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Abstract

Modern Bayesian statistical methods utilise a plethora of mathematical and compu-

tational techniques to tackle real-world problems. The probabilistic formulation of a

given model and its parameters can be used for making reliable predictions about fu-

ture observations whilst accounting for parameter uncertainty. This, however, comes

at a cost where the posterior distribution of the model parameters is not always

tractable. To overcome intractability, computationally-intensive methods for Bayesian

inference are employed; often, these need to be picked on a case-by-case basis, with

algorithms themselves requiring careful tuning of the respective tuning parameters.

This thesis explores three separate problems in Bayesian modelling and inference. In

all three parts, the proposed solutions are based on computational methods relying

on the simulation of particular stochastic processes.

The first contribution tackles the problem of modelling and predicting recruitment

to clinical trials. Phase III trials usually involve large recruitment drives across hun-

dreds of centres to enrol a target number of patients in a prespecified period. It is

crucial to accurately monitor the recruitment process at interim points of a study.

Early detection of poor recruitment can inform trial organisers when making changes
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to the protocol. We introduce a new flexible hierarchical model for multi-centre re-

cruitment based on the inhomogeneous Poisson process. The simple, yet flexible,

form of the model allows for efficient and user-friendly inference carried out in the

Bayesian paradigm. The proposed framework outperforms state-of-the-art methods

for recruitment prediction and is robust to model misspecifications.

The second contribution is in the area of exact Cox process inference. A Cox

process is a Poisson point process where the intensity itself is stochastic. Bayesian

inference for Cox process models is an inherently difficult problem as the likelihood

function of the intensity given observed data is not available in a closed form; this is

known as a doubly-intractable problem. We introduce a novel unbiased estimator of

the Cox process likelihood for processes with bounded intensity. The estimator can be

implemented inside a random-weight particle filter to carry out exact inference (in a

Monte Carlo sense) on the intensity function. In addition, it allows for efficient infer-

ence of the model hyperparameters through the pseudo-marginal Metropolis-Hastings

algorithm.

The third contribution is a competitor to the Hamiltonian Monte Carlo (HMC) al-

gorithm. HMC is commonly used for problems in computational physics and Bayesian

inference. It is a gradient-based algorithm, ideal for sampling from complex and high-

dimensional targets. The main caveat, however, is the algorithm’s sensitivity to one

of the tuning parameters. In this thesis, we introduce a new algorithm, the Apogee

to Apogee Path Sampler, which is based on HMC and thus benefits from many of its

desirable properties. We show it has comparable efficiency to HMC but is much more

robust to the misspecification of its tuning parameters.
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Chapter 1

Introduction

Modern problems in Bayesian statistics come in many forms. In this thesis, I explore

three problems in Bayesian statistics ranging from the use of Bayesian modelling

in clinical trial recruitment prediction, to exact Bayesian inference for a challenging

class of point process models, to even general methods for sampling from intractable

Bayesian posteriors. Each of the three projects is contained within a separate chapter

in the main body of this thesis; as such, the chapters can be read in any order.

1. The first project deals with the problem of predicting recruitment to clinical tri-

als. The focus is on developing a hierarchical model based on the inhomogeneous

temporal Poisson process. (Chapter 3)

2. The second project focuses on the methodology for exact Bayesian posterior

inference of the temporal Cox process. This is carried out with the aid of a

novel Cox process likelihood estimator. (Chapter 4)

3. The third project deals with the problem of tuning the Hamiltonian Monte Carlo

1
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algorithm which is often used for high-dimensional Bayesian inference problems.

(Chapter 5)

The direction of the second project was in part inspired by the work carried out

during the first project — the use of Cox processes to model recruitment is a sug-

gested extension at the end of Chapter 3, and Chapter 4 addresses the immediate

concerns with inference for such models, without being a direct sequel. In both chap-

ters, the proposed methods rely on the use of stochastic processes. The models used

throughout those two chapters involve relatively few hyperparameters which allows

more straightforward posterior inference methods, such as importance sampling or the

random walk Metropolis algorithm. Some of the suggested extensions involve the use

of models involving a larger number of parameters. Carrying out efficient Bayesian

inference of a large number of parameters can be a challenging task as inference al-

gorithms can be particularly sensitive to the choice of tuning parameters. The work

in Chapter 5 addresses this exact issue by introducing a novel algorithm that itself

is robust to tuning misspecification. The general ideas introduced and developed

in the chapter could be incorporated into the methods introduced in the previous

chapters. More generally, all three projects can be put under the general umbrella

of computationally-intensive Bayesian methods with easy-to-follow guidelines for the

end user.
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1.1 Contributions and thesis outline

Chapter 2: Background material

This chapter contains a literature review of the key topics referred to in the thesis. It

discusses the relevant operational aspects of clinical trials which serves as a context for

the statistical model introduced in Chapter 3. It covers required background material

on stochastic processes, Bayesian inference and Monte Carlo methods which are used

throughout the thesis.

Chapter 3: Interim recruitment prediction for multi-centre clinical trials

In this chapter, we introduce a general framework for monitoring, modelling, and pre-

dicting the recruitment to multi-centre clinical trials. The work is motivated by overly

optimistic and narrow prediction intervals produced by existing time-homogeneous

models for multi-centre recruitment. We first present two tests for the detection of

decay in recruitment rates, together with a power study. We then introduce a model

based on the inhomogeneous Poisson process with monotonically decaying intensity,

motivated by recruitment trends observed in oncology trials. The general form of

the model permits adaptation to any parametric curve-shape. A general method for

constructing sensible parameter priors is provided and Bayesian model averaging is

used for making predictions which account for the uncertainty in both the parameters

and the model. The validity of the method and its robustness to misspecification are

tested using synthetic datasets. The new methodology is then applied to oncology

trial data, where we make interim accrual predictions, comparing them to those ob-
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tained by existing methods, and indicate where unexpected changes in the accrual

pattern occur.

Chapter 4: Exact sequential inference for bounded-intensity Cox processes

Temporal point processes are widely used to model phenomena in areas such as fi-

nance, biology or geology. One general model is the sigmoidal Gaussian Cox process

(SGCP), first introduced in Adams et al. (2009), where a transformation of the in-

tensity function governing data-generation is assigned a Gaussian process prior. This

introduces a great deal of modelling flexibility; the setup does not require any pre-

specified parametric forms for the intensity shape. However, the resulting posterior

is doubly-intractable, as the likelihood function has no closed form, and so various

data augmentation schemes are needed to perform exact Bayesian inference on the

intensity. The Markov chain Monte Carlo algorithms used for inference involve steps

on spaces with varying dimensions which can be slow and difficult to tune.

We introduce a novel unbiased estimator of the Cox process likelihood, which we

call the Rao-Blackwellised Thinning Estimator. It is constructed by simulating the

thinning procedure conditional on the observed point process data. The proposed

estimator is a generalisation of the existing Poisson estimator (Wagner, 1989; Beskos

et al., 2006) in the context of bounded-intensity Cox process inference. The estimator

is used within a random-weight particle filter (RWPF) algorithm to perform posterior

inference on the intensity subject to a diffusion process prior. The inference is exact,

with no need for data augmentation. Numerical experiments show that, when used

within a RWPF, the proposed estimator outperforms the Poisson estimator in terms



CHAPTER 1. INTRODUCTION 5

of estimator variance for a given computational budget. Additionally, we employ a

pseudo-marginal Metropolis-Hastings algorithm to sample from the marginal poste-

rior of the model hyperparameters, bypassing the high posterior correlation between

intensity shape and the parameters.

Chapter 5: The Apogee to Apogee Path Sampler

Hamiltonian Monte Carlo (HMC) is a general-purpose Markov chain Monte Carlo

(MCMC) algorithm for sampling from complex, high-dimensional posterior distribu-

tions on Rd when the log-posterior gradients are available. It treats the negative log-

posterior density as a potential surface, U(x) = −log π(x), and introduces a fictitious

momentum variable. A proposal is constructed by applying the leapfrog integrator to

simulate the Hamiltonian dynamics for a time T , given an initial position-momentum

pair; the proposals then undergo an appropriate accept-reject step. The strengths of

HMC are the potentially high acceptance rate (≈ 65.1%) for distant proposals, and

the scaling of the efficiency in dimension d being O(d1/4). A major drawback of the

algorithm is its sensitivity to the choice of the (continuous) integration-time tuning

parameter T , where slight misspecification can lead to drastic drops in efficiency.

In the chapter, we introduce a new MCMC algorithm based on HMC, which we

call the Apogee to Apogee Path Sampler (AAPS). The algorithm constructs a set of

points along the path of the approximate Hamiltonian dynamics, both forward and

backward in time. The points are enclosed by local maxima in the potential along the

path, or apogees. Due to the reversibility of the leapfrog integrator, this construction

is invariant to the initial position-momentum pair from the constructed path. The
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tuning parameter is the (discrete) number of apogees, K, contained within the path.

We introduce a generic methodology for proposing an element from the path and

then accepting or rejecting it, which produces samples from the target distribution.

Numerical experiments in the chapter illustrate how AAPS achieves similar efficiency

to HMC on a wide variety of target distributions, but it is much more robust to the

misspecification of its equivalent tuning parameter.

Chapter 6: Conclusions

This chapter concludes the work carried out over the course of this thesis. It provides

the final connections between the three separate pieces of work by providing sugges-

tions for future research directions based on the intersections of the different problem

areas.



Chapter 2

Background material

This chapter serves as a review of the relevant literature for the work contained within

this thesis. Section 2.1 outlines the key aspects of clinical trials which serves as context

for the work carried out in Chapter 3. Section 2.2 provides background on stochastic

processes which underpin the statistical models and methodology developed within

all chapters of the thesis. Similarly, all chapters involve Monte Carlo methods in the

context of Bayesian inference; Section 2.4 provides the required background on those.

Finally, Section 2.5 outlines a general state-space model formulation and the Bayesian

filtering problem which are encountered in Chapter 4 of the thesis; relevant details on

inference using a particle filter are also provided.

2.1 Clinical trials

Novel developments in medical treatment must be proven to be both safe and ef-

ficacious against a prespecified condition before being administered to the general

7
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population. The gold standard for showing this is through clinical trials (see, for ex-

ample, Pocock, 1983; Friedman et al., 1998). These are a series of prospective studies

comparing the safety and efficacy of new treatments (drugs or procedures) against a

control in humans. The prospective part of the study refers to a fixed experimental

design finalised before any experimentation takes place, and the state of the volun-

teering participants is followed forward in time. The analysis of the experiment results

involves pre-specified statistical tests which, for the benefit of the trial organiser, must

have sufficiently high statistical power, usually at least 80% (e.g., Sakpal, 2010). This

usually requires the studies to involve large numbers of participants from many dif-

ferent demographics. The new experimental treatments are rarely risk-free and so to

ensure patient safety, the study is split up into a number of phases. Each phase aims

to satisfy different objectives, and as the objectives increase in complexity the number

of required participants also increases. The trials can generally be divided up into:

� Phase 0: If the new treatment is a novel drug, very low doses of it are admin-

istered to a small group of patients (usually ≤ 20). The aim is to determine the

pharmacokinetic properties of the drug; that is, how it behaves once inside the

human body.

� Phase I: The treatment is tested on 20-100 volunteers. The individuals can

have different, but similar conditions (say, different types of cancer) and the

goal of the phase is to identify common side effects and determine safe dosage

levels.

� Phase II: The treatment is tested on 100-300 patients with similar diseases
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(usually one or two types). This aims to establish the proposed therapeutic

effect of the treatment; specifically, what type of disease it targets, and learn

more about the side effects.

� Phase III: This phase involves large randomised control studies in order to

determine the efficacy of the new treatment compared to the current best option.

To ensure the comparisons use tests with high statistical power, large numbers

(300-3000) of patients with the specific disease across many different countries

are recruited into the trial.

� Phase IV: Once the treatment is open to the public, confirmatory trials are

carried out to identify potential long-term or rare side effects.

These specific recruitment numbers above were taken from Cancer Research UK

(2022) but can differ based on the therapeutic area; cardiovascular trials typically

recruit a lot more volunteers than oncology. Trials sometimes span more than one

phase; for example, Phase II/III trials involve a seamless transition between the sec-

ond and the third phases.

The trials are a tremendous undertaking both in the time scale and the costs; it

can take between 10 to 15 years for a treatment to move from initial discovery to

approval and licencing, and the costs can vary from around $500 million to over $2

billion, for a given therapy or developing firm (Adams and Brantner, 2006). It is

crucial that the new treatments are examined fairly and the results are reported with

sufficiently high certainty, adhering to specific guidelines from the overseeing agencies

(European Medicine Agency in Europe, and Food and Drug Administration in the
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United States). In an independent review, Getz and Lamberti (2013) reports that

48% of examined trials failed to meet recruitment targets in the allotted time which

led to numerous extensions of trial timelines.

The focus of the work in Chapter 3 of this thesis is to address the issues of moni-

toring the process of recruiting patients during Phase III. The recruitment is carried

out across hundreds of centres which can be hospitals or clinics; occasionally those

are referred to as sites. As such, these trials are commonly referred to as multi-centre

trials. To speed up the recruitment, a trial organiser may bring more centres into

the study and this in itself is a very costly process; initiating a new recruitment

centre involves employing and training new staff, advertising, and adjusting the exist-

ing drug-supply chains. It is therefore crucial that under-recruitment can be clearly

identified at interim points of a study.

The source of the problem of overpredicting recruitment rates stems from the

overly optimistic initial estimates for the pool of suitable patients for the trial. This

phenomenon was first noted in Lasagna (1979) and has since been referred to as

“Lasagna’s Law” in literature,

“The incidence of patient availability sharply decreases when a

clinical trial begins and returns to its original level as soon as the

trial is completed”(Nahler, 2009).

Statistical models for monitoring the recruitment process additionally make very

strong assumptions of time-homogeneity in the recruitment rates; that is, the av-

erage monthly recruitment rate should not vary from one month to another. Figure

2.1.1 (as taken from Anisimov, 2009) gives an example of the accrual (cumulative

recruitment) in a small study along with interim predictions from three periods. The
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Figure 2.1.1: Example of patient accrual to a small clinical trial. Accrual numbers
are indicated by “◦” and coloured bands provide 90% pointwise prediction intervals;
point predictions are given by the middle lines. The horizontal dashed line is the
target number of 366 recruitments. The figure was taken from Anisimov (2009).

initial plan of the study was to recruit 366 patients across 75 centres. However, due

to poor initial recruitment estimates, a total of 119 centres needed to be initiated.

Furthermore, the model predictions were getting increasingly worse indicating funda-

mental model misspecifcations; the specific model used is from Anisimov and Fedorov

(2007) and is discussed in detail in Chapter 3.

In Chapter 3, we introduce a novel modelling framework for multi-centre clini-

cal trials which can be used for monitoring trial recruitment by making predictions

forward in time during interim analyses. Several relevant existing methods are out-

lined at the beginning of Chapter 3. A much more detailed review of the history of

recruitment prediction methodology can be found in the MRes dissertation, Urbas

(2018).1

1Available at https://www.lancaster.ac.uk/~urbas/SzymonUrbas_PhDProp_revised.pdf

https://www.lancaster.ac.uk/~urbas/SzymonUrbas_PhDProp_revised.pdf
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2.2 Stochastic processes

The models and methodology developed in this thesis require a certain amount of

background on stochastic processes. Here, we outline the key relevant concepts with-

out delving into rigorous measure theory; for a more fundamental introduction see,

for example, Doob (1953); Ross et al. (1996); Del Moral and Penev (2017).

A stochastic process {Xt, t ∈ T } is a collection of random variables on a common

probability space (X,AX,P), where T is a time domain which can be either discrete

or continuous. We let Ft denote the σ-algebra generated by {Xs : 0 ≤ s ≤ t}.

The process Xt is Markov; if conditional on all the information available up to and

including the present state, the future of the process solely depends on the present

state and is independent of the previous history. Formally, for all A ∈ AX, s ∈ [0, t],

P (Xt ∈ A|Fs) = P (Xt ∈ A|Xs) .

Markov processes on discrete time domains are often referred to as Markov chains.

2.2.1 Poisson processes

The inhomogeneous Poisson process underpins the models and methodology intro-

duced in Chapters 3 and 5. In this thesis, we solely focus on the temporal Poisson

process, that is, T = [0,∞).

Definition 2.2.1 (Poisson Process). A Poisson process {Nt, t ≥ 0} with intensity

λ(t) > 0, satisfies the following

(i) N0 = 0 almost surely;
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(ii) for any t > s ≥ 0, (Nt −Ns) ∼ Pois
(∫ t

s
λ(u) du

)
;

(iii) for any v > u ≥ t > s ≥ 0, (Nv −Nu) is independent of (Nt −Ns);

(iv) Nt is right-continuous with left limits.

As a consequence of condition (iii), the Poisson process is Markov. We say the

process is homogeneous if λ(t) ≡ λ0, for λ0 > 0. The process is discrete-stable, that is,

for any two Poisson processes N
(1)
t and N

(2)
t , with respective intensities λ1 and λ2, the

sum N
(1)
t +N

(2)
t is itself a Poisson process with intensity λ1+λ2. A realisation (sample

path) of the process Nt is usually described through a time sequence of arrivals or

event times T1, T2, . . ., where Ti = inf{t : Nt ≥ i}, with the convention T0 = 0.

Letting Yi be the length of the “gap” between Ti−1 and Ti, i = 1, 2, . . ., we can derive

the inter-arrival distribution,

P (Yi ≤ y) = 1− P (Yi < y)

= 1− P
(
NTi−1+y −NTi−1

= 0
)

= 1− exp

(
−
∫ Ti−1+y

Ti−1

λ(u) du

)
,

and so the density of Yi is

fYi
(y) = λ(Ti−1 + y)exp

(
−
∫ Ti−1+y

Ti−1

λ(u) du

)
, y > 0.

If the process is homogeneous with rate λ0 then Yi
iid∼ Exp(λ0) for all i and their sum

has a gamma distribution. In this thesis, we will be particularly interested in sampling

the process Nt. The simplest exact method of sampling paths of Nt is through the

inversion method (e.g., Çinlar, 1975).
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Theorem 2.2.2. Let Λt =
∫ t

0
λ(u) du, t ≥ 0 be the integrated intensity function. The

random variables T1, T2, . . . are event times corresponding to a Poisson process with

intensity λ(t) if and only if ΛT1 ,ΛT2 , . . . are event times corresponding to a homoge-

neous Poisson process with unit rate.

The consequence of the theorem is that the event times can be obtained by simulat-

ing Exp(1) random variables and applying the inverse transform Λ−1, using numerical

methods if the inverse not available in closed form.

To simulate the process on some closed interval [0, τ ] we can use the thinning

procedure (Lewis and Shedler, 1979). The procedure does not require the inversion

or even evaluation of Λt, instead, it simply requires an upper bound on the inten-

sity λ in the interval. A homogeneous process with rate λ∗ is first simulated, where

λ∗ ≥ λ(t), t ∈ [0, τ ]. It is composed of R points t̃1, . . . t̃R. Each point is rejected

(thinned) with probability 1− λ(t̃i)
λ∗ , i = 1, . . . , R, and the set of the remaining points

forms a realisation of the desired process; Algorithm 1.1 details the procedure.

1.1 Thinning

1. Input: intensity function λ(t); dominating rate λ∗; observation interval [0, τ ]

2. Output: realisation of a Poisson process with intensity λ(t) on [0, τ ], (n, t)

3. Sample R ∼ Pois(λ∗τ);

4. Sample locations t̃i ∼ Unif[0, τ ], i = 1, . . . , R;

5. Reject each point with probability 1− λ(t̃i)
λ∗ , i = 1, . . . , R;

6. Set t to be a vector of the remaining, sorted points, and n the vector length

7. return (n, t);
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The likelihood function of λ given data (n, t) produced by Nt is

p(n, t|λ) = exp

(
−
∫ τ

0

λ(s) ds

) n∏
i=1

λ(ti).

2.2.2 Gaussian processes

Definition 2.2.3 (Gaussian Process). For some domain T , Xt ∈ Rd, t ∈ T is a

d-dimensional Gaussian process, if for all {t1, . . . , tk} ⊆ T the random vector Z =

(Xt1 , . . . , Xtk)⊤ has a multivariate normal distribution. That means there exist a

vector M ∈ Rdk and a non-negative definite matrix C = [cjm] ∈ Rdk×dk such that the

characteristic function of Z is

E
[
exp
(
iu⊤Z

)]
= exp

(
−1

2

∑
j,m

ujcjmum + i
∑
j

ujMj

)

for all u = (u1, . . . , udk)⊤ ∈ Rdk, where i =
√
−1.

Similarly as in the previous section, we are only interested in Gaussian processes

on the temporal domain, i.e., T = [0,∞); the domain could also be R2 for spatial

process modelling (see, for example, Chiles and Delfiner, 2009). In general, temporal

Gaussian processes are not Markov. The mean vector M in the above definition is

constructed from some mean function µ(t), t ∈ T and the covariance matrix C is

constructed using some covariance function ρ. The process is said to be stationary

if the covariance is only a function of the temporal distance between the two points,

that is

Cov [Xs, Xr] = ρ(|r − s|), s, r ∈ T .

The covariance function ρ must itself be positive definite.
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Definition 2.2.4. The function f : R→ C is positive definite if for any x1, . . . , xn ∈

R, the n× n matrix

A = [ajk] ajk = f(xk − xj)

is positive semidefinite.

We use

Xt ∼ SGP(µ, ρ)

to denote that Xt is a stationary Gaussian process with mean function µ and station-

ary covariance function ρ.

There are several ways of showing a given function is positive definite. In this

thesis, we employ a version of Bochner’s Theorem (Bochner, 1933; Loomis, 1953).

Theorem 2.2.5 (Bochner’s Theorem). The function ρ : [0,∞) → [0,∞) is positive

definite if and only if its Fourier transform F{ρ} defines a positive measure on R.

The above theorem serves as a quick way of verifying a given function is positive

definite; for example, take ρ1(t) = exp (−t2/2) and ρ2(t) = cos(t), then

F {ρ1(t)} (ω) = F
{
exp
(
−t2/2

)}
(ω) = exp

(
−ω2/2

)
,

F {ρ2(t)} (ω) = F {cos(t)} (ω) =

√
π

2
δ1(ω) +

√
π

2
δ−1(ω),

so the functions are positive definite.

In Chapter 5, we will study a certain process which is an average of n stationary

(non-GP) components, and in particular, we will want to show it converges to a sta-

tionary GP as n→∞. It is sufficient to show that the random vector of its values at a

finite number of points converges in distribution to a multivariate Gaussian, and this
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can be done through the Lindeberg-Feller Central Limit Theorem (Feller, 1971). Con-

sider a triangular array of d-dimensional random variables Xn1,Xn2, . . . ,Xnn, n ≥ 1,

X11

X21 X22

X31 X32 X33

... ,

and suppose that for each n, Xn1, . . . ,Xnn are independent, E[Xni] = µni and V[Xni]

are positive definite for all i = 1, . . . , n. Let

Yni = Xni − µni, (2.2.1)

Tn =
1

n

n∑
i=1

Yni.

The Lindeberg condition for triangular arrays states that for all ε > 0,

lim
n→∞

1

n

n∑
i=1

E
[
∥Yni∥2 I{∥Yni∥≥ε

√
n}
]

= 0. (2.2.2)

Theorem 2.2.6 (Lindeberg-Feller Central Limit Theorem). LetXn1,Xn2, . . . ,Xnn, n ≥

1 be a triangular array of d-dimensional random variable and let Yni, Tn be defined

as in (2.2.1). If

lim
n→∞

V[Tn] = V

is positive definite and the Lindeberg condition (2.2.2) holds, then

√
nTn

D→ N(0, V ) as n→∞.
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2.2.3 Diffusions

In this section we introduce only the main process of constructing a diffusion; more

detailed introductions appear in, for example, Øksendal (2003); Kloeden and Platen

(1992). A diffusion process (often called an Itô process) is a Markov process which

solves a particular stochastic differential equation (SDE). A stochastic differential

equation is a differential equation where at least one term introduces noise through

a stochastic process. The construction of diffusive processes is based on the classic

continuous-time Wiener process.

Definition 2.2.7 (Wiener Process). A Wiener process {Wt, t ≥ 0} satisfies the fol-

lowing properties:

� W0 = 0 almost surely;

� for any t > s ≥ 0, Wt −Ws ∼ N(0, t− s);

� for any t > s ≥ u ≥ 0, Wt −Ws is independent of Wu;

� samples paths of Wt are continuous in t (almost surely).

A d-dimensional Wiener process is a vector of d one-dimensional independent

Wiener processes. Here, we focus on a one-dimensional diffusion. We use the following

notation to denote discrete increments of the Wiener process:

∆Wt := Wt+∆t −Wt ∼ N(0,∆t).

Suppose we want to construct a process Xt with its dynamics described by a deter-

ministic drift component α(Xt, t), and some noise which can depend on (Xt, t). In
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a time-discretised setting, the noise can be introduced through an increment of a

Wiener process scaled by some diffusivity function σ(Xt, t) so that the variance of the

process in an increment ∆t is equal to σ(Xt, t)
2∆t. The discrete-time evolution of Xt

is described through the increment

∆Xt := Xt+∆t −Xt = µ(Xt, t)∆t+ σ(Xt, t)∆Wt, (2.2.3)

where the increment has a normal distribution

∆Xt ∼ N(α(Xt, t)∆t, σ(Xt, t)
2∆t).

Taking the sum of discrete-time increments the process at some time T is

XT = X0 +

⌊T/∆t⌋∑
j=0

µ(Xj, j)∆t+

⌊T/∆t⌋∑
j=0

σ(Xj, j)∆Wj.

Using the usual integration notation when taking the limit ∆t ↓ 0, we arrive at

XT = X0 +

∫ T

s=0

α(Xs, s) ds+

∫ T

s=0

σ(Xs, s) dWs, (2.2.4)

where
∫ t

s=0
σ(Xs, s) dWs is the Itô integral. The exact details of the Itô integral

are outside the scope of this thesis (see, for example, Kloeden and Platen, 1992;

Øksendal, 2003); however, we make use of the following two properties which hold for

any deterministic function f(t):

E
[∫ T

0

f(t) dWt

]
= 0, and E

[(∫ T

0

f(t) dWt

)2
]

=

∫ T

0

f(t)2 dt, (2.2.5)

where the second equality is known as Itô isometry. The integral is a limit of a linear
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combination of Gaussian increments, and so it is itself Gaussian, that is,

∫ T

0

f(t) dWt ∼ N

(
0,

∫ T

0

f(t)2 dt

)
.

An important property of the diffusion Xt is that it is Markov (e.g., Øksendal, 2003).

The integrated process form (2.2.4) can be represented using a stochastic differential

equation

dXt = α(Xt, t) dt+ σ(Xt, t) dWt.

This itself is strictly a shorthand notation. The above only describes a one-dimensional

diffusion, however, a similar sequence of steps is used to construct a d-dimensional

process; now µ is a vector-valued function, Wt is a p-dimensional Wiener process and

σ is a d× p matrix.

Ornstein-Uhlenbeck process

In Chapter 4, we will examine a particular diffusion called the Ornstein-Uhlenbeck

(OU) process (e.g., Stroock, 2003); the work in the chapter involves the derivation

of a d-dimensional process. For illustrative purposes, we outline the derivation of a

one-dimensional version of the (zero-mean) OU process.

The one-dimensional OU process Xt, t ≥ 0 satisfies the following stochastic differ-

ential equation

dXt = −θXt dt+ σ dWt, t > 0,

X0 ∼ N(µ0, ν0).

Using a transformation Yt = eθtXt (noting Y0 = X0) the SDE describing the evolution
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of Yt is

dYt = d(eθtXt)

= θeθtXt dt+ eθt dXt

= eθt (θXt dt− θXt dt+ σ dWt)

= σeθt dWt.

The increment from time 0 to T is given by

YT − Y0 =

∫ T

0

dYt =

∫ T

0

σeθt dWt.

From (2.2.5), we get that

E[YT − Y0] = 0 and V
[
(YT − Y0)2

]
=
σ2

2θ

(
e2θT − 1

)
with the difference itself having a Gaussian distribution. The transformed process at

time T is YT = (YT − Y0) + Y0, where the two Gaussian terms are independent from

the diffusion being Markov. Applying the inverse transform to obtain the original

process, Xt = e−θtYt, we find that

XT ∼ N

(
e−θTµ0,

σ2

2θ

(
1− e−2θt

)
+ e−2θtν0

)
.

The limiting (stationary) distribution of the process as T →∞, is N(0, σ2/2θ). Figure

2.2.1 shows several sample paths of the process.
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Figure 2.2.1: Sample paths of the Ornstein-Uhlenbeck process, θ = 0.1, σ = 0.4;
paths we initialised from the stationary distribution.

2.3 Bayesian inference problem

Given a set of data which are observations of real-world phenomena, a statistical

model aims to at least approximately describe the data-generating process. Under

the assumed model parametrised by an unknown set of parameters θ ∈ Θ, the data-

generating mechanism for Y is fully encapsulated by the conditional density or mass

function p(y|θ). It is often referred to as the likelihood function, with notation

L(θ;y) = p(y|θ).

Through this likelihood, data Y = y are then used to infer the unknown θ.

Statistical inference in the Bayesian paradigm involves assuming that the unknown

parameter θ is itself a random variable with prespecified prior distribution π0. This

formulation allows for the construction of a posterior distribution for θ, based on
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observed data y by applying Bayes’ Theorem,

π(θ|y) =
p(y|θ)π0(θ)∫

Θ
p(y|θ)π0(θ) dθ

. (2.3.1)

The integral in the denominator of (2.3.1) is known as the marginal likelihood of the

data. In general, it is not tractable, meaning that we can only evaluate π(θ|y) up

to a constant of proportionality. However, in most applications, practitioners only

care about quantities produced by expectations of functions over the posterior; for

example,

� expectation: E[θ];

� variance: V[θ] = E
[
(θ − E[θ])(θ − E[θ])⊤

]
;

� probabilities: P (θ ∈ A) = E
[
I{θ∈A}

]
, A ⊂ Θ.

More generally, we are interested in computing

Eπ [h(θ)] , (2.3.2)

where h is a π-integrable function, but the exact form of the integral is not tractable.

2.4 Monte Carlo methods

In this section, we examine some of the methods of estimating integrals with respect

to π of the type (2.3.2). This is carried out by producing finite Monte Carlo samples

of a random variable X ∈ X. For the purposes of this thesis, we assume π admits a

density with respect to the Lebesgue measure, which we denote by π(x).
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Suppose we have a finite sample of independent, identically distributed (i.i.d.)

random variables {xi}ni=1. The i.i.d. sample could be produced by inversion of the

distribution function (see, for example, Devroye, 1986). We denote the empirical

distribution of this sample by π̂IID, and the corresponding density is

π(x) ≈ π̂IID(x) =
1

n

n∑
i=1

δxi
(x),

where δY is a Dirac mass centered at Y . Thus the expectation (2.3.2) can be approx-

imated by

Eπ [h(X)] ≈ Eπ̂IID
[h(X)] =

1

n

n∑
i=1

h(xi).

Indeed it follows that the estimate is unbiased,

Eπ

[
1

n

n∑
i=1

h(Xi)

]
=
n

n
Eπ [h(X)] ,

from linearity of expectation. Additionally, by the strong law of large numbers

Eπ̂IID
[h(X)]

a.s.→ Eπ [h(X)] as n→∞.

Since the samples are i.i.d. the variance of the resulting estimator is given by

Vπ

[
1

n

n∑
i=1

h(Xi)

]
=

Vπ[h(X)]

n
.

If Vπ[h(X)] <∞ and we can obtain the following central limit theorem (CLT) (e.g.,

Robert and Casella, 2005)

√
n (Eπ̂IID

[h(X)]− Eπ [h(X)])
D→ N (0,Vπ[h(X)]) , (2.4.1)

where
D→ denotes convergence in distribution. This indicates that the accuracy of the
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Figure 2.4.1: Illustration of importance sampling. First, samples from a tractable
proposal distribution are produced. Then, each proposal is weighted relative to the
density of interest. Resampling with probabilities proportional to the sample weights
can be carried out at the end.

Monte Carlo approximation is independent of the dimension of X and gets better as

we increase the sample size n; the rate of convergence is O(n−1/2).

2.4.1 Importance sampling

Often, we are unable to sample from π directly. One alternative is to use importance

sampling which utilises a proposal distribution q. The proposal distribution is chosen

such that it can be sampled from directly, and its support covers the support of π.

Proposal q is used to produce the set of i.i.d. samples {xi}ni=1. Defining weights for

each element as

w(xi) := π(xi)/q(xi), i = 1, . . . , n,

we have the approximate distribution π̂IS with

π̂IS(x) =
1

n

n∑
i=1

w(xi)δxi
(x).

Figure 2.4.1 illustrates the weighting procedure. Using π̂IS the expectation estimator

has the form

Eπ̂IS
[h(X)] =

1

n

n∑
i=1

w(xi)h(xi). (2.4.2)
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The unbiasedness of Eπ̂IS
[h(X)] estimates follows from the fact that

Eq [w(X)h(X)] =

∫
X

w(x)h(x)q(x) dx =

∫
X

π(x)

q(x)
h(x)q(x) dx = Eπ[h(X)].

Similarly to the i.i.d. sampling estimator, The importance sampling estimator (2.4.2)

will converge to Eπ [h(X)] (almost surely) as n → ∞ due to the strong law of large

numbers.

For the estimates to have finite variance now require Vq[w(X)h(X)] < ∞, in

addition to Vπ[h(X)] <∞. This can be satisfied by ensuring that q has heavier tails

than π, that is,

sup
x∈X

π(x)

q(x)
<∞.

To see this, suppose supx∈Xw(x) < K <∞, then

Eq

[
w(X)2h(X)2

]
< KEq

[
w(X)h(X)2

]
= Eπ

[
h(X)2

]
,

which is finite. The variance of the importance sampling estimator for a given h

heavily depends on the choice of q. As the samples coming from q are i.i.d., we can

focus on the variance of a single term in the summation (2.4.2);

Vq[w(X)h(X)] = Eq

[
w(X)2h(X)2

]
− Eq [w(X)h(X)]2

= Eq

[
w(X)2h(X)2

]
− Eπ [h(X)]2 .

The second term is free of q so the estimator variance solely depends on the sec-

ond moment of w(X)h(X), X ∼ q. Applying Jensen’s inequality to the square of
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w(X)h(X) we have,

Eq

[
w(X)2h(X)2

]
≥ (Eq [w(X)|h(X)|])2 = Eπ [|h(X)|]2 . (2.4.3)

This lower bound is achieved by using the optimal proposal

q(x) ∝ |h(x)|π(x). (2.4.4)

This result appears in Theorem 3.12 of Robert and Casella (2005). The optimal

proposal requires sampling with density proportional to |h(x)|π(x) which is infeasible

in most scenarios. For Bayesian inference in Chapter 3, the same sample needs to

be used for estimating expectations of several different h functions. It is sensible for

those sort of situations to choose a proposal q which is similar to π in shape; ideally,

the weights w(xi) would be approximately equal, so that {xi}ni=1 is close to an i.i.d.

sample from π. In Chapter 3, we employ an importance sampler where the proposal

has the same mode as π and a similar covariance structure.

Direct pointwise evaluations of π(x) are not possible in most Bayesian inference

problems. Instead, π(x) = f(x)/Zf , where f(x) can be evaluated but its integral,

Zf =
∫
X
f(x) dx, has no closed form. In this situation, we have w(xi) = f(xi)/q(xi)

and w̃ are the normalised weights,

w̃(xi) =
w(xi)∑n
i=1w(xj)

.

The resulting normalised importance sampling estimator is then

Eπ̂nIS
[h(X)] =

n∑
i=1

w̃(xi)h(xi) =

∑n
i=1w(xi)h(xi)∑n

i=1w(xi)
.
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The motivation behind the normalisation step is that (setting h(x) ≡ 1)

Zf = Eq [f(x)/q(x)] ≈ 1

n

n∑
j=1

w(xj).

The estimator is no longer unbiased,

Eq [w̃(X)h(X)] ̸= Eπ [h(X)] ,

but its bias decreases with increasing n. The estimator almost surely converges to

the required Eπ [h(X)] as n → ∞, due to the strong law of large numbers (see, for

example, Section 3.3.2 of Robert and Casella, 2005).

In Bayesian inference where f(x) is the joint density of the parameter and the data,

the average weight is an unbiased estimator of the marginal likelihood (provided it

includes all multiplicative constants); see Expression (2.3.1).

Effective sample size

Since the quality of the estimates (in terms of variance) depends on the choice of

proposal q, this motivates the need for a diagnostic tool of a given importance sampling

scheme. This is done by quantifying the number of i.i.d. samples from π needed to

obtain the same variance as the estimator using π̂ made up of n samples (Kong, 1992).

This is known as the effective sample size (ESS) and is the ratio

ESSπ̂[h(X)] :=
nVπ[h(X)]

Vπ̂[h(X)]
. (2.4.5)

In practice, ESS cannot be evaluated exactly, however, it can be approximated
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(e.g., Kong et al., 1994; Doucet et al., 2001),

ESSπ̂[h(X)] ≈ (
∑n

i=1w(xj))
2∑n

i=1w(xj)2
;

this is also the inverse of the second empirical moment of the normalised weights.

2.4.2 Markov chain Monte Carlo

In this section, we outline an alternative set of approaches to the i.i.d. sampling

methods discussed thus far. Instead of independently producing samples from π (or

some proposal distribution), a discrete-time Markov chain {Xi, i ≥ 0} is constructed

in such a way that its stationary (and limiting) distribution is the target π. Notably,

this implies that Monte Carlo samples are no longer i.i.d. but instead they form a

correlated sample with the marginal distribution of Xi approaching π as i → ∞.

Algorithms which simulate such chains are collectively referred to as Markov chain

Monte Carlo (MCMC).

As the process is Markov, the distribution of Xi given all the previous parts of the

chain is fully encapsulated by the most recent value Xi−1 = xi−1. Formally,

p(xi|x1:i−1) = p(xi|xi−1) = K(xi−1, xi),

which defines a Markov kernel. The transition kernel K is homogeneous so that it is

free of the particular position in the chain, i. The kernel is said to be π-invariant if

Xi ∼ π ⇒ Xi−1 ∼ π, i > 0. The Markov chain is stationary if the distribution of its
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state does not change from one time point to the next, which formally is written as

π(x∗) =

∫
X

K(x, x∗)π(x) dx x∗ ∈ X.

Definition 2.4.1 (Reversibility). Let {Xi : i ≥ 0} be a Markov chain with some

transition kernel K(x, x∗). The chain is reversible with respect to π if the transition

kernel satisfies

K(x, x∗)π(x) = K(x∗, x)π(x∗). (2.4.6)

Reversibility, as defined above, is also known as detailed balance. It implies that,

at stationarity, the probability of being at x and moving x → x∗ must be equal to

being at x∗ and moving x∗ → x. If the Markov chain satisfies the detailed balance

condition with respect to π, then we have

∫
X

K(x, x∗)π(x) dx =

∫
X

K(x∗, x)π(x∗) dx = π(x∗)

∫
X

K(x∗, x) dx = π(x∗),

where the last equality follows from the fact that K(x∗, x) = p(x|x∗) is a (normalised)

conditional density. Detailed balance with respect to π implies that π is a stationary

distribution of the chain.

Provided the chain satisfies two sufficient conditions, it will converge to its limiting

distribution which is equal to the stationary π. The first is aperiodicity, which im-

plies the time length of the passage between groups of states follows no deterministic

pattern; an example of a periodic chain would be one where the return time to some

state x† is always a multiple of integer k ≥ 2. For the algorithms appearing in this

thesis, the condition can be satisfied if there is a non-zero probability of the event

Xt = Xt−1. The second condition is Harris recurrence which ensures that the limiting
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behaviour is the same for every starting position of the chain X0, that is, there is a

unique limiting distribution.

Any chain which satisfies those two conditions will eventually produce samples

from the stationary target distribution π, and, by the ergodic theorem (e.g., Theorem

6.63 of Robert and Casella, 2005), the sample mean of some π-integrable function

h(X) will converge to Eπ[h(X)] almost surely.

In practice, the chain may start from an initial value in the tails of π. In this

scenario, the process will gradually make its way toward the main mass of the distri-

bution. This transient part of some length m > 0 is called the burn-in and is discarded

to reduce the bias in the estimators. The estimator of Eπ[h(X)] is constructed from

the empirical average of a finite part of the chain at stationarity,

ĥn =
1

n

n+m∑
i=m+1

h(Xi). (2.4.7)

The process of discarding the burn-in is not the focus of the work in this thesis so,

without loss of generality, we assume m = 0. The asymptotic variance of the estimator

ĥn is defined as

σ2
h := lim

n→∞
nV
[
ĥn

]
= lim

n→∞
nV

[
1

n

n∑
i=1

h(Xi)

]

= V [h(X0)] + 2
∞∑
i=1

Cov [h(X0), h(Xi)] ,

provided that the above summation exists (e.g., Geyer, 1992). Similar to (2.4.5), σ2
h

motivates a way of quantifying the inefficiency of a MCMC algorithm as the integrated
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autocorrelation time,

IACT(h) :=
σ2
h

Vπ [h(X0)]
= 1 + 2

∞∑
i=1

Corr [h(X0), h(Xi)] .

This can then be used to define the effective sample size (ESS)

ESS
(
ĥn

)
:=

n

IACT(h)
.

If the chain were to produce i.i.d. samples then IACT(h) = 1 and ESS
(
ĥn

)
= n.

Naturally, IACT cannot be evaluated exactly, but there are methods of estimating it.

In this thesis, we employ the R package coda (Plummer et al., 2006) for calculating

ESS through spectral density estimates of a given chain (Heidelberger and Welch,

1981).

Chapter 5 is focused on methodology relating to a particular MCMC algorithm

known as Hamiltonian Monte Carlo (HMC) (see, for example, Neal, 2011). It requires

the density of π to be in the form π(x) = e−U(x), where x ∈ Rd and U is a differentiable

potential surface. HMC introduces an auxiliary momentum variable p ∈ Rd which

has a multivariate Gaussian distribution. Proposals are generated by propagating

Hamiltonian dynamics conditional on a given (x, p), which then undergo an accept-

reject step to produce samples from the target π. The exact details of the algorithm

and a review of relevant literature are at the beginning of the Chapter 5.

Metropolis-Hastings

A commonly used general class of MCMC algorithms is the Metropolis-Hastings (MH)

algorithm (Metropolis et al., 1953; Hastings, 1970). An iteration of the algorithm is
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composed of two steps: (1) proposal mechanism of generating new state X ′ given

current state X = x, described through a distribution q with density q(x′|x), and (2)

Metropolis-Hastings acceptance probability

α(x, x′) = 1 ∧ π(x′)q(x|x′)
π(x)q(x′|x)

. (2.4.8)

With a probability α(x, x′), the next value of the chain becomes x′; otherwise, it re-

mains unchanged. The MH update only requires the evaluation of some unnormalised

version of π, which is the main reason for its appeal in Bayesian inference problems.

It can be shown that the above procedure defines a transition kernel which satisfies

the detailed balance with respect to π. The Metropolis-Hastings kernel has the form

KMH(x, x∗) = q(x∗|x)α(x, x∗) + r(x)δx(x∗),

where r(x) = 1−
∫
X
q(x′|x)α(x, x′) dx′ is the probability of rejecting a proposal for a

given X = x. The kernel KMH accounts for both the accept and reject scenarios of

the MH update. To show the kernel satisfies the detailed balance with respect to π,

note that

KMH(x, x∗)π(x) = π(x)q(x∗|x)α(x, x∗) + π(x)r(x)δx(x∗)

= [π(x)q(x∗|x) ∧ π(x∗)q(x|x∗)] + π(x)r(x)δx(x∗)

which is invariant to x↔ x∗. Consequently, it admits π as its stationary distribution.

The accept-reject step results in the chain using MH updates being aperiodic. To

show the chain is Harris recurrent we use the fact that irreducible MH chains imply

Harris recurrence, as per Lemma 7.3 of Robert and Casella (2005). The chain is said
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to be irreducible if it can reach any subset of the support from any starting point,

given enough time. This can be satisfied if

q(x∗|x)α(x, x′) > 0, ∀(x, x∗) ∈ X× X,

which will be the case for all algorithms appearing in this thesis. Thus, a chain

produced by the Metropolis-Hastings algorithm will converge to the target distribution

π and

1

n

n∑
i=1

h(Xi)
a.s.→ Eπ [h(X)] as n→∞.

Pseudo-marginal Metropolis-Hastings

It can happen that even an unnormalised version of π(x) may not be available for

exact evaluation. Take for example the following model consisting of parameters of

interest θ, latent variable Z and observable data Y . The variables follow

Y |(Z = z) ∼ f( · |z, θ) and Z ∼ g( · |θ),

and the marginal likelihood function is given by

L(θ; y) = p(y|θ) =

∫
f(y|z, θ)g(z|θ) dz, (2.4.9)

which, apart from special cases, is not tractable. As discussed in Section 2.4.1, im-

portance sampling can be used to produce an unbiased estimates of (2.4.9), and since

π(θ|y) ∝ L(θ; y)π0(θ), we can obtain non-negative unbiased estimates of target den-

sity π, up to a multiplicative. Remarkably, if one were to replace π(x′) and π(x) in

the standard MH acceptance probability with an unbiased estimate π̂(x′) and the es-
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timate π̂(x) from the previous iteration, the resulting algorithm would still target the

correct stationary distribution (Beaumont, 2003; Andrieu and Roberts, 2009). Such

an algorithm is referred to as pseudo-marginal Metropolis-Hastings.

Returning to the general notation used throughout this section, we are interested

in sampling a random variable X ∼ π. Suppose π(x) is intractable but instead we

have access to π̂(x; ν) which is a non-negative unbiased estimator of π(x) (up to a

multiplicative constant), where ν ∼ µ( · |x) is a vector of all the random variables used

to generate the estimate. We follow similar steps as in the standard MH algorithm:

given current position (x, ν) with estimate π̂(x; ν) we propose x′ ∼ q( · |x) and sample

ν ′ ∼ µ( · |x′) to construct π̂(x′; ν ′). The proposal is then accepted with probability

α ((x, ν), (x′, ν ′)) = 1 ∧ π̂(x′; ν ′)q(x|x′)
π̂(x; ν)q(x′|x)

,

otherwise the chain remains at (x, ν). To see why the above should have the correct

invariant distribution, consider the extended target

π̃(x, ν) = π̂(x; ν)µ(ν|x)

and note that

α ((x, ν), (x′, ν ′)) = 1 ∧ π̂(x′; ν ′)q(x|x′)
π̂(x; ν)q(x′|x)

= 1 ∧ π̃(x′, ν ′)q(x|x′)µ(ν|x)

π̃(x, ν)q(x′|x)µ(ν ′|x′)
.

The above ratio is invariant to (x, ν)↔ (x′, ν ′) and so it targets the extended π̃, with

the marginal for x being the desired distribution,

∫
π̃(x, ν) dν =

∫
π̂(x; ν)µ(ν|x) dν = π(x).
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Random-walk Metropolis

The classic choice of proposal distribution q for the Metropolis-Hastings algorithm is

to propose X ′|(X = x) ∼ N(x, λΣ), where λ > 0 is the (tuning) scaling parameter

and Σ is a positive definite matrix (Metropolis et al., 1953). A naive choice for the

proposal covariance would be Σ = Id, but more optimally it would be chosen to reflect

the covariance matrix of the target π (Roberts and Rosenthal, 2001). The algorithm

is commonly known as random-walk Metropolis (RWM). The proposal mechanism

is symmetric, i.e., q(x′|x) = q(x|x′), which simplifies the resulting MH acceptance

probability,

α(x, x′) = 1 ∧ π(x′)

π(x)
.

Figure 2.4.2 illustrates the RWM algorithm on a toy example. The algorithm was

purposefully initialised in the tails of the distribution to result is a long burn-in

period, after which we say the chain has converged to the stationary distribution;

the burn-in would be discarded when constructing estimators of the form (2.4.7) to

reduce any potential bias.

The optimal performance of the algorithm is of wide interest both in theory and

practice. The general recommendation for RWM is that the scaling λ should be chosen

to achieve an acceptance rate of 23.4%. This corresponds to λ ∝ 2.38/
√
d (Roberts

and Rosenthal, 2001), with equality when the target is Gaussian. The results are

based on the limits as the dimension d increases but the target acceptance rate seems

to hold reasonably well in dimensions as low as 5.

In pseudo-marginal Metropolis-Hastings, this becomes less straightforward as noisy
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Figure 2.4.2: Traceplot of a chain produced by the random-walk Metropolis algorithm,
on a standard normal target. The proposal distribution is a zero-mean Gaussian with
a standard deviation of 0.75. The initial 50 − 70 iterations would be considered as
burn-in.

estimates of π are used. It can be shown that the efficiency of the PMMH algorithm

will be strictly lower than that of its MH counterpart with direct evaluations of π

(Andrieu and Vihola, 2016). Various works such as Pitt et al. (2012), Sherlock et al.

(2015), Doucet et al. (2015) and Nemeth et al. (2016), suggest first tuning the num-

ber of random variables used in π̂ estimates so that at x̄ = Eπ [X] the variance of

the log-estimates log π̂(x̄) is somewhere in the region of 0.85− 3.28. Then a suitable

scaling λ will result in acceptance rate for low dimensional targets to be ≈ 14%, with

the optimal rate as d→∞ being ≈ 7% (Sherlock et al., 2015).

2.5 Bayesian filtering problem

State-space models are a particular class of models also referred to as hidden Markov

models. They are made up of a latent (unobservable) Markov process {Xt}t≥0, initi-
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... ...

Figure 2.5.1: Illustration of the individual transitions of the variables in a simple
hidden Markov model {Xt, Yt}t≥0. Rectangular nodes indicate observable data and
circular nodes represent latent (unobservable) variables.

ated from X0 ∼ µ and obeying transition densities

p(xt|x0:t−1) = f(xt|xt−1), t = 1, 2, . . . .

Instead of observing X directly, we only have some noisy realisations {yt}t≥0 produced

by some

p(yt|x0:t, y0:t−1) = g(yt, xt), t = 1, 2, . . . .

Figure 2.5.1 gives a pictorial representation of the dependencies in the model.

We wish to infer X1:T = {Xt}Tt=0 based on a realisation y0:T = {yt}Tt=0. The

posterior for the latent process, conditional on the parameters θ is

π(x1:T |y1:T , θ) ∝ π(x1:T , y1:T |θ) = µ(x0|θ)
T∏
t=1

f(xt|xt−1, θ)
T∏
t=0

g(yt|xt, θ).

In the Bayesian filtering problem, we are interested in the posterior distribution

of the latent process at times t ≤ 0, in contrast to the whole joint posterior. The

filtering density π(xt|y0:t, θ) can be obtained through Bayes’ Theorem,

π(xt|y0:t, θ) =
p(xt, yt|y0:t−1, θ)

p(yt|y0:t−1, θ)
,
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where the joint density on the numerator follows a recursive relation

p(xt, yt|y0:t−1, θ) =

∫
p(xt, yt, xt−1|y0:t−1) dxt−1

=

∫
π(xt−1|y0:t−1, θ)p(xt|xt−1, y0:t−1, θ)p(yt|xt, xt−1, y0:t−1, θ) dxt−1

=

∫
π(xt−1|y0:t−1, θ)f(xt|xt−1, θ)g(yt|xt, θ) dxt−1, (2.5.1)

and p(yt|y0:t−1, θ) is the marginal of the above joint density. The above filtering

densities are intractable apart from two special cases: (i) discrete state spaces resulting

in the forward-backward algorithm (e.g., Rabiner, 1989), and (ii) Gaussian transition

and observation densities resulting in a Kalman filter (Kalman, 1960). Neither of the

two special cases appear in this thesis. The remainder of this section outlines a Monte

Carlo method for approximating the filtering distribution.

2.5.1 Particle filters

In a particle filter, we approximate the (continuous) filtering density π(xt−1|y0:t−1, θ)

using an approximate discrete distribution π̂ constructed from a weighted sample of

particles {x(b)t−1, w̃
(b)
t−1},

π̂(x|y0:t−1, θ) =
B∑
b=1

w̃
(b)
t−1δx(b)

t−1
(x),

where the weights are normalised, that is,
∑B

b=1 w̃
(b)
t−1 = 1. Substituting the approxi-

mation into the recursion relation (2.5.1) produces the approximate filtering density

π̂(xt|y0:t, θ) ∝
B∑
b=1

w̃
(b)
t−1f(xt|x(b)t−1, θ)g(yt|xt, θ).
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The sampling, importance resampling (SIR) particle filter (Gordon et al., 1993) ap-

proximates the filtering density at time t by resampling the pool of particles at the

previous time-step t−1 according to their normalised weights w̃
(b)
t−1. The new particle

approximation is constructed by the propagation mechanism x
(b)
t ∼ f( · |x(b)t−1, θ). Each

new particle is then assigned an importance weight

w
(b)
t =

g(yt|x(b)t , θ)f(x
(b)
t |x

(b)
t−1, θ)

f(x
(b)
t |x

(b)
t−1, θ)

= g(yt|x(b)t , θ)

and the weights are normalised,

w̃
(b)
t =

w
(b)
t∑B

i=1w
(i)
t

.

The propagation of the particles could in fact be replaced by some other proposal den-

sity q(xt|x(b)t−1, yt, θ). An auxillary particle filter (Pitt and Shephard, 1999) attempts

to approximate the optimal proposal distribution q which can greatly improve the ef-

ficiency of the filter with respect to the effective sample size at a given iteration; this

is similar to the optimal proposal for importance sampling (2.4.4). The construction

of the approximately optimal proposal generally depends on the specific state-space

model.

The resampling step introduces Monte Carlo noise since the pool of resampled

particles is less diverse. One could omit the resampling altogether, instead updating

the weights at each iteration of the filter

ẇ
(b)
t = g

(
yt|x(b)t , θ

)
× ẇ(b)

t−1.

This algorithm is referred to as sequential importance sampling (SIS) (e.g. Liu and



CHAPTER 2. BACKGROUND MATERIAL 41

Chen, 1998; Arulampalam et al., 2002). Excluding the resampling step, however, leads

to a phenomenon called particle degeneracy, where the variance of the importance

weights increases at each iteration (Kong et al., 1994). The resampling could instead

be carried out only when some criterion is satisfied; for example, if the effective sample

size of the particles drops below 50% of the number of particles. In Chapter 4, we

introduce a particle filter where the particle weights inherently have a very large

variance and so to limit any potential degeneracy we will require resampling at every

stage of the algorithm.

As a byproduct of the SIR, the product of unnormalised weight averages can be

used to estimate the marginal likelihood,

p̂(y0:T |θ) =
T∏
t=0

1

n

B∑
b=1

w
(b)
t .

In fact, the estimator is unbiased, that is,

E

[
T∏
t=0

1

n

B∑
b=1

w
(b)
t

]
= p(y0:T |θ);

see Theorem 1 of Pitt et al. (2012) or Proposition 7.4.1 of Del Moral (2004) for proofs

of this result. As a result, the estimator can be used for exact posterior inference on

θ through the pseudo-marginal Metropolis-Hastings algorithm, as outlined in Section

2.4.2.



Chapter 3

Interim recruitment prediction for

multi-centre clinical trials

3.1 Introduction

Efficiently recruiting patients to clinical trials is a critical factor in running the trials

and hence delivering new medicines to patients as quickly as possible. Late-stage clini-

cal trials are commonly run across many sites, and successfully managing and running

trials and subsequent processes requires accurate forecasts of trial recruitment.

Early recruitment rates can be high, for example, because patients with the re-

quired condition are already available, and rates can then drop once these patients

have been recruited. Deterministic approaches and ad hoc techniques may yield sim-

plified and, often, overly optimistic recruitment timelines, a phenomenon thus dubbed

Lasagna’s Law (Lasagna, 1979). For example, 48% of centres studied by Getz and

Lamberti (2013) failed to enrol the required number of patients in the time originally

42
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allocated, leading to extensions of the recruitment timelines and the need to bring

more centres into the study, which itself is a costly process. The timelines are usually

pushed to nearly twice the originally proposed plan. The most frequent reason for

trial discontinuation appears to be poor recruitment; out of 253 discontinued trials

studied in Kasenda et al. (2014), 101 were terminated due to under-recruitment.

This motivates the need for robust statistical methods for modelling and predicting

the recruitment to clinical trials at site-level. Early detections of possible centre

underperformance may allow practitioners to swiftly intervene in the operations. It

can also provide realistic timelines for the completion of different stages of the trials.

In this work, we introduce a novel flexible framework for effectively modelling and

predicting patient recruitment. We will focus on the oncology therapeutic area as it

is known for sparse enrolments whose patterns are not sufficiently captured by the

state-of-the-art methods (Anisimov and Fedorov, 2007; Lan et al., 2019). Our frame-

work utilises time-varying recruitment rates whilst also permitting variation between

recruitment centres. Inference is based on the set of known centre initiation times to

date, whilst the prediction is conditional on a set of future initiation times. Past initi-

ation times are known, but typically, whilst there is a plan for future initiation times

along with potential contingencies, the actual times are not known precisely in ad-

vance. The proposed methodology can be used with user-specified initiation schedules

to facilitate the choice between different initiation-time scenarios, or it can be com-

bined with a centre-initiation model. Predictions of future recruitment incorporate

parameter and model uncertainty, which is essential when data are limited.

Existing methods for predicting recruitment to clinical trials are overviewed in
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Section 3.2. Section 3.3 outlines methods for detecting recruitment rate decay in

the multi-centre recruitment setting along with result of a Monte Carlo power study.

Section 3.4 introduces the flexible modelling framework and Section 3.5 presents a

general method for choosing sensible Bayesian parameter priors, along with an appro-

priate posterior sampling method and diagnostics. A simulation study is presented

in Section 3.6, illustrating the fitting of the model, model validation and forecasting

recruitment using Bayesian model-averaging. In Section 3.7 the model is fitted to an

oncology dataset, and this is followed by a discussion in Section 3.8.

3.2 Existing methods

The first statistical modelling framework for clinical trial recruitment was introduced

in Lee (1983), where the recruitment was assumed to be a constant-rate Poisson pro-

cess, leading to tractable inference based on interim data. Williford et al. (1987) built

on the model by considering Bayesian inference with conjugate priors. Gajewski et al.

(2008) and Jiang et al. (2015) further explored the effects various prior densities can

have on predictions. Time-inhomogeneous accrual was first considered in Piantadosi

and Patterson (1987), where the aggregated accrual across all sites was modelled as

an inhomogeneous Poisson process with intensity λ(t) = ζ(1 − exp(−κt)), ζ, κ > 0.

Zhang and Long (2010) took a non-parametric approach, using B-splines to model

the trends in accrual and using the intensity value at the census time for predictions.

Tang et al. (2012) proposed a Poisson model with a piece-wise linear intensity which

captured aspects of recruitment such as slow initial recruitment and a spike in re-
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cruitment close to the end of the trial. For a more thorough review of these as well

as other methods see Heitjan et al. (2015). Accrual-only modelling methods do not

consider the effect that initiating new centres can have on recruitment trends. For

that reason, we shall focus on methods which can take advantage of centre-specific

recruitment data.

Anisimov and Fedorov (2007) introduced the Poisson-gamma (PG) model of re-

cruitment in a multi-centre setting, with the main appeal being the use of random

effects for the recruitment rates of centres, providing a tractable, data-driven prior

predictive distribution for recruitment in yet-unopened centres. The model consists

of C centres, each recruiting Nc patients over τc days, c = 1, . . . , C. The framework

makes the following distributional assumptions,

λc ∼ Gamma (α, α/ϕ) ,

Nc|λc ∼ Pois (λcτc) ,

c = 1, . . . , C. (3.2.1)

The random effect λc is the recruitment rate for centre c. The rates, and thus the

centre recruitments, are assumed to be independent conditional on α and ϕ. There

are, however, several caveats with the approach taken. The paper advocates using

the Empirical Bayes approach, that is, maximum likelihood estimation for the hierar-

chical parameters (α, ϕ) followed by re-estimation of the distribution of random effect

λc given α, ϕ and nc, for each centre. A method for obtaining the uncertainty in the

hierarchical (α, ϕ) parameters is provided, but this uncertainty is not accounted for

when making predictions, leading to overly confident prediction intervals. However,

the main issue which could result from employing the model arises from the strong
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Figure 3.2.1: Accrual (black, solid) with the predictive mean (red, solid) and 95%
prediction bands (red,dashed), based on the PG model ((3.2.1)) with the census time
marked by the vertical, dashed line.

assumption of time-homogeneity of centre recruitments, which can lead to underesti-

mations of the time to completion.

Figure 3.2.1 shows the accrual in a simulated trial where the rates gradually decay

with time as well as the predictive distribution of the PG model fitted at a census

time of three-fifths of the total length of the study; the initiation day for each centre

is marked. The accrual appears to follow a straight line which could initially suggest

using a time-homogeneous model. However, new centres are constantly being ini-

atated so that a constant recruitment rate for each centre leads to an upward arching

trend in accrual. This is encapsulated by the fitted predictive. Here the accrual is

initially badly underestimated and then grossly overestimated after the census time.

The apparent “matching” at the census time is due to predictions using re-estimated

random-effect distributions.

Lan et al. (2019) describes the first multi-centre recruitment model in which the



CHAPTER 3. CLINICAL TRIAL RECRUITMENT PREDICTION 47

rates decrease over time. The model assumes inhomogeneous Poisson for arrivals

centre c with an intensity of the form

λc(t) =


λoc, t < to

λocexp(−θ(t− to)), t ≥ to

,

where λoc is a gamma random effect, as in ((3.2.1)), and to a user-specified parameter

and is not estimated as part of the inference. By enforcing the specific intensity-

form, the possibilities of time-homogeneous recruitments or even intensity decays

with heavier tails are excluded. A more systematic alternative is to start by testing

the time-homogeneity assumption.

3.3 Detecting time-inhomogeneity

Given series of daily centre recruitment counts over the recruitment period of τc

days, {Nc(t)}τct=1, c = 1, . . . , C, we can test the hypothesis of time-homogeneity. To

detect a decay in the rate, we only need to use the sums X
(c)
1 =

∑τc/2
t=1 Nc(t) and

X
(c)
2 =

∑τc
t=τc/2+1Nc(t) (c = 1, . . . , C), whose expectations we denote by µ

(c)
1 and µ

(c)
2

respectively. Detecting time-inhomogeneity in a single centre can be difficult as the

infrequent counts will lead to low powers of tests (Krishnamoorthy and Thomson,

2004) (see also Tables 3.3.1 and 3.3.2). Thus we combine the recruitments across all

centres leading to two counts: X1 =
∑C

c=1X
(c)
1 and X2 =

∑C
c=1X

(c)
2 , and we choose

our hypotheses to be

H0 :
C∑
c=1

µ
(c)
1 =

C∑
c=1

µ
(c)
2 vs H1 :

C∑
c=1

µ
(c)
1 >

C∑
c=1

µ
(c)
2 .
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The tests are one-sided as we are only interested in recruitment which decays over

time. We consider tests with respect to the following assumptions:

Assumption 1: For each centre c = 1, . . . , C, the counts in the first and second

halves of that centre’s recruitment period are independent and have the same distribu-

tion, X
(c)
1

D
= X

(c)
2 , with expectation µ

(c)
1 . Furthermore, the recruitments at each centre

are independent of each other.

Assumption 2: The patients arrive according to a Poisson process such that

X
(c)
1 , X

(c)
2 ∼ Pois

(
µ
(c)
1

)
, for some µ

(c)
1 , c = 1, . . . , C.

Assumption 1 implies that X1 and X2 must have the same distributions, with

respective expectations µ1 =
∑C

c=1 µ
(c)
1 and µ2 =

∑C
c=1 µ

(c)
2 being equal. Assumption

2 further implies that the distributions must be Poisson. Figure 3.3.1 shows the

construction of the quantities X1 and X2 by aligning the centres of the recruiting

periods. The splitting of the series halfway is arbitrary, though splitting it in half (or

at least close to this) would theoretically yield the highest power. It assumes that the

τc are even. However, centres recruiting over odd numbers of days can still be used

by removing the middle day observation. This reduces the power of the tests, though

the reduction is negligible.

Gu et al. (2008) offer a detailed Monte Carlo study of the different methods used

for testing for a difference in means of two Poisson variables. Here, we focus on

the ones most applicable to the clinical-trial recruitment setting, bearing in mind

statistical power and robustness. We identified two methods: the non-parametric

bootstrapped test (BST), which is powerful yet robust, and the Poisson likelihood-

ratio test (LRT), which makes stronger distribution assumptions to achieve an even
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Figure 3.3.1: Count series are all centred and the sum of all the first halves is compared
to the sum of second halves.

higher power. The BST only assumes that the counts in each day are independent and

identically distributed (Assumption 1). With this assumption, resampling within each

centre with replacement, from the original data would still produce a valid sample

from the assumed distribution under H0. A large number of bootstrap samples is

used to simulate the distribution of the difference in two means, which is then used to

test the hypothesis. Appendix A.1 details the sampling procedure for obtaining the

distribution and the p-value.

For the LRT, we require Assumption 2, which is already an underlying assumption

for the model in Anisimov and Fedorov (2007). Upon aggregation, the two sums follow

Poisson distributions, that is, X1 ∼ Pois(µ1) and X2 ∼ Pois(µ2). The likelihood under

the null model (µ1 = µ2) is compared to the likelihood under the alternative two-mean

model (µ1 > µ2). Here, the likelihood function is

L(µ1, µ2;x1, x2) =
µx1
1 exp(−µ1)

x1!

µx2
2 exp(−µ2)

x2!
, µ1, µ2 > 0.
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We let

TL(x1, x2) =


2[logL(µ̂1, µ̂2;x1, x2)− logL(µ̂, µ̂;x1, x2)], µ̂1 > µ̂2

0, µ̂1 ≤ µ̂2

,

where µ̂ is the MLE under the null, and µ̂1 and µ̂1 are the MLEs under the alter-

native hypothesis. Under the null, we would expect the test statistic TL(X1, X2) to

asymptotically be zero half the time with the other half following a χ2
1 distribution

(Robertson et al., 1988). When using the LRT, the simulated significance levels can

differ from the pre-specified level when µ values are low. This is due to using the

asymptotic χ2 distribution when calculating the p-value (Gu et al., 2008).

The performance of the two tests was assessed by carrying out a Monte Carlo

study. Test powers were estimated using Poisson data with different expectations and

ratios, R = µ2/µ1. For the LRT power estimates, 5×106 samples were used as the test

itself is very computationally cheap. For the BST, 5 × 104 samples were used, with

each test using a bootstrapped distribution of size 103. Tables 3.3.1 and 3.3.2 show the

results of the study. The biggest difference in powers occurs for lower expectations,

with the LRT outperforming BST. It must be noted, however, that the BST only

requires the data to be i.i.d. within each centre and thus is robust to violations of the

Poisson assumption; if the counts within each centre are overdispersed, for example,

it does not affect the Type I error.

To exemplify the usefulness of this test, we can consider an interim likelihood ratio

test where the expected number of enrolments is 170. This corresponds to E[X1] = 100

and R = 0.7, for example, and results in a statistical power of approximately 0.75.
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E[X1] R = 1 R = 0.9 R = 0.8 R = 0.7 R = 0.6 R = 0.5

5 0.06 0.08 0.11 0.15 0.20 0.27
10 0.05 0.08 0.12 0.18 0.26 0.37
20 0.05 0.09 0.17 0.27 0.41 0.58
50 0.05 0.13 0.28 0.50 0.73 0.90

100 0.05 0.18 0.44 0.75 0.94 0.99
200 0.05 0.27 0.68 0.95 1.00 1.00

Table 3.3.1: Power for likelihood-ratio test

E[X1] R = 1 R = 0.9 R = 0.8 R = 0.7 R = 0.6 R = 0.5

5 0.04 0.06 0.08 0.11 0.14 0.18
10 0.05 0.08 0.12 0.16 0.24 0.33
20 0.05 0.10 0.16 0.25 0.39 0.57
50 0.05 0.14 0.28 0.48 0.70 0.88

100 0.05 0.18 0.42 0.74 0.93 0.99
200 0.05 0.28 0.67 0.94 1.00 1.00

Table 3.3.2: Power for non-parametric bootstrapped test

Considering many trials require an upward of 500 enrolments, informed decisions can

be made relatively early on in the trial.

3.4 Proposed model

We consider a scenario of C centres recruiting patients, with each centre c being

initiated for τc days. The number recruited by centre c on day t shall be denoted by

N
(t)
c . We propose the following modelling framework for the multi-centre clinical-trial

recruitment, based on the inhomogeneous Poisson process,

λoc ∼ Gamma

(
α,
α

ϕ

)
, c = 1, . . . , C,

N (t)
c ∼ Pois

(
λoc

∫ t

t−1

g(s; θ) ds

)
, t = 1, . . . , τc,
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where g is a non-negative function which dictates the curve-shape of the intensity

and θ is a parameter (or parameter vector) associated with the functional form. We

use the (α, ϕ) parametrisation for the hierarchical gamma distribution as it leads

to orthogonality of α and ϕ in the Poisson-gamma model (Huzurbazar, 1950). A

priori, E[λc] = ϕ and V[λc] = ϕ2/α. For notational simplicity, we define G(t; θ) =∫ t

0
g(s; θ) ds. The likelihood contribution from centre c is

P(Nc = nc|λoc, θ, τc) =
τc∏
t=1

P(N (t)
c = n(t)

c |λoc, θ)

= exp(−λocG(τc; θ))(λ
o
c)

n
(·)
c

τc∏
t=1

[G(t; θ)−G(t− 1; θ)]n
(t)
c

n
(t)
c !

,

where n
(·)
c =

∑τc
t=1 n

(t)
c . Marginalising over the random-effect component gives

P(Nc = nc|α, ϕ, θ, τc) =
(α/ϕ)αΓ

(
α + n

(·)
c

)
Γ(α)[G(τc; θ) + α/ϕ]

(
α+n

(·)
c

) τc∏
t=1

[G(t; θ)−G(t− 1; θ)]n
(t)
c

n
(t)
c !

,

whence the full likelihood of the model given the recruitment data is:

L(α, ϕ, θ;n, τ ) =
C∏
c=1

P(Nc = nc|α, ϕ, τ )

=
(α/ϕ)Cα

Γ(α)C

C∏
c=1

Γ
(
α + n

(·)
c

)
[G(τc; θ) + α/ϕ]

(
α+n

(·)
c

) τc∏
t=1

[G(t; θ)−G(t− 1; θ)]n
(t)
c

n
(t)
c !

.

(3.4.1)

If all the centres had been recruiting for the same amount of time, that is, τc ≡ τ

∀c, then by fixing the integral of g(t; θ) over τ days we could introduce parameter

orthogonality between (α, ϕ) and θ by imposing the normalisation:
∫ τ

0
g(t; θ) dt = τ.

This generalises the homogeneous model with g(t; θ) = 1 and leads to the following
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factorisable likelihood,

L(α, ϕ, θ;n, τ ) =
(α/ϕ)Cα

Γ(α)C(τ + α/ϕ)(Cα+nΣ)

C∏
c=1

Γ
(
α + n(·)

c

) τc∏
t=1

[G(t; θ)−G(t− 1; θ)]n
(t)
c

n
(t)
c !

= L(α, ϕ;n, τ)L(θ;n, τ ), (3.4.2)

where nΣ =
∑C

c=1 n
(·)
c .

The factorisation means that now the θ parameter describes the shape of the

intensity only, and α and ϕ describe the distribution of the magnitude of the integrated

intensity, leading to a more interpretable model.

Even when centres are not all recruiting for the same length of time, we choose

to impose a similar normalisation using some representative τ , here 1
C

∑C
c=1 τc. As

demonstrated empirically in Section 3.6, the condition leads to approximate orthog-

onality even when the centres are initiated uniformly throughout the study.

3.4.1 Intensity curve-shape

In this work, we will restrict our choice of curve-shape g to parametric forms. The

functional form of g is arbitrary and the best choices may depend on the context of

the problem. When working with oncology datasets, for each centre we observe low-

frequency counts which seem to become even less frequent over time but with varying

tail behaviours. For this reason, we chose the following curve-shape

gκ(t; θ) ∝
(

1 +
θt

κ

)−κ

, t ≥ 0, θ, κ > 0. (3.4.3)

The proportionality is used as multiplying gκ by some positive constant and dividing

ϕ by the same constant leads to the same model. The limit as κ → 0 recovers the
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standard PG model ((3.2.1)); and letting κ→∞, we obtain an exponential tail. The

full (normalised) forms are then

g0(t) ≡ 1, (3.4.4)

g1(t; θ) =
θ(1 + θt)−1

log(1 + θτ)
τ, (3.4.5)

gκ(t; θ) =
θ(1− κ)(1 + θt/κ)−κ

κ(1 + θτ/κ)1−κ − κ
τ, κ /∈ {0, 1,∞}, (3.4.6)

g∞(t; θ) =
θexp(−θt)

1− exp(−θτ)
τ. (3.4.7)

The associated integrated forms, Gκ(t; θ) are provided in Appendix A.2.

The flexibility of the model, however, can result in potential identifiability issues.

Inference methods, such as maximum likelihood, can run into numerical instabilities

when κ >> 1 > θ or κ < 1 << θ (see Appendix A.2 for details). For this reason, we

recommend restricting the choice of κ to a discrete set of values; in this work, we use

{0, 0.5, 1, 2,∞}. This will be elaborated on in Section 3.5.3.

3.5 Inference, diagnostics and predictions

We aim to construct a framework which can provide reliable predictions whilst cap-

turing uncertainty in the estimated parameters and in the underlying model itself.

We employ the Bayesian paradigm since it naturally incorporates the distribution of

the random effects, λc, with the uncertainty in the model and the parameter values.

However, we note that in some scenarios frequentist methods may be preferred and

give a brief outline of how one may employ them in Appendix A.3.

Given a parametric statistical model, the Bayesian paradigm starts from a prior
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distribution for the parameters, here denoted π0(α, ϕ, θ) and updates this according

to some data, y, to provide a posterior distribution, here denoted by π(α, ϕ, θ|y).

When multiple parametric models, Mk, k = 1, . . . , K, are being considered, the pos-

terior probability for model k, here denoted by πp(Mk|y), may also be calculated.

For the models under consideration for trial-recruitment data, neither the posterior

model probabilities nor the posteriors for the parameters for any particular model

are tractable, and so we employ importance sampling to obtain Monte Carlo samples

(αm, ϕm, θm), m = 1, . . . ,M from the posterior distribution for any given model, as

well as an estimate of π(Mk), k = 1, . . . , K. Chapter 2 of this thesis provides further

details of this method, as well as of effective sample size (ESS), a diagnostic which

indicates the reliability of the Monte Carlo estimates; see also Robert and Casella

(2013) or Doucet et al. (2013).

In Sections 3.6 and 3.7, we carry out inference on α̃ = logα, ϕ̃ = log ϕ and

θ̃ = log θ since analyses of trial data showed the likelihood in the log-parameters to

be more symmetric about the mode, which can make sampling more efficient. For the

importance sampling proposal distribution, we use a multivariate t-distribution on 4

degrees of freedom, with the same mode as the posterior and the shape matrix equal

to the inverse Hessian at the posterior mode.

3.5.1 Prior choices

We base our prior specification on a maximum likelihood meta-analysis of 20 oncology

clinical trial recruitment datasets. The trials studied were for seven different types

of cancers: ovarian, prostate, breast, small and non-small lung, bladder and pancre-
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atic. The number of centres ranged from 58 to 244 with a median of 140 and total

enrolments ranged from 245 to 4391 with a median of 1035. In all cases, the pa-

rameter estimators were close to orthogonal justifying the use of independent priors:

π0

(
α̃, ϕ̃, θ̃

)
= π0 (α̃)π0

(
ϕ̃
)
π0

(
θ̃
)

.

We found that the α parameter does not change much from one study to another.

The weakly informative prior α̃ ∼ N(0.2, 22) sufficiently reflects the distribution of

the estimated values.

The ϕ parameter estimates varied by orders of magnitude between studies. The

parameter reflects the mean centre recruitment and is well identified by the data; it

depends upon the catchment region, type of indication and protocol, for example.

For this reason, we advocate using a vague prior unless reliable expert knowledge is

available. In our analyses, we used the uninformative, proper prior ϕ̃ ∼ Unif(−8, 8).

The difference between the homogeneous model (3.4.4) and the inhomogeneous

models (3.4.5), (3.4.6), (3.4.7) is the presence of the curve-shape parameter θ. Lind-

ley’s paradox (Lindley, 1957) warns that assigning θ a vague prior can lower the

posterior probabilities of the models that use θ, compared to the model with κ = 0

which does not use θ. To avoid the paradox we set an informative but sensible prior by

considering the drop off in intensity after some time, t0. We let Rκ = gκ(t0; θ)/gκ(0; θ)

and set Rκ ∼ Beta(a, b) a priori, with a = b = 1.1 to indicate a lack of information,

excepting that this is not a constant intensity model, since this is covered by κ = 0,

and that we do not expect a 100% drop off after a time of t0 (expert opinion); here

we take t0 = 4 months. As Rκ is a monotonic function of θ, we can use a density

transform to derive the corresponding prior for θ. If prior information is abundant, be
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it in the form of historical data or expert knowledge, the beta distribution parameters

can be adjusted to reflect this. Given (3.4.3), the resulting prior density for θ̃ is given

in Appendix A.4.

3.5.2 Predictive distribution

There are two complementary scenarios for which predictions might be required: the

distribution of future recruitments within a set time interval, and the distribution of

time until the target number of recruitments is reached. In this section, we focus on

the former; details of the latter appear in Appendix A.5.

Suppose we are interested in sampling the recruitment, denoted N+
c , at some day

t+ by centre c. Given samples from the parameter posteriors, we can sample exactly

from the posterior predictive for N+
c by exploiting the Poisson-gamma conjugacy of

the random-effect distribution. The posterior distribution for the λoc random effect

for centre c is

λoc|α, ϕ, θ,nc, τc ∼ Gamma
(
α + n(·)

c , α/ϕ+G(τc; θ)
)

= Gamma

(
α∗
c ,
α∗
c

ϕ∗
c

)
, (3.5.1)

where α∗
c = α + n(·) and ϕ∗

c = ϕ ×
(

α+n
(·)
c

α+ϕG(τc;θ)

)
. The predictive distribution for N+

c

conditional on the random effect is:

N+
c |λoc, θ ∼ Pois

(
λoc

∫ t+

t+−1

g(s; θ) ds

)
= Pois

(
λocG

+
θ

)
, (3.5.2)

where G+
θ =

∫ t+

t+−1
g(s; θ) ds.

Marginalising over the random effect posterior, we arrive at the negative binomial
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distribution:

P(N+
c = n|α∗

c , ϕ
∗
c) =

Γ(α∗
c + n)

Γ(α∗
c)n!

(
α∗
c

α∗
c + ϕ∗

cG
+
θ

)α∗
c
(

ϕ∗
cG

+
θ

α∗
c + ϕ∗

cG
+
θ

)n

, n ∈ N. (3.5.3)

The prediction interval t+ does not need to be a day and could instead be a week or

a month, depending on the context of the application. To obtain the full marginal

predictive, we sample the recruitments conditional on parameters sampled from the

posterior. For as yet unopened centres, we set n
(·)
c = τc = 0. For each triplet

(or couplet, if κ = 0) of parameters sampled from the posterior, we sample N+
c ,

c = 1, . . . , C, and sum them to obtain a sample from N+|α, ϕ, θ. The collection of

these sums is a sample from the posterior predictive distribution for the model.

If simulations for multiple distinct time periods are required for a given centre, c,

as needed for the accrual curve for example, then we first sample λoc from its posterior

(3.5.1). We then simulate the Poisson counts for the individual time periods, which

are conditionally independent given λoc, from (3.5.2).

3.5.3 Model averaging

When predicting the enrolments using a fitted model, we implicitly assume that a

single model best reflects reality; however, prediction methods should consider the

uncertainty in the models used for inference. We shall, therefore, use model averaging

for making predictions, that is, take a weighted average of predictions made by each

model. Working in the Bayesian paradigm provides us with an intuitive choice for
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weights in the form of marginal likelihoods of the models.

P(N+ = n+|n, τ ) =
K∑
k=1

P(N+ = n+|n, τ ,Mk)πp(Mk|n, τ ),

where πp(Mk|n, τ ) ∝ π(n|τ ,Mk)π0(Mk), k = 1, . . . , K, with π0(Mk) being prior model

probabilities. The averaging framework fits in with the restriction of the shape param-

eter κ to a discrete space. Each κ value generates an inhomogeneous Poisson-gamma

model with the tail behaviour of the associated intensity shape. This includes the

null (κ = 0) model as in Anisimov and Fedorov (2007). In this work we set all prior

model probabilities equal.

3.5.4 Model validation

Before making any statements in regards to the future recruitments, we should validate

that the fitted model does indeed capture the true data-generating process sufficiently

well. Since the true process is unknown, we compare the observed data to the modal

model (the model with the highest posterior probability) fixed at posterior parameter

means (α̂, ϕ̂, θ̂).

Firstly, we wish to assess that the chosen hierarchical structure is reflected in the

data. The distribution of posterior means of the individual random effects should

approximately follow the hierarchical Gamma(α̂, α̂/ϕ̂) distribution. A QQ-plot can

be used to visually compare the distributions. If deemed sufficiently similar, using

the distribution for generating predictions for yet-unopened centres is appropriate.

If the distributions are noticeably different, particularly if the true distribution is

multimodal, any interim predictions for yet-unopened centres could (but need not;
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see robustness study in Section 3.6) be inaccurate.

According to the model, the counts in any initial period [0, t′] (such as the first

month) of each centre’s recruitment period, follow a negative binomial distribution

with shape parameter α and success probability ϕG(t′; θ)/(α + ϕG(t′; θ)), similar to

that given in (3.5.3) but using α and ϕ in place of α∗
c and ϕ∗

c . As the true parame-

ters are unknown, we compare it to the distribution fixed at point-estimates (α̂, ϕ̂, θ̂).

The diagnostic indicates if the combination of the gamma random effects and the

modal decay model captures the behaviour over the initial period after centre initia-

tion. Again, a QQ-plot can be used for comparing the theoretical distribution to the

observation, giving an indication if the fitted model under- or overestimates initial re-

cruitment. The initial period, [0, t′], should be long enough that the true recruitment

decay should be apparent. However, since only centres that have been recruiting for

a period of at least t′ can be used for the diagnostic, to ensure a reasonable power,

t′ should be short enough that a large number of sites have been recruiting for this

duration. In this work, we set t′ = 60 (2 months).

3.6 Simulation results

We demonstrate our flexible framework through a simulation study, using simulated

data sets to illustrate model fit and prediction and to highlight the effect model

misspecification can have on predictions. In practice, patterns in centre initiation

times can vary greatly between trials. For presenting the methodology, we consider an

initiation schedule similar to that observed in a typical trial. We test the robustness
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of the method to model misspecification using a uniform initiation schedule, with

another type of schedule examined in Appendix A.6.

Our historical data set do not include the initiation times of the centres, so in-

stead, to accurately reflect the historical data used in the meta-analysis and what

is often available to researchers, we take the first recruitment time of a centre as its

initiation time and adjust the models to include a single deterministic recruitment at

the initiation time of each centre followed by stochastic recruitment as described in

Section 3.4.

We simulate a study over a course of 600 days, with 200 centres. The parameters

used for simulations were α = 1.4, ϕ = 0.01, κ = 2.7 and θ = 0.02. The inference is

carried out on data observed in the first 360 days. As motivated in Section 3.1, we

condition the inference on a set of known initiation times, chosen by the practitioner;

these could subsequently be varied to investigate the impact of different schedules

or initiation models. We consider a set of models with flexible tails (Section 3.4.1)

allowing κ ∈ {0, 0.5, 1, 2,∞}, thus including the null model (Anisimov and Fedorov,

2007). The “normalisation” of the curve-shapes was imposed at τ̄ = 1
C

∑C
c=1 τc. We

purposely simulated using a κ value outside of those considered in our models to

illustrate the flexibility of the framework. For Bayesian inference, we used parameter

and model priors outlined in Sections 3.5.1 and 3.5.3 respectively. Based on the model

fitted to the data at the census day 360, we wish to predict the daily accrual until

day 600.

Performing the LRT and BST from Section 3.3, we find the p-values of both

tests to be < 0.001. Table 3.6.1 provides the fits for the five models. The effective
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Figure 3.6.1: Accrual plot with the centre opening times marked by “+” symbols on
the x-axis.

κ α ϕ θ π(Mk|n) ESS
0 1.141 (0.771, 1.672) 0.013 (0.011, 0.017) −− 3.49× 10−25 9006

0.5 1.167 (0.759, 1.745) 0.013 (0.010, 0.016) 0.143 (0.044, 0.441) 5.51× 10−4 8519
1 1.144 (0.742, 1.744) 0.013 (0.011, 0.016) 0.033 (0.021, 0.049) 2.21× 10−1 8665
2 1.142 (0.728, 1.644) 0.014 (0.011, 0.016) 0.017 (0.012, 0.023) 6.58× 10−1 8564
∞ 1.122 (0.718, 1.645) 0.014 (0.011, 0.017) 0.009 (0.007, 0.011) 1.20× 10−1 8610

Table 3.6.1: Posterior means and 95% credible intervals, posterior model probabilities
and effective sample sizes, obtained using 104 importance samples for each model.
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samples sizes are high, which means that each of the model posteriors is represented

well by its respective sample and that the marginal likelihood estimates are accurate.

If the ESS values had been low, we would have retried using more samples in the

importance sampler. We see that model corresponding to κ = ∞ has the highest

posterior probability. A trellis plot of the posteriors for (α̃, ϕ̃, θ̃) from the modal model

(see Appendix A.6) confirms at least approximate pairwise orthogonality between the

parameters, as anticipated from Sections 3.4 and 3.5.1. QQ-plots for the modal model

comparing the hierarchical gamma distribution to the posterior means of the random

effects, and comparing the observed recruitments over the first two months of each

centre’s recruiting period to the model’s negative binomial distribution both show

approximate straight lines with unit gradient and are provided in the Appendix A.6.

Figure 3.6.2 shows the accrual forecast from the census time τ = 360 up to the

horizon τH = 600, superimposed onto the true accrual plot. The forecast is based

on the Bayesian model-averaged posterior predictive distribution. The true accrual is

contained within the 95% predictive intervals.

Figures 3.6.3a and 3.6.3b use an earlier census time (τ = 240) to illustrate the

issues that can arise when making predictions using maximum likelihood estimation

and model selection. The inference was carried out with the same set of candidate

models, and predictions were obtained by simulating from the best model (κ = ∞,

chosen using AIC) with parameters fixed at the MLEs. As shown in the plots, not

accounting for parameter and model uncertainty may lead to overly confident and

biased predictions. Simulations with τ = 360 (see Appendix A.6) still showed bias

due to the choice of a single model, although the contrast with Figure 3.6.2 in terms
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Figure 3.6.2: Accrual with Bayesian model-averaged forecast predictive mean (solid,
red) and 95% prediction bands (red, dashed). Prediction bands are based on the 2.5%
and 97.5% quantiles. The forecast begins from a point marked by the red dot and the
“+” symbols on the x-axis indicate centre opening times.

of prediction interval width was less marked.

We repeated the analysis with a different distribution of initiation times, making

the centre initiations “clump” roughly every two months. The resulting forecast

predictive distribution can be seen in Figure 3.6.4; performance appears to be robust

to the type of initiation schedule.

To further test the robustness of the framework, we first consider the random

effects λoc now being generated from a mixture of two gamma distributions

λoc|α, ϕ1, ϕ2 ∼
1

2
Gamma

(
α,

α

ϕ1

)
+

1

2
Gamma

(
α,

α

ϕ2

)
.

We considered data generated using the same α value and curve-shape as before,

but now with centre initiation times uniformly sampled on the interval. The ratio of

gamma expectations was fixed such that ϕ2 = 10ϕ1, and the random effect expecta-
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(a) Bayesian model averaging
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(b) MLE and model selection

Figure 3.6.3: Comparison of accrual predictions produced by two methods; accru-
als (black, solid) with predictive means (red, solid) and 95% prediciton bands (red,
dashed). Prediction bands are based on the 2.5% and 97.5% quantiles. The “+”
symbols on the x-axis indicate centre opening times.
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Figure 3.6.4: Accrual with forecast predictive mean (solid, red) and 95% prediction
bands (red, dashed). Prediction bands are based on the 2.5% and 97.5% quantiles.
The forecast begins from a point marked by the red dot and the “+” symbols on the
x-axis indicate centre opening times.
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(a) Uniform openings, E[λoc] = 0.01
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(b) Uniform openings, E[λoc] = 0.03

Figure 3.6.5: Accruals (black, solid) with predictive means (red, solid) and 95%
prediciton bands (red, dashed) when the true random-effect distribution is a mix-
ture. Prediction bands are based on the 2.5% and 97.5% quantiles. The “+” symbols
on the x-axis indicate centre opening times.

tion, E[λoc] = (ϕ1 + ϕ2)/2, was set to 0.01 and then 0.03. Figures 3.6.5a and 3.6.5b

show example forecasts for accruals with the two different expectations. The more

data, that is, the larger E[λoc], the more apparent the discrepancy in the random-effect

distribution, and the concomitant predictions, becomes. This is visible in the clearly

non-linear diagnostic QQ-plots, and the plotted forecasts (see Appendix A.6). The

robustness of predictions comes from the fact that the random effects for initiated

centres use re-estimated data-driven distributions, reducing the importance of the

random-effect prior; thus the main source of forecasting error comes from the incor-

rect random-effect prior for new centres. Similar plots for the ”clumped” initiation

schedule, provided in Appendix A.6, show the same pattern. This mixture distribu-

tion of random effects represents the (extreme) scenario where roughly half of the

centres recruit the vast majority of patients, with the remaining sites recruiting little

to none each. When the ratio of the two means is closer to 1, the model still produces

reliable predictions.

We also consider the effect of curve-shape misspecification on predictions, gener-
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(a) Uniform openings, E[λoc] = 0.01
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(b) Uniform openings, E[λoc] = 0.03

Figure 3.6.6: Accruals (black, solid) with predictive means (red, solid) and 95%
prediciton bands (red, dashed) when the true intensity shape is Weibull, for two dif-
ferent values of E[λoc]. Prediction bands are based on the 2.5% and 97.5% quantiles.
The “+” symbols on the x-axis indicate centre opening times.

ating data using an intensity proportional to the Weibull density function

gW (t; θ, k) =
k
θ

(
t
θ

)k−1
exp
(
−(t/θ)k

)
1− exp (−(τ/θ)k)

τ, so GW (t; θ, k) =
1− exp

(
−(t/θ)k

)
1− exp (−(τ/θ)k)

τ,

where θ, k > 0. We simulated accrual datasets using the Weibull shape with θ = 30

and k = 1.5, resulting in the highest recruitment rates occurring two weeks after cen-

tre initiation. The random-effect distribution used α = 1.4 and two different values

ϕ were used: 0.01 and 0.03; Figures 3.6.6a and 3.6.6b show example forecasts. For

lower overall recruitment levels, the model still predicts future accrual well. Forecast

inaccuracies due to model misspecifiation become more apparent when larger recruit-

ment rates are used. The same pattern is observed when centre initiation times are

clumped (see Appendix A.6).
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3.7 Data results

We fitted the same set of models to a recruitment dataset of a prostate-cancer clinical

trial. The recruitment was carried out across 244 sites. The accrual is presented as

the proportion of the total number enrolled. Similarly, time is given as the proportion

of the total recruiting period. Figures 3.7.1 and 3.7.2 show the diagnostic QQ-plots

for the model fitted to data available at time 0.4. They indicate that there is sufficient

concordance between the assumed model and observed enrolment giving validity to

potential predictions. Figure 3.7.3 shows the accrual along with forecasts from four

different census times. The predictive bands become narrower and parameter uncer-

tainty decreases at each census as more data become available for inference. After

the third census, there is an unexpected jump in accrual followed by a drop around

the fourth census time, suggesting a global external factor, such as a change in the

protocol. Table 3.7.1 shows p-values of the LRT and BST. Initially, when the accrual

is still only a small proportion of the total, it is hard to detect the time-inhomogeneity.

At later census points, the test outcomes indicate that the rates are not constant.

We compare the proposed framework to the standard homogeneous PG model

(3.2.1) as well as a homogeneous Poisson process (HPP) model fitted only to the

accrual. We used the same priors as outlined in Section 3.5.1 for fitting the PG

model, and the HPP rate estimate was obtained using maximum likelihood. The

methods were compared in terms of the predicted completion time of the recruitment

for the study with the sampling details outlined in Appendix A.5. Forecast completion

time from 6 different census points and can be seen in Figure 3.7.4; the first HPP
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Figure 3.7.1: Re-estimated λoc expec-

tations compared to Gamma
(
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distribution.
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Figure 3.7.2: Observed recruitments
compared to the theoretical negative
binomial distribution.

predictions were centred at 3.67 and 1.84 which were outside the plot’s range. The

proposed framework produces better point predictions, especially at earlier interim

analyses, and more closely represents the true uncertainty. The HPP predictions near

the end of the trial are very accurate. At this point, the majority of the centres having

already been initiated and have been recruiting for a long period of time. As a result,

the total recruitment rates are not changing by much, with the slight decreasing trend

offset by the occasional initiation of a new centre. This is a coincidence; if the decay

rate had been sharper or shallower, or if fewer or more centres had been initiated

then the naive overall Poisson process model would not have fitted as well. The

underprediction of the completion time by the proposed model at the census time of

t = 0.71 is likely a result of the unexpected surge in recruitment at around that time.

The surge is examined in more detail in Appendix A.6.
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Figure 3.7.3: Accrual (black, solid) for an oncology study; coloured solid lines are
mean predictions from census times, dashed lines are the 95% prediction bands, and
the “+” symbols indicate opening times of centres.

Census time BST p-value LRT p-value
1 0.196 0.226
2 0.012 0.021
3 < 0.001 < 0.001
4 < 0.001 < 0.001

Table 3.7.1: Decay in rate test p-values and the forecasting p-values at four census
times.
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Figure 3.7.4: Predictive distributions for time needed to make the final recruitment
in the data example in Section 7, as forecast by three different modelling frameworks:
Bayesian model averaging (BMA), time-homogeneous Poisson-gamma (PG) and ho-
mogeneous Poisson process fit to accrual only (HPP). The horizontal line represents
the true completion time and the prediction positions of the x-axis were off-set by
0.01 for clarity.

3.8 Discussion and further work

We have introduced a general, flexible framework for modelling and predicting re-

cruitment to clinical trials. We suggest two tests for detecting decay in recruitment

rates; comparing them both with respect to power and robustness. The particular

form of the test statistic allows for a single, simple trial-level test. Alternative forms,

such as splitting according to a global time, would either require a test for each centre,

massively reducing the power, or estimates of all of the individual centre intensities

which would introduces several layers of additional complexity because of the hier-

archical connection between the centre intensities. If it were believed a priori that

a particular global period would be unrepresentative then this time span, and the

concomitant recruitment, could simply be removed, albeit at the cost of lower power.
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The parametric curve-shape forms chosen for the intensity were based on the

features encountered in oncology trials. We found that the model was still robust

to moderate model misspecifications in the distribution of the random effect and

intensity shape. Other therapeutic areas such as pulmonary or cardio-vascular diseases

experience more frequent recruitments and different curve-shapes may be appropriate.

As shown in Section 3.6, model misspecification becomes more of a problem at larger

enrollment rates. However, with increased frequency, pattern changes in the early

months of a centre are easier to identify. Using more complex parametric forms,

such as Weibull or generalised gamma shape, could lead to more accurate predictions.

Alternatively, if covariate information is available, say xc for each centre, the following

intensity form motivated by hazard models from survival analysis could be used:

λc(t) = λocexp
(
β⊤xc

)
g
(
t; exp

(
η⊤xc

))
, where λoc are now random effects coming from

a Gamma(α, α) distribution and β and η are vectors of unknown parameters.

As seen in the data example in Section 3.7 there can be external factors modulating

the overall accrual. This could potentially be modelled via a short-term, constant

global intensity modifier, which would maintain tractability. The framework is not

constrained to parametric forms; non-parametric intensity models, such as those using

B-splines (for example, Morgan et al. (2019)) or Gaussian processes (for example,

Adams et al. (2009)), could be used instead. This, however, could greatly complicate

the Bayesian inference and make the intensity extrapolation problem more difficult.

For the curve-shape parameter prior construction, our choice of the quantity of

interest Rκ was motivated by simplicity of the form; one could just as well have used

Gκ(t0/2;θ)
Gκ(t0;θ)

, albeit with more algebraic manipulations. The general method was aimed
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at models with monotonically decreasing intensities. If curve-shapes such as Weibull

are considered then constructing sensible priors will be more complicated.

In presenting the method, we condition the inference and prediction on known

initiation schedules for the centres. Incorporating stochastic centre initiation mod-

els, such as those in Anisimov (2009) and Lan et al. (2019), into the Monte Carlo

prediction framework is straightforward, but would complicate the presentation of

our methodology without adding novelty. In Appendix A.7, we demonstrate how re-

cruitment can be predicted using our methodology when there is uncertainty in the

initiation schedule. For illustration, we imagine a Weibull-distributed delay to each

centre’s initiation, but any other initiation model could be incorporated in a similar

manner. We stress that full prediction intervals should take this uncertainty into

account.

In this work, we focus on patient recruitment regardless of the numbers of dropouts

observed. In practice, screening failure and patient withdrawal are both prevalent in

clinical trials. Assuming the dropouts are independent of the recruitment process,

existing survival analysis techniques such as Cox’s proportional hazard model (Cox,

1972) or accelerated failure time frailty model (Wei, 1992) could be used in combina-

tion with the recruitment model to produce distributions of the numbers of patients

in the system at a given time. Such knowledge would be useful to the practitioners

and operational researchers in charge of drug-supply chains for the centres.

Anisimov and Fedorov (2007) introduced a method for determining the number of

additional centres needed to be initiated for the study to finish on time. With minimal

adaptation, the same method can also be used with our model. However, since the
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method assumes that all new centres are initiated immediately, it may not apply

in all practical scenarios. We would advocate a simulation-based approach, where

forecasts based on different centre initiation schedules are compared. As different

operational costs can be associated with different schedules, this would become a

resource-constrained optimisation problem.

3.9 Software

Software in the form of R code is available at https://github.com/SzymonUrbas/c

t-recuitment-prediction.

https://github.com/SzymonUrbas/ct-recuitment-prediction
https://github.com/SzymonUrbas/ct-recuitment-prediction


Chapter 4

Exact sequential inference for

bounded-intensity Cox processes

4.1 Background

Temporal Poisson process models arise in many areas such as geology (Shlien and

Nafi Toksöz, 1970), finance (Cariboni and Schoutens, 2009; Li and Godsill, 2021) or

ecology (Warton and Shepherd, 2010), where events such as earthquakes or stock

crashes occur in time with some underlying pattern. In many situations, the data are

not time-homogeneous, with points exhibiting various time-dependent trends dictated

by the intensity function λ(t), t > 0. Under the Poisson process model assumption,

we have a time sequence of n ordered points, t = (t1, . . . , tn), observed in [0, T ] with

the likelihood of the intensity

L(λ(·);n, t) = exp

(
−
∫ T

0

λ(s) ds

) n∏
i=1

λ(ti). (4.1.1)

75
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A major drawback of implementing inhomogeneous Poisson process models for general

purposes is the need to prespecify the parametric form of λ which requires domain-

specific knowledge; one such example appears in Chapter 3 of this thesis. Some

approaches aim to bypass this issue by using a basis of spline functions to nonpara-

metrically estimate the functional form (see, for example, Weinberg et al., 2007; Mor-

gan et al., 2019). The resulting inference, however, can be sensitive to the choice of

basis and smoothness constraints. Moreover, predictions, whether forward in time or

over a censored region, may not fully capture the uncertainty.

A Cox process assumes a hierarchical structure where λ(t) is itself a stochastic pro-

cess, adding a great deal of modelling flexibility (Cox, 1955). This comes at a great

cost as, apart from special cases, the exponential-functional term in (4.1.1) is not avail-

able in a closed form, which leads to the intractability of any direct likelihood-based

inference. This is known as a doubly-intractable problem where even the likelihood

function cannot be evaluated, let alone the posterior density. There is a multitude of

formulations for Cox process models with different stochastic process priors (see, for

example, Cox, 1955; Møller et al., 1998; Fearnhead et al., 2008; Lloyd et al., 2015) In

this chapter, we only consider models where the resulting intensity λ(t) is bounded

(but the bound itself could be unknown). The physical interpretation is that there is

some inherent limit to how frequently events can occur in a given setting. We also

focus our attention on inference methods which allow for exact Bayesian posterior

inference; the exactness is in the Monte Carlo sense.

Adams et al. (2009) introduces the sigmoidal Gaussian Cox process (SGCP) by
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letting

λ(t) = λ0F (Xt), (4.1.2)

where λ0 > 0, F : R → (0, 1) is an inverse-logit transform, and Xs is a univariate

Gaussian process (GP) with a squared-exponential kernel. The main contribution of

the article was a very specific data-augmentation scheme which can be used for any

bounded monotonic F . The setup considers a set of Ñ latent thinned points r which

marginally form a realisation of a Cox process with an intensity λ0 (1− F (Xt)). This is

directly motivated by the thinning procedure where such points would be discarded in

order to obtain the observed process. The joint likelihood under the data-augmented

model becomes

LDA(Xt, λ0;n, t, Ñ , r) = exp

(
−λ0

∫ T

0

F (Xs) ds

) n∏
i=1

λ0F (Xti)

× exp

(
−λ0

∫ T

0

1− F (Xs) ds

) Ñ∏
i=1

λ0(1− F (Xri))

=λ0
n+Ñe−λ0T

n∏
i=1

F (Xti)
Ñ∏
i=1

(1− F (Xri)).

Tractable, exact inference now involves a dimension-changing reversible-jump Markov

chain Monte Carlo (Green, 1995). The main computational bottleneck is that, at each

iteration of the algorithm, one is required to invert the GP covariance matrix which

is O
(

(n+ Ñ)3
)

, where Ñ is random. Additionally, if the GP hyperparameters are

not specified and thus included in the inference, the posterior correlation between the

parameters and the functional form Xt can result in poorly mixing chains.

Teh and Rao (2011) further extends the data-augmentation approach to a more

general class of renewal processes modulated by a GP. The work also proposes an al-
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ternative MCMC algorithm composed of a Gibbs sampler for the augmented dataset

(Ñ , r) conditional on the current position of the chain. The latent variables are sam-

pled from their marginal distribution, hence bypassing the reversible-jump updates.

Numerical experiments show how this is an improvement in both computational speed

and statistical efficiency. Similar Gibbs algorithms appear in Rao et al. (2017) and

Gonçalves and Gamerman (2018); however, the latter points out that the intensity

posterior seems to concentrate around different values depending on the inference

scheme. Recent work of Alie et al. (2022) argues that the Gibbs samplers incorrectly

assume independence of t and r conditional on Xt, which results in the sampler

targetting a joint posterior density with respect to a different measure.

Li and Godsill (2021) (the sequel to Li and Godsill (2018)) replace the generic

GP prior with a 2-dimensional Langevin diffusion prior, that is, Xt is now a diffusive

process which solves a specific stochastic differential equation. The joint distribution

of the latent process is still Gaussian but now the process is Markovian, which allows

for cheap conditional simulation and joint density evaluations. The paper presents a

number of inference schemes for this particular modelling setup, with the main being

a novel sequential Markov chain Monte Carlo algorithm which infers the intensity

function over subintervals of the domain. The iterations of the algorithm alternate

between the reversible-jump moves and local Metropolis-within-Gibbs refinements;

the Gibbs steps are akin to those in Teh and Rao (2011). The work also outlines a

random-weight particle filter (Fearnhead et al., 2008) where the particle weights are

estimated through the data-augmented likelihood LDA. It appears that the resulting

weights have a very large variance as the particle approximation of the intensity
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posterior is very poor compared to other approaches. Throughout the article, the

hyperparameters of the Xt process are fixed, and the proposed methods do not easily

lend themselves into hyperparameter inference; the sequential MCMC algorithm does

not produce unbiased estimates of the marginal likelihood needed for particle MCMC.

Gonçalves et al. (2020) outline a more general modelling framework where the GP

prior is replaced with a generic diffusive process on R, subject to conditions, and F

can be replaced by any function mapping to R+. Inference is now based on the exact

algorithm for sampling diffusions (Beskos et al., 2006). The main advantage of the

methodology is its applicability to a large class of problems, though it still involves

MCMC steps on parameter spaces of varying dimensions.

Some approaches aim to circumvent the computation overhead of exact infer-

ence by using a discrete-time approximation for the integral term (see, for example,

Lechnerová et al., 2008; Ng and Murphy, 2019). Gunter et al. (2014) reduces the

complexity of the inference by considering induced points for the Gaussian process

regression and Lloyd et al. (2015) applies a full variational inference framework to

further speed up model-fitting. All those schemes introduce some bias that, given

current methods, cannot be easily quantified.

In this chapter, we introduce a novel extension of the Poisson Estimator (Beskos

et al., 2006) to provide an unbiased estimate of the likelihood (4.2.1) which is then

used within a particle MCMC scheme to allow for exact posterior inference on both

the stochastic intensity function and the underlying hyperparameters. Section 4.2

describes the particular model employed in this chapter, and Section 4.3 outlines a

generic inference scheme based on a random-weight particle filter which is then used to
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produce posterior estimates for a pseudo-marginal Metropolis-Hastings algorithm. In

Section 4.4, we introduce the novel unbiased estimator of the Cox process likelihood,

which we call the Rao-Blackwellised Thinning Estimator, and discuss its variance

and the computational cost; general guidelines are given for random-weight particle

filter implementations. Section 4.5 illustrates the proposed estimator in practice on a

number of synthetic and real data examples, and Section 4.6 contains the discussion

along with suggestions for further work.

Notation

Throughout the chapter, we consider a multi-dimensional temporal stochastic process

denoted by Xt, t ≥ 0, and its first one-dimensional component by Xt. We use Xti

and Xti , to denote the respective realisations at times ti, i = 1, . . . , n. We let X(a,b) be

the process contained to the open interval (a, b), b > a ≥ 0, with similar definitions

for half-open and closed intervals. For latent variable vectors of realisations at t, we

use a shorthand notation Xt = (Xt1 , . . . ,Xtn), with a similar definition for Xt. To

avoid confusion when indexing a sequence of vectors, we use subscripts in parentheses;

for example, v(k) ∈ Rd, k = 0, 1, . . ..

We let Y ∼ TruncPois(µ; k) denote a (k − 1)-truncated Pois(µ) random variable

with a mass function

P (Y = y) =
µye−µ

SP(k − 1;µ)y!
, y = k, k + 1, . . . , (4.1.3)

where SP( · ;µ) is the survival function of a standard Poisson random variable with

expectation µ. Properties of the distribution can be found in Appendix B.1.
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4.2 Model setup

We shall use the work of Li and Godsill (2021) as a starting point for constructing a

new model and the corresponding sequential inference scheme, albeit with a number

of modifications. Recall that the data are an ordered time-sequence (n, t), observed

in [0, T ]. The points are a realisation of the process conditional on an unobserved

realisation of the stochastic intensity λ(·) which is assumed to have the form (4.2.1).

We set F to be the inverse-logit transform, F (x) = (1 − e−x)−1, and Xt to be a

single component of a multi-dimensional Ornstein-Uhlenbeck (OU) diffusion process

parametrised by a vector ψ, with full details given in the next section. We refer to

the resulting model as the OU-process-driven sigmoidal Cox process (OU-SCP). The

methods, as introduced in this chapter, are fully applicable to any bounded monotonic

transformation F and any diffusion Xt provided it can be simulated exactly. We

assume that the data are generated as follows:

� Xt is a single realisation of an OU process initialised from its stationary dis-

tribution, where the process is described by a stochastic differential equation

(SDE) parameterised by ψ;

� Nt is a Poisson process with an intensity function λ(t) = λ0F (Xt);

� (n, t) is a time sequence obtained from a realisation of Nt observed in [0, T ].

The likelihood under this setup is

L(Xt,ψ, λ0;n, t) = λ0
n

n∏
i=1

F (Xti)exp

(
−λ0

∫ T

0

F (Xs) ds

)
. (4.2.1)
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Given an observation (n, t), we wish to perform Bayesian inference and sample from

the posterior

π(Xt,ψ, λ0|n, t) ∝ L(Xt,ψ, λ0;n, t)pOU(Xt|ψ)π0(ψ, λ0), (4.2.2)

where pOU is the joint prior density of the stochastic process evaluated at t and

π0(ψ, λ0) is the joint hyperparameter prior.

4.2.1 Ornstein-Uhlenbeck process prior

We consider a similar diffusion state-space prior on Xt as in Li and Godsill (2021);

relevant properties of diffusions can be found in Section 2.2.3 of Chapter 2. A priori,

we assume the unknown curve Xt is a component of a realisation of an Ornstein-

Uhlenbeck process which solves the stochastic differential equation

dXt = −AXt dt+ h dWt, t > 0, (4.2.3)

X0 ∼ N(µ0,Σ0), (4.2.4)

where A is a positive definite drift matrix, h is a diffusivity vector term and Ws is a

1-dimensional Wiener process. For A and h, we take

A =

θ1 −1

0 θ2

 and h =

0

σ

 , (4.2.5)

where θ1, θ2, σ > 0. A scenario where θ1 = θ2 produces a valid model but, as we let

the parameters be random for Bayesian inference, this occurs probability 0.

Proposition 4.2.1. The solution to the SDE (4.2.3) subject to initial condition
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(4.2.4) is a Gaussian process with the marginal distribution at time t being Xt ∼

N
(
Gtµ0, Gt (Ψt + Σ0)G

⊤
t

)
, where Gt = exp(−At) and Ψt =

∫ t

0
G−1

s hh
⊤(G−1

s )⊤ ds.

If A and h are as in (4.2.5) then

Gt = exp(−At) =

e−θ1t e−θ2t−e−θ1t

θ2−θ1

0 e−θ2t

 ,
and

Ψt =


(

σ
θ2−θ1

)2 (
e2θ2t

2θ2
+ e2θ1t

2θ1
− 2e(θ1+θ2)t

θ1+θ2
− θ21−2θ1θ2+θ22

2θ1θ2(θ2+θ1)

)
σ2

θ2−θ1

(
1

θ1+θ2
− 1

2θ2
− e(θ1+θ2)t

(θ1+θ2)
+ e2θ2t

2θ2

)
σ2

θ2−θ1

(
1

θ1+θ2
− 1

2θ2
− e(θ1+θ2)t

(θ1+θ2)
+ e2θ2t

2θ2

)
σ2

2θ2

(
e2θ2t − 1

)
 ,

where Ψ0 is a matrix of zeros. The proof of Proposition 4.2.1 and the derivation of

the above matrices are given in Appendix B.2. The key step of the SDE solution is

the substitution Xt = GtYt, where Yt is a Markov process experiencing no drift which

leads to Yt ∼ N(µ0,Ψt + Σ0). Since A is positive definite, Xt is mean-reverting and

we can obtain the limiting stationary distribution

lim
t→∞

Xt ∼ N

0,

 σ2

2θ1θ2(θ1+θ2)
σ2

2θ2(θ1+θ2)

σ2

2θ2(θ1+θ2)
σ2

2θ2


 . (4.2.6)

In contrast to state-space priors based on a 1-dimensional OU process (Lechnerová

et al., 2008; Gonçalves et al., 2020), the first component of Xt is differentiable which

can make for a more intuitive model depending on the setting. For particle filter

implementation, we need to quantify the relaxation time of the process Xt, and in

particular its first component. To do this, we examine the cross-covariance matrix at
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times 0 and t when the process is initialised from stationarity,

Cov [X0,Xt] = Cov [Y0, GtYt]

= Cov [Y0,Y0 + (Yt − Y0)]G
⊤
t

= V[Y0]G
⊤
t ,

where the third equality follows from the Yt process being Markov. The auto-

correlation of the first component, X1,t, is obtained by evaluating

Corr [X1,0, X1,t] =

[
V[Y0]G

⊤
t

]
1,1

[V[Y0]]1,1
=
θ1e

−θ2t − θ2e−θ1t

θ1 − θ2
. (4.2.7)

4.3 Sequential Inference

We wish to avoid the costly computations and possible poor mixing of chains asso-

ciated with data-augmentation schemes without compromising on the exactness of

inference. To do so, we devise a pseudo-marginal scheme which uses sequential Monte

Carlo (SMC) to integrate over the Xt process, without introducing any numerical

errors. We begin by dividing up the observation window, [0, T ], using a partition

τ := (0 = τ0 < τ1 < . . . < τM−1 < τM = T ) ,

into M + 1 subintervals

{0}, (0, τ1], . . . , (τM−2, τM−1], (τM−1, T ]
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with ∆m = τm − τm−1, m = 1, . . . ,M ; the corresponding portions of the data are(
nm, t(m)

)
, where

t(m) = {ti : τm−1 ≤ ti < τm} and nm = |t(m)|,

with n0 = 0 and t(0) = t0 = 0. To simplify the notation we use y(m) =
(
nm, t(m)

)
and y(0:m) =

(
y(0), . . . , y(m)

)
. For the time being τ is a fixed, non-uniform partition;

Section 4.4.3 will discuss specific guidelines for choosing τ for a given combination of

data and parameters.

We first examine the ideal filter, where the integral term in the likelihood (4.2.1)

can be evaluated exactly; the below procedure mirrors the general filtering algorithm

outlined in Section 2.5.1 of Chapter 2. The process is initialised from its stationary

distribution, that is, π(X0|ψ) as given by (4.2.6). Due to the Markovian property of

both the OU process and the Poisson process, we observe that

p
(
X(τm−1,τm]|X(τm−2,τm−1], y(0:m−1),ψ, λ0

)
= g

(
X(τm−1,τm]|Xτm−1 ,ψ

)
, (4.3.1)

where g is the density of the continuous-time conditional propagation of Xt (Propo-

sition 4.2.1); and

p
(
y(m)|X[0,τm], y(0:m−1),ψ, λ0

)
= p

(
y(m)|X(τm−1,τm],ψ, λ0

)
= L

(
X(τm−1,τm], λ0; y(m)

)
,

which is the Cox process likelihood. The filtering density of the process conditional
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on the observed data follows a recursion relation

π
(
X(τm−1,τm]|y(0:m),ψ, λ0

)
=
p
(
X(τm−1,τm], y(m)|y(0:m−1),ψ, λ0

)
p
(
y(m)|y(0:m−1),ψ, λ0

) , (4.3.2)

where

p
(
X(τm−1,τm], y(m)|y(0:m−1),ψ, λ0

)
=

∫
p
(
X(τm−1,τm], y(m),X(τm−2,τm−1]|y(0:m−1),ψ, λ0

)
dX(τm−2,τm−1]

=

∫
π
(
X(τm−2,τm−1]|y(0:m−1),ψ, λ0

)
× p

(
X(τm−1,τm]|X(τm−2,τm−1], y(0:m−1),ψ, λ0

)
× p

(
nm, t(m)|X(τm−1,τm],X(τm−2,τm−1], y(0:m−1),ψ, λ0

)
dX(τm−2,τm−1]

=

∫
π
(
X(τm−2,τm−1]|y(0:m−1),ψ, λ0

)
× g

(
X(τm−1,τm]|Xτm−1 ,ψ

)
× L

(
X(τm−1,τm],ψ, λ0; y(m)

)
dX(τm−2,τm−1],

and p
(
y(m)|y(0:m−1),ψ, λ0

)
is the above joint density integrated over X(τm−1,τm]. Even

if L could be evaluated, the resulting conditional density π
(
X(τm−1,τm]|y(0:m),ψ, λ0

)
would be intractable. To overcome this intractability, a particle filter can be employed

to approximate π
(
X(τm−2,τm−1]|y(0:m−1),ψ, λ0

)
at iteration m − 1 by using discrete

distribution π̂ constructed from a finite weighted sample {X(b)
(τm−2,τm−1]

, w̃
(b)
m−1}Bb=1,

π̂(X(τm−2,τm−1]|y(0:m−1),ψ, λ0) =
B∑
b=1

w̃
(b)
m−1δX(b)

(τm−2,τm−1]

(X(τm−2,τm−1]), (4.3.3)

where
∑B

b=1 w̃
(b)
m−1 = 1. Substituting the approximation into the recursion relation
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leads to

π̂
(
X(τm−1,τm]|y(0:m),ψ, λ0

)
∝

B∑
b=1

w̃(b)
m g

(
X(τm−1,τm]|X(b)

τm−1
,ψ
)
L
(
X(τm−1,τm], λ0; y(m)

)
.

(4.3.4)

The sampling, importance resampling (SIR) particle filter (Gordon et al., 1993) pro-

duces π̂ approximations at iteration m through importance sampling. The proposal

mechanism at m starts with resampling {X(b)
(τm−2,τm−1]

}Bb=1 according to the weights

w̃
(b)
m−1, and each particle is propagated via the conditional prior g

(
X

(b)
(τm−1,τm]|X

(b)
τm−1 ,ψ

)
.

Proposing samples from the prior results in the new importance weights only depend-

ing on the likelihood given the data in the new subinterval,

w(b)
m = L

(
X

(b)
(τm−1,τm], λ0; y(m)

)
.

Those weights can then be normalised

w̃(b)
m =

w
(b)
m∑B

i=1w
(i)
m

, b = 1, . . . , B,

and used to construct particle approximation to the filtering density at iteration m.

This exact particle filter cannot be used in practice as it depends on exact evaluations

of L; however, it serves as a foundation for the approach that follows.

Suppose we instead have access to some function that can produce non-negative

estimates of L
(
X(τm−1,τm], λ0; y(m)

)
at each subinterval, which we call L. We assume

that the function produces those estimates through the simulation of random points

t̃(m) on (τm−1, τm], through a conditional distribution fL
(
· |y(m), λ0,∆m

)
; more gen-

erally, L could involve the simulation of any kind of auxiliary random variables. For

producing the estimate using L, X(τm−1,τm] only needs to be sampled at
(
t(m), t̃(m)

)
,
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conditional on the discrete sampling locations in the previous subintervals. If the

estimates produced by L are unbiased then

L
(
X(τm−1,τm], λ0; y(m)

)
=

∫
L
(
Xt(m)

,Xt̃(m)
, λ0; y(m); t̃(m)

)
fL
(
t̃(m)|y(m), λ0,∆m

)
dt̃.

The continuous X(τm−1,τm] only interacts with the data through the discrete col-

lection (Xt(m)
,Xt̃(m)

) needed to estimate the likelihood. Sampling at the endpoint

of the preceeding subinterval, τm−1, to obtain the transition density (4.3.1) is not

needed and could in fact introduce unnecessary Monte Carlo noise. It is sufficient to

condition the diffusion propagation only on the most recent sampling location of the

process from the previous intervals, t∗m−1 = max
{
t(0:m−1), t̃(0:m−1)

}
;

p
(
X(τm−1,τm]|Xt∗m−1

,ψ
)

=

∫
g
(
X(τm−1,τm]|Xτm−1 ,ψ

)
g
(
Xτm−1 |Xt∗m−1

,ψ
)

dXτm−1 .

This is still a valid way of proposing diffusion paths, whilst reducing the variation

which would otherwise come with samplingXτm−1|Xt∗m−1
followed byX(τm−1,τm]|Xt∗m−1

.

It is helpful to define

X(m) =
((
t∗m−1,Xt∗m−1

)
,Xt(m)

,Xt̃(m)

)
, (4.3.5)

the vector of Xt at all required the sampling locations in the mth subinterval,

(τm−1, τm], along with the starting position; X(0) is the initial position of the dif-

fusion, and we use X(0:m) to denote the union over the first m subintervals.

Using L instead of L in the relation (4.3.4), allows for the construction of a SIR

random-weight particle filter (RWPF) (Fearnhead et al., 2008). The RWPF is in fact

an auxiliary particle filter on the extended space of (Xt, t̃) and so it approximates
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the joint filtering density (see Section 3.2 of Fearnhead et al., 2008). Discarding the

auxiliary variables t̃ and only retaining Xt realisations produces approximate samples

from the desired marginal distributions (4.3.2). We will now outline the steps involved

in the proposed particle filter.

At time 0, we initialise the filter by sampling X
(b)
0 , b = 1, . . . , B, from the station-

ary distribution (4.2.6) and setting it as the beginning of the sample path for each of

the B particles, X
(b)
(0) = X

(b)
0 .

At the mth iteration, m = 1, . . . ,M , each particle from the previous iteration

is propagated forward in time using the conditional prior distribution in Proposition

(4.2.1). This produces X
(b)
(m) given the most recent realisation of each path X

(b)

t
∗(b)
m−1

(Expression (4.3.5)); the sampling takes place at t(m), and t̃
(b)
(m) ∼ fL

(
· |y(m), λ0,∆m

)
.

Each particle is then weighted by a random weight

W (b)
m = L

(
X

(b)
(m), λ0; y(m); t̃

(b)
(m)

)
.

The normalised weights

W̃ (b)
m =

W
(b)
m∑B

i=1W
(i)
m

are then used to construct an empirical filtering distribution,

π
(
X(τm−1,τm]|y(0:m),ψ, λ0

)
≈

B∑
b=1

W̃
(b)
(m)Gm(X(τm−1,τm];X

(b)
(m),ψ), (4.3.6)

where Gm( · ;X(b)
(m),ψ) is the density of the continuous Xt process in the mth inter-

val, conditional on the finite X
(b)
(m). Densities Gm are combination of Dirac masses at(

X
t
(b)
(m)

,X
t̃
(b)
(m)

)(b)

and conditional densities for the diffusion bridges between neigh-

bouring sampling locations (see, for example, Lemma 3 of Bladt et al., 2016). This
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can be thought of as Rao-Blackwellisation over all the OU process paths which pass

through X
(b)
(m). We only store the discrete collection X

(b)
(m) but, in principle, one could

keep track of all the conditional diffusion bridge densities.

As the weighting procedure used in the scheme is only based on estimates of the

true likelihood, the discrepancy between the individual particle weights can be large

due to the presence of the multiplicative noise. Furthermore, the usual method of

estimating the effective sample size at each subinterval through

ESSm ≈

(
B∑
b=1

(
W̃ (b)

m

)2)−1

can be unreliable due to the same noise. To mitigate the potentially rapid particle

degeneracy, we employ resampling at every iteration of the filter; residual resampling

(e.g., Beadle and Djuric, 1997; Liu and Chen, 1998) is used as it introduces less

Monte Carlo noise than standard multinomial resampling and is straightforward to

implement (e.g., Douc and Cappé, 2005). The full SIR random-weight particle filter

is outlined in Algorithm 4.1.

The above procedure can be used to approximate the posterior distribution of

the intensity over the whole observation interval [0, T ], conditional on (ψ, λ0). In

addition, taking the average of the unnormalised weights at each iteration and then

the product of those averages gives an estimate of the full likelihood of the parameters

given the data,

L(λ0, ψ;n, t) ≈ L̂PM(λ0, ψ;n, t) =
M∏

m=1

1

B

B∑
b=1

W (b)
m . (4.3.7)

This estimator is unbiased (Pitt et al., 2012) and can be used for inference of the pa-
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rameters through the pseudo-marginal Metropolis-Hastings (PMMH) algorithm with

π(λ0, ψ|n, t) ≈ π̂PM(λ0, ψ|n, t) ∝ π0(λ0, ψ)L̂PM(λ0, ψ;n, t).

Provided that L produces unbiased estimates, π̂PM will be an unbiased estimator (up

to a normalising constant) and the resulting MCMC algorithm will satisfy the detailed

balance with respect to the original posterior π (Expression (4.2.2)) (Beaumont, 2003;

Andrieu and Roberts, 2009); see Chapter 2 Section 2.4.2 for details. Retaining a path

of X(0:m) at each iteration produces samples from the intensity posterior marginalised

over the hyperparameters. Algorithm 4.2 outlines the PMMH update.

The efficiency of any inference scheme for Xt and (ψ, λ0) will depend on the vari-

ance of the estimates produced by L. In the next section, we introduce a novel method

for unbiased estimation of the Cox process likelihood function.

4.1 Random-weight Particle Filter:

1. Input: data (n, t); partition τ ; dominating rate λ0; hyperparameters ψ; likelihood estimator

function L with conditional joint density of random points f ; number of particles B

2. Output: Samples from the posterior filtering distribution
{
X

(b)
(1:m)

}B

b=1
; estimate of pseudo-

marginal likelihood L̂PM(ψ, λ0;n, t)

3. Initialise: Sample X
(b)
(0) = X

(b)
0 from stationary distribution (4.2.6) for b = 1, . . . , B; set

L̂PM(ψ;n, t) = 1;

4. for m in 1, . . . ,M do

(a) for b in 1, . . . , B do

i. Sample t̃
(b)
(m) ∼ fL

(
· |nm, t(m), λ0,∆m

)
;

ii. Sample

(
Xt(m)

,X
t̃
(b)

(m)

)(b)

given X
(b)
(m−1) via the conditional prior distribution in

Proposition 4.2.1, and construct X
(b)
(m);

iii. Estimate particle weights W
(b)
(m) = L

(
X

(b)
(m), λ0;nm, t(m); t̃

(b)
(m)

)
;

(b) Update pseudo-marginal likelihood L̂PM(ψ, λ0;n, t)← L̂PM(ψ, λ0;n, t)× 1
B

∑B
b=1 W

(b)
(m);

(c) Resample
{
X

(b)
(m)

}B

b=1
according to normalised weights W̃

(b)
(m) using residual resampling;
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5. return

({
X

(b)
(1:m)

}B

b=1
, L̂PM(ψ, λ0;n, t)

)
;

4.2 Pseudo-marginal Metropolis-Hastings:

1. Input: unbiased (up to a fixed normalising constant) estimator π̂PM of π; current value z0 ∼ π

with π̂PM(z0); proposal distribution q

2. Output: new value z ∼ π; estimate π̂PM(z)

3. Propose z′ ∼ q( · |z0);

4. Estimate π(z′) via π̂PM(z
′);

5. With probability

α(z0, z
′) = 1 ∧ π̂PM(z

′)q(z0|z′)
π̂PM(z)q(z′|z0)

set z ← z′ and π̂PM(z)← π̂PM(z
′); else set z ← z0 and π̂PM(z)← π̂PM(z0);

6. return (z, π̂PM(z));

4.4 Thinning estimator

In this section, we focus on the problem of estimating the Cox likelihood function. To

do this we employ ideas from the thinning procedure for simulating realisations of an

inhomogeneous Poisson process with a bounded intensity (Lewis and Shedler, 1979). A

homogeneous process with rate λ∗ is first sampled, (R, t̃), where λ∗ ≥ λ(t), t ∈ [0, T ].

Each point is rejected (thinned) with probability 1− λ(t̃i)
λ∗ , i = 1, . . . , R, and the set of

the remaining points forms a realisation of the desired process; Algorithm 4.3 details

the procedure. Simulation through thinning is the basis for our methodology.

4.3 Thinning:



CHAPTER 4. EXACT COX PROCESS INFERENCE 93

1. Input: intensity function λ(t); dominating rate λ∗; observation interval [0, T ]

2. Output: realisation of a Poisson process with intensity λ(t) on [0, T ], (n, t)

3. Sample R ∼ Pois(λ∗T );

4. Sample locations t̃i ∼ Unif[0, T ], i = 1, . . . , R;

5. Reject each point with probability 1− λ(t̃i)
λ∗ , i = 1, . . . , R;

6. Set t to be a vector of the remaining, sorted points, and n the vector length

7. return (n, t);

For the clarity of presentation in this section, we assume fixed hyperparameters ψ,

and we introduce the methodology for a single-interval filter, that is, inference with

a partition τ := (0 = τ0 < τ1 = T ) and ∆ = τ1 − τ0 = T . Since the Poisson process

is Markov, the observations in one subinterval are independent of the observations in

the other. As a result, the method still holds for partitions with multiple subinter-

vals, where the likelihood is estimated sequentially for each portion of the partition,

conditional on the Xt process from the subinterval before it. Taking the product over

all those estimates gives the desired likelihood over the whole dataset.

The standard method of obtaining unbiased estimates of the likelihood (4.2.1)

is to use the Poisson Estimator (PE) for the exponential-functional term (Wagner,

1989; Beskos et al., 2006). We note that Fearnhead et al. (2008) offers an extension

called the Generalised Poisson Estimator, where the method is modified to work on

unbounded forms of F for general partially-observed diffusion problems. However,

in the bounded-intensity Cox process setting this generalisation does not significantly

improve upon PE, thus we omit it from the investigations. The Cox process likelihood
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estimator using PE is

LPois (Xt, λ0;n, t;R,u) =
n∏

i=1

λ0F (Xti) ·
R∏

j=1

F (Xuj
), (4.4.1)

R ∼ Pois (λ0T ) ,

uj
iid∼ Unif (0, T ) , j = 1, . . . , R,

where F (x) = 1 − F (x). Indeed, taking the expectation of the second product over

(R,u) gives the required exponential-integral term,

E

[
R∏

j=1

(1− F (Xui
))

]
= ER

[
Eu

[
R∏

j=1

(1− F (Xui
))

∣∣∣∣∣R
]]

= ER

[(∫ T

0

1− F (Xs)

T
ds

)R
]

=
∞∑
k=0

e−λ0T (λ0T )k
(∫ T

0
(1−F (Xs))

T ds
)k

k!

= exp

(
−λ0T + λ0

∫ T

0

1− F (Xu) ds

)
= exp

(
−λ0

∫ T

0

F (Xs) ds

)
.

This procedure actually estimates the probability of observing no arrivals in [0, T ],

that is, the probability of thinning every point of a dominating process with the rate

λ∗ = λ0. The stochastic part of the estimating function LPois is constructed regardless

of the observed points in the interval. In the following, we extend the Poisson Es-

timator methodology to now simulate the auxiliary random variables conditional on

the observed data, thus estimating the probability of observing the particular dataset

through thinning.

Let us suppose that our data, (n, t), were indeed obtained by thinning a realisation
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of a dominating process with constant rate λ∗ = λ0 on [0, T ], denoted by (R, t̃).

Clearly, to observe (n, t) we first require R ≥ n, so R|(N = n) ∼ TruncPois(λ0T ;n).

Now, via the thinning process, n of those R points were accepted and R − n were

rejected. The accepted points are the observed data and the rejected ones could be

any combination of the simulated events, with
(
R
n

)
possible choices. Let J be a binary

vector of length R, such that a value of 0 at position j indicates the thinning of the

point t̃j and construct set Ut = {J : ∥J∥1 = n}, i.e., the set of thinning choices that

lead to exactly n unthinned points. The size of the set is
(
R
n

)
and so it implicitly

depends on t̃.

We propose the following method for estimating L(Xt, λ0;n, t) using a (naive)

function L0:

1. Sample R ∼ Pois(λ0T ), if R < n return L0 (Xt;n, t;R) = 0; else

2. For each j = 1, . . . , R, sample locations t̃j
iid∼ Unif[0, T ] and relabel to fix in-

creasing order t̃1 < t̃2 < . . . < t̃R;

3. Sample stochastic process Xt|ψ from its prior distribution and evaluate(
Xt1 , . . . , Xtn , Xt̃1 , . . . , Xt̃R

)
4. Return

L0

(
Xt;n, t;R, t̃

)
=

n∏
i=1

F (Xti) ·
∑
J∈Ut

R∏
j=1

F (Xt̃j)
1−Jj . (4.4.2)

The combination of Step 1 and the conditional estimator of the likelihood (4.4.2)
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implies that the overall estimator is

L0

(
Xt;n, t;R, t̃

)
= I{R≥n}

n∏
i=1

F (Xti) ·
∑
J∈Ut

R∏
j=1

F (Xt̃j)
1−Jj .

An estimate given by L0 is not unbiased but its expectation is proportional to L(Xt;n, t);

L0 it can be modified to obtain a function producing unbiased estimates. Proposition

4.4.1 gives the full unbiased form of the modified estimator.

Proposition 4.4.1. The modified estimator

L1

(
Xt;n, t;R, t̃

)
= I{R≥n} ·

n!

T n

n∏
i=1

F (Xtk) ·
∑
J∈Ut

R∏
j=1

F (Xt̃j)
1−Jj (4.4.3)

is an unbiased estimator of (4.2.1).

Proof.

E
[
L1(Xt;n, t;R, t̃)

]
= E

[
I{R≥n} ·

n!

T n

n∏
k=1

F (Xtk) ·
∑
J∈Ut

R∏
j=1

F (Xt̃j)
1−Jj

]

=
∞∑
r=n

P (R = r) · n!

T n

n∏
k=1

F (Xtk) ·
∑
J∈Ut

E

[
r∏

j=1

F (Xsj)
1−Jj

]

=
∞∑
r=n

P (R = r) · n!

T n

n∏
k=1

F (Xtk) ·
∑
J∈Ut

∫
[0,T ]r−n

∏r
j=1F (Xsj)

1−Jj

T r−n
ds

=
∞∑
r=n

e−λ0T (λ0T )r

r!
· n!

T n

n∏
k=1

F (Xtk) ·
∑
J∈Ut

(∫ T
0
F (Xs) ds

)r−n

T r−n

= λ0
n

n∏
k=1

F (Xtk) · e−λ0T
∞∑
r=n

n!

r!

(
r

n

)(∫ T

0

λ0F (Xs) dr

)r−n

= λ0
n

n∏
k=1

F (Xtk) · e−λ0T
∞∑
r=n

1

(r − n)!

(∫ T

0

λ0F (Xs) ds

)r−n

= λ0
n

n∏
k=1

F (Xtk) · exp
(
−λ0T + λ0

∫ T

0

1− F (Xs) ds

)

= λ0
n

n∏
k=1

F (Xtk) · exp
(
−λ0

∫ T

0

F (Xs) ds

)
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The form (4.4.3) is free of λ0 which comes in through the accept-reject part of the

indicator function. The T −n term arises from the likelihood of uniformly sampling

the n observed points on [0, T ], and n! arises from the data appearing in increasing

order. The rejection of R means that the estimator can be exactly 0 which, when

applied in a PF, would very quickly lead to particle degeneracy if n > λ0/T . For this

reason, we marginalise over the number of the dominating points to obtain

LThin

(
Xt, λ0;n, t; R̃, t̃

)
=
SP(n− 1;λ0T )n!

T n

n∏
i=1

F (Xti) ·
∑
J∈Ut

R̃∏
j=1

F (Xt̃j)
1−Jj , (4.4.4)

where now R̃ ∼ TruncPois(λ0T ;n), and SP( · ;µ) denotes the survival function of a

Poisson random variable with expectation µ. The estimator remains unbiased by the

Rao-Blackwell Theorem. From this point onwards, we refer to (4.4.4) as the Rao-

Blackwellised Thinning Estimator (RBTE). The Rao-Blackwellisation comes into it

in two ways – first, we sum over all possibilities of that result in n unthinned points,

given current R and Xt; and second, we use a truncated Poisson random variable.

Depending on a given realisation of R it might be more efficient to compute the

estimate using a sum of harmonic products, that is

∑
J∈Ut

R̃∏
j=1

F (Xt̃j)
1−Jj =

R̃∏
k=1

F (Xt̃k
)
∑
J∈Ut

R̃∏
j=1

(
1

F (Xt̃j)

)Jj

This is more efficient when n < 2R̃. It is notable that when n = 0, RBTE reduces

to the Poisson Estimator (4.4.1). The generalisation, however, is only valid in the

context of Cox process models with bounded intensity.

The remainder of this section is devoted to examining the computational cost and
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variance of the estimator, particularly for a given partition τ .

4.4.1 Computational cost

The most expensive parts of the estimation are the simulation of the Xt process and

iteration over the elements of Ut. Assuming the simulation costs would be similar for

any inference scheme, we focus on the latter. Given that R̃ ∼ TruncPois(λ0T ;n), we

can calculate the expected number of the terms in the sum in (4.4.4),

E

[(
R̃

n

)]
= E

[
R̃!

(R̃− n)!n!

]

=
1

SP(n− 1;λ0T )

∞∑
r=n

r!

(r − n)!n!
· e

−λ0T (λ0T )r

r!

=
e−λ0T (λ0T )n

SP(n− 1;λ0T )n!

∞∑
k=n

(λ0T )r−n

(r − n)!

=
(λ0T )n

SP(n− 1;λ0T )n!
. (4.4.5)

At first, the fact that the cost is exponential in n might suggest the impracticality

of RBTE; however, carefully subdividing the observation window using a partition

τ for a given λ0 can stabilise the cost by spreading it across multiple subintervals.

For practical purposes, a suitable choice is one that results in the total estimation

costs not exceeding the cost of simulating the diffusion Xt. It is still possible that if

a large R is sampled, the particular iteration’s cost can become prohibitively large.

This issue can be overcome by employing an unbiased Monte Carlo estimate of the

sum; detailed guidelines are discussed in Section 4.4.3.
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4.4.2 Estimator variance

For inference using pseudo-marginal Metropolis-Hastings (Section 4.3), we wish to

control the variance of the logarithm of the marginal posterior density V[log π̂PM( · |n, t)].

In a random-weight particle filter, this term will be influenced by (1) the variance of

the likelihood estimates obtained through RBTE for each particle in each subinterval,

and (2) the quality of the particle filter with respect to particle degeneracy. The for-

mer requires us to establish the behaviour of V[LThin( · ; · ; · )] for given n, λ0, T and

then examining how it extends to V[logL̂PM( · ; · )] (Expression (4.3.7)); is it better

to have few long subintervals or many short ones? The latter is less straightforward

as it depends on how well the diffusion simulations can explore the regions of high

posterior mass, how often the particles are resampled, and the variance of the particle

weight estimates; we address this through a simulation study later in this section.

Let us first begin by establishing that the variance of the estimates produced by

RBTE is finite. By construction, the link function F is bounded above by 1 which

means that

LThin

(
Xt, λ0;n, t; R̃, t̃

)
=
SP(n− 1;λ0T )n!

T n

n∏
i=1

F (Xti) ·
∑
J∈Ut

R̃∏
j=1

F (Xt̃j)
1−Jj

≤ SP(n− 1;λ0T )n!

T n

n∏
i=1

F (Xti) ·

(
R̃

n

)
.

Since LThin

(
Xt, λ0;n, t; R̃, t̃

)
is non-negative and

(
R̃
n

)
has a finite second moment

(see Appendix B.1), the variance of estimates produced by RBTE is finite. The full

expression for V [LThin( · ; · ; · )] is intractable, but, with some assumptions, we can

obtain an approximate form for the stochastic part of the estimator and get some
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heuristics for its behaviour on the log-scale.

Consider the simple scenario of some small subinterval of [0, T ] of length ∆ in

which we observe n > 0 arrivals. This is a slight abuse of notation; strictly, it would

be nm arrivals as in Section 4.3 but the m subscript is omitted to aid in clarity. Let

us define the quantity

ω =
∑
J∈Ut

R̃∏
i=1

(
1− F (Xt̃i)

)1−Ji ,

which is the stochastic part of LThin. For the following analyses, we use an approx-

imation for Xt, thus removing the additional source of randomness that comes with

sampling the process. If ∆ is small enough that the intensity only meanders around

some mean value, but long enough that n < λ0∆, we can use a method-of-moments

estimator F (Xt̃i) ≈ F̂ = n
λ0∆

, i = 1, . . . , R̃. This is likely to hold since the Xt is

continuous and differentiable. Substituting the approximation into the quantity ω,

we have

ω =
∑
J∈Ut

R̃∏
i=1

(
1− F̂

)1−Ji

=
∑
J∈Ut

(
1− F̂

)R̃−n

=

(
R̃

n

)(
1− F̂

)R̃−n

.

On the log-scale, we have V[logω] = V
[
log
(

R̃
n

)
+ R̃ log

(
1− F̂

)]
. For n > 0,

log
(

R̃
n

)
is an increasing function in R̃; take any integer r ≥ n > 0,

log

(
r + 1

n

)
− log

(
r

n

)
= log

(
n!(r + 1)!(r − n)!

n!r!(r + 1− n)!

)
= log

(
r + 1

r + 1− n

)
> 0.

This implies that Cov
[
log
(

R̃
n

)
, R̃
]
> 0 (see, for example, Cuadras, 2002). Since
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F̂ ∈ (0, 1), we have

log
(

1− F̂
)
< 0 ⇒ Cov

[
log

(
R̃

n

)
, R̃ log(1− F̂ )

]
< 0,

which means that V[logω] < V
[
log
(

R̃
n

)]
+ V

[
R̃ log

(
1− F̂

)]
. Figure 4.4.1a illus-

trates the ratio

V
[
R̃ log

(
1− F̂

)]
V
[
log
(

R̃
n

)] (4.4.6)

for different choices of n and λ0∆, and Figure 4.4.1b gives the log10-cost (Expression

(4.4.5)) associated with each scenario. The two figures suggest that in a regime where

λ0∆ is sufficiently small to allow feasible estimation of the likelihood, the variance of

the linear term dominates, that is,

V[logω] ≈ log2
(

1− F̂
)
V
[
R̃
]
, (4.4.7)

where log2( · ) is a shorthand notation for [log( · )]2. As the variance of a Poisson

random variable decreases with truncation, this seems to suggest that V[logω] should

decrease with increasing n, for λ0 and ∆ fixed (see Appendix B.1 for details).

We now turn our attention to subintervals resulting from some general partition

of [0, T ],

τ := (0 = τ0 < τ1 < . . . < τM−1 < τM = T ) ,

with ∆m = τm − τm−1 and respective numbers of counts nm, m = 1, . . . ,M . For a

single-particle scheme (B = 1), the likelihood is estimated based on the data observed

in each subinterval, and the estimate of the marginal likelihood over the whole of [0, T ]
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Figure 4.4.1: Behaviour of variance components and cost of estimator LThin. The ex-
pected cost of computing is assumed to be dominated by E [|Ut|] (Expression (4.4.5)).
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is the product

L̂PM =
M∏

m=1

(
R̃m

nm

)(
1− nm

λ0∆m

)R̃m−nm

, (4.4.8)

where R̃m ∼ TruncPois (λ0∆m;nm) , m = 1, . . . ,M . Since the Poisson process is

Markov and the estimation mechanism only depends on data in the given subinterval,

the estimator components are independent, and so, using the variance approximation

(4.4.7),

V[logL̂PM] ≈
M∑

m=1

log2
(

1− nm

λ0∆m

)
V
[
R̃m

]
. (4.4.9)

To examine the effect of splitting or merging subintervals, consider two adjacent equal-

width subintervals, that is ∆1 = ∆2 = ∆, with respective counts n1 and n2. The

contribution to the variance (4.4.9) is composed of squared-logarithm leading coef-

ficients and variances of truncated Poisson variates. The leading coefficients of the

contributing term have the form f(z) = log2(1 − z), restricted to z ∈ (0, 1). The

derivatives of the function are

f ′(z) = −2log(1− z)

1− z
, (4.4.10)

f ′′(z) = −2(log(1− z)− 1)

(1− z)2
. (4.4.11)

From (4.4.10) we see that f is increasing in z on (0, 1) and additionally from (4.4.11)

we know that f is convex. In this context, assuming that the method-of-moments
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approximation still holds, the leading coefficients follow the inequality

log2
(

1− n1 + n2

λ0(∆1 + ∆2)

)
= log2

(
1− n1 + n2

2λ0∆

)
= log2

(
1− 1

λ0∆

(
n1 + n2

2

))
≤ 1

2

[
log2

(
1− n1

λ0∆

)
+ log2

(
1− n2

λ0∆

)]
,

with the last line due to Jensen’s inequality. However, a similar relationship cannot

be established for V
[
R̃1

]
, V
[
R̃2

]
and V

[
R̃∗

]
where

R̃1 ∼ TruncPois (λ0∆;n1) ,

R̃2 ∼ TruncPois (λ0∆;n2) ,

R̃∗ ∼ TruncPois (2λ0∆;n1 + n1) .

Using the variance for a truncated Poisson random variable, as derived in Appendix

B.1, we can directly calculate the relative effect of merging the two adjacent subin-

tervals on the overall variance,

RATIO =
log2

(
1− n1+n2

2λ0∆

)
V
[
R̃∗

]
log2

(
1− n1

λ0∆

)
V
[
R̃1

]
+ log2

(
1− n2

λ0∆

)
V
[
R̃2

] . (4.4.12)

The ratio is illustrated under three example scenarios:

(i) λ0 = 1, ∆ = 2.2 and n1 = n2 = 2 ⇒ RATIO ≈ 0.93;

(ii) λ0 = 1, ∆ = 5 and n1 = n2 = 2 ⇒ RATIO ≈ 1.07;

(iii) λ0 = 1, ∆ = 5 and n1 = 3, n2 = 1 ⇒ RATIO ≈ 0.72.

The approximate variance ratio suggests that the variance does not always decrease

with the merging of adjacent subintervals. However, scenario (ii) corresponds to
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λ0∆ being too large for the linear approximation to hold (see Figure 4.4.1a). This

highlights the limitation of the approximation.

Increasing the number of particles (to B) further complicates the analyses. As-

suming we resample at each subinterval m = 1, . . . ,M and take the average of the

likelihood estimates ωm =
∑B

b=1 ω
(b)
m , we obtain the pseudo marginal likelihood, up to

a multiplicative constant,

L̂PM =
M∏

m=1

ωm.

The variance of the log-likelihood estimate for the whole dataset in [0, T ] resulting

from the random weights and conditional on the resampling choices has the form

V[logL̂PM] = V

[
M∑

m=1

logωm

]

=
M∑

m=1

V [logωm]

=
M∑

m=1

V

[
log

(
B∑
b=1

ω(b)
m

)]
,

where variances in the last line are intractable. We were unable to accurately approx-

imate the V [log ωm] terms and so for the remainder of this section, we employ Monte

Carlo integration.
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Simulation study

Once again using the approximation F̂m = nm

λ0∆m
, we illustrate the effect of concate-

nating two subintervals into one large one. Specifically, we focus on the ratio

VR̃∗

[
log
∑B

b=1

(
R̃

(b)
∗

n1+n2

)(
1− n1+n2

λ0(∆1+∆2)

)R̃(b)
∗

]

VR̃1

[
log
∑B

b=1

(
R̃

(b)
1
n1

)(
1− n1

λ0∆1

)R̃(b)
1

]
+ VR̃2

[
log
∑B

b=1

(
R̃

(b)
2
n2

)(
1− n2

λ0∆2

)R̃(b)
2

]
(4.4.13)

where

R̃
(b)
1

iid∼ TruncPois (λ0∆1;n1) ,

R̃
(b)
2

iid∼ TruncPois (λ0∆2;n2) ,

R̃(b)
∗

iid∼ TruncPois (λ0(∆1 + ∆2);n1 + n1) ;

the random variables are sampled independently for all b = 1, . . . , B. Without loss of

generality, we fix λ0 = 1 and examine the ratio when varying ∆ for given n values. For

the method-of-moments estimator to be valid, we only consider ∆ > n/λ0. Figures

4.4.2 and 4.4.3 show the ratios resulting from using B = 1 and B = 100 particles; we

found further increasing B did not affect the results. The results are based on means

of 5, 000 Monte Carlo samples per pixel of the raster plot. The figures show how there

is a clear and substantial reduction in variance resulting from merging subintervals.

The previous analyses assumed a deterministic intensity approximation. For the

purposes of the inference scheme outlined in Section 4.3, we require the behaviour of

the estimator in nonparametric intensity estimation when used within a SIR random-

weight particle filter. The variance will likely depend on the length of the subintervals
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Figure 4.4.2: Monte Carlo estimate of the relative effect on the variance of the estima-
tor, LThin, under merging subintervals of lengths ∆1 and ∆2, with respective counts
n1 and n2, as given in the ratio (4.4.13); number of particles is B = 1.
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Figure 4.4.3: Monte Carlo estimate of the relative effect on the variance of the estima-
tor, LThin, under merging subintervals of lengths ∆1 and ∆2, with respective counts
n1 and n2, as given in the ratio (4.4.13); number of particles is B = 100.
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Setting θ1 θ2 σ IQ(F (X)) ∆max

1 5.00 0.2 5.27 (0.25, 0.75) 8.25
2 5.00 0.2 3.72 (0.31, 0.69) 8.25
3 0.15 2.0 1.85 (0.25, 0.75) 11.25
4 0.15 2.0 1.31 (0.31, 0.69) 11.25
5 0.22 0.2 0.31 (0.25, 0.75) 14.29
6 0.22 0.2 0.22 (0.31, 0.69) 14.29

Table 4.4.1: Hyperparameter settings for multivariate OU process priors satisfying
(4.2.3).

as compared to the correlation length-scale of the OU process Xt, and the resampling

procedure after each time step.

We test several scenarios under different hyperparameter settings given in Table

4.4.1. The table provides the inter-quartile range of the intensity prior at stationarity;

we chose vague and weakly informative versions. Without loss of generality, the

dominating rate λ0 is fixed at 1 and we let ∆max denote the time-lag at which the first

component of Xt (initialised from stationarity) has an autocorrelation of less than

0.5, that is, ∆max = inf{s : Corr [X1,t, X1,t+s] < 0.5} where the correlation function

is given by (4.2.7). For the experiments, we do not consider observation windows

which are greater than 2∆max, otherwise, the proposed OU process paths can have

a very large variance by end of the window. In each experiment, we investigate the

effect of merging subintervals under different parameter configurations, the number of

observations in each subinterval and the total window lengths in terms of respective

∆max values. The datasets are constructed as follows:

1. one hyperparameter configuration is picked from Table 4.4.1;

2. total window length T = 2∆ is chosen to be one of 2∆max, ∆max, ∆max/2;
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3. a unique combination of (n1, n2) is chosen, with a constraint that n1 + n2 ≤ 6

to avoid scenarios with prohibitive computational cost;

4. for each unique choice of T and (n1, n2), 5 different datasets are constructed us-

ing different random seeds; for each dataset, the observation window is bisected,

and the respective subinterval arrivals are sampled in a stratified manner, i.e.,

tk = (k − 1 + Uk)∆/n1, Uk
iid∼ Unif(0, 1), k = 1, . . . , n1,

and

tl = ∆ + (l − 1 + Ul)∆/n2, Ul
iid∼ Unif(0, 1), l = 1, . . . , n2.

To reduce Monte Carlo error in the experiment results, we first set out to identify

an appropriate number of particles B needed for two random-weight particle filters

(Algorithm 4.1), one on separated subintervals and one on merged. To do this we con-

sidered the asymptotic variance, σ2
PM, of the pseudo-marginal log-likelihood estimates

(4.3.7) as produced by LThin for the whole dataset (n, t),

lim
B→∞

B × V
[
logL̂PM(ψ, λ0;n, t)

]
= σ2

PM.

The asymptotic variance was identified through an initial set of experiemnts and B

was chosen such that the approximation B×V[logL̂PM(ψ, λ0;n, t)] ≈ σ2
PM was accurate

for the two types of partitions. This ensured that the results would reflect the effect

of the partition choice; preliminary experiments showed that B = 1000 safely satisfied

this condition. For the “split” case, the particle filter employed residual resampling

after the first subinterval; we found this to overall reduce the variance of the pseudo-
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marginal log-likelihood estimates for a given B.

For each synthetic dataset, we ran the two RWPF algorithms 1000 times each, with

fixed hyperparameters of Xt corresponding to each ∆max. Monte Carlo estimates of

V[logL̂PM(ψ, λ0;n, t)] were obtained and we used them to estimate the relative change

in the variance that comes with merging the subintervals. Additionally, nonparametric

bootstrapping was used to estimate standard errors for these ratio estimates.

Figure 4.4.4 shows the results for the (n1 = 0, n2 = 1) and (n1 = 1, n2 = 0)

settings, and the results for the remaining combinations can be found in Appendix

B.2.1 (Figures B.2.1 - B.2.5). The results show how, in most cases, merging the

subintervals is beneficial up to ∆ = ∆max (at least up to a total of 6 observed counts).

Increasing ∆ further actually impairs the estimation. This is likely due to the filter

otherwise benefitting from the resampling step. For those ∆ = 2∆max examples, the

joint prior for the diffusion was likely too vague compared to the likelihood near the

end of the interval and suffered too much from particle degeneracy.

4.4.3 Window partition guidelines

Based on discussed aspects of the Rao-Blackwellised Thinning Estimator, we now

outline some generic guidelines for picking the partition τ based on observed data

(n, t), and parameters (λ0, θ1, θ2, σ). If used within a particle MCMC scheme, this

can be carried out at every iteration. We aim to construct the subintervals according

to the following:

(i) Identify a maximum subinterval length ∆max which avoids particle degeneracy
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Figure 4.4.4: Effect of merging adjacent equal-width subintervals on the variance
contribution to the pseudo-marginal log-likelihood estimate log L̂PM. The ratio rep-
resents the relative variance of estimates produced by a random-weight particle fil-
ter run on merged subintervals, compared to a filter on split subintervals. Respec-
tive Monte Carlo means are denoted by “◦”, and “p” is used to represent intervals
within 2 standard errors from the mean. Subinterval widths are denoted by ∆ with
∆max = inf{s : Corr [X1,t, X1,t+s] < 0.5} and parameter settings are given in Table
4.4.1.

due to poor proposals. For the SIR-RWPF, we set it to be inf{s : Corr [X1,t, X1,t+s] <

0.5}.

(ii) If a given subinterval contains zero observations, then there is no benefit to

further subdividing it provided (i) is satisfied. The variance will likely remain

similar but the particle filter cost will be higher due to additional resampling.

(iii) To keep the estimation costs down, we impose a hard constraint on the maximum
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number of observations per subinterval, denoted by n∗.

(iv) As demonstrated by experiments, generally including fewer subintervals of longer

length results in a lower variance.

If the number of observations in a time-length ∆max exceeds n∗, we (arbitrarily) end a

given subinterval at the midpoint of the n∗th and (n∗ + 1)th observations. Algorithm

4.4 outlines how the above guidelines are implemented in our framework.

The cost of solving the non-linear equation for ∆max is negligible compared to the

simulation costs of the PF. The main reason behind guideline (i) is the use of a SIR

particle filter – if the proposal paths were to be constructed differently, longer ∆max

could be feasible. The main diagnostic for this tuning can be the effective sample

size (ESS) estimate of the particles at the resampling step; if the ESS is too low,

shortening the corresponding subintervals can alleviate some of the degeneracy.

The cost of simulating the SDE solution will of course depend on the particular

choice of the SDE and the method of simulation. In this work, we only consider an OU

process which is sampled directly with no numerical or Monte Carlo approximations.

In our experiments, we found that using (iii) n∗ = 3, 4, 5 results in stable behaviour

of logV
[
logL̂PM(ψ, λ0;n, t)

]
estimates and the corresponding computational cost not

exceeding the OU process simulation cost. We suspect a similar guideline will follow

for other types of diffusion.

It is also possible that even with moderate λ0∆ and n∗ we may sample R̃ large

enough to increase the cost of single weight estimation by an order of magnitude.

This, however, can be circumvented a choosing an upper limit on |Ut| =
(

R̃
n

)
and,
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once the limit is exceeded, approximating the full summation term by an average of

NMC Monte Carlo samples. Random binary vectors J̃ (k) of length R̃, k = 1, . . . , NMC,

are constructed by sampling, without replacement, n indices and setting them to 1,

with the remainder set to 0, independently for each vector. This results in uniform

sampling over all elements of Ut and gives an approximation

∑
J∈Ut

R̃∏
j=1

F (Xt̃j)
1−Jj ≈ |Ut|

NMC

NMC∑
k=1

R̃∏
j=1

F (Xt̃j)
1−J̃

(k)
j .

Taking the expectation of a single term of the Monte Carlo sum gives

E

 R̃∏
j=1

F (Xt̃j)
1−J̃j

 =
1

|Ut|

R̃∏
j=1

F (Xt̃j)
1−Jj

and so, by linearity of expectation, the Monte Carlo average is then unbiased. In

a C++ implementation, we found that choosing the upper limit |Ut| to be 1000 and

setting NMC = 100 avoids the occasional costly iteration without compromising the

estimator efficiency.

4.4 Observation window partition:

1. Input: Observation window [0, T ]; data (n, t), hyperparameters (θ1, θ2, σ); target autocorre-

lation ρ; maximum arrivals per subinterval n∗;

2. Output: M -subinterval partition τ := (0 = τ0, τ1, . . . , τM−1, τM = T );

3. Initialise: τ = τ0 = 0, ∆max = 0, τ̄ = 0, N̄ = 0, n̄ = 0, M = 0;

4. Solve Corr [X1,0, X1,s] = ρ for s by evaluating (4.2.7) and set ∆max ← s;

5. while max τ < T do

(a) τ̄ ← τM +∆max;

(b) n̄←
∑n

i=1 I{ti<τ̄} − N̄ ;

(c) if n̄ ≤ n∗ do

i. τM+1 ← τ̄ ;

ii. N̄ ← N̄ + n̄;

(d) else do
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i. τM+1 ← 1
2

(
tN̄+n∗ + tN̄+n∗+1

)
;

ii. N̄ ← N̄ + n∗;

(e) Append τ with min{τM+1, T };

(f) M ←M + 1;

6. return τ ;

4.5 Numerical experiments

In this section, we illustrate the performance of the Rao-Blackwellised Thinning Esti-

mator when applied in the Bayesian inference scheme outlined in Section 4.3. We use

the framework to sample from the posterior of the OU process Xt, hyperparameters

ψ = (θ1, θ2, σ) governing the SDE given by (4.2.3) and (4.2.5), and the dominating

rate λ0. We assume the following hyperparameter priors:

λ0 ∼ Exp(0.4),

θ1 ∼ Gamma(1.1, 2.2),

θ2 ∼ Gamma(1.1, 0.9),

σ ∼ Gamma(1.1, 0.9),

and we initialise the Xt process from its stationary distribution (4.2.6) conditional on

ψ. Based on initial experiments, we found the above priors able to capture a wide

range of intensity behaviours. It may be more appropriate to use context-specific

prior distributions depending on a given problem; this is further discussed in Section
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4.6. The posterior inference of the parameters (ψ, λ0) is carried out using the pseudo-

marginal scheme outlined in Section 4.3, where the logarithms of (ψ, λ0) are jointly

updated through a Metropolis-Hastings step with Gaussian random walk proposals.

The proposals are appropriately tuned with target 10−15% acceptance rate (Sherlock

et al., 2015). The covariance of the proposals was initially set to be 2.56/
√
d × Σ̂,

where Σ̂ was a posterior covariance estimate from an initial tuning run, and the step

size scale was gradually varied to achieve the required acceptance rate. For tuning

the number of particles, B, we refer to Pitt et al. (2012), Sherlock et al. (2015),

Doucet et al. (2015) and Nemeth et al. (2016), all suggesting a constant B such that

the log-posterior estimator variance at the posterior mean, V
[
log π̂PM(λ̄0, ψ̄|n, t)

]
,

is somewhere in the range 0.85 − 3.28; where computationally feasible, we adopt a

conservative choice of 1. The full algorithm was implemented in C++.

4.5.1 Synthetic examples

The framework is first illustrated on synthetic datasets generated using 4 different

intensity functions:

1. λ1(t) = 2exp(−t/15) + exp (−(t− 25)2/100), T = 50, n = 49;

2. λ2(t) = 4F (Xt), where Xt simulated using θ = 0.1, θ2 = 0.6, σ = 0.5, T =

50, n = 95;

3. λ3(t) = 1.5 + sin(t/5), T = 100, n = 151;

4. λ4(t) is piecewise linear, as illustrated in Figure 4.5.1 , T = 100, n = 224.
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Method Error λ1 λ2 λ3 λ4

OU-SCP
L1 0.06 0.31 0.19 0.12
L∞ 0.58 2.81 0.91 0.73

KDE
L1 0.06 0.26 0.30 0.13
L∞ 0.69 3.25 1.09 0.78

Table 4.5.1: Intensity estimate errors for the OU-process-driven sigmoidal Cox process
posterior mean and the kernel density estimate.

Posterior sampling given each dataset was carried out through the pseudo-marginal

Metropolis-Hastings algorithm. Each chain was run for long enough to obtain 10, 000

samples after discarding the initial burn-in. The Xt process samples were obtained

by taking a single particle path from each random-weight particle filter iteration. At

each PMMH iteration, the partition τ is chosen through Algorithm 4.4; we set n∗ = 4

for λ1, λ3, λ4, and n∗ = 3 for λ2. The second dataset contained a long gap with no

observed events which resulted in large drops in the particle effective sample size –

increasing n∗ helped to mitigate some of that. Figures 4.5.1 show the results of the

OU-SCP intensity inference, along with that obtained via a standard kernel density

estimation (KDE) method (Diggle, 1985) with a correction for a bounded domain. We

determine the model accuracy through the L1− and L∞−errors between the posterior

means and the truth, that is,
∥∥∥λ̂− λTrue∥∥∥

p
, p = 1,∞, where λ̂ are the respective point

estimates. The results for OU-SCP and KDE are given in Table 4.5.1.

The previous inferences used RBTE for likelihood estimation. We now compare

the efficiency of the proposed estimator compared to the Poisson estimator (4.1.1).

For each of the four datasets, we examine CPU time of a single random-weight particle

filter run at the respective posterior means and identify the time needed to satisfy

V
[
log π̂PM(λ̄0, ψ̄|n, t)

]
< 1. We do this by running SIR-RWPF using each estimator
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Figure 4.5.1: OU-SCP posterior intensity mean with pointwise 90% credible intervals,
and kernel density intensity estimates for four synthetic examples.

and varying the number of particles used; each filter is run 2, 500 times and standard

errors are estimated via nonparametric bootstrap. Figure 4.5.2 shows the Monte Carlo

estimates the variances and the corresponding computational time per iteration, and

Table 4.5.2 provides numerical details of the results. The final number of particles, B,

was chosen such that the Monte Carlo mean was at least 2 standard errors below 1.

The results show consistent improvement in using RBTE over the Poisson Estimator.
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Figure 4.5.2: CPU time (seconds) comparison for random-weight particle filters using
the Rao-Blackwellised Thinning Estimator LThin and Poisson Estimator LPois.

4.5.2 Coal-mining disasters

We first illustrate the methodology on a classic coal mine disaster dataset (Jarrett,

1979). It represents the period from the 15th of March 1875 to the 22nd of March

1962, with events defined as coal mine explosions which killed at least 10 miners in

Britain; the data contains 191 such events. In this example, we define the time units in

years. This is a moderately-sized dataset and we found that the inference algorithm

performed well with 120 particles. Figure 4.5.3a shows the posterior distribution

of the intensity mixed over the hyperparameter posteriors. Chain traceplots and
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Intensity n T Particles needed Comp. Time (s)
Relative timeLThin LPois LThin LPois

λ1 49 50 34 42 0.103 0.121 0.85
λ2 95 50 160 190 1.127 1.239 0.93
λ3 151 100 70 95 0.631 0.782 0.81
λ4 224 100 60 95 0.934 1.587 0.59

Table 4.5.2: Computational time comparison for SIR-RWPF schemes using LThin and
LPois. The number of particle B was chosen such that the Monte Carlo mean of
the pseudo-marginal log-likelihood variance was at least 2 standard errors below 1.
Intensity shapes are given at the start of Section 4.5.1.

autocorrelation plots are given in Appendix B.2.2.

4.5.3 USD-EUR exchange rate

We apply the proposed methodology to a much larger dataset. We consider a time

series of the exchange rate between the US Dollar and the Euro, from the 1st of

December 2003 to the 12th of July 2022 (4857 days).1 As events, we define instances

where the daily exchange rate changed by more than 1%; resulting in 427 events. The

inference was performed with a single time unit being a period of 30 days (month).

For this large dataset, we found that the algorithm ran sufficiently well with B =

350 particles resulting in V[π̂PM(λ̄0, ψ̄|n, t)] = 1.4; further increasing the number of

particles only produced marginal improvements. The resulting intensity posterior

is given in Figure 4.5.3b. Chain traceplots and autocorrelation plots are given in

Appendix B.2.2.

1The open data were obtained from www.finance.yahoo.com

www.finance.yahoo.com
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Figure 4.5.3: Posterior intensity mean and pointwise 90% credible intervals for two
datasets.
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4.6 Discussion and further work

We have introduced a novel estimator of the Cox process likelihood functions, the

Rao-Blackwellised Thinning Estimator, and devised a sequential Monte Carlo scheme

to produce an approximate intensity posterior conditional on observed time-sequence

data and latent process hyperparameters. As a byproduct of the SMC algorithm, we

obtain a pseudo-marginal likelihood of the hyperparameters and use it in a particle

MCMC algorithm. We provide general, setting-agnostic guidelines for partitioning

the data, informed by some heuristics and a Monte Carlo study. We applied the

method to various examples and show how RBTE outperforms the standard Poisson

Estimator in the context of sigmoidal Cox process inference. Based on the results in

Section 4.5, the number of particles needed for the random-weight particle filter using

RBTE seems to scale better in the size of the data than one using Poisson estimator.

For fixed parameters, the random-weight particle filter is a black-box algorithm,

only requiring the end user to specify the number of particles. This can be used in

conjunction with statistical software packages such as PyMC (Salvatier et al., 2016) to

carry sampling on the parameter space. Additionally, parts of the algorithm naturally

lend themselves to a parallel infrastructure implementation; for example, groups of

particles could be proposed and have their weights estimated on separate cores with

the cores only communicating during the resampling step – this may be useful for

very large datasets requiring many particles.

There is an inherent problem with identifying the hyperparameters of a latent

diffusion using point process data, as noted in Gonçalves and Gamerman (2018).
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Gonçalves et al. (2020) suggests that whilst the drift terms governing the diffusion

process can be identified from point process data, the diffusivity parameter should be

fixed depending on the scale of the problem. In our proposed model, this was the σ

parameter which, as we found, could still be identifiable in the examples considered.

However, during an initial exploratory investigation on synthetic datasets, we found

that the intensity posterior would occasionally concentrate around the mean value

of 1
2
λ0 even if the true intensity varied throughout the interval. This coincided with

a poor identification of the autocorrelation of the Xt process; time-lags longer than

the window length itself were needed to achieve Corr [X1,0, X1,t] < 0.05. This could

be bypassed by constraining the prior on (θ1, θ2) such that the resulting correlation

never exceeds some value, say 1
3
T .

Further investigation is required to compare the PMMH scheme employed in this

work to the MCMC algorithms based on data augmentation. Ideally, the proposed

framework will be compared to that in Adams et al. (2009) and Gonçalves et al. (2020)

as the two algorithms are guaranteed to converge to the correct respective posteriors.

In this chapter, the number of particles for the PMMH algorithm was guided by

a somewhat conservative condition V
[
π̂PM(λ̄0, ψ̄|n, t)

]
= 1; larger variances could

result in a better overall efficiency of the inference (in terms of effective sample size

per second).

A natural extension of the Rao-Blackwellised Thinning Estimator method is the

generalisation of the estimator form to work in more general partially-observed diffu-

sion problems. It seems sensible that RBTE could be used in any problem where the

Poisson Estimator is used, such as the exact algorithm Beskos et al. (2006) or debi-
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asing schemes for time-discretised approximations Jin et al. (2022). This, however, is

not trivial as using an unbounded link function F can lead to infinite variances for

the Poisson Estimator. Further investigation would likely involve extensions based on

the methodology in Fearnhead et al. (2008) or Fearnhead et al. (2010).

Throughout this chapter, we focused solely on Bayesian inference but, in principle,

the unbiased estimator could be used for maximum likelihood inference by identifying

argmaxL(ψ, λ0;n, t). This would require the use of a bias correction procedure for

the pseudo-marginal log-likelihood (Andrieu et al., 2004) and a suitable optimisation

algorithm for stochastic functions (for example, Kingma and Ba, 2015).

The introduced methodology could be modified to work under other data settings.

In this chapter, we only considered point process data with exact observations but in

many contexts, such as clinical trial enrolment, data undergo interval-censoring with

only counts per interval being reported. This complicates the inference as now the

integrated intensity term appears twice in the likelihood function. The likelihood for

a single interval in this case would be

L
(
λ(·);n

)
=

1

n!
exp

(
−
∫ T

0

λ(s) ds

)
·
[∫ T

0

λ(s) ds

]n
.

Gonçalves et al. (2020) suggest bypassing the issue by using the Gibbs step where

each point is sampled uniformly (and independently) within the interval and the

uncensored likelihood (4.2.1) is used. Efficiently scaling up the inference to datasets

composed of multiple time sequences is not trivial. If the realisations were conditional

on the hyperparameters of Xt then the pseudo-marginal log-likelihood estimate, L̂PM,

would be composed of multiple estimates coming from independent particle filters.



CHAPTER 4. EXACT COX PROCESS INFERENCE 125

Controlling its variance would require increasing the number of particles in each filter.

Using parallel infrastructure could alleviate some of this computational burden as

particle filters for each time sequence could be run on a separate core. If on the other

hand the time sequences shared a common data-generating intensity, the processes

could be superposed, essentially multiplying the intensity function by a constant. An

appropriate modification to the estimator form could still allow exact inference, albeit

at potentially considerable computational costs.



Chapter 5

The Apogee to Apogee Path

Sampler

5.1 Hamiltonian Monte Carlo

We wish to draw samples from target distribution π on X = Rd, where the density

can be written in the form π(x) = e−U(x). To do so we utilise Hamiltonian Monte

Carlo (HMC) (see, for example, Neal, 2011), which was originally referred to as hybrid

Monte Carlo (Duane et al., 1987). The support is extended to now include auxiliary

momentum variable p ∈ P = Rd and we denote the density function for the phase

state z = (x, p) on Z = X× P as π̃.

We use U as the potential energy function of a particle at position x and define

K to be the kinetic energy function for an auxiliary momentum variable p ∈ Rd. The

Hamiltonian (total energy) of a particle at x and with momentum p is H((x, p)) =

U(x) + K(p) = log π̃(z). Given an initial state z0 = (x0, p0), a trajectory along

126
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the contours of H (which preserves the total energy (Hairer et al., 2003)) can be

constructed by solving the system of ordinary differential equations

dx

dt
= ∇pK(p) (5.1.1)

dp

dt
= −∇xU(x),

with t denoting the ficticious time variable used to parametrise the trajectory. In

most scenarios, p ∼ N(0,M) independently of x, where M is the positive definite the

mass matrix. This choice arises from mirroring Newtonian dynamics on the potential

U with K(p) = 1
2
p⊤M−1p and ∇pK(p) = M−1p. In general, the system (5.1.1) cannot

be solved analytically and so numerical approximations must be employed. One such

method is the leapfrog integrator (e.g., Hairer et al., 2003). Letting ε be the step-

size, the transition LeapFrog : (x0, p0) 7→ (x1, p1) follows the position variant of the

integrator,

p0.5 = p0 −
ε

2
∇xU(x0),

x1 = x0 + ε∇pK(p1),

p1 = p0.5 −
ε

2
∇xU(x1).

The integrator applies three shear transformations to (x, p) and so the resulting Ja-

cobian matrix has its determinant equal to one. A particularly useful feature of

the leapfrog algorithm is the reversibility due to its symmetry. If we were to in-

stead start at z−1 = (x1,−p1) then with a single iteration of the algorithm above we

would arrive at (x0,−p0) = z−0 , that is, LeapFrog((x1,−p1); ε) = (x0,−p0). This is

also equivalent to using a negative step-size ε which will advance backwards in time,
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LeapFrog((x1, p1);−ε) = (x0, p0).

In HMC, at each iteration, a new momentum p0 is sampled from its marginal

Gaussian distribution via a Gibbs move to give z0 and then the leapfrog integrator

is applied L times to produce a state zL. To satisfy the detailed balance condition,

the momentum at the endpoint is then negated to give a proposal z′ = z−L . As

the proposal mechanism is deterministic (conditional on z0) we obtain a symmetric

transition function q, that is, q(z0|z′) = q(z′|z0) = 1, with q(z∗|z0) = 0 for any

z∗ ̸= z′. In Section 5.5 a “blurred” version of HMC is used (Mackenze, 1989). In

it, the integration time T = εL is jittered at each iteration using i.i.d. noise, T ∼

Unif(0.8T ∗, 1.2T ∗) with T ∗ fixed. In this case, the symmetry of q is still preserved

since the jitter is sampled independently of z0. In both standard and blurred HMC,

the proposal z′ is accepted with probability

α(z, z′) = 1 ∧ exp (H(z)−H(z′)) ,

which preserves detailed balance with respect to π̃ (Neal, 2011). This in fact is a

Metropolis-Hastings acceptance probability. Discarding the auxiliary momentum p

and only retaining the new x gives a sample from the marginal π. The standard

HMC update is summarised in Algorithm 5.1. The appeal of HMC is its potential to

give distant proposals which are then accepted with a high MH acceptance probabil-

ity. The caveat, however, is that two parameters need to be tuned to ensure optimal

performance, ε and L, or equivalently ε and T .

5.1 Hamiltonian Monte Carlo:

1. Input: target distribution π; position x0 ∼ π; step-size ε; number of leapfrog steps L
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2. Output: new position x ∼ π

3. Initialise: sample momentum p ∼ N(0,M) and set z0 = (x0, p0);

4. zL ← LeapFrog(z; ε, L);

5. Set z′ = z−L and compute H(z′);

6. Sample z ∈ S−0 w.p. ∝ ω(z′; z0);

7. With probability

α(z0, z
′) = 1 ∧ exp (H(z)−H(z′))

set z ← z′, else set z ← z0;

8. return x;

The leapfrog integrator is symplectic, which is a much stronger property than

simply preserving the volume. The symplecticness of the scheme ensures that the

global error of H(z) along the integrated trajectory is O(ε2), even after multiple

leapfrog steps (e.g., Leimkuhler and Reich, 2005; Hairer et al., 2006). As the change in

the energy does not strongly depend on the number of iterations L, the MH acceptance

probability is not sensitive to the particular choice of integration time. Consequently,

ε can be tuned independently of the integration time to produce sufficiently high

acceptance rates.

There are guidelines for tuning ε conditional on a fixed T in the literature. For

example, Beskos et al. (2013) suggests that, under mild conditions and as the dimen-

sion approaches infinity, the optimal acceptance rate for HMC is 0.651. Setting ε

to give that rate gives the optimal discretisation of the path whilst controlling the

Hamiltonian discrepancy. However, this is not strictly true as, in practice, the limit

is approached slowly and optimal rates can be higher (see, for example, Girolami and
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Calderhead, 2011). This is also demonstrated in Section 5.5.

As a result of this general guideline, adaptive MCMC schemes (see, for example,

Andrieu and Thoms, 2008) can be devised to optimise ε with respect to the accep-

tance rate during the run of the algorithm. This can be done using the primal-dual

averaging method (Nesterov, 2009), as done, for example, in Hoffman and Gelman

(2014), Hoffman et al. (2021) and Mongwe et al. (2021), and is widely used in the

Stan package (Stan Development Team, 2020).

On the other hand, tuning the integration time T (or equivalently L for a given

ε) is less straightforward as the optimum is highly problem-dependent. Considering

the example in Figure 5.1.1, low T would give proposals close to the original point,

whereas a very large T would give a trajectory that wraps back onto itself, both

cases resulting in chains with a higher autocorrelation. An optimal choice of T is one

which maximises the overall displacement from the original point. In particular, if T

is longer than optimal, the trajectory will start coming back towards z0 resulting in

more correlated proposals z′ at a higher cost. Figure 5.1.2 illustrates the efficiency

of both blurred and unblurred HMC on an asymmetric banana-shaped target based

on the regularised Rosenbrock-type function (see Section 5.5.1). The sharp drops as

L increases past the optimum for a given choice of ε indicate the costly trajectories

overshooting the optimal proposals. The figure additionally highlights the potential

multimodality of optimal integration time for HMC caused by the trajectories wrap-

ping back multiple times. The sensitivity to T can be slightly mitigated by using the

blurred version of the algorithm.
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Figure 5.1.1: Approximate Hamiltonian dynamics using the leapfrog integrator on a
Gaussian target with diagonal covariance matrix. The component standard deviations
are 1.5 and 1. The trajectory starts at blue and ends at orange.
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5.1.1 The no-U-turn sampler

Hoffman and Gelman (2014) introduces the no-U-turn sampler (NUTS) which aims

to eliminate the need for specifying T by simulating the dynamics backwards and for-

wards in time with respect to the current state and considering the U-turn condition,

⟨x+ − x−,M−1p−⟩ < 0 or ⟨x+ − x−,M−1p+⟩ < 0, (5.1.2)

where (x−, p−) and (x+, p+) are the trajectory endpoints and ⟨ · , · ⟩ denotes the inner

product. This criterion is used to terminate the dynamics if the endpoints are pointing

towards each other. The motivation is that any further integration would likely be

wasteful.

At first, a single step is taken from z0. Then a direction is picked, forward or back-

ward with equal probability, and two steps are taken from the respective endpoints

with positive or negative ε. The procedure follows, such that at the jth iteration 2j−1

additional points are added onto the trajectory. The procedure terminates once the

condition (5.1.2) is met, at which point the last iteration is discarded. The algorithm

aims to create a set of points E which could be constructed from any z ∈ E with

the same probability. So if a U-turn is observed at iteration k then E can only be

composed of all the points up to iteration k − 1 and P (E|z) ∝ (1/2)j, z ∈ E .

Given the set E , a subset C is chosen so as to contain all states z ∈ E to which

the chain can transition without violating detailed balance with respect to π̃. This is

done using a slice sampling procedure where an auxiliary independent random variable

υ ∼ Unif(0, 1) is introduced to define a “slice” (Neal, 2003). At each iteration, a new
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realisation of U is drawn and C is formed by discarding all z∗ where H(z)−H(z∗) <

log υ (which is equivalent to π̃(z∗) < uπ̃(z)), that is,

C = {z∗ ∈ E : H(z)−H(z∗) ≥ log υ}.

Sampling z′ uniformly from C is a valid Gibbs step which leaves the uniform distri-

bution on C invariant. This combined with the resampling of u results in a Gibbs

sampler which targets a mass function ∝ π̃(z∗) on E .

The NUTS algorithm is implemented recursively where the double-backing proce-

dure builds a balanced binary tree and the new z′ are sampled sequentially to remove

the need for storing all of C. The average depth of the tree is very problem-dependent

and so the recursive procedure can be costly depending on how much stack memory is

assigned to the inference software when compiling. Furthermore, no parts of the algo-

rithm can be parallelised as (5.1.2) requires the endpoints of the path at all times. The

last iteration of the double-backing procedure is discarded meaning that nearly half

the computational effort of the MCMC step is spent on verifying the U-turn condition.

Additionally, it is possible the optimal states which maximise the squared jumping

distance from z0 are included in that last iteration right before being discarded.

5.1.2 Other algorithms

Betancourt (2016) suggests modification to NUTS where the new state is obtained

using multinomial sampling with a bias towards the second half of the steps in the

trajectory set E instead of slice sampling; this is used in the current version of Stan

(Stan Development Team, 2020).
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Wu et al. (2019) addresses the issue of wasteful gradient evaluations by outlining

a procedure used to learn a suitable empirical distribution of the number of leapfrog

steps, L, during the warm-up run of the HMC algorithm. At each iteration of the

warm-up, empirical HMC, as the authors call it, runs the standard leapfrog integrator

for L0 steps and identifies the minimum number of steps L needed to satisfy the U-turn

condition, which could require additional leapfrog steps beyond L0. The minimum L

is referred to as the longest batch and is stored to produce a marginal distribution of

the global leapfrog scale. This empirical distribution is then used to draw suitable

values of L during the main run of the algorithm. In the numerical experiments, the

procedure is allocated 10% of MCMC iterations after tuning ε.

Wang et al. (2013) introduces an adaptive scheme that uses Bayesian optimisa-

tion to find ε and L (= ⌈T /ε⌉) which seeks to maximise the cost-adjusted expected

squared jumping distance E [∥X ′ −X∥2] /
√
L. The acquisition function used in the

optimisation was a variant of the Upper Confidence Bound.

Hoffman et al. (2021) introduces a gradient-based adaptive scheme that utilises

multiple parallel chains of HMC to tune for both ε and T at the same time. The

tuning of T is done using the “Change in the Estimator of the Expected Square”

(ChEES) statistic

ChEES =
1

4
E
[(
∥X ′ − µ∥2 − ∥X − µ∥2

)2]
,

where X ∼ π, P ∼ N(0,M), (X ′, P ′) = LeapFrog((X,P ); εL) and µ = E[X]. The

authors note that the criterion (i) is invariant to shifts and rotations, (ii) places greater

weight on exploring large-variance directions, and (iii) is focused on second-moment
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estimation, which is something NUTS can struggle with. The full algorithm maximises

ChEES using estimates of its gradient with respect to T with the scale of gradient

steps being adjusted by ADAM (adaptive moment estimation, Kingma and Ba, 2015).

Based on the presented results, the scheme was substatially more efficient than NUTS

and, in most cases, outperformed adaptive tuning with respect to standard expected

squared jumping distance (ESJD); however, it was still outperformed by HMC with

its trajectory length chosen via a grid search.

This work introduces a competitive variant of the HMC algorithm where the tra-

jectory length termination is directly related to the density of interest π.

5.1.3 Apogee definition

As the particle traverses the potential surface U , there will come a point where it

changes direction from “uphill” to “downhill” with respect to the potential. The

point of this change in direction is called an apogee and is defined as the point at

which ⟨M−1p,∇U(x)⟩ changes sign from positive to negative. We incorporate this

apogee condition into the leapfrog integrator by checking for

⟨M−1p0,∇U(x0)⟩ > 0 and ⟨M−1p1,∇U(x1)⟩ < 0. (5.1.3)

Substituting in (5.1.1), we find that

⟨M−1p,∇U(x)⟩ =

〈
dx

dt
,∇U(x)

〉
=

dU

dt
,

which means that (5.1.3) indicates a local maximum in the trajectory along the po-

tential surface U . Figure 5.1.3 shows how the condition (5.1.3) can be used to split
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Figure 5.1.3: Approximate Hamiltonian dynamics on a Gaussian target. States before
and after the apogee are indicated by “△” and “▽” respectively.

the trajectory. It is important to note that the condition indicates the existence of

an apogee between states z0 and z1, as opposed to locating the apogee itself.

In Section 5.2, we outline how apogees can be used to define endpoints of HMC

trajectories, thus eliminating the need to specify an arbitrary numeric value for the

integration time. A sampling algorithm based on this criterion is introduced and

we show how it satisfies detailed balance with respect to π̃. Section 5.3 provides

general tuning guidelines for the algorithm. Section 5.4 examines the behaviour of

the algorithm on a multivariate Gaussian target, providing theoretical results for the

number of apogees passed along a Hamiltonian trajectory for a given integration time.

Section 5.5 contains a numerical experiments comparing the proposed algorithm to

HMC and NUTS, and Section 5.6 provides a discussion along with suggestions for

future work.
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Figure 5.2.1: Segment S0 constructed from z0 indicated by the blue dot.

5.2 AAPS

In this section, we introduce the Apogee to Apogee Path Sampler (AAPS) for produc-

ing samples from the extended target π̃. We begin by first outlining a simple variant

of the algorithm, AAPS0, and extending it to a much more efficient version, AAPSK .

5.2.1 AAPS0

With the condition (5.1.3), we construct an apogee to apogee path by simulating the

Hamiltonian dynamics forward and backwards in time from the state z0 until an

apogee is detected at either end. This is given in Algorithm 5.2; the algorithm includes

an additional stability condition discussed later in Section 5.2.4. We define the set of

states produced in this way as a segment.

5.2 Apogee-to-apogee segment construction:

1. Input: target distribution π; initial point z0 = (x0, p0); step-size ε; maximum Hamiltonian
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error ∆

2. Output: apogee-to-apogee segment S0

3. Initialise: sample momentum p0 ∼ N(0,M); initialise segment S0 = z0; calculate D0 =

⟨p0,∇U(x0)⟩; set z = z0, D = D0, no apogee = 1; Hmin = H(z0); Hmax = H(z0)

4. while no apogee do

(a) znew = LeapFrog(z; ε); Hmin ← min{H(znew), Hmin}; Hmax ← max{H(znew), Hmax};

(b) if Hmax −Hmin < ∆ do

i. Dnew = ⟨pnew,∇U(xnew)⟩;
ii. if D > 0 & Dnew < 0 do

A. no apogee← 0;

iii. else do

A. S0 ← S0 ∪ z−new;

B. z ← znew, D ← Dnew;

(c) else

i. return S0 = z0;

5. z ← z−0 , D ← −D0, no apogee← 1;

6. Repeat step 4;

7. return S0;

Letting S0(z0) denote the segment produced from the point z0, it is clear to see

from Figure 5.2.1 that for any z ∈ S0(z0), S0(z) = S0(z0) =: S0; the probability of

constructing the segment is P (S0|z) = I{z∈S0}. Using the segment, we then construct a

proposal mechanism for a new point z′ which leaves the target distribution π̃ invariant.

Here, it is helpful to define S−
0 which is made up of the same states as S0 but with

negated momenta, that is, S−
0 = {z− : z ∈ S0}. Given the segment S0, we can propose

a point from S−
0 by weighting all its elements by some function ω : R4d → R+. The

chosen weight is invariant to sign change of the momenta and can depend on z0. A
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new state is proposed by sampling from S−
0 with probability ∝ ω(z′; z0). The full

transition function from z0 to z′ then becomes

q(z′|z0) = P (S0|z0)P (z′|z0,S0, ω)

=
ω(z′; z0)∑

z∈S−
0
ω(z; z0)

· I{z0∈S0} · I{z′∈S−
0 }.

Algorithm 5.3 outlines a full MCMC update which we call AAPS0. The validity of the

algorithm is shown in Section 5.2.3.

5.3 AAPS0:

1. Input: target distribution π; position x0 ∼ π; step-size ε; weight function ω(·; ·)

2. Output: new position x ∼ π

3. Initialise: sample momentum p ∼ N(0,M) and set z0 = (x0, p0);

4. Construct path S0 from z0 (Algorithm 5.2), flip state momenta to obtain S−0 and weight each

element using ω;

5. Sample z ∈ S−0 w.p. ∝ ω(z′; z0);

6. With probability

α(z0, z
′) = 1 ∧

π̃(z′)ω(z0; z
′)
∑

z′′∈S−
0
ω(z′′; z0)

π̃(z)ω(z′; z0)
∑

z′′∈S0
ω(z′′; z′)

set z ← z′, else set z ← z0;

7. return x;

5.2.2 AAPSK

For many distributions, a single-segment path might not be enough to cover a sub-

stantial distance from the initial position x0. We can overcome this potential issue

by constructing a path made up of multiple segments, which is the basis for AAPSK .

One way to create a longer path is by positioning K + 1 contiguous segments such
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Figure 5.2.2: Path P = S−3:1 constructed using four apogee-to-apogee segments.

that S0 is equally likely to be the 1st , 2nd , . . . , (K + 1)th segment. We denote the

concatenation of the segments by Sa:b(z0), where b− a = K and a ≤ 0 ≤ b. The path

Sa:b(z0) can be written as Sa∗:b∗(z∗) (where b∗ − a∗ = K and a∗ ≤ 0 ≤ b∗) for any

z∗ ∈ Sa:b(z0) and as a result

P (Sa∗:b∗(z∗)|z∗, K) =
1

K + 1
I{z∗∈Sa∗:b∗}.

To simplify the notation we let P = Sa:b and P− = S−
a:b. With the same setup as

before where a new state is proposed according to some weighting function ω, the

acceptance probability is

α(z0, z
′) = 1 ∧ π̃(z′)q(z0|z′)

π̃(z0)q(z′|z0)

= 1 ∧ π̃(z′)P (P−(z′)|z′, K)P (z0|z′, ω,P−)

π̃(z0)P (P(z0)|z0, K)P (z′|z0, ω,P)

= 1 ∧
π̃(z′)ω(z0; z

′)
∑

z∗∈P− ω(z∗; z0)

π̃(z)ω(z′; z0)
∑

z∗∈P ω(z∗; z′)
,
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where probability of constructing P cancels out in the MH ratio. The path-building

procedure is described in Algorithm 5.4, and Algorithm 5.5 outlines the full apogee

to apogee path sampler AAPSK . Setting K = 0 results in AAPS0.

5.4 Apogee-to-apogee path construction:

1. Input: target distribution π; initial point z0 = (x0, p0); step-size ε; number of internal

apogees K;maximum Hamiltonian error ∆

2. Output: apogee-to-apogee path P

3. Initialise: sample momentum p0 ∼ N(0,M); sample b ∼ Unif({0, 1, . . . ,K}) and set a = b−
K; initialise path P = z0 ; calculateD0 = ⟨p0,∇U(x0)⟩; set z = z0, D = D0, apogees left =

b+ 1; Hmin = H(z0); Hmax = H(z0)

4. while apogees left > 0 do

(a) znew = LeapFrog(z; ε);Hmin ← min{H(znew), Hmin}; Hmax ← max{H(znew), Hmax};

(b) if Hmax −Hmin < ∆ do

i. Dnew = ⟨pnew,∇U(xnew)⟩;
ii. if D > 0 & Dnew < 0 do

A. apogees left← apogees left− 1;

iii. if apogees left > 0 do

A. P ← P ∪ z−new;

B. z ← znew, D ← Dnew;

(c) else

i. return P = z0;

5. z ← z−0 , D ← −D0, apogees left← |a|+ 1;

6. Repeat step 4;

7. return P;

5.5 AAPSK:

1. Input: target distribution π; position x0 ∼ π; step-size ε; weight function ω(·; ·)

2. Output: new position x ∼ π

3. Initialise: sample momentum p ∼ N(0,M) and set z0 = (x0, p0);

4. Construct path P from z0 (Algorithm 5.4), flip state momenta to obtain P− and weight each

element using ω;
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5. Sample z′ ∈ P w.p. ∝ ω(z′; z0);

6. With probability

α(z0, z
′) = 1 ∧

π̃(z′)ω(z0; z
′)
∑

z′′∈P− ω(z′′; z0)

π̃(z)ω(z′; z0)
∑

z′′∈P ω(z′′; z′)

set z ← z′, else set z ← z0;

7. return x;

5.2.3 Validity of AAPS

Here, we show that AAPSK satisfies detailed balance with respect to π̃ and so the

marginal of x will target the desired distribution π.

Proposition 5.2.1. The AAPSK algorithm satisfies detailed balance with respect to

the canonical distribution π̃.

Proof. The momentum refreshment step samples directly from N(0,M) which is the

marginal distribution of p, satisfying detailed balance with respect to it.

At stationarity, we have

π̃(z0)× P (P|z0)× P (propose z′|P , z0)× P (accept z′|P , z0, proposed z′)

which is

π̃(z0)×
I{z0∈P}

K + 1
×

ω(z′; z0)I{z′∈P−}∑
z∗∈P− ω(z∗; z0)

× 1 ∧
π̃(z′)ω(z0; z

′)
∑

z∗∈P− ω(z∗; z0)

π̃(z)ω(z′; z0)
∑

z∗∈P ω(z∗; z′)
,

and this in turn equates to

I{z0∈P} · I{z′∈P−}

K + 1
×
{

π̃(z0)ω(z0; z
′)∑

z∗∈P ω(z∗; z′)
∧ π̃(z′)ω(z′; z0)∑

z∗∈P− ω(z∗; z0)

}
.
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The final expression is invariant to (z0,P)↔ (z′,P−).

5.2.4 Stability of path construction

The trajectory may enter parts of the state-space Z where the numerical solution

to (5.1.1) is unstable with the error of H increasing without bound. There are two

main consequences of this: (i) when building the path P apogees may be incorrectly

omitted, taking much longer to terminate the dynamics, and (ii) during the accept-

reject step, ideal proposals are more likely to be rejected, thus wasting the effort taken

to build the path. The NUTS algorithm suffers from the same problem and so we

introduce a similar stability condition to that in Hoffman and Gelman (2014),

maxz∈PH(z)−minz′∈PH(z′) < ∆, (5.2.1)

where ∆ > 0 is a maximum energy discrepancy which prespecified by the user. If at

any point the range of H along P exceeds ∆, the path is terminated returning z0. It

is straightforward to see that (5.2.1) is invariant to the starting position on the path.

For the experiments in Section 5.5, we found that even a large value ∆ = 1000 is

sufficient. Algorithms 5.2 and 5.4 explicitly check for the stability condition (5.2.1).

5.2.5 AAPS on bimodal targets

In d = 1, it is straightforward to see that AAPS0 is reducible on multimodal targets;

provided a stable ε is used, the dynamics will never cross the cusp between two modes.

However, even in d = 2 this is no longer the case. Figure 5.2.3 shows Hamiltonian
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dynamics on two bimodal target distribution

X ∼ 1

2
N
(
(−a, 0)⊤, Id

)
+

1

2
N
(
(a, 0)⊤, σ2Id

)
, (5.2.2)

where a = 3.5, σ = 2 and d = 2, 40 (rotated variants of those used in Pompe et al.,

2020). In both examples, the same initial positions and momenta were used for

(z1, z2)
⊤, with the remaining components in the d = 40 case being initialised from

the second mixing distribution. The step-size ε was chosen sufficiently small so the

numerically integrated path closely approximates the true solution to (5.1.1). From

the figures it is clear that, even in two dimensions, a single apogee-to-apogee segment

permits movement between the modes. The mode-hopping becomes more common as

the dimension increases since the first component’s relative contribution to the dot-

product is smaller; the apogee for the whole trajectory may not be anywhere close to

the saddle point. In Section 5.5.2, we compare AAPS, HMC and NUTS on a selection

of bimodal targets of the form (5.2.2).

5.2.6 Sampling from the path

Because of the general formulation of AAPS, there are multiple valid ways of sampling

points from the path P−. Below we outline choices for the weighting function ω(·; z)

considered in this work along with the respective acceptance probabilities α(z0, z
′).

All the weights are invariant to the signs of momenta p so, for notational clarity, we

drop the superscript and simply write P .

1. ω(z′; z) = π̃(z′) and α(z0, z
′) = 1
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Figure 5.2.3: Hamiltonian dynamics on bimodal targets with d = 2 (Top) and d = 40
(Bottom). Initial positions and momenta of z1 and z2 are fixed in both examples,
with the remaining components of the 40-dimensional example initialised from the
stationary distribution. The bottom panel shows the projection of the trajectory
onto the first two dimensions.
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2. ω(z′; z) = ∥x′ − x∥2 and α(z0, z
′) =

π̃(z′)
∑

z∈P ∥x−x0∥2

π̃(z0)
∑

z∈P ∥x−x′∥2

3. ω(z′; z) = π̃(z′)∥x′ − x∥2 and α(z0, z
′) =

∑
z∈P π̃(z)∥x−x0∥2∑
z∈P π̃(z)∥x−x′∥2

4. ω(z′; z) = ∥x′ − x∥ and α(z0, z
′) =

π̃(z′)
∑

z∈P ∥x−x0∥
π̃(z0)

∑
z∈P ∥x−x′∥

5. ω(z′; z) = π̃(z′)∥x′ − x∥ and α(z0, z
′) =

∑
z∈P π̃(z)∥x−x0∥2∑
z∈P π̃(z)∥x−x′∥2

6. ω(z′; z) = π̃(z′)I{z′∈H(z)}, where H(z) is defined in Section 5.2.6; this also results

in α(z0, z
′) = 1

We wish to construct an algorithm that proposes distant proposal states which are

then accepted with a high probability. By using weights that in some way incorporate

the distance from the initial state z0, we skew the sampling towards the elements of P

which maximise the jumping distance, and this in turn decreases the autocorrelation

of the chain. Weight 6 is a special case where the state is proposed from the “other

half” of the path with respect to the cumulative sums of π̃ from one endpoint to the

other.

The weights modulated by π̃ have the property of the ratio π̃(z′)/π̃(z) not appear-

ing in the acceptance probability. Intuitively, we would expect this to result in higher

acceptance rates even for large for stepsizes ε. Typically, the calculation of the sum∑
z∈P ω(z; z′) for a lot of choices of ω requires the storage of the entire path which is

made up of an unknown (and possibly large) number of variables. However, sampling

according to weights 1, 2 and 3 can be done sequentially at a fixed memory cost. A

numerical comparison of the sampling schemes is given a the end of this section.
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Sequential sampling at fixed memory cost

This is a general method of sampling a proposal state Z ′ from the path

P = {z−B, . . . , z−1, z0, z1, . . . , zF},

where −B and F are the indices of the endpoints in the “backwards” and “forward”

parts of the trajectory respectively; the state z0 is arbitrarily assigned to the front.

The aim is to pick a proposal point without needing to store the entire path. If each

point zi is to be picked with probability proportional to wi = ω(z′; z0), then we do

the following:

1. Initialise: Set Z ′ = z0 and Z∗ = z−1;

2. For k = 1, . . . , F : Set Z ′ = zk with probability
wk∑k
i=0wi

;

3. For k = −2, . . . ,−B: Set Z∗ = zk with probability
wk∑−1
i=k wi

;

4. Set Z ′ = Z∗ with probability
∑F

i=0 wi∑F
j=0 wj+

∑−1
k=−B wk

;

5. Return Z ′;

Proposition 5.2.2.

P (Z ′ = zk) =
wk∑F

i=−B wi

.

Proof. Suppose k ≥ 0. The probability of picking zk is independent of the previously
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picked or rejected points zi, i < k. Letting za:b = {za, za+1, . . . , zb−1, zb}, we have

P (Z ′ = zk) = P ((zk picked) ∩ (zl, l ̸= k not picked))

= P (Z ′ ∈ z0:F )P
(
Z ′ /∈ z0:(k−1) ∪ z(k+1):F |Z ′ ∈ z0:F

)
=

∑F
i=0wi∑F

j=−B wj

[
wk∑k
i=0wi

F∏
l=k+1

(
1− wl∑l

i=0wi

)]

=

∑F
i=0wi∑F

j=−B wj

[
wk∑k
i=0wi

F∏
l=k+1

∑l−1
j=0wj∑l
i=0wi

]

=

∑F
i=0wi∑F

j=−B wj

· wk∑F
i=0wi

=
wk∑F

i=−B wi

.

Due to the symmetry of the problem, a similar argument is used to prove the case for

k < 0.

Steps 2 and 3 are fully independent of each other and so they could potentially be

carried out in parallel reducing the overall computational burden.

We now require a way of computing the acceptance probability. Any choice where

the weight is only a function of the state on the path is suitable, wi = ω(zi; z) = f(zi);

for example, wi = π̃(zi) (the canonical density). This holds as the same weights are

used when computing the denominators for the Metropolis-Hastings ratio. However,

some desirable choices such as weights proportional to a metric computed from the

state z0, for example, l1 or l2, are unsuitable; given a proposal z′ we need to compute

the sum of the distances to all other points on the path to obtain the denominator

which defeats the purpose of the fixed-memory approach.
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Another suitable choice for the weight is a function squared jumping distance of

some function g(z), wi ∝ ∥g(zi) − g(z0)∥22 . In the simplest form, if wi = ∥xi − x0∥2

(g(x) ≡ x) and x is 1-dimensional then

F∑
i=−B

∥xi − x0∥22 =

(
F∑

i=−B

x2i

)
− 2x0

(
F∑

i=−B

xi

)
− x20(F +B),

meaning that we only need to store the first two empirical moments of the positions

along P . Similarly, if wi = π̃(zi)∥xi − x0∥2 then

F∑
i=−B

π̃(zi)∥xi − x0∥22 =

(
F∑

i=−B

π̃(zi)x
2
i

)
− 2x0

(
F∑

i=−B

π̃(zi)xi

)
− x20

F∑
i=−B

π̃(zi).

Extending this to a d-dimensional space, we only need to store at most 3 × d

additional quantities.

Sampling Scheme 6 – Sampling from the opposite half of the path

For clarity, we relabel the points on the path P = {z−B, . . . , zF} to be {z1, z2, ..., zn},

where n = B + F + 1. We let Sk =
∑k

i=1 π̃(zi), k = 1, . . . , n, and h = min{k : Sk ≥

1
2
Sn}. The index h is the point where the cumulative sums exceed half of the total

sum. We define HB = {zi : i < h} and HF = {zi : i > h} which are the sets of point

“behind” and “in front of” zh. The proposal z′ is obtained for three possible cases:

Case 1, z0 ∈ HB: Sample z′ ∈ HF ∪ zh

P (z′ = zi) =


π̃(zi)
Sn/2

= 2π̃(zi)
Sn

zi ∈ HF

1− Sn−Sh

Sn/2
= 2Sh−Sn

Sn
zi = zh

.

Case 2, z0 ∈ HF : Sample z′ ∈ HB ∪ zh
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P (z′ = zi) =


π̃(zi)
Sn/2

= 2π̃(zi)
Sn

zi ∈ HB

1− Sh−1

Sh/2
= Sn−2Sh+2π̃(zh)

Sn
zi = zh

.

Case 3, z0 = zh: Assign z0 to HB or HF with the respective probabilities being

P (z0 → HB) =
Sn − 2Sh + 2π̃(zh)

2π̃(zh)
, (5.2.3)

P (z0 → HF ) =
2Sh − Sn

2π̃(zh)
, (5.2.4)

and sample from the other half according to the rules above. These specific assignment

probabilities ensure that AAPS using Scheme 6 preserves the canonical distribution π̃

without the need for an accept-reject step.

Proposition 5.2.3. Assignment probabilities (5.2.3) and (5.2.4) lead to a transition

kernel which satisfies detailed balance with respect to π̃.

Proof. Suppose z0 ∈ HB and we propose z′ = zh. To satisfy detailed balance we

require that π̃(z0)q(zh|z0) = π̃(zh)q(z0|zh). Factoring out the indicator functions from

the transition terms, we have

π̃(z0)

(
2Sh − Sn

Sn

)
= π̃(zh)P (z0 → HF )

(
2π̃(z0)

Sn

)
⇒ P (z0 → HF ) =

2Sh − Sn

2π̃(zh)
.

Similar steps follow for when z0 ∈ HF and the resulting probabilities add up to 1.

Sampling weights comparison

We compare the different weighting schemes when used within AAPS with respect to

two quantities: the efficiency, defined as the component-wise minimum effective sam-
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ple size divided by the total number of leapfrog steps taken; and the true acceptance

rate, that is, the emprically estimated probability of moving from z0 during an itera-

tion of the algorithm. Figure 5.2.4 shows the results of the comparison on a particular

target being πH
G with d = 40, ξ = 20; see Section 5.5.1 for details. The step-size ε was

chosen to be 1.0 which was smaller than the optimum of 1.4; this was to minimise the

chance of skipping apogees which could affect the results. Modulating the weights by

π̃(z) resulted in higher acceptance rates, with a lower sensitivity to the choice of ε,

compared to the unmodulated variants and led to an overall increase in the efficiency.

The relative performance of the sampling schemes persisted for other choices of fixed

ε and K, and experiments using different targets. Scheme 6 which forces proposals

from the second half of the cumulative sum of π̃(z) performed the best, with Schemes

3 and 5 reasonably close to it; both of those schemes incorporated some notion of

jumping distance modulated by π̃(z). However, Scheme 6 required the storage of the

entire path P to propose z′ at each iteration, and, similarly, Schemes 4 and 5 needed

the whole path stored for the calculation of the acceptance probabilities α. The O(K)

memory overhead could make these unsuitable for a general-purpose inference tool.

On the other hand, Schemes 1, 2 and 3 can be fully implemented with a fixed O(1)

memory cost. In practice, we found this to improve the efficiency as measured by

the ESS per CPU second by a factor of between 2 and 5 on a range of toy targets

described in Section 5.5 and a stochastic volatility model posterior (Section 5.5.3).

The greatest improvements were observed when both the ratio between the smallest

and largest component scales, and the dimension of the target were large (> 40 and

> 100, respectively).
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Scheme 3, ω(z; z0) = π̃(z)∥x−x0∥22, strikes the balance between sampling efficiency

and problem-agnostic implementation, and is applied throughout the remainder of this

work.

5.3 Tuning

AAPS, as introduced in this work, uses the leapfrog integrator and as a result benefits

from its symplecticness. Similar to standard HMC, the variation in the Hamiltonian

along P is only strongly affected by the choice of ε and not K. Figure 5.3.1 shows

how HMC and AAPSK differ in efficiency with respect to their tuning parameters; the

efficiency is measured as the minimum ESS over all target components, divided by

the total number of leapfrog steps taken. The HMC plot axes are ε−L as, generally,

a practitioner would first tune the step-size and then the integration time in integer

multiples of ε. It is evident that AAPSK is more robust to the variation of the number

of segments K from its optimum than HMC is to the integration time T . Additional

tuning plots are provided in the Appendix C.1.

In this section, we discuss the tuning parameters of AAPSK and outline some

general strategies for tuning them.

5.3.1 Step-size tuning

The efficiency of the algorithm will depend on the choice of the step-size ε. If ε is very

small then the simulated Hamiltonian dynamics will be close to the true continuous

solutions to (5.1.1). This, however, comes at a great computational cost associated
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Figure 5.2.4: Comparison of sampling weights ω. Horizontal lines in (a) help to
indicate the respective maxima of the weighting schemes. The acceptance rate given
in the bottom plots is computed as the estimated probability of leaving z0 at a given
iteration.
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Figure 5.3.1: Efficiency w.r.t. tuning parameters for HMC and AAPS on a Rosebrock-
type product target (Section 5.5.1) with d = 40, and range(β) = (1, 100)). HMC with
negative L corresponds to blurred integration time.

with a great number of gradient evaluations, which is generally the most costly element

of inference schemes. On the other hand, if ε is too large, the numerical solution will

be unstable (see, for example, Hairer et al., 2003), resulting in an unbounded error

in the Hamiltonian. Over a range of experiments carried out in Section 5.5, AAPS

with sampling weights modulated by π̃ was able to achieve optimal performance at

acceptance rates between 75− 87%. Due to the simplecticness of the integrator, the

acceptance rate was influenced mostly by the choice of ε, with little effect coming

from the choice of K, provided K > 0; see Figure 5.2.4 for an example of this. In

AAPS0, the true acceptance rate can be quite variable if there are only a few points

in the segment. The recommended general tuning procedure for ε in AAPSK is then:

1. Fix K = 0 (AAPS0) and identify a maximum stable ε for which the stability

condition (5.2.1) holds over multiple iterations;
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2. Increase K so that the average size of path, |P|,does not change much between

iterations.

3. Gradually reduce the step-size until the acceptance rate is within 75− 87%.

Depending on the problem, acceptance rates lower than 75% may result in more

efficient mixing. For example, in the stochastic volatility problem in Section 5.5, ε

values larger than the optimal, with correspodning acceptance rates < 75%, resulted

in chains which were still suitably efficient.

5.3.2 Tuning the number of segments

Here, we introduce a useful diagnostic for determining a suitable choice for the K

parameter of AAPSK .

At each iteration, for given z0, AAPSK samples a the initial segment index c

uniformly from {0, . . . , K} and proposes a state z′ from P = S−c:(K−c), which is

composed of K + 1 segments, with a probability proportional to our chosen weight

function ω(z′; z) = π̃(z′)∥x′ − x0∥2. It will be helpful in the sequel to consider the

case where the segment index j of the proposal was, instead, sampled uniformly on

{−c, . . . ,K − c}. This is equivalent to independently and uniformly sampling some

values c and e from {0, . . . , K}, and setting j = e− c. Thus the marginal distribution

for j can be described by the mass function

P (J = j) =


K+1−|j|
(K+1)2

j = −K, . . . ,K,

0 otherwise.
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In deciding on a suitable K, we first perform a relatively short run of AAPSK for

some large K = K∗. Each iteration, we note the segment number j ∈ {−c, . . . ,K∗−c}

from which the proposal arose. By the symmetry of sampling c and momentum p,

the distribution of j is symmetric so we track k = |j|, and keep a running total of

the number of times, nK∗(k), that there has been a proposal from a segment with an

index whose absolute value is k ∈ {0, . . . , K∗}. If the weights had been irrelevant and

all segments contained the same number of points then

pK(k) := P (|j| = k|proposed segment sampled uniformly, K) =



1
K+1

k = 0,

2K+1−k
(K+1)2

k = 1, . . . , K∗,

0 otherwise.

The method for placing the set of segments around the initial segment, as described

in Section 5.2.2, inherently causes lower values of k to appear more frequently. To

account for this, we adjust the running totals

mK∗(k) =
nK∗(k)

pK∗(k)

and choose the optimal number of additional apogees, K̂, as

K̂ = argmax
k=0,...,K∗

mK∗(k).

The tuning procedure for the number of segments is then

1. Fix a stable ε and pick a large K = K∗.

2. Run for a sufficiently large number of iterations so that values mK∗(k) do not

change much with iterations.
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3. If the diagnostic suggests optimal K̂ to be close to K∗, repeat the run with a

larger number of segments.

4. If K̂ << K∗ then proceed with the K = K̂.

Appendix C.2 gives a heuristic explanation for the diagnostic; the work was carried

out by Prof Chris Sherlock. Figure 5.3.2 compares the optimal K suggested by the

proposed diagnostic to the true optimal value identified via a grid-search on (K, ϵ).

The comparisons are given for skewed-Gaussian product targets described in Section

5.5.1, with varying maximum ratios of the component scales. The plots show good

agreement between the proposed diagnostic and the empirical estimate of the truth.

Similar results were found for other types of targets investigated in Section 5.5.1.

5.4 Theory

5.4.1 Gaussian product target

We consider a d-dimensional Gaussian target with a diagonal covariance matrix; the

potential is

U(x) =
d∑

i=1

1

2
νix

2
i + constant, (5.4.1)

where νi > 0, i = 1, . . . , d, are squared inverse-scales of each component. We let

πν(x) denote the density of a univariate zero-mean Gaussian random variable with

the variance equal to ν−1, and πν be the corresponding measure. Note that
√
νixi ∼

π1 ≡ N(0, 1) for all i = 1, . . . , d.

The deterministic map ϕ : (x0, p0) 7→ (xt, pt) defined by the solution to (5.1.1) has a
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unit Jacobian and so the density of (Xt, Pt) is f(xt, pt) = π̃ν(ϕ(xt, pt;−t)) = π̃ν(x0, p0).

The conservation of energy under the Hamiltonian dynamics is equivalent to

d

dt
π̃ν(xt, pt) = 0,

so f ≡ π̃ν and (Xt, Pt) is stationary.

We wish to analyse the behaviour of the Hamiltonian dynamics with respect to

the apogees. Without loss of generality, we assume a unit mass, that is, P ≡ N(0, Id).

Define the scaled dot-product at time t in d dimensions, subject to initial phase-state

(x0, p0), as

D(d)
(
t;x

(d)
0 , p

(d)
0

)
=

1√
d

〈
∇Ux

(
x
(d)
t

)
, p

(d)
t

〉
. (5.4.2)

In the results that follow, it is essential that we first solve the ODE system (5.1.1).

As the target components are independent, the trajectories in the phase-space will

evolve separately and so we can focus on an individual component, leading to the

following Initial Value Problem

dp(t)

dt
= −
√
νx(t),

dx(t)

dt
= p(t); x(0) = x0,

dx(0)

dt
= p0. (5.4.3)

Combining the two equation we find that d2x(t)
dt2

= −x(t), which is the simple harmonic

oscillator equation, with the solution

x(t) = x0 cos
√
νt+

p0√
ν

sin
√
νt, (5.4.4)

p(t) = −νx0 sin
√
νt+ p0 cos

√
νt.

Theorem 5.4.1. Let the potential be defined as in (5.4.1) and let µ be a distribution
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with support on R∗ with

E
ν∼µ

[
ν1+δ/2

]
<∞ (5.4.5)

for some δ > 0, and let νi
iid∼ µ. Let D(d) be the scaled dot-product defined in (5.4.2),

and let (X0, P0) ∼ π̃; then, as d→∞,

D(d) → D̃ ∼ SGP(0, V ), (5.4.6)

where Y ∼ SGP(b, V ∗) denotes that Y is a one-dimensional stationary Gaussian pro-

cess with an expectation of b and a covariance function of Cov [Yt, Yt′ ] = V ∗(t′ − t),

and

V (t− s) = E
ν∼µ

[
ν cos 2

√
ν(t− s)

]
.

Proof. The dynamics are initialised randomly from the canonical distribution π̃ν , that

is, X0 ∼ πν and P0 ∼ ρ1. Consider the dot-product contribution of a single component

D(t;X0, P0, ν) =

〈
dU

dx
(Xt), Pt

〉
= νXtPt.

Substituting in the solution (5.4.4), we get that

D(t;X0, P0, ν) = ν

(
x0 cos

√
νt+

p0√
ν

sin
√
νt

)(
νx0 sin

√
νt+ p0 cos

√
νt
)

=
√
ν

[
1

2

(
P 2
0 − νX2

0

)
sin 2
√
νt+

√
νX0P0 cos 2

√
νt

]
.

Due to stationarity of (Xt, Pt), D(0;X0, P0, ν)
D
= D(t;X0, P0, ν) and so we have

E(X0,P0)∼π̃ν [D(t;X0, P0, ν)] = E(X0,P0)∼π̃ν [D(0;X0, P0, ν)] = E(X0,P0)∼π̃ν [νX0P0] = 0.

Now, let us consider the covariance of the dot-product at two different times

t, s > 0, with t > s. Define V (s, t; ν) := Cov(X0,P0)∼π̃ν [D(s;X0, P0, ν), D(t;X0, P0, ν)].
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Since D is zero-mean,

V (s, t; ν) = E [D(s;X0, P0, ν)D(t;X0, P0, ν)]

= E
[
ν2XsPsXtPt

]
= νE [νX0P0Xt−sPt−s]

= νE
[√

νX0P0

(
1

2
(P 2

0 − νX2
0 ) sin 2

√
ν(t− s) +

√
νX0P0 cos 2

√
ν(t− s)

)]
= νE

[
1

2

√
νX0P0

(
P 2
0 − νX2

0

)
sin 2
√
ν(t− s) + νX2

0P
2
0 cos 2

√
ν(t− s)

]
= ν cos 2

√
ν(t− s),

where the expectations are taken over (X0, P0) ∼ π̃ν , noting that
√
νX ∼ π1. The

Fourier transform of V (s, t; ν) is a positive measure on R which, by Bochner’s theorem,

means that the function itself is positive definite. Combining all components, by the

strong law of large numbers,

V (d)(s, t) = Cov(X0,P0)∼π̃ν

[
D(d)

(
s;X

(d)
0 , P

(d)
0

)
, D(d)

(
t;X

(d)
0 , P

(d)
0

)]
=

1

d

d∑
i=1

νi cos 2
√
νi(t− s)

a.s.→ E
ν∼µ

[
ν cos 2

√
ν(t− s)

]
= V (t− s), as d→∞.

All V (d) are positive definite as they are sums of positive definite functions. Fur-

thermore, letting F denote the Fourier transform operator and f1(r) = cos 2
√
νr, we

find that

F{V }(ω) = E
ν∼µ

[νF{f1}(ω)] = E
ν∼µ

[
ν
√
π/2

(
I{ω=2

√
ν} + I{ω=−2

√
ν}
)]
.

Since ν > 0, F{V } is a positive measure on R meaning that V is a positive definite
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function.

Now, take any finite set of time-points {t1, . . . , tn}, n ∈ N and let

D1:n = (D(t1;X0, P0, ν), . . . , D(tn;X0, P0, ν))⊤ .

For any δ > 0 such that Eµ[ν1+δ/2] <∞,

∥D1:n∥2+δ =

(
n∑

j=1

|D(tj;X0, P0, ν)|2
)1+δ/2

= n1+δ/2

(
1

n

n∑
j=1

|D(tj;X0, P0, ν)|2
)1+δ/2

≤ n1+δ/2

(
1

n

n∑
j=1

|D(tj;X0, P0, ν)|2+δ

)

= nδ/2

n∑
j=1

|D(tj;X0, P0, ν)|2+δ,

with the third line being a consequence of Jensen’s inequality with respect to the

quadratic function. Taking the expectation over (X0, P0) ∼ π̃ν , we have

E(X0,P0)∼π̃ν

[
∥D1:n∥2+δ|ν

]
≤ nδ/2

n∑
j=1

E(X0,P0)∼π̃ν

[
|D(tj;X0, P0, ν)|2+δ|ν

]
= n1+δ/2ν1+δ/2E(X0,P0)∼π̃ν

[
|
√
νX0P0|2+δ|ν

]
= n1+δ/2ν1+δ/2Eπ1

[
|X∗

0 |2+δ
]
Eρ1

[
|P0|2+δ

]
= n1+δ/2ν1+δ/2m(2 + δ)2 <∞, (5.4.7)

where m(a) = E[|Z|a], Z ∼ N(0, 1).
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As ∥D1:n∥ > 0, we have (for some a > 0)

E
[
∥D1:n∥2+δ

]
≥ E

[
∥D1:n∥2+δI{∥D1:n∥≥a}

]
≥ aδE

[
∥D1:n∥2I{∥D1:n∥≥a}

]
.

Using the above inequality with a = ε
√
d, ε > 0, in combination with (5.4.7), we

arrive at the Lindeberg condition

1

d

d∑
i=1

E
[∥∥∥D(d)

i,1:n

∥∥∥2 I{∥∥∥D(d)
i,1:n

∥∥∥≥ε
√
d
}] ≤ 1

d

d∑
i=1

n1+δ/2

εδdδ/2
ν
1+δ/2
i m(2 + δ)2 → 0 as d→∞.

Since V is positive definite, by the Lindeberg-Feller Central Limit Theorem the n-

dimensional distribution tends towards a multivariate Gaussian with a covariance

given according to V which proves the result.

Corollary 5.4.2. The expected number of apogees of D̃ over an integration time T is

N(T ) =
T E[ν]

π
×

√
E[ν2]

E[ν]2
. (5.4.8)

Proof. Recall the covariance function of D̃,

V (t) = E
ν∼µ

[
ν cos 2

√
νt
]

with the variance of the process being V (0) = E[ν], with the integration over µ

being implicit. The process, D∗ = D̃/
√
V (0) is a stationary Gaussian process with

unit variance. Ylvisaker (1965) shows that the expected number of zeroes over a

unit interval of a stationary GP with unit variance and covariance function C is:
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1
π

√
−C ′′(0). The second derivative of the covariance function of D∗ evaluated at 0 is

V ′′
∗ (t) = −4

E[ν2 cos 2
√
νt]

E[ν]

with V ′′
∗ (0) = −4E[ν2]/E[ν]. The expected number of zeroes of D∗ is the same as that

of D̃. Thus, the expected number of apogees over a time T is

T

2π

√
−V ′′

∗ (0) =
T

2π

√
4
E[ν2]

E[ν]
=
T E[ν]

π
×

√
E[ν2]

E[ν]2

as required.

Given that the marginal distribution of the momentum variable, P0, is set to be

N(0, I) and an identity mass matrix is used in defining the Hamiltonian dynamics, the

first term of the product (5.4.8) relates the integration time to the average length scale

of the target density as ν is the inverse variance. The second terms of the product

shows how N(T ), for a fixed T , increases with the variability in the squared inverse

scales of the target components. Thus, the tuning parameter K simply relates to

the properties intrinsic to the target density, being relatively unaffected by a uniform

redefinition of the length scales of the target or changing the choice of ε. This is in

contrast to L in HMC where the performance of the algorithm with change with such

redefinition. This gives another reason for the robustness of AAPS with respect to its

tuning parameters.

5.4.2 General product target

Theorem 5.4.4 and Corollary 5.4.5 were proved by Prof Chris Sherlock and the proofs

can be found in Sherlock et al. (2021).
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Theorem 5.4.1 can be extended to a general d-dimensional product target with a

potential

U (d)(x) =
d∑

i=1

g

(√
ν(d)x

(d)
i

)
+ constant, (5.4.9)

for some g : R→ R, where
∫
Rd exp

(
−U (d)x

)
dx = 1.

Assumption 5.4.3. We assume that g ∈ C1, that there is a δ > 0 such that

EX∼π1

[
|g′(X)|2+δ

]
<∞, (5.4.10)

and that for each y0 ∈ R, there is a unique, non-explosive solution a(t; y0, y
′
0) to the

initial value problem:

d2y

dt2
= −g′(y); y(0) = y0, y

′(0) = y′0. (5.4.11)

Theorem 5.4.4. Let the potential be defined as in (5.4.9) and where g satisfies the

assumptions around (5.4.10) and (5.4.11). Further, let µ be a distribution with support

on R+ with

E
ν∼µ

[
ν1+δ/2

]
<∞ (5.4.12)

for some δ > 0, and let νi
iid∼ µ. Define

V (t) = E
[
ν g′(X)P g′(

√
νXt;X,P ) a′(

√
νt;X,P )

]
(5.4.13)

where the expectation is over the independent variables X ∼ π1, P ∼ ρ1 and ν ∼ µ,

and assume that for any finite sequence of n distinct times (t1, . . . , tn), the n × n

matrix Σ with Σi,j = V (tj − ti) is positive definite. Let D(d) be the scaled dot-product
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defined in (5.4.2), and let (X0, P0) ∼ π̃; then, as d→∞

D(d) → D̃ ∼ SGP(0, V ),

where Y ∼ SGP(b, V ) denotes that Y is a one-dimensional stationary Gaussian process

with an expectation of b and a covariance function of Cov [Yt, Yt′ ] = V (t′ − t).

Corollary 5.4.5. For a potential of the form (5.4.1), the expected number of apogees

of D̃ over an integration time T is

N(t) ∝ T E[ν]×

√
E[ν2]

E[ν]2
.

5.5 Numerical experiments

The optimal performance of HMC is invariant to the choice of a linear transformation

of the original variables, that is, an algorithm sampling x using a mass matrix M is

equivalent to sampling Ax using a mass matrix (A⊤)−1MA−1. Thus, without a loss

of generality, we use M = Id throughout the analyses. Each set of experiments is

run for 105 iterations, initiated from the corresponding stationary distributions. The

efficiency, unless specified otherwise, is given as the minimum ESS over all target

components divided by the number of gradient evaluations (or equivalently leapfrog

steps). All algorithms were implemented in C++.

5.5.1 Toy product targets

We evaluate the algorithms on a selection of d-dimensional centralised product targets

where each component xi has a different scaling parameter σi > 0:
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� Gaussian:

πG(x) =
d∏

i=1

1

σi
√

2π
e
− x2i

2σi ;

� Logistic:

πL(x) =
d∏

i=1

e−xi/σi

σi(1 + e−xi/σi)2
;

� Skew-Gaussian:

πSG(x) =
d∏

i=1

2

σi
√

2π
e
− x2i

2σi Φ

(
αxi
σi

)
,

where Φ is the distribution function of a standard normal random variable and

α ∈ R. We set α = 3.

In all three targets, we have V[Xi] ∝ σ2
i , with equality in the Gaussian case. As a

result, the square-root of the condition number of the covariance matrix in each case

is dictated by the largest ratio of component scales; we denote this by

ξ = max
1≤i,j≤d

√
σi/σj.

We consider four different kinds of jittered, linear spacings for scales σi. We consider

the component variances (σ2) linear in component indexing, as well as the standard

deviation (σ), the inverse standard deviations (σ−1), and the diagonal elements of the

Hessian (σ−2). Each set of scales is constructed using a d-dimensional vector γ such

that γ1 = 0 and γd = 1, and for i = 2, . . . , d − 1, γi = (i + 1 + υi)/(d − 1) where υi

are independent Unif(−0.5, 0.5) variables. For each of the four different spacings, the

scales are:

� SD: σi = (ξ − 1)γi + 1;
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� VAR: σ2
i = (ξ2 − 1)γi + 1;

� H: 1/σ2
i = (1− 1/ξ2)γi + 1/ξ2;

� invSD: 1/σi = (1− 1/ξ)γi + 1/ξ

for i = 1, . . . , d. In all cases, σ1 = 1 and σd = ξ to ensure stability in ε across

experiments. The jittering prevents any scales, other than σ1 and σd, from being

integer multiples of each other; such scenario, which is unlikely to occur in practice,

would result in very odd behaviour of the optimal integration time for HMC and could

confound the results.

We also include a particularly difficult target, denoted by πRN
G , which was used in

an online comparison between HMC and NUTS.1 The target is 30-dimensional and

has ξ = 110.

Modified Rosenbrock

We additionally include a banana-shaped target which is a popular benchmark for

MCMC algorithms (e.g., Hogg and Foreman-Mackey, 2018; Martin et al., 2012; Hoff-

man et al., 2021; Pagani et al., 2021) with its log-density based on the Rosenbrock

function f(x, y) = −β(x2 − y)2 − (x− α)2, β > 0 and α ∈ R. We modify the original

function as HMC is not an appropriate method for sampling from a light-tailed target;

specifically, HMC is stable when the tails do not increase faster than quadratically

(Livingstone et al., 2019), but here they would increase quartically. The modified

1https://radfordneal.wordpress.com/2012/01/27/evaluation-of-nuts-more-comment

s-on-the-paper-by-hoffman-and-gelman/

https://radfordneal.wordpress.com/2012/01/27/evaluation-of-nuts-more-comments-on-the-paper-by-hoffman-and-gelman/
https://radfordneal.wordpress.com/2012/01/27/evaluation-of-nuts-more-comments-on-the-paper-by-hoffman-and-gelman/
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Rosenbrock-based target has the form

log πMR(x, y) = −1

2

(
cx2

1 + c2x2/2
− y
)2

− c2(x− α/c)2 (5.5.1)

up to an additive constant, where α > 0 and c = (2β)−
1
2 > 0. This is equivalent to

X ∼N(α/c, c−2/2),

Y |X = x ∼N
(

cx2

1 + c2x2/2
, 1

)
.

The partial derivatives of the log-density are

∂xlog πMR(x, y) = − 8cx

(c2x2 + 2)2

(
cx2

1 + c2x2/2
− y
)
− 2c(cx− α),

∂ylog πMR(x, y) =

(
cx2

1 + c2x2/2
− y
)
.

The partial derivative with respect to x is now O(x) making it stable for HMC. In

the numerical experiments, for a d-dimensional target (d even), we consider a product

of d/2 bivariate densities based on (5.5.1) with the β parameters linearly distributed

between 1 and 100; that is, βi = 1 + 99(i−1)
d/2−1

, for i = 1, . . . , d/2.

Comparison

Table 5.5.1 shows the efficiencies of standard HMC, blurred HMC and the no U-turn

sampler relative to AAPSK . For some targets, some of the other algorithms are slightly

more efficient than AAPSK , and for others, they are slightly less efficient. However,

across the wide range of targets, no algorithm is 1.7 or more times as efficient as

AAPSK . Table 5.5.2 gives the respective acceptance rates of the algorithms fixed at

optimal tuning parameters. For the given targets, the HMC acceptance rates are far
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Target ξ d AAPSK HMC HMC-bl NUTS
πSD
G 20 40 1.000 0.722 0.718 1.182

πVAR
G 20 40 1.000 1.016 1.091 1.461

πH
G 20 40 1.000 0.162 0.644 0.392

πinvSD
G 20 40 1.000 0.162 0.461 0.460

πVAR
SG 20 40 1.000 0.990 1.224 1.403

πVAR
L 20 40 1.000 1.135 1.488 1.677

πVAR
G 20 100 1.000 0.657 1.020 1.378

πVAR
G 40 40 1.000 1.190 1.346 1.645

πMR - 20 1.000 1.647 1.582 0.728

πMR - 40 1.000 1.045 1.166 0.873

πRN
G 110 30 1.000 ∗0.019 1.206 0.306

Table 5.5.1: Efficiency of algorithms measured minimum ESS across all d components
per number of gradient evaluations. The values are scaled w.r.t. AAPSK
∗The tuning surface of HMC was extremely uneven so we could not determine the
optimal tuning parameters with any degree of certainty.

from the recommended 65.1% and, similarly, NUTS is far from the default setting of

80% as it appears in Stan.

5.5.2 Bimodal distributions

In Section 5.2.5, we demonstrated that AAPS0 is irreducible on bimodal targets with

dimension d > 1. We now compare the efficiency of AAPSK to HMC-bl and NUTS on

a selection of targets of the form (5.2.2), with a and σ varied. Table 5.5.3 shows the

results with the efficiency defined as the effective sample size of the first component

per number of gradient evaluations. The a and σ values were chosen such that the 1st

and 4th rows of the table correspond to a very slight separation of modes and rows 3

and 6 correspond to very substantial separation. Ideal HMC-bl, tuned on a fine (ε, L)

grid, outperforms the other two algorithms quite substantially. Comparing the first
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Target ξ d AAPSK HMC HMC-bl NUTS
πSD
G 20 40 86.6 90.7 78.1 99.1

πVAR
G 20 40 84.9 91.6 88.4 99.8

πH
G 20 40 83.7 63.0 71.7 82.8

πinvSD
G 20 40 83.8 70.1 72.4 91.2

πVAR
SG 20 40 84.6 93.2 90.6 94.3

πVAR
L 20 40 74.7 73.9 77.1 96.3

πVAR
G 20 100 84.5 78.6 75.7 96.4

πVAR
G 40 40 84.4 97.5 77.1 96.8

πMR - 20 82.8 78.9 84.8 89.9

πMR - 40 84.7 80.7 80.0 89.7

πRN
G 110 30 83.7 ∗62.0 66.7 99.4

Table 5.5.2: Acceptance rates (%) at optimal algorithm settings.
∗The acceptance rate of HMC on πRN

G was extremely sensitive to T .

Target HMC-bl AAPSK NUTS
a = 1.5, σ = 1 8242.29 4325.50 6108.39
a = 2.5, σ = 1 738.37 383.78 654.23
a = 3.5, σ = 1 86.30 31.96 48.94
a = 7, σ = 10 347.35 231.37 209.38
a = 10, σ = 10 158.21 119.56 82.33
a = 15, σ = 10 37.20 20.91 14.47

Table 5.5.3: Algorithm performances on 40-dimensional bimodal targets of the
form 1

2
N
(
(−a, 0, . . . , 0)⊤, I40

)
+ 1

2
N
(
(a, 0, . . . , 0)⊤, σ2I40

)
. The efficiency is given as

ESS(X1)/Nleapfrog × 105.

three rows of the tables to the last three, AAPSK decreases the least in performance.

5.5.3 Stochastic volatility

For the final comparison example, we use a stochastic volatility model as used in

Girolami and Calderhead (2011) and Wu et al. (2019). Consider sequence of T latent

volatility variables X1:T taking the form of an auto-regressive AR(1) process, with the
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following distributional assumptions:

t = 1 :

X1 ∼ N

(
0,

σ2

1− ϕ2

)
,

t = 2, . . . , T :

Xt|Xt−1 = xt−1 ∼ N(ϕxt−1, σ
2),

where ϕ ∈ (0, 1). We observe a sequence Y1:T generated by the latent volatilities,

which are distributed as

Yt|Xt = xt ∼ N(0, κ2exp(xt)), t = 1, . . . , T.

We wish perform inference on (ϕ, κ, σ2, X1:T ) given observations y1:T , with the pa-

rameter priors π0(κ) ∝ 1/κ, σ2 ∼ inv-χ2(10, 0.05) and 1
2
(1 + ϕ) ∼ Beta(20, 1.5). For

inference, each parameter is transformed to be on the whole of the real line,

α = 2tanh−1(ϕ), β = log(κ), and γ = log(σ2).

The full model posterior as well as gradients of the potential are given in Appendix

C.3. The data Y1:T are generated using true parameters ϕ = 0.98, κ = 0.65 and

σ = 0.15, with T = 1000, and can be seen in Figure 5.5.1 along with the true X1:T .

In this example, we only consider the blurred version of HMC as for the version

without the blurring it was substantially more difficult to identify a stable and optimal

tuning; in real-world applications practitioners would be using inference packages such

as Stan or PyMC (Salvatier et al., 2016) which perform the blurring by default. In the

results, we include AAPSd
K which is the AAPSK algorithm with K tuned only using
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Figure 5.5.1: Synthetic dataset based on the stochastic volatility model. Top: Latent
volatilites X1:1000. Bottom: Observed returns Y1:1000.

the diagnostic from Section 5.3.2. Tables 5.5.4 and 5.5.5 show the performance of the

algorithms on the stochastic volatility example. Each cell is given as “mean (sd)” over

10 chains of 105 iterations where all chains are initialised from stationarity using a

posterior sample obtained from the endpoint of a NUTS chain of length 250, 000.

It took approximately 53 minutes to run a single chain of HMC-bl; the relative

times for AAPS0, AAPS
d
K , AAPSK and NUTS were 0.39, 2.50, 2.91 and 4.41 respec-

tively.
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5.6 Discussion and further work

We introduced the general framework of the Apogee to Apogee Path Sampler which

has similar efficiency to Hamiltonian Monte Carlo but is a lot easier to tune. The

key feature of AAPS is the construction of a path, P made up of a fixed number of

segments, with the construction being invariant to the choice of the initial phase-state

z ∈ P . From the path, AAPS proposes a state with respect to some generic prede-

termined weight function and then uses an accept-reject step to satisfy the detailed

balance condition, thus ensuring the sampler targets the intended distribution.

Unlike the no-U-turn sampler algorithm, AAPS does not require recursive com-

putation and parts of the algorithm can be parallelised; specifically, the backwards

and forward integration from the current state z0 can be carried out separately on

two cores, and this can be combined with the fixed-memory proposal and acceptance

procedure outline in Section 5.2.6.

In Section 5.2.6, we investigated six different mechanisms for proposing a state

from the path, and for the numerical experiments in Section 5.5, we chose to sample a

state from the path with a probability proportional to the proposal’s squared displace-

ment in the position variable with respect to the initial state. This could be achieved

at an O(1) memory cost. As discussed in Section 5.2.6, a proposal mechanism using a

squared jumping distance of any arbitrary function of interest could be implemented

at a fixed cost to the memory. We could, for example, use a weighting motivated by the

ChEES diagnostic of Hoffman et al. (2021); that is, ω(z′; z) ∝ (∥x′ − µ∥2 − ∥x− µ∥2)2

for some central point µ.
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In the work, we constructed the path by choosing the position of the initial seg-

ment, S0, uniformly at random from the K + 1 segments. This is not the only choice

that can preserve the detailed balance with respect to the intended target. For in-

stance, the current segment could be fixed at segment 0 and we would only propose

from segment K. This choice bears a resemblance to the window scheme in Neal

(2011). However, in early experiments, we found that this had a negative impact on

the robustness of the efficiency to the choice of K.

Because of the simplicity of AAPS, there are many ways in which the algorithm

can be extended. For example, if the states along the path are stored, then a delayed

rejection step can improve the efficiency by increasing the acceptance probabilities.

Using the gradient evaluations from the leapfrog integrator, an approximation π̃∗ ≈ π̃

could be used in constructing the weight ω(z′; z) ∝ π̃∗(z′). Provided the approxi-

mation is agnostic of the initial state, the resulting Markov Chain would satisfy the

detailed balance condition.

The algorithm, as introduced, is reversible due to the accept-reject step and, as

a result, it is possible for costly, distant proposals to still be rejected, wasting the

computational effort. A non-reversible version of the algorithm could set K = 1 and,

instead of completely refreshing the momentum at each iteration, the momentum at

the start of a new step could be a Crank-Nicolson perturbation of the momentum at

the end of the previous step as in Horowitz (1991).

We focused on constructing a path of states which relies on the notion of apogees,

the points where the trajectory of the Hamiltonian dynamics moves from travelling

uphill to downhill with respect to the potential surface. A related concept is the
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perigee which is the point of swapping from moving downhill to uphill with respect to

the potential surface U . Future extensions could involve incorporating perigees into

the path construction; although, the exact implementation is not obvious.



Chapter 6

Conclusions

This thesis tackled three different problems in Bayesian modelling and inference. In all

three, the methods introduced as solutions to those problems employ the simulation

of stochastic processes. Additionally, they all emphasise Bayesian inference through

the use of computational methods with easy-to-follow tuning guidelines.

The first contribution was a novel, flexible framework for modelling and prediction

of patient recruitment to Phase III clinical trials. The introduced model was based

on the time-inhomogeneous Poisson process, and the efficient inference was carried

out in the Bayesian paradigm; sensible choices for parameter priors were provided to

encourage widespread use. The model was superior to time-homogeneous industry-

standard models in terms of prediction.

The main contribution of the work in Chapter 4 was the development of a novel Cox

process likelihood estimator, along with an analytical and empirical demonstration of

its properties. The proposed Rao-Blackwellised Thinning Estimator was then applied

in a random-weight particle filter for Cox process inference, with a diffusion process

179
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prior. We demonstrate how the proposed estimation method is more efficient, in a

sense of estimator precision for a given computational budget, than the widely-used

Poisson Estimator when applied in a particle filter.

The final contribution of this thesis was the Apogee to Apogee Path Sampler al-

gorithm for sampling from an unnormalised distribution on Rd. The algorithm is

based on the commonly used Hamiltonian Monte Carlo; however, the particular con-

struction of the proposals mitigates the high sensitivity of the tuning parameters.

Specifically, empirical evidence shows how sampling from a path constructed by inte-

grating the Hamiltonian dynamics forwards and backwards in segments separated by

apogees leads to an improvement in tuning misspecification robustness over the seem-

ingly arbitrary integration time T as in standard HMC. The algorithm, as introduced,

is competitive in efficiency and allows for many further modifications.

We now outline some suggestions for future research directions, particularly in the

context of the whole thesis.

The base model introduced in Chapter 3 had a simple form to allow for widespread

use of the methodology in the area of clinical trial operations. An immediate extension

would be to modify the basic form of the intensity function. Generally, there are a

number of covariates available for each recruiting centre. Using xc to denote this

vector of covariates, the intensity model could take the form

λc(t) = λocexp
(
β⊤xc

)
g
(
t; exp

(
η⊤xc

))
,

where now λoc ∼ Gamma(α, α), and β and η are vectors of unknown parameters.

Alternatively, the form of the functional shape g could be modelled via splines, similar
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to the model appearing in (Morgan et al., 2019). In particular, choosing B splines

with specific parameter constraints can ensure that the intensity function is always

non-negative.

In either of the above suggestions, the resulting model would involve a larger

number of hyperparameters. Importance sampling, as recommended in Chapter 3,

might not be enough to deal with this larger parameter space (see, for example, Section

3.3 of Chopin, 2004). In fact, the Apogee to Apogee Path Sampler introduced in

Chapter 5 could help with this by allowing for efficient inference with high robustness

to tuning parameter misspecification.

Another extension would be the use of Bayesian nonparametric modelling in the

form of a Cox process model. This, however, would not be trivial as even in the

simplest of scenarios, exact Cox process inference is a very difficult problem due to

the intractability of the likelihood term. The random-weight particle filter along with

the pseudo-marginal MH algorithm, as outlined in Chapter 4, could be applied in this

context, provided sufficient attention is paid to the problem-specific modifications. In

Chapter 4, we focus on a setup involving data composed of a single time sequence.

Extending methodology to be applicable in clinical trial recruitment modelling would

itself be challenging. The first challenge would be the interval censoring of arrivals;

in the data used for the analyses in Chapter 3, the censoring was on a daily scale, but

it is not uncommon to for recruitment drives to only report weekly or even monthly

counts. Provided the intensity would not change much over that period of time one

could either apply small jitter to arrivals as a preprocessing step or estimate the inter-

censored likelihood using additional auxiliary variables (see Section 5.3 of Gonçalves
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et al., 2020). The second challenge would be the incorporation of random effects. It

is possible that a discrete distribution, rather than the continuous gamma used in

Chapter 3, for the random effects could allow for a more straightforward inference.

The pseudo-marginal scheme used in Chapter 4 relied on random walk proposals.

One could apply the AAPS methodology (Chapter 5) to the pseudo-marginal inference

carried out in Chapter 4. This would involve a modification of the existing pseudo-

marginal Hamiltonian Monte Carlo (Alenlöv et al., 2021). Utilising the notion of

apogees when defining the integration time could make for a more robust algorithm

without a substantial loss to the peak performance.



Appendix A

Appendix for Chapter 3

A.1 Non-parametric bootstrapped test

4.1 Non-parametric test for detection of change in recruitment rates:

1. Input: Series of counts {Nc(t)}τct=1, c = 1, . . . , C; number of bootstrapped samples B

2. Output: Probability of observed difference in means, p̂, under H0

3. Calculate observed difference ∆ =
∑C

c=1

(∑τc/2
t=1 Nc(t)−

∑τc
t=τc/2+1 Nc(t)

)
4. for b = 1, . . . , B do

(a) for C = 1, . . . , C do

i. Resample {N (b)
c (t)}τct=1 with replacement;

ii. Calculate difference ∆(b) =
∑C

c=1

(∑τc/2
t=1 N

(b)
c (t)−

∑τc
t=τc/2+1 N

(b)
c (t)

)
(b) Calculate approximate p-value: p̂ = 1

B

∑B
b=1 I{∆≥∆(b)};

5. return p̂;
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A.2 Curve-shape

The integrated, normalised parametric intensities are:

G0(t) = t,

G1(t; θ) =
log(1 + θt)

log(1 + θτ)
τ,

Gκ(t; θ) =
(1 + θt/κ)1−κ − 1

(1 + θτ/κ)1−κ − 1
τ, κ /∈ {0, 1,∞},

G∞(t; θ) =
1− exp(−θt)
1− exp(−θτ)

τ.

In two instances, the flexible-tail form can give rise to identifiability problems:

t, τ >> κ/θ and κ < 1

Gκ(t; θ) =
(1 + θt/κ)1−κ − 1

(1 + θτ/κ)1−κ − 1
τ ≈ (θt/κ)1−κ − 1

(θτ/κ)1−κ − 1
τ ≈

(
t

τ

)1−κ

τ,

which does not depend on θ.

t, τ >> κ/θ and κ >> 1

Gκ(t; θ) =
(1 + θt/κ)1−κ − 1

(1 + θτ/κ)1−κ − 1
τ

≈ (1 + θt/κ)exp(−θt)− 1

(1 + θτ/κ)exp(−θτ)− 1
τ

≈ exp(−θt)− 1

exp(−θτ)− 1
τ,

which does not depend on κ.
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A.3 Maximum likelihood inference

In the frequentist setting, we aim to find estimators which maximise the likelihood

surface (4.2) in the main paper. This is equivalent to maximising the log-likelihood

surface (up to a constant)

ℓ(α, ϕ, θ;n, τ ) = C

(
αlog

α

ϕ
− logΓ(α)

)
−

C∑
c=1

{(
α + n(·)

c

)
log

(
G(τc; θ) +

α

ϕ

)

−logΓ
(
α + n(·)

c

)
−

τc∑
t=1

n(t)
c log(G(t; θ)−G(t− 1; θ))

}
.

The log-likelihood function can be optimised using a range of methods, for ex-

ample, the Nelder-Mead (Nelder and Mead, 1965) method used in R. The inverse of

the negative Hessian at the mode can then be used as the covariance matrix for the

asymptotic normal distribution of the MLEs.

The α and ϕ parameters are asymptotically orthogonal for a homogeneous Poisson-

gamma model (Huzurbazar, 1950). A time contraction argument can be used to

extend the result to the inhomogeneous case. As discussed in Section 4 of the main

paper and visible from (4.3), in the special case where τc ≡ τ ∀c, θ is orthogonal

to both α and ϕ. When carrying out maximum likelihood inference, different model

selection criteria such as AIC (Akaike, 1973) and BIC (Schwarz, 1978) can be used.

Alternatively, one could employ frequentist model averaging methods (see Hjort and

Claeskens (2003), for instance).

The only pair of parameters which are not asymptotically orthogonal when centres

have not been open for the same length of time are ϕ and θ.
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Score and observed and expected information

Here we provide the score function and the observed and expected information, for

frequentist inference.

The score function is the gradient of the log-likelihood of the model,

∇ℓ(α, ϕ, θ;n, τ ) =

=


C
(

1 + log α
ϕ
− ψ(α)

)
−
∑C

c=1

(
α+n

(·)
c

α+ϕG(τc;θ)
+ log

(
G(τc; θ) + α

ϕ

)
− ψ

(
α + n

(·)
c

))
τ

−Cα/ϕ+
∑C

c=1

α
(
α+n

(·)
c

)
ϕ(α+ϕG(τc;θ))

τ

−
∑C

c=1

[
∂θG(τc; θ)

(
α+n

(·)
c

G(τc;θ)+
α
ϕ

)
−
∑τc

t=1 n
(t)
c

(
∂θG(t;θ)−∂θG(t−1;θ)

G(t;θ)−G(t−1;θ)

)]

 .

The observed information matrix is made up of the negative Hessian elements

−∂2ααℓ(α, ϕ, θ;n, τ ) =C

(
ψ′(α)− 1

α

)
+

C∑
n=1

{
ϕG(τc; θ)− n(·)

c + 1

α + ϕG(τc; θ)
− ψ′ (α + n(·)

c

)}
,

−∂2ϕϕℓ(α, ϕ, θ;n, τ ) =− Cα/ϕ2 +
C∑
c=1

α (α + 2ϕG(τc; θ))
(
α + n

(·)
c

)
ϕ2(α + ϕG(τc; θ))2

,

−∂2θθℓ(α, ϕ, θ;n, τ ) =
C∑
c=1


(
α + n

(·)
c

)
{∂2θθG(τc; θ)(G(τc; θ) + α/ϕ)− (∂θG(τc; θ))

2}

(G(τc; θ) + α/ϕ)2

−
τc∑
t=1

n(t)
c

Ht∂
2
θθHt − (∂θHt)

2

(Ht)2

]
,

−∂2αϕℓ(α, ϕ, θ;n, τ ) =
1

ϕ

{
C −

C∑
c=1

α2 + 2αϕG(τc; θ) + ϕG(τc; θ)n
(·)
c

(α + ϕG(τc; θ))
2

}
,

−∂2αθℓ(α, ϕ, θ;n, τ ) =
C∑
c=1

∂θG(τc; θ)
G(τc; θ)− n(·)

c /ϕ

{G(τc; θ)− α/ϕ}2
,

−∂2ϕθℓ(α, ϕ, θ;n, τ ) =− α
C∑
c=1

∂θG(τc; θ)
α + n

(·)
c

{α + ϕG(τc; θ)}2
,

where ψ(x) = Γ′(x)/Γ(x) and Ht = G(t; θ) − G(t − 1; θ) to simplify the notation.

Noting that E
[
N

(·)
c

]
= ϕG(τc; θ), we obtain the entries of the Fisher information
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matrix,

E[−∂2ααℓ(α, ϕ, θ;N, τ )] =C

(
ψ′(α)− 1

α

)
+

C∑
n=1

[
1

α + ϕG(τc; θ)
− E

{
ψ′ (α + n(·)

c

)}]
,

E[−∂2ϕϕℓ(α, ϕ, θ;N, τ )] =
α

ϕ

C∑
c=1

G(τc; θ)

α + ϕG(τc; θ)
,

E[−∂2θθℓ(α, ϕ, θ;N, τ )] =
C∑
c=1

[
ϕ {∂2θθG(τc; θ)(G(τc; θ) + α/ϕ)− (∂θG(τc; θ))

2}
ϕG(τc; θ) + α

−
τc∑
t=1

n(t)
c ∂

2
θθHt −

(∂θHt)
2

Ht

]
,

E[−∂2αϕℓ(α, ϕ, θ;N, τ )] =0,

E[−∂2αθℓ(α, ϕ, θ;N, τ )] =0,

E[−∂2ϕθℓ(α, ϕ, θ;N, τ )] =− α
C∑
c=1

∂θG(τc; θ)

α + ϕG(τc; θ)
.

A.4 Curve-shape prior

The flexible form (4.4) in Section 4 of the main paper, leads to the following prior

density for θ̃,

π0

(
θ̃ |κ, a, b

)
=


t0exp

(
θ̃ − t0eθ̃

)
fB

(
exp
(
−t0eθ̃

)
; a, b

)
, κ =∞

t0exp(θ̃)
(

1 + t0e
θ̃/κ
)−κ−1

fB

((
1 + t0e

θ̃/κ
)−κ

; a, b

)
, κ ∈ (0,∞)

,

where fB ( · ; a, b) is a density of a beta variate with shape parameters a and b.
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A.5 Sampling time to completion via model aver-

aging

In Lan et al. (2019), the time to recruit the required number of patients is sam-

pled by repeatedly simulating the whole system until the condition is satisfied, which

is inefficient because each iteration involves a (random) large number of expensive

simulations. Additionally, it only provides an approximate distribution due to the

discretisation in the time domain; the discretisation of recruitment to monthly in-

crements might also affect the precision of any predictions. To sample the time to

completion exactly, we use the integrated intensity function of the whole trial Λ(t). If

T is the time to the mth arrival of an inhomogeneous Poisson process with integrated

intensity Λ(t) then (Devroye, 1986)

Λ(T ) ∼ Gamma(m, 1).

Given (α, β, θ), we can sample rates the λoc for all the centres and construct one

realisation of the integrated intensity Λ for the whole trial. Then, to obtain a single

realisation of T , we sample a Gamma(m, 1) variate and use an inverse-transform of

Λ on it. Unless all the centres had been open for the same length of time, the

inversion procedure will involve some root-finding algorithm, such as Nelder-Mead

(Nelder and Mead, 1965). As Λ(t) in our framework is a monotonically increasing

function, the non-linear equation will have a unique solution. Parameter uncertainty

can be incorporated into this predictive by using a different sample from the posterior

at each iteration.
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Given C+ centres with the first C already opened before the census time and

the remaining C+ − C to be open, as well as known centre opening times t
(c)
0 , c =

1, . . . , C+, we construct the integrated intensity for modelling the recruitment since

the census time τ ,

Λ(t) =
C∑
c=1

λoc

{
G
(
t− t(c)0 ; θ

)
−G(τc; θ)

}
+

C+∑
c=C+1

λocG
(
t− t(c)0 ; θ

)
I{

t>t
(c)
0

}, t ≥ τ,

where χ{·} is the indicator function and

λoc|α, ϕ, θ,n ∼


Gamma

(
α + n

(·)
c , α/ϕ+G(τc; θ)

)
, c = 1, . . . , C

Gamma (α, α/ϕ) , c = C + 1, . . . , C+

. (A.5.1)

The algorithm below outlines the sampling procedure to obtain the distribution of

the time needed to recruit the target number of patients m.

4.2 Model-averaged time-to-completion sampling:

1. Input: ModelsM1, . . . ,Mk with posterior probabilities π(M1|n), . . . , π(MK |n) and poste-

rior samples from each model, number of samples from the predictive B, target number of

recruitments m

2. Output: Distribution of the time to completion
{
T (b)

}B
b=1

3. for b = 1, . . . , B do

(a) SampleM(b) ∼ π(Mk|n);

(b) Sample (α, ϕ, θ)(b) ∼ π( · |M(b),n);

(c) Sample rates λo
c |(α, ϕ, θ)(b) from distributions ((A.5.1)) and construct Λ(b)(t);

(d) Sample T̃ ∼ Gamma(m, 1) and solve Λ(b)(T ) = T̃ ;

(e) Set T (b) = T ;

4. return
{
T (b)

}B
b=1

;
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Figure A.6.1: Matrix scatterplot of the parameter posterior of the model with highest
posterior probability.

A.6 Additional details from the simulation study

and data analysis

A.6.1 Simulation study

Figure A.6.1 shows the plots of posterior samples of the model. The three parame-

ters are close to orthogonal as discussed in Sections 4 and 5 of the paper, and this

approximate independence was also observed in the posteriors of other models.

Figure A.6.2 shows a QQ-plot of the hierarchical gamma distribution compared to

the posterior means of the random effects. The approximately straight line indicates

that generating rates for newly opened centres from the gamma distribution will be

consistent with what has been observed thus far. Figure A.6.3 shows a QQ-plot of

the theoretical, negative binomial distribution of recruitments in the first 2 months

compared the observed distribution (t∗ = 60). The theoretical distribution used the
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Figure A.6.2: Re-estimated λoc expec-
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Figure A.6.3: Observed recruitments
compared to the theoretical negative
binomial distribution.

posterior means of the parameters, and the prior random effect distribution was used.

The straight line shows that the model can predict the recruitment in the first two

months of a centre sufficiently well. In practice, the two diagnostics would indicate

that the mixing gamma distribution is sufficient and that the model is capable of

accurately predicting recruitments in the early days of a new centre. Figures A.6.4,

A.6.5, A.6.6 and A.6.7 show the diagnostic plots for models fit to simulated datasets

at the census t = 360 with the true random-effect distribution being a mixture.

For E[λoc] = 0.01, the relationship is close to linear and is reflected in the reasonably

accurate predictions shown in the article. The QQ-plots for E[λoc] = 0.03 show stronger

non-linearity and informing us of the potential misspecification, thus showing that the

diagnostics can be used to validate the model.

Figures A.6.8a and A.6.8b show examples of recruitment predictions when the ran-

dom effects have a mixture distribution and the centre opening times are “clumped”

together. The clumping accentuates the effect of the misspecification; the fitted model
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Figure A.6.4: Re-estimated λoc expec-

tations compared to Gamma
(
α̂, α̂/ϕ̂

)
distribution; true random-effect distri-
bution is a mixture with E[λoc] = 0.01.
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Figure A.6.5: Observed recruitments
compared to the theoretical negative
binomial distribution; true random-
effect distribution is a mixture with
E[λoc] = 0.01
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Figure A.6.6: Re-estimated λoc expec-

tations compared to Gamma
(
α̂, α̂/ϕ̂

)
distribution; true random-effect distri-
bution is a mixture with E[λoc] = 0.03.
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Figure A.6.7: Observed recruitments
compared to the theoretical negative
binomial distribution; true random-
effect distribution is a mixture with
E[λoc] = 0.03
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(a) Clumped openings, E[λoc] = 0.01;
p-value = 0.666
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(b) Clumped openings, E[λoc] = 0.03;
p-value = 0.312

Figure A.6.8: Accruals (black, solid) with predictive means (red, solid) and 95%
prediciton bands (red, dashed) when the true random-effect distribution is a mixture,
in various scenarios. Prediction bands are based on the 2.5% and 97.5% quantiles.
The “+” symbols on the x-axis indicate centre opening times.

relies on the “incorrect” prior gamma distribution when simulating rates for unopened

centres.

Figures A.6.9a and A.6.9b show the predictions made when using data simulated

from a Weibull-shape intensity with centre opening times clumped together. With

repeated simulations, we found a consistent correspondence between linear QQ-plots

and accurate predictions.

A.6.2 Data analysis

In the dataset examined in Section 7 of the main paper, we encountered an unexpected

surge in recruitments at a global scale. Figure A.6.10 shows the accrual along with

2 sets of forecasts, focusing on the surge at a time of around 0.7. Once this has

been observed, and forward predictions are needed, one possibility is modelling this

as a global surge in recruitment; that is, during the period between 0.6 and 0.75 all

recruitment rates are multiplied by exp(β) for some unknown β, which would be an
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(a) Clumped openings, E[λoc] = 0.01;
p-value = 0.294
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(b) Clumped openings, E[λoc] = 0.03;
p-value = 0.064

Figure A.6.9: Accruals (black, solid) with predictive means (red, solid) and 95%
prediciton bands (red, dashed) when the true intensity shape is Weibull and opening
times are clumped, with two different values for E[λoc]. Prediction bands are based on
the 2.5% and 97.5% quantiles. The “+” symbols on the x-axis indicate centre opening
times.

extra parameter to be estimated via importance sampling.

A.7 Stochastic centre-initiation times

The framework, as presented in the main paper, is conditioned on the set of initiation

times both for clarity of presentation and because it is the methodological contribution

from the paper. In practice, the exact future initiation times would be unknown;

instead, the practitioners would have proposed initiation schedules, contingency plans

and recruitment data up to the census time. Here we present a simulation study

similar to that in Section 6 of the main paper which illustrates how a stochastic centre-

initiation model can be seamlessly incorporated. The centres are not initiated exactly

on schedule but, instead, there is a Weibull-distributed initiation delay for each centre.

Following information provided to us from a large meta-analysis, we set the Weibull

parameters such that the 5th and 95th percentiles are 10 and 322 days respectively; the
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Figure A.6.10: Accrual predictions, zoomed-in to focus on the unexpected surge in
recruitment at around the time of 0.7. Only interim forecasts from times 0.6 and 0.8
are shown.

median delay is 90 days. At the census, the observed day-censored delays are used

for maximum-likelihood estimation of the Weibull parameters; additionally centres

which were planned to initiate before the census but did not do so contribute with

a censored likelihood. The estimates are then used in the Monte Carlo simulations.

Figure A.7.1 compare the predictions under three different approaches; (i) the correct

Weibull distribution for delays (with parameters estimated from the data), (ii) a

constant, avergae delay taken to be the sample mean of the observed delays, and (iii)

an assumption of no delays. It is clear that assuming no future delays given historical

evidence of the contrary leads to poor forecasts. However, even very simple delay

predictions based on the empirical average can achieve desirable forecasts. Of course,

fitting the true model results in predictions which capture the truth extremely well.

This illustrates that our site-level prediction method can be easily combined with

site-initiation models.
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Figure A.7.1: Comparison of predictions for recruitment data with stochastically-
delayed centre-initiation times. Three modelling approaches are considered: correct
Weibull-distributed delay fitted (left); constant, historical average delay added to each
initiation time (centre); and no delay considered in predictions (right).
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Appendix for Chapter 4

B.1 Expectation and variance of a truncated Pois-

son random variable

Let Y be a (k − 1)-truncated Pois(µ) random variable, Y ∼ TruncPois(µ; k), with a

mass function

P (Y = y) =
µye−µ

SP(k − 1;µ)y!
, y = k, k + 1, . . . , (B.1.1)

where SP( · ;µ) is the survival function of a standard Poisson random variable with

expectation µ. The expectation is

E [Y ] =
∞∑
y=k

yµye−µ

SP(k − 1;µ)y!

=
µ

SP(k − 1;µ)

∞∑
y=k

µy−1e−µ

(y − 1)!

= µ
SP(k − 2;µ)

SP(k − 1;µ)

Since SP(k;µ) is non-increasing in k for any µ, E [Y ] ≥ µ. To obtain the variance,

197
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we use the fact that V[Y ] = E[Y (Y −1)]−E[Y ]2+E[Y ]. The second factorial moment

is

E [Y (Y − 1)] =
∞∑
y=0

y(y − 1)P (Y = y)

=
∞∑
y=2

y(y − 1)P (Y = y)

=
∞∑

y=max{k,2}

y(y − 1)µye−µ

SP(k − 1;µ)y!

=
µ2

SP(k − 1;µ)

∞∑
y=max{k,2}

µy−2e−µ

(y − 2)!

= µ2SP(k − 3;µ)

SP(k − 1;µ)
,

which gives the variance

V[Y ] = µ2SP(k − 3;µ)

SP(k − 1;µ)
− µSP(k − 2;µ)

SP(k − 1;µ)

(
µ
SP(k − 2;µ)

SP(k − 1;µ)
− 1

)
.

Due to the presence of the survival functions, the variance is not easy to manipulate.

Figure B.1.1 shows the variance for different choices of k and µ. The plot suggests

that for a given µ the variance seems to decrease as we increase the truncation k− 1.

The estimator introduced in Section 4.4 involves the quantity
(
Y
k

)
. The first two
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Figure B.1.1: Variance of a truncated Poisson random variable; k = −1 corresponds
to the standard untruncated variate.

moments are

E
[(
Y

k

)]
= E

[
Y !

(Y − k)!k!

]
=

1

SP(k − 1;µ)

∞∑
y=k

y!

(y − k)!k!
· e

−µ(µ)y

y!

=
e−µ(µ)k

SP(k − 1;µ)k!

∞∑
y=k

(µ)y−k

(r − k)!

=
(µ)k

SP(k − 1;µ)k!
,
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and

E

[(
Y

k

)2
]

= E

[(
Y !

(Y − k)!k!

)2
]

=
1

SP(k − 1;λ0T )

∞∑
y=k

(y!)2

((y − k)!)2(y!)2
· e

−µµy

y!

=
e−µ

SP(k − 1;µ)(n!)2

∞∑
y=k

µyy!

((y − k)!)2

=
e−µ

SP(k − 1;µ)(k!)2
· k!µk

1F1(k + 1; 1;µ)

= E
[(
Y

k

)]
e−µ

1F1(k + 1; 1;µ) <∞,

where 1F1 is the Kummer confluent hypergeometric function (Kummer, 1837). As a

result, we have the variance

V
[(
Y

k

)]
= E

[(
Y

k

)](
e−µ

1F1(k + 1; 1;µ)− E
[(
Y

k

)])
.

B.2 Proof of Proposition 4.2.1

Proof. To solve the SDE (4.2.3), we first let Gt be the fundamental matrix of the

deterministic ordinary differential equation dx
dt

= −Ax, that is dGt

dt
= −AGt and

G0 = I. We note that
dG−1

t

dt
= G−1

t A. Here, the fundamental matrix is Gt = exp(−At)

with its inverse G−1
t = exp(At). We use a substitution Yt = G−1

t Xt and note that
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Y0 = X0 ∼ N(µ0,Σ0). After this linear transformation the SDE becomes

dYt = d(G−1
t Xt)

= (dG−1
t )Xt +G−1

t dXt

= G−1
t AXt dt−G−1

t AXt dt+G−1
t h dWt

= G−1
t h dWt.

Hence, Yt − Y0 =
∫ t

0
G−1

s h dWs. By linearity, Yt − Y0 has a Gaussian distribution.

The expectation at time t is 0, and the variance can be obtained via Itô isometry. We

find that

Yt − Y0 ∼ N(0,Ψt), where Ψt =

∫ t

0

G−1
s hh⊤(G−1

s )⊤ ds,

and thus Yt has a Gaussian distribution. As Xt = GtYt is a linear transformation,

Xt ∼ N
(
Gtµ0, Gt (Ψt + Σ0)G

⊤
t

)
.

We now assume the setting studied in the main body,

A =

θ1 −1

0 θ2

 and h =

0

σ

 .
Using spectral decomposition it can be shown that

Ak =

θk1
θk2−θk1
θ2−θ1

0 θk2

 ,
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and hence we obtain an analytical expression for the exponential,

exp(At) =
∞∑
k=0

tk

k!
Ak

=

1 0

0 1

+
∞∑
k=1

tk

k!

θk1
θk2−θk1
θ2−θ1

0 θk2



=

1 0

0 1

+


∑∞

k=1
tk

k!
θk1

1
(θ2−θ1)

∑∞
k=1

tk(θk2−θk1 )

k!

0
∑∞

k=1
tk

k!
θk2



=

eθ1t eθ2t−eθ1t

θ2−θ1

0 eθ2t

 .
This gives

G−1
t h = eAth

=

eθ1t eθ2t−eθ1t

θ2−θ1

0 eθ2t


0

σ



=

σ( e
θ2t−eθ1t

θ2−θ1
)

σeθ2t

 ,
and

G−1
t hh

⊤(G−1
t )⊤ = eAthh⊤eA

⊤t

=

σ
(

eθ2t−e−θ1t

θ2−θ1

)
σeθ2t

[σ ( eθ2t−eθ1t

θ2−θ1

)
σeθ2t

]

=

 σ2
(

eθ2t−eθ1t

θ2−θ1

)2
σ2eθ2t

(
eθ2t−eθ1t

θ2−θ1

)
σ2eθ2t

(
eθ2t−eθ1t

θ2−θ1

)
σ2e2θ2t

 .
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Integrating the expression we arrive at the required covariance matrix,

Ψt =


(

σ
θ2−θ1

)2 (
e2θ2t

2θ2
+ e2θ1t

2θ1
− 2e(θ1+θ2)t

θ1+θ2
− θ21−2θ1θ2+θ22

2θ1θ2(θ2+θ1)

)
σ2

θ2−θ1

(
1

θ1+θ2
− 1

2θ2
− e(θ1+θ2)t

(θ1+θ2)
+ e2θ2t

2θ2

)
σ2

θ2−θ1

(
1

θ1+θ2
− 1

2θ2
− e(θ1+θ2)t

(θ1+θ2)
+ e2θ2t

2θ2

)
σ2

2θ2

(
e2θ2t − 1

)
 .

B.2.1 Additional results for effect of merging adjacent subin-

tervals

Figures B.2.1 - B.2.5 provide additional results for the simulation study carried out

in Section 4.4.

B.2.2 MCMC diagnostics

Figures B.2.6 and B.2.7 provide the traceplots and autocorrelation function estimates

of the Markov chains in the real-world data examples in Section 4.5; coal mining

disasters and USD-EUR exchange rates. The burn-in was appropriately discarded

beforehand.
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Figure B.2.1: Effect of merging adjacent equal-width subintervals on the variance
contribution to the pseudo-marginal log-likelihood estimate log L̂PM. The ratio rep-
resents the relative variance of estimates produced by a random-weight particle fil-
ter run on merged subintervals compared to a filter on split subintervals. Respec-
tive Monte Carlo means are denoted by “◦”, and “p” is used to represent intervals
within 2 standard errors from the mean. Subinterval widths are denoted by ∆ with
∆max = inf{s : Corr [X1,t, X1,t+s] < 0.5} and parameter settings are given in Table
4.4.1.
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Figure B.2.2: Effect of merging adjacent equal-width subintervals on the variance
contribution to the pseudo marginal log-likelihood estimate log L̂PM. The ratio rep-
resents the relative variance of estimates produced by a random-weight particle fil-
ter run on merged subintervals compared to a filter on split subintervals. Respec-
tive Monte Carlo means are denoted by “◦”, and “p” is used to represent intervals
within 2 standard errors from the mean. Subinterval widths are denoted by ∆ with
∆max = inf{s : Corr [X1,t, X1,t+s] < 0.5} and parameter settings are given in Table
4.4.1.
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Figure B.2.3: Effect of merging adjacent equal-width subintervals on the variance
contribution to the pseudo-marginal log-likelihood estimate log L̂PM. The ratio rep-
resents the relative variance of estimates produced by a random-weight particle fil-
ter run on merged subintervalsc compared to a filter on split subintervals. Respec-
tive Monte Carlo means are denoted by “◦”, and “p” is used to represent intervals
within 2 standard errors from the mean. Subinterval widths are denoted by ∆ with
∆max = inf{s : Corr [X1,t, X1,t+s] < 0.5} and parameter settings are given in Table
4.4.1.
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Figure B.2.4: Effect of merging adjacent equal-width subintervals on the variance
contribution to the pseudo-marginal log-likelihood estimate log L̂PM. The ratio rep-
resents the relative variance of estimates produced by a random-weight particle fil-
ter run on merged subintervals compared to a filter on split subintervals. Respec-
tive Monte Carlo means are denoted by “◦”, and “p” is used to represent intervals
within 2 standard errors from the mean. Subinterval widths are denoted by ∆ with
∆max = inf{s : Corr [X1,t, X1,t+s] < 0.5} and parameter settings are given in Table
4.4.1.
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Figure B.2.5: Effect of merging adjacent equal-width subintervals on the variance
contribution to the pseudo-marginal log-likelihood estimate log L̂PM. The ratio rep-
resents the relative variance of estimates produced by a random-weight particle fil-
ter run on merged subintervals compared to a filter on split subintervals. Respec-
tive Monte Carlo means are denoted by “◦”, and “p” is used to represent intervals
within 2 standard errors from the mean. Subinterval widths are denoted by ∆ with
∆max = inf{s : Corr [X1,t, X1,t+s] < 0.5} and parameter settings are given in Table
4.4.1.
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Figure B.2.6: Traceplots and corresponding autocorrelation function estimates for
the pseudo-marginal Metropolis-Hastings algorithm on model hyperparameters in the
coal-mining disasters dataset example (Section 4.5.2).
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Figure B.2.7: Traceplots and corresponding autocorrelation function estimates for
the pseudo-marginal Metropolis-Hastings algorithm on model hyperparameters in the
USD-EUR dataset example (Section 4.5.3).
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Appendix for Chapter 5

C.1 Additional tuning comparisons

Figure C.1.1 provides additional comparisons between tuning HMC and AAPSK , this

time for Gaussian, logistic and skewed-Gaussian targets. The plots are analogous

to those in Figure 5.3.1. For each target, over all components, the smallest scale

parameter is σ1 = 1. For a Gaussian target this implies that the leapfrog integrator

is only stable provided ε < 2σ1 = 2 (e.g. Neal, 2011). Even at ε = 1.9 we encounter

undesirable behaviour as seen in Figure C.1.1b. For the skewed-Gaussian distribution

with σ1 and α = 3, the density of the narrowest component in the left tail is

2ϕ(x)Φ(3x) ≈ 2

3x
ϕ(x)ϕ(3x) ∝ 1

x
ϕ(
√

10x),

where ϕ and Φ are the density and distribution functions of a standard normal random

variable, respectively. Since in the left tail, the density resembles that of a Gaussian

with σ = 1/
√

10, we expect the critical value for ε to be 2/
√

10 ≈ 0.632. As demon-
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strated by the plots, for any sensible choice of ε, the performance of AAPSK is much

more robust to the choice of K than HMC (standard or blurred) is to the choice of

L, or equivalently, T .

C.2 The diagnostic for K: Heuristic explanation

The following section is from Sherlock et al. (2021) and the work was carried out

by my supervisor, Prof Chris Sherlock. It is included for its relevance to the results

presented in this chapter.

For a particular segment, j segments from the current point, let s∗(j;x, p) represent

the average (over the segment) squared distance in position between the current point,

(x, p), and points in the segment. To explain, heuristically, how the diagnostic works

we make three simplifying assumptions:

1. s∗(j;x, p) = c(x, p)s(j), for some functions c and s with s(0) = 0.

2. The number of points in segment j does not depend on j; i.e., |Sj(X,P )| =

N(X,P ) for some integer-valued function N .

3. Acceptance probabilities are generally large enough that variation in these is a

secondary effect.

The first assumption seems reasonable as, at least for low j, s∗(j;x, p) ∝ j2, ap-

proximately, although, strictly s∗(0;x, p) > 0 unless there is a single point in the

initial segment. The second assumption is strictly incorrect, but in the limit as ε ↓ 0,

E[|Sj(X,P )|] does not depend on j since, at stationarity, all points in the Hamiltonian
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Figure C.1.1: Efficiency w.r.t. tuning parameters for HMC and AAPS on three targets:
πV AR
G , πV AR

L and πV AR
SG , with d = 40 and ξ = 20.
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path have the same density as the initial point. Thus, the second assumption is rea-

sonable provided values do not vary too much from N(X,P ). The third assumption

is certainly correct in the limit as the step size, ε ↓ 0, but is reasonable empirically

more generally.

Since proposals are made in proportion to squared jumping distance,

mK∗(j) ≈ Eπ̃s∗(j;X,P )N(X,P ) = c1s(j), where c1 := Eπ̃[c(X,P )N(X,P )].

We now assume that the tuning parameter has been set to K. The absolute seg-

ment number k is proposed with a probability proportional to pK(k)N(X,P )c(X,P )s(k).

The mean squared jumping distance resulting from a tuning parameter K is, therefore

MSJDK :=

∑K
j=0 pK(j)N(X,P )c(X,P )2s(j)2∑K
j=0 pK(j)N(X,P )c(X,P )s(j)

= c(X,P )

∑K
j=0 pK(j)s(j)2∑K
j=0 pK(j)s(j)

.

Denoting E[c(X,P )] by c2, the expectation over all initial values is

ESJDK := c2

∑K
j=0 pK(j)s(j)2∑K
j=0 pK(j)s(j)

= c2

∑K
j=1 pK(j)s(j)2∑K
j=1 pK(j)s(j)

= c2

∑K
j=1(K + 1− j)s(j)2∑K
j=1(K + 1− j)s(j)

since s(0) = 0. We can simplify this to

ESJDK = Es(J), where P (J = j) ∝ rj := (K + 1− j)s(j), j = 1, . . . , K. (C.2.1)

ESJD does not take into account the computational effort, which is proportional

to the number of segments, K + 1. Hence, we define the efficiency as

EffK :=
1

K + 1
E[S(J)].

Intuitively, for small j, s(j) ∝ j2, approximately, which motivates the assumptions
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in the following.

Proposition C.2.1. If s(0) = s′(0) = 0 and K is small enough that s(j) is convex

on {0, . . . , K}, then

EffK ≥ Eff lb
K :=

1

K + 1
s

(
K + 1

2

)
,

and Eff lb
j is non-decreasing on j ∈ {0, . . . , K}.

Proof. Jensen’s inequality gives ESJDK ≥ s(E[J ]). Further, as s is convex, for any

b ≥ a, the slope of the chord from 0 to b is at least as large as that of the chord from

0 to a:

s(b)− s(0)

b− 0
≥ s(a)− s(0)

a− 0
=⇒ s(b)

b
≥ s(a)

a
, (C.2.2)

since s(0) = 0. Thus, for j ≤ (K + 1)/2, setting b = K + 1− j and a = j, we have

rK+1−j ≥ rj,

and so E[J ] ≥ (K + 1)/2. Since s′(j) ≥ 0 on {0, . . . , K}, we have

ESJDK ≥ s

(
K + 1

2

)
,

proving the first part. Reusing (C.2.2) with b = (K + 1)/2 and a = K/2 gives, as

required,

Eff lb
K ≥ Eff lb

K−1.

Indeed, straightforward algebra shows that if s(j) = λj then EffK = λ/2; the

inequality is tight for convex functions. However, in practice, s(j) is strictly convex

initially, which suggests the maximum efficiency may occur after the first point when s
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is no longer convex. Plots from various starting points of the mean squared Euclidean

distance from the start to points in segment j show behaviour approximately similar

to s(j) ∝ 1−cos(πj/b), for some b, although there is, typically, less oscillation between

peaks and troughs once the first peak has been passed. For small j, this formulation

gives, approximately, s(j) ∝ j2 which fits with intuition.

Figure C.2.1 plots s(j) against j when b = 15, and the resulting EffK against

K. The efficiency is maximised at a value close to infj≥0argmax s(j) and the relative

difference between the efficiencies at the two points is small (here less that 0.5%).

The 1/(K + 1) penalty term means that damping of the oscillations of s(j) after the

first peak will make no difference to the point of maximum efficiency, only to the tail

of the efficiency curve.

C.3 Stochastic-volatility model details

To ensure numerical stability we transform the parameters

α = 2tanh−1(ϕ), β = log(κ), and γ = log(σ2),

with resulting Jacobians

∣∣∣∣dϕdα
∣∣∣∣ =

1

2
sech2(α/2),

∣∣∣∣dβdκ
∣∣∣∣ = eβ, and

∣∣∣∣dσ2

dγ

∣∣∣∣ = eγ.
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Figure C.2.1: Top panel: plot of s(j) = 1− cos(πj/b) against j. Bottom panel: plot
of the resulting EffK against K. The vertical black line in each plot shows the value
of b (here, 15), whilst the dashed vertical red line shows the K value at which EffK is
maximised.
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The prior densities then become

π0(β) ∝ 1

eβ
· eβ

= 1,

π0(γ) ∝ exp

(
−10(0.05)

2eγ

)
(eγ)−(1−10/2) · eγ

= exp

(
−1

4
e−γ − 5γ

)
,

π0(α) ∝ (1 + tanh(α/2))19 (1 + tanh(α/2))
1
2 · sech2(α/2)

∝ exp

(
20α− 43

2
log(eα + 1)

)
.

For the last density, recall that

tanh(z) =
e2z − 1

e2z + 1
and sech(z) =

2ez

e2z + 1
.

The transition densities for the likelihood are

p(x1|α, γ) ∝ exp

(
−1

2
x21sech

2(α/2)e−γ − 1

2
γ

)
eα/2

eα − 1
,

p(xt|xt−1, α, γ) ∝ exp

(
−1

2
(xt − tanh(α/2)xt−1)

2e−γ − 1

2
γ

)
, t = 2, . . . , T

p(yt|xt, β) ∝ exp

(
−1

2
yte

−2βe−xt − β − xt/2
)
, t = 1, . . . , T.

Thus, the full log-posterior of the model is, up to an additive constant,

log π(α, β, γ, x1:T |y1:T ) =
41

2
α− 45

2
log(eα + 1)− Tβ − 1

4
e−γ − 2x21e

−γeα

(eα + 1)2
−
(
T

2
+ 5

)
γ

− 1

2

T∑
t=1

xt −
e−2β

2

T∑
t=1

y2t e
−xt − e−γ

2

T∑
t=2

(xt − tanh(α/2)xt−1)
2 ,
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with partial derivatives

∂αlog π(α, β, γ, x1:T |y1:T ) =
41

2
− 45eα

2(eα + 1)
+

2x21e
−γeα(eα − 1)

(eα + 1)3

+
e−γsech2(α/2)

2

T∑
t=2

(xt − tanh(α/2)xt−1)xt−1,

∂β log π(α, β, γ, x1:T |y1:T ) =− T + e−2β

T∑
t=1

y2t e
−xt ,

∂γ log π(α, β, γ, x1:T |y1:T ) =
e−γ

2

(
1

2
+

T∑
t=2

(xt − tanh(α/2)xt−1)
2

)
+

2x21e
−γeα

(eα + 1)2
−
(
T

2
+ 5

)
,

∂x1 log π(α, β, γ, x1:T |y1:T ) =− 1

2
− 4x1e

−γeα

(eα + 1)2
+

1

2
y21e

−x1e−2β + e−γtanh(α/2)(x2 − tanh(α/2)x1),

∂xt log π(α, β, γ, x1:T |y1:T ) =
1

2
(y2t e

−2βe−xt − 1)

− e−γ
[
xt(tanh

2(α/2) + 1)

−tanh(α/2)(xt+1 + xt−1)] , t = 2, . . . , T − 1

∂xT
log π(α, β, γ, x1:T |y1:T ) =

1

2
(y2T e

−2βe−xT − 1)− e−γ (xT − tanh(α/2)xT−1) .
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