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Abstract

Synthetic data sets are being increasingly used to protect data confiden-

tiality. In the three decades since they were first introduced, methods for

synthetic data generation have evolved, but mainly within the domain

of survey data sets. As greater interest is being taken in utilising

administrative data for statistical purposes, there is inevitably greater

interest in creating synthetic administrative databases. Yet there are

characteristics of these databases that require special attention from a

synthesis perspective, such as their size and the presence of structural

zeros. This thesis, through the fitting of saturated models in conjunction

with overdispersed count distributions, presents a mechanism that allows

large administrative databases to be synthesized efficiently. This thesis

also proposes a concept of satisfying risk and utility metrics a priori - that

is, prior to synthetic data generation - using the synthesis mechanism’s

tuning parameters, allowing a more formalized approach to synthesis.

The methods are demonstrated empirically throughout, primarily through

synthesizing a database that can be viewed as a close substitute to the

English School Census.
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Chapter 1

Introduction

The General Data Protection Regulation (GDPR), implemented by both the Euro-

pean Union (EU) and the UK in May 2018, requires that businesses and organisations

adhere to certain standards when processing personal data, that is, information

that relates to identifiable individuals (Information Commissioner’s Office, 2020). A

notable requirement is that organisations now have to demonstrate how they are

complying with the regulations. Even data with direct identifiers removed - such as

names and identification numbers - are regarded as personal data with respect to

GDPR; only truly anonymous data are exempt.

However, in general, anonymisation is a contentious issue and there is some

ambiguity as to what anonymised data actually constitute.1 The need to comply with

GDPR is coupled with the ever-growing volume of data available through the internet,

thus allowing intruders (attackers) - malicious users of the data - to link records
1In November 2019, The University of Manchester held a debate entitled Debate on

‘Anonymisation’ where speakers gave their opinions on the notion of anonymisation. For instance,
one speaker argued that “data can either be useful or anonymised but never both”, whereas another
argued that anonymisation should be considered with respect to the “data environment”, that is, the
conditions under which the data are released.
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Chapter 1. Introduction

from different databases. The well-repeated, infamous example of this occurring is

the supposedly anonymised Netflix data set, where re-identifications were possible

by linking records to publicly available information on the Internet Movie Database

(IMDb) website (see Schneier 2007).

There is a drive - by the UK Government, for example (HM Government, 2018) - to

fully utilize administrative data. These databases, collected by organisations such as

government departments for administrative - non-statistical - purposes, can sometimes

hold records for an entire population. Owing to their population-like qualities, large

administrative databases are increasingly being primed to supplement - or even replace

- future censuses.

But there are challenges to address before using administrative data for statistical

analysis. Protecting privacy is the overriding consideration. Often individuals would

be unaware that their information is even being held in these databases, and it would

not be feasible to obtain formal consent for their data to be used for analysis, as they

would do in a survey, for example. Also, unlike census data, these databases may be

held in a relatively insecure environment where, for example, any members of staff

can access versions of the original database. Obstacles from a statistical perspective

have been considered later in the thesis; the overriding obstacle, though, is the sheer

size of administrative databases, which presents a challenge when protecting privacy.

This thesis will explore the use of synthetic data methods to protect privacy in

administrative databases. Synthetic data sets are generated by fitting and simulating

from a model (synthesis model) fit to the original data. The idea is that they can

preserve the statistical properties of the original data, hence providing analysts with

valid inferences (albeit with more uncertainty associated with estimates). As values

2



Chapter 1. Introduction

are not real, disclosure risk should be much lower than in the original data. Synthetic

data methods have continued to develop since 1993, when the Journal of Official

Statistics published a special issue on data confidentiality. Rubin (1993) and Little

(1993) proposed, in separate articles, similar ideas which later led to the genesis of

synthetic data sets. Rubin (1987) proposed to adapt the methods he himself had

developed for the multiple imputation of missing data (Rubin, 1987). He effectively

suggested treating those individuals from the population who were not included in

the original data as missing and multiply imputing values for these individuals. Little

(1993) proposed replacing the original data’s sensitive values by simulating from

models fit to the original data. Rubin (1993)’s idea led to the branch of synthetic data

sets now known as fully synthetic (Raghunathan et al., 2003); whereas Little (1993)’s

idea led to partially synthetic data sets (Reiter, 2003).

The aim of synthesis models is to capture the underlying distribution governing

the original data. Many models have been proposed to achieve this: from generalised

linear models (see, for example, Drechsler 2011), to tree-based non-parametric

methods such as classification and regression trees (CART) (Reiter, 2005d) and

random forests (Caiola and Reiter, 2010), to Bayesian non-parametric latent class

models (Manrique-Vallier and Hu, 2018), to machine learning techniques such as

generative adversarial networks (GANs) (Kaloskampis, 2019). The quality of synthetic

data depends entirely on the quality of these models.

Synthetic data are subject to the same risk-utility trade-off (see Duncan et al.

2001) inherent in all statistical disclosure control (SDC) methods: that data with

high utility comes at the expense of high risk of disclosure. A compromise needs to

be struck: that is, it needs to be ascertained whether a given level of utility is worth

3



Chapter 1. Introduction

the cost in terms of risk. As part of a pilot study into synthetic data conducted by

the UK’s Office for National Statistics (ONS) (Bates et al., 2019), a spectrum was

devised as a way of classifying types of synthetic data with respect to this trade-off.

These range from “structural” synthetic data sets where only the basic structure of

the original data are preserved, such that the utility and risk are essentially null; these

can be useful as test data sets, for example, for highlighting any issues with code. At

the other end of the spectrum are “replica” synthetic data sets, which closely resemble

the original and, consequently, have high risk and utility. A similar spectrum was

proposed by Kokosi et al. (2022), who use the term univariate synthetic data for the

case when risk and utility are minimal and complex modality synthetic data for when

risk and utility are at their highest. An advantage of the methods developed in this

thesis is that they can be tuned - through the adjustment of parameters - to produce

synthetic data anywhere on this spectrum.

When any data set - synthetic or otherwise - relating to individuals is released, the

considerations for the various parties involved - the individuals included, the data-

holder (for example, a government department), the analysts (researchers using the

data) and the intruders - are different and need to be considered separately. The

individuals involved demand that their privacy be protected; analysts expect the

data to facilitate the obtaining of valid inferences; the data holder’s concern is two-

fold: whether the data protects confidentiality while also yielding valid inferences;

and intruders seek to glean sensitive information about the respondents. When

first proposing the use of synthetic data sets for SDC, Rubin (1993) points out that

they neatly satisfy these differing concerns: individuals’ privacy should be protected

since no real values are released (thereby deterring intruders, too); while the data-
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holder is responsible for the imputation aspect - the heavy lifting - and can employ a

trained statistical modeller to do so. This contrasts favourably with some other SDC

techniques - such as the addition of random noise - that place the burden on analysts

to undertake relatively complex statistical techniques.

The overriding advantage, then, of synthetic data is that values are artificial -

not real. Fully synthetic data sets contain no real values whatsoever; and partially

synthetic data replace sensitive values (why bother replacing more values than is

necessary?). Either way, the disclosure risk is low and it is hard to imagine another

SDC technique being able to lower this risk further. This is the reason why synthetic

data are being considered as a way of making administrative data - a particularly

“high-risk” source of data - available to analysts.

In their raw state, these data sets tend to follow a microdata format - an n � p

matrix of values - where rows relate to individuals (also known as records, subjects or

units) and the columns relate to variables. A key feature of administrative databases

is that variables tend to be categorical in nature. This leads to an alternative -

but equivalent - way of representing them. A microdata set comprising entirely

of categorical variables can be aggregated into a contingency table, such that cell

counts give the frequencies with which the various combination of categories across

variables (cells) are observed. In general, if there are p categorical variables with

m1, . . . ,mp categories, respectively, then the data can be expressed as a multi-

dimensional contingency table with m1� . . .�mp cells. There is no loss of information

when categorical microdata sets are tabulated in this way; though it usually allows

the data to be presented more compactly.

This thesis focuses on the synthesis of categorical data at the tabular level; this

5
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naturally produces synthetic data sets also at the tabular level, which can then, of

course, either be released in tabular format or expanded back to microdata.
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Chapter 2

Literature Review

2.1 Disclosure risk in statistical data sets

From a disclosure risk perspective, variables in a data set can be broadly classified into

two kinds: sensitive variables and key variables (Bethlehem et al., 1990). Sensitive

variables, such as income, are confidential and individuals have a right for these to

be kept private; gaining access to these variables can be viewed as the motivation

behind an intruder attack. To ensure confidentiality is protected, all variables can be

considered sensitive, which is the stance taken by Statistics Netherlands (Willenborg

and De Waal, 1996). Key variables (also known as quasi-identifiers) are those that

are not inherently sensitive but which can serve to identify an individual, thus are

intrinsic to disclosure risk in much the same way as sensitive variables are; examples

of key variables include sex, age, ethnicity, etc. A data set is also almost certain to

include formal identifiers (or direct identifiers), which are variables that explicitly

identify individuals, such as individuals’ names, social security numbers, national

insurance numbers, etc. As these variables add little - if any - value from a utility
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Chapter 2. Literature Review

perspective, they are often just removed entirely from a data set. An alternative is

to use pseudonymization, which is when false names (or numbers) replace the real

names. Formal identifiers have been ignored henceforth.

Skinner (1992) defined two types of disclosure that can occur: re-identification and

prediction (attribute) disclosure. Re-identification is when an intruder can establish

the true identity of an anonymized record. Once a re-identification takes place, an

intruder obtains all information pertaining to that individual, including their sensitive

values. Even if the intruder cannot extract any sensitive information from the re-

identification, privacy has still been compromised, that is, re-identification in itself

represents a form of disclosure. Re-identifications are often achieved by linking records

in the data set to other data sources, such as publicly-available data. An infamous

example of this was the supposedly anonymized 2006 Netflix data set, where re-

identifications were possible by linking records to publicly available data on the

Internet Movie Database (IMDb) website (see Schneier, 2007).

Prediction disclosure (Skinner, 1992) - now more commonly referred to as attribute

disclosure - is when an intruder can precisely estimate the sensitive values of a target

(an individual of interest to the intruder) without necessarily re-identifying them. For

example, suppose a data set is released in tabular format and one of the variables is,

say, average income; and suppose an intruder knows to which cell a target belongs

and that they “dominate” the cell; that is, the target’s contribution to the cell is much

larger than any of the other individuals’ contributions. Then an intruder may be able

to estimate with a reasonable degree of accuracy the target’s income.

Another type of disclosure discussed in the literature is inferential disclosure

(Duncan and Lambert, 1989), the notion of which was first mentioned by Dalenius
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(1977). It relates to the additional information that an intruder can gain about

a target through re-identification; as Drechsler (2011) points out, this is a similar

concept to differential privacy (Dwork et al., 2006). If the intruder gains no extra

information through re-identification, then the corresponding inferential disclosure

would be relatively small.

In general, increasing the number of individuals in a data set (increasing n)

increases the disclosure risk because there is less sampling uncertainty. But this

assumption is conditional on an intruder not knowing which individuals are present in

the data. If an intruder knows, however, that the data includes a particular individual,

smaller n actually heightens the risk as there are fewer records to search through

(Bethlehem et al., 1990).

An important concept is perceived disclosure risk (see Couper et al., 2008), which

relates to an individual’s personal feeling that their data are sufficiently protected.

This, though, can be difficult to quantify. Disclosure risk metrics - which seek

to quantify the level of risk - tend to focus on either re-identification or attribute

disclosure.

2.1.1 Uniqueness

The risk of re-identification is typically examined with respect to the key variables in

a data set. As these variables tend to be categorical, individuals can be aggregated

according to these key variables into a contingency table, where cells pertain to the

various cross-classifications. Individuals who belong to a cell with a small cell count,

particularly a cell count of one (sample uniques), are at greater risk of re-identification.

In general, if an intruder knows that a target belongs to a cell of size k, they can be

9
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re-identified with probability 1/k.

Individuals who are unique in the population (population uniques) on a given set

of key variables are at greatest risk. It follows that a population unique is always a

sample unique (Bethlehem et al., 1990) (the converse does not follow). Much work

has been devoted to estimating the probability that a sample unique is also unique in

the population; for example, see Skinner et al. (1994) and Skinner and Shlomo (2008).

Elliot et al. (1998) extended the concept of a sample unique to develop the concept

of a special unique. Special uniques are those that are unique on a subset of the data’s

p variables. In the extreme case, a special unique can be unique with respect to just

one variable. Special uniques and the concept of different levels of sample uniqueness

allow a finer attribution of risk than simply unique or not unique.

The properties of k-anonymity (Sweeney, 2002) and L-diversity (Machanavajjhala

et al., 2007) are linked to uniqueness. A data set has the property of k-anonymity if,

for every individual in the data, there exists at least k � 1 other individuals with the

same set of values; that is, when the data set is tabulated according to all its variables,

k-anonymity is achieved if the minimum cell size is k (excluding zeros). Thus any data

set that achieves 2-anonymity guarantees the absence of sample uniques.

The metric L-diversity is a similar concept. Suppose the variables in a data set

comprise key variables and one sensitive variable. The property of L-diversity is

achieved if, for each observed set of key variable values, the sensitive variable takes

at least L distinct values.

In a broad sense, k-anonymity relates to re-identification and L-diversity relates to

attribute disclosure. These concepts require special consideration in a synthetic data

setting. There is only a potential risk of disclosure if neither the original data set nor

10
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the synthetic data set satisfy k-anonymity and L-diversity - and if it is the same cells

which causes the definitions to fail. If the original data satisfies k-anonymity and L-

diversity, then it does not matter from a risk perspective if the synthetic data do not.

The ability, however, to obtain risk guarantees in the manner that k-anonymity and

L-diversity provide is an appealing feature when protecting administrative databases.

It may not be possible to check the risk for every individual, so measures which provide

guarantees for the entire data set are useful.

Finally, as Fienberg and Makov (1998) point out, even cells with a count of zero

have a disclosure risk attached, because an intruder can use these to make deductions

about the non-zero counts; for example, by looking at the pattern of zeros, an intruder

may be able to deduce, say, that a target’s income lies between £60k-£80k .

2.2 Statistical disclosure control (SDC) for categor-

ical data

Statistical Disclosure Control (SDC), also known as Statistical Disclosure Limitation

(SDL), is the process of protecting the privacy of individuals included in a data set.

There is an inherent trade-off when applying SDC methods (see Duncan et al., 2001),

which is analogous to many other trade-offs, such as the work-life balance, risk and

reward in finance and the bias-variance trade-off. The literature on SDC is extensive

and includes many books, manuals and articles; see, for example, Duncan et al. (2011),

Hundepool et al. (2012), Templ (2017) and SDAP Working Group (2019).

SDC methods for categorical data can either be applied pre- or post-tabulation,

and can either be applied at a local level to specific entries or cells, or at a global

11
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level to the entire data set. Methods can also be roughly divided into two kinds:

coarsening methods, which reduce or suppress the amount of information released;

and perturbative methods, which alter the released data.

2.2.1 Data coarsening methods

Global recoding, also called table redesign, is an umbrella term for a variety of

alterations that can be made to the structure of a data set. Firstly, one example

is to drop a key variable, which reduces the number of uniques, thus lessening the risk

of re-identification. Alternatively, categories can be collapsed to reduce granularity,

for example, using county- rather than town-level geographical regions. Similarly,

continuous variables can be re-coded as categorical variables, for example, ages can

be expressed as integers rather than exact date of births; the loss of information

can be clearly seen here, since, for example, a child recently turned three cannot be

distinguished from a child aged nearly four. A related concept is top and bottom

coding, which is where a maximum or minimum value is specified, and no values

can surpass the threshold. The classic example in the literature is setting a maximum

income value at, say, £100, 000. The motivation behind top and bottom coding is that

it protects the values at the tail of the distribution - the extremes - which tend to be

relatively high risk. It is worth noting here that SDC applied data will support some

analyses, but not others. For example, a top coded data set would have low-utility

for an analyst wishing to learn about extremes.

Another data coarsening technique, suited to microdata or tabular data, is local

suppression, which is when certain values - or cell counts - are omitted. Suppression

effectively results in data with missing values, which can still present a disclosure
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risk, especially when an intruder can understand why a value is suppressed. Primary

suppressions may also require secondary suppressions, particularly in contingency

tables which have marginal counts (row and column sums): when certain cell counts

are suppressed but marginal counts are not, an intruder can deduce - or at least

estimate - the underlying suppressed counts.

2.2.2 Data perturbation methods

The addition of random noise is a well-known technique that usually assumes that a

variable in the data is normally distributed. The sample mean and variance of this

normal distribution are estimated, before replacement values are generated by drawing

random variates. A downside of noise addition is that it complicates the subsequent

analyses performed by researchers, who have to use the measurement error models -

such as those given by Fuller (1987) - to obtain valid inferences.

Other perturbative techniques include - but are not limited to - the following:

microaggregation (see Mateo Sanz and Domingo Ferrer, 1998), which groups similar

records together and replaces original values with average values from these groups;

data swapping (see Dalenius and Reiss, 1982), which involves switching values between

records in the data set; and post-randomisation method (PRAM) (see Gouweleeuw

et al., 1998), whereby values in the original data are changed according to a Markov

matrix. PRAM is a general method that includes noise addition, suppression and

global recoding (Hundepool et al., 2010).

Data perturbation methods, however, alter the original values, which can distort

relationships between variables. This is in contrast to coarsening methods, which

seek to hide the original values. Purdam and Elliot (2007) discovered that applying
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these traditional SDC methods on samples of anonymised records (SARs) from the

UK census had a significant impact on the data’s utility.

2.3 Introduction to synthetic data

The generation of synthetic data sets can be viewed as a unique type of SDC method.

They are generated by simulating from a model fit to the original data. The notion

is that synthetic data sets can be released to analysts instead of the original data. As

the synthetic values are inherently artificial, individuals’ privacy should be protected,

while, as synthetic values are based on the original values, analysts’ ability to obtain

valid inferences should remain undiminished. The method relies on the synthesizer

– he or she responsible for generating the synthetic data – accurately modelling the

data’s underlying distribution; such models are known as synthesis models.

The theory of synthetic data evolved from the multiple imputation of missing data

(Rubin, 1987), and as with multiple imputation, it is typical to generate and release

multiple data sets to allow analysts – through combining rules; see Drechsler (2011)

- to formally account for the uncertainty from simulation.

Traditionally, synthetic data sets are either fully or partially synthetic. The

distinction between the two is confusing, owing to the way in which the synthetic

data literature has developed over time. The generation of fully synthetic data, as first

proposed by Rubin (1993) and later developed by Raghunathan et al. (2003), involves

creating a synthetic population by imputing values for those individuals who belong

to the population but who were not included in the original data. If the original data

is not a simple random sample, values must be imputed using the Bayesian posterior

predictive distribution, to fully account for the underlying uncertainty. On the other
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hand, partially synthetic data, as first proposed by Little (1993) and later formalized

by Reiter (2003), involves generating synthetic values for some - or even all - of the

individuals who were included in the original data. As values are simply replaced,

simulating from the Bayesian posterior predictive distribution is never necessary; it

suffices to simulate values directly from the fitted model (see Reiter and Kinney,

2012). This approach - referred to as the “plug-in” approach, as the model parameters’

MLEs are “plugged” directly into the synthesis model - involves fewer steps, thus has

advantages in terms of computational time, particularly as it can be difficult to obtain

parameters’ standard errors, hence posterior distributions, in large data sets. Raab

et al. (2016) showed that this approach is equally valid for fully synthetic data, when

the original data constitute a sample random sample.

Confusion arises when all original values are replaced with synthetic values using

the partially synthetic framework of Reiter (2003). In this instance, the synthetic data

contains synthetic values only, but, by definition, are not classified as fully synthetic.

Instead of referring to fully and partially synthetic data sets, Raab et al. (2016)

introduced the more intuitive definitions of completely and incompletely synthesized

data sets. The former includes any synthetic data set with no original values; whereas

the latter includes any synthetic data set with some original values. The newer term

of completely synthesized data sets, therefore, encompasses a wider range of data sets

than the older term of fully synthetic data sets; that is, the latter is a subset of the

former. Completely synthesized data sets include all data sets that would previously

have been described as fully synthetic, plus some data sets that would previously have

been described as partially synthetic.
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2.3.1 The generation of synthetic data sets

Suppose a synthesizer wishes to synthesize a data set with p variables Y =

(Y1, Y2, . . . , Yp). Generating synthetic data involves modelling the underlying joint

distribution of Y , which for categorical data sets can be done by modelling Y by

a model such as the Poisson log-linear model. In practice, though, because a data

set is likely to comprise of a mixture of continuous and categorical variables, it is

more common to decompose the joint model Y = (Y1, Y2, . . . , Yp) into a product of

conditional models, that is

P (Y j X) = P (Y1 j X)

p∏
j=2

P (Yj j Yj�1 . . . , Y2, Y1, X), (2.1)

where X are any additional variables not requiring synthesis. Separate models to

be specified and fit to each of these variables. The ordering of the variables can

dramatically affect the utility of the resulting synthetic data. This first variable

to be modelled, Y1, subsequently becomes a predictor when modelling the other

variables. Thus a biased synthesis model for Y1 propagates bias throughout the

synthesis. Ideally, the variable chosen as Y1 is the one which is the strongest predictor

on the other variables, yet this is, of course, subjective.

Each model is fitted to the original data to obtain, depending on whether or not

the Bayesian posterior predictive distribution is used, either the model parameters’

joint posterior distribution or the model parameters’ maximum likelihood estimates

(MLEs). In some cases, the exact joint posterior distribution can be derived,

but more often an approximate posterior distribution is derived, by estimating the

variance-covariance matrix numerically, for example, via the R function vcov from the
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stats package. Synthetic values are then obtained by simulating from each variable

sequentially; this is repeated m times to obtain m synthetic data sets.

2.3.2 Obtaining inferences from synthetic data sets

When carrying out a full synthesis, simple random samples of size nsyn are taken from

each of the m synthetic populations to release to analysts. Reiter and Raghunathan

(2007) emphasize that, in practice, entire synthetic populations do not need to be

generated; it suffices to take a random sample of individuals from the population

first, and then synthesize values for these individuals only. For a partial synthesis,

nsyn is usually set equal to the size of the original sample n. Metadata may be released

alongside these samples, such as information about the synthesis models, even model

parameters. However, such information would heighten the risk.

The synthesizer has control overm and nsyn and can tweak these to find an optimal

balance between risk and utility; see, for example, Reiter (2005b). The motivation

for keeping m and nsyn small is two-fold: firstly, fewer records (smaller nsyn) typically

implies lower risk; and secondly, fewer data sets (smaller m) means the synthesis is

less computationally burdensome, which is especially relevant for large, administrative

databases. This optimal combination of m and nsyn is likely to depend on a range of

factors, such as the synthesis model, the number of variables being synthesised and

the estimands of interest to an analyst.

When estimating a univariate population parameter Q from m � 1 synthetic data

sets, the analyst treats each synthetic data set as if it is the original data set, and

uses complete-data methods for inference. A point estimate q(l) and its corresponding

variance estimate v(l) is obtained from each synthetic data set, l = 1, . . . ,m. The next
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step is to calculate the following three quantities Drechsler (2011):

q̄m =
1

m

m∑
l=1

q(l), bm =
1

(m� 1)

m∑
l=1

(q(l) � q̄m)2, v̄m =
1

m

m∑
l=1

v(l), (2.2)

where q̄m is the mean estimate, bm is the ‘between-synthesis variance’, that is, the

sample variance of the m > 1 estimates, and v̄m is the mean ‘within-synthesis

variance’, the mean of the estimates’ variance estimates. When m = 1, it is not

possible to calculate bm; the combining rules for m = 1 derived by Raab et al. (2016)

do not use this quantity (see Table 2.1). Note also that the variability in vl is assumed

to be ignorable, therefore it is sufficient to use any vl instead of v̄m.

The way in which these quantities are combined depends on several factors, such

as whether fully or partially synthetic data sets are generated, whether the original

data are a simple random sample and whether an analyst is using the synthetic data to

estimate a population parameter Q or an observed data estimate Q̂. The later arises,

for example, when synthetic data are acting as test data, where the aim is to obtain

inferences comparable to those that would have been obtained had the analyses been

run on the original data. In this instance, estimating variances is simpler because the

combining rules need only take account of the uncertainty from synthesis; whereas

when estimating a population parameter directly, the sampling uncertainty inherent in

the observed data also needs to be taken into account, that is, there is an extra source

of variability. This, incidentally, is the purpose of synthetic data in the synthpop

package in R (Nowok et al., 2016).

Regardless of whether the synthetic data are being used to estimate Q or Q̂, the

average (mean) of the point estimates q̄m is an unbiased estimate of Q. An unbiased

estimate for Var(q̄m) can be obtained by applying the relevant combining rules. Table
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2.1 lists valid combining rules in different scenarios. Under certain conditions, there

are different sets of combining rules that yield valid inferences, for example, Raab et al.

(2016) give two sets of valid combining rules for fully synthetic data sets generated

for an original data set that is a simple random sample. Drechsler (2018) also clarifies

when each set of combining rules should be used.

Estimating variance-covariance matrices for multivariate population estimands

requires more work on the part of the analyst and there is a notable increase in

the complexity of combining rules; see Reiter (2005c) and Reiter and Raghunathan

(2007).

These inferential frameworks were originally developed for small survey data sets.

They were later extended for the generation of synthetic census data (Reiter and

Drechsler, 2010), which, for instance, involved consideration of the finite population

correction factor. There are further complications - factors to consider - when

generating synthetic administrative data; these are discussed further in Section 2.8.

2.4 Synthesis models for categorical data

As mentioned above, the original data are often modelled through a product of

conditional models because the data may comprise a range of variable types -

continuous, categorical, count variables, et cetera. The ability to convert categorical

data into tabular format, increases the options available to the synthesizer because

the synthesis can either be undertaken at the microdata or tabular level.

19



Chapter 2. Literature Review

Combining rules Description

Ts =
(

1 + 1
m

)
bm � v̄m Fully synthetic data sets generated via the Bayesian pos-

terior predictive distribution; derived in Raghunathan
et al. (2003).

TPPD
s = v̄m

[
nsyn
n

+ 1
m

(
1 + nsyn

n

)]
Fully synthetic data sets generated via the Bayesian
posterior predictive distribution when the original data
constitute a simple random sample; derived in Raab
et al. (2016).

T plug
s = v̄m

(
nsyn
n

+ 1
m

)
Completely synthesized data when the “plug-in” ap-
proach is used and the original data constitute a simple
random sample; derived in Raab et al. (2016).

Tp = v̄m + bm
m

Any kind of partially synthetic data sets; derived in
Reiter (2003).

Tp = �vmnsyn
n

+ bm
m

Partially synthetic data when all values are replaced and
a sample of size nsyn < n is released; derived in Raab
et al. (2016).

T 1
d = bm

m
When the original data is the entire population and
small synthetic samples are randomly drawn; derived
in Drechsler and Reiter (2010).

T 2
d = v̄m +

(
1
m
� 1
)
bm When the original data is the entire population and

observations for the same set of individuals are released
in each synthetic sample; derived in Drechsler and Reiter
(2010).

T 3
d = 1�nsyn

n
+ bm

m
As above, but when the synthetic sample size nsyn is not
small enough to ignore the finite population correction
factor; derived in Drechsler and Reiter (2010).

Table 2.1: The combining rules for variance estimates when estimating a univariate
population estimand from multiple synthetic data sets in different scenarios. For
clarity, nsyn is the size of the synthetic data sets, n is the size of the original data
set, m is the number of synthetic data sets generated, bm is the between-synthesis
variance and v̄m is the within-synthesis variance.
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2.4.1 Multinomial logistic regression

If following the conditional approach, a series of multinomial logistic regression models

can be fitted. Although not strictly a generalised linear model (GLM) owing to the

multivariate response, the multinomial logistic regression model can be viewed as an

extension to the logistic regression model to the case where the response has three or

more levels. The standard parameterisation sets one category of the response variable

- often, by default, the first - as the reference category and then has a distinct set of

regression coefficients for every other level of the response relative to the reference.

When a multinomial logistic regression model involves variables with many

categories, however, there are many parameters to estimate, and model-fitting

algorithms can take too long to converge, thus rendering R functions such as multinom

from the nnet package (the commonly used function in R to fit multinomial lgoistic

regressions) infeasible. Note, to estimate parameter estimates, multinom, which builds

single-layer neural networks, calls the function optim, which in turn uses the BFGS

algorithm (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970).

2.4.1.1 Poisson-multinomial equivalence

When all covariates are categorical, a multinomial logistic regression model’s MLEs

can be obtained through fitting the corresponding Poisson log-linear model, as

described in Lang (1996). Unlike the multinomial logistic regression model, which

has a clear categorical response variable, the log-linear model treats the counts in the

corresponding contingency table as the response.

As an example, parameter estimates and standard errors for a multinomial logistic

regression of A on B, C and D are identical to those from a hierarchical Poisson log-
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linear model with all two-way interactions plus the three-way interaction between

B, C and D. That is, the “slope” coefficients for the multinomial logistic regression

are equal to the two-way interactions involving A in the Poisson log-linear model (see

Asmussen and Edwards, 1983). Thus the latter model can be fit instead of the former,

which has the benefit, as discussed in subsection 2.4.2, of allowing the IPF algorithm

(see subsection 2.4.2.1) to be utilised.

2.4.2 The Poisson log-linear model

When a data set is made up entirely of categorical variables, such that it can be

expressed as a contingency table, it is more efficient alternative is to fit a single model

to the entire data set, by modelling the counts in the contingency table.

The Poisson log-linear model assumes that cell counts follow a multiplicative

structure (or, equivalently, follow a linear structure on a logarithmic scale). For

example, in the independence model, the probability of observing, say, outcome a

for variable A and outcome b for variable B is equal to the marginal probability of

observing a multiplied by the marginal probability of observing b.

The counts in the contingency table are assumed to be independent and Poisson

distributed. It has a representation as a Poisson GLM under a log link function,

in which it is parameterised by an intercept term, main effects and interactions.

Including interactions relates to preserving marginal counts: for example, the all

two-way interaction model ensures all expected two-way marginal counts are equal

to the observed two-way marginal counts. The sufficient statistics, that is, the data

required to fit the model, are the observed marginal tables for the margins which are

to be preserved. For example, in the all two-way interaction model, the sufficient
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statistics are the observed two-way marginal counts between every pair of variables.

In a synthesis context the synthesizer does not require access to the full individual

level microdata.

To generate the synthetic counts, the synthesizer takes draws from the fitted

model. Rather than the Poisson, a multinomial approach could be taken here, too,

by constraining the grand total - the sum of all synthetic counts - to a fixed n. This

approach is comparable to the Poisson in terms of computational time, so it essentially

comes down to ideology: how important is it to preserve known grand totals, given

the data are synthetic?

2.4.2.1 The use of iterative proportional fitting (IPF)

The iterative proportional fitting (IPF) algorithm, first introduced by (Deming and

Stephan, 1940) during the Second World War - one of the many developments

accelerated due to the necessity of war - can be used to quickly obtain fitted counts

(note these “counts” are not always integers) in a log-linear model. It works by

adjusting the table’s expected marginal counts to match - hence preserve - observed

marginal counts (see Bishop et al., 1975). Its efficiency makes it particularly useful

for large, sparse contingency tables, when algorithms used in standard software are

too slow. A downside, though, is that it is less straightforward to recover the log-

linear model’s parameter estimates and standard errors, which has implications for

generating fully synthetic data in the sense of Raghunathan et al. (2003), where

parameters’ estimates and standard errors are intrinsic to estimating the Bayesian

posterior predictive distribution.

There are several functions that can be used to carry out IPF in R. These include
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the ipf function from the cat package and the function loglm from the MASS package;

note loglm provides a user-friendly wrapper to the loglin function.

2.4.3 Multinomial-Dirichlet synthesizer

Abowd and Vilhuber (2008) proposed a multinomial-Dirichlet synthesis model to

produce synthetic categorical data. As with the Poisson log-linear model, this

approach is undertaken at the tabular level. The main advantage of this multinomial-

Dirichlet method is that it can produce synthetic data that satisfies different privacy

(see Section 2.5.4).

Let the original data’s contingency table’s cell probabilities be denoted by π. Then

a Dirichlet prior with concentration parameters α = (α1, α2, . . . , αK) is placed on π,

resulting in a posterior distribution of π j a,α � Dirichlet(a +α). A set of synthetic

counts b is then obtained by simulating from:

b j π, a,α � Multinomial(n,π)

π j a,α � Dirichlet(a + α).

i.e., p(b j π, a,α) =
nsyn!∏
i bi!

K∏
i=1

πbii and p(π j a,α) =
Γ(n+

∑
i αi)∏

i Γ(ai + αi)

K∏
i=1

πai+αi�1
i .

Integrating over π gives:

p(b j a,α) =
nsyn! Γ(n+

∑
i αi)∏

i bi! Γ(ai + αi)

∫ K∏
i=1

πbi+ai+αi�1
i dπ

=
nsyn! Γ(n+

∑
i αi)∏

i [bi! Γ(ai + αi)]
�
∏

i Γ(bi + ai + αi)

Γ(nsyn + n+
∑

i αi)
.

(2.3)
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2.4.4 Latent class models

Vermunt et al. (2008) describe the use of latent class analysis (LCA) for the multiple

imputation - and by extension, synthesis - of categorical data. This is a method that

can be applied when log-linear analysis is unfeasible, so is especially useful for large,

sparse data sets.

An individual i (i = 1, . . . , n) in the data set is assumed to belong, independently,

to one (and only one) of K < 1 latent classes. Using the notation of Si and Reiter

(2013), let zi denote i’s latent class, and let πk denote the probability of belonging to

the kth latent class.

The individuals within a given latent class are assumed to follow a class-specific

multinomial distribution; let φkjl denote the probability that an individual in latent

class k observes outcome l for variable j for l = 1, . . . , Lj, where Lj is the number

of categories for variable j (note
∑Lj

l=1 φkjl = 1). Let φ = fφkjl : k = 1, . . . , K, j =

1, . . . , p, l = 1, . . . , Ljg denote the set of all cell probabilities and π denote the set of

latent class inclusion probabilities. The finite mixture model (McLachlan and Peel,

2000) is then given as (Si and Reiter, 2013):

Yij j zi = k, φ � Multinomial(φkj1, φkj2, . . . , φkjLj
) (2.4)

zi j π � Multinomial(π1, π2, . . . , πK), (2.5)

for i = 1, . . . , n and j = 1, . . . , p.

Vermunt et al. (2008) note, in this context, as the model is being used to estimate

the joint distribution of the data, the parameters have little interpretative value.

Hence, it does not really matter if the parameters are unidentifiable, nor if the
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optimisation algorithm converges to a local - rather than a global - maximum.

Similarly, synthetic categorical data can be generated via Dirichlet process mixture

of products of multinomial (DPMPM) distributions (Manrique-Vallier and Hu, 2018;

Hu et al., 2014; Si and Reiter, 2013), which is the Bayesian analogue to the latent

class model. As the model has a fully Bayesian specification, Markov-Chain Monte

Carlo (MCMC) methods are required to obtain inferences. This can be carried out

via the NPBayesImputeCat R package (Hu et al., 2021).

2.4.5 Non-parametric tree-based approaches

Classification and regression tree (CART) analysis was introduced by Breiman et al.

(1984), a pioneering statistician who helped to bridge the gap between statistics and

computer science (see Raper, 2020 for an interesting biography).

Reiter (2005d) proposed the use of CART to generate partially synthetic data -

note, only partially synthetic data can be generated this way because CART replaces

individuals’ values - which has since become a popular method; undoubtedly this is

because it is the default method in the excellent R package synthpop. Regression

trees are “grown” for each variable - CART uses the approach of modelling the data

variable-by-variable (see Section 2.3.1) - by repeatedly dividing the individuals in the

data according to the predictor variables - usually with binary splits - until groups

of similar individuals are formed; these groups are known as “leaves”. For example,

individuals may first be split by gender; then the males by age and the females by

ethnicity, and so on, until some pre-specified “pruning” criterion is met, such as a

minimum number of individuals in each leaf. As with the parametric approach, a

separate tree is grown for each variable; though unlike the approach given in 2.3.1,
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the tree is grown fully conditional on all other variables.

A natural extension to generating synthetic data sets through CART is to generate

them through random forests (Breiman, 2001), as proposed by Caiola and Reiter

(2010).

Drechsler and Reiter (2011) compared the utility and risk of synthetic data

generated via these tree-based methods. They looked at CART, random forests and

a similar method, bagging (Breiman, 1996) and demonstrated that these methods -

CART, in particular - compare favourably with parametric approaches.

2.4.6 Advanced Machine Learning Techniques

Advanced machine learning techniques are becoming an increasingly popular area

of research in relation to synthetic data generation. Drechsler (2010) investigated

the plausibility of support vector machines (Boser et al., 1992) and, more recently,

Kaloskampis (2019) looked at techniques such as generative adversarial networks

(GANs) (Goodfellow et al., 2014).

These methods are complex and can be difficult to implement; for example, there

is currently no software for synthesis using GANs in R. Methods need to be relatively

easy to understand and implement to encourage organisations such as government

departments to generate and release synthetic versions of the administrative databases

that they hold.
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2.5 Metrics for assessing risk in synthetic data

In most data sets, the key variables - those that can re-identify an individual -

tend to be categorical. Thus re-identification, in particular, revolves around sample

uniqueness (see, for example, Skinner and Elliot, 2002). It is widely accepted that

re-identification is meaningless in fully synthetic data sets because individuals in the

synthetic data do not necessarily pertain to individuals in the original data. However,

re-identification needs to be considered in partially synthetic data. Besides, fully

synthetic data sets expressed as contingency tables can be considered to be at risk of

a version of re-identification if a high proportion of uniques (cell counts of one) are

also unique in the original data.

2.5.1 Re-identification in partially synthetic data

Reiter and Mitra (2009) developed a technique for estimating the risk of re-

identification for individuals included in partially synthetic data. They built on

the work of Duncan and Lambert (1989) and Fienberg et al. (1997) in taking a

probabilistic approach to re-identification. The approach relies on assumptions about

intruder knowledge. For example, it may be assumed the intruder knows the synthesis

model used but not its parameters; or it may be assumed the intruder knows both

the synthesis models and its parameters. It is also assumed that an intruder possesses

individuals’ key variable values. The idea is to estimate, given this information, the

probabilities with which an intruder can link an individual in the synthetic data to

an individual in the original data.

This gives a risk of re-identification for each individual and it is this which is

the overriding benefit of this risk metric. The ability to estimate a unique risk
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probability for each individual is what Willenborg and De Waal (1996) refer to as

the “gold-standard” with respect to disclosure risk metrics. Moreover, the individual

risk probabilities can be aggregated to obtain an overall measure of risk, such as the

expected match risk (Reiter, 2005a)).

This method’s usefulness for synthetic administrative databases, however, depends

on the way in which the synthesis is carried out. When the data are synthesised at

the aggregated level, for example, through a Poisson log-linear model, the direct

links between individuals in the original and synthetic data are lost as the data are

aggregated, synthesized and disaggregated back to microdata.

2.5.2 Correct Attribution Probability (CAP)

As re-identification is neither meaningful for fully synthetic data nor for any kind

of aggregated synthetic data, disclosure risk arguably revolves around attribute

disclosure: the amount of information that can be gleaned about individuals’ sensitive

values.

Taub et al. (2018) developed the Correct Attribution Probability (CAP), for

measuring attribute disclosure in categorical synthetic data. It compares the empirical

distributions of a sensitive variable, conditional on the key variables, obtained from

the original and synthetic data.

The CAPobs,j can be defined as: among the individuals in the original data

who share the same key variable values as j (belong to the same cell if the data

are tabulated according to its key variables), the proportion who have the same

attribute as j for the sensitive variable. Similarly, CAPsyn,j is the same proportion

but calculated from the synthetic data.
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Let Kobs,j denote the key variable values and Tobs,j the value of a sensitive variable,

for an individual j in the original data (j = 1, . . . , n); and similarly, Ksyn,j denote the

same Tsyn,j for an individual j in the synthetic data. Then the CAP scores are given

by:

CAPobs,j = p̂(Tobs,j j Kobs,j) =

∑n
r=1[Tobs,r = Tobs,j, Kobs,r = Kobs,j]∑n

r=1[Kobs,r = Kobs,j]
(2.6)

CAPsyn,j = p̂(Tobs,j j Kobs,j) =

∑k
r=1[Tsyn,r = Tobs,j, Ksyn,r = Kobs,j]∑k

r=1[Ksyn,r = Kobs,j]
, (2.7)

where [.] are Iverson brackets, that is, the value 1 is returned if the proposition inside

the bracket is satisfied and 0 otherwise. Taub et al. (2018) recommend, in addition,

calculating the baseline CAP score, which is the marginal distribution of the sensitive

variable estimated from the original data, that is,

CAPb,j = p(Tobs,j) =
1

n

n∑
r=1

[Tobs,r = Tobs,j]. (2.8)

This provides a comparison for when the key variables are entirely independent of the

sensitive variable. If the CAP scores from the synthetic data are close to the baseline

score, then it suggests the synthetic data are low risk; whereas, if they are close to

the original data scores, then it suggests the synthetic data are high risk. As with

the Reiter and Mitra (2009) method, the CAP scores can be averaged to give a single

risk value for the entire synthetic data.

Hittmeir et al. (2020) highlight the link between CAP scores and the concepts of

k-anonymity and L-diversity. For example, if a data set attains 2-anonymity, that

is, if at least two individuals observe any observed set of key variable values, then

it follows there are at least two values for the sensitive variable, which should yield
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lower CAP scores. Similarly, if a data set attains 2-diversity, that is, if there are at

least two distinct values for the sensitive variable among individuals with a given key

variable pattern, then the maximum CAP score for any individual would be a 1/2.

Owing to synthesis, a set of key variable values observed in the original data may

be unobserved in the synthetic data (or vice versa), leading to a CAPsyn score that

is mathematically undefined (a denominator of zero). Taub et al. (2018) describe two

approaches for dealing with this: the first is to assign a CAP of zero; the second is to

exclude it. Arguably, the latter is to be preferred as it would yield a larger average

CAP and hence overestimate - as opposed to underestimate - the disclosure risk of

the data set. Hittmeir et al. (2020) propose a third technique, the GCAP, for dealing

with this issue, which uses those individuals in the synthetic data for which all but

one of the key variable values match (or all but two match and so on). The GCAPsyn,j

uses Hamming distance ∆ (Hamming, 1950) to consider close matches:

GCAPsyn,j = p̂(Tobs,j j Kobs,j) =

∑k
r=1[Tsyn,r = Tobs,j, ∆(Ksyn,r, Kobs,j) = ρj]∑k

r=1[∆(Ksyn,r, Kobs,j)]
. (2.9)

That is, when no exact matches exist, close matches are considered instead.

2.5.3 Bayesian estimation of disclosure risk

Reiter et al. (2014) developed a risk metric that mirrors that of Reiter and

Mitra (2009) in the sense that assumptions are made about intruder knowledge.

Assumptions are made as to, firstly, the portion of the original data that is known to

the intruder before the synthetic data are released (denoted by A); for example, it can

be assumed the intruder knows all but one of the individuals’ records (an assumption

inspired by the differential privacy literature). Secondly, an assumption is made about
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the knowledge (denoted by S) that the intruder possesses about the synthesis models.

Let Xi denote the ith row of the original data (individual i’s values) that is

unknown to the intruder - hence is stochastic as far as the intruder is concerned.

The method estimates the posterior distribution of Xi given the synthetic data Dsyn

and the additional information A and S, to determine how accurately the true value

of Xi can estimated. That is:

p(XijDsyn, A, S) =
p(DsynjXi, A, S) � p(XijA, S)∑

x p(DsynjXi = x,A, S) � p(XijA, S)

/ p(DsynjXi, A, S) � p(XijA, S). (2.10)

More assumptions can be made if required. For example, when calculating the

probabilities given in 2.10, the support of Xi can be restricted to, say, records which

only differ from the true records by one element.

However, if there are either many individuals in the data set (large n) or many

possible values that Xi could take - as would be the case in a large data set - then

it becomes computationally challenging to compute 2.10 - particularly the likelihood

component p(DsynjXi, A, S) - even if importance sampling is used, as suggested by

Reiter et al. (2014).

2.5.4 Differential Privacy

Differential privacy (DP) (Dwork et al., 2006) is a property of a perturbation

(synthesis) mechanism that formally establishes how accurately a given individual’s

true values can be estimated, given all other n� 1 individuals’ true values are known.

DP is a popular area of research at the moment, partly owing to its implementation
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by the US Census Bureau to protect 2020 census records.

Rinott et al. (2018) set out how differential privacy can be satisfied for contingency

tables. In line with Rinott et al.’s notation, let a = (a1, . . . , aK) 2 A and b =

(b1, . . . , bK) 2 B denote a vector of original and synthetic counts (the counts in the

original and synthetic data’s contingency table), respectively, where A and B denotes

the range of original and synthetic counts. Moreover, a and a0 are neighbours, denoted

by a � a0, if all counts in a and a0 are identical bar one which differs by one; this

is equivalent to saying the rows of a and a0 differ by one if expressed in microdata

format.

The ε-DP definition revolves around the likelihood ratio(s). A perturba-

tion/synthesis mechanismM is ε-differentially private (ε > 0) if:

exp(�ε) � p(M(a) = b)

p(M(a0) = b)
� exp(ε), or equivalently,

∣∣∣∣log p(M(a) = b)

p(M(a0) = b)

∣∣∣∣ � ε,

(2.11)

8 a � a0 2 A and 8 b 2 B.

This is the definition as given in Rinott et al. (2018), which is a simplification of that

given in Dwork et al. (2006) in the case that the range of M is discrete. For any a

and a0, if this ratio is either too small or too large, then too much information can be

gleaned as to which cell the target belongs, that is, the target’s true characteristics

can be too easily established. The definition considers all potential synthetic data

sets in B. Thus, DP is not a risk metric for a particular synthetic data set, but rather

a property of a synthesis mechanism that guarantees a certain level of privacy.

In general, then, DP guarantees that the generation of synthetic data is largely
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unaffected by the presence of a particular individual, and therefore no sensitive

information is revealed about this individual.

As mentioned in Section 2.5.4, differential privacy (DP) is a property of a synthesis

mechanism. It is a mathematically rigorous approach to risk, that establishes the

probability with which an individual’s values can be estimated, given all other n� 1

individuals’ true values are known.

Recall that a = (a1, . . . , aK) 2 A and b = (b1, . . . , bK) 2 B are arbitrary vectors

of original and synthetic counts (the counts in the original and synthetic data’s

contingency table), respectively; and a � a0 means that a and a0 are identical except

for one count, which differs by one.

As with Quick (2021), suppose a and a0 differ in their first element only and that

a1 = a01 + 1, such that jja � a0jj = 1 (ai = a0i for all i � 2). Then a represents the

data held by the intruder (all individuals except the unknown target individual) and

a0 represents the “completed data”, where the target has been added to one of the

cells.

2.5.4.1 The multinomial-Dirichlet and DP

As mentioned in section 2.4.3, the multinomial-Dirichlet can be used to generate

synthetic data that satisfies DP. Following on from the expression for p(b j a,α)
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given in (2.3):

p(b j a,α)

p(b j a0,α)
=

Γ(b1 + a1 + α1)

Γ(a1 + α1)
� Γ(a01 + α1)

Γ(b1 + a01 + α1)
.

=
Γ(b1 + a1 + α1)

Γ(a1 + α1)
� Γ(a1 � 1 + α1)

Γ(b1 + a1 � 1 + α1)

=
b1 + a1 � 1 + α1

a1 � 1 + α1

> 1.

Now, as DP is satisfied if

1

exp(ε)
� p(b j a,α)

p(b j a0,α)
� exp(ε),

and as a1 � 1 and b1 � n, this implies:

b1 + a1 � 1 + α1

a1 � 1 + α1

� n+ α1

α1

� exp(ε),

and rearranging gives:

miniαi �
n

exp(ε)� 1
.

Therefore, if the smallest value in the vector of concentration parameters α (see

Section 2.4.3), exceeds n/(exp(ε)� 1), ε-DP is satisfied.
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2.6 Metrics for assessing utility in synthetic data

Purdam and Elliot (2007) describe two ways in which SDC methods, and therefore

also synthetic data sets, affect data utility for an analyst. Firstly, they consider

analytical completeness, which is the ability to undertake an analysis on the synthetic

(perturbed) data; for example, analytical completeness would be lost if a particular

analysis cannot even be performed (owing to the absence of certain variables, say).

This is related to the concept of uncongeniality (Meng, 1994) in multiple imputation.

Secondly, Purdam and Elliot (2007) consider analytical validity - a notion introduced

by Winkler (2005) - which is the ability to draw conclusions from the synthetic

(perturbed) data that are similar to those from the original data.

Snoke et al. (2018) give a detailed description of metrics for assessing analytical

validity of synthetic data, specifically. They distinguish between general utility

measures, which compare the joint distributions of the observed and synthetic data,

such as propensity score matching, and specific utility measures, which compare

results pertaining to a certain analysis, such as coverage percentages, obtained from

both the observed and synthetic data. These are “specific” to the analyses undertaken;

synthetic data may yield valid inferences for some analyses, but not for others. These

same two types of data utility measures are referred to by Drechsler and Reiter (2009)

as broad and narrow measures, respectively.

2.6.1 General utility measures

General utility metrics aim to measure the similarity between the observed and

synthetic data’s joint probability distributions. This makes relevant techniques

outside of synthetic data that quantify divergences between probability distributions,
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such as Hellinger distance and Kullback-Leibler divergence.

2.6.1.1 Distance measures

The Kullback-Leibler divergence measures how a distribution from a fitted model

differs from its empirical distribution. Let p = (p1, . . . , pK) denote the empirical

distribution and q = (q1, . . . , qK) denote the distribution derived from the fitted

model. Then the Kullback-Leibler divergence, also known as the relative entropy

from q to p, is defined as (Burnham and Anderson, 2002, Section 2.1, p. 51):

I(p,q) :=
K∑
k=1

pk log
(
pk
qk

)
. (2.12)

The distributions p and q can be used to denote the cell probabilities in original

and synthetic categorical data, respectively. There are a few issues, however. Firstly,

as the Kullback-Leibler divergence is not symmetric, that is, I(p,q) 6= I(q,p), a

different Kullback-Leibler divergence is obtained when p and q are switched round.

Secondly, the Kullback-Leibler divergence is undefined whenever any qk equals zero,

which has complications for zero cell counts.

Similarly, the Hellinger distance between p and q is defined as:

h(p,q) :=
1p
2
kpp�pqk :=

1p
2

√√√√ K∑
k=1

(
p
pk �

p
qk)2, (2.13)

where k�k denotes the Euclidean norm (L2 norm) (Jayram, 2009). Rinott et al. (2018)

describe an attractive feature of Hellinger distance in relation to privacy in frequency

tables. Unlike distance metrics such as the mean squared error, the loss varies with

the size of the cell. For example, with the Hellinger distance, the contribution of a cell
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synthesized from, say, 101 to 100 is much less than the contribution from one being

synthesized from 1 to 0. These seems appropriate because the latter is likely to be

more damaging in actual effect.

While these two distance metrics provide a general insight into the similarity

between the observed and synthetic data, a low Hellinger distance, for example, does

not always imply high utility. Moreover, these metrics are most effective when used

comparatively, say, to show the rate at which utility changes as risk changes.

2.6.1.2 Propensity Score Matching

Propensity score matching (Rosenbaum and Rubin, 1983), which can assess distin-

guishability between different kinds of observations, was first used by Woo et al.

(2009) to measure utility in a privacy environment, and later formalised by Snoke

et al. (2018).

To undertake propensity score matching in a synthetic data setting, an indicator

variable is introduced: synthetic records (say) are assigned a value of “1” and the

original records a value of “0”. A model is then fitted with this newly-created variable

as the response and variables in the data as covariates; interactions between variables

may also be useful as covariates. Given that the response is binary, a logistic regression

model is suitable here; though Snoke et al. (2018) also propose CART. The closer the

fitted values from the model (the propensity scores) are to 1/2 (assuming there are an

equal number of synthetic and real records), the closer the synthetic records resemble

the original records.

Snoke et al. (2018) introduced the metric pMSE, the propensity score mean

squared error, which can formally test whether the synthetic and original data have
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the same underlying distribution. Jörg Drechsler, speaking at a synthetic data session

at the 2020 Royal Statistical Society Conference, noted two downsides with propensity

score matching. Firstly, although regarded as a general utility metric, it still depends

on the specific model used to compute the propensity scores, hence shares, to a certain

extent, the same flaws as specific utility measures; secondly, parametric propensity

score models tend to favour parametric synthesis models, and likewise non-parametric

models tend to favour non-parametric synthesis models. This can be seen in the second

and third rows of Table 10 in Snoke et al. (2018).

Mitra and Reiter (2016) also looked at propensity scores in relation to multiple

imputation. As with synthesis, multiple imputation yields m > 1 data sets - and

hence m > 1 individual propensity scores. The paper looked at the best way to

combine these individual propensity scores in order to create an overall propensity

score. This is analogous to a situation considered in Chapter 4 of the best way to

analyse m > 1 synthetic categorical data sets given as contingency tables: is it better

to average counts first or analyse each contingency table separately and average the

results?

The concept of propensity score matching is more suited to data sets with contin-

uous variables, where there is more heterogeneity among observations. Differences in

categorical data sets correspond to differences in cell counts rather than differences in

individual observations. Unreported investigations have shown that propensity score

models struggle to distinguishing between original and synthetic categorical data.
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2.6.2 Specific utility measures

The analytical validity of synthetic data can be assessed for specific analyses, for

example, by comparing regression coefficient estimates obtained from models fit to

both the observed and synthetic data. The general problem with specific utility

measures is that the utility of synthetic data is only established with respect to a

particular analysis; and is is typically unknown what analyses are to be performed on

the synthetic data. To lessen this issue to a certain extent, Purdam and Elliot (2007)

evaluated impact on utility over a variety of analyses.

Simulation studies can be useful to establish the repeated sampling properties of

inferences obtained from synthetic data. Performance measures such as bias, mean

squared error and confidence interval coverage can be calculated. Morris et al. (2019)

provide an excellent overview of how a simulation study, which is essentially a scientific

experiment, should be designed, coded and analysed.

2.6.2.1 Confidence interval overlap

One performance measure particularly suited to synthetic data is confidence interval

overlap (Karr et al., 2006), which compares the accuracy and length of confidence

intervals obtained from the original and synthetic data.

To define confidence interval overlap, let (lr, ur) and (ls, us) denote the confidence

intervals for a univariate population parameter Q, derived from the real and synthetic

data, respectively. Also, let (li, ui) denote the intersection of the two intervals, that

is, li = max(lr, ls) and ui = min(ur, us). Then the confidence interval overlap IQ for
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Q is given as:

IQ =
1

2

(
ui � li
ur � lr

+
ui � li
us � ls

)
. (2.14)

Therefore, IQ is the average of two ratios: the first ratio is the length of the intersection

relative to the length of the observed data confidence interval; and the second ratio

is the length of the intersection relative to the length of the synthetic data interval.

The main advantage of confidence interval overlap is that it is a composite measure

that takes into account the length and the accuracy of a confidence interval, whereas,

for example, bias only considers the accuracy of a point estimate and coverage does

not account for the length of a confidence interval. On the other hand, whether these

factors - accuracy and length - are weighted appropriately is open to debate. Valid

confidence intervals estimated from synthetic data, that is, confidence intervals that

achieve the nominal coverage, are longer than the corresponding confidence intervals

estimated from the original data because synthetic data estimates are subject to the

uncertainty present in the original data estimates, plus have additional uncertainty

from synthesis. However, a synthetic data confidence interval, say, one that is x%

narrower than the original data confidence interval - hence clearly invalid - would

yield roughly the same overlap as a confidence interval that is x% wider. Moreover,

either an infinitely wide or infinitely small synthetic data confidence interval would

achieve an overlap of 0.5.
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2.7 Generating synthetic data in R

2.7.1 The synthpop package

The synthpop R package (Nowok et al., 2016) is a popular way to generate synthetic

data via either the traditional route of simulating new values from the posterior

predictive distribution or the “plug-in” approach (the default). It was designed as a

tool by which synthetic versions of the UK Longitudinal Studies can be made available

to analysts as test data.

An attractive feature of synthpop is its ability to generate “bespoke” synthetic data.

That is, the synthesizer has control over which variables are synthesized, the order in

which variables are synthesized and the synthesis models used for each variable. For

synthesis models, the synthesizer has a choice between at least one parametric method

and a non-parametric alternative in the form of CART, which is also the default for

all variable types.

The package is user-friendly in the sense that it applies combining rules on behalf

of the analyst, and can implement general- and specific-utility measures to evaluate

the analytical validity of the synthetic data it produces.

Focusing on categorical data, in the first version of synthpop (version 1.1-1)

the parametric synthesis model option was multinomial logistic regression, fit via

multinom function from the nnet package. A newer version of the package (version

1.5-0), however, allows log-linear models to be fitted via IPF, which is undertaken by

the Ipfp routine from the mipfp package. While this new addition makes synthpop

more suited to large categorical data sets such as administrative databases, the post-

synthesis evaluations are limited, with pMSE unsuited to categorical data.
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2.7.2 The simPop package

The simPop R package can be used to construct synthetic populations. Three

approaches are considered; one of these is the fully synthetic data approach described

by Raghunathan et al. (2003); the other two approaches - synthetic reconstruction

(Beckman et al., 1996) and combinatorial optimisation (CO) - involve constructing

synthetic populations and are beyond the scope of this thesis.

2.8 The challenges of synthesizing large administra-

tive databases

There are, of course, many challenges that can arise when synthesizing large

categorical data sets such as administrative databases. In short, there are too many

challenges to cover comprehensively in this thesis. The following are those that have

been addressed, through the development of a synthesis approach that uses saturated

models.

2.8.1 Large, sparse contingency tables

When presented in microdata format, large categorical data sets have many rows

(large n) and often many columns (large p). For categorical data sets expressed in

tabular format, there is a subtle difference as to what constitutes a “large” data set.

From a practical perspective, the size of the data are no longer governed by rows and

columns - but by cells. Neither the number of individuals n nor - to a certain extent -

the number of variables p, affects the table’s dimensions. Instead, the dimensions are

determined by the number of categories across variables. The number of categories
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(cells) is likely to be closely related to p, though; typically a larger p would suggest a

greater number of cells.

Many existing synthetic data methods - for example, CART and the latent class

methods - have been tailored to survey data sets and are applied at the microdata

level. When n is large, the central processing unit (CPU) time for these methods can

increase greatly, rendering them infeasible. It is more efficient to synthesize large data

sets (large n) at the tabular level. Having a large n in this instance is, in fact, beneficial

as it likely reduces the sparsity of the table, that is, it reduces the number of zero

cells (see the next subsection), which, in turn, simplifies the model-fitting procedure.

(Log-linear models can be hampered by non-existence and non-identifiability issues

when certain patterns of zero cells are present; see Fienberg and Rinaldo (2012)).

Yet, when contingency tables are large and sparse, even fitting models at the

tabular level can be challenging. The effectiveness of algorithms at fitting models

in large data sets can be considered in a relative manner: for example, the IPF

algorithm is more effective than the BFGS algorithm, but there comes a point in

turn at which IPF struggles. This is one of the motivating factors behind the use of

saturated models proposed in this thesis, which, of course, do not require the use of

model-fitting algorithms.

The CPU time not only applies to the synthesis itself, but also to subsequent

post-synthesis evaluations. Utility measures such as propensity score matching and

risk measures such as those given by Reiter et al. (2014) can be as time-consuming as

the synthesis itself.
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2.8.2 Random and structural zeros

Categorical data expressed as a contingency table leads to the problem of distinguish-

ing between random zeros (also known as sampling zeros) and structural zeros in the

original data. Random zeros are cell counts of zero (zero cell) that arise through

chance; that is, an individual with a given set of characteristics could have been

observed but was not in the data. Structural zeros arise because a given set of

characteristics is inherently not possible, for example, a child aged five attending

a secondary school (which are typically for children aged eleven upwards).

Administrative databases and their population-like qualities warrant special

consideration with respect to random and structural zeros. It can be argued that

any zero count in a finite population must be a structural zero. This issue can be

overcome by considering the data as a sample from a super- or future-population.

There may also be ambiguity as to whether a zero cell is a random or structural

zero. A certain combination of values may be improbable but not impossible. For

example, it could be argued that a child aged five attending a secondary school

is possible in special circumstances. It is, therefore, not always straightforward to

identify a data set’s structural zeros, especially when there are many cells.

2.8.3 No defined sampling frame

Unlike survey and census data, the population from which administrative data

originate is not always well-defined. This has complications for generating - and

subsequently obtaining inferences from - synthetic administrative data.

The NHS Patient Register, for example, which holds records for every person ever

registered with a General Practitioner (GP) in England and Wales since the NHS was
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founded in July 1948, has several issues when used for statistical analysis (Office for

National Statistics, 2016). These issues relate to the target population (the people

of England and Wales). Firstly, there is under-coverage because some people have

never registered with a GP (the hidden portion of the population); and over-coverage

because, though effort is taken to clean the data, inevitably there will be people

included who have either died or migrated. Secondly, the database has been built

up over many years; but the population of England and Wales is not closed, and

changes within the population since 1948 are not captured. Similar issues regarding

populations exist in other administrative databases; for example, the English School

Census held by the Department for Education, includes school pupils who attend state

schools, but excludes those who attend privately-funded schools.

A related issue is the assumption that observations (individuals, units) are

independent - an assumption intrinsic to the majority of statistical analyses - may

be less realistic in administrative databases. As an example, in the English School

Census, the presence of one siblings is likely to suggest the presence of another sibling,

as parents commonly send their children to the same school. Similarly, administrative

databases are more likely than traditional data sources to include multiple records for

the same individual; this may occur, for example, if a child switches school during the

school year.

When the population in question cannot be clearly defined, it restricts the type

of synthetic data that can be produced. It is not possible to generate fully synthetic

data in the sense of Raghunathan et al. (2003), which requires the generation of a

synthetic population. A partially synthetic data approach is still valid, though, as

this involves replacing the existing values and does not require assumptions about
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the underlying population. While questions would remain about how to accurately

obtain inferences from synthetic administrative data - how to obtain estimates for

uncertainty, for example - this is analogous to the problem of obtaining inferences from

administrative data more generally, for which the challenges are well-documented (see

Hand, 2018).

Finally, risk evaluations often make implicit assumptions about the underlying

population. For example, these often revolve around estimating the probability that

an individual who is unique in the sample is also unique in the population (Skinner

et al., 1994). These notions of sample uniqueness and population uniqueness become

less clear when dealing with administrative data.

2.9 The developments of this thesis

The term “administrative database” encompass a wide variety of data sets. Each

database is unique in the challenge it poses from a synthesis perspective. The

methodological developments to generating synthetic data proposed in this thesis

have addressed the following important challenges:

1. The synthesis of “big” data sets. The most obvious difference between

administrative databases and survey data sets is their size. The difficulty in

fitting models - and also in simulating from such models - calls for an alternative

solution. It is worth noting that the ability of model-fitting algorithms lies on

a scale. Although some algorithms are more capable than others with dealing

with large data sets, there usually comes a point when any model breaks down.

An exception, however, are saturated models. These do not require the use

of model-fitting algorithms to obtain fitted values, and so can be “fit” to any
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size of data set. Chapter 3 sets out the use of saturated models for synthesizing

categorical data; and Chapter 4 considers the case of generatingm > 1 synthetic

data sets, as is often required.

2. Evaluating risk and utility a priori. A secondary consideration in the

synthesis of large data sets is the ability to carry out post-synthesis checks to

evaluate risk and utility. This thesis has explored the possibility of evaluating

risk and utility prior to synthesis and tailoring the synthesis towards a particular

risk or utility metric. While this does not entirely remove the need for post-

synthesis evaluations, it makes the process more efficient and user-friendly for

the synthesizer. They do need to be continually re-running the synthesis to

obtain an insight into risk and utility. Chapter 3 sets out the notion of this a

priori approach to synthesis, which is further explored in Chapters 4 and 5.

3. Simultaneous use of under- and over-dispersion when synthesizing

categorical data. The thesis has focused on ideal distributional properties of

synthesis models for tabular data. Existing approaches for tabular data tend

to use the Poisson distribution. However, the Poisson distribution’s variance

increases with the mean, which causes more noise to be applied to larger counts

than smaller counts; yet larger counts are lower risk, thus require less noise than

smaller counts. Chapter 5 explores the use of the discretized gamma family

distribution for synthesis; this is a distribution which is over-dispersed for large

counts and under-dispersed for small counts, and thus particularly suited to

synthesis.
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Using saturated count models to

synthesize categorical data

As a means of protecting privacy, the philosophy of synthetic data methods typically

differ from that of other SDC methods. Synthetic data methods create new data; SDC

methods perturb or suppress the original data. The synthesis mechanism introduced

here relies on the notion that, more philosophically in line with other SDC methods,

synthetic data can be generated by adding noise to the original data.

3.1 The motivation for using saturated models

Usually, the purpose of statistical modelling is either inferential, for instance, to

estimate a population parameter such as a regression coefficient, or predictive. In

these instances, too many model parameters yield uninformative estimates from an

inferential perspective, and a model that is too rigid from a prediction perspective.

Hence there is a need to strive for parsimony. But modelling with the intention of
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generating synthetic data is neither inferential nor predictive. Instead, the objective

is to capture the underlying distribution governing the original data so that the

properties of the data are preserved in the synthetic data - the model itself is not

of interest.

As with imputation models, when a synthesis model is less complex than the

analyst’s model subsequently fitted to the synthetic data, then the analyst’s model

and the synthesis model are said to be uncongenial (Meng, 1994). For example,

suppose an all two-way interaction log-linear model is used for synthesis, and that an

analyst later fits a model to the synthetic data that includes a three-way interaction.

Then the synthetic data would not support this analysis as the three-way associations

were irrevocably lost at the modelling step. There is a loss of analytical completeness.

Therefore, to preserve relationships, over- is preferable to under-fitting in synthesis

models, to capture as many relationships as possible. Using saturated models

preserves all relationships in the data, thus avoiding unnecessarily distorting joint

distributions when modelling.

Secondly, the time taken to undertake the synthesis computationally is substan-

tially reduced. The computational time comprises the time taken to fit the model plus

the time taken to draw the synthetic values - and using saturated models eliminates

the former.

Thirdly, the synthetic counts’ expected values are equal to the original counts, due

to the absence of smoothing. This allows expected values of risk and utility metrics

to be derived analytically, as demonstrated later in the thesis, which means that the

synthesizer knows a priori, that is, prior to generating the synthetic data, what the

risk and utility of the resulting synthetic data are likely to be.
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3.2 The synthesis mechanism

This mechanism fits a saturated count model to the original data’s contingency table.

Let f1, f2, . . . , fK denote the observed counts; then the corresponding synthetic counts

f syn
1 , f syn

2 , . . . , f syn
K are generated by simulating from:

f syn
i � Xi i = 1, 2, . . . , K (3.1)

where Xi is a count distribution with mean fi. The method, then, effectively assumes

the synthetic counts are stochastic with expectations equal to the original counts.

3.2.1 The Poisson model

The Poisson distribution is the most natural choice for modelling the counts (the

most natural choice for X in 3.1). Besides, statistical models often assume that

individuals’ observations are independent. In microdata format, this translates into

assuming the rows of the microdata set are independent; as a contingency table, it

translates into assuming cell counts are Poisson distributed, that is, it assumes each

individual belongs to one - and only one - cell, independently.

Suppose then that a saturated Poisson model is fit; then each synthetic count f syn
i

(i = 1, . . . , K) is obtained by simulating from:

f syn
i j µi � Poisson(µi)

with µi = fi, (3.2)

where fi is the corresponding original count.
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Properties of the synthesis mechanism then relate directly to properties of the

Poisson distribution. For example, the Poisson distribution’s probability mass

function (PMF) gives the probability that an arbitrary synthetic count f syn equals

N2, given that the original count f equals N1:

p(f syn = N2 j f = N1) =
exp(�N1)NN2

1

N2!
,

where N1 and N2 are non-negative integers.

Before moving on to two-parameter count distributions, there are alternative one-

parameter count distributions that can be used rather than the Poisson. Another well-

known one-parameter distribution is the geometric, which is not usually associated

with modelling, as it tends to be parameterized probabilistically: the number of

successes until the first failure (or vice versa). Yet, as with the Poisson, it can be

parameterized in terms of the mean; see Rigby et al. (2019). When parameterized

in this way, a geometric random variable with mean µ has variance 1 + µ; hence the

variance is always greater than the Poisson, and which can be useful if the Poisson

uncertainty is insufficient to mask the true original counts.

Incidentally, see Rigby et al. (2019) for more about all the distributions mentioned

henceforth in the thesis, including their parameterizations. This book is written by

the creators of the GAMLSS (Generalized Additive Models for Location, Scale and

Shape) approach. The distributions used in the GAMLSS framework are particularly

useful here, as explored later in the thesis.

3.2.2 Two-parameter count distribution models

The Poisson variability (variance equal to the mean), may not provide sufficient
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protection to at-risk original counts. The variability can be increased - without

introducing bias - by using an overdispersed count distribution in place of the

Poisson. The two distributions considered here are the negative binomial (NBI)

and Poisson-inverse Gaussian (PIG) distributions. Both are continuously mixed

Poisson distributions, where the gamma and inverse-Gaussian are the respective

mixing distributions.

As well as the mean parameter (denoted by µ), these two-parameter distributions

have a shape parameter (when using Rigby et al.’s parameterizations), denoted by σ,

that controls the variance. The notion is that σ is used as a tuning parameter: the

synthesizer sets σ to control the noise applied to the original counts. As demonstrated

later on, σ can be tuned according to a specific risk or utility metric.

The ith synthetic count f syn
i (i = 1, . . . , K) is then generated by simulating from

either:

f syn
i j µi, σ � NBI(µi, σ) or f syn

i j µi, σ � PIG(µi, σ)

with µi = fi.

As with the Poisson, the NBI and PIG’s PMFs gives the probability that an arbitrary

synthetic count f syn equals N2, given the original count f equals N1. Firstly, for the

NBI:

p(f syn = N2 j f = N1, σ) =
Γ(N2 + 1/σ)

Γ(N2 + 1) � Γ(1/σ)
�
(

σN1

1 + σN1

)N2

�
(

1

1 + σN1

)1/σ

,

(3.3)
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and similarly for the PIG:

p(f syn = N2 j f = N1, σ) =

(
2c

π

)1/2

�
NN2

1 exp(1/σ)KN2�1/2(c)

(cσ)N2N2!
, (3.4)

where c2 =
1

σ2
+

2N1

σ
and Kλ(t) =

1

2

1∫
0

xλ�1 exp

{
� 1

2
t(x+ x�1)

}
dx

is the modified Bessel function of the third kind. Although the NBI and PIG

distributions have different PMFs (and differing higher moments), the first two

moments, the mean and variance, are identical:

E[f syn j f = N1, σ] = N1, and Var[f syn j f = N1, σ] = N1 + σN2
1 . (3.5)

This clearly shows how the parameter σ controls the variance of the synthetic counts.

As with the one-parameter distributions, there is an array of two-parameter count

distributions that can be used here. These include the double Poisson, generalized

Poisson and Waring distributions; the latter is from the geometric family and can be

derived by mixing the geometric with the beta.

3.2.3 Additive smoothing to deal with zero counts (introduc-

ing α)

There is a downside with using saturated models that needs addressing: as synthetic

counts corresponding to original counts of zero have a mean of zero, original counts of

zero cells are always synthesized to zero, resulting in too many zeros in the synthetic

data. That is, synthetic counts of zero comprise all original counts of zero, plus non-

zero original counts that become zero through simulation. An excess of zeros can
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affect the risk and utility of the synthetic data.

With regards to risk, the issue is not so much with the zeros themselves, which

are relatively low risk, but with what can be deduced from the non-zero cell counts.

It follows that any non-zero synthetic count must have originated from a non-zero

original count. So, given a non-zero synthetic count, an attacker can ascertain that

the original count was at least one.

The addition of a pseudocount α > 0 (which despite its name is not typically an

integer) to all random zeros in the original data (structural zeros should remain zero)

opens the possibility at least that zero original counts are synthesized to non-zero.

For example, when the Poisson model is used and α > 0 is added, the probability

that a random zero f = 0 is synthesized to f syn = N2 is:

p(f syn = N2 j f = 0, α) =
exp(�α) � αN2

N2!
.

The syn.catall function in synthpop (Nowok et al., 2016), which uses a saturated

multinomial to produce synthetic data, allows the synthesizer to specify a Dirichlet

prior; this is analogous to the addition of a pseudocount proposed here. As with this

method, α can be added to every original count instead of just zeros, which may be

altogether smoother and result in less distortion between variables’ relationships.

Another alternative, as suggested by a reviewer of Jackson et al. (2022, Early view),

is the use of the pseudo-Bayes estimator. The addition of the same α > 0 to all random

zeros essentially assumes all random zeros among the original counts are equally likely

to be non-zero. However, it can be argued that some random zeros in the original

data are more (or less) likely to be non-zeros than others; for example, some zeros

pertain to higher order marginal counts that are also zero. This can be accounted for,
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to a certain extent, by smoothing the original counts through fitting, for example, an

all two-way interaction log-linear model. But the benefits of using saturated models

would be lost. The pseudo-Bayes estimator, as presented in Chapter 12 of Bishop et al.

(1975), provides an alternative to adding constant α. A set of prior cell probabilities

(denoted by λ) can be selected using, for example, external information. Based on

these prior probabilities, the original counts can be re-weighted to provide a set of

adjusted counts. A saturated model can then be applied as before, but using instead

these adjusted counts. Hence, while the original counts are smoothed, they are not

smoothed through modelling decisions (setting interactions to zero), but through the

choice of λ. This means, however, that the fundamental challenge is just transferred

from choosing α to choosing λ. Neither does this strategy account for structural zeros,

so the approach would need to be adapted. In general, this pseudo-Bayes estimator

involves further consideration and is a substantial research question in its own right.

3.2.4 Properties of the synthesis mechanism

While most count distributions - including the Poisson, NBI and PIG - are degenerate

when the mean is zero, practically this does not affect the method: whenever an

original count is zero, the synthetic count is also zero. Conveniently, this feature

naturally accounts for structural zeros, which rightly remain zero. Random zeros, on

the other hand, do need to be accounted for; hence the proposed solution in Section

3.2.3 (the α parameter).

This synthesis mechanism produces completely synthesized data using the ter-

minology of Raab et al. (2016). However, somewhat confusingly, as a synthetic

population is not created, the data are partially synthetic in the sense of Reiter (2003),
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rather than fully synthetic in the sense of Raghunathan et al. (2003); incidentally,

Drechsler (2018) seeks to clear up some of the confusion surrounding the term “fully

synthetic” data sets. Finally, the synthesis is via the “plug-in approach” (Reiter and

Kinney, 2012), that is, the Bayesian posterior predictive distribution is not used:

synthetic counts are simulated directly from the fitted model.

The “sample” size of the synthetic data nsyn (the grand total), the sum of the

synthetic counts, is stochastic; and, as these counts are independent random variables

whose means sum to n, nsyn also has mean n (and is Poisson distributed if the Poisson

is used). Yet it need not be the case that E(nsyn) = n. As Raab et al. (2016)

demonstrate, for completely synthesized data, valid inferences can still be obtained

when nsyn 6= n. As nsyn increases, the cell proportions in any generated synthetic data

set - obtained by dividing each count by nsyn - tends toward the proportions in the

original data.

Of course, in addition to nsyn, all synthetic counts have an unbiasedness property:

their expectations are equal to the original counts. As explained later on, this allows

expected properties of the synthetic data to be obtained.

The method, in effect, removes the unwelcome uncertainty that arises through

model choice and then injects it accordingly by increasing σ. There is effectively only

one source of variability in the method: the uncertainty that arises through simulation.

This contrasts with almost every other synthesis method. For example, when an

unsaturated log-linear model is used for synthesis, the synthetic counts’ means are

estimated thus have uncertainty attached. Minimizing the sources of uncertainty

allows the synthesizer to have greater control of the variability in the mechanism.

Most synthesis methods require non-trivial modelling decisions, that fall on the
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part of the synthesizer. There are advantages to the development of methods that

relieve the burden placed on the synthesizer, who may not be a trained modeller. In

a similar way, the modelling aspect can be time-consuming, especially in large data

sets. This method generates synthetic data quickly, irrespective of the data’s size.

3.3 Satisfying risk and utility metrics a priori

The upshot of this synthesis mechanism is that there are two tuning parameters, σ

and α, which can be tuned according to a certain risk or utility metric. As saturated

models are used, the expectations and variances of synthetic counts of size k are all

identical. This allows many metrics to be expressed analytically.

3.3.1 The τ metrics

The following τ metrics are an example of a simple set of metrics that can be

represented analytically in terms of σ and α:

τ1(k) := The proportion of counts of size k in the synthetic data.

τ2(k) := The proportion of counts of size k in the original data.

τ3(k) := The proportion of original counts of size k that are synthesized to k.

τ4(k) := The proportion of synthetic counts of k that originated from a count of k.

The expected values of these τ metrics can be derived analytically, as demonstrated

below for when the Poisson model is used for synthesis. Although first note that, as

structural zeros should not be involved in the synthesis, when k = 0 the τ metrics
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refer to random zeros, only; for example, τ1(0) is the proportion of random zeros in

the synthetic data.

3.3.1.1 The metrics τ1 and τ2

The metric τ1(k) is the proportion of cells of size k in the synthetic data, that is,

τ1(k) = p(f syn = k) =
1∑
j=0

p(f syn = k j f = j) � p(f = j) k = 0, 1, 2, . . . (3.6)

=
exp(�α)αk

k!
� τ2(0) +

1∑
j=1

exp(�j)jk

k!
� τ2(j),

where τ2(k) is the proportion of original counts of size k, that is,

τ2(k) = p(f = k) k = 0, 1, 2, . . . . (3.7)

3.3.1.2 The metric τ3

The metric τ3(k) is the proportion of original counts of k that are synthesized to k:

τ3(k) = p(f syn = kjf = k) k = 0, 1, 2, . . . (3.8)

=


exp(�α)αk/k! if k = 0

exp(�k)kk/k! if k � 1
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3.3.1.3 The metric τ4

The metric τ4(k) is the proportion of synthetic counts of k that originated from a

count of k:

τ4(k) = p(f = kjf syn = k) k = 0, 1, 2, . . . (3.9)

The metric τ4(k) can be expressed in terms of the other τ metrics:

τ4(k) = p(f = kjf syn = k) =
p(f syn = kjf = k) � p(f = k)

p(f syn = k)
=
τ3(k) � τ2(k)

τ1(k)

=


exp(�α)αk � τ2(0)

/(
exp(�α)αk � τ2(0) +

1∑
j=1

exp(�j)jk � τ2(j)

)
if k = 0

exp(�k)kk � τ2(k)

/(
exp(�α)αk � τ2(0) +

1∑
j=1

exp(�j)jk � τ2(j)

)
if k � 1.

The infinite sum need not be calculated in the above expressions. Instead, it suffices

to take the sum over the set:

R = fj j τ2(j) > 0, g, (3.10)

that is, the set of cell sizes that are observed in the original data. Note, the

contribution from any integer not in R is zero in τ1(k) and τ4(k).

While the variance of the τ metrics can be approximated analytically, empirical

results have shown that the variance is typically negligible, especially in large data

sets with many cells.

The metrics τ1, τ2 and τ4, unlike τ3, are conditional on the distribution of original

counts, that is, the proportion of zeros, ones, twos, et cetera. To illustrate, suppose all
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Table 3.1: The metrics τ1, τ2, τ3 and τ4 and whether they depend on the original
data, the synthesis model or both.

The original data The synthesis model
τ1 ✓ ✓
τ2 ✓ �
τ3 � ✓
τ4 ✓ ✓

original counts are equal to one and that the Poisson distribution is used to generate

synthetic counts. Then τ3(1) = exp(�1), which is given by the Poisson’s probability

mass function; and τ4(1) = 1 because a synthetic count of one must have originated

from a count of ones. Now, when the original counts comprise a range of non-zero

values, then τ3(1) = exp(�1) remains unchanged, but τ4(1) � 1 because a synthetic

count of one could have originated from any non-zero original count. Similarly, τ1, τ3

and τ4 - but not τ2 - depend on the synthesis model (see Table 3.1).

As uniques - cell counts of one - are often considered to be most at risk of disclosure,

an important value with respect to risk is τ4(1): the proportion of uniques in the

synthetic data which were also unique in the original data. This is arguably more

important than τ3(1): the proportion of uniques in the original data which are also

unique in the synthetic data. This is because the former assumes knowledge of the

synthetic data, which an attacker has access to; whereas the latter assumes knowledge

of the original data, which an attacker cannot access.

3.3.1.4 Using σ and α to tune the τ metrics

As an example, suppose the synthesizer wishes to reduce τ4(1), the τ metric most

associated with risk. There are two ways in which they can do so. The first way is

to increase σ, which increases the variance of the synthetic counts. The second way
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is to increase α because original counts of zero with α added are much more likely to

be synthesized to one than to any other non-zero value; for example, when α = 0.1

and the Poisson model is used, a zero count is exactly twenty times more likely to be

synthesized to one than two, which increases the number of uniques in the synthetic

data and thereby decreases τ4(1). In most instances it will be preferable to reduce

τ4(1) by increasing σ rather than α, as σ adds noise (variance) to synthetic counts

whereas α adds bias.

Below, τ4(1) is expressed analytically for when the NBI or PIG distributions are

used. This shows the relationship between σ and α and τ4(1). These expressions can

be easily derived from their respective PMFs, as demonstrated earlier for the Poisson.

Firstly, when the NBI is used:

τ4(1) =
τ2(1)

(1 + σ)1+1/σ

/(
α � τ2(0)

(1 + ασ)1+1/σ
+
1∑
j=1

j � τ2(j)

(1 + jσ)1+1/σ

)
,

and secondly when the PIG is used:

τ4(1) =

[
exp(�c1)

c1

� τ2(1)

]/[
α � exp(�cα)

cα
� τ2(0) +

1∑
j=1

j � exp(�cj)
cj

� τ2(j)

]
,

where c2
j = σ�2 + 2jσ�1; and note that, when λ = 1/2, the Bessel function of the

third kind has a closed formed expression: K1/2(t) = (π/2t)1/2exp(�t).

Alternatively, a synthesizer may wish that the synthetic data contain the same

proportion of zeros as the original data, that is, τ1(0) = τ2(0). When α = 0, the

inequality τ1(0) � τ2(0) holds; but, as α increases, the expected difference between

τ1(0) and τ2(0) narrows (until it eventually reverses).

It is possible to derive the α required such that τ1(0) = τ2(0). That is, when the
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NBI is used for synthesis, for a given σ�, the α� required is:

τ2(0) = τ1(0)

τ2(0) =
1

(1 + σ�α�)1/σ� � τ2(0) +
1∑
j=1

1

(1 + σ�j)1/σ� � τ2(j)

() (1 + σ�α�)1/σ�
=

(
1� 1

τ2(0)

1∑
j=1

1

(1 + σ�j)1/σ� � τ2(j)

)�1

() α� =
1

σ�

[(
1� 1

τ2(0)

1∑
j=1

1

(1 + σ�j)1/σ� � τ2(j)

)�σ�

� 1

]
;

and similarly for the PIG:

τ2(0) = τ1(0)

τ2(0) = exp(1/σ� � c�α) � τ2(0) +
1∑
j=1

exp(1/σ� � cj) � τ2(j)

() c�α =
1

σ�
� log

(
1� 1

τ1(0)

1∑
j=1

exp(1/σ� � cj) � τ2(j)

)

() α� =
1

2

{
σ�
[

1

σ�
� log

(
1� 1

τ1(0)

1∑
j=1

exp(1/σ� � cj) � τ2(j)

)]2

� 1

σ�

}
.

3.3.2 Loss functions

As mentioned in Section 2.6, Snoke et al. (2018) distinguish between general utility

measures, which compare the joint distributions of the observed and synthetic data,

and specific utility measures, which compare results pertaining to a certain analysis.

As with the τ metrics, utility metrics, particularly general utility metrics, can be

obtained - or at least approximated - analytically a priori.

Loss functions are widely used throughout statistics, for example, model param-
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eters are typically estimated through minimising a loss function. A similar notion

holds when estimating utility: utility can be maximized through minimizing some

loss function.

3.3.2.1 The mean squared error loss function

The quadratic loss function (squared error) is arguably the most well-known; its

expectation (known as the mean squared error), is given as:

L1 = E

[
K∑
k=1

(fk � f syn
k )2

]

=
K∑
k=1

{
f 2
k � 2fkE (f syn

k ) + E
[
(f syn
k )2

]}
(3.11)

=
K∑
k=1

[
f 2
k � 2fkE (f syn

k ) + [E (f syn
k )]2 + Var (f syn

k )
]

(3.12)

=
K∑
k=1

[
Var (f syn

k )
]
. (3.13)

Note that equation (3.11) follows by the linearity of expectation, (3.12) follows by

the definition of variance and (3.13) from the fact that, when α = 0, E(f syn
k ) = fk.

Substituting in the NBI and PIG’s variance function gives,

L1(σ, ν,m) �
K∑
k=1

fk + σf 2
k . (3.14)
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Now, L1 can also be expressed in terms of the proportion of zeros, ones, twos, etc. -

τ2(0), τ2(1), τ2(2), . . . - and the number of cells K,

L1(σ, ν,m) �
∑
j2R

[
K � τ2(j) � (j + σj2)

]
. (3.15)

where R is as defined in (3.10).

3.3.2.2 The 0-1 loss function

For an arbitrary original count f and its corresponding synthetic count f syn, the

expected value of the 0-1 loss function, denoted by L2, is given as

L2 = E[I(f 6= f syn)], (3.16)

where I is an indicator function. Now, L2 is closely related to the metric τ3(k) because

for an original count of k (that is, f = k), L2 = p(f 6= f syn) = 1 � p(f = f syn) =

1�τ3(k). This reinforces the close links - and the inherent trade-off - between risk and

utility, because while maximum utility is attained when a loss function is minimized,

maximum privacy (lowest risk) is attained when a loss function is maximized.

3.3.3 Marginal synthetic counts

As original counts are synthesized at the lowest level of aggregation, when saturated

count models are used for synthesis, all marginal counts in the synthetic data’s

contingency table - that relate to sum of synthetic counts - are stochastic. Their

means are equal to the corresponding marginal counts in the original data (they

are unbiased); their variances depend on the count distribution used for synthesis.
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Applying more variance - more noise - when synthesizing the individual cells leads,

unsurprisingly, to greater variance in the marginal counts. Take, for instance, the

synthetic data sample size nsyn, which is the sum of all K cells in the table (the grand

total), that is, nsyn =
∑K

k=1 f
syn
k . The mean of nsyn is equal to n and, as counts are

synthesized independently, its variance is equal to:

Var(nsyn) = Var

(
K∑
k=1

f syn
k

)
=

K∑
k=1

Var (f syn
k ) �

K∑
k=1

fk + σf 2
k ,

which is exactly equal to the expression for L1 above. As above, this can alternatively

be expressed in terms of the τ2(k) values,

Var(nsyn) �
∑
j2R

K � τ2(j) � (j + σj2),

and where, again, it suffices to take the sum over R.

In large tables (largeK), the central limit theorem establishes that nsyn is normally

distributed with mean and variance given above. This can be used, say, to calculate

the probability that nsyn will be within d of n:

p(jnsyn � nj < d) = p(nsyn < n+ d)� p(nsyn < n� d)

� Φ

 (n+ d)� n(∑K
k=1 fk + σf 2

k

)1/2

� Φ

 (n� d)� n(∑K
k=1 fk + σf 2

k

)1/2


= 2Φ

 d(∑K
k=1 fk + σf 2

k

)1/2


where Φ is the cumulative distribution function (CDF) of the standard normal
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distribution. This probability may be useful, for example, in population data where

true marginal counts are known and analysts may reject large deviations between n

and nsyn.

The calculations carried out above can be applied to any marginal count - not

just nsyn - by summing over the relevant subset of cells. For those count distributions

such as the Poisson, for which there are identities for sums of random variables, it is

possible to calculate exact distributions of marginal counts. Nevertheless, when K is

large, such as in administrative databases the normal approximate would suffice.

3.4 Linking the mechanism to differential privacy

Assume for simplicity that the pseudocount α > 0 is added to all original counts (not

just to zeros). When the Poisson is used the set of synthetic counts b is obtained by

simulating from:

bi j ai, α � Poisson(ai + α) for i = 1, . . . , K. (3.17)

As with the multinomial in Section 2.5.4.1, suppose a and a0 differ in their first element

only, that is, a1 = a01 + 1, such that jja� a0jj = 1; then

p(b j a, α)

p(b j a0, α)
= exp(�1)

(
a1 + α

a1 � 1 + α

)b1

. (3.18)
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This quantity is bounded below, with the minimum occurring when b1 = 0; but is

unbounded above as b1 can take any integer up to infinity. Therefore, for all a � a0

and b:

exp(�1) � p(b j a,α)

p(b j a0,α)
<1. (3.19)

Therefore, ε-DP clearly cannot be satisfied. However, (ε, δ)-probabilistic DP can be

satisfied; that is, ε and δ can be found such that:

1

exp(ε)
� p(b j a,α)

p(b j a0,α)
� exp(ε) with probability 1� δ. (3.20)

Firstly, considering the left hand side of the inequality in (3.20):

p

(
1

exp(ε)
� p(b j a,α)

p(b j a0,α)

)
= p

b1 �
1� ε

log
(

ai+α
ai�1+α

)
 . (3.21)

When ε > 1, this probability is equal to 1. When ε � 1, this probability can be

obtained from the Poisson’s CDF. The use of the CDF to satisfy relaxations of DP

was considered by Balle and Wang (2018) (though within a Gaussian framework).

The probability in (3.21) is at its smallest when a1 = maxiai. Similarly, considering

the right hand side of the inequality in (3.20):

p

(
p(b j a,α)

p(b j a0,α)
� exp(ε)

)
= p

b1 �
ε+ 1

log
(

ai+α
ai�1+α

)
 , (3.22)
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which is at its smallest when a1 = miniai. Therefore, for a given ε and for all a � a0,

δ = max

F
 1� ε

log
(

max ai+α
max ai�1+α

)
 , 1� F

 1 + ε

log
(

min ai+α
min ai�1+α

)


is the probability that DP fails (where F is the Poisson’s CDF). This is closely related

to the concept of (ε, δ)-probabilistic DP (Dwork and Roth, 2014).

Similarly, using the NBI rather the Poisson (the PIG could of course also be used) -

again with the slight difference that α is applied to all original counts - each synthetic

count bi (i, . . . ,K) is obtained by simulating from:

bi j ai, α, σ � NBI(ai + α, σ).

Once again supposing a and a0 differ in their first element only and that a1 = a01 + 1;

then

p(b j a, σ, α)

p(b j a0, σα)
=

{
(a1 + α)[1 + σ(a1 � 1 + α)]

(a1 � 1 + α)[1 + σ(a1 + α)]

}b1

�
[

1 + σ(a1 � 1 + α)

1 + σ(a1 + α)

]1/σ

.

This expression is again unbounded (b1 can be any non-negative integer). Following

the same procedure as used for the Poisson, for a given ε, (ε, δ)-probabilistic DP can

be satisfied by setting:

δ = max

F
�ε�

1
σ
log
[

1+σ(a1�1+α)
1+σ(a1+α)

]
log
{

(a1+α)[1+σ(a1�1+α)]
(a1�1+α)[1+σ(a1+α)]

}
 , 1� F

 ε� 1
σ
log
[

1+σ(a1�1+α)
1+σ(a1+α)

]
log
{

(a1+α)[1+σ(a1�1+α)]
(a1�1+α)[1+σ(a1+α)]

}



where F is now the NBI’s CDF.

For when the Poisson and NBI are used, δ was found empirically, for various
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miniai, maxiai, α, ε and σ (for the NBI). The results are given in Tables 3.2 and 3.3.

In general, there is an inverse relationship between ε and δ: a smaller ε necessitates

a larger δ to achieve (ε, δ)-probabilistic DP. Similarly, decreasing α - or decreasing σ

in the NBI - necessitates either a smaller ε or larger δ.

For the values of miniai and maxiai considered, while larger miniai imply smaller

ε and/or smaller δ, ε and δ are unaffected by maxiai. The latter needs further

investigation. It may just be due to the values considered. If, for example, much

greater minimum and maximum values are considered - as may be seen in census

tables - then maxiai may play a part.

The link to differential privacy deserves further consideration. Essentially, DP

assumes an intruder is trying to locate the cell to which just one individual belongs

(knowing the locations of all the other individuals in the data). The reason why

the multinomial family of distributions can satisfy ε-DP - but the count distributions

cannot - is because every synthetic count is bounded, that is, there is a maximum

value that any synthetic count can take, namely n. With count distributions there is

a chance - however small - that a very large count can be obtained. To see how large

counts cause the DP definition to fail, suppose in an intruder’s data set - which, of

course, is the actual data set minus the target individual - a certain cell has a count

of 1. Then suppose in the synthetic data - generated using the Poisson - this cell has

a count of 5. As it is relatively much more likely that this count originated from a

cell with a count of 2 than from a count of 1 (11.7 times more likely), the intruder

can infer that this cell is a likely origin of the target.

It is interesting how with DP and its strong intruder knowledge assumption,

disclosure risk is deemed to be at its greatest when the scope for potential movement
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between original and synthetic counts is great. This appears counterintuitive as

statistical disclosure control methods nearly always seek to reduce risk by increasing

the divergence from the original counts. It emphasizes the importance of considering

intruder knowledge when quantifying disclosure risk and highlights the advantages of

metrics such as that of Reiter and Mitra (2009) which are conditional on intruder

knowledge.

3.5 Empirical synthesis when m = 1

3.5.1 The ESCsub data

The English School Census (ESC) is an administrative database that holds infor-

mation about pupils in state-funded schools. Every school term the Department for

Education (DfE) requests that all nursery, primary and secondary schools, which

are fully or partly funded by the state, submit details about the school and its

pupils. This is just one example of an administrative database held by a government

department; other examples include, but are not limited to, the Patient Register

(held by the Department of Health) and the Customer Information System (held by

the Department for Work and Pensions).

For obvious reasons, access to the ESC data, as well as to other administrative

databases, is highly restricted. However, in previous work conducted by the ONS, a

carefully constructed data set using publicly available sources was created to be used

as a substitute to the ESC, in order to develop synthesis methods for administrative

data. These data were used here as the basis for generating a synthetic database.

The data were constructed by the ONS using public 2011 census output tables
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involving various combinations of local authority, sex, age and ethnicity1. Language

attributes from the census were also included and artificially expanded to match

with categories in the ESC. In addition, school phase attributes were incorporated,

some adjustments for migration were applied, and non-response and invalid categories

were added to various variables, again taking publicly available information from the

census.

The two variables measured at the school level were ignored for this illustration,

which focused instead on the remaining five variables measured at the pupil level.

Henceforth, this data set is referred to as the ESCsub where “sub” denotes substitute.

Table 3.4 summarises the variables present in the ESCsub illustration. The data

comprise n = 8, 190, 870 pupils over p = 5 categorical variables, giving rise to a multi-

way contingency table with K = 326 � 20 � 4 � 19 � 7 = 3.5 � 106 cells. A more

detailed description of the data’s origin is available at Blanchard et al. (2022). The

breakdown of the cell counts are given in Table 3.5; only 333,660 (9.6%) are non-zero

- so the data are sparse. There are no structural zeros.

So while the data are in a sense simulated, this was done using real data sources and

care was taken to ensure that the resulting data reflect, at the very least, the typical

structure present in the ESC. As such, this was a good example to use to demonstrate

our synthesis method and a similar performance is expected when the method is

applied to the actual ESC, as well as other similar large categorical administrative

databases. Importantly, the data were not generated from a statistical model and

thus do not favour a particular synthesis method.
1Specifically, information from the following public sources were used to create the data:

http://www.nomisweb.co.uk/census/2011; http://www.ons.gov.uk/ons/guide-method/census/2011/
census-data/2011-census-user-guide/quality-and-methods/quality/quality-measures/
response-and-imputation-rates/index.html; https://www.gov.uk/government/statistics/
schools-pupils-and-their-characteristics-january-2014
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Table 3.4: The ESCsub’s variables and their numbers of categories.

Variable Type # Categories
Area Code/ Geography (V) Categorical 326

Ethnicity (W) Categorical 20
Sex (X) Categorical 4
Age (Y) Categorical 19

Language (Z) Categorical 7

Table 3.5: Distribution of cell sizes in the ESCsub data.

Cell count Frequency % of cells
0 3,134,980 90.38
1 119,917 3.46
2 51,412 1.48
3 25,952 0.75
4 19,450 0.56
5 13,076 0.38
6 10,345 0.30
7 7,947 0.23
8 7,077 0.20
9 5,809 0.17
10 5,163 0.15

11 � 67,512 1.95
Total 3,468,640 100
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3.5.2 The synthesis

The synthesis was carried out in R (version 3.6.3) using the methods described earlier

in this chapter. The Poisson, NBI and PIG models were compared by examining how

the synthetic counts deviate from the original counts, by computing summaries of

risk and utility. This evaluation also includes a comparison of parameter estimates

obtained from a log-linear analysis, which was performed on both the original and the

synthetic data.

Just m = 1 data set was generated for each synthesis model. The CPU times to

carry this out were 0.2, 0.3 and 162 seconds for the Poisson, NBI and PIG models,

respectively. The PIG model took notably longer, although is still fast compared to

other methods, such as the conditional approaches (Section 2.3.1) that synthesize the

data at the microdata level.

Let V , W , X, Y and Z denote the five variables in the data, and let fvwxyx denote

the cell count of a particular cell in the cross-classified table corresponding to category

v 2 V , w 2 W , x 2 X, y 2 Y and z 2 Z. A synthetic count was then drawn for this

cell by,

f syn
vwxyz � Poisson(fvwxyz),

when the Poisson synthesis model was used; or, when either of the two-parameter

distributions were used,

f syn
vwxyz � NBI(fvwxyz, σ) or f syn

vwxyz � PIG(fvwxyz, σ).

For the Poisson, the only parameter to be set was α, the pseudocount added to
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Figure 3.1: Left plot: τ4(1) as a function of σ for when the NBI (solid line) and
PIG (dashed line) models were used (α = 0). Right plot: τ4(1) as a function of α for
different σ values when the NBI was used.

random zeros in the original data. For the two-parameter count models, there was

the additional parameter σ to consider.

As mentioned previously, one of the appealing features of using these saturated

synthesis models is that it allows the synthesizer to determine properties of the

synthesis model a priori, thus reducing the amount of empirical evaluation necessary

during the synthesis. For illustration, Figure 3.1 (left) compares the effect of σ on the

risk metric τ4(1) for the NBI and PIG models. For large σ, the risk levels off for the

NBI but continues to fall away for the PIG. Figure 3.1 (right) also looks at τ4(1), but

at the combined effect of σ and α when the NBI is used. For all σ, τ4(1) falls as α

increases and τ4(1) is always lower for the NBI than for the Poisson.

3.5.3 Descriptive summaries of risk and utility

Table 3.6 gives the proportion of cell counts in the synthesized tables that are within

p% of their original size, for different σ and α. The first block of results considers

all cells, and the second block only considers non-zero original cells. The reason for

77



Chapter 3. Using saturated count models to synthesize categorical data

splitting the results into these two blocks is two-fold. Firstly, as the data have a high

proportion of zero counts, including the zeros clouds the results somewhat, making it

less clear to see the effect of increasing σ. Secondly, as the zero counts do not pertain

to an actual individual, they are, in a sense, less risky than the non-zero counts and

therefore arguably less important.

Smaller values of p can be viewed as summaries of risk while larger values of p

measures of utility. To elaborate, if a large proportion of original and synthetic cell

counts are very close, say within 0.5% (p = 0.5) of each other, then the synthetic data

could be considered to be high risk. If, on the other hand, few original and synthetic

cell counts are within, for example, 50% (p = 50) of each other, then this is likely

to indicate low utility. As an example, the 0.927 value in the top-left corner of the

table means that when α = 0 and σ = 0, 92.7% of all cell counts in the synthetic data

were within 0.5% of the corresponding count in the original data. The Poisson model

had the greatest utility but the greatest risk. There was little to choose between the

NBI and PIG models based on these summaries. As expected, greater σ or α lead to

greater divergences in original and synthetic cell sizes.

The similarities between the NBI and PIG models are also highlighted in Figures

3.2 and 3.3, which plot the synthetic versus original counts and also percentage

differences (between synthetic and original counts) versus original counts. While

the Poisson model’s points (σ = 0 cases) were close to the 45� line - which indicates

strong correlation between synthetic and original counts - this correlation reduces as σ

increases in both the NBI and PIG models. Even a relatively small value of σ = 0.01

introduced noticeable dispersion around the 45� line. The right panels display a funnel

shape, that is, percentage differences were greater for smaller counts than for larger

78



Chapter 3. Using saturated count models to synthesize categorical data

counts. This is an ideal profile for balancing risk and utility, as the riskiest individuals

are the ones corresponding to small cell counts, and these cell counts require the most

movement during synthesis. On the other hand, large counts are relatively low risk,

and proportional changes to large counts will have a more significant impact on utility,

thus relatively less perturbation is desired.

Table 3.7 presents empirical values for the τ metrics, again for varying σ and α.

The expected values are known prior to synthesis, though a small difference occurs,

owing to simulation noise. But, for cell sizes that are prevalent in the original data

- such as zeros and ones - this error is negligible. For example, the empirical value

obtained for τ3(1) when the Poisson model was used (σ = 0, α = 0) is 0.3674, which

is almost identical to the expected value, exp(-1)=0.3679.

Table 3.7 also illustrates the suitability of α in reducing risk. The values for τ4(1)

are substantially lower when α = 0.02 than when α = 0; for example, when the Poisson

model is used, τ4(1) is 0.352 compared to 0.689. For a given α, the NBI and PIG

models almost always have a lower risk than the Poisson model when considering the

τ3(1) and τ4(1) metrics. It is particularly interesting to note varying profiles between

synthesis models and these metrics. For example, if one model has a lower τ3(1) value

than another, then this is not necessarily the case when comparing the corresponding

τ4(1) value. To illustrate, consider the case when α = 0 and σ = 10. For the NBI, the

value of τ3(1) is 0.0711 < 0.1532 the value for the PIG. But for τ4(1), with these same

parameter values, the value under the NBI is 0.3910 > 0.3387 the value under the

PIG. The specific choice of synthesis model to use would depend on the synthesizer’s

range of permitted values for τ3, and τ4, and choosing the model that best satisfies

these requirements.
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Table 3.6: The proportion of synthetic counts within p% of the corresponding original
counts. The table includes results for both the NBI and the PIG, for different σ and
α. The upper block of results considers all original cell counts, while the lower block
considers only non-zero original cells. For α = 0.02, whenever a zero count was
synthesized to a non-zero count, although the percentage difference was not estimable
(zero denominator), it was deemed to be greater than 50% for the purpose of this
table.

Proportion of synthetic cell counts within p% of the original
NBI PIG

p 0.5 1 5 10 50 0.5 1 5 10 50

All original cell counts
σ

0 (Pois.) 0.927 0.927 0.931 0.935 0.967 0.927 0.927 0.931 0.935 0.967
0.1 0.924 0.924 0.926 0.928 0.961 0.925 0.925 0.926 0.928 0.961
0.5 0.920 0.920 0.920 0.922 0.946 0.921 0.921 0.921 0.923 0.949

α = 0 1 0.917 0.917 0.917 0.918 0.937 0.918 0.918 0.919 0.920 0.942
2 0.914 0.914 0.914 0.914 0.928 0.916 0.916 0.916 0.917 0.935
5 0.910 0.910 0.910 0.910 0.918 0.913 0.913 0.913 0.914 0.927
10 0.907 0.907 0.907 0.908 0.912 0.911 0.911 0.911 0.912 0.921

0 (Pois.) 0.909 0.910 0.913 0.917 0.949 0.909 0.910 0.913 0.917 0.949
0.1 0.907 0.907 0.908 0.910 0.943 0.907 0.907 0.908 0.910 0.943
0.5 0.902 0.902 0.903 0.904 0.928 0.903 0.903 0.903 0.905 0.931

α = 0.02 1 0.899 0.899 0.900 0.901 0.920 0.901 0.901 0.901 0.902 0.924
2 0.896 0.896 0.896 0.897 0.911 0.899 0.899 0.899 0.900 0.918
5 0.893 0.893 0.893 0.893 0.901 0.896 0.896 0.896 0.897 0.909
10 0.891 0.891 0.891 0.891 0.896 0.895 0.895 0.895 0.895 0.905

Non-zero original cell counts
σ

0 (Pois.) 0.242 0.245 0.280 0.327 0.658 0.242 0.245 0.280 0.327 0.658
0.1 0.214 0.215 0.226 0.252 0.592 0.217 0.218 0.229 0.256 0.598
0.5 0.167 0.167 0.173 0.187 0.437 0.177 0.177 0.182 0.197 0.468

α = 0 1 0.136 0.136 0.140 0.150 0.347 0.153 0.153 0.157 0.167 0.395
2 0.102 0.102 0.105 0.111 0.253 0.128 0.128 0.131 0.138 0.324
5 0.059 0.059 0.061 0.064 0.145 0.097 0.097 0.099 0.104 0.238
10 0.037 0.037 0.038 0.040 0.089 0.076 0.076 0.077 0.081 0.183

0 (Pois.) 0.242 0.245 0.279 0.326 0.657 0.242 0.245 0.279 0.326 0.657
0.1 0.215 0.215 0.226 0.253 0.593 0.215 0.216 0.227 0.254 0.598
0.5 0.167 0.167 0.172 0.186 0.437 0.175 0.176 0.181 0.196 0.468

α = 0.02 1 0.137 0.137 0.141 0.151 0.348 0.153 0.153 0.157 0.167 0.396
2 0.102 0.102 0.105 0.111 0.253 0.128 0.128 0.130 0.138 0.324
5 0.061 0.061 0.062 0.065 0.147 0.096 0.096 0.098 0.103 0.237
10 0.037 0.037 0.037 0.039 0.088 0.076 0.076 0.077 0.081 0.182
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Figure 3.2: Left hand plots: the synthetic counts versus the original counts for
different σ (for the NBI with α = 0). Right hand plots: original and synthetic counts’
percentage differences versus the original counts. Original counts of zero are omitted.
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Figure 3.3: As Figure 3.2 but for when the PIG was used rather than the NBI.

82



Chapter 3. Using saturated count models to synthesize categorical data

Table 3.7: Empirical values obtained for the τ metrics.
NBI PIG

k 0 1 2 3 0 1 2 3
σ τ1(k)

0 (Pois.) 0.9190 0.0184 0.0135 0.0086 0.9190 0.0184 0.0135 0.0086
0.1 0.9204 0.0183 0.0130 0.0085 0.9203 0.0184 0.0130 0.0084

α = 0 0.5 0.9256 0.0177 0.0117 0.0077 0.9243 0.0181 0.0121 0.0078
1 0.9317 0.0166 0.0105 0.0068 0.9280 0.0179 0.0111 0.0072
5 0.9587 0.0098 0.0054 0.0035 0.9422 0.0167 0.0086 0.0053
10 0.9713 0.0064 0.0033 0.0022 0.9500 0.0156 0.0072 0.0042

0 (Pois.) 0.9013 0.0359 0.0136 0.0086 0.9013 0.0359 0.0136 0.0086
0.1 0.9024 0.0360 0.0133 0.0084 0.9024 0.0361 0.0133 0.0085
0.5 0.9078 0.0352 0.0120 0.0077 0.9065 0.0357 0.0122 0.0078

α = 0.02 1 0.9139 0.0339 0.0107 0.0069 0.9101 0.0355 0.0115 0.0072
5 0.9415 0.0259 0.0063 0.0036 0.9251 0.0330 0.0093 0.0053
10 0.9550 0.0212 0.0047 0.0024 0.9337 0.0307 0.0084 0.0045

τ3(k)
0 (Pois.) 1 0.3674 0.2701 0.2231 1 0.3674 0.2701 0.2231

0.1 1 0.3489 0.2457 0.1976 1 0.3538 0.2484 0.1974
α = 0 0.5 1 0.2964 0.1874 0.1340 1 0.3090 0.2022 0.1468

1 1 0.2499 0.1489 0.1024 1 0.2779 0.1677 0.1197
5 1 0.1144 0.0618 0.0403 1 0.1895 0.0981 0.0654
10 1 0.0724 0.0378 0.0248 1 0.1532 0.0740 0.0466

0 (Pois.) 0.9804 0.3648 0.2695 0.2247 0.9804 0.3648 0.2695 0.2247
0.1 0.9802 0.3499 0.2450 0.1950 0.9801 0.3494 0.2466 0.1984
0.5 0.9803 0.2950 0.1876 0.1391 0.9803 0.3090 0.1981 0.1436

α = 0.02 1 0.9804 0.2515 0.1498 0.1052 0.9803 0.2782 0.1689 0.1218
5 0.9812 0.1172 0.0620 0.0429 0.9810 0.1888 0.0959 0.0629
10 0.9819 0.0711 0.0374 0.0255 0.9817 0.1524 0.0750 0.0486

τ4(k)
0 (Pois.) 0.9835 0.6893 0.2974 0.1943 0.9835 0.6893 0.2974 0.1943

0.1 0.9820 0.6603 0.2811 0.1742 0.9821 0.6648 0.2827 0.1760
α = 0 0.5 0.9764 0.5788 0.2372 0.1304 0.9778 0.5890 0.2484 0.1416

1 0.9701 0.5203 0.2108 0.1125 0.9739 0.5369 0.2232 0.1243
5 0.9427 0.4043 0.1710 0.0858 0.9593 0.3919 0.1694 0.0929
10 0.9305 0.3910 0.1677 0.0851 0.9513 0.3387 0.1521 0.0822

0 (Pois.) 0.9831 0.3516 0.2935 0.1957 0.9831 0.3516 0.2935 0.1957
0.1 0.9817 0.3357 0.2735 0.1733 0.9817 0.3350 0.2745 0.1751
0.5 0.9759 0.2898 0.2316 0.1348 0.9774 0.2991 0.2403 0.1379

α = 0.02 1 0.9696 0.2567 0.2066 0.1141 0.9735 0.2712 0.2168 0.1259
5 0.9419 0.1562 0.1469 0.0890 0.9584 0.1979 0.1520 0.0887
10 0.9293 0.1162 0.1172 0.0799 0.9503 0.1715 0.1320 0.0808
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3.5.4 Testing specific utility through log-linear model analysis

The synthesizer does not know, of course, what analyses users of the synthetic data

would perform. Among the variables included in the data, which are best described

as demographic, there is no obvious response variable, so analysts may be interested

in associations between variables. Therefore, a log-linear analysis was chosen as a

suitable way to test the specific utility of synthetic data generated with the synthesis

method described in Section 3. It is difficult to obtain parameter estimates and

parameters’ standard error estimates for the full five-variable data, since large amounts

of memory and storage are required - the same problem faced when fitting unsaturated

synthesis models. To relieve some of this pressure, the all two-way interaction model

was fitted to three of the data’s five variables, ethnicity, age and language, resulting

in 608 parameters.

The confidence interval overlap metric (defined in 2.14) was used to measure

similarities between estimates. Combining rules are required to obtain valid parameter

estimates and standard errors from synthetic data, even when just m = 1 synthetic

data set is generated. This is because there are always two sources of uncertainty in

synthetic data that need to be accounted for: the sampling uncertainty inherent in

the original data, and the uncertainty owing to synthesis. To simplify the analysis

- after all, the purpose here is just to evaluate the utility of the synthetic data -

the original data were assumed to constitute a simple random sample drawn from a

super-population, and sufficiently large for a large sample approximation to hold. This

allowed the estimator T plug
s to be used (see Table 2.1), which provides valid variance

estimates for large samples when analysing just m = 1 completely synthesized data

set. When m = 1 (v̄m = v) and n = nsyn, the estimator simplifies to 2v, that is, the
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Table 3.8: How σ and α affect the trimmed mean (top and bottom 10% excluded)
percentage difference between log-linear parameter estimates obtained from the
observed and synthetic data. The trimmed mean was used to subdue the effect of
huge percentage differences arising through the presence of zero counts. For clarity, for
an arbitrary original log-linear parameter estimate q and its corresponding synthetic
estimate qsyn, the percentage difference was calculated by 100� (qsyn � q)/q.

σ = 0 σ = 0.1 σ = 0.5 σ = 1 σ = 2 σ = 5 σ = 10
(Pois.)

The NBI model
α = 0 -1.7 3.9 -12.0 -0.1 -18.7 10.6 -108.4
α = 0.005 -23.5 -30.9 -31.7 -34.8 -34.0 14.8 -32.9
α = 0.01 -32.5 -33.2 -33.7 -38.9 -47.8 41.0 -64.7
α = 0.015 -38.8 -39.8 -47.7 -52.3 -47.6 -20.3 -3.5
α = 0.02 -37.1 -34.0 -44.4 -40.9 -27.7 -42.0 -33.5

The PIG model
α = 0 -1.7 -2.2 16.2 11.2 -33.0 -6.6 187.4
α = 0.005 -23.5 -21.7 -28.4 -21.7 -33.0 -73.6 -990.4
α = 0.01 -32.5 -29.6 -31.7 -48.6 -42.3 25.9 -399.3
α = 0.015 -38.8 -26.4 -36.6 -37.6 -20.6 -64.4 -504.0
α = 0.02 -37.1 -47.8 -40.2 -20.6 -40.5 -76.2 425.2

variance estimate from the synthetic data, doubled.

Finally, in log-linear models, estimability issues can arise through the presence of

zero counts in the data. This can lead to issues surrounding non-existence and non-

identifiability of estimates (Fienberg and Rinaldo, 2012). But no serious model fitting

issues arose in this particular example. There were some parameters included in the

model with a true value of �1. For such parameters, R returned a large negative

value, typically in the vicinity of -20.

Figures 3.4 and 3.5 present boxplots of confidence interval overlap values for the

log-linear model parameters across the different synthesis models. They demonstrate
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how increasing σ and α causes utility to fall away. For example, irrespective of α,

whenever σ = 10, the median confidence interval overlap is zero. In general, a high

proportion of the overlap values are equal to 1/2. This can be seen, for example, in

the centre and right plots of Figure 3.5, where several of the upper quartiles are equal

to 1/2.

Figure 3.6 and Table 3.8 presents (trimmed) mean percentage differences between

synthetic and observed parameter estimates for various σ and α. Even setting α small

can have an adverse effect on utility. For example, when σ = 0 (the Poisson model),

increasing α from 0 to 0.005 causes the (trimmed) mean percentage difference in

estimates to fall from -1.7% to �23.5%, thus demonstrating the bias caused by α > 0.

The general trend is that increasing α and σ results in larger percentage differences.

3.5.5 Balancing risk and utility

A key question a synthesizer would have is: which synthesis method offers the best

balance between utility and risk? To address this, the risk-utility trade-off from each

generated synthetic data set can be plotted. An example is displayed in Figure 3.7.

Privacy has been measured on the y-axis via 1� τ4(1), that is, (1 - risk), and utility

on the x-axis by mean confidence interval overlap. The original data sit at the point

(1,0), that is, maximum utility and minimum privacy. All points must lie within

the unit square [0, 1] � [0, 1] and, in general, the further from the origin, the better

the synthetic data. For instance, when two points lie on the same horizontal line, it

suggests that for the same level of privacy, one achieves a greater level of utility than

the other.

This visualisation offers a convenient way to compare the performance of different
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Figure 3.4: Boxplots showing how σ and α affect log-linear parameters’ confidence
interval overlap when the NBI is used. The left frame is the case where α = 0; the
middle frame where α = 0.01; and the right frame where α = 0.02

synthesis models. For example, it may be possible for one synthetic data set to strictly

dominate another: the PIG model with σ = 10 provides greater utility and lower risk

than the NBI model with σ = 100. The choice depends on the priorities of the data

holder and users. For example, it may be that synthetic data can only be released if

τ4(1) is less than 0.5, in which case the synthetic data with the highest utility that

satisfies this requirement could be released, here this would be the PIG model with

σ = 10. Alternatively, it may be that only data with a utility value of at least 0.5

would be deemed useful enough for release, in which case the synthetic data generated

under a NBI model with σ = 0.1 would be chosen.

In practice, a range of different metrics for utility and privacy can be created and

feed into determining which synthesis method is chosen. This decision is also likely

to be application specific.

3.5.6 The Poisson versus overdispersed count distributions

The intention is that the synthesizer would usually use the NBI or PIG distributions,
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Figure 3.5: As Figure 3.4 but for when the PIG is used.
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Figure 3.6: Boxplots showing how α affects percentage differences in parameter
estimates obtained from the observed and synthetic data.
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Figure 3.7: This plot, which is resemblant of a product possibility frontier in
economics, provides a visual representation of the risk-utility trade-off for different
σ (α = 0).

rather than the Poisson, which is far too limited to be used in practice. In general,

the NBI and PIG models give similar results, yet this is to be expected as both share

the same variance function. Nevertheless, there are some marked differences between

the two, especially when σ is large; for example, when σ = 10 and α = 0, there are

substantially fewer zeros in the synthetic data when the PIG is used than when the

NBI is used (τ1(0) values of 0.950 and 0.971, respectively). There is, of course, scope to

use other count distributions here; those with a different variance function would have

an entirely different profile altogether. Moreover, both the NBI and PIG are also both

limited in that they can only model overdispersion and not underdispersion, hence

the variance is always greater than the Poisson - and this may be unnecessary for

certain parts of the data deemed to be at lower risk of disclosure. The double Poisson

distribution, for example, which can be used to model underdispersed count data,
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allows the variance to be set lower than in the Poisson.

3.5.7 Summary

As data sets becomes bigger, the ability - from a computational perspective - to fit

models requiring model-fitting algorithms diminishes. The use of saturated models

set out in this chapter allows data sets to be synthesized efficiently irrespective of

their size, thus is suited to large administrative databases. Also, further efficiency is

achieved through the use of the scale parameter of overdispersed count distributions,

such as the negative binomial and Poisson-inverse Gaussian, to apply noise to original

counts. In the mechanism described, this scale parameter σ becomes a tuning

parameter, and which, along with α (the psuedocount added to random zeros) can

be tuned to set the value of a risk or utility metric a priori. The empirical example

illustrates how σ and α can be adjusted to produce synthetic data with different levels

of risk and utility.

However, this chapter only considered the case of generating m = 1 synthetic data

set. But m > 1 data sets can - and, sometimes, must - be generated. In the same way,

using this framework means that certain properties can also be found analytically. It

effectively introduces another parameter for the synthesizer to set, thus providing

further flexibility.
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Extending the mechanism to generate

m > 1 synthetic data sets

The original inferential frameworks for fully and partially synthetic data sets

(Raghunathan et al., 2003; Reiter, 2003) relied on the generation of m > 1 synthetic

data sets, because they required the computation of the between-synthesis variance bm

(see below). When the original data is not a simple random sample, m > 1 synthetic

data sets must be generated, highlighting the importance of considering the m > 1

case.

When the original data constitute a simple random sample, and the data are

completely synthesized, valid inferences can be obtained from m = 1 synthetic data

set (Raab et al., 2016). In the previous section, this assumption was taken, though

mainly out of convenience. In this instance, while m > 1 data sets are not intrinsic

to obtaining valid inferences, the quality of inferences - for example, the width of

confidence intervals - can, nevertheless, be improved upon by increasing m - but at

the expense of higher risk. It is less a question, therefore, of which m allows valid
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inferences to be obtained, but rather a question of which value of m is optimal with

respect to the risk-utility trade-off?

In either case, m can be viewed as a tuning parameter, and, as with the

other tuning parameters σ and α, expected risk and utility profiles can be derived

analytically, a priori. When saturated models are used for synthesis, ignoring the

small bias arising from α > 0, simulation error is the only source of uncertainty - and

increasing m reduces simulation error. The notion is that m > 1 may allow a more

favourable position in relation to the risk-utility trade-off than when m = 1; in short,

it increases the number of options available to the synthesizer.

The use of parallel processing can substantially reduce the central processing unit

(CPU) time when generating multiple data sets. Besides, the CPU time taken is

typically negligible anyway; the synthesis presented in Section 3.5 took 0.3 seconds

for the NBI with m = 1 on a typical laptop running R.

4.1 Obtaining inferences from m > 1 data sets

4.1.1 Analysing the m > 1 data sets before averaging the

results

As mentioned in Section 2.3.2, when analysing multiple synthetic data sets the analyst

considers each data set separately before later combining inferences. Most combining

rules are based on the following three quantities (Drechsler, 2011):

q̄m =
1

m

m∑
l=1

q(l), bm =
1

(m� 1)

m∑
l=1

(q(l) � q̄m)2, v̄m =
1

m

m∑
l=1

v(l).
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When using the synthesis method described in the previous chapter, partially - rather

than fully - synthetic data sets are generated, because a synthetic population is not

constructed and sampled from, as stipulated in Raghunathan et al. (2003). Hence,

the following estimator Tp (Reiter, 2003), is valid when estimating Var(Q̂),

Tp =
bm
m

+ v̄m.

The sampling distribution (if frequentist) or posterior distribution (if Bayesian) of Q̂

is a t-distribution with νp = (m � 1) (1 +mv̄m/bm)2 degrees of freedom. Often, νp

is large enough for the t-distribution to be approximated by a normal distribution.

However, when the between-synthesis variability is much larger than the within-

synthesis variability, that is, when bm is much larger than v̄m - as may happen when

large amounts of noise are applied to protect sensitive records - then νp is crucial to

obtaining valid inferences.

If the original data constitute a simple random sample and are large enough to

support a large sample assumption, Ts is also valid:

Ts = v̄m

(nsyn

n
+

1

m

)
� v̄m

(
1 +

1

m

)
.

The large sample assumption facilitates the use of a normal distribution for the

sampling distribution (or the posterior distribution) of Q̂ when Ts is used to estimate

the variance. The notion is that, in large samples, bm can be replaced with v̄m. It is

difficult to assess, however, when a large sample assumption is reasonable, because it

also depends on the specific analysis being undertaken on the synthetic data, that is,

it depends on the analysis’s sufficient statistic(s).
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The estimators Tp and Ts assume that nsyn = n (or that nsyn is constant across

the m synthetic data sets in the case of Ts). When using count models as opposed to

multinomial models, nsyn is stochastic and this assumption is violated. However, in

a simulation study unreported here, the effect of varying nsyn was found to have

a negligible effect on the validity of inferences, for example, confidence intervals

still achieved the nominal coverage. Nevertheless, in some cases, new estimators

may be required; such estimators may introduce weights w1 . . . , wm that relate to

n
(1)
syn, . . . , n

(m)
syn , the sample sizes of the m synthetic data sets.

4.1.2 Averaging the m > 1 data sets before analysing them

When faced with multiple categorical data sets, analysts (and attackers) may either

pool or average the data sets before analysing them. This is feasible only with

contingency tables, as they have the same structure across the m > 1 data sets.

There are several advantages to doing so. Firstly, it means that analysts only have

to undertake their analyses once rather than multiple times, thus leading to reduced

computational time. Note, although averaging leads to non-integer “counts”, standard

software such as the glm function in R can typically cope with this and still allow

models to be fit. Secondly, model-fitting in aggregated data is often hampered by

the presence of zero counts, but either averaging or pooling reduces the proportion of

zero counts, since it only takes one non-zero across the m > 1 data sets to produce a

non-zero when averaged or pooled.

If the data sets are averaged (pooled), then the Raab et al. (2016) estimator Ts

would have to be used to estimate variances, so this approach would not be suitable

if the conditions required for this estimator do not hold.
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When the data sets are averaged and the NBI or PIG is used for synthesis, for

a given original count fi = N (i = 1, . . . , K), the corresponding mean synthetic cell

count f̄ syn
i has mean and variance,

E(f̄ syn
i ) = N and Var(f̄ syn

i ) =
1

m

(
N + σN2

)
, (4.1)

as the synthetic data sets are independent.

Thus, for a given original count, the variance of the corresponding mean synthetic

count is inversely proportional to m, and linearly related to σ. This means that the

minimum obtainable variance when σ alone is tuned - which is achieved as σ ! 0 and

the NBI tends towards its limiting distribution, the Poisson - is N/m. On the other

hand, increasing m can essentially take the variance to zero. If m is too large, though,

the original counts are simply returned when averaged, which, of course, renders the

synthesis worthless. This, perhaps, suggests the suitability ofm as a tuning parameter

in cases where the original counts are large and there is relatively low risk, such that

a relatively small variance suffices.

4.2 Introducing the τ3(k, d) and τ4(k, d) metrics

When multiple synthetic data sets are generated and the mean synthetic count

calculated - which is no longer always an integer - it becomes more suitable to consider

the proportion of synthetic counts within a certain distance of original counts of k.

To allow this, the metrics τ3(k) and τ4(k) can be extended to τ3(k, d) and τ4(k, d),
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respectively:

τ3(k, d) := p(jf syn � kj � d j f = k), τ4(k, d) := p(f = k j jf syn � kj � d).

The metric τ3(k, d) is the probability that a cell count of size k in the original data is

synthesized to within d of k; and τ4(k, d) is the probability that a cell count within d

of k in the synthetic data originated from a cell of k. Unlike k, d > 0 does not need

to be an integer. By extending the τ1(k) metric, such that τ1(k, d) is the proportion

of synthetic counts within d of k, it follows that τ3(k, d)τ2(k) = τ4(k, d)τ1(k, d).

The τ3(k) and τ4(k) metrics are then special cases of τ3(k, d) and τ4(k, d),

respectively (the case where d = 0). For small k, these τ(k, d) metrics are intended

primarily as risk metrics, because they are dealing with uniques or near uniques.

However, when d is reasonably large, τ3(k, d) and τ4(k, d) are, perhaps, better viewed

as utility metrics, because they are dealing with the proportion of small counts that

are synthesized to much larger counts (which impacts utility).

When m > 1 is sufficiently large, tractable expressions for the τ3(k, d) and τ4(k, d)

metrics can be obtained via the Central Limit Theorem (CLT), as the distribution of

each mean synthetic count can be approximated by a normal distribution, with mean

and variance as given in (4.1). That is, given an original count fi = N (i = 1, . . . , K),

when m is large, the distribution of the corresponding mean synthetic cell count f̄ syn
i

is given as:

f̄ syn
i j fi = N, σ,m � Normal(N, (N + σN2)/m).
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This can be used to approximate τ3(k, d) and τ4(k, d):

τ3(k, d) = p(jf̄ syn � kj � d j f = k),

= p(f̄ syn < k + d j f = k)� p(f̄ syn < k � d j f = k),

= Φ

(
(k + d)� k√
(k + σk2)/m

)
� Φ

(
(k � d)� k√
(k + σk2)/m

)

= 2Φ

(
d√

(k + σk2)/m

)
� 1, (4.2)

τ4(k, d) = p(f = k j jf̄ syn � kj � d)

=
τ3(k, d) � τ2(k)∑1

i=0 p(jf syn � kj � d j f = i) � p(f = i)

=

[
2Φ
(
d
/√

(k + σk2)/m
)
� 1
]
� τ2(k)

∞∑
i=1

[
Φ
(

(k + d� i)
/√

(i+ σi2)/m
)
� Φ

(
(k � d� i)

/√
(i+ σi2)/m

)]
� τ2(i)

(4.3)

where Φ is which is used to denote the cumulative distribution function (CDF) of the

standard normal distribution.

4.3 Empirical synthesis when m > 1

The ESCsub data was again synthesized; this time just for the NBI (with α = 0.01)

but using a range of σ (0, 0.1, 0.5, 2 and 10) and m values (from 1 to 50). The

function rNBI from the R package gamlss.dist Stasinopoulos et al. (2007) was again

used to generate the synthetic counts.
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4.3.1 Measuring risk

The τ3(1, d) and τ4(1, d) metrics (that is, setting k = 1), introduced in Section 4.2,

were used as risk metrics. Figure 4.1 shows that either increasing m or decreasing σ

increases τ3(1, d) and τ4(1, d) and hence risk. There is an initial fall in the τ3(1, 0.1)

curves as m increases initially, suggesting lower not higher risk. However, this is just

owing to the small d: for example, when d = 0.1, the only way to obtain a mean

synthetic count within 0.1 of k when, say m = 5, is by obtaining a one in each of the

five synthetic data sets, compared to just once when m = 1.

Whenm is large, the τ3(k, d) and τ4(k, d) metrics can be approximated analytically

through (4.2), which relies on the CLT. There is uncertainty in both the empirical

values (owing to simulation error) and the analytical values (owing to the normal

approximation), though the divergences between the empirical and analytical values

are small.

In general, then, increasing m or decreasing σ increases risk. This is also shown

visually in Figure 4.2, which demonstrates how m and σ can be used in tandem to

adjust risk. Here, τ3(1, 0.1) is used as the z-axis (risk) but any τ3(k, d) or τ4(k, d)

would give similar results.

4.3.2 Measuring utility

As saturated models are used, increasing m (for a given σ) causes the mean synthetic

counts to tend towards the original counts. This can be seen in the Hellinger and

Euclidean distances given in Figure 4.3, which show an improvement in general utility

when either increasing m or reducing σ.

These measures are equally relevant to risk, too, hence Figure 4.3 reiterates that
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risk increases with m. It is fairly trivial, however, that reducing simulation error

increases risk and utility. It is more useful to gain an insight into the rate at which

risk and utility increase with m, that is, the shape of the curves. For example, Figure

4.3, shows that increasing m has greater effect when σ = 1 than when σ = 0.1.

The utility of synthetic data can also be assessed for specific analyses by, for

example, comparing regression coefficient estimates obtained from a model fit to both

the observed and synthetic data. While such measures only assess the synthetic data’s

ability to support a particular analysis, they nevertheless can be a useful indicator to,

for example, the required m needed to attain a satisfactory level of utility.

Here, the estimand of interest is the slope parameter from the logistic regression of

age Y (aged � 9 = 0, � 10 = 1) on languageX. A subset of the data were used, as just

two of the language variable’s seven categories were considered, while the age variable

was dichotomised. When estimated from the original data, β1 - which is a log marginal

odds ratio - was equal to -0.0075 with a 95% confidence interval of (�0.0151,�0.0001).

Note that, in order to estimate this, it was assumed that the original data constituted

a simple random sample drawn from a much larger population. It is hugely doubtful

whether such an assumption would be reasonable in practice, but the purpose here

was just to evaluate the ability of the synthetic data to produce similar conclusions

to the original data.

The analysis was undertaken in the two ways described in Section 4.1. Firstly,

the m > 1 synthetic data sets were analysed separately and variance estimates were

obtained through the estimator Tp. Secondly, the m > 1 synthetic data sets were

pooled into one data set prior to the analysis and variance estimates were obtained

through the estimator Ts.
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As can be seen in Figure 4.4, the estimates from Tp were noticeably larger than

those from Ts, for small m. This was worrying for the validity of Ts - and the

confidence intervals subsequently computed using Ts - especially since the sampling

distributions of the estimates were not approximated by a normal distribution, but

by a t-distribution with νp degrees of freedom, thus widening confidence intervals

further. This suggests that the large sample approximation that Ts relies on was not

reasonable in this case.

The confidence interval overlap results are presented in Table 4.1. The top frame

gives the overlap values from when the data sets are analysed separately, and the

bottom frame gives the results from when the data sets are pooled. It can be seen

that increasing m broadly results in an increase in the overlap; and that the overlap

tends towards 1 as the original and synthetic data confidence intervals converge. The

confidence intervals computed using Ts are less robust as those using Tp, which is

evident in the zero overlap when m = 20 and σ = 10. This is because, unlike the

variance estimator Tp, Ts only considers the within-synthesis variability v̄m, not the

between-synthesis variability bm.

4.3.3 Tuning m and σ in relation to the risk-utility trade-off

The plots in Figure 4.5 show how m and σ can be tuned in tandem to produce

synthetic data sets that sit favourably within the risk-utility trade-off. These trade-

off plots, though, depend on the metrics used to measure risk and utility. Here, risk

was measured by either τ4(1, 0.5) or τ4(1, 0.75), and utility by either confidence interval

overlap (using Tp) or Hellinger distance. The Hellinger distances were standardised

onto the interval of [0,1] (by dividing by the largest Hellinger distance observed and
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Figure 4.1: The left hand plots give the empirical values of τ3(1, d) for d = 0.1 and
0.2; the right hand plots give the empirical values of τ4(1, d) for d = 0.5 and 0.75.

then subtracting from 1, so that 1 and 0 represent maximum and minimum utility,

respectively).

It is possible to strictly dominate synthetic data sets over others, that is, obtain

lower risk and greater utility values. For example, looking at the top-left plot,

synthetic data sets generated with m = 50, σ = 2 have higher risk but lower utility

than when m = 20, σ = 0.5. These visual trade-offs are plotted using the empirical

results, so are subject to variation from simulation; the confidence interval overlap

values, in particular, can be volatile, especially when σ is large.

The intention is that the synthesizer produces such plots before releasing the data.

Furthermore, as many metrics can be expressed analytically when using saturated

models, they can be produced before the synthetic data is even generated.
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Figure 4.2: The expected τ3(1, 0.1) values for m and σ greater than 30.
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Figure 4.4: The values of the estimators Tp and Ts. For small m, Tp is larger than
Ts, before converging for larger m. The estimator Ts remains fairly constant across
m.

Table 4.1: The confidence interval overlap results from when: (i) the data sets were
analysed separately and Tp was used to estimate confidence intervals; and (ii) the data
sets were pooled and Ts was used to estimate confidence intervals.

m = 2 m = 5 m = 10 m = 20 m = 30 m = 40 m = 50

The overlap when the data sets were analysed separately and Tp used
σ = 0 0.883 0.901 0.950 0.992 0.990 0.994 0.983
σ = 0.1 0.533 0.692 0.822 0.898 0.913 0.925 0.917
σ = 0.5 0.536 0.635 0.778 0.843 0.878 0.909 0.923
σ = 2 0.000 0.587 0.667 0.726 0.716 0.742 0.780
σ = 10 0.522 0.535 0.554 0.583 0.604 0.623 0.638

The overlap when the data sets were pooled and Ts used
σ = 0 0.881 0.905 0.951 0.988 0.990 0.994 0.983
σ = 0.1 0.700 0.317 0.802 0.942 0.904 0.920 0.915
σ = 0.5 0.221 0.344 0.653 0.789 0.864 0.915 0.967
σ = 2 0.020 0.436 0.856 0.775 0.825 0.809 0.906
σ = 10 0.000 0.664 0.454 0.000 0.078 0.258 0.465
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Figure 4.5: Risk-utility trade-off plots to show where various synthetic data sets
are located with respect to the risk-utility trade-off. The optimal position in each
plot - that is, the lowest risk and the highest utility - is the bottom right corner. To
measure risk, the metrics τ4(1, 0.5) and τ4(1, 0.75) were used. To measure utility, the
confidence interval overlap and Hellinger distance were used.
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4.3.4 Summary

The synthesis mechanism introduced in Chapter 3 only considered the case of

generating m = 1 data set. Unless the original data are a simple random sample,

however, m > 1 data sets must be generated to properly quantify the uncertainty from

synthesis; and even if a simple random sample assumption is reasonable, generating

m > 1 synthetic data sets may allow a more favourable risk and utility profile than

m = 1. Either way, m can be viewed as a tuning parameter. This chapter has looked

at the considerations for m > 1, such as extending the τ3(k) and τ4(k) metrics to

τ3(k, d) and τ4(k, d), and also considering how best to analyse m > 1 categorical data

sets.

While the use of σ andm allow the synthesizer to set the synthetic counts’ variance,

they cannot control where the variability falls. The synthesizer does not necessarily

want the variability to manifest itself in, say, a heavy right tail in the synthesis

distribution’s probability mass function. Some movement is required in synthetic

counts to reduce risk, but large movements are unnecessary and may have an adverse

effect on the data’s utility. The use of three-parameter count distributions would

provide the synthesizer with control over the skewness in addition to the variance.
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Further approaches to synthesis: the

discretized gamma family distribution

5.1 The benefits of using three-parameter count

distributions

The use of two-parameter count distributions allow the synthesizer to set the variance,

but not, for instance, the skewness or kurtosis, which are also play an important role

when producing synthetic data. When the variance is increased to lower risk, it is not

desirable for the additional variability to manifest itself in heavier tails: for synthesis,

it is preferable to use a light-tailed distribution. Firstly, this is because when a

count distribution has a heavy left tail - bearing in mind that count distributions

are truncated at zero - it increases the probability of obtaining synthetic counts of

zero. Despite providing a natural form of protection - when considering the data in

microdata format, the effect of a non-zero being synthesized to a zero is that the
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observation is removed from the data - too many zeros can impact negatively on

utility: for example, analysts’ models may struggle in the presence of an excess of

zero counts. To correct the imbalance, it may be necessary to set α (the pseudocount

mentioned in Section 3) greater than zero, but this introduces bias. Rather than

relying too much on α, it is more efficient to reduce the number of zeros through

using a distribution with a light left tail. Secondly, in a similar way it is preferable,

too, to have a light right tail, to reduce the probability of returning excessively large

synthetic counts.

Before moving on to the discretized gamma family distribution, which is explored

in the remainder of this chapter, the shape of the distribution can be improved upon

by using a three-parameter count distribution such as the Delaporte, instead of the

NBI and PIG.

5.1.1 The Delaporte distribution

The Delaporte distribution is an explicit count distribution named after Pierre

Delaporte, who used the distribution to analyse insurance claims relating to road

accidents (Delaporte, 1960). Rather than the gamma-Poisson mixture that results

in the negative binomial, it is a mixture between the shifted gamma and Poisson

distributions.

Rigby et al. (2019) introduced a parameterisation whereby, in line with the Poisson,

NBI and PIG, the mean of a Delaporte random variable Y is equal to µ > 0. As with

the NBI, there is a parameter σ > 0, but additionally there is a third parameter

ν 2 (0, 1).
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Its probability mass function is given as:

f(yjµ, σ, ν) =
exp(�µν)

Γ(1/σ)
[1 + µσ(1� ν)]�1/σS (5.1)

where S =

y∑
j=0

(
y

j

)
µyνy�j

y!

[
µ+

1

σ(1� ν)

]�j
Γ

(
1

σ
+ j

)
.

The mean and variance are given as:

E[Y j µ, σ, ν] = µ and Var[Y j µ, σ, ν] = µ+ σ(1� ν)2µ2.

The Poisson(µ) is the limiting distribution as ν ! 1, for fixed σ; and the limiting

distribution as ν ! 0 is NBI(µ, σ). The parameters can be conditioned upon so that

µ controls the mean (first moment), σ controls the variance (second moment) and ν

controls the skewness (third moment).

For a given mean and variance (location and scale), the shape of the Delaporte can

be adjusted to reduce the heaviness of the tails. This can be seen in Figure 5.1, which

gives three Delaporte distributions with the same means and variances but different

shapes; the blue dashed line, for example, has a smaller probability at zero as well

as a lighter right tail, which would result in fewer zero synthetic counts and fewer

unnecessarily large synthetic counts.

Moreover, Figure 5.2 shows how this additional parameter ν can be used to adjust

risk. It shows how ν affects the τ4(1) curve - the proportion of uniques in the synthetic

data that were also unique in the original data - when the Delaporte distribution is

used to synthesize the ESCsub data.

Other three-parameter distributions give similar flexibility. One example is the

Sichel distribution, which is a mixture between the generalised inverse-Gaussian
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Figure 5.1: The probability mass functions of three Delaporte distributions with the
same mean and variance (10 and 510, respectively). The dotted black line is also
essentially an NBI distribution, a limiting case of the Delaporte, as ν � 1.

0.4

0.5

0.6

0.7

0 2 4 6 8 10
σ

τ
4
(1

)

ν

0.001 (NBI)

0.2

0.4

0.6

0.8

0.999 (Poisson)

Figure 5.2: How σ and ν affect τ4(1) when the Delaporte is used for synthesis.
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distribution and the Poisson, and can be viewed as an extension to the PIG.

5.2 The limitations of Poisson-based distributions

for synthesis

In a synthesis context, the main issue with many explicit count distributions is that

they are overdispersed. Distributions such as the NBI, PIG, Sichel, Delaporte, et

cetera, are continuously mixed Poisson distributions (as previously mentioned, the

mixing distributions are the gamma, inverse-Gaussian, generalised inverse Gaussian,

shifted gamma distributions, respectively). Mixing Poisson distributions naturally

adds variance because, effectively, the Poisson mean is assumed to be stochastic, not

fixed. To illustrate, suppose X � Poisson(λ) which has mean and variance λ > 0.

Now suppose that X j γ � Poisson(λγ), where γ is a continuous mixing distribution

with mean equal to 1 and variance equal to σ2. Then it follows that:

E(X) = E[E(X j γ)] = λ

Var(X) = E[Var(X j γ)] + Var[E(X j γ)] = E(λγ) + Var(λγ) = λ+ λ2σ2 > λ,

hence mixing Poisson distributions adds variance.

For small original counts, these distributions are fit for purpose: the overdispersion

can be utilised to mask the original counts’ true values. For larger counts, however,

which tend to be lower risk, the variance is often too large, resulting in too much noise

being applied. The ideal relationship is one where smaller counts are overdispersed

and larger counts are underdispersed. One practical - albeit inelegant - solution is to
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specify a unique σi for each count (i = 1, . . . , K), or at least specify a unique σ for

“large counts” and “small counts”. However, this would increase the complexity of the

mechanism.

5.3 The use of the discretized gamma family distri-

bution

5.3.1 Creating count distributions through discretization

Flexible count distributions can be produced by discretizing a continuous distribution

defined on the interval (0,1), an “underused” method according to Rigby et al. (2019).

Let W denote a continuous random variable defined on (0,1), with probability

density function (PDF) fW (w) and cumulative distribution function (CDF) FW (w).

Then the corresponding discretised version of W , Y , has probability mass function

(PMF):

fY (y) = p(Y = y) = p(y < W < y + 1) = FW (y + 1)� FW (y) for y = 0, 1, 2, . . . .

(5.2)

If W has an explicit CDF then Y has both an explicit PMF and CDF (Rigby et al.,

2019). The properties of a discretized continuous distribution, such as its mean and

variance, are not exactly the same as those of the continuous version, owing to the

discretization process, but similar enough to allow a rough comparison to be drawn.

Discretization can produce count distributions that are underdispersed. As an

example, a well-known two-parameter continuous distribution on (0,1) is the gamma
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distribution. One such parameterization gives the mean as µ and the variance as µ2σ2

(hence σ > 0 here is the coefficient of variation). The variance-mean ratio is given

as µσ2, thus setting σ < µ�1/2 returns a ratio that is less than one, something which

cannot be achieved through the majority of standard count distributions.

However, the gamma also demonstrates the need for further flexibility - additional

parameters - because the variance-mean ratio is still an increasing function of µ, thus

larger counts always have greater variance than smaller counts.

5.3.2 The gamma family (GAF) distribution

The gamma family (GAF) distribution is an extension to the gamma distribution,

defined on the interval (0,1). It has three parameters (µ > 0, σ > 0 and �1 < ν <

1) rather than two, and, importantly, this third parameter ν can be used to model

the variance-mean relationship. The GAF distribution’s PDF and CDF are given as:

fW (w j µ, σ, ν) =
wσ

�2
1 �1exp(�wσ�2

1 µ�1)

(σ2
1µ)σ

�2
1 Γ(σ�2

1 )
for y > 0

FW (w j µ, σ, ν) =
γ(σ2

1, wµ
�1σ�2

1 )

Γ(σ�2
1 )

for y > 0

where σ1 = σµν/2�1 and γ(a, x) =
∫ x

0
ta�1e�tdt is the lower incomplete gamma

function. Its mean and variance are:

E[Y j µ, σ, γ] = µ and Var[Y j µ, σ, γ] = σ2µν . (5.3)

When ν < 0, the variance is a decreasing function of the mean. Figure 5.3 displays the

variance-mean relationship for three GAF distributions with different ν values. For a
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Figure 5.3: The variance-mean relationship for three GAF distributions with different
ν values (with σ = 1).

given µ, the relationship between the variance and (negative) ν is one of exponential

decay (or exponential growth if ν > 0). That is, the parameter ν controls the rate at

which the variance falls away, that is, the rate of decay.

The quantity σ2 can be thought of as the variance when µ = 1, which has an

intuitive representation in a synthesis context: it is the variability applied to uniques

(original counts of one). Therefore, both parameters, σ and ν, are easily interpretable

in a synthesis context, which is not the case for many count distributions, and is a

powerful argument in favour of the GAF.

5.3.3 The discretized gamma family distribution (DGAF)

The discretized gamma family distribution (DGAF) is the discretized version of the

GAF distribution. When using (5.2) to discretize, it will return a distribution that

is right skewed relative to the continuous version (see the lower left plot in Figure

5.4). This is most noticeable when the mean is small: for example, when µ = 1,

the entire density below the mean in the continuous version is transformed to zero

in the discretized version. Consequently, the mean and variance of the DGAF are

substantially different to those of the GAF (given in 5.3), which in turn diminishes
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the synthesizer’s ability to determine expected properties of the synthetic data, a

priori.

The problem with the discretization mechanism given in (5.2) is that the midpoint

of each interval is not equal to the subsequent discretised value. Therefore, a slight

change to the discretizion mechanism is proposed:

fY (y) =


FW (1/2) if y = 0

FW (y + 1/2)� FW (y � 1/2) if y = 1, 2, . . .

(5.4)

which results in the DGAF having the following PMF:

fY (y) =


γ(σ2

1 ,(y+1/2)µ�1σ�2
1 )

�(σ�2
1 )

if y = 0

γ(σ2
1 ,(y+1/2)µ�1σ�2

1 )

�(σ�2
1 )

� γ(σ2
1 ,(y�1/2)µ�1σ�2

1 )

�(σ�2
1 )

if y = 1, 2, . . . ;

and which can be viewed in the bottom panel of Figure 5.4. To examine whether the

GAF’s mean and variance properties given in (5.3) also hold for the DGAF, the means

and variances of DGAF distributions with various µ, σ and ν were found through

Monte Carlo simulation. These values are presented in Table 5.1: the largest relative

discrepancies between the means of the GAF(µ,σ,ν) and DGAF(µ,σ,ν) distributions

occur when µ is small, while the largest differences between the variances occur when

σ is small. The means and variances are sufficiently similar to allow the mean and

variance of the DGAF to be approximated by those of the corresponding GAF, thereby

facilitating an a priori approach to synthesis; that is, if Y � DGAF(µ,σ,ν) then

E[Y j µ, σ, ν] � µ and Var[Y j µ, σ, ν] � σ2µ�ν . (5.5)
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Figure 5.4: The PDFs of GAF and DGAF distributions with µ = 10. The top-left
plot is the GAF; the top-right and bottom plots are the DGAF discretized using (5.2)
and (5.4), respectively.

Effectively, when drawing a DGAF random variate, the discretization mechanism

given in (5.2) takes a GAF random variate and always rounds down to the nearest

integer, whereas that given in (5.4) rounds to the nearest integer.

5.3.4 Additive smoothing with the DGAF

A disadvantage, however, when using the DGAF is that additive smoothing - adding

α > 0 to non-structural zero original counts - is less effective. For a given ν < 0

the variance-mean relationship of the DGAF, as with the GAF, decays exponentially.

Its variance is equal to σ2 when µ = 1 and tends to infinity as µ tends to zero.

Interpolating between 0 and 1, it follows that when µ = 0.01, say - as is the case when

α = 0.01 - the variance is huge, that is, the distribution becomes highly overdispersed

115



Chapter 5. Further approaches to synthesis: the discretized gamma family
distribution

Table 5.1: The mean and variance of various DGAF(µ,σ,ν) distributions when
discretized using the mechanism given in (5.4) alongside the mean and variance for
the corresponding GAF(µ,σ,ν) distributions in parentheses.

Mean of DGAF(µ,σ,ν) dist. Var. of DGAF(µ,σ,ν) dist.
σ = 2 σ = 10 σ = 2 σ = 10

µ = 1 0.96 (1) 1.00 (1) 4.11 (4) 100.31 (100)
ν = 0 µ = 10 10.00 (10) 9.99 (10) 4.08 (4) 100.13 (100)

µ = 20 20.00 (20) 20.00 (20) 4.09 (4) 100.20 (100)

µ = 1 0.96 (1) 0.99 (1) 4.12 (4) 99.08 (100)
ν = �1 µ = 10 10.00 (10) 10.00 (10) 0.48 (0.4) 10.09 (10)

µ = 20 20.00 (20) 20.00 (20) 0.27 (0.2) 5.09 (5)

and has very heavy tails.

Now, for the NBI, setting α = 0.01 means, in practice, that roughly one in a

hundred zero counts are synthesized to one. However, for the DGAF, owing to the

larger variance, far fewer zeros - typially, less than one in a thousand - are synthesized

to non-zeros; and when they are, unlike with the NBI, they are synthesized to a

range of non-zero counts, not just mainly ones. Thus, as the role of α is to reduce

the proportion of synthetic counts of zero, it is less effective when using the DGAF.

This can be seen in Figure 5.5, which compares the PMFs of the DGAF and NBI

distributions when µ = 0.01. For the NBI (dotted line), the probability of obtaining

a one is slightly less than 0.01 and the probabilities for all counts greater than one

are effectively zero. For the DGAF (solid line) all probabilities are effectively zero,

though the right hand plot shows that larger counts are relatively more likely from

the DGAF. Using the DGAF, then, may necessitate a larger α, which would induce

greater bias into the synthesis.

Although α is less effective, there would not necessarily be an inflated proportion
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Figure 5.5: The PMFs, when the mean is 0.01 (α = 0.01), of the DGAF (σ = 1 and
ν = �0.25) and NBI (σ = 2) distributions. The left and right hand plot gives the
probabilities for counts greater than zero and one, respectively. The probabilities of
obtaining a zero, excluded here for visual purposes, are 0.9998 and 0.9901 for the
DGAF and NBI, respectively.

of zero synthetic counts when using the DGAF compared with the NBI. The number

of zeros is offset by the fact that fewer non-zero original counts are synthesized to

zero.

5.3.5 Setting the tuning parameters

Each data set is unique in its confidentiality and structure. In categorical data this

uniqueness is generally captured by the vector of original counts. While the original

counts are not interchangeable - they conform to a structure that is governed by

the contingency table - when using saturated models, in particular, they can be

decomposed - and characterised by - the proportion of zeros, ones, twos, et cetera,

in addition to the number of counts (cells) K. After omitting structural zeros,

administrative databases, for example, due to their size and sparsity, typically have

largeK and a substantial proportion of both zero counts and large counts. In contrast,

survey data sets usually have relatively small K, fewer zeros and fewer very large
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counts. In general, there is more heterogeneity in the range of counts observed in

administrative data than in survey data.

In practice, the setting of the synthesis mechanism’s tuning parameters is a

policy decision made by the synthesizer. Essentially, the decision hinges on the

confidentiality and structure. The synthesizer needs to establish the level of risk

deemed to be acceptable and be familiar with the structure of the data - the proportion

of zeros, ones, twos, et cetera.

A rough guide to the setting of the tuning parameters is as follows. A good

starting point is the setting of m, the number of synthetic data sets. If the original

data are not a simple random sample (SRS), m > 1 would be required to obtain valid

inferences (see, for example, Drechsler, 2011); though m = 1 may suffice if a SRS

assumption is reasonable (see Raab et al., 2016). The synthesizer can next focus on

small counts, which tend to be those most at-risk, and establish an acceptable level

of protection. The parameter σ is effective here: increasing σ adds variance - and

hence protection - to all synthetic counts, though small counts in particular would

be largely unaffected by later changes made to the parameter ν. A relatively large

m would typically necessitate a relatively large σ to offset the additional risk. The

parameter ν is intended to be used for fine-tuning: it can be used to reduce the noise

applied to larger counts without largely affecting the smaller counts. Finally, the

parameter α is primarily intended as a way to allow zero counts to be synthesized to

non-zeros; in some instances α = 0 would suffice.

The synthesizer can use the a priori nature of the synthesis - that is, expected

values of risk and utility metrics - to gain an insight into what tuning parameter

values to use. The objective is to find a combination of values that yields synthetic
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data with high utility but low risk. This can be achieved by assessing risk and utility

over a range of possible values and selecting the best option.

5.3.6 Combining risk and utility

In the synthetic data literature, risk and utility are often treated as separate entities;

for instance, post-synthesis the synthesizer evaluates first one then the other. As risk

and utility are intertwined - maximizing one typically minimizes the other - they can

be considered simultaneously through the utility-risk ratio (UR ratio), where a utility

function is divided by a risk function (or vice versa). As with the risk and utility

metrics themselves, the UR ratio can be expressed analytically as functions of the

synthesis mechanism’s tuning parameters.

A key consideration is the rate at which the UR ratio changes with respect to the

tuning parameters. If the UR ratio is increasing, for example, it suggests the gains

in utility outweigh the additional risk. The synthesizer can tune a parameter, for

example, such that the UR ratio is maximized, which would occur when its gradient

is zero. Hence the calculation of partial derivatives could be useful here.

To illustrate the notion, if risk is measured by 1� τ3(1) and utility by the inverse

of the mean squared error loss 1/L1, then the UR ratio is:

UR(σ, ν) =
Utility(σ, ν)

Risk(σ, ν)
=

1/L1(σ, ν)

1� τ3(1 j σ, ν)

when m = 1 and α = 0. This UR ratio is shown graphically in the left-hand plot of

Figure 5.6 (using the byssinosis data used in the next section). The UR ratio in this

instance has a negative gradient, suggesting increasing σ leads to a less favourable

position in relation to the utility-risk trade-off. The UR ratio, however, depends on
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how risk and utility are measured; the use of other risk and utility functions would

yield different results.

Another way to present this notion of combining risk and utility is through a

utility-privacy plot, where utility is plotted against privacy. An example is given in

the right-hand plot of Figure 5.6, where utility is measured by 1/L1, standardized

such that 0 and 1 represent minimum and maximum utility, respectively; and privacy

is measured by 1 � τ3(1), such that all possible values lie within the unit square

[0, 1]� [0, 1]. The optimal position is at the point furthest from the origin, that is, the

point (1,1). Figure 5.6 shows that decreasing ν shifts the curve to the right, allowing

both higher utility and higher risk, suggesting that smaller ν is better in this instance.

Yet, care needs to be taken because other metrics would give different results. For

comparison, Figure 5.6 also includes the curve for when the Poisson-inverse Gaussian

(PIG) is used for synthesis. The PIG is “dominated” by the DGAF distribution in

the sense that the DGAF has both higher utility and privacy.
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Figure 5.6: Left: the UR ratio against σ for various ν. Right: a utility-privacy plot
where utility is measured by 1/L1 and privacy by 1-τ3(1). The optimal position is at
the point (1,1), which represents maximum utility and privacy.
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5.4 Application: syntheses of two contrasting cate-

gorical data sets

The effectiveness of synthesis methods depend on the nature of the data being

synthesized. Categorical data sets exist in a variety of forms: those originating from

surveys tend to have relatively few cells. Administrative categorical data sets, on

the other hand, tend to be much larger and sparser, with a higher proportion of

zero counts; they are more likely to contain structural zeros than survey data sets as

they are not prepared with statistical analysis in mind; and they are also more likely

to contain very large counts (in excess of 1000, say), as they can be more akin to

census data in terms of n, the number of individuals included. The effectiveness of

the DGAF, therefore, is demonstrated over two contrasting data sets. In addition to

the ESCsub data set, a large administrative database described in Section (3.5), a data

set derived from a survey of US cotton-industry workers relating to the respiratory

disorder, byssinosis, was also synthesized.

5.4.1 The byssinosis data set

Byssinosis, also known as Brown Lung, is a respiratory disorder caused by dust from

fibres such as cotton. Higgins and Koch (1977) introduced a categorical data set

arising from a survey of US cotton-industry workers. The survey had n = 5419

respondents and p = 6 variables. Among these variables, there was a clear response -

whether workers suffered from byssinosis - in addition to five categorical explanatory

variables relating to workers’ race, sex, smoking status, length of employment and

exposure to dust in the workplace. Table 5.2 provides a summary of these variables.
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Table 5.2: A summary of the variables in the byssinosis data set (Higgins and Koch,
1977).
Name Description Categories
BYSSINOSIS (Y ) Worker affected by byssinosis? yes=1, no=0
RACE (X1) Worker’s race non-white=1, white=0
SEX (X2) Worker’s sex female=1, male=0
SMOKING (X3) Worker’s smoking status smoker=1 non-smoker=0
EMPLOYMENT (X4) Worker’s employment in years < 10=2, 10-20=1, > 20=0
DUST (X5) Worker’s workplace’s dustiness most=2, less=1, least=0

The data can be expressed as a contingency table with 144 cells, of which 44 have a

count of zero, and none of which are structural zeros.

By contrast, the ESCsub data set, of course, has records for approximately n =

8.2 � 106 schoolchildren, and, as a contingency table, has approximately 3.5 � 106

cells, around 90% of which are zeros (again, none of which are identified as structural

zeros).

Figure 5.7 compares the cell sizes in the byssinosis and ESCsub data sets. The

ESCsub data set has a substantial proportion of zero counts, along with some very

large counts (note the faint mark for the > 100 bar). The cell sizes in the byssinosis

data, on the other hand, are more homogeneous; for example, there is roughly the

same number of counts in the 2-5 range as there are in the 21-50 range.

5.4.2 Generating the synthetic data sets

Both data sets were synthesized using the DGAF distribution and - for comparison -

the NBI distribution, using a range of tuning parameter values (for the DGAF, the

various combinations of σ = 0.5, 1 and 2 and ν = 0, -0.25 and -0.5; and for the NBI,

σNBI = 0.5, 1 and 2). For both distributions, three values of m were considered (3,

5 and 10) and α = 0.01 was added to all zero original counts (as no structural zeros
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Figure 5.7: A comparison of the cell sizes in the byssinosis and ESCsub data sets.

were identified).

The function rGAF from the R package gamlss.dist (Stasinopoulos et al., 2007) was

used to generate gamma family random variates, which in turn were discretized using

the mechanism in (5.4). Similarly, the function rNBI from gamlss.dist was used for

the NBI.

The byssinosis synthetic data sets were generated instantly, that is, the CPU time

was negligible. The synthesis was reasonably quick for the ESCsub, too, with a CPU

time of 66 seconds for the DGAF and 41 seconds for the NBI.

5.4.3 The results

The wild fluctuations in Figure 5.8 clearly demonstrate how the NBI applies too much

noise when synthesizing large counts. The DGAF, by contrast, applies roughly the

same noise as the NBI to small counts, but far less variability to large counts. This

immediately suggests the suitability of the DGAF for synthesis, where the general

objective is to perturb small counts without over-perturbing large counts. The top
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two plots of Figure 5.8 also show the role of the parameter ν when using the DGAF,

which is to reduce the noise applied to larger counts (the variability when ν = �0.1

is greater than the variability when ν = �0.5).

Before evaluating utility it is arguably more important to consider risk. When

evaluating risk in categorical synthetic data it is useful to focus on original counts

of one (uniques). The bar chart in the top-right of Figure 5.9 shows the range of

synthetic counts obtained from original counts of one for the ESCsub data set; the

bar height at one gives the empirical value of the metric τ3(1), the proportion of ones

that were synthesized to one, which was lower for the DGAF than for the NBI (0.16

vs. 0.25). The bars in Figure 5.9 would always be roughly the same regardless of

the data being synthesized: as the number of cells increases, these proportions would

tend towards their true values - which can be derived analytically, for example, for

the DGAF with a given σ and ν, the true value of τ3(1) is the probability of obtaining

a one from a DGAF(1, σ, ν) distribution - as simulation error is reduced.

Arguably more important from a risk perspective is τ4(1), the proportion of

synthetic counts of one that originated from a one. This proportion does change

- and quite considerably - with the data being synthesized, as demonstrated in the

bar charts in the top-right of Figures 5.10 and 5.11. For the byssinosis data set, the

empirical τ4(1) value was lower for the DGAF than for the NBI (0.30 vs. 0.67); while

the reverse occurred for the ESCsub data set (0.47 vs. 0.34). These differences stem

from the nature of the original data, particularly the number of zeros, in addition

to the differing distributional properties. Firstly, the DGAF has a much lower τ4(1)

value than the NBI when synthesizing the byssinosis data set, mainly because of

its lower τ3(1) value: fewer ones were synthesized to one, so it roughly follows that
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fewer synthetic ones originated from ones. For the ESCsub data, τ4(1) was higher

for the DGAF than the NBI, which was because, as discussed in Section 5.3.4, α is

less effective at converting zero original counts into non-zero synthetic counts - which

can be seen in the top-left bar chart of Figure 5.9 - resulting in fewer zeros being

synthesized to ones, thus fewer ones overall, thus increasing the probability that a

synthetic count of one originated from a one. The difference between the τ4(1) values

is smaller for the ESCsub data set than it is for the byssinosis data set suggesting that

the DGAF outperforms the NBI in relation to this metric.

The lower bar charts in Figures 5.9, 5.10 and 5.11 further demonstrate the

superiority of the DGAF with dealing with larger counts. For example, Figure 5.9

shows that, for original counts in the range 100 to 200, nearly all corresponding

synthetic counts were also in the range 100 to 200. Similarly, Figures 5.10 and

5.11 show that a substantial proportion of synthetic counts in the range 100 to 200

originated from counts in the range 100 to 200.

5.4.4 Evaluating specific utility

Aitkin et al. (2009) fitted a logistic regression (logit) model to the byssinosis data

set to assess the factors associated with developing byssinosis. After omitting

insignificant covariates through a process of backward elimination, and dichotomizing

the EMPLOYMENT and DUST variables by collapsing the “10-20” and “>20” and

“less” and “least” categories, respectively, the reduced model had six parameters: an

intercept, four main effects relating to each explanatory variable except RACE, and

an interaction between DUST and SEX.

This analysis was repeated on the synthetic data sets for various tuning parameter
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Figure 5.8: For a selection of original counts in the byssinosis data, m = 30
corresponding synthetic counts. The top plots relate to the DGAF and the lower
plot relates to the NBI.
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Figure 5.10: The range of original counts obtained for a given size of synthetic count
when synthesizing the byssinosis data set. The top left plot relates to synthetic counts
of 0; the top right to original counts of 1; the bottom plots to synthetic counts of 5-10
and 100-200.

127



Chapter 5. Further approaches to synthesis: the discretized gamma family
distribution

0

25

50

75

100

0 1 >1

Original count

P
e
rc

e
n
ta

g
e

Data

DGAF

NBI

Synthetic counts of 0

0

20

40

0 1 2−5 6−10 >10

Original count

P
e
rc

e
n
ta

g
e

Data

DGAF

NBI

Synthetic counts of 1

0

20

40

60

0 1−4 5−10 11−20 >20

Original count

P
e
rc

e
n
ta

g
e

Data

DGAF

NBI

Synthetic counts of 5−10

0

25

50

75

100

0 1−99 100−200 201−400 >401

Original count

P
e
rc

e
n
ta

g
e

Data

DGAF

NBI

Synthetic counts of 100−200

Figure 5.11: As per Figure 5.10 but for the ESCsub data set.
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Figure 5.12: The parameter estimates’ overlap for a model fitted to the original and
synthetic ESCsub data sets. The left and middle plots are for the DGAF and the right
plot is for the NBI.
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values. For each parameter, them > 1 point estimates q1, . . . , qm were averaged to give

an overall estimate q̄m, with some estimates that were essentially infinite discarded to

prevent biased averages. The variance of q̄m was estimated through Tp = bm/m+ v̄m

(Reiter, 2003), where bm is the sample variance of the m > 1 point estimates, and v̄m

is the mean of the point estimates’ variances. As this data set was reasonably large,

the estimates’ sampling distributions were approximated by normal distributions.

The confidence interval overlap (see Karr et al., 2006; Snoke et al., 2018) for the

parameter estimates obtained from the original and synthetic data using the DGAF

are given in Table 5.3. In general, for the DGAF reducing the variance by either

increasing m, decreasing σ or making ν more negative, yields estimates that are closer

to those obtained from the original data; for example, looking at β2, when σ = 0.5,

ν = �0.5 and m = 10, the overlap was 0.990, very close to 1. The overlap values for

the NBI are notably lower than those of the DGAF, with values ranging from 0.03 to

0.89 compared with 0.73 to 1.00.

In a similar way, a model was fitted to the original and synthetic ESCsub data sets.

Unlike the actual ESC data, which contains, for example, variables relating to pupils’

exam results, the ESCsub data set lacks a realistic response variable, so the analysis

used in Chapter 3 was repeated.

The confidence interval overlap for the log-linear model parameter estimates are

given as boxplots in Figure 5.12. The median overlap, for example, when using the

DGAF was always higher than that of the NBI. Interestingly, altering the DGAF

or NBI’s tuning parameter appears to have little effect on the overlap; for example,

for the DGAF with σ = 1, contrary to what one would expect, the median overlap

decreases as ν decreases. This can be attributed to simulation uncertainty.
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Figure 5.13: A utility-privacy trade-off plot when synthesizing the byssinosis data.
The optimal position - that is, the lowest risk and the highest utility - is the top-right
corner (the point (1,1)).

The results of these two analyses further emphasize how higher utility can be

achieved with the DGAF. Yet higher utility is meaningless without considering the

increase in risk. Figure 5.10 shows that τ4(1) - a measure of risk - is also lower for the

DGAF than the NBI when synthesizing the byssinosis data. Figure 5.13, for example,

gives a utility-privacy plot for the byssinosis data, where overlap (utility) is plotted

against 1 � τ4(1, 0.5) (risk). Points relating to the DGAF (denoted by circles), are

situated further away from the origin than the points relating to the NBI (denoted

by triangles), suggesting a better risk-utility trade-off.

5.4.5 Summary

Existing approaches for synthesizing data at the tabular level - including even the

approach set out in Chapters 3 and 4 - tend to use the Poisson or Poisson-based

distributions. Yet these distributions’ variances are always greater than or equal to

the the mean, and, as a result, more noise is applied to larger counts than smaller

counts. But this is contrary to the objective of data synthesis, where larger counts

are typically lower risk than smaller counts, and therefore require less perturbation.
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Table 5.3: The overlap for the parameter estimates from the original and synthetic
data.

β1 β2 β3 β4 β5 β6

σ = 0.5, ν = 0 0.970 0.987 0.843 0.984 0.996 0.857
σ = 0.5, ν = �0.25 0.978 0.970 0.955 0.959 0.992 0.945
σ = 0.5, ν = �0.5 0.965 0.992 0.922 0.862 0.979 0.951
σ = 1, ν = 0 0.958 0.984 0.802 0.925 0.920 0.824

m = 3 σ = 1, ν = �0.25 0.981 0.782 0.918 0.890 0.992 0.884
σ = 1, ν = �0.5 0.950 0.802 0.913 0.887 0.965 0.983
σ = 2, ν = 0 0.949 0.801 0.807 0.891 0.906 0.787
σ = 2, ν = �0.25 0.976 0.915 0.946 0.732 0.967 0.918
σ = 2, ν = �0.5 0.865 0.926 0.808 0.816 0.966 0.825

σ = 0.5, ν = 0 0.973 0.986 0.907 0.967 0.993 0.909
σ = 0.5, ν = �0.25 0.966 0.990 0.973 0.979 0.991 0.950
σ = 0.5, ν = �0.5 0.956 0.996 0.931 0.907 0.975 0.942
σ = 1, ν = 0 0.968 0.974 0.858 0.984 0.947 0.867

DGAF m = 5 σ = 1, ν = �0.25 0.993 0.934 0.891 0.980 0.994 0.888
σ = 1, ν = �0.5 0.964 0.858 0.951 0.882 0.993 0.990
σ = 2, ν = 0 0.920 0.903 0.805 0.938 0.868 0.789
σ = 2, ν = �0.25 0.889 0.914 0.926 0.845 0.894 0.883
σ = 2, ν = �0.5 0.922 0.794 0.836 0.919 0.933 0.835

σ = 0.5, ν = 0 0.980 0.996 0.919 0.960 0.957 0.927
σ = 0.5, ν = �0.25 0.992 0.963 0.966 0.994 0.998 0.967
σ = 0.5, ν = �0.5 0.975 0.990 0.955 0.977 0.981 0.962
σ = 1, ν = 0 0.960 0.934 0.921 0.992 0.955 0.926

m = 10 σ = 1, ν = �0.25 0.994 0.945 0.939 0.970 0.987 0.943
σ = 1, ν = �0.5 0.994 0.967 0.935 0.915 0.984 0.933
σ = 2, ν = 0 0.942 0.806 0.806 0.938 0.867 0.801
σ = 2, ν = �0.25 0.947 0.971 0.895 0.846 0.945 0.904
σ = 2, ν = �0.5 0.927 0.861 0.888 0.972 0.954 0.850

σ = 0.5 0.810 0.862 0.821 0.719 0.887 0.773
m = 3 σ = 1 0.251 0.031 0.809 0.619 0.736 0.756

σ = 2 0.641 0.186 0.850 0.664 0.661 0.824

σ = 0.5 0.746 0.808 0.852 0.781 0.890 0.837
NBI m = 5 σ = 1 0.679 0.416 0.785 0.701 0.593 0.599

σ = 2 0.616 0.642 0.794 0.590 0.701 0.782

σ = 0.5 0.801 0.877 0.853 0.720 0.863 0.850
m = 10 σ = 1 0.747 0.559 0.821 0.817 0.803 0.668

σ = 2 0.711 0.695 0.857 0.626 0.763 0.786
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This chapter, through focusing on the discretized gamma family distribution,

explores the ideal properties of a distribution used for synthesis. The DGAF provides

the synthesizer with control of the variance-mean relationship, which allows noise to

be applied more finely, thereby producing synthetic data with greater utility for a

given level of risk.

132



Chapter 6

Discussion

While this thesis has focused on the specific case of using a saturated synthesis model,

the benefits of this approach carry over to when a saturated model is not used.

Expected properties of synthetic data can still be derived or estimated, a priori,

when, for example, original counts are smoothed through a log-linear model. The

difference - downside - in this instance is that expected synthetic counts would not

be equal to the original counts, so metrics cannot be neatly expressed analytically.

This may not be a problem, though, if metrics are built into software. Similarly,

the benefits of the DGAF - and its ability to control the mean-variance relationship

- would carry over, because the notion of perturbing larger counts less than smaller

counts remains.

Chapters 3 and 4, in setting out the use of overdispersed count distributions, used

the negative binomial and Poisson-inverse Gaussian distributions for synthesis. Yet

such distributions - as well as other Poisson-based distributions and the Poisson itself

- are sub-optimal. Simply too much noise is applied to larger cell counts. The DGAF,

given its flexibility surrounding the mean-variance relationship, the intuitiveness of
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its parameters and not a great deal of extra overhead, is, quite frankly, more effective.

On a different note, the estimator Ts (Raab et al., 2016) used throughout this

thesis has a rather contentious history and continues to divide opinion in the privacy

community. Its advantage is obvious: it eliminates the need for m > 1. Its two

assumptions - two assumptions that are not required by its alternative Tp (Reiter,

2003) - are that the original data are a simple random sample and are sufficiently

large. The former, I think, is not too much of an issue; many data sets requiring

synthesis are simple random samples. It does need consideration in relation to

administrative data, though I believe there are solutions around this: for example, a

weighted subsample could be taken from the administrative data. The large sample

assumption, however, I have found to be more problematic. It is unclear when such

as assumption is reasonable, especially in relation to categorical data and contingency

tables. It appears to be linked to a wider issue with tabular data analysis that stretches

beyond synthetic data. For example, it is often unclear whether “sample size” in

tabular data sets should refer to the number of individuals n or the number of cells

K. This has implications when using, for example, the Bayesian Information Criterion

(BIC), which depends on n. Thus in turn can affect model selection. Incidentally,

I encountered this issue when working on a project in the area of Multiple Systems

Estimation, where selecting interactions is intrinsic to the estimates obtained for the

size of the unknown population. Using K rather than n is, I think, more intuitive in

categorical data, given that it is the counts that are modelled.

Throughout the empirical syntheses in this thesis, only variables at the pupil-

level were considered. The actual English School Census, though - as with other

administrative databases - has a hierarchical structure, with variables at a higher level
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of aggregation. Incorporating these higher-level variables into the synthesis presents

challenges from a modelling perspective. The use of saturated models within a

contingency table structure would naturally preserve relationships to a certain extent,

but an alternative would be to use a multi-level model.

This thesis has focused on the large, categorical nature of administrative databases.

Yet there are other considerations; some of which affect the ability to implement these

methods in practice.

For example, administrative databases may contain continuous variables, in

addition to categorical ones, and, of course, continuous data cannot be tabulated

in the same way as categorical data. Lindsey (1974) offers a way forward here,

though. Continuous observations can be viewed as observations from a multinomial

distribution and essentially treated as categorical. Or observations from a continuous

variable can be grouped, to provide a distinct set of categories. Intervals may need to

be created to categorize the continuous values. Incidentally, the interval widths would

be associated with risk: the smaller the interval, the greater the risk. Moreover, an

advantage of categorizing in this way is that the synthesizer can reduce the proportion

of zero cells by increasing or decreasing interval widths as appropriate. Note that

post-synthesis the data may need to be converted back to continuous, which can

easily be achieved by, for example, taking a draw from a uniform distribution where

the endpoints are the limits of the interval.

Moreover, skip patterns may present a problem in practice. These are a series of

questions that are only answered given responses from previously asked questions; for

example, in relation to the English School Census any questions relating to GCSEs

are only relevant to pupils in secondary schools. Essentially, skip patterns lead to
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structural zeros. A solution to this could be to split the table into parts and synthesize

each part separately, including structural zeros in the formulation. This would also

allow more variability to be applied to more sensitive parts of the table.

Unlike the multinomial-Dirichlet synthesis method, the Poisson and NBI models

cannot satisfy ε-DP - at least not without truncating the range of obtainable synthetic

counts. Yet, from a practical viewpoint, (ε, δ)-DP can provide similar risk guarantees

as well as greater flexibility. It needs to be remembered that the choice of ε and δ

are both policy decisions. For a given ε, setting δ = 0 provides, of course, a stricter

risk guarantee than δ > 0. Nevertheless, comparing between different ε and δ is

not straightforward: which is to be preferred, say, ε = 1 and δ = 0 or ε = 0.5 and

δ = 0.0001? Utilising the cumulative distribution functions of the Poisson and NBI

allow δ and ε to be found - and hence tuned - analytically.

There is no panacea for synthetic data generation. A compromise always needs to

be struck between risk, utility and, in the case of large data sets, computational

time. Different methods are, of course, suited to different data types and sizes.

CART models, for example, are effective in synthesizing data sets, comprising a

mix of continuous and categorical variables, and can easily be carried out via the

excellent R package. Yet when n is large, demands on memory makes it challenging,

computationally, to implement many methods. In such instances, for categorical data

it is more efficient to undertake the synthesis at the tabular level. Among these

approaches, the advantage of using a saturated model - rather than, for example, an

all two-way interaction log-linear model - is three-fold. They are quick, eliminate the

need to make modelling decisions and support an a priori approach to synthesis.

The demand - and need - for near-real-time data was highlighted during the Covid-
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19 pandemic. Synthetic data sets are a way to facilitate this, as mentioned in a recent

interview with the UK’s Deputy National Statistician (Tarran, 2022). Moreover, there

is a simultaneous interest in new data sources, such as administrative data. Thus

marrying the two - developing synthetic data methods for administrative databases

- is a topical and important area of research. The synthesis approach set out in this

thesis provides a way to undertake this, and will hopefully inspire further research in

this area.
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