
Delay-induced vibrational resonance in the

Rayleigh-Plesset bubble oscillator

K. A. Omoteso1, T. O. Roy-Layinde1, J. A. Laoye1, U. E.

Vincent2,3,‡ and P. V. E. McClintock3

1 Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Ogun State,

Nigeria.
2 Department of Physical Sciences, Redeemer’s University, P.M.B. 230, Ede, Nigeria.
3 Department of Physics, Lancaster University, Lancaster LA1 4YB, United

Kingdom.

Abstract. We examine the impacts of time-delay and phase shift between two

acoustic driving forces on vibrational resonance (VR) phenomena in the oscillations

of a spherical gas bubble. Using the approximate method of direct separation of the

motions, we obtain the equation of slow motion and the response amplitude, and

we validate the theoretical predictions with numerical simulations. We find that the

response amplitude of the system at the lower frequency varies periodically with respect

to the phase shift. When the phase shift consists of an even number of periods, it can

be optimized to enhance the system’s response in the relevant parameter space of

the high-frequency driving force. In addition to the enhancement of the VR peak by

variation of the phase shift, our results show that the time-delay also plays a significant

role in the bubble’s response to dual-frequency acoustic driving fields. It and can be

exploited either to suppress drastically, or to modulate, the resonance peaks, thereby

controlling the resonances. Our analysis shows further that cooperation between the

time-delay and the amplitude of the high-frequency component of the acoustic waves

can induce multiple resonances. These results could potentially be exploited to control

and enhance ultrasonic cleaning processes by varying the time-delay parameter in

the presence of phase shifted dual-frequency acoustic waves. Moreover, it could be

employed to achieve improved accuracy in ultrasonic biomedical diagnosis and tumour

therapy, as well as for targeted delivery of reagents transported within bubbles.
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1. INTRODUCTION

Nonlinear systems driven by external forces are abundant in both the natural and

technological contexts [84], and many of them are known to be time-delayed. They

range from physical, electronic and communication engineering systems to ecological

and epidemiological models [5,26,48,61,65]. A nonlinear dynamical system is said to be

time-delayed when the evolution of its state variable is dependent on part of its history.

Time-delay may appear in different forms due to processing delays leading to memory

effects, or as a result of finite velocities of signal propagation, and it has been a subject

of intense research for a long time [48, 65]; the existence of a phase shift between a

system’s periodic response and the periodic force(s) driving it is of course well known

in physics, including in stochastic resonances [25].

In the analyses of this interesting class of systems, the effects of time-delay and

phase shift have been investigated independently. On the one hand, time-delay can

indeed impact significantly on the system’s dynamics and general efficiency, leading

to the occurrence of intriguing varieties of dynamical phenomena including, but not

limited to, strange nonchaotic attractors, hyperchaos, novel bifurcations, amplitude

and oscillation death, stochastic dynamics, synchronization enhancement and pattern

formation [48, 65]. On the other hand, the transmission, detection and enhancement

of signals and coded information, as well as of energy, may be associated with time

or with phase or with both. Thus, investigating the combined effects of time-delay

and phase shift on dual-frequency-driven bubble oscillators in the context of vibrational

resonance (VR) is essential for understanding a wide range of industrial applications of

the physics of bubbles which, in many instances, are time-delayed [35,36,60,67]. Many

acoustic cavitation effects require that the complex behaviours, often manifesting as

chaotic dynamics, are suppressed to ensure optimization of the bubble processes. Such

applications are found in, for example, material science where bubbles can exert strong

forces able to lift extraneous dirt particles from surfaces. Research on bubble dynamics

is also motivated in part by the need to improve the efficiency of sonochemical reactors

as well as for increasing the maximum photocurrent by means of dual-harmonics [38]. In

addition, dual-frequency-driven bubbles can be used in synthesis with nanoparticles [57],

sonoluminescence [45], measurement of bubble density in water [62,78,79], measurement

of fluid pressure [76], measurement of bubble size distributions [81], measurement

of dynamic variations of bubble radii during oscillations [27, 70], and in ultrasound

to improve the accuracy and efficiency of biomedical diagnosis, especially in tumour

therapy [3, 32, 77, 89, 97–100].

The action of periodic driving forces on nonlinear systems can, in general, lead to

the emergence of special types of nonlinear phenomena such as nonlinear resonances,

which has been a longstanding research problem due to their occurrence in nearly

every field [5, 65, 84]. Among the various forms of nonlinear resonance occurring

in mechanical, electrical and biological systems, stochastic and vibrational resonance

phenomena are of particular interest and importance. They are strongly connected
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because dual-frequency forcing is required in each case for their occurrence [9,47,85,86].

Stochastic resonance is induced by noise driving [24, 28]; while vibrational resonance

is a deterministic phenomenon that occurs when there is cooperation between low-

frequency and high-frequency harmonic forces driving a nonlinear system [1, 12, 49,

65]. During the last two decades, following its first observation by Landa and

McClintock [49], VR has gained continuously increasing research attention due to its

potential industrial and biomedical applications in a wide range of contexts, including

bistable systems [2, 13, 21, 22], multistable systems [12, 64], systems with various forms

of potential structures [1, 42], linearly damped systems [5, 65], electrical circuits and

time-delayed systems [20, 40, 90, 91], as well as plasma models [50, 71, 72]. Early studies

of VR focused on the parameters of the high-frequency component of the dual-frequency

force. Recently however, attention has also been given to other features and parameters

of the system including e.g. nonlinear damping/dissipation [50, 71, 72], the effect of

time-delay [17, 88] and fractional derivatives [23, 33], antiresonance [74], the depth of a

potential and the location of its minimum [11], the effects of potential roughness [50]

and potential deformation [87], as well as variation in mass [80]. More importantly, VR

has been realized experimentally in vertical cavity surface emitting lasers and optical

systems [12–15]. These investigations have enriched our understanding of the VR

phenomenon, its mechanism, and the roles played by relevant system parameters in

inducing or promoting VR, as well as in suggesting potential real-life applications in

areas, such as ecological systems [41], liquid crystals [30], neural dynamics [8], energy

detectors [69] and energy harvesting from mechanical vibrations [18, 19], electronic

circuits and logic gates [44, 56, 82, 83], a nano-electromechanical resonator [16], and

a thermo-optic optomechanical nanocavity [55].

Studies of vibrational resonance in bubble oscillators driven by amplitude-

modulated acoustic fields [59] are relatively new, although a diversity of complicated

resonance patterns due to variations of amplitude and frequency, such as combination

and simultaneous resonances, were reported a little earlier, involving the acoustic

cavitation of bubbles under dual-frequency acoustic fields [98]. In neither of these

works [59,98] was consideration given to the effect of time-delay on the bubble oscillation.

Furthermore, the bubble oscillator model in [59] did not consider the impact of a phase

shift between the acoustic waves. To the best of our knowledge, the combined influences

of time-delay and phase shift on VR have not hitherto been examined or reported.

Investigating such effects is important because it promises to illuminate the industrial

applications of cavitation effects beyond the already well-known applications of delayed

dynamical systems in other fields such as in lasers, telecommunication devices, and in

uncovering certain mechanisms of brain dynamics [20, 40, 90, 92]. For instance, time-

delayed VR in bubbles oscillating in liquids within appropriate parameter regimes could

enable control of the time interval between the sub-micron bubble growth and collapse,

which could be exploited to enhance the efficiency of ultrasonic cleaning. Our analysis

of VR is based on a time-delayed nonlinear Rayleigh-Plesset bubble model driven by

two acoustic waves, with a large difference in their frequencies, and with a phase shift
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between the two driving acoustic waves. The effect of the phase shift on the dynamics

of bubble oscillations should not be overlooked. It is well known that phase shift can

impact on the acoustic pressure distribution, the energy dissipation, and the production

of radicals; and it can also be employed to eliminate chaotic oscillations of the bubbles

in connection with chaos control techniques based on periodic perturbations [89,94,95].

Note that the application of acoustic cavitation in cleaning processes involves the

activation of sub-micron bubbles: dirt particles are lifted from surfaces through the

action of strong forces exerted by the bubbles [7, 10].

Motivated by the above considerations, as well as by the numerous potential medical

and industrial applications of time-delay and phase shift on bubble dynamics, the present

paper focuses on the effects of constant time-delay, as well as of phase shift, on the

vibrational dynamics of bubble oscillations. Its highlights include observation of a

periodic variation in the response amplitude of the bubble oscillator with respect to

the phase shift; and enhancement of the VR peak with variation of the phase shift and

time-delay, in a cooperative fashion. The latter can be exploited, either to drastically

suppress, or to modulate the resonance peaks, thereby controlling the resonances. The

rest of the paper is organized as follows: In Section 2, the bubble oscillator model under

investigation is presented and described. Section 3 discusses both the theoretical and

numerical results. The paper is concluded in Section 4.

2. Model Description

We now consider small amplitude oscillations of a spherical gas bubble in an

incompressible liquid. The Rayleigh-Plesset equation [68] can be used to derive the

equation of motion of the bubble, taking into consideration relevant parameters of

the surrounding liquid. The properties of the liquid are appropriately specified in

formulating the model equations; while those of the spherical gas bubble are variables

such as its size and shape, including the instantaneous bubble radius R, whose variation

with time can be determined. Other parameters of interest are the bubble’s equilibrium

radius R0, the external pressure in the liquid Pext, and the pressure inside the bubble

Pin. In addition, we denote the polytropic exponent of the gas in the bubble as κ; while

ρ, µl, µth, and σ are the density, the liquid and “thermal” viscosity, and the surface

tension of the liquid, respectively.

The Rayleigh-Plesset equation [29, 52, 58, 63, 68] for bubble oscillations in

incompressible liquids can be expressed as;

RR̈ +
3

2
Ṙ2 =

1

ρ
[Pext(Ṙ, R, t)− Ps(t)], (1)

where

Pext(Ṙ, R, t) = Pin −
2σ

R
− 4µl

R
Ṙ, (2)

and

Ps(t) = P0[1 + ǫ cosωt]. (3)
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The periodic function ǫ cosωt is considered to be a weak acoustic driving force. Pin in

Eqn. (2) is given as,

Pin = Pin,eq + P0p(Ṙ, R, t), (4)

with

Pin,eq = P0 +
2σ

R
,

P0p(Ṙ, R, t) = Pin,eq[(
R0

R
)3κ − 1]− 4µth

Ṙ

R
,

P0p(Ṙ, R, t) = Pin,eq[(
R0

R
)3κ − 1]− 4µthẋ ≈ −3κPin,eqx− 4µthẋ. (5)

Substituting Eqns. (2)-(5) into Eqn. (1), and redefining the variable R as R =

R0(1 + x), x being a dimensionless quantity proportional to the bubble radius R, the

Rayleigh-Plesset equation (1) in terms of the system’s potential then becomes [59]

ẍ+ αa(x)ẋ+ αb(x)ẋ
2 +

dV (x, t)

dx
= δǫ cosωt, (6)

with αa(x) = α0−α1x+α2x
2−α3x

3+α4x
4, αb(x) =

3

2
(1−x+x2) and the time-dependent

potential V (x, t) given as

V (x, t) = − 1

2
x2(β − δǫ cosωt) +

1

3
x3(γ − δǫ cosωt)− γ

4
x4 +

λ

5
x5 (7)

The dimensionless parameters in Eqns. (6) and (7) are defined as;

α0 =
4(µth + µl)

ρR2
0

, α1 =
4(µth + 2µl)

ρR2
0

,

α2 =
4(µth + 3µl)

ρR2
0

, α3 =
8µl

ρR2
0

, α4 =
4µl

ρR2
0

,

β =
1

ρR2
0

[
2σ

R0

(1− 3κ)− 3κP0], δ = − P0

ρR2
0

, (8)

γ =
1

ρR2
0

[
2σ

R0

(2− 3κ)− 3κP0], λ =
2σ

ρR3
0

.

From Eqn. (7), β, given by Eqn. (8) is the square of the natural resonant frequency

of the system. This closely resembles the results reported by Ida [39] and Zhang [96].

In the literature,
√
β is also known as the partial or linear natural frequency of the

bubble [39, 59, 96, 99].

Notably, the equilibrium radius of the bubble takes on a wide range of values from

below a micrometre up to several millimetres [46,51–53,96] depending on the generating

mechanism [52]. The magnitudes of the dimensionless parameters were obtained

using the following constant values: κ = 1.3, σ = 0.0725 N/m, µth = 0.001 Pa.s,

ρ = 998 kgm−3, µl = 0.001 Pa.s, P0 = 1 atm and R0 = 10 mm.



Delay-induced vibrational resonance in the bubble oscillator 6

For acoustically driven bubble oscillators, it is reasonable to assume that the

displacement of the bubble is very small (x ≪ 1) because the amplitude of the driving

force is in practice usually weak (ǫ≪ 0.1) [39,59,97]. Setting η = 3

2
, and assuming that

β and γ are much greater than δ, with ǫ ≪ 0.1, the bubble oscillation can be reduced

to

ẍ+ ẋ[α0 − α1x+ α2x
2 − α3x

3 + α4x
4] + ηẋ2(1− x+ x2) +

dV (x)

dx
= δǫ cosωt,

(9)

with the potential written as,

V (x) = −β
2
x2 + γ

(

1

3
x3 − 1

4
x4
)

+
λ

5
x5. (10)

In the absence of the external acoustic fields and time-delay, the system potential given

by Eqn. (10) admits two types of potential structure, dependent on the values of β, γ

and λ. For instance, with β = 145, λ = 14.5 and γ = 32.9, the potential is a single-well-

single-hump potential. However, when β = 14.5, λ = 14.5 and γ = −32.9, the potential

is an asymmetric double-well-double-hump potential. Figure 1a(i) depicts a single-well-

single-hump potential structure with β = 145, λ = 14.5 and γ = 32.9, while Fig. 1b(i)

shows an asymmetric double-well-double-hump potential for β = 14.5, λ = 14.5 and

γ = −32.9. For further details, see our recent paper [59], where the potential structure

and its connections to the stability of the system were comprehensively discussed.

Throughout the present paper, we employ parameters for which the potential is of

single-well form in order to illustrate the impacts of time-delay and phase shift.

If the amplitude of the acoustic force, δǫ cosωt in Eqn. (9) is such that f = |δǫ|, we
can then write Eqn. (9) as

ẍ+ ẋ[α0 − α1x+ α2x
2 − α3x

3 + α4x
4] + ηẋ2(1− x+ x2)

− βx+ γ(x2 − x3) + λx4 = f cosωt. (11)

Eqn. (11) describes the dimensionless nonlinear Rayleigh-Plesset bubble oscillator, with

β being the natural oscillation frequency of the system. α0, α1, α2, α3 and α4 are the

linear and nonlinear damping parameters arising from the thermal and liquid viscosity

of the liquid in which the bubble oscillates [96].

To investigate the occurrence of VR in the system given by Eqn. (11), the system

is perturbed with a high-frequency acoustic force g cos(Ωt + φ), with Ω being the

high-frequency component of the perturbation and φ a phase shift between the two

commensurate acoustic driving forces. In acoustic cavitation applications, or in fields

where the cavitation effect is very pronounced, suppressing the chaotic oscillations

in bubble dynamics is of primary importance in controlling the bubble response and

increasing its predictability. In this regard, the multiple-frequency excitation approach

has numerous advantages. For instance, in sonoluminescence and sonochemistry, it

has been employed in eliminating standing waves, reducing the cavitation threshold,
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and improving the chemical reaction efficiency, as well as for the effective control of

cavitation processes [98, 99].

We now focus on the effects of time-delay and phase shift on the VR phenomenon.

Accordingly, a constant time-delay parameter (ζ) is introduced into Eqn. (11) in addition

to high-frequency acoustic signal g cos(Ωt+ φ), so that the dynamics becomes

ẍ+ ẋ[α0 − α1x+ α2x
2 − α3x

3 + α4x
4] + ηẋ2(1− x+ x2)− βx(t− ζ)

+ γ(x2 − x3) + λx4 = f cosωt+ g cos(Ωt + φ). (12)

Bubble oscillations in a liquid occur at a natural oscillation frequency that depends

on the difference between the average bubble radius and the equilibrium radius

corresponding to that pressure. Following a pressure change, the equilibrium radius

is approached with an effective time lag. We take account of this lag by introduction of

the constant time-delay parameter (ζ) associated with the linear natural frequency term

of the oscillating bubble. Because pressure variations could lead to additional resonance,

variations in the time-delay could also shed more light on the bubble behavior. This

is why we have chosen to introduce ζ only in the linear term x in Eqn. (12) which

is connected directly to the parameter defining the natural resonant frequency of the

bubble. Indeed, it turns out that the delay parameter ζ enhances significantly the

bubble’s response to dual-frequency acoustic driving fields.

On the one hand, the phase shift can be introduced and adjusted appropriately in

accordance with phase control techniques for nonlinear systems employing bi-periodic

signals [89,94,95]. In bubble dynamics, it has previously been shown that the growth or

collapse of bubbles is dependent on the phase difference between the sound fields [31,34].

In the following analysis and discussion, we show that the response amplitude of the

bubble system at the low frequency varies periodically with respect to the phase shift

when the phase shift consists of an even number of periods, and can be optimized to

enhance the system’s response in the appropriate parameter space of the high-frequency

driving force.

3. Results and Discussions

We begin by examining the structure of the effective potential V (χ) which has been

derived in the Appendix and given by Eqn. (39). V (χ) is shown in Figs. 1a(ii) and

b(ii) for the corresponding parameter values of Fig. 1a(i) and b(i) respectively. For the

five values of the amplitude of the fast acoustic wave, g = 20, 150, 250, 330 and 400

considered, the effective potential mimic the systems potential with g = 20 as depicted

in Figs. 1a(ii) and b(ii). As expected from Eqn. (39), C4 and C5 reduces to β and

γ, respectively, for small values of g. The system’s effective potential illustrated in

Figs. 1a(ii) and b(ii) for higher values of g indicate that decrease in the amplitude of

high frequency acoustic wave, increases the degree of skewness of the system’s potential.

It is also obvious from the figures (1a(ii) and b(ii)), that further increment in the value
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Figure 1: a(i) The single-well-single-hump potential structure of the bubble oscillator

with β = 145, γ = 32.9, λ = 14.5; a(ii) effective potential corresponding to slow

motion of the system for five different values of the amplitude of the fast acoustic

field (g = 20, 150, 250, 330 and 400), with Ω = 20ω and other parameters fixed as in

a(i); b(i) the asymmetric double well potential of the dimensionless bubble oscillator

with β = 14.5, γ = −32.9, λ = 14.5 ; b(ii) The effective potential structure of the

bubble oscillator for five different values of the amplitude of the fast acoustic field

(g = 20, 150, 250, 330 and 400), with Ω = 10ω and other parameters fixed as in b(i).

of g would energize the particles of the bubble, thereby enabling them to overcome the

potential barrier created in the neighborhood of x = 0 and x < 0. More details on the

structure of the effective potential and the relationships between the potential barriers

(humps) and the energy of the bubble particles can be found in Ref. [59].

Next, we examine both the analytically and numerically computed results for the

response amplitude. In practice, the analytical response amplitude of the system can

be estimated from the values of χ obtained by direct integration of Eqn. (38) (see

Appendix ). This can be done using any standard numerical integration scheme, such
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as the fourth order Runge-Kutta scheme which we have employed here. This approach

is particularly effective for strongly nonlinear systems. Alternatively, the analytical

response amplitude Q can also be obtained by considering the system’s vibrations due

to a deviation Y = χ−χ∗ of the slow motion χ from the equilibrium point χ∗. Due to the

complexity of the bubble dynamics, and for convenience in examining the influences of

the phase and time-delay on the occurrence of VR in the system described by Eqn. (12),

the analytical response amplitude was computed from Eqn. (38). The numerical results,

on the other hand, were achieved by first expressing the bubble oscillator Eqn. (12) as

the following set of two coupled first-order delayed differential equations (DDEs) written

as

dx

dt
= y

dy

dt
= − y[α0 − α1x+ α2x

2 − α3x
3 + α4x

4]− ηy2(1− x+ x2) + βx(t− ζ)

− x2γ + γx3 − λx4 + f cosωt+ g cos(Ωt + φ). (13)

Eqn. (12) was then numerically integrated and the response amplitude Q and phase

θ, respectively, were computed from the expressions:

Q =

√

A2
S + A2

C

f
(14)

and

θ = −tan−1

(

AS

AC

)

. (15)

The response of the bubble oscillator given by is the amplitude of the sine and

cosine components of the output signal, and the numerical values of AS and AC are

related to the Fourier spectrum of the time series of the variable x computed at the

frequency ω, as follows;

AS =
2

nT

∫ nT

0

x(t) sinωt dt = 0,

AC =
2

nT

∫ nT

0

x(t) cosωt dt = 0. (16)

In Eqn. (16), T = 2π
ω

is the oscillation period of the low frequency input signal with

n = 1, 2, 3 . . . being the number of complete oscillations. A zero initial condition was

used for the various computations, and the other fixed parameter values were α0 = 0.08,

α1 = 0.12, α2 = 0.16, α3 = 0.08 and α4 = 0.04. In addition, the following parameter

values were fixed while computing the resonance diagrams; ω = 5, Ω = 20ω, β = 145,

γ = 32.9, λ = 14.5, f = 0.01 and g = 5. In all the plots, the continuous curves represent

the numerically-computed Q from Eqn. (13) using Eqn. (14), while the analytically

calculated Q from Eqns. (38) and (14), are indicated by dashed lines with marker points.
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Figure 2: (a) Response Q against φ the phase shift of the fast acoustic force with

ω = 5, Ω = 20ω, β = 145, γ = 32.9, λ = 14.5, f = 0.01, g = 5 and ζ = 0.5 with

other parameters fixed. Continuous curves represent the numerically-computed Q from

Eqn.(13) using Eqn. (14), while the analytically calculated Q from Eqn. (38) and

Eqn. (14), are indicated by marker points with broken lines; (b) Repeated pattern of

the response Q as a function of the amplitude g of the fast acoustic field with other

parameters fixed as in (a).

3.1. Phase shift effect on vibrational resonance

We begin our numerical investigation of the VR phenomenon in the delayed bubble

oscillator by considering the effect of the phase shift between the two acoustic fields

on the response of the system, which is one of the main foci of this paper. It has

been reported that bubble growth or collapse depends on the phase difference between

acoustic waves [31, 34], and that the phase shift can be adjusted to control the chaotic

dynamics of acoustically driven bubbles, thereby giving rise to regimes where their

chaotic behavior could be stabilized [4, 37]. In the numerical simulation results and

discussions that follow, we show that the phase shift can impact significantly on the

occurrence of VR. This result has not been reported previously. Due to the complexity

of the bubble dynamics and for convenience, the influence of the phase and the time-

delay on the occurrence of VR in the system described by Eqn. (12) was examined by

integrating Eqn. (38) to obtain values of x(t) – from whence the theoretical response

amplitude Q was computed. In both the numerical and theoretical calculations, the

system response Q was calculated from Eqn. (14).

Fig. 2(a) demonstrates excellent agreement between theoretical prediction and the

numerical simulation results. However, the observed features of the bubble’s response to

phase shift show significant departures from earlier reports on VR mechanisms [43, 72,

90,93]. In Fig. 2(a), it is clearly evident that the response amplitude exhibits a periodic

pattern in multiples of 2π, indicating a significant response to variations in the phase

shift. In addition, it is obvious from the analytical expression given by Eqn. (38), that
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the phase parameter φ only appears in C7 = g sin(φ), implying that the parameter C7

is also 2π-periodic. This is illustrated in Fig. 2(a) by broken-lines with green hexagram

markers. By comparing the numerically and analytically computed system response

amplitude Qφm
with the variation of C7, we can validate the 2π-periodicity of Q as shown

in Figure 2(a), assuming that φ0 = 0 and φm = φ0+2mπ, with m = 1, 2, 3, 4, . . .. The

continuous lines in Fig. 2(a) shows the repeated periodic response amplitudes Qφ0
, Qφ1

,

Qφ2
, Qφ3

, Qφ4
, and Qφ5

corresponding to φ = 0, 2π, 4π, 6π, 8π and 10π, respectively.

The repeated pattern is further confirmed in Figure 2(b) where we have plotted the

dependence of Q on the driving amplitude g for different values of φ.

At this point, it is worth mentioning that in most of the oscillators investigated

for VR, the impact of phase shift has been neglected or overlooked because they do

not exert a meaningful influence on the occurrence of VR. In the bubble oscillator,

however, the scenario is different. Maximum peaks occurred and were observed for

phase shifts corresponding to nπ
2
, n being odd integers. Although the system can

respond appreciably to the dual-frequency acoustic fields for all values of n, the periodic

nature of the resonance curves shows that only odd periods of nπ
2
give rise to a maximal

response. This implies that, in situations where optimization of the VR phenomenon is

essential in the bubble oscillator, odd values of n should be chosen. This complements

the well established fact that, in bubble systems, the driving frequency of the external

acoustic wave matches the bubble’s natural frequency when the phase shift between

the bubble’s pulsation and an external sound wave is π
2
[39, 54]. Correspondingly,

Q = 1√
S

in the linearized equation of the system given by Eqn. (42)(see Appendix ),

where S = (ω2
r−ω2)2+C2

0ω
2, with C0 being the linear dissipation parameter. Therefore,

Q attains its maximum provided S is minimum, implying that (ω2
r − ω2)2 + C2

0ω
2 is

minimum. Thus, ωr = ω at resonance, and from Eqn. (40), C0 can only approach zero

(C0 → 0). This implies that the contributions of the thermal and liquid viscosity are

negligible compared to the parameters of the fast acoustic fields, but not exactly zero,

hence, validating the condition for the occurrence of VR. Otherwise, VR would not be

observed because the condition would reduce Eqn. (42) to a linear differential equation.

To complete this section, we reveal in Fig. 3(a) the dependence of the response

Q on both the phase shift φ and the amplitude g of the high-frequency component

of the acoustic waves. We computed this in the range (φ, g) ∈ [(0, 10π), (0.0, 600)],

with Ω = 20ω; while other parameters were fixed as before. The red areas in Fig. 3(a)

indicate regimes of strong enhancement corresponding to phase differences of nπ
2
, with

g = 400. The system resonates for g > 100, with a peak appearing at g = 400, and

approaches a nonzero limiting value for g > 500. This is obvious in Fig. 3(b) where we

have zoomed a small region of Fig. 3(a) to capture the hidden features within a short

range of the phase difference. The plot expands a suitable parameter space with a good

choice of φ and g values, yielding optimal enhancement of the system’s response. This

could have applications in sonochemistry, where selection of the parameter values of the

high-frequency component of the acoustic field is desirable to optimise performance.
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Figure 3: (a) Surface plots of Q against φ and g with ω = 5, Ω = 20ω, β = 145, γ =

32.9, λ = 14.5, f = 0.01 and ζ = 0.5 showing that the system resonates for g > 100,

with a peak located at g = 400, and approaches a nonzero limiting value for g > 500.

The red areas indicate regimes of strong enhancement corresponding to phase differences

of nπ
2
. (b) is the zoom of a restricted region of (a) capturing the important and hidden

features of the resonance diagram (i.e. the peak and the depth) within a short range of

the phase difference φ.
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Figure 4: (a) Dependence of Q on g for different values of time-delay (ζ = 0.10, 0.20,

0.60, 1.50 and 3.0), showing significant enhancement of the response with the attainment

of a peak value of Q ≥ 70, over a wide range of amplitudes of the fast acoustic field

for φ = 1.17π while keeping other parameters values fixed. (b) The dependence of Q

on φ for different values of the time-delay (ζ = 0.50,0.60, 0.70, 0.80, 0.904, and 1.00)

at g = 5, and other parameters fixed and illustrating different resonance pattern for

smaller values of g, with the attainment of a plateau of semi-circular shape - indicating

the control impact of ζ . The continuous curves represent the numerically-computed Q

from Eqn. (13) using Eqn. (14), while the analytically calculated Q were obtained using

Eqn. (38) and Eqn. (14), are indicated by marker points with broken lines.
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3.2. Time-delay Vibrational resonance

Figure 4(a) plots the response amplitude Q versus the amplitude of the high frequency

driving field g for different values of time-delay (ζ = 0.10, 0.20, 0.60, 1.50 and 3.0),

with φ = 1.17π keeping other parameters fixed. Here, the response amplitude Q of the

delayed bubble system is greatly enhanced as indicated by the first peak of the curves

corresponding to ζ = 0.10. In addition, the system’s response is greatly improved,

attaining a peak value of Q ≥ 70, spanning through a wide range of amplitudes of

the fast acoustic field [g ∈ (0, 500)], indicated by the almost saturation window, and

quickly dropping to zero when g > 500. However, increasing the value of the time-delay

ζ drastically suppresses Q with corresponding compression in the range of g values

for which enhancement occurs. At ζ = 1.5, the shape of the resonance peak changes

and shifts towards lower g values. In addition, Fig. 4(b) shows the dependence of the

system’s response on the phase shift for six different values of the time-delay (ζ = 0.50,

0.60, 0.70, 0.80, 0.904, and 1.00) in the short range [φ ∈ (0, 3π)]. In this case, the

system exhibits a different resonance pattern for smaller values of g - attaining a plateau

of semi-circular shape, implying that the resonance peaks as well as their shapes can

be controlled effectively by adjustment of the time-delay, ζ . As clearly illustrated in

Fig. 4(b), the periodically varying resonance shown in Figs. 2(a) and 3(a), is optimally

enhanced for even periods corresponding to nπ
2
. Moreover, increasing the value of time-

delay suppresses the system’s response, whereas the response is enhanced at the odd

periods of nπ
2
, with fixed Q = 9.5 even when ζ varies. Figure 5(a) displays the response

amplitude Q versus the amplitude of the high-frequency acoustic field for different values

of the time-delay. Here, the response amplitude is significantly enhanced at lower values

of ζ , and experiences gradual suppression with increase in ζ . This effect is similar to

that shown in Fig. 4(b) for fixed value of g, showing that the system’s response at the

lower frequency ω can be controlled by a gradual variation of the time-delay ζ .

Note that Heckman et al. [36] showed earlier that time-delay in the oscillations of

one bubble during the process of signal transmission to another bubble through their

surrounding liquid medium (i.e. delayed coupling) shifts the stability of the bubble

dynamics from stable equilibrium to an unstable state, provided that the delay time

is sufficient. However, in most multistable mechanical systems the dynamics of the

system is independent of the time delay. For instance, Rajasekar and Sanjuán [66],

showed theoretically that both the dynamics and the response amplitude of the Duffing

oscillator are independent of the time-delay parameter, even when coupled. This

significant departure from previous results may be attributable to the complex and

nonlinear structure of the interaction between bubble oscillators, which we will report

in a forthcoming paper. It thus suggests that the bubble oscillator, although exhibiting

a plethora of properties that are common to all nonlinear systems, has certain features

that are peculiar to itself and therefore requires individual research attention. The

occurrence of time-delayed vibrational resonance phenomena in bubbles implies that

certain cavitation effects could be controlled by utilizing time-delay. Thus, oscillation
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Figure 5: (a) The response Q against the amplitude of the fast acoustic field with varying

time-delay ζ , and φ = 3

2
π and other parameters fixed showing significant enhancement

at lower values of ζ , and gradual suppression with increase in ζ ; (b) The response Q

against the amplitude of the fast acoustic field with varying φ, and ζ = 1.2. Continuous

curves represent the numerically-computed Q from Eqn.(13) using Eqn. (14), while the

analytically calculated Q from Eqn. (38) and Eqn. (14), are indicated by marker points

with broken lines.

control of the bubble dynamics could be employed to adjust the resultant response of

the system. Notably, for fixed value of the delay, the response amplitude Q plotted as

a function of g is enhanced by increasing φ, as depicted in Fig. 5(b).

Next, we discuss the effect of a variation in amplitude of the high-frequency

component of the acoustic field on the dependence of the response amplitude Q on

the time-delay parameter. This is shown in Fig. 6(a), for φ = 1.17π keeping other

parameters fixed. It is evident that, maximizing the amplitude of the high-frequency

component of the acoustic waves suppresses the system’s response amplitude, with the

occurrence of resonance peaks at lower values of ζ (ζ ≤ 0.5). Remarkably, when g

becomes large (typically g ≥ 5.00), multiple VR peaks appear. This is further illustrated

in Fig. 6(b) which presents a three-dimensional plot showing the dependence of Q on the

amplitude of the fast acoustic field g and the time-delay parameter ζ . The parameter

regime in which the multiple resonance peaks occur could be identified. For instance,

for g ≥ 500 and ζ ≤ 2.0, two resonance peaks arise. Moreover, for g → 1000 with

ζ > 2.0, a third resonance peak gradually emerges. Thus, additional resonance peaks,

with considerable enhancement of response amplitude of the output signal of the system

at the low frequency ω occur only for large values of g and low values of the delay time

ζ .
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Figure 6: (a) The dependence of Q on the time delay parameter ζ with φ = 1.17π

showing that maximizing the amplitude of the high-frequency component of the acoustic

waves suppresses the system’s response amplitude, with peaks occurring at lower values

of ζ (ζ ≤ 0.5). Continuous curves represent the numerically-computed Q from Eqn.(13)

using Eqn. (14), while the analytically calculated Q from Eqn. (38) and Eqn. (14),

are indicated by marker points with broken lines; (b) Three-dimensional plot showing

the dependence of the response amplitude Q on g and the delay parameter ζ , with the

appearance of multiple VR peaks as g becomes progressively large (typically g ≥ 5.0),

for φ = 1.17π and Ω = 10ω. Two resonance peaks are evident for g ≥ 500 and ζ ≥ 2.0.

4. Concluding Remarks

In this paper, we have examined the impacts on VR phenomena of having a constant

time-delay in the oscillations of a dual-frequency-driven spherical gas bubble, under

conditions where there exists a phase shift between the low and high frequency acoustic

driving forces. We presented theoretical results based on the method of direct separation

of the fast and slow motions, complemented with numerical simulations. We analyzed

VR, focusing on the influence of time-delay and phase shift on its occurrence. In addition

to enhancement of the VR peak by variation of the phase shift, we find that the response

amplitude of the system at low frequency varies periodically with respect to the phase

shift when the phase shift consists of even-periods, implying an optimization of the

system’s response. Furthermore, time-delay also plays a significant role in the response

enhancement and can be exploited either to suppress drastically or to modulate the

resonance peaks, thereby controlling the resonances. Further analysis reveals that the

cooperation between the time-delay and the amplitude of the high-frequency component

of the acoustic waves can induce multiple resonances.

These results could be exploited to control ultrasonic cleaning by varying the

time-delay parameter in the presence of phase shifted dual-frequency acoustic waves.

Moreover, the efficiency of the cleaning process might be significantly enhanced by an

appropriate choice of constant phase shift. Moreover, improved accuracy in ultrasound
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biomedical diagnosis and tumour therapies could be achieved through time-delayed

vibrational resonance. With the cooperation of the amplitude of the high-frequency

acoustic field, the delivery of reagents transported within the bubble that is targeted at

combating the tumors can be optimized.

Looking to the future, we note that the results reported herein have opened up

several interesting questions for further investigation. These include: how time-delay

and phase-shift in VR impacts on the Blake’s threshold; whether there is a maximum

delay that the bubble can accommodate in the course of radial expansion or contraction.

If the time delay on x becomes relatively large, is there threshold value beyond which

the bubble will collapse? Investigations of these questions and related matters will be

developed in detail elsewhere.
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Appendix - Theoretical Analysis of Vibrational Resonance

To analyse theoretically the occurrence of VR, we employed the method of separation

of time scales to the system described by Eqn. (12), driven by two acoustic waves for

Ω ≫ ω. In general, the system may also be written as a mechanical system:

mẍ = F (ẋ, x, t) + Φ(ẋ, x, t, ωt). (17)

Hypothesis 4.1 (Superposition of Solutions) The solution x(t) of the system (12)

or its general form, system 17 consists of a superposition of only the solutions χ(t) of

slow evolution with frequency ω and ψ(t, τ), τ = Ωt of the fast oscillations with frequency

Ω when Ω ≫ ω. That is,

x(t) = χ(t) + ψ(t,Ωt), (18)

where χ(t) is assumed to be periodic with period T = 2π
ω

and ψ is periodic in the fast

time τ = Ωt with period 2π.

Hypothesis 4.2 (Basic Averaging) The average value of ψ(t, τ), i.e. 〈ψ(t, τ)〉 with

respect to fast time τ is given by

〈ψ(t, τ)〉 := ψ(t, τ) =
1

2π

∫

2π

0

ψ(t, τ)dt = 0. (19)

Based on Hypothesis 4.1, the two coupled system of integro-differential equation

are

mχ̈ = F (χ̇, χ, t) + 〈F̂ (χ̇, χ, ψ̇, ψ, t)〉+ 〈Φ(χ̈ + ψ̇, χ+ ψ, t, τ)〉, (20)
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and

mψ̈ = F̂ (χ̇, χ, t)− 〈F̂ (χ̇, χ, ψ̇, ψ, t)〉+ Φ(χ̈ + ψ̇, χ+ ψ, t, τ) (21)

− 〈Φ(χ̈ + ψ̇, χ+ ψ, t, τ)〉,
where

F̂ (χ̇, χ, ψ̇, ψ, t) = F (χ̇+ ψ̇, χ+ ψ, t) + F (χ̈, χ, t) (22)

is the function of the system’s variables from which one can compute the response

amplitudes of the system. The first of these equations, namely Eqn. 20 arises from the

substitution of Eqn. (4.1) into Eqn. (17), averaging both sides with respect to the fast

time τ according to Hypothesis 4.2. The second equation is then obtained by subtracting

Eqn. (20) from Eqn. (17).

If χ and ψ are the solutions of Eqns. (20) and (21), then x = χ+ψ is the solution of

the general Eqn. (17). However, if the ψ component is faster than the slow component

χ, then we may consider Eqn. (21) with χ̇ and χ frozen, thus become constant. Once a

solution ψ = ψ∗(χ̇, χ, t, τ) has been obtained, it then immediately follows that Eqn. (20)

can be written as

mχ̈ = F (χ̇, χ, t) + V (χ̇, χ, t), (23)

where

V (χ̇, χ, t) = 〈F̂ (χ̇, χ, ψ̇∗, ψ∗, t)〉+ 〈Φ(χ̈+ ψ̇∗, χ+ ψ∗, t, τ)〉. (24)

This technique, known as the method of direct separation of motion has been

explicitly described in Refs. [6, 65], and employed successfully to a broad range of

theoretical analysis of VR [71–73, 75, 87]. In general, one will often have to seek the

approximate solution for the fast component ψ∗, in the form of a small number of

harmonics. If ψ is considered to be small compared to χ, then F and Φ may be linearised

with respect to ψ (and possibly χ̇) to find a solution.

Throughout our analysis of VR in this paper, it is assumed that the fast motion ψ∗

is asymptotically stable so that the potential V (x) is well-defined over a certain range

of initial conditions of the fast variables ψ. If there are several stable fast motions, then,

the potential V (x) will depend on which motion is considered. In the analysis, Eqn. 23

is the main equation that gives the vibrational mechanics of the system [6]. It is an

equation for the slow dynamics with an effective potential due to the fast dynamics.

Now, we seek the solution of the equation by splitting the motion of the bubble system

into fast and slow dynamics according to Hypothesis 4.1 and 4.2, thereby enabling us

to obtain two integro-differential equations for the time-delayed bubble oscillator. One

of them describes the slow motion of the system whose response can be modulated by

the variation of the parameters of the high-frequency acoustic field. The response of

the system, denoted by Q and defined as the ratio of the amplitude AL of the bubble

oscillator to the frequency f is obtained by solving the equation for the slow motion.
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Using the time-delayed bubble oscillator given by Eqn. (12), we can express

Eqn. (18) as

x(t− ζ) = χζ + ψζ , (25)

where ζ is a constant time-delay with

χζ = χ(t− ζ), ψζ = ψ(t− ζ). (26)

Here, χ(t) is periodic with period T = 2π
ω

while ψ is periodic in the fast time τ = Ωt

with period 2π. Its average value with respect to fast time τ is given by Eqn (19).

The goal is to derive a system of two-coupled integro-differential equations for the

time-delayed variables χ and ψ from the main equation of the system (12), focusing

on the slow components of the motion which is of principal interest here. Substituting

Eqns. (18) and (25) into Eqn. (12), we have

χ̈+ ψ̈ + (χ̇+ ψ̇)[α0 − α1(χ+ ψ) + α2(χ + ψ)2 − α3(χ+ ψ)3 + α4(χ+ ψ)4]

+ η(χ̇+ ψ̇)2(1− (χ + ψ) + (χ+ ψ)2)− β(χζ + ψζ) + γ(χ+ ψ)2 −
− γ(χ+ ψ)3 + λ(χ+ ψ)4 = f cosωt+ g cos(Ωt + φ). (27)

Averaging both sides of Eqn. (27) over the period of fast time [0, 2π
Ω
] and substituting

the mean value of ψ as expressed in the Eqn. (19), considering that ψ is a rapidly

oscillating periodic function of the fast time, we can then re-express Eqn. (27) as:

χ̈+ ψ̈ + χ̇[α0 − χ(α1 + 3α3ψ2 − 4α4ψ3) + χ2(α2 + 6α4ψ2)− χ3(α3) + α4χ
4

+ α2ψ2 − α3ψ3 + α4ψ4] + ψ̇[α0 − χ(α1 + 3α3ψ2 − 4α4ψ3) + χ2(α2 + 6α4ψ2)

− χ3(α3) + α4χ
4 + α2ψ2 − α3ψ3 + α4ψ4] + ηχ̇2[1− χ+ χ2 + ψ2]

+ ηψ̇2[1− χ + χ2 + ψ2]− βχζ + χ[4λψ2] + χ2[γ + 6λψ2] + χ3[−γ]
+ λχ4 + γ(ψ2 − ψ3) + λψ4 = f cosωt+ g cos(Ωt + φ). (28)

We can further simplify Eqn. (28) using the expression for the mean values in

Eqn. (19). To proceed, we make the following remark and definition:

Remarks 4.1 Since the phase shift is time-independent so that the biharmonic acoustic

waves are out-of-phase, the average value of the fast signal over the period is sin φ sinΩt,

and approaches zero as φ→ 0 when the biharmonic forces are in-phase.

This allows us to make the following definition:

Definition 4.1 (Averaging with φ)

ψ̈ = ψ̇ = 0 (29)

g cos(Ωt + φ) ≈ − g sin φ sinΩt. (30)
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If however the biharmonic forces are in-phase (φ = 0), then, the hypothesis

(Eqn. (4.2)) does not hold.

The approximate expression in Eqn. (30) clearly shows that the contributions of φ to

the system’s response is non-trivial. Using Eqns. (29) and (30) above, Eqn.(28) reduces

to

χ̈+ χ̇[α0 − χ(α1 + 3α3ψ2 − 4α4ψ3) + χ2(α2 + 6α4ψ2)− α3χ
3 + α4χ

4

+ α2ψ2 − α3ψ3 + α4ψ4] + ηχ̇2[1− χ + χ2 + ψ2]

+ ηψ̇2[1− χζ + χ2 + ψ2]− βχζ + χζ [4λψ2 − 3γψ2] + χ2[γ + 6λψ2]

− γχ3 + λχ4 + γ(ψ2 − ψ3) + λψ4 = f cosωt− g sin(φ) sin(Ωt). (31)

Eqn. (31) is the first of the two coupled equations for the variable χ, for the slow

oscillation of the bubble. It can be used in computing the theoretical response, Q of

the system at the lower frequency ω. The equation of fast oscillatory motion can be

obtained by subtracting Eqn. (31) from Eqn. (28) to give,

ψ̈ + ψ̇[α0 − χ(α1 − 2α2ψ + 3α3ψ
3 − 4α4ψ

3) + χ2(α2 − 3α3ψ + 6α4ψ
2)

− χ3(α3 − 4α4ψ) + α4χ
4 − α1ψ + α2ψ

2 − α3ψ
3 + α4ψ

4]

+ χ̇[χ(2α2ψ − 3α3(ψ
2 − ψ2)− 4α4(ψ

3 − ψ3))− χ2(3α3ψ − 6α4(ψ
2 − ψ2))

+ 4α4χ
3ψ − α1ψ + α2(ψ

2 − ψ2)− α3(ψ
3 − ψ3) + α4(ψ

4 − ψ2)]− βψζ

+ ηχ̇2[2χψ − ψ + (χ2 − ψ2)] + η(ψ̇2 − ψ̇2)[1− χ(1− 2ψ)χ2 − ψ + ψ2]

+ 2ηχζψζ [1− χ(1− 2ψ)χ2 − ψ + ψ2] + χζ [γ(2ψζ − 3(ψ̇2 − ψ̇2)) + 4λ(ψ̇2 − ψ̇2)]

+ χ2[−3γψζ + 6λ(ψ̇2 − ψ̇2)] + 4λψχ3 + γ[(ψ̇2 − ψ̇2)− (ψ̇3 + ψ̇3)] + λψ̇4

= g cos(Ωt + φ). (32)

Eqns. (31) and (32) are the two integro-differential equations of motion, namely, for

the slow motion in χ and for the fast motion in ψ, respectively. Here, our interest

lies in the equation of motion of the slow dynamics of the system Eqn. (31) which

could be modulated appropriately by varying the parameters of the fast acoustic field to

achieve VR. Thus, we assumed that the component ψ is much more faster than the slow

component χ, while the components of the slow dynamics (i.e χ and χ̇) are considered

frozen in Eqn. (32).

Application of the inertial approximation approach, and assuming that ψ̈ ≫ ψ̇ ≫ ψ,

enables Eqn. (32) to be approximated as

ψ̈ = g cos(Ωt + φ), (33)

which has a solution

ψ =
−g
Ω2

cos(Ωt + φ), (34)
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such that,

ψ2 =
g2

2Ω4
, ψ4 =

3g4

8Ω8
, ψ = ψ3 = ψ5 . . . = 0, (35)

and

ψ̇
2

=
g2

2Ω2
. (36)

Substituting Eqns. (35) and (36) into Eqn. (31), we can write

χ̈+ χ̇

[(

α0 +
α2g

2

2Ω4
+

3α4g
4

8Ω8

)

− χ

(

α1

3α3g
2

2Ω4

)

+ χ2

(

α2 +
α4g

2

Ω4

)

− α3χ
3 + α4χ

4

]

+ ηχ̇2

[(

1 +
g2

2Ω4

)

− χ+ χ2

]

+ χζ

[

ηg2

2Ω2
− β − 2λg2

Ω4
− 3γg2

2Ω4

]

+ χ2

[

ηg2

2Ω2
+ γ +

3λg2

Ω4

]

− γχ3 + λχ4 +

[

ηg2

2Ω2

(

1 +
g2

2Ω4

)

+
γg2

2Ω4
+

3λg4

8Ω8

]

= f cosωt− g sinφ sinΩt. (37)

Eqn. (37) can be written in an elegant form as;

χ̈+ χ̇[C0 − C1χ + C2χ
2 − α3χ

3 + α4χ
4] + ηχ̇2[C3 − χ+ χ2] + C4χζ

+ C5χ
2 − γχ3 + λχ4 + C6 = f cosωt+ C7 sin Ωt, (38)

so that the effective potential of the time-delayed system becomes

V (χ) =
C4

2
χ2(t− ζ) +

C5

3
χ3 − γ

4
χ4 +

λ

5
χ5 + C6χ, (39)

where,

C0 =

(

α0 +
α2g

2

2Ω4
+

3α4g
4

8Ω8

)

, C1 =

(

α1 +
3α3g

2

2Ω4

)

, C2 =

(

α2 +
3α4g

2

Ω4

)

,

C3 =

(

1 +
f 2

2Ω4

)

, C4 =

(

2λg2

Ω4
+
ηg2

2Ω2
− β − 3γg2

2Ω2

)

, C5 =

(

ηg2

2Ω2
+ γ +

3λg2

Ω4

)

,

C6 =

[

ηg2

2Ω2

(

1 +
g2

2Ω4

)

+
γg2

2Ω4
+

3λg4

8Ω8

]

, C7 = g sinφ, (40)

and C4 is the effective natural frequency defined in Eqn (40).

By substituting Y = χ− χ∗ in Eqn. (38) we obtain,

Ÿ + C0Ẏ + Ẏ [−C1(Y + χ∗) + C2(Y + χ∗)2 − α3(Y + χ∗)3 + α4(Y + χ∗)4]

+ ηẎ 2[C3 − (Y + χ∗) + (Y + χ∗)2]− C4Yζ + C5Y
2 + 2Y C5χ

∗ − γY 3

+ λY 4 − C4χ
∗ + C5χ

∗2 − 3γY 2χ∗ − 3γY χ∗2 − γχ∗3 + 4λY 3χ∗

+ 6λY 2χ∗2 + 4λY χ∗3 + λχ∗4 + C6 = f cosωt+ C7 sinΩt. (41)

Since ǫ ≪ 1, we assume that |Y | ≪ 1, and if the oscillation takes place around the

equilibrium point (χ∗ = 0), then, by neglecting the nonlinear terms, we obtain the

following linear oscillator,

Ÿ + C0Ẏ − ω2

rYζ = f cosωt, (42)
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where ωr =
√
C4 is the natural resonance frequency. Eqn. (42) has a steady-state

solution, Yζ = AL cos(ωt+ θ), where the response amplitude AL can be expressed as

AL =
f

√

(ω2
r − ω2)2 + C2

0ω
2

, (43)

and the phase

θ = − tan−1
C0ω

(ω2 − ω2
r)
. (44)

The response amplitude Q can be calculated from

Q =
AL

f
=

1
√

(ω2
r − ω2)2 + C2

0ω
2

. (45)
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[80] B. I. Usama, S. Morfu, and P. Marquié. Numerical analyses of the vibrational resonance

occurrence in a nonlinear dissipative system. Chaos, Solitons Fractals, 127:31 – 37, 2019.

[81] Svein Vagle and David M Farmer. A comparison of four methods for bubble size and void fraction

measurements. IEEE J. Oceanic Eng., 23(3):211–222, 1998.

[82] P. R. Venkatesh and A. Venkatesan. Vibrational resonance and implementation of dynamic



Delay-induced vibrational resonance in the bubble oscillator 25

logic gate in a piecewise-linear Murali–Lakshmanan–Chua circuit. Commun. Nonlinear Sci.,

39:271–282, 2016.

[83] P. R. Venkatesh, A. Venkatesan, and M. Lakshmanan. Implementation of dynamic dual input

multiple output logic gate via resonance in globally coupled Duffing oscillators. Chaos,

27(8):083106, 2017.

[84] U. E. Vincent and O. Kolebaje. Introduction to the dynamics of driven nonlinear systems.

Contemp. Phys., 61(3):

169–192, 2020.

[85] U. E. Vincent, P. V. E. McClintock, I. A. Khovanov, and S. Rajasekar. Vibrational and stochastic

resonance in driven nonlinear systems. Phil. Trans. R. Soc. A, 379:20210003, 2021.

[86] U. E. Vincent, P. V. E. McClintock, I. A. Khovanov, and S. Rajasekar. Vibrational and stochastic

resonance in driven nonlinear systems - part two. Phil. Trans. R. Soc. A, 379:20200226, 2021.

[87] U. E. Vincent, T. O. Roy-Layinde, O. O. Popoola, P. O. Adesina, and P. V. E. McClintock.

Vibrational resonance in an oscillator with an asymmetrical deformable potential. Phys. Rev.

E, 98:062203, 2018.

[88] Y. J. Wadop Ngouongo, M. Djolieu Funaye, G. Djuidjé Kenmoé, and T. C. Kofané. Stochastic
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