the retarded Green’s function, 

where   is the Hamiltonian and   is the overlap matrix. Using the obtained transmission coefficient     , 

the electrical conductance      and the Seebeck coefficient      can be calculated through the following 

formula: 

         (2) 

   
  

    
  (3) 

In the linear response, the quantity of Lorenz number           is giving by  

         ∫      
 ∞

 ∞
   

        (4) 

where          is conductance quantum,   is the charge of a proton;   is the Planck’s constant;    is 

the Fermi energy;                           
   is the Fermi−Dirac distribution function,   is the 

temperature, and    = 8.6 × 10
-5

 eV/K is Boltzmann’s constant. 
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1. Synthesis Information
The reagents and starting materials including compound M1 (Figure. S1) were commercially 

available and used without any further purification, if not specified elsewhere. Compound M2 and 

M3 (Figure. S1) were synthesized according to the previous report [1-4]. 
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C2H5
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M2 M3

Figure S1. Synthetic routes to three DPP derivatives.

2. Experimental Technique 

2.1 Preparation of STM tips and SAMs
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We used the electrochemical etching method to prepare the STM tips. A mixed solution of 

concentrated hydrochloric solution (containing 37% HCl) and ethanol with a proportion of 1:1 in 

volume was prepared. A gold ring was immersed below the solution surface with a 3/4 height. A 

0.25 mm diameter gold wire (99.99%, Jiaming, Beijing) was prepared and immersed in the solution 

at the center of the gold ring. The wire was electrochemically etched until severed, then the etching 

stopped. The etched gold tip was rinsed by isopropanol thoroughly and dried by N2 gas before 

further usage.

To obtain SAMs with different packing densities, the gold substrates, which are prepared by 

coating 200 nm Au film on silicon wafers, were immersed into 0.01mM, 0.1mM, 1 mM molecule 

solutions respectively using 1,2,4-trichlorobenzene (TCB, 99.9%, Sigma Aldrich) as solvent for 4 

hours. Then, rinse the SAMs with the TCB for 1 minute to remove the surface molecules by physical 

absorption, followed by N2 gas drying. Besides, it is difficult to assemble monolayers if we 

continued to increase the immersion concentration, because the molecules would tend to aggregate 

on the surface of substrate instead of forming a SAM, resulting in no signals of molecular 

conductance during STM-BJ measurement. 

2.2 Monolayer Characterization

2.2.1  Electrochemical cyclic voltammetry
The SAMs of F-DPP on Au electrodes were electrochemically characterized by cyclic 

voltammetry (CV). To perform the CV measurements, we used an electrochemical cell placed in a 

Faraday cage equipped with platinum counter as electrode, standard calomel as reference electrode 

and gold with F-DPP assembled on as a working electrode. The preparation of the gold electrode is 

same with the SAMs used for STM. Cyclic voltammetry was recorded in 2.5 mM 

K3Fe(CN)6/K4Fe(CN)6 containing 0.1 M KNO3 as the supporting electrolyte between -0.2 to 0.6 V 

at a scan rate of 100 mV/s. Within this potential range, redox reaction between K3Fe(CN)6 and 

K4Fe(CN)6 took place, and there were no other redox reactions from the SAMs. 

The gold electrode surface with F-DPP assembled on would occupy the sites of redox reaction 

and stop reactants diffusing in and participating in reaction. The surface area without F-DPP 

assembled on can be reflected by diffusion area, which could be obtained from Cottrell equation 

[5]:

(1)𝒊 =
𝒏𝑭𝑨𝑪𝟎𝑫𝟎.𝟓

𝝅𝟎.𝟓𝒕𝟎.𝟓

Where i is the current decided by diffusion, n is the number of electrons transfer per reaction (1 in 

this work), F is the Faraday constant (96485 C/mol), A is the area of reactants diffusion, C0 is the 
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initial concentration of reactant (2.5 mM), D is the diffusion constant of K3Fe(CN)6 in electrolyte 

(7.6*10-6 cm2/s) [6], t is the time. Integrating the Cottrell equation:

(2)𝑸 =
𝟐𝒏𝑭𝑨𝑪𝟎𝑫𝟎.𝟓𝒕𝟎.𝟓

𝝅𝟎.𝟓

Where Q is the total transferred charge. Taking the gold electrode without F-DPP assembled on as 

an example (the black curve in Figure 2a of the main text), we picked the potential at the oxidation 

peak (0.218V) as the beginning of diffusion, where diffusion starts to dominant the current. 

Therefore, a graph of transferred charge vs. square root of time could be obtained (Figure S2).

Figure S2. Transferred charge vs. square root of time in the diffusion-dominated CV area with bare gold 

as working electrode. The red dashed line indicates the linear fitting.

According to Equation (2), the slope of linear fitting in Figure S2 is proportioanl to the 

difussion area, which can be roughly estimated to be 0.0051 cm2 for the bare gold electrode. By this 

way, diffusion area of the gold electrode with different F-DPP immersion concentrations could all 

be determined (See Table 1 in main text). There are differences between the estimated difussion 

area and actual area exposed to the electrolyte solution (2 mm diameter) for bare gold, this is because 

the it’s a not pure difussion process, and the initial concentration and difussion constant are not 

absolutely accurate. The fraction of surface coverage by SAM can be obtained from Equation (3):

 (3)𝑭 = (𝟏 ―
𝑺𝒅

𝑺𝒃𝒂𝒓𝒆) ∗ 𝟏𝟎𝟎%

Where Sd is the difussion area obtained from Cottrell equation for gold electrode with molecules 

assembled on, Sbare is the difussion area for the bare gold electrode.

2.2.2  X-ray photoelectron spectroscopy

X-ray photoelectron spectroscopy (XPS) was used to characterize the SAMs to determine the 

chemical composition and atomic percentage [7]. The measurements were performed at the 

ESCALAB 250Xi system (Thermo Fisher Scientific). Spectra were collected using  a 
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monochromatic Al X-ray source (Al Kα 1486.6 eV). The spectra were fitted by symmetric Voigt 

functions and a linear or Shirley-type background. The S 2p doublet was fitted by two peaks with 

the same full width at half-maximum (FWHM), the standard spin-orbit splitting of 1.2 eV, and the 

branching ratio of S 2p3/2 / S 2p1/2 is 2 [8].

The Au 4f7/2 and S 2p spectra of the SAMs are presented in Figure S3. The Au 4f7/2 spectra of 

all SAMs exhibit similar intensity of the Au 4f7/2 peak, which means a similar effective thickness of 

all these monolayers. The S 2p spectra can be decomposed into individual contributions (S 2p3/2, 1/2 

doublets) associated with specific sulfur-containing groups in the SAM. The S 2p spectra exhibit 

the characteristic signals of the formation of a gold-thiolate bond (1) at ca. 162.5 eV (S 2p3/2). 

However, the higher binding peak at ~ 163-164 eV has alternatively been attributed to unbound -

SAc group (2) . The ratio of atomic concentration of S was obtained by Equation (4):

(4)
𝑛𝑆

𝑛𝐴𝑢
=

𝐼𝑆
𝑆𝑆

𝐼𝐴𝑢
𝑆𝐴𝑢

Where n is the concentration of an atom, I is the integrated peak area, S is the atomic sensitivity 

factor [9, 10]. The XPS data indicated that more molecules existed on the gold sample with 

increasing immersion concentrations based on the atomic concentration of the S 2p peak signal.

Table S1. The atomic concentration of S in the F-DPP SAMs with three different immersion 
concentrations determined by XPS

Structures 0.01 mM F-DPP 0.1 mM F-DPP 1 mM F-DPP

The atomic 
concentration of S 

(%)
2.1 3.29 3.61

Figure S3. a) The panels (from top to bottom) indicated a wide-scan spectra of gold samples coated 
with 0.01 mM to 1 mM F-DPP monolayers. b) From top to bottom: The Au 4f spectra of 0.01 mM 
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to 1 mM F-DPP monolayers. c) The panels (from top to bottom) indicated the S 2p spectra of 
corresponding gold surface composition. The S 2p spectra can be decomposed into individual 
contributions (S 2p3/2, 1/2 doublets): Au-S bond (1, orange) and unbound S (2, blue).

2.2.3  Micro thermal gravimetric analyzer 

Micro thermal gravimetric analyzer (-TGA) was used to characterize the molecular mass of 

self-assembled monolayers by resonant micro-cantilever gravimetric sensing experiment [11]. By 

using the -TGA method, mass change results from sample decomposition can be quantitatively 

measured. After the same amount of molecular solution was adsorbed at the surface of the cantilever, 

a small mass was desorbed at the surface of the cantilever with the increasing temperature. The 

resonant micro-cantilever is considered to be a microgravimetric sensor, using mass-desorption-

induced resonant frequency shift as a sensing signal (Figure. S4a) [12]. 1 mM F-DPP SAMs lead 

to a 351 Hz frequency shift, and 0.1mM F-DPP leads to a 182 Hz shift. The frequency shift was not 

clear in the 0.01 mM F-DPP, and it means that the molecules were too little to be detected (Figure. 

S4b). It can be seen that more molecules existed on the gold sample with increasing concentrations.

Figure S4. a) schematic diagram of micro thermal gravimetric analyzer. b) The frequency shift 
curves are extracted from different concentration F-DPP molecule gravimetric desorption 
experiments at different temperatures using a resonant cantilever. The red and orange circles mean 
the turning point that the desorption change from physical adsorption molecules to chemical 
adsorption molecules.

2.2.4  Data analysis

All thermoelectric data (Figure 1 and Figure 2) in the main manuscript and the supporting 

information (Figure S7) were plotted in Origin. The peak values in the histograms, corresponding 

to the Gaussian fit, provided the most probable thermoelectric voltage value in the corresponding 

temperature difference. The standard error was used to show the uncertainty of thermoelectric 

voltage. The thermoelectric voltage can be expressed as a function of ΔT. The Seebeck coefficients 
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were obtained from the slope by the linear fitting and the standard error associated with the slope. 

The same approaches were used to process the data from all thermoelectric experiments.

3. Single-molecule Conductance and Seebeck Coefficient Measurement
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The etched gold tip was used to contact the molecule, and the STM-BJ measurements were 

performed in soft-contact mode at room temperature [13]. The soft-contact measurement can 

prevent contact between the tip and the substrate to avoid direct heat transfer during the 

thermoelectric experiment. A fixed bias voltage of 0.1 V was added between the tip and the 

substrate. The tip, controlled by the motor and piezoelectric actuator, withdrew from the sample 

until the increase of tunneling current achieves the given threshold value. A threshold conductance 

value 0.01G0 (where G0 is the quantum conductance, which equals 2e2/h) was chosen to indicate 

the formation of the single-molecule junction and prevent the Au STM tip from bringing into contact 

with the Au substrate. Spontaneous formation of stable molecular junctions was observed. More 

than 2000 individual conductance-distance traces without any selection were recorded for each 

molecule for further statistical analysis. To find the most probable conductance value for each 

molecule, one-dimensional (1D) conductance histograms constructed from 2000 conductance-

distance traces without any selection were plotted in Figure S5a for F-DPP. The peaks were 

identified in the histogram, and single-molecule conductance plateaus of F-DPP vary from 10-4.02 

G0 (0.1 mM) to 10-3.93 G0 (1 mM) that suggests the conductance increases slightly with increasing 

the packing density. The plateaus and peaks were further verified by a clear molecular density cloud 

in the corresponding two-dimensional (2D) conductance-distance histograms as showed in Figure 

S5b-c. The conductance data for T-DPP and Thia-DPP was shown in Figure S6, and all conductance 

data were summarized in Table 2 of the main text. It can be seen that conductance increases slightly 

with increasing the molecular packing density and the intermolecular gating effect on the charge 

transport is less obvious. However, single-molecule conductance plateaus of three molecules reduce 

gradually from F-DPP to Thia-DPP. All results show that the single-molecule conductance can be 

tuned by altering the adjacent aromatic rings of the DPP core.

To determine the stretching distance distributions, we correct the speed of piezo by the 

tunnelling region between 10-3G0 to 10-5G0 based on those traces without conductance plateau 

(without forming molecular junction). The distance for the stretching from 10-3G0 to 10-5G0 should 

be 0.36 nm, as reported previously [14, 15]. Thus, we could precisely know the speed of piezo to 

determine the junction lengths.Acc
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d
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Figure S5. Single-molecule conductance results from soft-contact STM-BJ experiments. a) 1D 
conductance histograms constructed from 2000 conductance-distance traces without any selection 
for 0.01, 0.1, 1mM F-DPP. b-d) 2D conductance histograms for 0.01, 0.1, 1mM F-DPP, 
respectively. 

Figure S6. a) 1D conductance histograms constructed from 2000 conductance-distance traces 
without any selection for 0.01, 0.1, 1mM T-DPP. b-d) 2D conductance histograms for 0.01, 0.1, 
1mM T-DPP, respectively. e) 1D conductance histograms constructed from 2000 conductance-
distance traces without any selection for 0.01, 0.1, 1mM Thia-DPP. f-h) 2D conductance 
histograms for 0.01, 0.1, 1mM Thia-DPP, respectively. 

The whole thermoelectric measurement process was shown in Figure S7. When the 

conductance plateau was first detected, the bias would be switched from 0.1 V to 0.2 V and held for 

50 ms. The conductance value under 0.2 V bias during the 50 ms was analyzed further. If the 

conductance values were the same as the measured value under 0.1 V bias, the tip would be hovered 

and fixed the tip/substrate distance. Once the tip has successfully hovered, the current amplifier will 

be cut off with the bias voltage switched to 0 V. The voltage amplifier is connected to start the 

thermoelectricity mode by a relay control. The thermovoltage is recorded directly by a differential-
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input voltage amplifier with 100 times amplification factor during the middle 100 ms of the 200 ms 

period when the tip/substrate distance is fixed (green area in Figure S7). Then, the voltage amplifier 

would be cut off, and the bias would be switched back to 0.2 V again, fixed for 50 ms to measure 

the conductance at that time. Briefly, the single-molecule junction conductance during the first and 

last 50 ms of the “hold” period is confirmed. If both measured conductance at this time were found 

to be within a molecule-dependent range from conductance histogram, we consider that the 

molecular junction was stable during the entire thermoelectric measurement, and all the 

thermovoltage data come from the single-molecule junctions. Finally, the bias would be recovered 

to 0.1 V. The tip withdrew from the sample until the tunneling current decreases to achieve the given 

threshold value. Thus, the measurement continued to repeat the steps above for the next cycle. The 

thermopower of the molecular junction is given by Equation 5 [13, 16]:

(5)∆𝑆𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = ∆𝑆𝐴𝑢 ―
∆𝑉𝑡ℎ

∆𝑇

Where SCu (1.94 μV/K) is the Seebeck coefficient of bulk gold at T = 300 K. 

Figure S7. Typical thermoelectric measurement process. The panels (from top to bottom) indicate 
bias voltage, measured conductance, and thermovoltage of the molecule as a function of time. The 
green area indicates the actual thermovoltage measurement period.Acc
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Figure S8. Measured Seebeck coefficient value for T-DPP and Thia-DPP. a) Histograms of 0.01, 
0.1, 1 mM T-DPP thermoelectric voltage measurements at a series of ΔT = 0 K, 5 K, 10 K, and 15 
K, respectively. Gaussian fits plotted in black short dash line. The black dash line indicates the 
baseline of thermoelectric voltage at ΔVth = 0. The Seebeck coefficients were obtained from the 
thermovoltage as a function of ΔT. Solid lines are linear fitting. b) Histograms of Thia-DPP 
thermoelectric voltage measurements.

4. Theoretical calculation

The optimized geometry and ground state Hamiltonian and overlap matrix elements of each 

structure were self-consistently obtained using the SIESTA implementation of density functional 

theory (DFT) [17]. SIESTA employs norm-conserving pseudo-potentials to account for the core 

electrons and linear combinations of atomic orbitals to construct the valence states. The generalized 

gradient approximation (GGA) of the exchange and correlation functional is used with the Perdew-

Burke-Ernzerhof parameterization (PBE), a double-ζ polarized (DZP) basis set, a real-space grid 

defined with an equivalent energy cut-off of 200 Ry [18]. The geometry optimization for each 

structure is performed to the forces smaller than 10 meV/Ang.

The mean-field Hamiltonian obtained from the converged DFT calculation was combined with 

our home-made implementation of the non-equilibrium Green’s function method, Gollum [19], to 

calculate the phase-coherent, elastic scattering properties of each system consisting of left gold 

(source) and right gold (drain) leads and the scattering region (molecule F-DPP, T-DPP, and Thia-

DPP). The transmission coefficient  for electrons of energy  (passing from the source to 𝑇(𝐸) 𝑬
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the drain) is calculated via the relation: 

 (6)𝑇(𝐸) = 𝑇𝑟𝑎𝑐𝑒 (𝛤𝑅(𝐸)𝐺𝑅(𝐸)𝛤𝐿(𝐸)𝐺𝑅 † (𝐸)

In this expression,  describe the level broadening due to the 𝛤𝐿,𝑅(𝐸) = 𝑖 (𝛴𝐿,𝑅(𝐸) ― 𝛴𝐿,𝑅
† (𝐸))

coupling between left (L) and right (R) electrodes and the central scattering region,  are the 𝛴𝐿,𝑅(𝐸)

retarded self-energies associated with this coupling and  is the 𝐺𝑅(𝐸) = (𝐸𝑆 ― 𝐻 ― 𝛴𝐿 ― 𝛴𝑅) ―1

retarded Green’s function, where  is the Hamiltonian and  is the overlap matrix. Using the 𝐻 𝑆

obtained transmission coefficient , the electrical conductance  and the Seebeck  𝑇(𝐸)  𝐺(𝑇)

coefficient  can be calculated through the following formula:𝑆(𝑇)

(7)𝐺 = 𝐺0 𝐿0  

 (8)𝑆 = ―
𝐿0

𝑒𝑇𝐿1

In the linear response, the quantity of Lorenz number   is giving by 𝐿𝑛(T,𝐸𝐹)

 (9)𝐿𝑛(T,𝐸𝐹) = ∫ +∞
―∞𝑑𝐸(𝐸 ― 𝐸𝐹)𝑛 T(E)

where  is conductance quantum,  is the charge of a proton;  is the Planck’s 𝐺0 = 2𝑒2/ℎ 𝑒 ℎ

constant;  is the Fermi energy;  is the Fermi−Dirac 𝐸𝐹 𝑓(𝐸) = (1 + 𝑒𝑥𝑝((𝐸 ― 𝐸𝐹)/𝑘𝐵𝑇)) ―1

distribution function,  is the temperature, and  = 8.6 × 10-5 eV/K is Boltzmann’s constant.𝑇 𝑘𝐵
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Figure S9. DFT-based electrical and thermoelectric properties of the DPP derivatives are attached 
to gold electrodes via -SMe anchor groups. a) Models for Trimer F-DPP with several binding 
confirmations. b) The corresponding room-temperature electrical conductance as a function of the 
Fermi energy  relative to the Mid-Gap . This conductance of each pair of the monomer and  𝐸𝐹 𝐸𝑔

trimer is aligned by the mid-gaps, respectively. Dotted curves represent the monomer derivatives, 
and the trimer derivatives are depicted by solid curves, respectively. c) Seebeck coefficients as a 
function of Fermi energy  at room temperature 300 K, with the same shifting with the 𝐸𝐹

corresponding conductance.

In the same way as the F-DPP molecule attached to the electrode with several binding 

configurations, we sampled other different configurations with three molecules in the junction for 

T-DPP and Thia-DPP (Figure S10). The details depend on how these molecules bind, as shown in 

Figure 3 in the main text.

Figure S10. DFT-based thermoelectric properties of the T-DPP and Thia-DPP attached to gold 
electrodes via -SMe anchor groups. a, d) an example of Trimer T-DPP and Thia-DPP with several 
binding configurations. b, e) The corresponding room-temperature electrical conductance as a 
function of the Fermi energy  relative to the Mid-Gap  of different binding confirmations for  𝐸𝐹  𝐸𝑔

T-DPP and Thia-DPP, respectively. The conductance of each pair of the monomer and trimer are 
aligned by the mid-gaps. The monomer derivatives are represented by dotted curves, and the trimer 
derivatives are depicted by solid curves, respectively. c, f) Seebeck coefficients as a function of 
Fermi energy at room temperature 300 K, with the same shifting with the corresponding  𝐸𝐹 
conductance.
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Figure S11. DFT-based thermoelectric properties of the F-DPP attached to gold electrodes via -
SMe anchor groups. (a) The corresponding room-temperature electrical conductance as a function 
of the Fermi energy  relative to the one predicted by DFT. (b) Seebeck coefficients (S) as a  𝐸𝐹

function of fermi-energy at room temperature 300 K. The monomer derivatives are represented  𝐸𝐹 
by dotted curves, and the trimer derivatives are depicted by solid curves, respectively.

Figure S12. DFT-based thermoelectric properties of the T-DPP and Thia-DPP attached to gold 
electrodes via -SMe anchor groups. a, c) The corresponding room-temperature electrical 
conductance as a function of the Fermi energy  relative to the one predicted by DFT. b, d)  𝐸𝐹

Seebeck coefficients (S) as a function of fermi-energy at room temperature 300 K. The monomer  𝐸𝐹 
derivatives are represented by dotted curves, and the trimer derivatives are depicted by solid curves, 
respectively.

Figures S11 and Figure S12 show DFT results for the electrical conductance, and the Seebeck 

coefficient is a function of the Fermi energy. Thus, over the energy range between the HOMO-
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LUMO gap, we found either the dotted lines of the monomer junctions are close to or below the 

solid lines of the trimer junctions. Therefore, the qualitative behavior over the range of energies is 

that the trimer-junction Seebeck coefficients are higher than those of the monomer junctions. To 

emphasize these trends, we shifted the energy origin to make the Seebeck coefficients pass through 

zero at the same energy, which means the mid-gap energy of the molecules is aligned. The 

qualitative trends are maintained, as shown in Figure 3 of the manuscript. Besides, the Table S2 

shows that the three molecules attached to the gold gain electron in the junction.

Table S2. Voronoi Net Atomic Populations of F-DPP, T-DPP, and Thia-DPP 

Structures
Difuranyl-DPP

(F-DPP)
Dithienyl-DPP

(T-DPP)
Dithiazolyl-DPP

(Thia-DPP)

Voronoi of the molecule in the junction -0.147 -0.153 -0.205
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