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Abstract

Degenerate regimes for random growth models in the complex plane

Frankie Higgs

Diffusion-limited aggregation (DLA) is among the most studied models in mathemat-

ical physics, and obtaining results on the limiting geometry has proved one of the more

difficult problems of the past few decades.

At the same time, techniques from complex analysis and conformal mapping the-

ory have become popular following the definition of the Schramm-Loewner evolution by

Schramm in 2000 and its subsequent use to solve scaling limit and other problems for

planar models in statistical physics.

This thesis analyses the aggregate Loewner evolution (ALE) model, introduced in 2018

[33] to generalise versions of DLA in the complex plane. The ALE is a model of growth

where a particle is added at a location on the existing cluster at a point chosen by a

regularised version of harmonic measure, transformed by a parameter η. The three main

chapters of this thesis examine ALE for extreme values of η, where the behaviour becomes

degenerate in some sense.

In Chapter 2, we demonstrate that for large negative values, η < −2, which correspond

to attachment in areas of low harmonic measure, each particle is attached near the base

of the previous particle. A consequence of this is the convergence of the ALE cluster to a

Schramm-Loewner evolution curve. This contributes one of the first scaling limit results

with a non-deterministic limit for an aggregation model in the complex plane.

In Chapter 3, we extend the results of [33] for η > 1, demonstrating that when started

from a non-trivial initial configuration, the scaling limit is the geodesic Laplacian path

model [4], a model of needle growth generalising several physical models.

In Chapter 4 we examine stability of the ALE for η > 1. We find a phase transition,

with increasing stability such that an additional small perturbation survives if and only if

1 < η < 2.
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Table of notation

We list here the notation used throughout the thesis.

Subsets of the complex plane

C∞ The Riemann sphere, C ∪ {∞}

D The open unit disc {z ∈ C : |z| < 1}.

D The closed unit disc {z ∈ C : |z| ≤ 1}.

∆ The exterior disc C∞ \ D.

T The unit circle ∂∆ = {z ∈ C : |z| = 1} = {eiθ : θ ∈ R}. We will often abuse

notation and identify T with R/2πZ where it is not ambiguous (although we will

avoid writing 1 = 0).

∂U The boundary of a set U ⊆ C∞, defined as ∂U = U \ U◦.

Conformal maps

c A capacity parameter c > 0, which will measure the size of our basic particles, and

on which all the below maps and quantities depend.

f The conformal map fc : ∆ → ∆ \ (1, 1 + d(c)] which we say attaches a particle to

the unit circle at the point 1.

fj Given a sequence of angles (θj)j≥1, fj attaches a particle to the unit circle at the

point eiθj , so fj(z) := eiθjf(e−iθjz).

β The distance from 1 of the points which are sent to the base of the particle by

f . Defined uniquely as the β = β(c) ∈ (0, π) such that fc(e±iβ) = 1, and obeys

β ∼ 2c1/2 as c→ 0.

d The length of the particle attached by f , defined by fc(1) = 1 + d(c). Obeys

d ∼ β ∼ 2c1/2 as c→ 0.

Φn The conformal map which attaches the entire cluster of n particles to the unit circle

at the point 1. Constructed as f1 ◦ f2 ◦ · · · ◦ fn.

Φj,n The conformal map which attaches only the most recent n− j particles to the unit

circle. Given by Φj,n = Φ−1
j ◦ Φn.
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Model parameters

η The parameter controlling the relationship between our attachment distributions

and the harmonic measure on the boundary of the cluster.

T The total capacity of our cluster, fixed throughout.

c The capacity of each individual particle attached to the cluster. In this thesis we

consider the limit c→ 0, and the following parameters are all functions of c.

σ A regularisation parameter, used so that we evaluate our conformal maps Φ′n on eσT
instead of on T where they have poles. Throughout this thesis σ → 0 as c→ 0.

Probabilistic objects

hn+1 The density of the distribution on T of θn+1, conditional on θ1, . . . , θn. Given by

hn+1(θ) ∝ |Φ′n(eσ+iθ)|−η.

Zn The normalising factor for hn+1. Given by Zn :=
∫
T |Φ

′
n(eσ+iθ)|−η dθ.

P The law of (θn)n∈N. Implicitly depends on c and σ.

Approximations and bounds

We will use the following notation when we have two functions depending on a parameter

x which is converging to some x0 ∈ R ∪ {±∞}, and we want to say the two functions are

similar in some way, or that one bounds the other.

f(x) ∼ g(x) The ratio f(x)
g(x) → 1 as x→ x0.

f(x) = O(g(x)) The ratio
∣∣∣f(x)
g(x)

∣∣∣ is bounded as x→ x0, so there exists a constant C > 0

such that |f(x)| ≤ C|g(x)| in a neighbourhood of x0. The constant C

(and the neighbourhood on which the bound holds) should not depend

on any other parameter or variable.

f(x) = Oρ(g(x)) The ratio
∣∣∣f(x)
g(x)

∣∣∣ is bounded as x → x0, but the bound depends on a

given parameter ρ. Throughout each section we hold T and η fixed, so

we may occasionally omit these as subscripts when the constant depends

on them.

f(x) = OT (g(x)) See above, for the total capacity parameter T . This is the most common

form in which we will use Oρ defined above.

f(x) = o(g(x)) The ratio
∣∣∣f(x)
g(x)

∣∣∣→ 0 as x→ x0.

When f and g are non-negative (particularly when they are probabilities or densities),

we may use the following alternative notations.

f(x) . g(x) The same as f(x) = O(g(x)), i.e. there exists a constant C > 0 such

that f(x) ≤ Cg(x) in a neighbourhood of x0.

f(x)� g(x) The same as f(x) = o(g(x)), i.e. f(x)/g(x)→ 0 as x→ x0.
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f(x) � g(x) Both f(x) = O(g(x)) and g(x) = O(f(x)), i.e. there exists constants

C1, C2 > 0 such that C1g(x) ≤ f(x) ≤ C2g(x) in a neighbourhood of x0.

Finally, we may write f(x) ≈ g(x), but this will only be used informally to mean that f

and g behave similarly in some sense.

Notation specific to Chapter 2

D A bound on min± |θn+1−(θn±β)| which holds with high probability. If this distance

exceeds D, we stop the process. We can take D = c9/2σ1/2.

L The maximum distance of z from ei(θn±β) at which we rely on the estimates for

|Φj,n(z)− eiθj+1 | we obtain in the proof of Theorem 2.9. We take L to be a function

of c which does not decay as rapidly as σ: L = c2N+1
.

θ>j The point in T which θj was “supposed to” attach nearby to, i.e. the unique choice

of θj−1 ± β which is within D of θj (if θj is not within D of either, we will have

stopped the process at time τD ≤ j).

θ⊥j The choice of θj−1 ± β which isn’t θ>j .

ẑnj The point on T corresponding to the base of the jth particle in the cluster Kn, for

1 ≤ j ≤ n − 1. Given by ẑnj := Φ−1
j,n(eiθ

⊥
j+1). See Figure 2.5 for an illustration. We

refer to the points on T close to ẑnj for some j as singular points for hn+1, and points

away from all ẑnj as regular points.

τD The first time at which some θn+1 is further than D from both of θn ± β. We stop

the process when this happens, but show in Section 2.3 and Section 2.4 that with

high probability τD > N := bT/cc.

The notation specific to Chapter 3 and Chapter 4 will be defined in those chapters.

8



Chapter 1

Introduction

1.1 Conformal aggregation

Models of random aggregation, where particles are added at each time step to the existing

cluster at random location, are used to model many real-world growth processes. These

models are perhaps most easily defined on the lattice Zd, where each particle is one vertex

and growth occurs in discrete time, for example diffusion-limited aggregation (DLA) [34]

or the Eden model [10].

In both DLA and the Eden model, the cluster begins with a single particle at {0}. In

DLA, a particle is released from a long distance, performs a random walk on the lattice,

and when it first reaches a site adjacent to the existing cluster, a new particle is added to

the cluster in this location, the walk ends and a new one is begun from far away again.

In the Eden model, at each step a site is chosen uniformly from those adjacent to the

existing cluster, and a new particle is added there.

In each of these models the underlying anisotropy of Zd may be retained by the cluster

on large scales under some conditions, an obvious problem if we want physically realistic

behaviour. For example, simulations of DLA [11] have suggested that it grows along the

principal axes of the lattice faster than anywhere else, so its law is not invariant under

rotation. Similarly, in sufficiently high dimensions it is known that the limiting shape of

the Eden model is a convex compact shape, but not a Euclidean ball [5].

In two dimensions we may change to a setting without this problem; models of confor-

mal growth existing in the complex plane C rather than Z2. In this thesis we will study

aspects of the aggregate Loewner evolution (ALE(α, η)) model introduced in [33], which

is a generalisation of the Hastings–Levitov model (HL(α)) [14].

In a conformal aggregation model, we add particles to our cluster by composing con-

formal maps from a fixed reference domain to smaller domains. Our initial cluster will be

the closed unit disc K0 = D = {z ∈ C : |z| ≤ 1}. We attach a particle to the boundary of

K0, T := ∂D = {z ∈ C : |z| = 1}, by applying a map from the complement of K0 in the

Riemann sphere C∞, ∆ := C∞ \D, to a smaller domain, and then the new cluster will be
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the complement of the image of ∆. We will use particles of the form (1, 1 + d] for d > 0.

Definition. For any d > 0, by the Riemann mapping theorem there exists a unique

bijective conformal map

fd : ∆→ ∆ \ (1, 1 + d]

such that fd(z) = ecz +O(1) near ∞, for some c = c(d) ∈ R.

One advantage of slit particles over more general particle shapes is that we have an

explicit expression for fd(z) [21]. We call c > 0 the (logarithmic) capacity of the particle.

As the name suggests, we can view c as measuring the “size” of a set in a certain sense.

As we consider the “small-particle limit” we will parameterise the model by the particle

capacity c, which determines d.

Definition. The preimage of the particle (1, 1 + d] under f is {eiθ : −β ≤ θ ≤ β}, where

0 < β(c) < π is uniquely determined by f(eiβ) = 1.

We can explicitly relate the quantities c, β and d using two equations found in [21]

and [33]: 4ec = (d + 2)2/(d + 1) and eiβ = 2e−c − 1 + 2ie−c
√
ec − 1. Asymptotically, as

c→ 0, these give us β(c) ∼ d(c) ∼ 2c1/2.

We have maps which can attach one particle, so now we want to be able to build

a cluster with multiple particles by composing maps which attach particles in different

positions. For θ ∈ R and c > 0, define the rotated map

fθ,c : ∆→ ∆ \ eiθ(1, 1 + d(c)],

fθ,c(z) = eiθfd(c)(e−iθz),

and note that it has the same behaviour fθ,c(z) = ecz + O(1) near ∞ as does fd(c). We

say that fθ,c attaches a particle of capacity c at eiθ.

Note that we will occasionally identify R/2πZ and T, and so for z ∈ T we may write

fz,c to mean farg z,c, and may speak about “attaching a particle at θ.”

Now we want to attach multiple particles.

Definition. Given a sequence of angles (θn)n∈N and of capacities (cn)n∈N, if we write

fj = fθj ,cj then we can define

Φn = f1 ◦ f2 ◦ · · · ◦ fn, (1.1)

and define the nth cluster Kn as the complement of Φn(∆), so

Φn : ∆→ C∞ \Kn.

Note that the total capacity is c(Kn) =
∑n

k=1 ck, i.e. Φn(z) = e
∑n
k=1 ckz +O(1) near ∞.

Remark. At first it may seem surprising that the (n + 1)th map Φn+1 is obtained from

Φn by pre-composing and setting Φn+1 = Φn ◦ fn+1 rather than applying the new map to
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set Φn+1 = fn+1 ◦ Φn. However, in the latter case, the image fn+1(Φn(∆)) is in general

not a subset of Φn(∆), and so the clusters (Kn)n≥0 do not form a monotone increasing

sequence of sets. By pre-composing, we ensure that Kn+1 ⊃ Kn, and so we can think

of the (n + 1)th step as simply “attaching a particle” to the nth cluster. This order of

composition is the one induced by Loewner’s equation, as explained in Section 1.3.

We can now use this setup to construct various models of random growth, by choosing

the angles (θn)n∈N and capacities (cn)n∈N according to a stochastic process.

1.2 Aggregate Loewner evolution

The aggregate Loewner evolution model introduced in [33] is a conformal aggregation model

as in Section 1.1, where for the (n+ 1)th particle the distribution of its attachment angle

θn+1 and its capacity cn+1 = c(Pn+1) are functions of the density of harmonic measure

on the boundary of Kn. The conditional distribution of θn+1 and the way we obtain cn+1

are respectively controlled by the two parameters η and α.

Definition. Inductively, we choose θn+1 for n ≥ 0 conditionally on θ1, . . . , θn according

to the probability density function

hn+1(θ) =
1

Zn

∣∣∣Φ′n (eσ+iθ
)∣∣∣−η , θ ∈ (−π, π], (1.2)

where Zn =
∫
T |Φ

′
n(eσ+iθ)|−η dθ is a normalising factor. We have introduced a “regularisa-

tion parameter” σ = σ(c) > 0 because the poles and zeroes of Φ′n on the boundary mean

the measure hn+1 is not necessarily well-defined if σ = 0, but we take σ → 0 as c→ 0.

Remark. Some heuristic calculations show the relationship between (1.2) and harmonic

measure. Suppose we have a map Φ : ∆ → C∞ \ K where the boundary is smooth

enough to ensure that Φ′ is defined on ∂∆ and (Φ−1)′ defined on ∂K. For a z ∈ ∂K, let

A ⊆ ∂K be a connected path of arc length δz containing z. The harmonic measure of A

is the probability that a Brownian motion released from infinity first hits ∂K in A. As

Brownian motion is invariant in distribution under conformal maps, and harmonic measure

on ∂∆ is simply normalised Lebesgue measure, the harmonic measure of A is proportional

to the length of Φ−1(A). For small δz, this length is approximately |(Φ−1)′(z)| δz.
Therefore we can view |(Φ−1)′(z)| as the density of harmonic measure with respect to

Lebesgue measure dz on ∂K. Then (1.2) corresponds to choosing the attachment point

on ∂Kn according to a distribution proportional to |(Φ−1
n )′(z)|η+1 dz. Positive values

of η then correspond to an attachment distribution more concentrated in areas of high

harmonic measure, and negative values of η correspond to a preference for areas of low

harmonic measure.

Remark. This link between harmonic measure and the parameter η allows us to define a

“continuum version” of discrete models such as the Eden model or DLA. The attachment

point for the (n + 1)th particle in DLA is chosen according to harmonic measure on the

boundary of the nth cluster, so we could think of ALE with η = 0 as corresponding to

DLA.
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In the Eden model, the (n+ 1)th particle is added at a lattice site is chosen uniformly

from all those unoccupied sites adjacent to the cluster at time n. This corresponds, in

the continuum, to choosing an attachment position according to (normalised) Lebesgue

measure on the boundary of the nth cluster Kn. In the remark above we calculated that

the attachment position on ∂Kn in the ALE model is chosen according to a measure on

∂Kn approximately proportional to the product of |Φ′n|η+1 with Lebesgue measure, and

so ALE with η = −1 can be thought of as a continuum version of the Eden model.

Remark. The rate at which σ → 0 as c → 0 can affect the behaviour of the ALE model.

All of the results in this thesis depend on the small-scale structure of the clusters, so a

small σ is needed for (1.2) to detect these details.

A natural question is whether any sense can be made of the model if σ = 0. If |η| is

small, the poles of |Φ′n(eiθ)|−η may still be integrable, and so we can use (1.2) to define

a measure on the unit circle T = {z ∈ C : |z| = 1}, just as the η = 0 case does not need

regularisation.

For a given cluster Kn, even if |η| is large, the measure defined by (1.2) may converge

to a (not necessarily absolutely continuous) limiting measure as σ → 0. We use this as a

heuristic in Section 2.1.1, and it is a natural way to think of the regimes of the ALE process

where the attachment distributions are close to atomic. However, for regimes where we

expect a universal limit, such as the many regimes in which an ALE cluster converges to

a Euclidean disc, σ > 0 is natural, as the overall shape of the cluster is more important

than its fine structure.

By our definition the first attachment point θ1 is chosen uniformly on T. For conve-

nience we work with θ1 = 0, and the random case can be recovered by applying a random

rotation to the final cluster.

After choosing θn+1, we choose the capacity of the (n+ 1)th particle to be

cn+1 = c|Φ′n(eσ+iθn+1)|−α (1.3)

where c is a capacity parameter and c1 = c, and we will later consider the limit shape of

the cluster as c→ 0.

Remark. We discussed above that different values of η make the ALE a “continuum ver-

sion” of well-known lattice models because the attachment distributions for η = 0 and

η = −1 correspond to those of DLA and the Eden model, respectively. In each of these

lattice models, the particles are all of exactly the same size: one lattice site. To replicate

this property in the ALE, only α = 2 gives particles of approximately the same length.

So ALE(α = 2, η = 0) is a continuum version of DLA, and ALE(α = 2, η = −1) is a

continuum version of the Eden model. Like DLA, ALE(2, 0) has proved very difficult to

study, with most known results covering other ranges of (α, η).

Changing the parameters α, η and σ can give a wide variety of behaviours.

If η = 0, ALE(α, 0) coincides with the HL(α) model introduced by Hastings and

Levitov [14]. Norris and Turner [26] showed that the HL(0) model, which is completely

Markovian, converges to a Euclidean disc. For this same model, Silvestri [30] showed that
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the fluctuations around the limiting disc are given by a Gaussian process, and described

the evolution and limiting behaviour of these fluctuations.

Sola, Turner and Viklund [33] showed for η > 1 and σ ≤ cγ for a large positive γ that

the ALE(α, η) cluster converges to a single straight line. They showed that at each step,

the (n+1)th particle attaches near the tip of the nth particle, which is the point of highest

harmonic measure.

For slowly-decaying σ, many results of convergence to a disc are known. In particular,

Norris, Silvestri and Turner [25] showed that if α+η ≤ 1 and σ � c1/2, then the resulting

ALE clusters converge to a Euclidean disc in the small-particle limit. This covers the

“continuum Eden model” ALE(2,−1) we discussed earlier, although with a very strong

regularisation.

A recent result worth mentioning, albeit slightly outside the ALE framework we have

discussed above, is the proof by Liddle and Turner [19] that under “capacity rescaling”,

if 0 < α < 2 then the HL(α) cluster converges to a disc. Capacity rescaling means that

instead of considering the limit c → 0, the initial particle size is constant, but the entire

cluster is rescaled after attaching each particle in order to fix the total capacity. The

authors further showed that if α = 0, then for any choice of attachment locations, a

growth model under capacity rescaling does not converge to a disc.

Many other variations of the Hastings–Levitov model have been studied recently, in-

cluding modifications of the attachment rule [1] and definition in the half-plane [2].

1.3 Loewner’s equation and the Schramm–Loewner evolu-

tion

We will give a brief overview here of the Schramm–Loewner evolution, and a few useful

facts from Loewner theory which we use throughout the following chapters. For a more

detailed treatment, see [3], [17] and [9].

Firstly, we look at Loewner’s equation, which encodes a growing cluster by a “driving

function” taking values on the circle.

Definition. Let ξ : [0, T ] → R be a càdlàg function. Then there is a unique solution to

Loewner’s equation

ϕ0(z) = z,
∂

∂t
ϕt(z) = ϕ′t(z)z

z + eiξt

z − eiξt
, z ∈ ∆, (1.4)

corresponding to a growing cluster parameterised by capacity via ϕt(∆) = C∞ \Kt. The

driving function ξt encodes which location on the cluster boundary is growing at time t.

Remark. Loewner’s equation is a partial differential equation, parameterised by both time

t ∈ [0,∞) and space z ∈ ∆. We will generally denote derivatives with respect to time

by ∂
∂tϕt(z), and derivatives with respect to space by ϕ′t(z) = ∂

∂zϕt(z). Higher and mixed

derivatives will be denoted in a similar way, e.g. ∂
∂tϕ
′′(z) = ∂

∂t
∂2

∂z2ϕt(z).
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For clusters growing at more than one point, or with growth supported on arbitrary

subsets of the boundary, we can consider Loewner’s equation with a driving measure.

Definition. Given a family of finite measures (µt)t≥0, subject to measurability conditions

on t 7→ µt there is a unique solution to Loewner’s equation

ϕ0(z) = z,
∂

∂t
ϕt(z) = ϕ′t(z)

∫
T
z
z + eiθ

z − eiθ
dµt(θ), z ∈ ∆. (1.5)

For a sequence of angles (θn)n≥1 and a constant capacity c, a growth model constructed

as in Section 1.1 corresponds to the cluster obtained by solving Loewner’s equation with

the driving function

ξt = θbt/cc+1.

Then the solution of Loewner’s equation (ϕt)t≥0 satisifies

ϕnc = Φn = f1 ◦ · · · ◦ fn

for each n ≥ 0, for Φn as defined in (1.1).

Definition. If (Bt)t∈[0,T ] is a standard Brownian motion, then the Schramm–Loewner evo-

lution with parameter κ > 0 (SLEκ) is the random cluster obtained by solving Loewner’s

equation with the driving function given by ξt =
√
κBt.

Remark. One very useful property of Loewner’s equation is that the map D[0, T ] → K
given by ξ 7→ KT is continuous [15], where D[0, T ] is the usual Skorokhod space and K is

the set of compact subsets of C containing 0, equipped with the Carathéodory topology

described in [9].

This property of Loewner’s equation means we can deduce convergence of a cluster

growing by adding particles of size c (so with a driving function with jumps spaced c

apart) to another cluster by showing convergence of the driving functions (or measures).

For example, in Chapter 2 we show that a cluster converges to an SLE4 by showing that

its driving function is close to a simple symmetric random walk which converges as c→ 0

to 2B for a standard Brownian motion B.

The Carathéodory topology is strictly weaker than the Hausdorff topology, the usual

way of metrising the set of compact subsets of C. Some results on convergence of clusters

are given with respect to the Hausdorff topology, such as [15] and [33]. In each of these

results the limiting shape is a deterministic straight line, and so convergence is shown by

proving the cluster stays within a narrow cone with high probability.

Schramm–Loewner evolutions describe the scaling limits of many discrete models, such

as the loop-erased random walk, which converges to an SLE2 curve [18], or critical perco-

lation, the boundaries of which has been related to SLE6 [31]. SLEs have also been used to

construct the quantum Loewner evolution (QLE) [23] family of clusters, which have been

proposed as the scaling limits of the dielectric breakdown model on a number of random
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surfaces.

Loewner theory contains many alterate versions of Loewner’s equation, from changes

of initial domains (such as H = {z ∈ C : Imz > 0} in place of ∆) to a version which

describes the evolution of ϕ−1
t . We refer the reader again to [17] for more details, and here

we will introduce one particularly helpful variant: the backwards equation. The backwards

equation was used for many of the estimates in [33], the results of which are generalised

in our Chapter 3 and Chapter 4.

Definition. Fix T > 0. Let ξ : [0, T ] → R be a càdlàg function, and (ϕt)t∈[0,T ] the

solution to Loewner’s equation with driving function ξ. Then the backwards equation is

the family of differential equations

u0(z) = z,
∂

∂t
ut(z) = ut(z)

ut(z) + eiξT−t

ut(z)− eiξT−t
, z ∈ ∆, (1.6)

for t ∈ [0, T ]. Then uT = ϕT , but it is not usually true that that ut = ϕt for t < T .

Remark. One very important fact about u is that it is governed by an ordinary differential

equation, which makes it easy to obtain useful estimates.

Remark. If the driving function ξ corresponds to an aggregation process, so ξt = θbt/cc+1,

then solving Loewner’s (forward) equation gives ϕnc = f1◦· · ·◦fn. If T = Nc, certain facts

about ϕT (z), ϕ′T (z), etc. are easier to establish if we understand fN (z), fN−1(fN (z)), etc..

For example, ϕ′T (z) =
∏N
n=1 f

′
n((fn+1 ◦ · · · ◦ fN )(z)), and the argument of f ′n is difficult

to understand using the forward equation. But if we solve the backward equation, we get

unc = fN−n+1 ◦ · · · ◦ fN , so we could write ϕ′T (z) =
∏N
n=1 f

′
n(u(N−n)c(z)).
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Chapter 2

ALE with small η converges to

SLE4

2.1 Main results

In this chapter, we will study the ALE model defined in Section 1.2 with α = 0 and large

negative values of the parameter η, which controls the influence of harmonic measure on

our attachment locations.

The case α = 2 often gives a model in which each particle is approximately the same

size. Throughout the thesis we take α = 0, where the model can be easier to analyse as the

capacities are deterministic. In this case, the distortion of particles can lead to physically

unrealistic outcomes, as in [19] where the distorted size of the final particle in the cluster

does not disappear in the limit. For the model we are considering here, Figure 2.1 shows

that the distortion affects the shape as well as the size of the particles.

For η > 0 the density hn+1 in (1.2) is an exaggeration of harmonic measure, and in [33]

the authors find that for η > 1 the attachment distribution is concentrated around the

point of highest harmonic measure, converging to a single atom as c→ 0. For a slit particle

the point of highest harmonic measure is the tip (see Figure 2.3), so this corresponds to

the growth of a straight line. In Chapter 3 we extend this to configurations made up of

several slits and growing along geodesics.

In this chapter, we find the equivalent phase transition in negative η: for η < −2 the

attachment distribution is concentrated around the points of lowest harmonic measure.

For a slit particle the two points of lowest harmonic measure are either side of the base

(see Figure 2.3 again), and so θ2 ≈ θ1 ± β with the probability of each tending to 1/2 as

c → 0. We go on to find that for all n the distribution of θn+1 is concentrated around

θn ± β, and so the angle sequence approximates a random walk of step length β ∼ 2c1/2.

This gives us the following statement about the driving function generating the cluster

(see Section 1.3):

Proposition 2.1. Fix some T > 0. For η < −2 and if σ(c) ≤ c221/c

for all c < 1

let (θcn)n≥1 be the sequence of angles we obtain from the ALE(0, η) process with capacity
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Figure 2.1: The final particle (the rightmost, in orange) of the clusterKn is highly distorted
by the application of the first n−1 maps fn−1, fn−2, . . . , f1. The distortion is much greater
near the base of the particle: we have had to fill in a guess (the red dashed line) for the
behaviour of the particle deep into the cluster, as the distortion is so large there that we
are unable to find the exact location of enough points to draw a sensible diagram. In
fact, the red dashed section corresponds to only 1/500 000th the length of the original,
undistorted slit.

parameter c. Let D = c9/2σ1/2. As c→ 0,

P
[

max
n≤bT/cc

min
±
|θn − (θn−1 ± βc)| > D

]
= O(c3).

Let ξct = θcbt/cc+1 for all 0 ≤ t ≤ T . Then

(ξct )t∈[0,T ] → (2Bt)t∈[0,T ] in distribution as c→ 0,

as a random function in the Skorokhod space D[0, T ], where B is a standard Brownian

motion.

We explain in Section 1.3 that by using Loewner’s equation we can immediately turn

a result about convergence of such a driving function into a result about convergence of

clusters in an appropriate space K. The main theorem of this chapter therefore follows

immediately from the proposition:

Theorem 2.2. For η, σ as in Proposition 2.1, let the corresponding ALE(0, η) cluster

with N = bT/cc particles each of capacity c be Kc
N . Then as c → 0, Kc

N converges in

distribution as a random element of K to a radial SLE4 curve of capacity T .

We can see in Figure 2.2 a cluster corresponding to a random walk, which despite

being visibly composed of slits resembles an SLE4 curve.

Remark. We can give η a physical interpretation if we think of growth in which access

to environmental resources (proportional to harmonic measure) affects the growth rate in

a non-linear manner. For negative η we could also interpret ALE(α, η) as modelling a
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Figure 2.2: One cluster of the ALE(0,−∞) process with 3,000 particles, each of capacity
c = 0.0001.

cluster in an environment which inhibits growth, so growth is concentrated in areas with

the least exposure to the environment.

The most physically-relevant models are those with α = 2, where each particle in

the cluster has approximately the same size. The case we consider, α = 0, is somewhat

unphysical as the later particles have a macroscopic size (in our case the final particle has

a shape approximating the whole path of the SLE4). In this chapter the “visible” portion

of each particle which is not hidden between other particles is microscopic, although the

“visible” part of the later particles is still significantly longer than the first particles.

In any case, the remarkable thing about the η < −2, α = 0 case is that it is drawn

from a family of models which naturally extend DLA-type growth, and we obtain an

SLE4 scaling-limit for a whole range of parameters. To this author’s knowledge no other

conformal growth model in the plane has been rigorously proved to converge to a random

limit such as the SLE.

Remark. The convergence of attachment distributions to atomic measures for η < −2

complements the phase transition result of [33] in which it is shown that the limiting

attachment measures are atomic for η > 1. For −2 < η < 1 the distribution h2 of the

second particle is supported on all of T even in the limit c → 0, showing that we do

indeed have three qualitative phases: for extreme values of η the attachment measures are

degenerate, but this is not the case for −2 < η < 1.

Remark. There are several ways Theorem 2.2 could be extended. Firstly, it would not be

difficult to show that (Kc
bt/cc)t∈[0,T ] converges as a time-dependent process to the SLE4

process on [0, T ].

It is also reasonable to expect that the trace of the Nth particle itself will converge as

c→ 0 to an SLE4 curve, as it “follows” the paths of the other particles, as can be seen in

Figure 2.1. However, we have not managed to prove this.

The combination of these two possible extensions might suggest that if we grow the

cluster Kc
N using Loewner’s equation, then the growth of the final slit over the time interval
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Figure 2.3: Left: the one-slit cluster of our process with 1,000 points in red sampled
according to harmonic measure on the boundary. Right: the three-slit cluster of the
process with 3,000 points sampled according to harmonic measure. Note in the second
image that there are almost no points landing near the base of the most recent (longest)
particle.

t ∈ [(N − 1)c, Nc) resembles the growth of an SLE4 curve. However, the time change is

extremely singular. The majority of the length of the Nth particle has almost no capacity,

a fact which can also be seen in Figure 2.1, and so in Loewner’s equation most of the Nth

particle is grown in a very short time, and most of the interval [(N − 1)c, Nc) is spent

growing the final small portion of the Nth particle.

Remark. In Section 2.6 we conjecture that similar scaling results to Proposition 2.1 and

Theorem 2.2 can be obtained with particles other than the slit. Using suitable particles

which have a single point of contact with the circle, we believe that the limiting cluster is

always an SLEκ for some κ ∈ [4,∞] (where by SLE∞ we mean a uniformly growing disc).

2.1.1 Structure of proof

Our proof of Proposition 2.1 will involve showing that the distribution of θn+1 conditional

on the previous angles (θ1, . . . , θn) converges to 1
2(δθn+β + δθn−β), and so the whole path

ξc converges to the same limit as a simple random walk with step length β ∼ 2c1/2.

We can use a heuristic approach to see why we might expect this to be the case. If we

formally take η = −∞ and σ = 0, so the nth attachment point θn+1 is chosen uniformly

from the finite set {θ : lim infσ→0 infw∈T |Φ′n(eσeiθ)|/|Φ′n(eσw)| > 0} (i.e. among the

“strongest poles” of Φ′n), and let τ = inf{n : |θn − θn−1| 6= β}, then we can calculate that

for N = bT/cc in the limit c → 0 we have P[τ ≤ N ] → 0 as c → 0. In other words, at

each step the distribution hn+1 is equal to 1
2(δθn−β + δθn+β).

Our approach for finite η < −2 will therefore be to find a small upper bound on hn+1(θ)

for θ away from the poles of Φ′n to deduce that hn+1 is an approximation to a sum of atoms

at the poles. Then we show separately that the contribution to Zn =
∫
T |Φ

′
n(eσ+iθ)|−η dθ

from poles other than ei(θn±β) is small.

In the actual ALE model with−∞ < η < −2, we can only show that hn+1 approximates
1
2(δθn−β + δθn+β) as c → 0. However, weak convergence of these measures is not enough

to prove Proposition 2.1, so we will need to introduce some extra notation to describe the

possible behaviour of the process (θn)n≥1, and make precise the way in which its steps
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converge to the SSRW steps as above.

Definition. For D = D(c) = c9/2σ1/2, define the stopping time

τD := inf{n ≥ 2 : min(|θn − (θn−1 + β)|, |θn − (θn−1 − β)|) > D}.

Remark. On the event {n < τD} we have a lot of information about the angle sequence

(θ1, . . . , θn), and so can derive many properties of the conditional distribution of θn+1. In

particular, we can say that the distribution of θn+1−θn is (approximately) symmetric and

that there is a very low probability that n+ 1 = τD. The results of the following sections

will be used to establish these two facts.

Theorem 2.3. Suppose that η < −2. There exists a constant A > 0 depending only on η

and T such that when σ ≤ c221/c

, then for D = c9/2σ1/2, on the event {n < N ∧ τD} we

have ∫
Fn

hn+1(θ) dθ ≤ Ac4 (2.1)

almost surely, where Fn = {θ ∈ T : |θ− (θn+β)| ≥ D and |θ− (θn−β)| ≥ D}, and almost

surely ∣∣∣∣∫ θn+β+D

θn+β−D
hn+1(θ) dθ −

∫ θn−β+D

θn−β−D
hn+1(θ) dθ

∣∣∣∣ ≤ Ac11/4. (2.2)

In Section 2.2 we prove a number of technical results about the positions of the images

and preimages of points w ∈ ∆ under the maps fj , Φn = f1 ◦ · · · ◦ fn, and Φj,n = Φ−1
j ◦Φn

when w is close to the poles of Φ′n. When dealing with points away from these poles,

we make extensive use of results from [33]. Our estimates for the positions of these

images will be useful when we find upper bounds on the derivative |Φ′n(w)| = |f ′n(w)| ×
|f ′n−1(Φn−1,n(w))|×· · ·×|f ′1(Φ1,n(w))|, using lower bounds on the distance between Φj,n(w)

and the poles of f ′j .

In Section 2.3.1 we integrate the pre-normalised density |Φ′n(eσ+iθ)|−η over the regions

around θn ± β, and so obtain an almost-sure lower bound on

Zn =

∫
T
|Φ′n(eσ+iθ)|−η dθ

on the event {n < N ∧ τD}.
In Section 2.3.2 and Section 2.4 we find upper bounds on |Φ′n(eσ+iθ)| for θ ∈ Fn, and

so using the lower bound on Zn we can establish the bound (2.1).

In Section 2.3.3 we establish the technical results needed to prove (2.2).

Remark. In our proof of Theorem 2.3, the convergence of hn+1 to 1
2(δθn+β + δθn−β) does

not rely on the convergence of h1, . . . , hn to these symmetric discrete measures, only that

the event {n < τD} occurs with high probability. If we were to use the fact that the angle

sequence up until time n is very close to a simple symmetric random walk, then some

properties (such as the fact that the longest interval on which a SSRW is monotone has

length of order O(log n)) would allow us to optimise our choice of σ further than we have.

However, for the convergence of our cluster to an SLE4 curve, we do require a σ which
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decays at least as quickly as c1/c, which is already much faster than the fixed power of c

used in [33] and elsewhere, so we have not attempted to optimise our choice of σ ≤ c221/c

.

Remark. The results of this chapter hold when σ decays very quickly. If σ decays very

slowly, σ � c1/2, then a result of Norris, Silvestri and Turner [25] shows the scaling limit

of ALE with α = 0 and η < −2 is a disc, not an SLE4. For the intermediate regime,

c1/c � σ � c1/2, heuristic arguments suggest that there is a period in which the driving

function is a random walk, and then a period where the growth is measurable with respect

to the random walk (i.e. a period of random growth and then a period of deterministic

growth).

The first period ends when a particle is attached at the base of the second-most-recent

particle rather than most recent. This occurs because although the pole of Φ′n(eiθ) at the

most recent basepoint is of a higher order than the poles at older basepoints, a smaller

value of σ is required in order for Φ′n(eσ+iθ) to “see” the higher-order poles.

For example, in Figure 2.4, the red points indicate the image of the sections of eσT
near the strongest poles of Φ′, and the yellow points are the image of sections near weaker

poles. Although the pole is stronger near the red points, the image of the red points is

further from the base, indicating that Φ′(eσ+iθ) is a poor approximation to Φ′(eiθ) for

these points. We do not believe the resulting cluster converges to any known object as

c→ 0.

In Section 2.6 we define a family of particles for which we believe analogous versions

of our main scaling result Theorem 2.2 holds. We conjecture that suitably constructed

ALE(0, η) models with η < −2 will converge to either an SLEκ with κ ≥ 4, or to a

uniformly growing disc. We also believe that every κ ≥ 4 is attained by this family.

2.2 Spatial distortion of points

There are several steps we need to establish our upper bound on
∫
hn+1(θ) dθ in (2.1),

including precise estimates for |Φ′n| near its poles. We can decompose the derivative

Φ′n(w) =
n−1∏
j=0

f ′n−j(Φn−j,n(w)) (2.3)

where

Φk,n := Φ−1
k ◦ Φn = fk+1 ◦ fk+2 ◦ . . . ◦ fn. (2.4)

Then we have precise estimates on |f ′| near to its poles e±iβ, and upper bounds away from

these poles, and so we write

|Φ′n(w)| =
n−1∏
j=0

∣∣∣f ′ (e−iθn−jΦn−j,n(w)
)∣∣∣ . (2.5)

We will show that if w is close to one of ei(θn±β), then for each j, the point e−iθn−jΦn−j,n(w)

is close to a pole of |f ′|, and we will derive specific estimates on the distance in terms of

the distance |w − ei(θn±β)|. Conversely, we will show that the only way for every image
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e−iθn−jΦn−j,n(w) to be close to a pole is for w to be close to ei(θn±β), and so the measure

dhn+1 is concentrated around θn + β and θn − β.

Firstly, we will establish an estimate for |f ′| close to its poles e±iβ, and a universal

upper bound away from these two points.

Lemma 2.4. There are universal constants A1, A2 > 0 such that for all c < 1, for w ∈ ∆,

if |w − eiβ| ≤ 3
4β, then

A1
β1/2

|w − eiβ|1/2
≤ |f ′c(w)| ≤ A2

β1/2

|w − eiβ|1/2
, (2.6)

and similarly if |w − e−iβ| ≤ 3
4β.

Moreover, there is a third constant A3 such that if min{|w − eiβ|, |w − e−iβ|} > 3
4β,

then

|f ′c(w)| ≤ A3.

Proof. Using the expression

f ′c(w) =
fc(w)

w

w − 1

(w − eiβ)1/2(w − e−iβ)1/2
(2.7)

from Lemma 4 of [33], the result follows from simple calculations which we omit.

This lemma tells us that the derivative |Φ′n(w)| will be large only when many of the

points e−iθn−jΦn−j,n(w) in (2.5) are close to one of the poles e±iβ. We will next introduce

some technical estimates which will allow us to determine for which points w this is true.

Remark. Imagine an idealised path in which |θi+1 − θi| = β for all i, then fn(ei(θn±β)) =

eiθn−1 , fn−1(eiθn−1) = eiθn−2 , and so on. Then Φn−j,n(ei(θn±β)) = eiθn−j+1 = ei(θn−j+sn−jβ),

where sn−j ∈ {±1}. So in the ALE, if a point w is close to one of ei(θn±β) then, as f is

continuous when extended to ∆, each of the points in (2.5) is close to eisn−jβ, but continuity

alone does not allow us to make precise what we mean by “w is close to ei(θn±β)”, so to

estimate the size of |Φ′n(w)|, we need a precise estimate for |f(w) − f(eiβ)| in terms of

|w − eiβ|.

Lemma 2.5. For w ∈ ∆, for all c < 1, if |w − eiβ| ≤ β/2, then

|fc(w)− 1| = 2(ec − 1)1/4|w − eiβ|1/2

×
(

1 +O

[
|w − eiβ|

c1/2
∨ c1/4|w − eiβ|1/2

])
.

(2.8)

Proof. We will work with the half-plane slit map f̃c : H→ H\(0, i
√

1− e−c ] by conjugating

f with the Möbius map mH : ∆→ H given by

mH(w) = i
w − 1

w + 1
,
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and its inverse

m∆(z) := m−1
H (z) =

1− iz
1 + iz

.

The benefit of this is that f̃c has a simple explicit form

f̃c(ζ) = e−c/2
√
ζ2 − (ec − 1)

where the branch of the square root is given by arg : C \ [0,∞)→ (0, 2π), so we write

fc = m∆ ◦ f̃c ◦mH

and will derive a separate estimate for each of the three maps.

As w is close to eiβ = 2e−c − 1 + 2ie−c
√
ec − 1, we will expand each map about

the images (given by a simple calculation) mH(eiβ) = −
√
ec − 1, f̃c(−

√
ec − 1) = 0, and

m∆(0) = 1. Our calculations will show that m∆ and mH behave like scaling by a constant

close to the relevant points, and that the behaviour of fc seen in (2.8) is due to the

behaviour of f̃c close to ±
√
ec − 1.

First, when w = eiβ + δ,

|mH(w)−mH(eiβ)| =
∣∣∣∣ 2δ

(eiβ + 1 + δ)(eiβ + 1)

∣∣∣∣
=

1

2
ec|δ|(1 +O(|δ|)) (2.9)

since a simple calculation shows that |eiβ + 1|2 = 4e−c.

Next, we will evaluate f̃c at a point close to one of the two preimages of 0, ±
√
ec − 1:∣∣∣f̃c(±

√
ec − 1 + λ)

∣∣∣ = e−c/2
∣∣∣∣√±2

√
ec − 1λ+ λ2

∣∣∣∣
=
√

2e−c/2(ec − 1)1/4|λ|1/2
(

1 +O

(
|λ|
c1/2

))
. (2.10)

Finally, for a small z ∈ H,

|m∆(z)− 1| =
∣∣∣∣1− iz1 + iz

− 1

∣∣∣∣ =

∣∣∣∣ −2iz

1 + iz

∣∣∣∣ = 2|z|(1 +O(|z|)). (2.11)

Then for w close to eiβ, applying (2.9), (2.10) and (2.11) in turn, we obtain

|f(w)− 1| = 2(ec − 1)1/4|w − eiβ|1/2

×
(

1 +O

(
|w − eiβ|

c1/2

))(
1 +O

(
c1/4|w − eiβ|1/2

))
.

Then for c3/2 ≤ |w − eiβ| ≤ β/2, we have the estimate (2.8) with error term of order

c−1/2|w − eiβ|, and for |w − eiβ| ≤ c3/2 the error term has order c1/4|w − eiβ|1/2.

Remark. Unlike most results in this chapter, we will not use the following lemma in Section
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2.3, but it will be very useful in Section 2.4.2. We include it here and omit the proof as it

is very similar to Lemma 2.5.

Lemma 2.6. For all c < 1, if z ∈ ∆ \ (1, 1 + d(c)] has |z − 1| ≤ c, then

min
±
|f−1(z)− e±iβ| = |z − 1|2

4(ec − 1)1/2
(1 +O (|z − 1|)) .

Now we have all the technical results we need in order to prove our lower bound on

|Φ′n(w)| when w is close to one of the two “most recent basepoints” ei(θn±β). We will derive

the bound itself in Section 2.3.1, and here we will show that each of the points Φn−j,n(w)

in (2.5) is close to eiθn−j+1 .

Proposition 2.7. Let L = L(c, N) = c2N+1
. If we condition on the event {n < N ∧ τD},

then the following is almost surely true: If δ := min |w − ei(θn±β)| ≤ 2L, and |w| ≥ eσ,

then for all 1 ≤ j ≤ n,∣∣∣Φn−j,n(w)− eiθ
>
n−j+1

∣∣∣ =
[
2(ec − 1)

1
4

]2(1−2−j)
δ2−j (1 +O(c4)). (2.12)

Before we begin the proof we will introduce some notation in order to make the argu-

ment easier to follow.

Definition. By definition of τD, on the event {n < τD}, exactly one of the two angles

θn−1 ± β is within distance D of θn. We will call the closer of the two angles θ>n , and the

other angle θ⊥n .

Proof of Proposition 2.7. We will proceed by induction on j. For j = 1, the estimate

(2.12) follows directly from Lemma 2.5. For a given 1 ≤ j ≤ n− 1, assume that

|Φn−j,n(w)− eiθ
>
n−j+1 | =

[
2(ec − 1)

1
4

]2(1−2−j)
δ2−j (1 +O(c4)),

(as |θn− θ>n | < D � c4, this certainly holds for j = 1) and then by the triangle inequality,

since |eiθn−j − eiθ
>
n−j | ≤ |θn−j − θ>n−j | < D, we have

|Φn−j−1,n(w)− eiθn−j | −D ≤ |Φn−j−1,n(w)− eiθ
>
n−j | ≤ |Φn−j−1,n(w)− eiθn−j |+D.

Now by Lemma 2.5,

|Φn−j−1,n(w)− eiθn−j | = |fn−j(Φn−j,n(w))− fn−j(eiθ
>
n−j+1)|

= |f(e−iθ
>
n−j+1Φn−j,n(w))− 1|

= 2(ec − 1)
1
4 |e−iθ

>
n−j+1Φn−j,n(w)− 1|1/2(1 +O(c1/4|e−iθ

>
n−j+1Φn−j,n(w)− 1|1/2))

=
[
2(ec − 1)

1
4

]1+(1−2−j)
δ2−(j+1)

(1 +O(c4))(1 +O(c3/8δ2−(j+1)
))

=
[
2(ec − 1)

1
4

]2(1−2−(j+1))
δ2−(j+1)

(1 +O(c4))

and the second error term is absorbed since δ2−(j+1) ≤ (2L)2−(j+1) ≤ c4.
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Now as δ = |w− ei(θn±β)| ≥ |w| − 1 ≥ σ, and D = c9/2σ1/2 (see the table of notation),

we have

|Φn−j−1,n(w)− eiθ
>
n−j | = |Φn−j−1,n(w)− eiθn−j |

(
1 +O

(
D

c
1
2

(1−2−(j+1))δ2−(j+1)

))
= |Φn−j−1,n(w)− eiθn−j |

(
1 +O

(
c4σ1/4

))
,

and hence our result almost surely holds for all 1 ≤ j ≤ n by induction.

2.3 The newest basepoints

In the following sections we will work with the densities hn+1(θ) := |Φ′n(eσ+iθ)|−η
Zn

. Since η

is negative we will simplify the notation by introducing ν = −η > 0. It will therefore be

more intuitive for the reader to see that we deduce lower bounds on |Φ′n| in order to find

lower bounds on hn+1 ∝ |Φ′n|ν .

2.3.1 A lower bound on the normalising factor

We defined in (1.2) the density function hn+1(θ) and the nth normalising factor

Zn :=

∫
T
|Φ′n(eσ+iθ)|−η dθ =

∫
T
|Φ′n(eσ+iθ)|ν dθ. (2.13)

If we are going to find upper bounds on hn+1 by bounding |Φ′n|, then we will need to have

some lower bound on the normalising factor Zn. In this section, we will obtain a lower

bound on Zn, and it will give us our upper bound on hn+1 in Section 2.4.2. First, we will

need a good estimate for |Φ′n| around the main poles ei(θn±β).

Lemma 2.8. For a given n, if we condition on the event {n < N ∧ τD} then the following

is almost surely true: There are constants A1, A2 > 0 such that for any c < 1, whenever

|ϕ| < L,

An1
c

1
2

(1−2−n)

(σ2 + ϕ2)
1
2

(1−2−n)
≤
∣∣∣Φ′n (eσ+i(θn±β+ϕ)

)∣∣∣ ≤ An2 c
1
2

(1−2−n)

(σ2 + ϕ2)
1
2

(1−2−n)

provided that σ = σ(c) ≤ L.

Proof. For |ϕ| < L, without loss of generality take θ = θn+β+ϕ. Since Φn = f1 ◦ · · · ◦fn,

by the chain rule

|Φ′n(eσ+iθ)| =
n−1∏
j=0

∣∣∣f ′ (e−iθn−jΦn−j,n(eσ+iθ)
)∣∣∣ , (2.14)

where Φk,n = Φ−1
k ◦ Φn = fk+1 ◦ fk+2 ◦ · · · ◦ fn.

By Proposition 2.7, if δ := |eσ+iθ − ei(θn+β)| < 2L, then for all 1 ≤ j ≤ n − 1,

|Φn−j,n(eσ+iθ)− eiθ
>
n−j+1 | = [2(ec− 1)

1
4 ]2(1−2−j)δ2−j (1 +O(c4)), and so by Lemma 2.4 (the

above estimate shows that e−iθn−jΦn−j,n(eσ+iθ) is close enough to one of e±iβ to apply
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this lemma),∣∣∣f ′ (e−θn−jΦn−j,n(eσ+iθ)
)∣∣∣ � β1/2|Φn−j,n(eσ+iθ)− eiθ

>
n−j+1 |−1/2

= β1/2[2(ec − 1)
1
4 ]−(1−2−j)δ−2−j−1

(1 +O(c4))

� c2−(j+2)
δ−2−(j+1)

.

For j = 0, as Φn,n is the identity map,

|f ′(e−iθnΦn,n(eσ+iθ))| = |f ′(eσ+i(θ−θn))| � A1β
1/2δ−1/2

� Ac1/4δ−1/2.

Now if we combine the bounds for each term in (2.14), we have

|Φ′n(eσ+iθ)| ≥
n−1∏
j=0

(
A1c

2−(j+2)
δ−2−(j+1)

)
= An1c

1
2

(1−2−n)δ−(1−2−n).

and a similar upper bound. Finally, δ is given by

δ = |eσ+iθ − ei(θn+β)|

= |eσ+iϕ − 1|

� (σ2 + ϕ2)1/2,

and so, modifying the constants as necessary, we have our result.

We can now obtain our lower bound on the normalising factor.

Proposition 2.9. If η < −2 (so ν := −η > 2), then there exists a constant A depending

only on η such that for any fixed T > 0, if N = T/c then for sufficiently small c, after

conditioning on {n < N ∧ τD} we have the almost-sure lower bound

Zn ≥ Anc
ν
2

(1−2−n)σ−[ν(1−2−n)−1] (2.15)

provided that σ = σ(c) ≤ L.

Proof. The normalising factor Zn is given by the integral
∫
T |Φ

′
n(eσ+iθ)|ν dθ, and Lemma

2.8 gives us a lower bound on the integrand for θ close to θn + β:

|Φ′n(eσ+i(θn+β+ϕ))|ν ≥ Anc
ν
2

(1−2−n)(σ2 + ϕ2)−
ν
2

(1−2−n)

when |ϕ| < L.

We will now integrate our lower bound over the interval (θn+β−L, θn+β+L). First,
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note that ∫ L

−L
(σ2 + ϕ2)−

ν
2

(1−2−n) dϕ =

∫ L/σ

−L/σ
(σ2 + σ2x2)−

ν
2

(1−2−n) σdx

= σ1−ν(1−2−n)

∫ L/σ

−L/σ

dx

(1 + x2)
ν
2

(1−2−n)

≥ A′σ1−ν(1−2−n)

for a constant A′, since the integral term on the right hand side increases as c ↓ 0 because

σ � L. Note that this all remains true for any η < 0, and the fact that η < −2 will only

be necessary in Section 2.3.2.

Finally, we can put together our bounds (and modify our constant A) to get∫ θn+β+L

θn+β−L
|Φ′n(eσ+iθ)|ν dθ ≥ Anc

ν
2

(1−2−n)

∫ L

−L
(σ2 + ϕ2)−

ν
2

(1−2−n) dϕ

≥ Anc
ν
2

(1−2−n)σ1−ν(1−2−n)

as required.

2.3.2 Concentration about each basepoint

Most of our upper bounds on |Φ′n| will be established in Section 2.4, but we will find

one here as it uses the estimates from the previous section. Using the terminology we

introduce in Section 2.4 and illustrate in Figure 2.4, in this section we look at singular

points which are within L of one of the “main” poles ei(θn±β) so the estimate of Lemma

2.8 is valid, but are not within D of these poles.

Proposition 2.10. For a given n, if we condition on the event {n < N ∧ τD} then the

following is almost surely true: For σ(c) ≤ c221/c

, with L = c2N+1
and D = c9/2σ1/2 � L,

1

Zn

∫
[−L,L]\[−D,D]

|Φ′n(eσ+i(θn±β+ϕ))|ν dϕ = o(cγ)

as c→ 0, for any constant γ > 0, where ν := −η > 2.

Proof. Using the symmetry of our upper bound in Lemma 2.8, it will be enough to find

the upper bound
∫ L
D |Φ

′
n(eσ+i(θn+β+ϕ))|ν dϕ� cγZn. We have, modifying the constant A2

where necessary,∫ L

D
|Φ′n(eσ+i(θn+β+ϕ))|ν dϕ ≤ An2c

ν
2

(1−2−n)

∫ L

D
(σ2 + ϕ2)−

ν
2

(1−2−n) dϕ

= An2
c
ν
2

(1−2−n)

σν(1−2−n)−1

∫ L/σ

D/σ
(1 + x2)−

ν
2

(1−2−n) dx

≤ An2
c
ν
2

(1−2−n)

σν(1−2−n)−1

∫ L/σ

D/σ
x−ν(1−2−n) dx

≤ An2
c
ν
2

(1−2−n)

Dν(1−2−n)−1
,
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and so, using our lower bound on Zn,∫ L
D |Φ

′
n(eσ+i(θn+β+ϕ))|ν dϕ

Zn
≤ (A2/A)n

( σ
D

)ν(1−2−n)−1

= (A2/A)n
(
c−9/2σ1/2

)ν(1−2−n)−1

which, since ν(1− 2−n)− 1 ≥ 1
2ν − 1 > 0, decays faster than any power of c as c→ 0.

Remark. The last line of the above proof is the only place in this chapter where we use

that η < −2. If −2 ≤ η < 0, then h2 achieves its maximum around the two bases of the

first particle, but does not have strong concentration around these points. For −2 < η < 0,

h2 is still supported on all of T as c → 0, so there is no concentration. If η = −2, the

support of h2 is concentrated around θ1 ± β, but the event D < |θ2 − (θ1 ± β)| � β

retains a high probability as c → 0. On this event, θ2 is not close enough to θ1 ± β for

our inductive arguments in Proposition 2.7 and Lemma 2.8 to apply. We can no longer

guarantee that the poles of the second particle are stronger than the older pole at the

base of the first particle, and so lose the SSRW-like behaviour of (θn)n≥1. It then becomes

extremely difficult to say how the process behaves, but the scaling limit as c → 0 is

unlikely to be described by the Schramm–Loewner evolution. Heuristic reasoning and

some simulation results suggest that the behaviour may be similar to the “constrainted

Hastings–Levitov” of [1], in which the cluster is not a single curve but something growing

in 2π − o(1) directions for small c.

2.3.3 Symmetry of the two most recent basepoints

There are two parts to the statement in Theorem 2.3 about convergence of hn+1 to the

discrete measure 1
2(δθn−β+δθn+β): the previous two sections and Section 2.4 establish that

hn+1 is concentrated very tightly around θn ± β, and we will show here that the weight

given to each of these two points is approximately equal.

Remark. Unlike the results from the previous two sections, the following proposition is not

inductive, i.e. as long as n < bT/cc∧τD, the density hn+1 is approximately symmetric, even

if the choices of the previous angles were not made symmetrically. Even in the extreme

case where (θn)n∈N is close to an arithmetic progression: θ2 ≈ θ1 +β, θ3 ≈ θ2 +β, . . . , θn ≈
θn−1 + β, we still have an almost symmetric hn+1.

Proposition 2.11. For a given n, if we condition on the event {n < N ∧ τD} then the

following is almost surely true:

sup
|ϕ|<D

∣∣∣∣∣log

(∣∣Φ′n (eσ+i(θn+β+ϕ)
)∣∣∣∣Φ′n (eσ+i(θn−β−ϕ)
)∣∣
)∣∣∣∣∣ ≤ Ac11/4

for some deterministic constant A depending only on T .

Proof. Let z± = exp (σ + i [θn ± (β + ϕ)]) for |ϕ| < D, and write λ± = z± − ei(θn±β). We
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can then write

log

(
|Φ′n(z+)|
|Φ′n(z−)|

)
=

n−1∑
j=0

log

(
|f ′n−j(Φn−j,n(z+))|
|f ′n−j(Φn−j,n(z−))|

)
(2.16)

and so we can estimate each term in (2.16) separately.

The j = 0 term is exactly 0, by the symmetry of |f ′n| about θn.

For 1 ≤ j ≤ n− 1, we will use Lemma 4 of [33], which states that

f ′(z) =
f(z)

z

z − 1

(z − eiβ)1/2(z − e−iβ)1/2
,

to compare the two derivatives in the jth term of (2.16). Write zj± = Φn−j,n(z±), then

the jth term in (2.16) is

|f ′n−j(z
j
±)| =

|zj+1
± |
|zj±|

|zj± − eiθn−j |
|zj± − e

iθ⊥n−j+1 |1/2|zj± − e
iθ>n−j+1 |1/2

(2.17)

There is some telescoping in the product which allows us to find

n−1∏
j=1

|zj+1
± |
|zj±|

=
|zn±|
|z1
±|
.

Then recall that in Section 2.2 we derived estimates for the distance of zn± from eiθ
>
n−j+1

in terms of |λ±|. So by Proposition 2.7, as eiθ
>
1 = 1,

|zn± − 1| =
[
2(ec − 1)

1
4

]2(1−2−n)
|λ±|2

−n
(1 +O(c4)) = O(c17/4)

since |λ±|2
−n

. D2−n � L2−n ≤ c4. Therefore |zn±| = 1 + O(c17/4), and similarly

|z1
±| = 1 +O(c17/4).

Having dealt with the first fraction in all derivatives (2.17) at once, we will tackle the

remaining terms individually for each 1 ≤ j ≤ n− 1.

First note that by definition of θ>n−j+1, |eiθ
>
n−j+1 − eiθn−j | = |eiβ − 1|. Hence, using

Proposition 2.7 again,

|zj± − eiθn−j | = |e
iθ>n−j+1 − eiθn−j |

[
1 +O

(
|zj± − e

iθ>n−j+1 |
|eiθ

>
n−j+1 − eiθn−j |

)]
= |eiβ − 1|

[
1 +O

(
c−2−(j+1) |λ±|2

−j
)]

= |eiβ − 1|
[
1 +O

(
c15/4

)]
since |λ±|2

−j � L2−(n−1) ≤ c4.

Similarly,

|zj± − e
iθ⊥n−j+1 | = |e2iβ − 1|(1 +O(c15/4)),
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and finally, directly from Proposition 2.7,

|zj± − e
iθ>n−j+1 | =

[
2(ec − 1)

1
4

]2(1−2−j)
|λ±|2

−j
(1 +O(c4)).

Note that for the three estimates we just found, the only part which depends on the choice

of ± is the error term (as |λ+| = |λ−|). Hence the part of the ratio of |f ′n−j(z
j
+)|/|f ′n−j(z

j
−)|

which comes from the second fraction in (2.17) is just 1 +O(c15/4).

We can therefore find a constant A (which does not depend on n or ϕ) such that for

each 1 ≤ j ≤ n − 1,

∣∣∣∣log

(
|f ′n−j(z

j
+)|

|f ′n−j(z
j
−)|

)∣∣∣∣ ≤ Ac15/4. As there are OT (c−1) such terms in the

product (2.16) (i.e. the number of such terms is bounded by Cc−1 where the constant C

may depend on T , as explained in the table of notation), we have∣∣∣∣log

(
|Φ′n(z+)|
|Φ′n(z−)|

)∣∣∣∣ = OT (c11/4)

as claimed.

Now we can deduce that hn+1 gives (asymptotically) the same measure to the sets

(θn + β −D, θn + β +D) and (θn − β −D, θn − β +D).

Remark. Recall that earlier we used the heuristic argument that if η = −∞ (so we choose

from points with the highest-order pole), then we attach the (n + 1)th particle to one

of θn ± β, with equal probability. With finite η < −2, the derivative |Φ′n| in fact differs

slightly at each of eσ+i(θn+β) and eσ+i(θn−β), and so choosing to attach a particle at eiθ

for θ maximising |Φ′n(eσ+iθ)| leads to a deterministic process after the second step rather

than our SLE4 limit.

However, when we have a finite η < −2, integrating over the range (−D,D) around

each θn ± β means that only the asymptotic behaviour of |Φ′n| needs to be the same to

guarantee symmetry between the two points θn ± β.

Corollary 2.12. For a given n, if we condition on the event {n < N ∧ τD} then the

following is almost surely true:∣∣∣∣∫ D

−D
hn+1(θn + β + ϕ) dϕ−

∫ D

−D
hn+1(θn − β − ϕ) dϕ

∣∣∣∣ = OT (c11/4). (2.18)

Proof. From Proposition 2.11, we have∫ D

−D
hn+1(θn + β + ϕ) dϕ−

∫ D

−D
hn+1(θn − β − ϕ) dϕ

=
1

Zn

∫ D

−D

(
|Φ′n(eσ+i(θn+β+ϕ))|ν − |Φ′n(eσ+i(θn−β−ϕ))|ν

)
dϕ

=
1

Zn

∫ D

−D

(
|Φ′n(eσ+i(θn+β+ϕ))|ν − eOT (c11/4)|Φ′n(eσ+i(θn+β+ϕ))|ν

)
dϕ

= OT

(
c11/4

∫ D
−D |Φ

′
n(eσ+i(θn+β+ϕ))|ν dϕ

Zn

)
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almost surely, which is OT (c11/4) by definition of Zn.

2.4 Analysis of the density away from the main basepoints

In this section, we will classify the points θ ∈ T with |θ − (θn ± β)| ≥ D (i.e. the set

Fn from Theorem 2.3) into regular points Rn where hn+1(θ)� 1, and singular points Sn

where hn+1(θ) & 1. We make this classification based on how close the image Φn(eσ+iθ)

is to the common basepoint of the cluster, which is the image of all the poles of Φ′n, as we

can see in Figure 2.4.

In Section 2.4.1 we make this classification explicit and establish a bound on hn+1

for the regular points. In Section 2.4.2 we analyse the singular points more carefully and

establish an upper bound on
∫
Sn
hn+1(θ) dθ using similar techniques as in Section 2.3.1.

Φ3

Figure 2.4: We can see on the left the three types of points in eσT for the three-slit
cluster: we have the singular points in red and yellow and the regular points in grey dots.
The right hand side of the diagram shows that a point on eσT is classified as regular if
its image under Φn is far from the common basepoint (Proposition 2.13 in Section 2.4.1
shows that this implies hn+1 � 1), and the singular points are further classified into the
two main (red) arcs containing ei(θn±β), and the other (yellow) singular points. We have
hn+1 & 1 for all singular points, but we obtained a lower bound on the integral of |Φ′n|−η
over the red regions in Section 2.3.1, and we will find an upper bound on the integral of
this derivative over the yellow regions in Section 2.4.2. Note that the choice of σ we have
used for this diagram is around c2 rather than the much smaller c21/c

, which is necessary
to make the envelope Φ3(eσT) clear, but does mean that some “regular” points are closer
to the common basepoints than the red “singular” points. With a sufficiently small σ this
isn’t the case.

2.4.1 Regular points

In this section, we will establish a criterion for θ ∈ T to be in our set of regular points for

which hn+1(θ)� 1, based on the position of Φn(eσ+iθ), as shown in Figure 2.4.

We will first derive an upper bound on |Φ′n(w)| in terms of |Φn(w) − 1|, so we can

classify w ∈ ∆ as a regular point using the distance of its image Φn(w) from 1.
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Proposition 2.13. Let N(c) = bT/cc. For θ ∈ R, let w = exp(σ + iθ). On the event

{n < N(c) ∧ τD}, the following is almost surely true:

For any function a : R+ → R+ with D2−N /β ≤ a(c) ≤ c3/2 for all 0 < c < 1, if

|Φn(w)− 1| ≥ βa(c) (2.19)

then, for sufficiently small c,

|Φ′n(w)| ≤ Anβn/2
(
a(c)

8

)− 1
2

(2n−1)

(2.20)

where A is a universal constant independent of a.

Proof. We will use the estimate (2.8) from Lemma 2.5. For convenience, let z = Φn(w),

and we will estimate |Φ′n(w)| = |(Φ−1
n )′(z)|−1 by using (2.5) and estimating each term

separately, using Lemma 2.5 to obtain estimates on Φn−j,n(w) = Φ−1
n−j(z) by induction on

j.

First we claim that for A(c) ≤ c1/2, and ζ ∈ ∆\(1, 1+d(c)], if we have |ζ−1| ≥ βA(c),

then

min
±

(|f−1(ζ)− e±iβ|) ≥ 1

4
βA(c)2 (2.21)

for all c < c0, where c0 > 0 is a universal constant which doesn’t depend on A.

To see this, suppose that |f−1(ζ) − eiβ| < 1
4βA(c)2. Then by Lemma 2.5, setting

ε = 21/4 − 1 > 0, for sufficiently small c,

|ζ − 1| = |f(f−1(ζ))− f(eiβ)|

= 2(ec − 1)1/4|f−1(ζ)− eiβ|1/2(1 +O
(
A(c)2 ∨ c1/2A(c)

)
)

< 2(β/2)1/2(1 + ε)
1

2
β1/2A(c)(1 + ε)

= βA(c),

so we have shown the contrapositive for our claim.

The derivative |Φ′n(w)| is decomposed in (2.5) into the product of n terms of the form∣∣f ′(e−iθkΦk,n(w))
∣∣, and so we can find an upper bound on |Φ′n(w)| by obtaining lower

bounds on each |Φk,n(w)− ei(θk±β)| = |Φ−1
k (z)− ei(θk±β)| for 0 ≤ k ≤ n− 1 and applying

Lemma 2.4.

We claim that, for each 0 ≤ k ≤ n− 1,

|Φ−1
k (z)− eiθk+1 | ≥ β × 8

(
a(c)

8

)2k

(2.22)

and we will show this using induction. For k = 0, (2.22) is exactly the assumption (2.19)

of this proposition. For k ≥ 1, we assume as the induction step that

|Φ−1
k−1(z)− eiθk | ≥ β × 8

(
a(c)

8

)2k−1
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and aim to obtain (2.22) by applying (2.21).

Taking A(c) = 8
(
a(c)

8

)2k−1

in (2.21) gives us

|Φ−1
k (z)− eiθ

>
k+1 | ≥ β × 16

(
a(c)

8

)2k

,

and so since 8β
(
a(c)

8

)2k

≥ 2D when k < N ∧ τD (for c sufficiently small),

|Φ−1
k (z)− eiθk+1 | ≥ |Φ−1

k (z)− eiθ
>
k+1 | − |eiθk+1 − eiθ

>
k+1 |

≥ 16β

(
a(c)

8

)2k

− 2D

≥ 8β

(
a(c)

8

)2k

,

verifying (2.22).

Then (2.22) tells us, using (2.21), that for each 0 ≤ k ≤ n− 1,

|Φ−1
k (z)− ei(θk±β)| ≥ β × 16

(
a(c)

8

)2k

, (2.23)

and so, by Lemma 2.4, for c sufficiently small,

|Φ′n(w)| =
n−1∏
k=0

|f ′k+1(Φ−1
k (z))|

≤ Anβn/2
n−1∏
k=1

β1/2

[
β × 16

(
a(c)

8

)2k
]−1/2


= (A/4)nβn/2

(
a(c)

8

)− 1
2

(2n−1)

for a universal constant A.

In the next section we will use these results with a(c) equal to L
4β . We can easily

check now that if we use this choice of a in Proposition 2.13 then, comparing (2.20)

with (2.15), if σ decays as fast as c22N

then |Φ′n(z)|ν is far smaller than cZn, for z away

from the preimages of eiθ1 , and so if we classify our regular points as those θ for which

|Φn(eσ+iθ)− 1| ≥ L/4 then we do have sup
θ∈Rn

hn+1(θ)� 1.

2.4.2 Old singular points

In Section 2.3, we established a lower bound on the nth normalising factor Zn. So to show

that it is unlikely for the (n + 1)th particle to be attached at a point in E ⊆ T, we need

to find an upper bound on
∫
E |Φ

′
n(eσ+iθ)|ν dθ, where ν := −η > 2.

We did this over certain regions in Section 2.4.1 by finding a bound |Φ′n(eσ+iθ)|ν � cZn.

In this section we will consider singular points where we can have |Φ′n(eσ+iθ)|ν � Zn.
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However, if we look at Figure 2.4 we can see that not all singular points are close to the

preimages θn ± β of the base of the most recent particle; there are also singular points

at the preimages of the base of older particle. We will therefore need to estimate the

integrand |Φ′n|ν more carefully, and show that when integrated over the singular points

around these old bases and normalised by Zn, the resulting probability is small.

The first thing we need to do is to describe precisely which points we are integrating

over. We have previously classified our points into regular points Rn and singular points

Sn by looking at the distance |Φn(w)− 1|. Points are singular when |Φn(w)− 1| < βa(c)

(for an a(c) we will specify later), and we will find a way of differentiating between the

“new” singular points around the preimages of the nth particle’s base and the “older”

singular points around the preimages of the other particles’ bases. To make this clear, we

will first give names to all of these preimages.

f3

f2

f1

Φ3

ẑ3
−

ẑ3
+

ẑ3
2

ẑ3
1

eiθ
>
3

eiθ
⊥
3

ẑ2
1

eiθ
>
2

eiθ
⊥
2

eiθ1

Figure 2.5: The construction of a cluster with three particles by composing the three
maps f3, f2 and f1. The top left diagram has labelled the four poles ẑ3

±, ẑ3
2 and ẑ3

1 of Φ′3
with text, and the markers +, × and ◦ have been used to track the images of eσ ẑ for each
pole ẑ. By following the preimages of each point in the upper-right diagram through each
map f1, f2 and f3, we can see how we defined the “lesser” poles ẑ3

2 and ẑ3
1 : for example, in

the lower-right diagram eiθ
⊥
2 is a pole of f ′1, its preimage under f2 is ẑ2

1 , and the preimage
of ẑ2

1 under f3 is ẑ3
1 . Note that the three indicated intervals may overlap slightly, or have

gaps between them, but these defects are too small to be seen in this diagram, and these ẑ
points are well-defined in both the “η = −∞” case where the intervals coincide perfectly,
and the case of finite η < −2.

Firstly, we have the two “most attractive” points: the preimages of the base of the

most recent (nth) slit. We will call these two points ẑn± = ei(θn±β). Now the other points

correspond to the bases of the n − 1 other slits in the cluster, and we will denote them

34



by ẑnj for 1 ≤ j ≤ n − 1. The base of the first slit is the image under f1 of the choice of

ei(θ2±β) which is not close to eiθ2 . We defined this earlier to be eiθ
⊥
2 , and so the point sent

to the base of the first slit by Φn is the preimage under f2 ◦ · · · ◦ fn = Φ1,n of eiθ
⊥
2 , so set

ẑn1 = Φ−1
1,n(eiθ

⊥
2 ).

In general, when the jth slit is attached to the cluster by fj , there are two points which

are mapped to the base of the slit: eiθ
>
j+1 (where the later slits are also attached), and

eiθ
⊥
j+1 , which has nothing else attached to it. Therefore, the point sent to the base of the

jth slit by Φn is the preimage of eiθ
⊥
j+1 under fj+1 ◦ · · · ◦ fn. We can see this illustrated in

Figure 2.5.

Definition. The base of the jth slit for 1 ≤ j ≤ n− 1 is the image of

ẑnj := Φ−1
j,n

(
eiθ
⊥
j+1

)
(2.24)

under Φn.

Note that on the event {n < N ∧ τD}, for all 1 ≤ j ≤ n− 1, we have

fn(ẑnj ) = ẑn−1
j , (2.25)

where we adopt the convention that ẑn−1
n−1 = eiθ

⊥
n .

Remark. We will bound |Φ′n(w)| above when w is close to ẑnj , so first we will have to show

that these points ẑnj for 1 ≤ j ≤ n− 1 are not close to the points ei(θn±β) where we have

already shown |Φ′n| is large.

Lemma 2.14. Condition on the event {n < N ∧τD}, and let 1 ≤ j ≤ n−1. Then, almost

surely,

|ei(θn±β) − ẑnj | ≥ c2n−j ,

when c is sufficiently small.

Proof. Assume for contradiction that |ei(θn+β) − ẑnj | < c2n−j . By Lemma 2.5,

|eiθn − ẑn−1
j | = |fn(ei(θn+β))− fn(ẑnj )|

= 2(ec − 1)1/4c2n−j−1
(

1 +O
(
c1/4c2n−j−1

))
<

1

2
c2n−j−1

for c smaller than some universal c0 (with (c0 − 1)1/4 < 1/4, and small enough to make

the error term irrelevant), and so

|eiθ>n − ẑn−1
j | ≤ |eiθ>n − eiθn |+ |eiθn − ẑn−1

j | < c2n−j−1
, (2.26)

since |eiθ>n − eiθn | . D � c2n−j−1
. Then, as θ>n = θn−1 ± β for some choice of ±, we

can apply this argument repeatedly until we arrive at |eiθ
>
j+1 − ẑjj | < c2j−j = c. But as

we noted after (2.25), ẑjj = eiθ
⊥
j+1 , and |eiθ

>
j+1 − eiθ

⊥
j+1 | ∼ 4c1/2 � c, and so we have our

contradiction.
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Remark. In fact the lower bound in Lemma 2.14 is fairly generous; it would take only a

small amount of extra work in the proof above to get a tighter bound of c2n−j−1
, and we

could improve this even further as we used the weak bound (ec − 1)1/4 < 1
4 in the initial

calculation. However, all we need from Lemma 2.14 is a bound which decays more slowly

than L = c2N+1
, and so we have chosen the bound which leads to the simplest possible

proof.

Remark. The following corollary (which we will not prove) is not used in the proof of this

chapter’s main results, but does answer a question we may worry about: if we know that

w is within L of some ẑnj , then is that j uniquely determined?

Corollary 2.15. On the event {n < N ∧ τD}, if 1 ≤ j < k ≤ n− 1, then almost surely

|ẑnj − ẑnk | ≥ c2n−j

for sufficiently small c.

Remark. The next result will be useful in telling us for which points θ ∈ T we can bound

|Φ′n(eσ+iθ)| above using Proposition 2.13, and will later help us locate those points for

which Proposition 2.13 does not provide an upper bound.

Lemma 2.16. Condition on the event {n < N ∧ τD}. Let w ∈ ∆. For all c sufficiently

small, if |Φn(w)− 1| ≤ L
4 , then either min

±
|w− ei(θn±β)| ≤ L, or there exists some 1 ≤ j ≤

n− 1 such that

|Φj,n(w)− eiθ
⊥
j+1 | ≤ β

4

(
L

β

)2j

,

almost surely.

Proof. Suppose that there is no such j. We will show that min± |w − ei(θn±β)| ≤ L. We

now claim that |Φj,n(w) − eiθ
>
j+1 | ≤ β

4

(
L
β

)2j

for all 0 ≤ j ≤ n − 1 (where Φ0,n = Φn and

θ>1 = θ1 = 0). For j = 0 the claim is the true by assumption, and if the claim is true for

0 ≤ j < n−1, then by Lemma 2.6, as |Φj,n−eiθj+1 | ≤ β
4

(
L
β

)2j

+|eiθ
>
j+1−eiθj+1 | ≤ β

2

(
L
β

)2j

,

for sufficiently small c,

min(|Φj+1,n(w)− eiθ
>
j+2 |, |Φj+1,n(w)− eiθ

⊥
j+2 |) ≤

1
4β

2
(
L
β

)2j+1

4(ec − 1)1/2

(
1 +

1

2

)
=

3β/2

4(ec − 1)1/2
× β

4

(
L

β

)2j

≤ β

4

(
L

β

)2j

since β ∼ 2(ec−1)1/2 for small c. But we supposed that |Φj+1,n(w)−eiθ
⊥
j+2 | > β

4

(
L
β

)2j+1

,

and so the above shows that |Φj+1,n(w)− eiθ
>
j+2 | ≤ β

4

(
L
β

)2j+1

and by induction our claim

holds. Finally, one more application of Lemma 2.6 after the j = n − 1 case of our claim,
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|Φn−1,n(w)− eiθn | ≤ β
2

(
L
β

)2n−1

, tells us that min
±
|w− ei(θn±β)| ≤ 3β/2

16(ec−1)1/2β
(
L
β

)2n

� L,

as required.

Remark. We intend to use this lemma to find a precise expression for our set Sn of singular

points and then we can make a precise estimate on the size of |Φ′n(eσ+iθ)| for θ ∈ Sn as we

did in Lemma 2.8. For a singular point w, Lemma 2.16 tells us that for some j, Φj,n(w)

is close to eiθ
⊥
j+1 , and we now need to turn that into an estimate for the distance between

w and Φ−1
j,n(eiθ

⊥
j+1) = ẑnj .

Corollary 2.17. On the event {n < N ∧ τD}, the following is almost surely true: For all

c sufficiently small, for any w ∈ ∆, if |Φn(w)−1| ≤ L
4 then either min± |w−ei(θn±β)| ≤ L

or there exists some 1 ≤ j ≤ n− 1 such that

|w − ẑnj | ≤ An−j
β

4

(
L

β

)2j

,

where A is some deterministic universal constant.

Proof. To deduce this from Lemma 2.16, we need only show that there is some constant

A such that |Φj,n(w) − eiθ
⊥
j+1 | ≤ β

4

(
L
β

)2j

=⇒ |w − ẑnj | ≤ An−j β4

(
L
β

)2j

. Fix some

1 ≤ j ≤ n− 1. We will show that for j ≤ k ≤ n− 1, |Φk+1,n(w)− ẑk+1
j | ≤ A|Φk,n(w)− ẑkj |.

Fix a path γ : (0, 1] → ∆ with limε↓0 γ(ε) = ẑkj , γ(1) = Φk,n(w), and |γ(t) − ẑkj | ≤
|Φk,n(w)− ẑkj | for all t ∈ (0, 1]. We can also choose γ in such a way that it has arc length

` :=
∫
γ |dz| ≤ 2|Φk,n(w)− ẑkj |. By the fundamental theorem of calculus,

|Φk+1,n(w)− ẑk+1
j | = |f−1

k+1(Φk,n(w))− f−1
k+1(ẑkj )|

=

∣∣∣∣∫
γ
(f−1
k+1)′(ζ) dζ

∣∣∣∣
≤ `× sup

ζ∈γ(0,1]
|(f−1

k+1)′(ζ)|

=
`

infω∈f−1
k+1(γ(0,1]) |f ′k+1(ω)|

.

Now there must be some constant M ≥ 1 such that |ω − eiθk+1 | ≥ β/M for all ω ∈
f−1
k+1(γ(0, 1]). Otherwise, if |ω − eiθk+1 | < β/M , then it is easy to check using the explicit

form of fc from [21] that |fk+1(ω)− eiθk+1(1 + d)| = O(β/M2), and so

|ẑkj − eiθk+1(1 + d)| ≤ |fk+1(ω)− eiθk+1(1 + d)|+ |fk+1(ω)− ẑkj | ≤
1

2
d

for sufficiently large M , contradicting |ẑkj | = 1. Hence by Lemma 2.4, there is a constant

A such that

inf
ω∈f−1

k+1(γ(0,1])
|f ′k+1(ω)| ≥ 2A−1.
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We therefore obtain

|Φk+1,n(w)− ẑk+1
j | ≤ A|Φk,n(w)− ẑkj | (2.27)

for all j ≤ k ≤ n− 1, and so

|w − ẑnj | = |Φn,n(w)− ẑnj | ≤ An−j |Φj,n(w)− ẑjj | ≤ A
n−j β

4

(
L

β

)2j

,

as required.

If we let Lnj be the upper bound in Corollary 2.17, then we now have a necessary

condition for points to be singular, based only on their location: if eσ+iθ ∈ ∆ is not within

Lnj of ẑnj for some j, then θ is regular. The set of singular points Sn is therefore contained

in the union of only n+ 1 intervals centred around eθn±β and each ẑnj .

We can now find a precise estimate for |Φ′n| on Sn as we did in Lemma 2.8. The proof

will also be similar to that of Lemma 2.8.

Lemma 2.18. Condition on the event {n < N ∧ τD}, and let 1 ≤ j ≤ n − 1. If c is

sufficiently small, then for all w ∈ ∆ with |w| = eσ and |w − ẑnj | ≤ An−j β4

(
L
β

)2j

, for A

as in Corollary 2.17, we have

|Φ′n(w)| ≤ Bnc
n−j

4
+1c

1
2

(1−2−j) 1

c2n−j
|w − ẑnj |−(1−2−j)

where B is a universal constant.

Proof. We will complete the proof by finding bounds on |Φj,n(w)−eiθ
⊥
j+1 |; an upper bound

to show |Φ′j,n(w)| is small, and a lower bound to show |Φ′j(Φj,n(w))| is small. The rest of

the proof will be similar to the way we deduced Lemma 2.8 from Proposition 2.7.

First, we will estimate the positions of Φn−1,n(w),Φn−2,n(w), . . . ,Φj,n(w). As in the

proof of Corollary 2.17, for j + 1 ≤ k ≤ n,

|Φk−1,n(w)− ẑk−1
j | = |fk(Φk,n(w))− fk(ẑkj )|

≤ 2|Φk,n(w)− ẑkj | × sup
|ζ−ẑkj |≤|Φk,n(w)−ẑkj |

|f ′k(ζ)|, (2.28)

so we need only bound |f ′k(ζ)| for ζ close to ẑkj . We will also need inductively that

|Φk,n(w)− ẑkj | is small in order to say that ζ is close to ẑkj .

Claim. For j + 1 ≤ k ≤ n, |Φk,n(w)− ẑkj | ≤ An−jc3×2n for sufficiently small c.

The claim is true for k = n, as

|w − ẑnj | ≤ An−jc1/2

(
1

2
c2n+1−1/2

)2j

≤ An−jc2n+j+1−2j−1 ≤ An−jc2n+2−2n .
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Then, if the claim holds for all l ≥ k, we have

|Φl,n(w)− ẑlj | ≤ An−jc3×2n ≤ 1

2
c2l−j

for all sufficiently small c, and so, by Lemma 2.14 and the triangle inequality, for all ζ

such that |ζ − ẑlj | ≤ |Φl,n(w)− ẑlj |, we have min± |ζ − ei(θl±β)| ≥ 1
2c2l−j . Hence by Lemma

2.4,

|f ′k(ζ)| ≤ A2
c1/2

c2l−j−1

Therefore, by (2.28),

|Φk−1,n(w)− ẑk−1
j | ≤ 2n−k+1|Φn,n(w)− ẑnj | ×

n∏
l=k

(
A2c

1
2
−2l−j−1

)
≤ (2A2)n−k+1An−j

β

4

(
L

β

)2j

c
n−k+1

4 c−
∑n−j−1
l=k−j−1 2l

≤
[
(2A2)n−k+1c

n−k+1
4

]
An−j

(
c2n+1− 1

2

)2j

c−(2n−j−2k−j−1)

≤ An−jc2n+j+1−2j−1−2n−j+2k−j−1

≤ An−jc2n+2−2n−1−2n−1

= An−jc3×2n ,

and so our claim holds by induction.

We can also see, from the same computation, that

|Φj,n(w)− eiθ
⊥
j+1 | = |Φj,n(w)− ẑjj | ≤ c3×2n . (2.29)

Then for each j + 1 ≤ k ≤ n, as c3×2n ≤ 1
2c2k−j , we have by the triangle inequality and

Lemma 2.14 that |Φk,n(w)− ei(θk±β)| ≥ 1
2c2k−j , and so by Lemma 2.4,

|Φ′j,n(w)| =
n∏

k=j+1

|f ′k(Φk,n(w))|

≤
n∏

k=j+1

A2
β1/2

(1
2c2k−j )1/2

≤ (2A2)n−jc
n−j

4
−
∑n−j−1
k=0 2k

= (2A2)n−jc
n−j

4
−2n−j+1 (2.30)

for sufficiently small c.

We will next establish an upper bound on |Φ′j(Φj,n(w))|. By the arguments used to

prove Corollary 2.17, we have a lower bound on |Φj,n(w) − eiθ
⊥
j+1 | as well as the upper

bound we just established:

|Φj,n(w)− eiθ
⊥
j+1 | ≥ A−(n−j)|w − ẑnj |, (2.31)
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where A is a constant. The upper bound in (2.29) is less than c2n+1
, and so we can apply

(the proof of) Lemma 2.8 to say

|Φ′j(Φj,n(w))| ≤ (A′)j

A
n−j

2

c
1
2

(1−2−j)

|w − ẑnj |1−2−j
, (2.32)

and so we can combine (2.30) and (2.32) to obtain

|Φ′n(w)| = |Φ′j,n(w)| × |Φ′j(Φj,n(w))|

≤
(

2A2√
A

)n−j
(A′)jc

n−j
4
−2n−j+1c

1
2

(1−2−j)|w − ẑnj |−(1−2−j)

≤ (A′′)nc
n−j

4
+1c

1
2

(1−2−j) 1

c2n−j
|w − ẑnj |−(1−2−j)

where A′′ = max(2A2√
A
, A′) is a constant.

Corollary 2.19. On the event {n < N ∧ τD}, for 1 ≤ j ≤ n − 1 the following is almost

surely true: for Lnj := An−j β4

(
L
β

)2j

, we have

∫ Lnj

−Lnj
|Φ′n(ẑnj e

σ+iϕ)|ν dϕ ≤ Bn
ν

cν(n−j
4

+1)

cν2n−j
c
ν
2

(1−2−j)σ−[ν(1−2−j)−1] (2.33)

where Bν is a constant depending only on ν := −η.

Proof. As |ẑnj eσ+iϕ− ẑnj | � (σ2 +ϕ2)1/2, the bound follows immediately from Lemma 2.18

(in the same way as we obtained Proposition 2.9 from Lemma 2.8).

2.5 Proof of chapter’s main results

With the results of the previous sections, we are finally ready to prove our main scaling

limit result, that the cluster Kc
N converges in distribution, as c → 0, to an SLE4 cluster.

To help picture the sets Sn,j and Rn, it may be useful to refer to Figure 2.4.

Proof of Theorem 2.3. We want to show that hn+1(Fn) =
∫
Fn
hn+1(θ) dθ is small, and so

we will decompose Fn into several sets.

Let Rn = {θ ∈ T : |Φn(eσ+iθ)− 1| > L
4 }, Sn = Fn \Rn. We will further decompose Sn:

first define

Tn = {θ ∈ Sn : D < min
±
|eσ+iθ − ei(θn±β)| ≤ L},

and for 1 ≤ j ≤ n− 1 define

Sn,j = {θ ∈ Sn : |eσ+iθ − ẑnj | ≤ Lnj },

where Lnj is the bound appearing in Corollary 2.17, then Corollary 2.17 tells us that
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Sn = Tn ∪
(⋃n−1

j=1 Sn,j

)
. We can then split the integral as

hn+1(Fn) ≤ hn+1(Rn) + hn+1(Tn) +
n−1∑
j=1

hn+1(Sn,j). (2.34)

We showed in Section 2.3.2 that hn+1(Tn) = o(cγ) for any fixed γ > 0, and so we only

need to bound hn+1(Rn) and each hn+1(Sn,j). Bounding hn+1(Rn) is simple using Propo-

sition 2.13, and Proposition 2.9, as for any θ ∈ Rn, we have

|Φ′n(eσ+iθ)|ν

Zn
≤ Aνnβνn/2(L/32β)−

ν
2

(2n−1)

Anc
ν
2

(1−2−n)σ−[ν(1−2−n)−1]
.

Since L := c2N+1
, and 32β ≤ 1 for sufficiently small c, we have(

L

32β

)− ν
2

(2n−1)

≤ c−
ν
2

2N+1(2n−1) ≤ c−ν2N+n ≤ c−ν22N
.

Since σ ≤ c221/c

, we also have σν(1−2−n)−1 ≤ σ
ν
2
−1 ≤ c( ν

2
−1)221/c

. Hence

(L/32β)−
ν
2

(2n−1)

σ−[ν(1−2−n)−1]
≤ c( ν2−1)221/c−ν22N

,

which decays extremely quickly compared to the growth of the exponential term A(ν−1)n

and the remaining powers of c. Hence we can write

|Φ′n(eσ+iθ)|ν ≤ c4Zn

for sufficiently small c, and so hn+1(Rn) = o(c4). Finally, we will bound hn+1(Sn,j). Using

the bounds from Proposition 2.9 and Corollary 2.19, we have

hn+1(Sn,j) �
1

Zn

∫ Lnj

−Lnj
|Φ′n(ẑnj e

σ+iϕ)|ν dϕ

≤
Bn
ν
cν(

n−j
4 +1)

cν2n−j c
ν
2

(1−2−j)σ−[ν(1−2−j)−1]

Anc
ν
2

(1−2−n)σ−[ν(1−2−n)−1]

=

(
Bν
A

)n
cν(n−j

4
+1)c−

ν
2

(2−j−2−n)︸ ︷︷ ︸
o(c5)

c−ν2n−jσν(2−j−2−n)

� c5

(
Bν
A

)n
c−ν2n−jσν2−n ,

then as σ ≤ c221/c

, we have c−ν2n−jσν2−n ≤ c
ν
(

221/c−n−2n−j
)
≤ c

ν
(

221/c−N−2N
)

which

decays faster than exponentially in N . Therefore hn+1(Sn,j) = oT (c5), and so we have∑n−1
j=1 hn+1(Sn,j) = oT (c4), establishing (2.1). The second bound, (2.2), comes immedi-

ately from Corollary 2.12.

Remark. We have now seen that (θcn)n≤bT/cc is very close to a simple symmetric random
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walk with step length β ∼ 2c1/2, and so we expect (ξct )t∈[0,T ] = (θbt/cc)t∈[0,T ] will converge

in distribution to (2Bt)t∈[0,T ], where B is a standard Brownian motion. We now state

a result by McLeish [22] which gives conditions for near-martingales to converge to a

diffusive limit.

Proposition 2.20 (Corollary 3.8 of [22]). Let (Xn,i)n,i∈N be an array of random variables,

J = [0, T ] for 0 < T < ∞, and (kn)n∈N a sequence of right-continuous functions J →
N ∪ {0}. Write Wn(t) =

∑kn(t)
i=1 Xn,i for t ∈ J , and assume the following three limits hold

in probability as n→∞:

kn(t)∑
j=1

E
[
X2
n,j1[|Xn,j | > ε]|Xn,1, . . . , Xn,j−1

]
→ 0 for all ε > 0, (2.35)

kn(t)∑
j=1

E
[
X2
n,j |Xn,1, . . . , Xn,j−1

]
→ t, (2.36)

kn(t)∑
j=1

|E [Xn,j |Xn,1, . . . , Xn,j−1]| → 0, (2.37)

for all t ∈ J . Then Wn → B weakly in D(J) as n→∞, where B is a standard Brownian

motion.

Proof of Proposition 2.1. The bound P[τD ≤ bT/cc] = OT (c3) is obtained immediately

from Theorem 2.3, by observing for 1 ≤ j ≤ bT/cc that

P[τD ≤ j] ≤ Ac4 + P[τD ≤ j − 1].

For the convergence of the driving function, we will apply Proposition 2.20, replacing

n → ∞ by c → 0 (this can be justified by showing the limit holds for any sequence of

capacities cn tending to zero as n→∞) and kn(t) by bt/cc. Then Xc,j = θj − θj−1. Note

that we will have 4t rather than t as the limit in (2.36), corresponding to a limit of 2B

instead of B.

The expectation of the jth term in (2.35) is

E
∫ π

−π
ϕ2hj(θj−1 + ϕ)1[|ϕ| > ε] dϕ ≤ π2E(P(|θj − θj−1| > ε | θ1, . . . , θj−1))

≤ π2P(τD ≤ j)

when c is sufficiently small so β + D < ε. Using our bound on P[τD ≤ bT/cc], we see

(2.35) tends to zero in L1 and hence also in probability.
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Next, since hj approximates 1
2(δθj−1−β + δθj−1+β), the jth term in (2.36) is

∫ π

−π
ϕ2hj(θj−1 + ϕ) dϕ =

∫ β+D

β−D
ϕ2hj(θj−1 + ϕ) dϕ+

∫ −β+D

−β−D
ϕ2hj(θj−1 + ϕ) dϕ+ Ej

= (β +O(D))2

∫
T\Fj−1

hj(θ) dθ + Ej

= β2 +O(βD) + E′j

where E′j is the sum of two terms:∫
Fj−1

θ2hj(θ) dθ ≤ π21[τD ≤ bt/cc] + π2Ac4

and

(β2 +O(βD))

∫
Fj−1

hj(θ) dθ ≤ 2β21[τD ≤ bt/cc] + 4Ac5

(both bounds come from Theorem 2.3). Hence (2.36) is

bt/cc∑
j=1

∫ π

−π
ϕ2hj(θj−1 + ϕ) dϕ = bt/ccβ2 +O

(
βD

c

)
+

bt/cc∑
j=1

E′j .

Then

E

bt/cc∑
j=1

|E′j |

 ≤ ⌊ t
c

⌋ (
(π2 + 2β2)P[τD ≤ bt/cc] + π2Ac4 + 4Ac5

)
= OT (c2),

so (2.36) converges in L1 to limc→0(bt/ccβ2) = 4t for any t ∈ [0, T ] as c→ 0.

Finally, for the symmetry condition we can combine (2.1) and (2.2) to bound the jth

term in (2.37):∣∣∣∣∫ π

−π
ϕhj(θj−1 + ϕ) dϕ

∣∣∣∣ ≤ ∣∣∣∣∫ β+D

β−D
ϕ(hj(θj−1 + ϕ)− hj(θj−1 − ϕ)) dϕ

∣∣∣∣+ πhj(Fj−1)

≤ π1[τD ≤ bt/cc] + (β +O(D))Ac11/4 +Ac4,

so as with (2.35), taking expectations it is simple to show that (2.37) tends to zero in L1

and hence in probability as c→ 0.

2.6 Alternative particle shapes

We believe that the results obtained above when using particles of the form (1, 1 + d] can

be extended to a more general family of particles. In this case, depending on the form

of the particles chosen, we believe an SLEκ cluster can be obtained as the limit of an

ALE(0, η) for η < −2 for any κ ∈ [4,∞] (where SLE∞ is the growing disc t 7→ etD).
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We present below a few definitions and statements to make this conjecture precise,

and some sketch arguments to support our claims.

Definition. Let P be a family of subsets of ∆, with P ∈ P if and only if:

(i) P ∪ D is closed and bounded,

(ii) for all z ∈ P , we have z∗ ∈ P ,

(iii) P ∩ D = {1}, and

(iv) P is convex.

Note that for every P ∈ P, there is a unique map fP : ∆ → ∆ \ P of the form

fP (z) = ecz +O(1) near ∞ for some c = c(P ) > 0. As with the case P = (1, 1 + d] there

is also a unique 0 < β(P ) < π such that fP (e±iβ(P )) = 1.

Condition (iii) is necessary to obtain an SLE scaling result. If the particle has a non-

trivial base, then the basepoints no longer sit in increasingly deep “fjords” of low harmonic

measure, so the most recent basepoints are no longer signficiantly more attractive than

the older basepoints.

Condition (iv) ensures the basepoints of each particle are the areas of lowest harmonic

measure. For example the particle Pθ,` = (1, 1 + eiθ] ∪ (1, 1 + e−iθ] satisfies (i), (ii) and

(iii), but (fP )′ has an additional singularity at 1 as well as at e±iβ if 0 < θ < π. For small

values of θ the singularity at 1 is in fact stronger than those at e±iβ.

We conjecture that condition (iv) could be substantially weakened to the condition that

the two basepoints e±iβ maximise the local dimension of harmonic measure on ∂(∆ \ P ).

As defined in [20], for z on the boundary, let Bδ(z) be the set of points on the boundary

at distance ≤ δ from z (measured without crossing the boundary, so for example the two

“sides” of a slit particle are measured separately). Then if ω is harmonic measure on the

boundary, i.e. the pushforward of (normalised) Lebesgue measure by fP , the lower local

dimension of harmonic measure at z is

lim inf
δ→0

logωBδ(z)

log δ
.

The upper local dimension is defined similarly, with lim sup. Note that a higher local

dimension corresponds to lower harmonic measure near a point. Then we could replace

condition (iv) with the condition that the lower local dimension at e±iβ is strictly greater

than the upper local dimension at any other points. This introduces a large number of

extra technicalities, including the fact that there may be any number of preimages of 1

under fP (so we define β as the largest positive argument of a preimage of 1) and that

the two additional examples of particles we have given below have infinite lower local di-

mension.

Aside from particles of the form (1, 1 + d], examples of particles in this family are

discs Dr of radius r > 0 and centre 1 + r, and line segments tangent to T, of the form

T` = [1− i`, 1 + i`] for ` > 0.
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Definition. Given a family (Pc)c>0 of particles from P, indexed by capacity so that

c(Pc) = c, we will call the family κ-stable for κ ∈ [0,∞] if β(Pc)2/c→ κ as c→ 0.

We can compute the maps fDr and fT` by elementary methods, and so establish that

both families are stable and compute their respective κs. We write both maps here so

that the reader can satisfy themselves that they have the same important properties as

the map f (1,1+d].

For r > 0 we have βr = πr
1+r and define mr : ∆→ H by

mr(z) = eiβr
z − e−iβr
z − eiβr

, (2.38)

and ψr : H→ ∆ \Dr by

ψr(w) =
logw + iβ

logw − iβ
, (2.39)

where the logarithm is defined by 0 < argw < π. Then we have fDr : ∆ → ∆ \ Dr

given by fDr = ψr ◦mr. It is then relatively easy to compute that the capacity of Dr,

c(Dr) ∼ 1
6π

2r2 and so, suitably reparameterised, (fDr)r>0 is 6-stable.

The map for T` is somewhat more complicated. Following the Schwarz–Christoffel

computations in [28] (adapted for a symmetric tangent), there are two important quantities

as ` → 0: e` ∼ ` (closely related to βT`) and y` = 2 − 1
6πe

3
` + o(e3

` ) (related to the

capacity). Using these, we can define maps m` : ∆ → H, ψ` : H → H \ (two arcs), and

ϕ` : H \ (two arcs)→ ∆ \ T`, given by

m`(z) = iy`
z − 1

z + 1
, (2.40)

ψ`(w) =
1

2π
log

(
w − e`
w + e`

)
− 1− e`/π

w
, (2.41)

ϕ`(ζ) =
2ζ + i

2ζ − i
. (2.42)

Then fT` = ϕ ◦ ψ` ◦m`. Some calculations then give β2
` /c(T`) ∼ 12π

` as ` → 0, and so,

again reparameterised by capacity, (T`)`>0 is ∞-stable.

Our main conjecture is that we have a version of Proposition 2.1 for every family of

κ-stable particles, and so the resulting cluster converges in distribution to an SLEκ.

To grow most of the particles in P it is necessary to use Loewner’s equation (1.4)

with a driving measure on T rather than a driving function. We will not go into detail of

this here, but refer the reader to [17] or the following chapter of this thesis. For a given

particle P with capacity c, we denote the driving probability measure (evolving in time)

by (µPt )0≤t≤c.

Conjecture. Fix T > 0 and let η < −2. Suppose (Pc)c>0 is a κ-stable family of particles

from P for κ ∈ [4,∞]. Let (θcn)n≥1 be the sequence of angles we obtain from the ALE(0, η)

process using particle Pc and let σ ≤ c0(Pc), some function which decays quickly as c→ 0.

Let τD = inf{n ≥ 2 : min± |θn − (θn−1 ± βc)| > D}, where D is a suitable function of
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Figure 2.6: Clusters composed of tangent particles T` (top) and disc particles Dr (bot-
tom), generated with an angle sequence θk = βXk, for a simple symmetric random walk
Xk, coloured according to the order of attachment (the earliest particles in blue and the
latest in red). Note that these are not simulations of an ALE process, but illustrations of
what we conjecture their behaviour to be. For the tangent and disc particles (and even
for the slit), the σ necessary for convergence to an SLE is far too small to make simulating
ALE practical in the regime this paper considers. The clusters on the right have 8,000
particles each and a total capacity around 0.2. The bottom-right cluster is close to an
SLE6, and the top-right cluster approximates an SLEκ with κ around 377.

σ and c.

As c→ 0,

P[τD ≤ bT/cc] = O(cγ)

for some γ > 1.

The driving measure for the whole cluster is dξct (ϕ) = dµPc

t−cbt/cc(θbt/cc+1 + ϕ) for

0 ≤ t ≤ T . Then if κ <∞,

(ξct )t∈[0,T ] → (δ√κBt)t∈[0,T ] in distribution as c→ 0,

as a random element of the space of finite measures on S = T× [0, T ] (equipped with the

bounded Wasserstein metric), and if κ = ∞ then (ξct )t∈[0,T ] converges in the same sense

to Lebesgue measure 1
2π dϕdt on S.

Conjecture (Generalisation of Theorem 2.2, simple corollary of the previous conjecture).

For η, σ, κ and (Pc)c>0 as in the previous conjecture, let the ALE(0, η) cluster with N =

bT/cc particles of capacity c be Kc
N . As c→ 0, if κ <∞ then Kc

N converges in distribution

as a random element of K to a radial SLEκ cluster of capacity T . If κ = ∞ then Kc
N
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converges in K to the disc eTD.

We believe the proof of the first conjecture is fairly straightforward for particles where

the map fPc is known explicitly, such as T` and Dr. As the support of µPc
t is o(1)

as c → 0, proving convergence of the driving measure is reduced to proving the angle

sequence approximates a symmetric random walk. This follows quite simply if we can

prove similar bounds to those in Theorem 2.3, which we believe is simply a matter of

carefully verifying the type of explicit calculations we were able to do for f (1,1+d].

A proof for general κ-stable families will require more generalised estimates of the

maps and their derivatives for particles in the class P, which we have not yet developed.

Remark. One question which naturally arises is the significance of the κ = 4 appearing

in Theorem 2.2 for the slit particle. In fact we strongly believe that this is the minimal

attainable κ for our ALE(0, η < −2) models. Geometrically, slits (1, 1 + d] are the only

particles with “zero width”, and κ = 4 marks a phase transition for SLE, since SLE4 is a

simple curve, and SLEκ for κ > 4 is never a simple curve.

Proposition 2.21. For 0 ≤ κ < 4 there is no family of κ-stable particles in P.

Proof idea. First note that the family of slit particles (Qc)c>0 = ((1, 1 + d(c)])c>0 is 4-

stable. For any particle P ∈ P, we can express (fP )−1 as the solution to the reverse

Loewner equation with a symmetric driving measure, and then eiβP = limε↓0(fP )−1(eiε).

An explicit calculation shows that if P has capacity c then βP ≥ βQc .

Remark. We are confident that an SLEκ can be realised as the limit of an ALE(0, η) model

for every κ ∈ [4,∞]. For example, isoceles triangular particles joined to the circle at the

apex, with vertex angle θ, can interpolate between the slit particle (1, 1 + d] (the θ → 0

limit) and the tangent T` the θ → π limit). We can therefore interpolate between κ = 4

and κ =∞, realising every value in (4,∞) as θ varies in (0, π).
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Chapter 3

ALE with large η and the

Laplacian path model

In this chapter we will demonstrate convergence of the ALE with η > 1 started from a

non-trivial initial configuration to the (geodesic) Laplacian path model (LPM).

3.1 Laplacian path model

The LPM was defined in 2002 by Carleson and Makarov [4] to generalise several models

of needle-like growth in mathematical physics. A number of properties of the model and

related models were derived in [4] and the PhD thesis of Göran Selander [29].

Definition. Let K0 be the union of rays of the form eiθj (1, 1 + dj ] for j = 1, . . . , k.

Let ∆0 = ∆ \ K0, and ΦLPM
0 the unique conformal map ΦLPM

0 : ∆ → ∆0 satisfying

ΦLPM
0 (z) = ec0z +O(1) as z →∞ for some positive c0.

We define the LPM cluster with parameter η, which has k growing slits whose tips at

time t > 0 are at ajt ∈ ∆ \K0, via Loewner’s equation. We have the driving measure

µLPM
t =

k∑
j=1

pjtδφjt
,

where δ
φjt

is the preimage of ajt under ΦLPM
t , and pjt =

|(ΦLPM
t )′′(eiφ

j
t )|−η

Zt
, and Zt =∑k

j=1 |(ΦLPM
t )′′(eiφ

j
t )|−η.

Remark. We can think of the growth of each slit in the geodesic LPM at time t as being

in the direction of the hyperbolic geodesic from ajt to∞ in ∆\Kt, at a speed proportional

to |(ΦLPM
t )′′(eiφ

j
t )|−(η−1).

Remark. In the definition of pjt we use the second rather than first derivative of the

cluster map ΦLPM
t . In [4], Carleson and Makarov obtain this definition by considering

the Laplacian field ∇Gt, where Gt is the Green’s function of ∆ \ Kt, given by Gt(z) =

log |(ΦLPM
t )′(z)|. Equally, we could derive the expression for pjt by considering the limit

of the regularised ALE density with η > 1. For σ > 0, let µσt be the ALE measure on
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T, i.e. the measure with density hσ(θ) ∝ |(ΦLPM
t )′(eσ+iθ)|−η. If η > 1 then as σ → 0 the

density becomes concentrated around the zeroes of (ΦLPM
t )′ at φjt for j = 1, . . . , k, and

|(ΦLPM
t )′(eσ+iφjt )| ∼ σ|(ΦLPM

t )′′(eiφ
j
t )|. Hence µσt → µLPM

t as σ → 0.

Remark. The η above corresponds to η− 1 in [4]; we have shifted it to match the η in the

corresponding ALE.

Almost all known results about the Laplacian path model appear in [4] and [29].

In [4], Carleson and Makarov defined both the geodesic LPM above and the needle

LPM, in which the cluster is a collection of straight slits which grow at speed proportional

to |(ΦLPM
t )′′(eiφ

j
t )|−(η−1).

Selander examined in his PhD thesis [29] a version of the geodesic LPM in which the

weights pjt are fixed constants, and the needle LPM with growth speeds proportional to

harmonic measure at the tips, which corresponds to η = 3/2. Each of these can be viewed

as a simplification of a “non-branching DLA”.

For the needle LPM with η = 3/2, Selander proved results about the stability of sta-

tionary solutions: slit configurations in which the ratio of lengths remains constant for all

t ≥ 0. For his modified geodesic model, he proved convergence as t → ∞ to a stationary

configuration determined by the weights, when started from any initial configuration.

For a simplified “chordal” geodesic LPM, in which finitely many curves grow from

the tip of an infinite half-line, Carleson and Makarov proved an analogue of the result

in Chapter 4. Starting the process from a two-arm configuration, they showed that if

η < 2 then both arms always survive, while there are configurations in which only one

arm survives if η > 2. A number of the techniques they developed for treating the chordal

case are used in later parts of this thesis to analyse the ALE and non-chordal LPM.

In the non-simplified geodesic LPM, they also showed that the completely symmetric

three-armed cluster was stable for 1 < η < ηc and unstable for η > ηc, for a critical value

ηc = 18
3+4 log 2 ≈ 3.11815.

They also proved limiting results for the simpler “needle” LPM, and made a number

of conjectures about the geodesic LPM.

Although little progress has been made since 2002 on analysing the geodesic LPM,

various modifications have been studied and applied. In [12], Gubiec and Szymczak apply

a similar construction to model finger growth in the half-plane.

The LPM and similar models have also been used to model the development of cracks

in materials and formation of systems of rivers and streams. In particular, the chordal

geodesic LPM with two needles at the tip of a half-line can be used to model the bifurcation

of a stream. Carleson and Makarov proved that the angle between the two resulting

streams in the chordal LPM must be 2π/5 (also predicted by other authors using conformal

mappings [13] [7]), which agrees with the average angle of 72◦ measured in a Florida stream

system [6] [35].
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3.2 Main result

The main theorem of this chapter concerns convergence of the ALE to the Laplacian path

model’s cluster started from the same initial conditions.

Theorem 3.1. For a fixed T > 0, let (ΦALE
t )t∈[0,T ] be the ALE(α, η) map started from

initial cluster K0∪D, where K0 =
⋃k
j=1 e

iφj0(1, 1 +dj ] for dj > 0 and distinct φj0 ∈ [0, 2π).

Let µALE
t be the driving measure for ΦALE, i.e. µALE

t = δθbt/cc+1
. Let the parameters be

α = 0, η > 1 and σ = cγ for a γ = γ(η) we will specify later.

Let (ΦLPM
t )t∈[0,T ] be the map for the LPM started from the same initial conditions, and

let µLPM
t be the driving measure µLPM

t =
∑

j p̄
j
tδφ̄jt

.

Then as c → 0, µALE
t ⊗m[0,T ] converges in distribution to µLPM

t ⊗m[0,T ] as random

elements of the space of measures S = T × [0, T ], where m[0,T ] is normalised Lebesgue

measure on [0, T ].

In particular this means if KALE
t and KLPM

t are the respective clusters at time t, we

have KALE
T → KLPM

T weakly as a random element of the space of compact subsets of C
(equipped with the Carathéodory topology).

To show the convergence of the ALE model to the LPM, we introduce two intermediate

models which we will call the auxiliary ALE, and the multinomial model.

The auxiliary ALE will have growth exactly at the tips, essentially reducing the ALE

process, which is supported on T at each step, to a finite dimensional process supported

on k atoms like the LPM.

The multinomial model will be introduced later to replace the regularised derivative

in the ALE with the second derivative on the boundary.

Definition. Let K0 be of the same form as above, and Φ∗0 = ΦLPM
0 . We will choose an

attachment point θ as we do for the ALE, but before attaching a particle to that point, we

rotate the entire cluster so that θ lies exactly at the tip of one of the slits. More precisely,

at step n we will still have a configuration of k curves. Let the preimage of the jth tip

under Φ∗n be φ̄jn. Choose θ∗n+1 according to the conditional density

h(θ | θ1, . . . , θn) =
1

Z∗n
|(Φ∗t )′(eσ+iθ)|−η,

and if jn = argminj |eiθ
∗
n+1 − eiφ̄

j
n |, let θ̂∗n+1 = φ̄jnn , and δn+1 = θ∗n+1 − θ̂∗n+1.

Then if Rθ(z) = eiθz, set

Φ∗n+1 = Rδn+1 ◦ Φ∗n ◦R−δn+1 ◦ fθ∗n+1
.

Since fθ ◦R−δ = R−δ ◦ fθ+δ, we can write Φ∗n in two ways:

Φ∗n = Rδ1+···+δn ◦ Φ0 ◦R−δ1 ◦ fθ∗1 ◦R−δ2 ◦ · · · ◦R−δn ◦ fθ∗n
= Rδ1+···+δn ◦ Φ0 ◦R−(δ1+···+δn) ◦ fθ∗1+δ2+δ3+···+δn ◦ fθ∗2+δ3+···+δn ◦ · · · ◦ fθ∗n , (3.1)

50



and this latter expression is also equal to

Rδ1+···+δn ◦ Φ0 ◦R−(δ1+···+δn) ◦ fθ̂∗1+δ1+···+δn ◦ fθ̂∗2+δ2+···+δn ◦ fθ̂∗n+δn
.

3.3 Convergence of models

3.3.1 ALE to auxiliary model

We will frequently use a lemma from [33], so we state it here.

Lemma 3.2 (Lemma 11 of [33]). Suppose z0 ∈ ∆, T > 0 and ξ0 : (0, T ] → R are given

and let

Λt =

∫ t

0

2|u0
s(z0)|2ds

|(u0
s)
′(z0)||u0

s(z0)e−iξ
0
T−s − 1|2

.

There exists some absolute constant A such that, for all |z| > 1 satisfying

|z − z0| ≤ A−1 inf
0≤t≤T

 |u0
t (z0)e−iξ

0
T−t − 1|

|(u0
t )
′(z0)|

∧

(∫ t

0

|(u0
s)
′(z0)|

|u0
s(z0)e−iξ

0
T−s − 1|3

ds

)−1
 , (3.2)

we have, for all 0 ≤ t ≤ T ,∣∣∣∣log
u0
t (z)− u0

t (z0)

(z − z0)(u0
t )
′(z0)

∣∣∣∣ ≤ A|z − z0|
∫ t

0

|(u0
s)
′(z0)|ds

|u0
s(z0)e−iξ

0
T−s − 1|3

(3.3)

(where we interpret the left hand side as being equal to 0 if z = z0) and∣∣∣∣log
(u0
t )
′(z)

(u0
t )
′(z0)

∣∣∣∣ ≤ A|z − z0|
∫ t

0

|(u0
s)
′(z0)|ds

|u0
s(z0)e−iξ

0
T−s − 1|3

. (3.4)

Furthermore, A can be chosen so that if, in addition, ξ1 : (0, T ]→ R satisfies

‖ξ1 − ξ0‖T ≤ A−1 inf
0≤t≤T

 |u0
t (z0)e−iξ

0
T−t − 1|

|(u0
t )
′(z0)|Λt + |u0

t (z0)|
∧

(∫ t

0

Λs|(u0
s)
′(z0)|+ |u0

s(z0)|
|u0
s(z0)e−iξ

0
T−s − 1|3

ds

)−1
 ,

(3.5)

then, for all 0 ≤ t ≤ T ,

∣∣u1
t (z)− u0

t (z)
∣∣ ≤ A|(u0

t )
′(z0)|‖ξ1 − ξ0‖TΛt (3.6)

and ∣∣∣∣log
(u1
t )
′(z)

(u0
t )
′(z)

∣∣∣∣ ≤ A‖ξ1 − ξ0‖T
∫ t

0

Λs|(u0
s)
′(z0)|+ |u0

s(z0)|
|u0
s(z0)e−iξ

0
T−s − 1|3

ds. (3.7)

Definition. We denote the preimages of the jth tip by eiφ
j
n in the ALE model, and by
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eiφ̄
j
n in the auxiliary model. Define

jn = argmin
j
|eiθn − eiφ

j
n |,

j∗n = argmin
j
|eiθ∗n − eiφ̄

j
n |.

If we construct a version of each of the ALE and auxiliary models on a common probability

space, then we can define the stopping time

τcoupling = min{n ≥ 1 : jn 6= j∗n}. (3.8)

To show that the ALE and auxiliary models are close, we will show that with high

probability they land near the same slit, and the ALE lands very near the tip so looks

similar to the auxiliary model.

First we will examine the regions near the tips in each model, and find that the

probability of landing near each tip is similar. Then we will prove in each case that the

probability of not landing near any tip is o(1), generalising the main result of [33], with a

similar argument.

Definition. Given that we will be defining both the ALE and auxiliary model on the same

probability space in order to show that a good coupling exists, we will define a stopping

time to reflect that fact that the coupling will fail if either model attaches a particle too

far from a tip. Let

τD = inf{n ≥ 1 : |θ∗n − θ̂∗n| > D or min
j
|θn − φjn| > D},

where D =
√
σ.

Remark. The ALE and auxiliary models will have a common weak limit if with high

probability τD ∧ τcoupling > T/c. This event means that every particle in the ALE model

has been attached within D of a “main” tip, and every particle in the auxiliary model has

chosen the same slit to attach to as the ALE model.

Proposition 3.3. There exists a constant A = A(K0, k, η, T ) such that the ALE and

auxiliary models can be constructed on a common probability space and on this space

P(τD ∧ τcoupling ≤ bT/cc) ≤ Ac

provided σ < cγ for γ = 2(η+2)
η−1 ∨

5η+10
2η ∨ 8.

Proof. Follows immediately from Proposition 3.9.

Remark. The three terms determining γ come from three separate requirements in the

proof of this section’s result: we require σ < c8 so that the derivatives of each model look

similar near the “main” tips, as in the following lemma. We require that σ < c
5η+10

2η so

that “old” particles do not contribute in the ALE model, and we require that σ < c
2(η+2)
η−1
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so that the measures are concentrated very tightly around the tip of each particle, with

each particle attached within distance
√
σ of a main tip.

Lemma 3.4. Suppose σ < c8. Then on the event {n < τD ∧ τcoupling},

sup
|θ|<c2

∣∣∣∣∣log
(ΦALE

n )′(eσ+iθeiφ
j
n)

(Φ∗n)′(eσ+iθeiφ̄
j
n)

∣∣∣∣∣ ≤ ATc3/2

almost surely.

Proof. Denote the preimages of the k tips under ΦALE
n in the ALE model by φ1

n, . . . , φ
k
n.

For each j ∈ {1, 2, . . . , k} denote the subsequence of (θALE
` )n`=1 consisting of the times at

which a particle is attached to the jth slit by

θALE
nj(1), θ

ALE
nj(2), . . . , θ

ALE
nj(Nj)

.

Near φjn we can decompose ΦALE
n as

ΦALE
n = ΦALE

0 ◦Ψj
0 ◦ f

ALE
nj(1) ◦Ψj

1 ◦ f
ALE
nj(2) ◦Ψj

2 ◦ · · · ◦ f
ALE
nj(Nj)

◦Ψj
Nj
, (3.9)

where for 0 < ` < Nj , Ψj
` = fALE

nj(`)+1 ◦ f
ALE
nj(`)+2 ◦ · · · ◦ f

ALE
nj(`+1)−1 =

(
ΦALE
nj(`)

)−1
◦ ΦALE

nj(`+1)−1,

the map which attaches every particle landing at slits other than the jth between the

`th and (` + 1)th time a particle lands on the jth slit. The two special cases are Ψj
0 =(

ΦALE
0

)−1 ◦ΦALE
nj(1)−1 and Ψj

Nj
=
(

ΦALE
nj(Nj)

)−1
◦ΦALE

n . Note that any of these Ψj
` maps may

be the identity map on ∆. The important common feature of all these Ψj
` maps is that

their derivatives have no poles or zeroes near the jth slit.

Since the event we have conditioned on implies n < τcoupling, the subsequence of (θ∗` )
n
`=1

consisting of times when a particle was attached to the jth slit is

θ∗nj(1), θ
∗
nj(2), . . . , θ

∗
nj(Nj)

with the same nj as above. There is a similar decomposition to (3.9), complicated only

slightly by the cluster rotation,

Φ∗n = Rδ1+···+δn ◦ Φ∗0 ◦R−(δ1+···+δn)◦

◦Ψ
j
0 ◦ f∗θ̂∗

nj(1)
+δnj(1)+···+δn

◦Ψ
j
1 ◦ · · · ◦ f∗θ̂∗

nj(Nj)
+δnj(Nj)+···+δn

◦Ψ
j
Nj ,

where Ψ
j
` = f∗

θ̂∗
nj(`)+1

+δnj(`)+1+···+δn
◦ · · · ◦ f∗

θ̂∗
nj(`+1)−1

+δnj(`+1)−1+···+δn
for 0 < ` < Nj and the

two end-cases are also defined similarly to Ψj
0 and Ψj

Nj
.

Now fix a θ ∈ R with |θ| < c2, and we will compare the densities |(ΦALE
n )′(eσ+iθeiφ

j
n)|−η

and |(Φ∗n)′(eσ+iθeiφ̄
j
n)|−η when Nj > 0. We omit the simpler case Nj = 0.
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First we will bound ∣∣∣∣∣∣log
(Ψj

Nj
)′(eσ+iθeiφ

j
n)

(Ψ
j
Nj )
′(eσ+iθeiφ̄

j
n)

∣∣∣∣∣∣ .
The two maps Ψj

Nj
and Ψ

j
Nj are solutions to Loewner’s equation with driving functions

ξt = θALE
bt/cc+nj(Nj)+1, ξt = θ̂∗bt/cc+nj(Nj)+1 + δbt/cc+nj(Nj)+1 + · · ·+ δn

respectively, for t ∈ [0, (n − nj(Nj))c). Remark 3.7 of [29] notes that the points eiφ̄
j
n are

repelled from each other on the circle. We can therefore guarantee there is an L > 0

depending only on the initial conditions and T such that eσ+iθeiφ
j
n and eσ+iθeiφ̄

j
n keep at

least a distance L away from ξt and ξt respectively, so if we apply Lemma 3.2, Λt � t,

condition (3.5) is met for sufficiently small c, and the bound on the right of (3.2) is � 1.

We know eiφ
j
n =

(
Ψj
Nj

)−1
(θALE
nj(Nj)

) and eiφ̄
j
n =

(
Ψ
j
Nj

)−1
(θ̂∗nj(Nj) + δnj(Nj) + · · ·+ δ1),

and so applying Lemma 3.2 gives us, since (n− nj(Nj))c ≤ T ,∣∣∣∣∣∣log
(Ψj

Nj
)′(eσ+iθeiφ

j
n)

(Ψ
j
Nj )
′(eσ+iθeiφ̄

j
n)

∣∣∣∣∣∣ ≤ ALT (∣∣φjn − φ̄jn∣∣+ |δ1|+ · · ·+ |δn−1|
)
,

and a further calculation using explicit estimates for f−1 similar to (3.25) tells us

|φjn − φ̄jn| ≤ AL(|δ1|+ · · ·+ |δn|).

Hence, with a constant A depending on AL and T ,∣∣∣∣∣∣log
(Ψj

Nj
)′(eσ+iθeiφ

j
n)

(Ψ
j
Nj )
′(eσ+iθeiφ̄

j
n)

∣∣∣∣∣∣ ≤ A (|δ1|+ · · ·+ |δn|) . (3.10)

The next two terms in the expansions of each derivative are the two largest,

(fALE
nj(Nj)

)′
(

Ψj
Nj

(eσ+iθeiφ
j
n)
)

and (f∗
θ̂∗
nj(Nj)

+δnj(Nj)+···+δn
)′
(

Ψ
j
Nj (e

σ+iθeiφ̄
j
n)
)
. (3.11)

For the reader’s convenience, we restate (2.7), the explicit expression for f ′,

f ′(z) =
f(z)

z

z − 1

(z − eiβ)1/2(z − e−iβ)1/2
, (3.12)

so to first order the size of |f ′(z)| depends on |z − 1|. This means that to find the size of

the two derivatives above, we are most interested in∣∣∣∣Ψj
Nj

(eσ+iθeiφ
j
n)− eiθ

ALE
nj(Nj)

∣∣∣∣ and

∣∣∣∣Ψj
Nj (e

σ+iθeiφ̄
j
n)− ei(θ̂

∗
nj(Nj)

+δnj(Nj)+···+δ1)
∣∣∣∣ .
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If we apply (3.3), the first of these is∣∣∣∣Ψj
Nj

(eσ+iθeiφ
j
n)− eiθ

ALE
nj(Nj)

∣∣∣∣ =
∣∣∣Ψj

Nj
(eσ+iθeiφ

j
n)−Ψj

Nj
(eiφ

j
n)
∣∣∣

=
∣∣∣(eσ+iθ − 1)eiφ

j
n(Ψj

Nj
)′(eiφ

j
n)
∣∣∣ [1 +O

(
|eσ+iθ − 1|

)]
= |eσ+iθ − 1|

∣∣∣(Ψj
Nj

)′(eiφ
j
n)
∣∣∣ [1 +O

(
|eσ+iθ − 1|

)]
(3.13)

and similarly the second term is

|eσ+iθ − 1|
∣∣∣(Ψj

Nj )
′(eiφ̄

j
n)
∣∣∣ [1 +O

(
|eσ+iθ − 1|

)]
. (3.14)

Our previous bounds on

∣∣∣∣∣log
(ΨjNj

)′(eσ+iθeiφ
j
n )

(Ψ
j
Nj

)′(eσ+iθeiφ̄
j
n )

∣∣∣∣∣ apply equally to

∣∣∣∣∣log
(ΨjNj

)′(eiφ
j
n )

(Ψ
j
Nj

)′(eiφ̄
j
n )

∣∣∣∣∣, so (3.12)

allows us to directly compare the derivatives in (3.11).

Firstly, a simple calculation shows that if |z− 1| < c1/2 then f(z) = 1 + d+O(|z− 1|).
The next estimate z = 1+O(|z−1|) is obvious. Putting this estimate into the denominator

of the second fraction in (3.12), we get |z − e±iβ|1/2 = |1 − eiβ|1/2(1 + O
(
|z−1|
c1/2

)
). Thus

for z close to 1 the behaviour of |f ′(z)| mainly depends on |z − 1|, and we can write

|f ′(z)| = 1 + d(c)

|1− eiβ|
|z − 1|

(
1 +O(c−1/2|z − 1|)

)
. (3.15)

Therefore∣∣∣∣∣∣∣∣log
(fALE
nj(Nj)

)′
(

Ψj
Nj

(eσ+iθeiφ
j
n)
)

(f∗
θ̂∗
nj(Nj)

+δnj(Nj)+···+δn
)′
(

Ψ
j
Nj (e

σ+iθeiφ̄
j
n)
)
∣∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣log

∣∣∣(Ψj
Nj

)′(eiφ
j
n)
∣∣∣∣∣∣(Ψj

Nj )
′(eiφ̄

j
n)
∣∣∣
∣∣∣∣∣∣+Ac−1/2|eσ+iθ − 1|

≤ A
(
|δ1|+ · · ·+ |δn|+ c−1/2|eσ+iθ − 1|

)
.

(3.16)

Now as |fALE
nj(Nj)

(ΨNj (e
σ+iθeiφ

j
n))| ≥ 1 + c1/2 and |f∗nj(Nj)(ΨNj (e

σ+iθeiφ̄
j
n))| ≥ 1 + c1/2,

we can apply Lemma 3.2 to compare the two remaining derivatives∣∣∣∣(ΦALE
0 ◦Ψj

0 ◦ f
ALE
nj(1) ◦ · · · ◦Ψj

Nj−1

)′ (
fALE
nj(Nj)

(ΨNj (e
σ+iθeiφ

j
n))
)∣∣∣∣

and ∣∣∣∣∣
(
Rδ1+···+δn ◦ Φ∗0 ◦R−(δ1+···+δn) ◦Ψ

j
0 ◦ f∗θ̂∗

nj(1)
+δnj(1)+···+δn

◦ · · · ◦Ψ
j
Nj−1

)′ (
(
f∗nj(Nj)(ΨNj (e

σ+iθeiφ̄
j
n))
)∣∣∣∣∣.

The two maps above whose derivatives we consider are generated by driving functions

whose difference is bounded by |δ1| + · · · + |δn| if we use the backward equation, so call
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these driving functions ξ0 generating the first map above, and ξ1 generating the second.

Taking z0 = fALE
nj(Nj)

(ΨNj (e
σ+iθeiφ

j
n)), we have |z0| − 1 ≥ c1/2, so using standard estimates

for conformal maps (see for example Section 1.1 of [32]), we have c1/2

A ≤ |(u0
t )
′(z0)| ≤ A

c1/2

for all 0 < t < T , where the constant A depends only on T and K0.

This gives us, modifying the constant A = A(T,K0) appropriately (as we will through-

out), c1/2

A t ≤ |Λt| ≤ A
c3/2 t.

The right-hand side of (3.2) is bounded below by

inf
0<t≤T

 c1/2

Ac−1/2
∧

(
t
Ac−1/2

c3/2

)−1
 ≥ A−1c2, (3.17)

so the condition (3.2) is satisfied by z = f∗
θ̂∗
nj(Nj)

+δnj(Nj)+···+δn
(Ψ

j
Nj (e

σ+iθeiφ̄
j
n)).

The resulting bounds on
∣∣∣log

(u0
t )
′(z)

(u0
t )
′(z0)

∣∣∣ and
∣∣∣log

(u1
t )
′(z)

(u0
t )
′(z)

∣∣∣ are then, respectively,

∣∣∣∣log
(u0
t )
′(z)

(u0
t )
′(z0)

∣∣∣∣ ≤ A|z − z0|tc−2

and ∣∣∣∣log
(u1
t )
′(z)

(u0
t )
′(z)

∣∣∣∣ ≤ A(|δ1|+ · · ·+ |δn|)c−7/2.

Elementary calculations show that for w close to 1,

f(w) = 1 + d(c) +O

(
|w − 1|2

c1/2

)
, (3.18)

so using (3.13) and (3.14),

|z − z0| ≤ (1 + d(c))
∣∣∣θALE
nj(Nj)

− (θ̂∗nj(Nj) + δnj(Nj) + · · ·+ δn)
∣∣∣

+A
|eσ+iθ − 1|2

c1/2

(∣∣∣(Ψj
Nj

)′(eiφ
j
n)
∣∣∣+
∣∣∣(Ψj

Nj )
′(eiφ̄

j
n)
∣∣∣)

≤ A(|δ1|+ · · ·+ |δn|+ c−1/2|eσ+iθ − 1|2).

Hence∣∣∣∣∣∣∣log

(
Rδ1+···+δn ◦ Φ∗0 ◦R−(δ1+···+δn) ◦ · · · ◦Ψ

j
Nj−1

)′ (
f∗nj(Nj)(ΨNj (e

σ+iθeiφ̄
j
n))
)

(
ΦALE

0 ◦Ψj
0 ◦ fALE

nj(1) ◦ · · · ◦Ψj
Nj−1

)′ (
fALE
nj(Nj)

(ΨNj (e
σ+iθeiφ

j
n))
)

∣∣∣∣∣∣∣
is ∣∣∣∣log

(u1
T )′(z)

(u0
T )′(z0)

∣∣∣∣ ≤ ∣∣∣∣log
(u1
T )′(z)

(u0
T )′(z)

∣∣∣∣+

∣∣∣∣log
(u0
T )′(z)

(u0
T )′(z0)

∣∣∣∣
≤ A

(
(|δ1|+ · · ·+ |δn|)c−7/2 + |eσ+iθ − 1|2c−5/2

)
. (3.19)
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Putting together (3.10), (3.16) and (3.19) we have∣∣∣∣∣log
(ΦALE

n )′(eσ+iθeiφ
j
n)

(Φ∗n)′(eσ+iθeiφ̄
j
n)

∣∣∣∣∣ ≤ A(c−
7
2 (|δ1|+ · · ·+ |δn|) + c−

1
2 |eσ+iθ − 1|+ c−

5
2 |eσ+iθ − 1|2

)
(3.20)

and we can check that this is bounded by ATc3/2.

Corollary 3.5. We can construct the coupling of the ALE and auxiliary models in such a

way that on the event {n < τD∧τcoupling}, then the conditional probability that jn+1 6= j̄n+1

or n+ 1 = τD is bounded by

ATkc3/2 + P[δn+1 > D |n < τD] + P[min
j
|θn+1 − φjn| > D |n < τD].

The corollary follows immediately from the above lemma.

Next we need to show that the probability of attaching more than distance D from

any tip is o(c) in each model. We will demonstrate it only for the ALE, because identical

proofs work for the auxiliary model, setting D = 0 instead of D =
√
σ.

Lemma 3.6. There exists a constant A depending only on η, T and the initial conditions

such that for any 1 ≤ n < bT/cc, on the event {n < τD} we have

Zn ≥ cησ−(η−1)

almost surely.

The above bound is not sharp: the cη term can be eliminated, but the proof is sub-

stantially more complicated, and the bound in the lemma is all that we require.

Proof. For |θ| < c and a fixed j, let z = eσ+i(φjn+θ), and using (3.9) we can write

|(ΦALE
n )′(z)| =

∣∣∣(Ψj
Nj

)′(z)
∣∣∣ ∣∣∣(fALE

nj(Nj)
)′(Ψj

Nj
(z))

∣∣∣ ∣∣∣(ΦALE
0 ◦ · · · ◦Ψj

Nj−1)′(fALE
nj(Nj)

(Ψj
Nj

(z)))
∣∣∣ .

Applying Lemma 3.2 to the first term in this decomposition with z0 = eiφ
j
n , we again have

a constant lower bound L > 0 on the distance between ut(z0) and the driving function, so

we have from (3.4)

|(Ψj
N1

)′(z)| = |(Ψj
N1

)′(eiφ
j
n)|(1 +O(c)). (3.21)

From (3.12) and (3.13) we obtain

|(fALE
nj(Nj)

)′(Ψj
Nj

(z))| = 1 + d(c)

|1− eiβc |
(1 +O(c1/2))

∣∣∣∣Ψj
Nj

(z)− eiθ
ALE
nj(Nj)

∣∣∣∣
=

1 + d(c)

|1− eiβc |
|z − eiφ

j
n |
∣∣∣(Ψj

Nj
)′(eiφ

j
n)
∣∣∣ (1 +O(c1/2)). (3.22)
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Analysis of Loewner’s reverse equation when z is far from the driving measure shows that

there is a constant A > 0 with

A−1 ≤
∣∣∣(Ψj

Nj
)′(eiφ

j
n)
∣∣∣ ≤ A,

(see, for example, equation (26) from [33]) and using (3.13) and (3.18) we know

|fALE
nj(Nj)

(Ψj
Nj

(z))| − 1 ≥ c1/2,

and so by standard conformal map estimates,

c1/2

A
≤
∣∣∣(ΦALE

0 ◦ · · · ◦Ψj
Nj−1)′(fALE

nj(Nj)
(Ψj

Nj
(z)))

∣∣∣ ≤ Ac−1/2. (3.23)

Then combining (3.21), (3.22) and (3.23), we have

|(ΦALE
n )′(eσ+i(φjn+θ))|−η ≥ Acη/2

(
|1− eiβc |
1 + d(c)

)η
|eσ+iθ − 1|−η

≥ Acη|eσ+iθ − 1|−η.

Then by a simple calculation

Zn ≥ Acη
∫ c

−c

dθ

|eσ+iθ − 1|η

≥ Acησ−(η−1)

∫ c/σ

−c/σ

dx

(1 + x2)η/2
,

and as σ � c and
∫∞
−∞(1 + x2)−η/2 dx < ∞, the integral term is absorbed into the

constant.

Lemma 3.7. For ζ ∈ ∆, write f(ζ) = er+iθ. For all sufficiently small c, if r < c1/2, then

|f ′(ζ)| > 1.

Proof. Using similar methods as Lemma 4 in [33], we can write

(f−1)′(w) =
f−1(w)

w

w − 1√
(w + 1)2 − 4ecw

for w ∈ ∆ \ (1, 1 + d(c)].

Then we know that |f−1(w)| < |w| for any w, and elementary calculations show that

if w = er+iθ, then ∣∣∣∣ w − 1

(w + 1)2 − 4ecw

∣∣∣∣ < 1 ⇐⇒ cos θ <
ec

cosh r
.

Hence |(f−1)′(w)| < 1, and so |f ′(ζ)| > 1.

Since cosh−1(ec) ∼
√

2c for small c, if c is sufficiently small and r < c1/2, then the

condition cos θ < ec

cosh r is always satisfied.

Lemma 3.8. For any sufficiently large constant AT , there exists a constant B > 0 de-

pending on T and K0 such that on the event {n < τcoupling}, i.e. when the ALE and
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auxiliary models remain coupled so they each choose the same particle of the k choices

at each of the first n steps, the following is almost surely true: for any θ ∈ T, if k ≤ n

satisfies

|(fALE
l+1 ◦ fALE

l+2 ◦ · · · ◦ fALE
n )(eiθ)− eiθALE

l | ≥ |ei(βc+ c1/2

AT
) − 1| for all k ≤ l ≤ n,

and |eiθ − eiθALE
n | ≥ |ei(βc+ c1/2

AT
) − 1| then

∣∣(fALE
k ◦ · · · ◦ fALE

n )′(eiθ)
∣∣ ≤ Bc−1/2.

Proof. On the event {n < τcoupling}, each angle θALE
l is within D of the tip of a previous

particle. Consider the angle sequence (θ̄l)l≤n corresponding to what would happen if the

lth particle is attached exactly at the tip of the particle θALE
l landed closest to. The differ-

ence between the two angle sequences is then almost surely supl≤n |θALE
l − θ̄l| < Ac−1D,

for a constant A > 0. Then using the bound on
∣∣∣log

(u1
t )
′(z)

(u0
t )
′(z)

∣∣∣ from Lemma 11 of [33], we

can establish the bound we want on the ALE process by establishing it using the angle

sequence (θ̄l)l≤n, since D =
√
σ is very small. We can also think of this as first considering

D = 0 and then perturbing the result.

Elementary calculations show that for any positive constant L > 0, there is a constant

AL > 0 such that if eiθ̄l is distance at least L from eiα and eiα
′

then

|f ′c,θ̄l(e
iα)| ≤ eALc (3.24)

and

e−ALc|α− α′| ≤ | arg f̄c,θ̄l(e
iα)− arg fc,θ̄l(e

iα′)| ≤ eALc|α− α′|. (3.25)

As the minimum separation between the preimages of tips φjl for 1 ≤ l ≤ n is bounded

below by a constant L > 0, for any given θ ∈ T there can be at most one j such that

there exists an l ≤ n with |f̄l(eiθ)− φjl−1| ≤
L
2 e
−AL/2T =: m. If there is no such j, or the

corresponding l is less than k, then by (3.24),
∣∣(f̄k ◦ · · · ◦ f̄n)′(eiθ)

∣∣ ≤ eAmT .
Suppose that such a j does exist. We will split the angle sequence (θ̄l)k≤l≤n into times

when particles are attached to slit j and times when particles are attached elsewhere.

Set n0 = max{k ≤ l ≤ n : θ̄l = φjl }, then for i ≥ 0 set n′i = max{k ≤ l < ni : θ̄l 6= φjl }
and ni+1 = max{k ≤ l < n′i : θ̄l = φjl } until one of the sets is empty, and call the last

well defined value np+1 (if n′p is the final well-defined value of the above maxima, then

set np+1 = n′p). Define the capacities t0 = (n − n0)c, and for i ≥ 0, t′i = (ni − n′i)c

and ti+1 = (n′i − ni+1)c. The map f̄k ◦ · · · ◦ f̄n is then generated by using the backwards

equation (1.6) with a driving function which first is at a distance at least L/2 from φjn for

time t0 ≥ 0, then takes the constant value φjn0 for time t′0 ≥ c, then is distance at least L/2

from tip j again for time t1 ≥ c, and so on, terminating after a total time (n−k+1)c ≤ T .

We can therefore decompose f̄k ◦ · · · ◦ f̄n as

Ψp+1 ◦ ft′p,φjn′p
◦Ψp ◦ · · · ◦ ft′0,φjn′0

◦Ψ0 (3.26)
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where the Ψ maps are generated by driving functions bounded away from the jth slit.

Using (3.24), we have |Ψ′i(ft′i−1,φ
j

n′
i−1

◦ · · · ◦ Ψ0(eiθ))| ≤ eAL/2ti for each i, and so the

total contribution to
∣∣(f̄k ◦ · · · ◦ f̄n)′(eiθ)

∣∣ by Ψ′ terms is bounded by a constant eAL/2T .

The other terms can give a larger contribution. Let δi be the distance in R/2πZ
between arg[(Ψi ◦ · · · ◦ Ψ0)(eiθ)] and φjni , and similarly let δ′i be the distance between

arg[f
t′i,φ

j

n′
i

◦ Ψi ◦ · · · ◦ Ψ0)(eiθ)] and φjni . Then using the explicit form of the derivative f ′t

we can compute ∣∣∣∣∣f ′t′i,φjn′
i

(Ψi ◦ · · · ◦Ψ0)(eiθ))

∣∣∣∣∣ = et
′
i/2
|eiδi − 1|
|eiδ′i − 1|.

(3.27)

Using (3.25), we can calculate δi+1

δ′i
≤ eAL/2ti , and so the total contribution from all of the

f ′
t′i,φ

j
i

terms is, possibly increasing the constant AL/2,

e
1
2

∑p
i=0 t

′
i

∣∣eiδ0 − 1
∣∣∣∣eiδ′p − 1
∣∣ p−1∏
i=0

|eiδi+1 − 1|
|eiδ′i − 1|

≤ e( 1
2

+AL/2)T 2

c1/2/AT

= Bc−1/2

as required.

Proposition 3.9. For any n < N ,

P[n+ 1 = τD |n < τD] ≤ Ac−ησ
η−1

2 +Ac−2ηση−1 +Ac−
5η
4
− 1

2ση/2.

If σ < cγ where γ = 2(η+2)
η−1 ∨

5η+10
2η ∨ 8, then this implies P[n+ 1 = τD |n < τD] ≤ Ac2.

Proof. First note that on the event {n < τD}, we have

P[n+ 1 < τD | (θ1, . . . , θn)] ≤

1−
∑
j

∫ φjn+D

φjn−D
hn(θ) dθ

+

1−
∑
j

∫ φ̄jn+D

φ̄jn−D
h∗n(θ) dθ


almost surely. We will hence bound 1 −

∑
j

∫ D
−D hn(φjn + θ) dθ, and a similar bound will

apply to the auxiliary term. Let z = eσ+iθ. Note that

1−
∑
j

∫ D

−D
hn(φjn + θ)dθ =

∑
j

∫
D<|θ−φjn|<c2

hn(θ)dθ +

∫
{|θ−φjn|≥c2 ∀j}

hn(θ)dθ.

If D < |θ− φjn| < c2 for some j, then we can use (3.21), (3.22) and (3.23) to establish the

almost-sure upper bound

|(ΦALE
n )′(z)|−η ≤ A|z − eiφ

j
n |−η ≤ AD−η. (3.28)

Then using (3.28) and Lemma 3.6, almost surely

∫ φjn+c2

φjn+D
hn(θ)dθ ≤ Ac−ηD−(η−1)ση−1.
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Next we suppose θ is further than c2 from any tip φjn.

We will classify the point z based on its projection ẑ = eiθ and follow them both

through their backwards evolutions, so let zk = (fk ◦ fk+1 ◦ · · · ◦ fn)(z), and also let

ẑk = (fk◦fk+1◦· · ·◦fn)(ẑ). IfAT = eAL/2T forAL/2 as in the proof of Lemma 3.8, then there

can be at most two values of k such that both ẑk ∈ T and |ẑk − eiθ
ALE
k−1 | < |ei(βc+ c1/2

AT
) − 1|.

First suppose there is no such k. Then by Lemma 3.8, |(fALE
1 ◦ · · · ◦ fALE

n )′(ẑ)| ≤ Bc−1/2

almost surely, so by Lemma 11 of [33],

|(fALE
1 ◦ · · · ◦ fALE

n )(z)− (fALE
1 ◦ · · · ◦ fALE

n )(ẑ)| ≤ Bc−1/2σ.

This gives us |(fALE
1 ◦ · · · ◦ fALE

n )(z)| − 1 ≤ Bc−1/2σ, and hence by Lemma 3.7, |(fALE
1 ◦

· · · ◦ fALE
n )′(z)| > 1. Let j be the index of the closest φj0 to (fALE

1 ◦ · · · ◦ fALE
n )(ẑ). We can

decompose Φ0 as f
tj ,φ

j
0
◦ Ψj

0, where Ψj
0 is generated in the reverse equation by a driving

function run for total time c0 − tj which stays at least distance L/4 from (us(ẑ))s≤c0−tj

at all times. Then using equation (26) of [33],

e−Ac0 ≤ |(Ψj
0)′((fALE

1 ◦ · · · ◦ fALE
n )(ẑ))| ≤ eAc0

for an appropriate constant A = A(K0). If none of the n particles have been attached

to the initial jth slit, then the assumption we made on θ tells us |(Ψj
0 ◦ fALE

1 ◦ · · · ◦
fALE
n )(ẑ)− eiφ

j
0 | ≥ c/A. If any particles were attached to the jth slit, then we must have

|(Ψj
0 ◦ fALE

1 ◦ · · · ◦ fALE
n )(ẑ)) − eiφ

j
0 | ≥ c1/2/A > c/A, otherwise some k as above would

exist. In either case we have

|(Ψj
0 ◦ f

ALE
1 ◦ · · · ◦ fALE

n )(z))− eiφ
j
0 | ≥ c/2A,

and so

|f ′
tj ,φ

j
0

((Ψj
0 ◦ f

ALE
1 ◦ · · · ◦ fALE

n )(z))| ≥ c

18A
.

Thus, for a modified constant A,

|Ψ′0(z)| ≥ c

A
,

and so hn(θ) = O(ση−1/c2η).

Next, if there is only one such k, we must have |ẑk − eiθ
ALE
k−1 | ≥ c1/2

2A2
T
, since there is an

l ≥ k with θALE
l attached at the same slit as θALE

k−1 and if ẑk were any closer to eiθ
ALE
k−1 then

ẑl+1 would be within |ei(βc+ c1/2

AT
) − 1| of eiθ

ALE
l .

So |(fALE
k−1 )′(ẑk)| ≥

∣∣∣∣∣f ′
(
e
i c

1/2

2A2
T

)∣∣∣∣∣ ≥ A for some constant A > 0, then using Lemma 3.2

and Lemma 3.8 we can derive

|(fALE
k−1 )′(zk)| ≥ A−1 (3.29)
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provided σ = o(c3/2).

To compute |(Φ0 ◦ fALE
1 ◦ · · · ◦ fALE

k−2 )′(ẑk−1)|, consider two cases: (a) |ẑk − eiθ
ALE
k−1 | ≤

|ei(β−
c1/2

AT
) − 1|, or its negation, (b).

In case (a), |ẑk−1| − 1 ≥ |f(e
i(β− c1/2

AT
)
)| − 1 ≥ c1/2

A . By an identical argument to that

which established (3.23),

|(Φ0 ◦ fALE
1 ◦ · · · ◦ fALE

k−2 )′(ẑk−1)| ≥ c1/2

A
,

and again this easily extends to

|(Φ0 ◦ fALE
1 ◦ · · · ◦ fALE

k−2 )′(zk−1)| ≥ c1/2

A
, (3.30)

provided σ = o(c3/2). Combining (3.30) with (3.29) and Lemma 3.7, we have

|(ΦALE
n )′(z)| ≥ c

A
,

and so hn(θ) = O(ση−1/c2η).

In case (b), we have

min
±
|ẑk − ei(θ

ALE
k−1 ±βc)| < 2c1/2

AT
,

and so

min
±
|zk − ei(θ

ALE
k−1 ±βc)| < 3c1/2

AT
.

Without loss of generality the minimum is achieved in both cases by ei(θ
ALE
k−1 +βc). Let

δ = |zk − ei(θ
ALE
k−1 +βc)|, then by Lemma 2.4,

|(fALE
k−1 )′(zk)| ≥ A−1 c1/4

δ1/2
(3.31)

and Lemma 2.5 tells us that |zk−1 − eiθ
ALE
k−1 | � c1/4δ1/2. If the attachment point θALE

k−1 is

on the jth slit, then it is within D of the preimage φjk−2 of θALE
l under fALE

l+1 ◦ · · · ◦ fALE
k−2 ,

where l < k− 1 was the previous time a particle was attached at the jth slit (without loss

of generality such an l exists, as we can decompose the initial condition to have a slit of

capacity c at the top of a longer slit in position j).

By (3.22), the size of |(fALE
l )′(zl+1)| depends on |zl+1 − eiθ

ALE
l |, which, similarly to

(3.25), satisfies

e−AT ≤ |zl+1 − eiθ
ALE
l |

|zk−1 − eiφ
j
k−2 |
≤ eAT .

Then since

|zk−1 − eiθ
ALE
k−1 | ≤ |zk−1 − eiφ

j
k−2 |+ |eiφ

j
k−2 − eiθ

ALE
k−1 |

≤ |zk−1 − eiφ
j
k−2 |+ 2D,
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we have, for some constant A,

A−1c1/4δ1/2 ≤ |zk−1 − eiφ
j
k−2 |+ 2D ≤ eAT |zl+1 − eiθ

ALE
l |+ 2D,

and so

|zl+1 − eiθ
ALE
l | ≥ σ ∨

(
c1/4δ1/2

A
− 2D

)
(3.32)

Then

|(fALE
l )′(zl+1)| ≥ 1

A′
c−1/2|zl+1 − eiθ

ALE
l |,

and so combining this with Lemma 3.7 and (3.31),

|(fALE
l ◦ · · · ◦ fALE

n )′(z)| ≥ σ ∨ (A−1c1/4δ1/2 − 2D)

δ1/2
, (3.33)

and since |zk−1 − eiφ
j
k−2 | ≥ σ, (3.33) is bounded below by

A−1c−1/4 σ

9D2
.

Then since |zl| − 1 ≥ c1/2, we have an overall lower bound on |Φ′n(z)| of

A−1c1/2σ ∨ (A−1c1/4δ1/2 − 2D)

δ1/2
.

Note that δ is proportional to |z − (fn ◦ · · · ◦ fk+1)(ei(θ
ALE
k−1 +βc))|, so we can integrate our

bound on |Φ′n(z)|−η from σ to c2 to get
∫
{one k exists} hn(θ) dθ ≤ Aσ−1Dη+2c−

5η
4
− 1

2 .

If there are two values of k, k2 < k1, we can find a bound of the same order using the

same argument as above, replacing k by k1 and l by k2.

3.3.2 Auxiliary to multinomial model

Next we will define the multinomial model, in which the probability of attaching a particle

at each tip depends on the second derivative of the relevant map. This essentially corre-

sponds to taking σ → 0, and we will show that replacing the auxiliary ALE model by the

multinomial model does not affect the limiting behaviour as c→ 0.

We explained the significance of the second derivative of the map for the Laplacian

path model in Section 3.1, so the multinomial model can be viewed as a halfway point

between the ALE and LPM.

Definition. Begin with the same initial condition as the other models, Φmulti
0 = Φ0. Let

the preimages of the k tips under Φmulti
n be φjn for j = 1, 2, . . . , k. Choose θn+1 from

{φ1
n, . . . , φ

k
n}, with probabilities

P(θn+1 = φjn) =
|(Φmulti

n )′′(eiφ
j
n)|−η

Zn
,
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where Zn =
∑

j |(Φmulti
n )′′(eiφ

j
n)|−η. Define inductively the maps

Φmulti
n+1 = Φmulti

n ◦ fθn+1 .

If they choose the same tips, the auxiliary model (re-rotated to fix the basepoints) and

the multinomial model coincide exactly. It is therefore fairly simple to prove a coupling

result between the two.

Proposition 3.10. Let (θ∗l )l≤n be the angle sequence for the auxiliary model, without the

rotation used in Section 3.3.1, and let (θl)l≤n be the angle sequence for the multinomial

model with the same initial conditions. Define the stopping time τ6= = inf{l : θ∗l 6= θl}.
On the event {l < τ 6= ∧n}, the conditional distributions of θ∗l+1 and θl+1 are almost surely

supported on the same set {φ1
l , . . . , φ

k
l }, and

max
1≤j≤k

|P(θ∗l+1 = φjl )− P(θl+1 = φjl )| ≤ Ac−1D

almost surely for a deterministic constant A, when σ and D are as in the previous section.

Corollary 3.11. We can construct the coupling of (θ∗l )l≤n and (θl)l≤n in such a way that

P[τ6= < bT/cc] ≤ ATc−2D.

The proof of Proposition 3.10 is relatively simple: since (Φ∗n)′(eiφ
j
l ) = 0, the value of

P(θ∗l+1 = φjl ) is asymptotically proportional to |(Φ∗n)′′(eiφ
j
l )|−η, and hence approximates

P(θl+1 = φjl ).

Proof of Proposition 3.10. We need to show
∫ D
−D |(Φ

∗
l )
′(eσ+i(φjl+θ))|−η dθ is proportional

to |(Φ∗l )′′(eiφ
j
l )|−η. For |θ| < D, let γ be the line segment in ∆ from eiφ

j
l to eσ+i(φjl+θ).

Then by the fundamental theorem of calculus,

(Φ∗l )
′(eσ+i(φjl+θ)) = (eσ+iθ − 1)eiφ

j
l (Φ∗l )

′′(eiφ
j
l ) +

∫
γ
(eσ+i(φjl+θ) − z)(Φ∗l )(3)(z) dz,

and so ∣∣∣∣∣log
|(Φ∗l )′(eσ+i(φjl+θ))|

|eσ+iθ − 1| × |(Φ∗l )′′(e
iφjl )|

∣∣∣∣∣ ≤ |eσ+iθ − 1| × supz∈γ |(Φ∗l )(3)(z)|

|(Φ∗l )′′(e
iφjl )|

. (3.34)

We can decompose Φ∗l as Φ∗k−1 ◦ fk ◦ Ψk, where 1 ≤ k ≤ l is the last time a particle

was attached to slit j (if no particle has been attached we can regard the top part of the

initial slit as a particle of capacity c, so without loss of generality we can assume at least

one particle has been added to each slit). For u satisfying the backwards equation (1.6)

with driving function ξ on [0, T ], equation (26) of [33] gives an expression for the spatial

derivative

u′t(z) = exp

(
t−
∫ t

0

2 ds

(us(z)e−iξT−s − 1)2

)
.

Using this expression and its higher spatial derivatives, we find that for a constant A

depending only on η, T and the initial conditions, we have bounds A−1 ≤ |Ψ′k(z)| ≤ A,

64



|Ψ′′k(z)| ≤ A, |Ψ(3)
k (z)| ≤ A for all z ∈ γ. Then by the chain rule, and as f ′k(Ψk(e

iφjl )) = 0,

|(Φ∗l )′′(eiφ
j
l )| =

∣∣∣Ψ′′k(eiφjl )(Φ∗k−1 ◦ fk)′(Ψk(e
iφjl )) + (Ψ′k(e

iφjl ))2(Φ∗k−1 ◦ fk)′′(Ψk(e
iφjl ))

∣∣∣
≥ A−2

∣∣∣(Φ∗k−1 ◦ fk)′′(Ψk(e
iφjl ))

∣∣∣
= A−2|f ′′k (Ψk(e

iφjl ))| × |(Φ∗k−1)′(fk(Ψk(e
iφjl )))|.

Since Ψk(e
iφjl ) = eiθ

∗
k ,

|f ′′k (Ψk(e
iφjl ))| = f ′′(1) =

1 + d(c)

2
√

1− e−c
≥ c−1/2

4
,

and |fk(Ψk(e
iφjl ))|−1 ≥ c1/2, so |(Φ∗k−1)′(fk(Ψk(e

iφjl )))| ≥ c1/2

A . Hence we have a constant

lower bound on |(Φ∗l )′′(eiφ
j
l )|, and only need an upper bound on supz∈γ |(Φ∗l )(3)(z)|. By

repeated application of the chain rule with the same decomposition of Φ∗l , similarly to the

above we find

|(Φ∗l )(3)(z)| ≤ Ac−1

for all z ∈ γ. Hence the right-hand side of (3.34) is almost surely bounded by Ac−1D,

and so P(θ∗l+1 = φjl ) = eO(D/c)P(θl+1 = φjl ).

3.3.3 Multinomial to Laplacian path model

As the Laplacian path model is generated by a driving measure rather than a function,

we will first specify what we mean by convergence of driving measures.

Definition. Given a metric space (X, d), and two measures µ1, µ2 on X, the bounded

Wasserstein distance dBW(µ1, µ2) is defined

dBW(µ1, µ2) = sup
ϕ∈H

∣∣∣∣∫
X
ϕdµ1 −

∫
X
ϕdµ2

∣∣∣∣ ,
where H = {ϕ ∈ C(X) : ‖ϕ‖Lip + ‖ϕ‖∞ ≤ 1}, for

‖ϕ‖Lip = sup
x6=y

|ϕ(x)− ϕ(y)|
d(x, y)

, ‖ϕ‖∞ = sup
x
|ϕ(x)|.

Proposition 3.12. Let (X, d) be a separable metric space, then dBW metrises weak con-

vergence of finite measures on X, i.e. if µ, µn for n ∈ N are finite measures on X, then

µn ⇒ µ if and only if dBW(µn, µ)→ 0 as n→∞.

Proof. See Theorem 11.3.3 of [8].

Remark. Weak convergence µn ⇒ µ of measures on X can also be implied by convergence∫
X ϕdµn →

∫
X ϕdµ for bounded continuous functions ϕ. We use the smaller space of test

functions ϕ ∈ H in this section because it is substantially easier to prove convergence of

the integrals for our two measures in this case, as we make use of the bound on ‖ϕ‖Lip

in the proof of Corollary 3.17, and this still suffices to imply weak convergence of the

measures.
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Remark. We can view each driving measure (µt)t∈[0,T ] as a single probability measure µ

on the cylinder S = T × [0, T ] given by µt ⊗m[0,T ] where m[0,T ] is normalised Lebesgue

measure on [0, T ]. Then by Proposition 1 of [16], weak convergence of these measures

on the cylinder implies convergence of the corresponding clusters in the Carathéodory

topology.

To show that the multinomial model and Laplacian path model are close, we will use

the fact that in the measures of each model, consisting of k atoms, the weights of the

atoms as well as their locations on T are Lipschitz in t.

Lemma 3.13. Let Φt be the solution to Loewner’s equation for driving function ξt cor-

responding to the ALE as above. Let qt(z) = ∂
∂tΦt(z) = Φ′t(z)z

z+ξt
z−ξt for z ∈ ∆. Note that

we can write Loewner’s equation in the integral form Φt(z) = Φ0(z) +
∫ t

0 qs(z) ds and for

m ≥ 1, Φ
(m)
t (z) = Φ

(m)
0 (z) +

∫ t
0 q

(m)
s (z) ds. Then for m ≥ 0, at times t when ξt = eiφ

j
t for

some j, we have

q
(m)
t (eiφ

j
t ) := lim

z→eiφ
j
t

q
(m)
t (z) = mΦ

(m)
t (ξt) + 3ξtΦ

(m+1)
t (ξt) +

2ξ2
t

m+ 1
Φ

(m+2)
t (ξt). (3.35)

Proof. Let h(z) = z z+ξtz−ξt = z + 2ξt +
2ξ2
t

z−ξt . Then h′(z) = 1 − 2ξ2
t

(z−ξt)2 , and for p ≥ 2,

h(p)(z) = 2ξ2
t

(−1)pp!
(z−ξt)p+1 .

Using the product rule,

q
(m)
t (z) =

m∑
p=0

(
m

p

)
h(m−p)(z)Φ

(p+1)
t (z) (3.36)

= 2ξ2
t

m−2∑
p=0

(
m

p

)
(−1)m−p(m− p)!

(z − ξt)m−p+1
Φ(p+1)(z) +mh′(z)Φ

(m)
t (z) + h(z)Φ

(m+1)
t (z).

Consider the Taylor expansion of each derivative of Φt about ξt = eiφ
j
t ,

Φ
(p+1)
t (z) = Φ

(p+1)
t (ξt) + (z − ξt)Φ(p+2)

t (ξt) + · · ·+ (z − ξt)n−m+1

(n−m+ 1)!
Φ

(n+2)
t (ξt)

+O

(
(z − ξt)n−m+2 sup

|w−ξt|<|z−ξt|
|Φ(n+3)
t (w)|

)
.

Substituting each of these into (3.36), for 1 ≤ r ≤ m− 1, the coefficient of Φ
(r)
t (ξt) is

2ξ2
t

r−1∑
p=0

(
m

p

)
(−1)m−p(m− p)!

(z − ξt)m−p+1

(z − ξt)r−p−1

(r − p− 1)!
=

2ξ2
t

(z − ξt)m−r+2

r−1∑
p=0

m!

p!(r − 1− p)!
(−1)m−p

=
2ξ2
t m(m− 1) . . . r

(z − ξt)m−r+2

r−1∑
p=0

(
r − 1

p

)
(−1)m−p.

If r > 1 this is just a multiple of the binomial expansion of (1− 1)r−1 = 0, so there is no

Φ
(r)
t (ξt) term in q

(m)
t (ξt). If r = 1 the coefficient is non-zero, but Φ′t(ξt) = 0. Next, the
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coefficient of Φ
(m)
t (ξt) is, comparing the with the binomial expansion of (1− 1)m−1 again,

2ξ2
t

m−2∑
p=0

(
m

p

)
(−1)m−p(m− p)!

(z − ξt)m−p+1

(z − ξt)m−p−1

(m− p− 1)!
+m(1− 2ξ2

t

(z − ξt)2
)

=
2mξ2

t

(z − ξt)2

m−2∑
p=0

(
m− 1

p

)
(−1)m−p +m(1− 2ξ2

t

(z − ξt)2
)

=
2mξ2

t

(z − ξt)2
(−(1− 1)m−1 + 1) +m(1− 2ξ2

t

(z − ξt)2
)

= m

if m ≥ 2. Then writing
∑m−2

p=0

(
m
p

)
(−1)m−p = (1− 1)m−

(
m
m−1

)
(−1)1−

(
m
m

)
(−1)0 = m− 1,

we find that the coefficient of Φ
(m+1)
t (ξt) is

2ξ2
t

m−2∑
p=0

(
m

p

)
(−1)m−p(m− p)!

(z − ξt)m−p+1

(z − ξt)m−p

(m− p)!
+m(1− 2ξ2

t

(z − ξt)2
)(z − ξ) + z + 2ξt +

2ξ2
t

z − ξt

=
2ξ2
t

z − ξt
(0−

(
m

m− 1

)
(−1)1 −

(
m

m

)
(−1)0) +m(z − ξt)−

2(m− 1)ξ2
t

z − ξt
+ z + 2ξt

=
2ξ2
t

z − ξt
(m− 1) +m(z − ξt)−

2(m− 1)ξ2
t

z − ξt
+ z − ξt + 3ξt

= 3ξt + (m+ 1)(z − ξt).

Finally, by a similar trick, the coefficient of Φ
(m+2)
t (ξt) is

2ξ2
t

m−2∑
p=0

(
m

p

)
(−1)m−p(m− p)!

(z − ξt)m−p+1

(z − ξt)m−p+1

(m− p+ 1)!

+
m

2
(1− 2ξ2

t

(z − ξt)2
)(z − ξt)2 + (z + 2ξt +

2ξ2
t

z − ξt
)(z − ξt)

= 2ξ2
t

m−2∑
p=0

m!

p!(m− p+ 1)!
(−1)m−p −mξ2

t + 2ξ2
t +O(z − ξt)

= ξ2
t

 −2

m+ 1

m−2∑
p=0

(
m+ 1

p

)
(−1)m+1−p −m+ 2

+O(z − ξt)

= ξ2
t

(
−2

m+ 1
(0− (m+ 1)m

2
+m+ 1− 1)−m+ 2

)
+O(z − ξt)

=
2ξ2
t

m+ 1
+O(z − ξt),

and so taking the limit z → ξt, we have

q
(m)
t (ξt) = mΦ

(m)
t (ξt) + 3ξtΦ

(m+1)
t (ξt) +

2ξ2
t

m+ 1
Φ

(m+2)
t (ξt).

Corollary 3.14. When ξt 6= eiφ
j
t , we have qt(e

iφjt ) = Φ′t(e
iφjt )eiφ

j
t
eiφ

j
t+ξt

eiφ
j
t−ξt

= 0, and so for
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all t,

qt(e
iφjt ) = 1{ξt = eiφ

j
t}2e2iφjtΦ′′t (e

iφjt ).

Also, by a near-identical argument, if q̄t(z) = Φ̄′t(z)z
∑k

j=1 p̄
j
t
z+eiφ̄

j
t

z−eiφ̄
j
t

, then

q̄t(e
iφ̄jt ) = 2p̄jte

2iφ̄jt Φ̄′′t (e
iφ̄jt ).

Remark. Applying Lemma 3.13 with m = 1 gives q′t(e
iφjt ) = 3eiφ

j
tΦ′′t (e

iφjt )+e2iφjtΦ
(3)
t (eiφ

j
t ).

But since Φ′t(e
iφjt ) = 0 for all time, this tells us that Φ

(3)
t (eiφ

j
t ) = −3e−iφ

j
tΦ′′t (e

iφjt ). Repeat-

edly taking the derivative of this relationship with respect to time would let us establish

expressions for every odd power of Φt in terms of lower powers.

Remark. Note that if t ∈ (nc, (n + 1)c), the conditional expectation of qt(e
iφjt ) given

(θ1, . . . , θn) is 2pjnce
2iφjtΦ′′t (e

iφjt ), which is of a similar form to the expression for q̄t(e
iφ̄jt )

above. We will rely on this in the martingale methods used in the proof of Theorem 3.16.

Proposition 3.15. There exists a constant A = A(k,K0, T, η) such that, almost surely,

for 0 ≤ t, s ≤ T , |eiφ
j
t − eiφ

j
s | ≤ A|t− s| and |pjt − p

j
s| ≤ A|t− s|, for all j = 1, . . . , k in the

multinomial model. For the Laplacian path model, for all j and for 0 ≤ t, s ≤ T , we also

have |eiφ̄
j
t − eiφ̄

j
s | ≤ A|t− s| and |p̄jt − p̄

j
s| ≤ A|t− s|.

Proof. Equation (2.7) of [4] gives a useful expression for the evolution of eiφ
j
t over time:

d

dt
eiφ

j
t =

 0 if ξt = eiφ
j
t ,

−eiφ
j
t e
iφ
j
t+eiφ

l
t

eiφ
j
t−eiφ

l
t

if ξt = eiφ
l
t for l 6= j

, (3.37)

and so as the denominator is bounded by L = L(k,K0, T, η),

|eiφ
j
t − eiφ

j
s | ≤ 2

L
|t− s|.

Next, by the chain rule and by definition of qt(z),

d

dt
Φ′′t (e

iφjt ) = q′′t (eiφ
j
t ) + Φ

(3)
t (eiφ

j
t )

d

dt
eiφ

j
t .

When ξt 6= eiφ
j
t , using (3.37) we can calculate

d

dt
Φ′′t (e

iφjt ) = 2

(
1− 2ξ2

t

(eiφ
j
t − ξt)2

)
Φ′′t (e

iφjt ),

so
d
dt

Φ′′t (eiφ
j
t )

Φ′′t (eiφ
j
t )

= exp(O(1)). When ξt = eiφ
j
t , we will compute (Φt◦fφjt ,c)

′′(eiφ
j
t ) for 0 < c < c.

Since f ′
φjt ,c

(eiφ
j
t ) = 0, the chain rule gives

(Φt ◦ fφjt ,c)
′′(eiφ

j
t ) = f ′′

φjt ,c
(eiφ

j
t )Φ′t(fφjt ,c

(eiφ
j
t )). (3.38)
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By differentiating the expression for f ′ in (3.12), we find that

f ′′
φjt ,c

(eiφ
j
t ) = e−iφ

j
t

1 + d(c)

2
√

1− e−c
. (3.39)

As Φ′t(e
iφjt ) = 0 and f

φjt ,c
(eiφ

j
t )− eiφ

j
t = eiφ

j
td(c), we also have

Φ′t(fφjt ,c
(eiφ

j
t )) = eiφ

j
td(c)Φ′′t (e

iφjt ) +
e2iφjtd(c)2

2
Φ

(3)
t (eiφ

j
t ) +O(d(c)3).

Since Φ
(3)
t (eiφ

j
t ) = −3e−iφ

j
tΦ′′t (e

iφjt ), and d(c) = O(c1/2), we have

Φ′t(fφjt ,c
(eiφ

j
t )) = eiφ

j
td(c)(1− 3d(c)

2
+O(c))Φ′′t (e

iφjt )

= eiφ
j
td(c)(1− 3c1/2 +O(c))Φ′′t (e

iφjt ). (3.40)

Hence, substituting (3.39) and (3.40) back into (3.38), we obtain

(Φt ◦ fφjt ,c)
′′(eiφ

j
t ) =

d(c)(1 + d(c))

2
√

1− e−c
(1− 3c1/2 +O(c))Φ′′t (e

iφjt ).

More computations give us d(c)(1+d(c))

2
√

1−e−c = 1 + 3c1/2 +O(c), and so

(Φt ◦ fφjt ,c)
′′(eiφ

j
t ) = (1 +O(c))Φ′′t (e

iφjt ).

Hence while attaching a slit at j, d
dt log Φ′′t (e

iφjt ) = exp(O(1)). Together with the previous

case, this shows pjt =
|Φ′′t (eiφ

j
t )|−η∑

l |Φ′′t (eiφ
l
t )|−η

is Lipschitz in t. Similar arguments apply to the

Laplacian path model.

Now we will be able to show that the quantities governing the growth of the multinomial

model, φjt and pjt , are with high probability close to their counterparts in the Laplacian

path model, φ̄jt and p̄jt .

Theorem 3.16. There exists a universal constant R and a constant A = A(T, L, k,K0, η)

such that

P

sup
t≤T

k∑
j=1

(
|eiφ

j
t − eiφ̄

j
t |+ |pjt − p̄

j
t |
)
≤ Ac1/2R

→ 1

as c→ 0.

Corollary 3.17. If µt = δθbt/cc+1
for the multinomial model and µ̄t =

∑k
j=1 p̄

j
tδφ̄jt

for the

Laplacian path model, then

dBW(µt ⊗m[0,T ], µ̄t ⊗m[0,T ])→ 0

in probability as c→ 0. Hence µt ⊗m[0,T ] converges in distribution, as a random element

of the space of measures on S = T× [0, T ], to µ̄t ⊗m[0,T ].
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Proof of Theorem 3.16. Throughout the proof, A represents a constant which may change

from line to line, but all occurrences have a common upper bound depending only on T ,

L, k, K0 and η.

Let xj(t) = eiφ
j
t and x̄j(t) = eiφ̄

j
t . Write δx(t) = sups≤t

∑k
j=1 |xj(s) − x̄j(s)| and

δp(t) = sups≤t
∑k

j=1

∣∣∣ 1
Φ′′s (xj(s))

− 1
Φ̄′′s (x̄j(s))

∣∣∣. Since pjs = |Φ′′s(xj(s))|−η/
∑k

l=1 |Φ′′s(xl(s))|−η

and p̄js is similarly expressed in terms of (|Φ′′s(x̄l(s))|−η)kl=1, and all these second deriva-

tives stay away from 0 and ∞, to obtain the bound on supt≤T |p
j
t − p̄

j
t | from the theorem

statement it will suffice to bound δp(T ). Hence we aim to find an inequality of the form

δx(t)+ δp(t) ≤ α(s)+
∫ t

0 β(s)(δx(s)+ δp(s)) ds for all t ≤ T with high probability, for some

suitable functions α and β, which will give us the claimed upper bound on δx(T ) + δp(T ).

Equation (2.6) in [4] shows that the movement of the preimages φ̄jt in the Laplacian

path model is determined by

∂

∂t
x̄j(t) = −

∑
l 6=j

p̄jt x̄j(t)
x̄j(t) + x̄l(t)

x̄j(t)− x̄l(t)
(3.41)

and similarly for the multinomial model,

∂

∂t
xj(t) =

{
0 if ξt = xj(t),

−xj(t)xj(t)+xl(t)xj(t)−xl(t) if ξt = xl(t) for l 6= j
. (3.42)

Define

λj,lt =

{
0 if j = l

−xj(t)xj(t)+xl(t)xj(t)−xl(t) otherwise
,

and likewise

λ̄j,lt =

{
0 if j = l

−x̄j(t) x̄j(t)+x̄l(t)x̄j(t)−x̄l(t) otherwise
,

so for t ∈ [0, T ] we can write, integrating (3.41) and (3.42) with respect to time,

x̄j(t) = x̄j(0) +

∫ t

0

∑
l 6=j

λ̄j,ls p̄
l
s ds, (3.43)

xj(t) = xj(0) +

bt/cc∑
n=0

∫ (n+1)c∧t

nc

∑
l 6=j

λj,ls I
l
s ds, (3.44)

where I ls := 1{ξs = eiφ
j
s} = 1{θbs/cc+1 = φlbs/ccc} = I lnc in the line above. Write

Xj
n+1 =

∑
l 6=j λ

j,l
nc(I lnc − plnc), and note that Xj

n+1 is a bounded martingale increment,
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E[Xj
n+1|θ1, . . . , θn] = 0. Then using Lemma 3.15, we have∣∣∣∣∣∣

∑
l 6=j

λj,ls I
l
s −

∑
l 6=j

λj,ls p
l
s +Xj

n+1

∣∣∣∣∣∣ ≤ A(c ∧ s),

for any s ≤ T , and so for t ≤ T , we can expand (3.44):

xj(t) = xj(0) +

∫ t

0

∑
l 6=j

plsλ
j,l
s ds+ c

bt/cc∑
n=1

Xj
n + (t−

⌊
t

c

⌋
c)Xj

bt/cc+1 + Ejt (3.45)

where |Ejt | ≤ A(ct∧ t2). Let M j
t = c

∑bt/cc
n=1 Xj

n + (t−bt/ccc)Xj
bt/cc+1, and note that now

(3.45) is the sum of something of the same form as the right-hand side of (3.43) with a

martingale-type term M j
t and a small error Ejt . Since x̄j(0) = xj(0), we can use (3.43)

and (3.44) to obtain

|xj(t)− x̄j(t)| ≤
∫ t

0

∑
l 6=j
|plsλj,ls − p̄lsλ̄j,ls |ds+ |M j

t |+ |E
j
t |

≤
∫ t

0

∑
l 6=j
|λj,ls − λ̄j,ls | ds+A

∫ t

0

∑
l 6=j
|pls − p̄ls| ds+ |M j

t |+ |E
j
t |.

As the denominators in the above definitions of λj,lt and λ̄j,lt are bounded below, it is a

simple calculation to linearise |λj,ls − λ̄j,ls | ≤ A (|xj(t)− x̄j(t)|+ |xl(t)− x̄l(t)|), and so

|xj(t)− x̄j(t)| ≤ A
∫ t

0

(k − 1)|xj(s)− x̄j(s)|+
∑
l 6=j
|xl(s)− x̄l(s)|+

∑
l 6=j
|pls − p̄ls|

ds

+ |M j
t |+ |E

j
t |. (3.46)

Recall δx(t) = sups≤t
∑k

j=1 |xj(s) − x̄j(s)|. Let Mt =
∑k

j=1 |M
j
t | and Et =

∑k
j=1 |E

j
t |, so

by (3.46),

δx(t) ≤
∫ t

0
Aδx(s) ds+A

∫ t

0

k∑
j=1

|pjs − p̄js| ds+Mt + Et (3.47)

for t ∈ [0, T ].

Note that (M j
nc)n≥0 is a martingale, and so (Mnc)n≥0 is a submartingale. For every

t ≤ T , |M j
t −M

j
bt/ccc| ≤ Ac, and so

sup
t≤T

Mt ≤ max
n≤T/c

Mnc +Ac,

and by Doob’s submartingale inequality

P
[

max
n≤T/c

Mnc ≥ c1/4

]
≤

EM2
bT/cc

c1/2
≤ Ac1/2.

71



So on an event of probability at least 1 − Ac1/2, which we will call Ex, for all t ≤ T we

have Mt ≤ 2c1/4. On this event,

δx(t) ≤
∫ t

0
Aδx(s) ds+A

∫ t

0

k∑
j=1

|pjs − p̄js| ds+ 2c1/4 +Ac. (3.48)

We will establish a similar integral bound for
∑k

j=1 |p
j
t− p̄

j
t |, and then use a Grönwall-type

argument to bound δx(t) +
∑k

j=1 |p
j
t − p̄

j
t |.

To establish a bound on |pjt − p̄
j
t | the argument is similar to the previous, but sub-

stantially more complicated. Following ideas from Section 4.2 of [4], we will be able to

establish precise expressions for 1/Φ′′t (e
iφjt ) and 1/Φ̄′′t (e

iφ̄jt ). Recall

δp(t) = sup
s≤t

k∑
j=1

∣∣∣∣ 1

Φ′′s(xj(s))
− 1

Φ̄′′s(x̄j(s))

∣∣∣∣ .
Fix t ∈ [0, T ], and for s ≤ t define the transition map hs := Φ−1

s ◦ Φt, and similarly

define h̄s = Φ̄−1
s ◦ Φ̄t. As t is fixed, ḣs will now denote d

dshs, etc.. Note that hs evolves

from h0 = Φ−1
0 ◦Φt (which is not Φt since the initial condition is non-trivial) to ht = Id∆,

the identity map. Also note that hs satisfies the inverse Loewner equation

∂

∂s
hs(z) = −hs(z)

∑
l

I ls
hs(z) + xl(s)

hs(z)− xl(s)
, (3.49)

and similarly

∂

∂s
h̄s(z) = −h̄s(z)

∑
l

p̄ls
h̄s(z) + x̄l(s)

h̄s(z)− x̄l(s)
. (3.50)

We will first establish an expression involving 1/Φ′′t (e
iφjt ), and a near-identical argu-

ment gives an equivalent expression (replacing I ls by p̄ls) for 1/Φ̄′′t (e
iφ̄lt).

Adopting the notation used in [4], write wj(s) = hs(xj(t)), and where it is unambiguous

we will write xj = xj(s), wj = wj(s), etc.. Then (3.49) becomes

ẇj = −
∑
l

I lswj
wj + xl
wj − xl

= −
∑
l

I ls

(
wj + 2xl +

2x2
l

wj − xl

)
. (3.51)

Note that wj(0) = Φ−1
0 (Φt(xj(t))), which is approximately xj(t)(1 + 2

√
pjt
√
t) for small t,

and wj(t) = xj(t).

Let κ(s) = h′′s(xj(t)). Since h′s(xj(t)) = 0 for s < t, differentiating the right-hand side

of (3.50) twice with respect to z and evaluating at xj(t) gives us

κ̇(s)

κ(s)
= −

∑
l

I ls

(
1− 2xl(s)

2

(wj(s)− xl(s))2

)
.

Since wj(t) = xj(t), the l = j term in the above sum is singular as s → t. So before we
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use it to determine log κ, we would like to subtract off this singularity. Subtracting (3.42)

from (3.51) gives

ẇj − ẋj = −
∑
l

I ls

(
wj + 2xl +

2x2
l

wj − xl

)
+
∑
l 6=j

I lsxj
xj + xl
xj − xl

(3.52)

= −Ijs

(
wj + 2xj +

2x2
j

wj − xj

)
+
∑
l 6=j

I ls

(
2x2

l

(xj − xl)(wj − xl)
− 1

)
(wj − xj),

and so

ẇj − ẋj
wj − xj

= −Ijs

(
wj + 2xj
wj − xj

+
2x2

j

(wj − xj)2

)
+
∑
l 6=j

I ls

(
2x2

l

(xj − xl)(wj − xl)
− 1

)
.

Hence

κ̇

κ
+
ẇj − ẋj
wj − xj

= −Ijs
(

2 +
3xj

wj − xj

)
+
∑
l 6=j

I ls

(
2x2

l

(wj − xl)2
+

2x2
l

(wj − xl)(xj − xl)
− 2

)
.

(3.53)

We have reduced the order of the singularity by one, and now since |wj(s)−xj(s)| ≈
√
t− s

as s ↑ t, the remaining singularity is integrable. Note that we can collect some of the terms

as −2Ijs − 2
∑

l 6=j I
l
s = −2. We will give names to the remaining terms:

Qj,ls =
2xl(s)

2

(wj(s)− xl(s))2
+

2xl(s)
2

(wj(s)− xl(s))(xj(s)− xl(s))
(3.54)

for l 6= j, and

Qj,js =
3xj(s)

wj(s)− xj(s)
. (3.55)

Note that for l 6= j, |Qj,ls | ≤ A, for a constant A proportional to L−2. Integrating the

equation (3.53) over s ∈ [0, t), we obtain

log
lims↑t κ(s)(wj(s)− xj(s))
κ(0)(wj(0)− xj(0))

= −2t+

k∑
l=1

∫ t

0
I lsQ

j,l
s ds. (3.56)

We have an analogous expression

log
lims↑t κ̄(s)(w̄j(s)− x̄j(s))
κ̄(0)(w̄j(0)− x̄j(0))

= −2t+

k∑
l=1

∫ t

0
p̄lsQ̄

j,l
s ds, (3.57)

for κ̄ and Q̄j,ls defined in the obvious way.

Next, we will carefully analyse the left-hand sides of (3.56) and (3.57), whose difference

will be useful in bounding the difference of 1/Φ′′t (xj(t)) and 1/Φ̄′′t (x̄j(t)).

In the multinomial model, the left-hand side of (3.56) is only finite if the previous

particle attached by time t was at slit j, otherwise κ(t)(wj(t) − xj(t)) = 0. Fix a large
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positive R > 0, which we will determine later, and pick a sequence of times 0 = T j(0) <

T j(1) < T j(2) < · · · < T j(Nj) ≤ T such that each T j(n) is an integer multiple of c, and

for all n ≥ 1, c1/R ≤ T j(n)−T j(n−1) ≤ c1/2R and ξt = xj(t) for all t ∈ (T j(n)−c, T j(n)).

It will suffice to have an estimate like (3.48) only for each time t := {T j(1), . . . , T j(Nj)},
as we will show later. Note also that Nj ≤ Tc−1/R. First we need to show that with high

probability we can choose such a sequence.

Note that there exists p > 0 depending on T, η, L and K0 such that minj infs∈[0,T ] p
j
s ≥

p > 0, and so we can couple the multinomial model with a sequence of bT/cc indepen-

dent trials of success probability p, so that on a success a particle is attached at slit

j, and if X is the longest run of consecutive failures, maxn≥1(T j(n) − T j(n − 1)) ≤
cX. Let F be the number of runs of consecutive failures of length

⌊
c−(1−1/R)

⌋
, i.e.

F =
∑bTc−1−c−(1−1/R)c

n=1 1{trials n, n+ 1, ..., n+
⌊
c−(1−1/R)

⌋
all fail}. Then by Markov’s

inequality,

P[X ≥ c−(1−1/R)] = P[F ≥ 1] ≤ EF ≤ T

c
(1− p)bc−(1−1/R)c.

So the event

ET := {for all t ∈ [c1/2R, T ] and all j, ξs = xj(s) for some s ∈ (t− c1/2R, t]} (3.58)

has probability at least 1− kT
c (1− p)bc−(1−1/R)c, which is very close to 1.

So if we take (3.56) with t ∈ {T j(1), . . . , T j(Nj)} for a given j, we have

log
lims↑t κ(s)(wj(s)− xj(s))
κ(0)(wj(0)− xj(0))

= −2t+

k∑
l=1

∫ t

0
I lsQ

j,l
s ds. (3.59)

If t− c < s < t, then hs is exactly the slit map fxj(t),t−s, and so differentiating (3.12)

to obtain an expression for κ(s) =
f ′′t−s(1)

xj(t)
, we find

κ(s)(wj(s)− xj(s)) =
f ′′t−s(1)

xj(t)
(xj(t)ft−s(1)− xj(t))

=
1 + d(t− s)

2
√

1− e−(t−s)
d(t− s)

∼ 1

2
√
t− s

2
√
t− s = 1

as s ↑ t, and as Φ̄−1
s ◦ Φ̄t is locally a slit map of capacity p̄jt (t− s) for s close to t, we also

have

κ̄(s)(w̄j(s)− x̄j(s)) ∼
1

2

√
p̄jt (t− s)

2

√
p̄jt (t− s) = 1

as s ↑ t. So the numerators of both (3.56) and (3.57) are equal to 1.

Next we use the difference of the denominators to bound the difference of 1/Φ′′t (xj(t))

and 1/Φ̄′′t (x̄j(t)).
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The remaining calculations in this proof repeatedly make use of expansions of the

form ab − āb̄ = (a − ā)b + ā(b − b̄) = a(b − b̄) + (a − ā)b̄ to linearise the difference of

expressions which are the product of two (or more) terms. It will be much easier to follow

the computations if the reader keeps this trick in mind.

We have 1/κ(0) =
Φ′0(wj(0))
Φ′′t (xj(t))

, and so

1

Φ′′t (xj(t))
=
wj(0)− xj(0)

Φ′0(wj(0))

1

κ(0)(wj(0)− xj(0))
.

Then expanding 1
Φ′′t (xj(t))

− 1
Φ̄′′t (x̄j(t))

into two terms using the above expression and our

linearisation trick, then applying the triangle inequality, we have∣∣∣∣ 1

Φ′′t (xj(t))
− 1

Φ̄′′t (x̄j(t))

∣∣∣∣ ≤ ∣∣∣∣wj(0)− xj(0)

Φ′0(wj(0))
− w̄j(0)− x̄j(0)

Φ′0(w̄j(0))

∣∣∣∣ 1

|κ(0)(wj(0)− xj(0))|

+

∣∣∣∣ w̄j(0)− x̄j(0)

Φ′0(w̄j(0))

∣∣∣∣ ∣∣∣∣ 1

κ(0)(wj(0)− xj(0))
− 1

κ̄(0)(w̄j(0)− x̄j(0))

∣∣∣∣ .
(3.60)

We claim that the coefficient
∣∣∣ w̄j(0)−x̄j(0)

Φ′0(w̄j(0))

∣∣∣ is bounded above and below by constants.

Both Φ′0(w̄j(0))→ 0 and w̄j(0)−x̄j(0)→ 0 as t→ 0. More specifically, as |w̄j(0)−x̄j(t)| =

|(Φ−1
0 ◦ Φ̄t)(x̄j(t))− x̄j(t)| is proportional to

√
p̄jt t when t is small, and Φ0 is locally a slit

map, we can use (3.12) to estimate

A−1
√
p̄jt t ≤ |Φ′0(w̄j(0))| ≤ A

√
p̄jt t. (3.61)

For the numerator, |w̄j(0)− x̄j(0)| ∼ d(p̄jt t) ∼ 2

√
p̄jt t as t→ 0, so A−1 ≤

∣∣∣ w̄j(0)−x̄j(0)
Φ′0(w̄j(0))

∣∣∣ ≤ A.

A similar argument gives us A−1 ≤ 1
|κ(0)(wj(0)−xj(0))| ≤ A.

For the first increment in (3.60), the bounds above on
∣∣∣ w̄j(0)−x̄j(0)

Φ′0(w̄j(0))

∣∣∣ and the analogous

bounds for the multinomial model allow us to write∣∣∣∣wj(0)− xj(0)

Φ′0(wj(0))
− w̄j(0)− x̄j(0)

Φ′0(w̄j(0))

∣∣∣∣ ≤ A ∣∣∣∣ Φ′0(wj(0))

wj(0)− xj(0)
− Φ′0(w̄j(0))

w̄j(0)− x̄j(0)

∣∣∣∣ . (3.62)

Since Φ′0(xj(0)) = 0, we can use the fundamental theorem of calculus to write

Φ′0(wj(0)) = (wj(0)− xj(0))

∫ 1

0
Φ′′0(αwj(0) + (1− α)xj(0)) dα,

and similarly for Φ′0(w̄j(0)). Then, using the fact that xj(0) = x̄j(0) and the bound

|Φ(3)
0 (z)| ≤ A for z in the convex hull of {wj(0), w̄j(0), xj(0)}, we can bound the right-

hand side of (3.62) by

A

∫ 1

0

∣∣Φ′′0(pwj(0) + (1− p)xj(0))− Φ′′0(pw̄j(0) + (1− p)x̄j(0))
∣∣ dp ≤ A|wj(0)− w̄j(0)|.

Applying the fundamental theorem of calculus again with the bound (3.61) and its
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analogue for the multinomial model, we have

|wj(0)− w̄j(0)| = |Φ−1
0 (Φt(xj(t)))− Φ−1

0 (Φ̄t(x̄j(t)))|

≤ A |Φt(xj(t))− Φ̄t(x̄j(t))|√
t

. (3.63)

Then we can write, using Lemma 3.13 and writing Ijs = pjs + (Ijs − pjs),

|Φt(xj(t))− Φ̄t(x̄j(t))| =
∣∣∣∣∫ t

0
(qs(xj(s))− q̄s(x̄j(s))) ds

∣∣∣∣
=

∣∣∣∣2 ∫ t

0
(Ijsxj(s)

2Φ′′s(xj(s))− p̄jsx̄j(s)2Φ̄′′s(x̄j(s))) ds

∣∣∣∣
≤ 2

∫ t

0
|pjsxj(s)2Φ′′s(xj(s))− p̄jsx̄j(s)2Φ̄′′s(x̄j(s))|ds

+

∣∣∣∣2 ∫ t

0
(Ijs − pjs)xj(s)2Φ′′s(xj(s)) ds

∣∣∣∣ .
Our linearisation trick applied twice shows the first term is bounded by

2
∣∣Φ′′s(xj(s))− Φ̄′′s(x̄j(s))

∣∣+A
(
|pjs − p̄js|+ |xj(s)− x̄j(s)|

)
≤ A

(∣∣∣∣ 1

Φ′′s(xj(s))
− 1

Φ̄′′s(x̄j(s))

∣∣∣∣+ |pjs − p̄js|+ |xj(s)− x̄j(s)|
)
,

and further routine calculations show that

|pjs − p̄js| ≤ A
∑
l

∣∣∣∣ 1

Φ′′s(xl(s))
− 1

Φ̄′′s(x̄l(s))

∣∣∣∣ ,
so we have

|Φt(xj(t))− Φ̄t(x̄j(t))| ≤ A
∫ t

0
(δp(s) + δx(s)) ds+ 2

∣∣∣∣∫ t

0
(Ijs − pjs)xj(s)2Φ′′s(xj(s)) ds

∣∣∣∣ .
The second term can be decomposed into a martingale and small error, as we did in (3.44),

2

∫ t

0
(Ijs − pjs)xj(s)2Φ′′s(xj(s)) ds =

bt/cc∑
n=0

∫ (n+1)c∧t

nc
Xj
n+1 ds+ Ejt ,

where using Lemma 3.15, |Ejt | ≤ A(ct∧ t2), and Xj
n+1 := 2(Ijnc − pjnc)xj(nc)2Φ′′nc(xj(nc))

is a bounded martingale increment with respect to Fn = σ(θ1, . . . , θn). Again define

M j
t = c

bt/cc∑
n=1

Xj
n + (t−

⌊
t

c

⌋
c)Xj

bt/cc+1. (3.64)
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For a given t, define the event

Etp,1 =


k∑
j=1

|M j
t | ≤ c

1
2
− 2
R

√
t

 ,

where R is the large positive constant we defined earlier and will determine the value of

later. Then by Markov’s inequality

P(Etp,1) ≥ 1−Ac4/R. (3.65)

So overall, on the event Etp,1, the first term in (3.60) is bounded by

A√
t

∫ t

0
(δp(s) + δx(s)) ds+ c

1
2
− 2
R +Ac

√
t, (3.66)

and as t ≤ T the final term is bounded by a multiple of the second, and so on the event

Etp,1, (3.60) becomes∣∣∣∣ 1

Φ′′t (xj(t))
− 1

Φ̄′′t (x̄j(t))

∣∣∣∣ ≤ A√
t

∫ t

0
(δp(s) + δx(s)) ds+Ac

1
2
− 2
R

+A

∣∣∣∣ 1

κ(0)(wj(0)− xj(0))
− 1

κ̄(0)(w̄j(0)− x̄j(0))

∣∣∣∣ . (3.67)

For the second line in (3.67), note that as A−1 ≤
∣∣∣ 1
κ(0)(wj(0)−xj(0))

∣∣∣ ≤ A, and similarly

for the LPM version of the same term, we have∣∣∣∣ 1

κ(0)(wj(0)− xj(0))
− 1

κ̄(0)(w̄j(0)− x̄j(0))

∣∣∣∣
≤ A

∣∣∣∣log
1

κ(0)(wj(0)− xj(0))
− log

1

κ̄(0)(w̄j(0)− x̄j(0))

∣∣∣∣
= A

∣∣∣∣∣
k∑
l=1

∫ t

0
(I lsQ

j,l
s − p̄lsQ̄j,ls ) ds

∣∣∣∣∣ . (3.68)

We decompose the integrands into three terms using our linearisation trick,

I lsQ
j,l
s − p̄lsQ̄j,ls = (I ls − pls)Qj,ls + (pls − p̄ls)Qj,ls + p̄ls(Q

j,l
s − Q̄j,ls ),

and so (3.68) is bounded by a constant multiple of

k∑
l=1

(∣∣∣∣∫ t

0
(I ls − pls)Qj,ls ds

∣∣∣∣+

∫ t

0
|pls − p̄ls||Qj,ls |ds+

∫ t

0
|Qj,ls − Q̄j,ls |ds

)
. (3.69)

For l 6= j, by the linearisation trick applied to (3.54) (and linearising the denominators as

they all stay away from 0 since l 6= j),

|Qj,ls − Q̄j,ls | ≤ A (|(wj(s)− xj(s))− (w̄j(s)− x̄j(s))|+ |xj(s)− x̄j(s)|+ |xl(s)− x̄l(s)|) ,
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|Qj,ls | ≤ A, and |Qj,js | = 3
|wj(s)−xj(s)| �

1√
t−s . The first term in (3.69) can be bounded,

as the other martingale terms were, by something which has second moment less than

Ac log t
c , and so if we define the event

Ep,2 =

{
sup
t≤T

k∑
l=1

∣∣∣∣∫ t

0
(I ls − pls)Qj,ls ds

∣∣∣∣ ≤ 2c
1
2
− 2
R

}
, (3.70)

then by Doob’s martingale inequality, P(Ep,2) ≥ 1−Ac4/R log(T/c).

We can bound the second term in (3.69) by

A

∫ t

0

δp(s)√
t− s

ds. (3.71)

Then to bound the final term, consider the l = j case:

|Qj,js − Q̄j,js | ≤
3|xj(s)− x̄j(s)|
|w̄j(s)− x̄j(s)|

+
|(wj(s)− xj(s))− (w̄j(s)− x̄j(s))|
|wj(s)− xj(s)||w̄j(s)− x̄j(s)|

≤ A δx(s)√
t− s

+A
|(wj(s)− xj(s))− (w̄j(s)− x̄j(s))|

t− s
. (3.72)

So on the event Etp,1 ∩ Ep,2, which has probability at least 1− A log(T/c)c4/R, (3.67)

becomes∣∣∣∣ 1

Φ′′t (xj(t))
− 1

Φ̄′′t (x̄j(t))

∣∣∣∣ ≤ A√
t

∫ t

0
(δp(s) + δx(s)) ds+Ac

1
2
− 2
R

+A

∫ t

0

δp(s) + δx(s)√
t− s

ds

+A

∫ t

0

|(wj(s)− xj(s))− (w̄j(s)− x̄j(s))|
t− s

ds, (3.73)

where the l = j summand in the final term of (3.69) gives the final line of (3.73), which,

together with the terms involving δx also provide an upper bound on the l 6= j summands.

To bound the final line of (3.73), let us = (wj(s) − xj(s)) − (w̄j(s) − x̄j(s)). We will

bound |us| using Grönwall’s lemma. Since the s-derivative of us is singular as s ↑ t, we

will carefully analyse and control the singularity. Subtract (3.52) from its LPM equivalent

to obtain

u̇s =− ((wj(s)− xj(s))− (w̄j(s)− x̄j(s))) (3.74)

+
∑
l 6=j

(
− I ls

(
2xl(s)

2

(xj(s)− xl(s))(wj(s)− xl(s))

)
(wj(s)− xj(s))

+ p̄ls

(
2x̄l(s)

2

(x̄j(s)− x̄l(s))(w̄j(s)− x̄l(s))

)
(w̄j(s)− x̄j(s))

)

− Ijs
(

3xj(s) +
2xj(s)

2

wj(s)− xj(s)

)
+ p̄js

(
3x̄j(s) +

2x̄j(s)
2

w̄j(s)− x̄j(s)

)
.
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The first line on the right-hand side is clearly −us, and repeating the linearisation trick

for the lth summand in the next term we find it is the sum of three things:

(I ls − pls)
(

2xl(s)
2

(xj(s)− xl(s))(wj(s)− xl(s))

)
(wj(s)− xj(s)),

and something with size bounded by

A
(
|pls − p̄ls|+ |xl(s)− x̄l(s)|+ |xj(s)− x̄j(s)|

)
,

where the constant A is proportional to L−3, and a bounded multiple of us. The final

term in the expansion of u̇s, on the last line of (3.74), is the sum of

(Ijs − pjs)
(

3xj(s) +
2xj(s)

2

wj(s)− xj(s)

)
, (3.75)

another term which can be simplified to

2p̄jsxj(s)x̄j(s)

(wj(s)− xj(s))(w̄j(s)− x̄j(s))
us, (3.76)

and something bounded by

A
|pjs − p̄js|+ |xj(s)− x̄j(s)|

|w̄j(s)− x̄j(s)|
. (3.77)

For s close to t, w̄j(s)− x̄j(s) = 2x̄j(s)

√
p̄js
√
t− s+O(t− s), and we said earlier that

p̄js is bounded below by a positive constant, so we can bound (3.77) by

A
|pjs − p̄js|+ |xj(s)− x̄j(s)|√

t− s
.

Similarly wj(s)− xj(s) = 2xj(s)
√
t− s+O(t− s), and so the coefficient of us in (3.76) is√
p̄js

2(t− s)
+O

(
1√
t− s

)
,

and note that the leading order term is a positive real number, and the error term can

absorb the −us from the first line of (3.74) and the bounded multiple of us from each

summand of the second and third lines. Hence (3.74) can be written as

u̇s =


√
p̄js

2(t− s)
+O

(
1√
t− s

)us +Hregular
s +Hsingular

s , (3.78)

where the first forcing term is

Hregular
s =

∑
l 6=j

(I ls − pls)
(

2xl(s)
2(wj(s)− xj(s))

(xj(s)− xl(s))(wj(s)− xl(s))

)
+Bregular

s , (3.79)
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where

|Bregular
s | ≤ A

∑
l

(|pls − p̄ls|+ |xl(s)− x̄l(s)|). (3.80)

The other forcing term is

Hsingular
s = (Ijs − pjs)

(
3xj(s) +

2xj(s)
2

wj(s)− xj(s)

)
+Bsingular

s , (3.81)

where

|Bsingular
s | ≤ A |p

j
s − p̄js|+ |xj(s)− x̄j(s)|√

t− s
. (3.82)

For some α > 0, let vs = sαut−s, then as v̇s = αsα−1ut−s − sαu̇t−s, the sum of terms

involving ut−s in v̇s is

αsα−1ut−s − sα

√
p̄jt−s

2s
+O

(
s−1/2

)ut−s =

α−
√
p̄jt−s

2
+O(s1/2)

 vs
s
.

Hence (3.74) becomes

v̇s =

α−
√
p̄jt−s

2
+O(s1/2)

 vs
s
− sαHregular

t−s − sαHsingular
t−s . (3.83)

We noted before that there is a constant p = p(T,K0, k, η) ∈ (0, 1/k) such that p̄js ≥ p for

all j and s, so the leading order term is a real number less than α−√p/2.

Hence if α >
√
p/2, which is the only requirement on the constant α, |α−

√
p̄jt−s/2 +

O(s1/2)| ≤ α−√p/2+O(s1/2). Then integrating (3.83) and applying the triangle inequal-

ity, we have

|vs| ≤
∫ s

0

(
α−
√
p

2
+O(r

1
2 )

)
|vr|
r

dr +

∣∣∣∣∫ s

0
rαHregular

t−r dr

∣∣∣∣+

∣∣∣∣∫ s

0
rαHsingular

t−r dr

∣∣∣∣ . (3.84)

Substituting in (3.79) and (3.80), the second term on the right-hand side in (3.84) is

bounded by

∑
l 6=j

∣∣∣∣∫ s

0
(I lt−r − plt−r)rα

(
2xl(t− r)2(wj(t− r)− xj(t− r))

(xj(t− r)− xl(t− r))(wj(t− r)− xl(t− r))

)
dr

∣∣∣∣ (3.85)

+A
∑
l

∫ s

0
rα|plt−r − p̄lt−r|dr +A

∑
l

∫ s

0
rα|xl(t− r)− x̄l(t− r)| dr.

Let the integral on the first line be Mw,j,l
t,s . Note that we have not used the triangle

inequality to take the absolute value of the integrand in the first line of (3.85), unlike

the second line. This is because we will later use martingale methods to establish a good

bound on |Mw,j,l
t,s | which holds with high probability. Note that the absolute value of the
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integrand is bounded by Arα+1/2, since |I lt−r−plt−r| ≤ 2, |wj(t−r)−xj(t−r)| � r1/2, and

the other terms are bounded. The resulting almost-sure bound |Mw,j,l
t,s | ≤ A

α+3/2s
α+3/2

will be useful as a kind of bootstrap for the later improved bound.

The final term in (3.84) is similarly bounded by∣∣∣∣∫ s

0
(Ijt−r − p

j
t−r)r

α

(
3xj(t− r) +

2xj(t− r)
wj(t− r)− xj(t− r)

)
dr

∣∣∣∣ (3.86)

+A

∫ s

0
rα−1/2|pjt−r − p̄

j
t−r|dr +A

∫ s

0
rα−1/2|xj(t− r)− x̄j(t− r)| dr.

Again let the integral on the first line be Mw,j,j
t,s . As the absolute value of the integrand

is bounded by Arα−1/2, we have an almost-sure bound |Mw,j,j
t,s | ≤ A

α+1/2s
α+1/2, and we

will also use martingale methods to improve this later.

It will be convenient to define

χ(r) :=

k∑
l=1

(|plr − p̄lr|+ |xl(r)− x̄l(r)|). (3.87)

Note that the sum of the second lines of (3.85) and (3.86) is bounded by

A

∫ s

0
rα−1/2χ(t− r) dr (3.88)

which will be more convenient to work with.

As |plt−r − p̄lt−r| ≤ 1 and |xl(t− r)− x̄l(t− r)| ≤ 2 for all l, t and r, χ(r) is uniformly

bounded by a constant, and so (3.88) is bounded by A
α+1/2s

α+1/2.

Overall, combining the second lines of (3.85) and (3.86) we have

|vs| ≤
∫ s

0

(
α−
√
p

2
+O(r1/2)

)
|vr|
r

dr +
∑
l

|Mw,j,l
t,s |+A

∫ s

0
rα−1/2χ(t− r) dr.

If we let at(s) =
∑

l |M
w,j,l
t,s |+A

∫ s
0 r

α−1/2χ(t− r) dr be the sum of the “forcing terms” on

the right-hand side above, then by Grönwall’s lemma

|vs| ≤ at(s) +Aαsα−
√
p

2

∫ s

0

at(r)

rα+1−√p/2 dr

for all 0 < s < t. Note that since at(r) ≤ A
α+1/2r

α+1/2, the integral above converges.

Passing from v back to u, this bound becomes

|us| = (t− s)−α|vt−s| ≤ (t− s)−αat(t− s) +Aα(t− s)−
√
p

2

∫ t−s

0

at(r)

rα+1−√p/2 dr.

Substituting this back into the final term of (3.73), we get∫ t

0

|us|
t− s

ds ≤ A
∫ t

0

at(t− s)
(t− s)α+1

ds+Aα

∫ t

0

1

(t− s)1+
√
p

2

∫ t−s

0

at(r)

rα+1−√p/2 dr ds. (3.89)
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Our crude bound at(r) ≤ A
α+1/2r

α+1/2 shows that each of the above integrals converges.

For the first term on the right-hand side of (3.89) we have

∫ t

0

at(t− s)
(t− s)α+1

ds =
∑
l

∫ t

0

|Mw,j,l
t,t−s|

(t− s)α+1
ds+A

∫ t

0

1

(t− s)α+1

∫ t−s

0
rα−1/2χ(t− r) dr ds.

We will come back to the term involving |Mw,j,l| later. First, for the double integral, we

can apply Fubini’s theorem to change the order of integration:∫ t

0

1

(t− s)α+1

∫ t−s

0
rα−1/2χ(t− r) dr ds

=

∫ t

0
rα−1/2χ(t− r)

∫ t−r

0
(t− s)−α−1 ds dr

=
1

α

(∫ t

0
r−1/2χ(t− r) dr − t−α

∫ t

0
rα−1/2χ(t− r) dr

)
≤ 1

α

∫ t

0
r−1/2χ(t− r) dr.

Substituting the two summands in the definition of at(r) back into the final term of (3.89),

we expand it to

Aα
∑
l

∫ t

0

1

(t− s)1+
√
p

2

∫ t−s

0

|Mw,j,l
t,r |

rα+1−
√
p

2

dr ds

+Aα

∫ t

0

1

(t− s)1+
√
p

2

∫ t−s

0

1

rα+1−
√
p

2

∫ r

0
xα−1/2χ(t− x) dx dr ds.

We will leave the first term for later. To simplify the triple integral, we can apply Fubini’s

theorem to the innermost two integrals:∫ t

0

1

(t− s)1+
√
p

2

∫ t−s

0

1

rα+1−
√
p

2

∫ r

0
xα−1/2χ(t− x) dx dr ds

=

∫ t

0

1

(t− s)1+
√
p

2

∫ t−s

0
xα−1/2χ(t− x)

∫ t−s

x
r−α−1+

√
p/2 dr dx ds

≤
∫ t

0

1

(t− s)1+
√
p

2

∫ t−s

0
xα−1/2χ(t− x)

∫ ∞
x

r−α−1+
√
p/2 dr dx ds

=
1

α−√p/2

∫ t

0

1

(t− s)1+
√
p

2

∫ t−s

0
x
√
p

2
−1/2χ(t− x) dx ds.

By a second application of Fubini’s theorem followed by the substitution y = t− s we can
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simplify this further: ∫ t

0

1

(t− s)1+
√
p

2

∫ t−s

0
x
√
p

2
−1/2χ(t− x) dx ds

=

∫ t

0
x
√
p

2
−1/2χ(t− x)

∫ t−x

0

ds

(t− s)1+
√
p

2

dx

=

∫ t

0
x
√
p

2
−1/2χ(t− x)

∫ t

x
y−1−√p/2 dy dx

≤
∫ t

0
x
√
p

2
−1/2χ(t− x)

∫ ∞
x

y−1−√p/2 dy dx

=
2
√
p

∫ t

0
x−1/2χ(t− x) dx.

Now note that∫ t

0
x−1/2χ(t− x) dx =

∫ t

0
(t− x)−1/2χ(x) dx ≤

∫ t

0
(t− x)−1/2(δx(x) +Aδp(x)) dx,

and so (3.89) is bounded by

A

∫ t

0

δx(s) + δp(s)√
t− s

ds+A
∑
l

∫ t

0

|Mw,j,l
t,t−s|

(t− s)α+1
ds

+Aα
∑
l

∫ t

0

1

(t− s)1+
√
p

2

∫ t−s

0

|Mw,j,l
t,r |

rα+1−
√
p

2

dr ds. (3.90)

Making the substitution x = t− s and exchanging the integrals, the lth summand on the

second line of (3.90) is equal to

∫ t

0

|Mw,j,l
t,r |

rα+1−
√
p

2

∫ t

r

dx

x1+
√
p

2

dr ≤
∫ t

0

|Mw,j,l
t,r |

rα+1−
√
p

2

∫ ∞
r

dx

x1+
√
p

2

dr

=
2
√
p

∫ t

0

|Mw,j,l
t,r |
rα+1

dr,

so the final term in (3.90) is bounded by a multiple of the second term. Hence we only

need to bound
∑k

l=1

∫ t
0

|Mw,j,l
t,r |
rα+1 dr.

First we will look at the case l = j. Recall the definition of Mw,j,j
t,s via (3.86), and let

Cx = xα
(

3xj(t− x) +
2xj(t−x)

wj(t−x)−xj(t−x)

)
, and note |Cx| ≤ Axα−1/2.

If r < c, then

|Mw,j,j
t,r | =

∣∣∣∣∫ r

0
(Ijt−x − p

j
t−x)Cx dx

∣∣∣∣ ≤ 2

∫ r

0
|Cx| dx ≤ Arα+1/2.

If r ≥ c, note that for x ∈ (nc, (n + 1)c), by Proposition 3.15, |pt−x − pt−(n+1)c| ≤ c

and It−x = It−(n+1)c, so substituting pt−x = pt−(n+1)c + (pt−x − pt−(n+1)c) and using the
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triangle inequality,

|Mw,j,j
t,r | ≤

∣∣∣∣∣∣
br/cc∑
n=0

(Ijt−(n+1)c − p
j
t−(n+1)c)

∫ (n+1)c∧r

nc
Cx dx

∣∣∣∣∣∣+Ac

∫ r

0
|Cx| dx. (3.91)

The second term is less than Acrα+1/2. Using the same types of martingale arguments as

we did following (3.44) and also (3.64), the second moment of the first term is bounded

by

4

br/cc∑
n=0

(∫ (n+1)c∧r

nc
|Cx|dx

)2

≤ Acr2α.

Define the event Et,rw,j,j = {|Mw,j,j
t,r | ≤ c

1
2
− 4
R rα+ 1

2R }. By Markov’s inquality, for any r ≥ c,

1− P(Et,rw,j,j) = P
(
|Mw,j,j

t,r |2 > (c
1
2
− 4
R rα+ 1

2R )2
)
≤ Acr2α

c1− 8
R r2α+ 1

R

= Ac
8
R r−

1
R ≤ Ac

7
R .

We will find a good upper bound on
∫ t

0

|Mw,j,j
t,r |
rα+1 by showing that

⋂Nt
m=1E

t,rm
w,j,j occurs with

high probability, where (rm)1≤m≤Nt is a finite sequence of points which are “sufficiently

dense” in [0, t]. Choose this sequence of times inductively: set r1 = c, and for m ≥ 1

set rm+1 = rm + c
1
R
√
rm. Then rm+1 − rm ≥ c

1
R
√
rm − rm−1, and so rm+1 − rm ≥

c
1

2m
+ 1
R

(2− 1
2m

) ≥ c
4
R for m greater than some constant mR. Hence Nt := min{m : rm ≥

t} ≤ Ac−
4
R .

On the event Et,rmw,j,j for some m ≥ 1, let r ∈ (rm, rm+1), then by the mean value

theorem

|Mw,j,j
t,r −Mw,j,j

t,rm | =
∣∣∣∣∫ r

rm

(Ijt−x − p
j
t−x)Cx dx

∣∣∣∣ ≤ 2

∫ r

rm

|Cx|dx

≤ A

α+ 1/2
(rα+1/2 − rα+1/2

m )

≤ A(r − rm)rα−1/2

≤ Ac
1
R
√
rmr

α−1/2

≤ Ac
1

2R rα+ 1
2R .

Hence for any given t, as the c
1

2R rα+ 1
2R above absorbs the c

1
2
− 4
R rα+ 1

2R bound on |Mw,j,j
t,rm |,

P
(
|Mw,j,j

t,r | ≤ Ac
1

2R rα+ 1
2R for all c ≤ r ≤ t

)
≥ P

(
Nt⋂
m=1

Et,rmw

)
≥ 1−Ac

3
R , (3.92)

where we have bounded P
(⋃Nt

m=1(Et,rmw,j,j)
c
)

by a union bound and using Nt ≤ Ac−4/R.

Note that the bound |Mw,j,j
t,r | ≤ Arα+1/2 for r < c is almost sure. So on the event
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Etw,j,j :=
⋂Nt
m=1E

t,rm
w,j,j , we can use the bound on |Mw,j,j

t,r | in (3.92) to find

∫ t

0

|Mw,j,j
t,r |
rα+1

dr ≤
∫ c

0

Arα+ 1
2

rα+1
dr +

∫ t

c

Ac
1

2R rα+ 1
2R

rα+1
dr

≤ Ac
1
2 +ARc

1
2R t

1
2R (3.93)

if R ≥ 9.

For l 6= j, a very similar argument (which we omit) shows that if we define events

Et,rw,j,l = {|Mw,j,l
t,r | ≤ c

1
2
− 4
R rα+1+ 1

2R } and Etw,j,l =
⋂Nt
m=1E

t,rm
w,j,l for the same sequence

(rm)Nrm=1, we have P(
⋂Nt
m=1E

t,rm
w,j,l) ≥ 1−Ac3/R and on the event Etw,j,l we have the bound

∫ t

0

|Mw,j,l
t,r |
rα+1

dr ≤ Ac
3
2 +ARc

1
2R t1+ 1

2R .

Define the combined event Etw,j =
⋂k
l=1E

t
w,j,l. Since k is constant, we still have the lower

bound P(Etw,j) ≥ 1 − Ac
3
R , and on Etw,j the latter two terms in (3.90) are bounded by

Ac
1
2 +ARc

1
2R t

1
2R (t ∨ 1). As t ≤ T and R is a constant, we can just use the upper bound

k∑
l=1

∫ t

0

|Mw,j,l
t,r |
rα+1

dr ≤ Ac
1

2R . (3.94)

Therefore, on the event ET∩Etp,1∩Ep,2∩Etw,j , using (3.89), (3.90) and (3.94), we can

update the bound (3.73) to∣∣∣∣ 1

Φ′′t (xj(t))
− 1

Φ̄′′t (x̄j(t))

∣∣∣∣ ≤ A√
t

∫ t

0
(δp(s) + δx(s)) ds+Ac

1
2
− 2
R

+A

∫ t

0

δp(s) + δx(s)√
t− s

ds

+Ac
1

2R . (3.95)

Note that c
1
2
− 2
R < c

1
2R , and as 1√

t
< 1√

t−s for all 0 < s < t, we can simplify (3.95) to

∣∣∣∣ 1

Φ′′t (xj(t))
− 1

Φ̄′′t (x̄j(t))

∣∣∣∣ ≤ A∫ t

0

δp(s) + δx(s)√
t− s

ds+Ac
1

2R . (3.96)

The above event holds with probability at least 1 − AT
c (1 − p)bc−(1−1/R)c − Ac3/R ≥

1 − 2Ac3/R. So on an event of probability at least 1 − 2ATc2/R, which we call Ej , the

above inequality holds for all t ∈ {0, T j(1), . . . , T j(Nj)}.
Then using Lemma 3.13, for any T j(m) < t ≤ T j(m + 1), including T j(0) = 0, since

T j(m+ 1)− T j(m) ≤ c1/2R on the event ET by its definition, (3.58), we have∣∣∣∣ 1

Φ′′t (xj(t))
− 1

Φ̄′′t (x̄j(t))

∣∣∣∣ ≤ A∫ t

0

δp(s) + δx(s)√
t− s

ds+Ac
1

2R +A(T j(m+ 1)− T j(m))

≤ A
∫ t

0

δp(s) + δx(s)√
t− s

ds+ 2Ac
1

2R , (3.97)
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and the final inequality holds for all t ∈ (0, T ], almost surely on the event Ej ∩ ET. Let

ε = 2Ac
1

2R . Define the event E := ET ∩ Ex ∩
⋂k
j=1E

j , which has probability at least

1− 3AkTc2/R. Then on E, summing (3.97) over j, and then adding the above inequality

to (3.48), for the total error δtotal := δp + δx we get

δtotal(t) ≤ A
∫ t

0

δtotal(s)√
t− s

ds+ ε

for all 0 < t ≤ T almost surely.

By the theorem on page 375 of [24], δtotal is bounded by any solution to

y(t) = A

∫ t

0

y(s)√
t− s

ds+ ε. (3.98)

This is Abel’s integral equation of the second kind, with standard solution given in [27]

(page 136) as

y(t) = ε+ 2Aε
√
t+ πA2

∫ t

0
et−s(ε+ 2Aε

√
s) ds

≤ Aε,

and so

sup
t≤T

k∑
j=1

(
|xj(t)− x̄j(t)|+ |pjt − p̄

j
t |
)
≤ Ac1/2R

on an event of probability 1− o(1), as required.

Proof of Corollary 3.17. Let ϕ ∈ H. For simplicity assume T is an integer multiple of c.

Then∫ T

0

∫
T
ϕdµt dt−

∫ T

0

∫
T
ϕdµ̄t dt =

k∑
j=1

∫ T

0

(
Ijt ϕ(xj(t))− p̄jtϕ(x̄j(t))

)
dt

=

k∑
j=1

∫ T

0

(
(Ijt − p

j
t )ϕ(xj(t)) + (pjt − p̄

j
t )ϕ(xj(t)) + p̄jt (ϕ(xj(t))− ϕ(x̄j(t)))

)
dt.

The latter two terms are small with high probability using Theorem 3.16, so we only need

to bound the martingale terms
∫ T

0 (Ijt − p
j
t )ϕ(xj(t)) dt for each j. We can write this as

T
c
−1∑

n=0

[
(Ijnc − pjnc)

∫ (n+1)c

nc
ϕ(xj(t)) dt+

∫ (n+1)c

nc
(pjnc − p

j
t )ϕ(xj(t)) dt

]
.

Since |pjnc − pjt | ≤ Ac, we have |
∑T

c
−1

n=0

∫ (n+1)c
nc (pjnc − pjt )ϕ(xj(t)) dt| ≤ ATc. For the

remaining term, we would like to simply compute second moments and so show the term

is small, but need some way of doing this uniformly in ϕ. Choose some large N , and for
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simplicity assume it is a factor of T/c. Then write

N∑
m=1

mT
cN
−1∑

n=
(m−1)T

cN

(Ijnc − pjnc)

∫ (n+1)c

nc
ϕ(xj(t)) dt

=

N∑
m=1

cϕ(xj(mT/N))

mT
cN∑

n=
(m−1)T

cN
−1

(Ijnc − pjnc) + δ,

where |δ| ≤ AT 2

N using ‖ϕ‖Lip ≤ 1. Now we will be able to find a bound independent of ϕ,

as

E

c

mT
cN
−1∑

n=
(m−1)T

cN

(Ijnc − pjnc)


2

≤ 4c2 T

cN
=

4Tc

N

by conditional independence of the increments Ijnc − pjnc. Define the event

Em =


∣∣∣∣∣∣∣c

mT
cN∑

n=
(m−1)T

cN
−1

(Ijnc − pjnc)

∣∣∣∣∣∣∣ ≥
2
√
Tc1/4

N

 ,

then P(Em) ≤ c1/2N , and so

P

sup
ϕ∈H

∣∣∣∣∣∣∣
N∑
m=1

cϕ(xj(mT/N))

mT
cN∑

n=
(m−1)T

cN
−1

(Ijnc − pjnc)

∣∣∣∣∣∣∣ ≥ 2
√
Tc1/4

 ≤ P

(
N⋃
m=1

Em

)

≤ c1/2N2.

So if 1� N � c−1/4, we have

sup
ϕ∈H

∣∣∣∣∫ T

0

∫
T
ϕdµt dt−

∫ T

0

∫
T
ϕdµ̄t dt

∣∣∣∣→ 0

in probability, as required.

We can now bring together each of the steps to show convergence of the ALE to the

LPM.

Proof of Theorem 3.1. Let ξt be the driving function of the ALE, and µ̄t the driving

measure of the LPM. To show that the two converge in distribution, we will show that

dBW(δξt ⊗m[0,T ], µ̄t ⊗m[0,T ])→ 0 in probability as c→ 0.

Note that another way of writing (3.1) for the auxiliary process is

Φ∗n = Rδ1+···+δn ◦
(

Φ0 ◦ fθ∗1−δ1 ◦ fθ∗2−(δ1+δ2) ◦ · · · ◦ fθ∗n−(δ1+···+δn)

)
◦R−(δ1+···+δn)

So let ξ∗t be the driving measure for the angle sequence (θ∗n − (δ1 + · · ·+ δn))n≤bT/cc. By
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Proposition 3.3 we have a coupling between ξ∗ and ξ, such that if we define the event

E1 = {τD ∧ τcoupling > bT/cc}, then P(E1) ≥ 1−Ac. On E1 note that

sup
t∈[0,T ]

|ξt − ξ∗t | ≤
(
T

c
+ 2

)
D.

Next, to pass from the auxiliary model to the multinomial model, let ξmulti
t be the

driving measure of the multinomial model, define the event E2 = {τ6= > bT/cc}, and note

that on E2, ξmulti
t = ξ∗t for all t ∈ [0, T ]. By Corollary 3.11, P(E2) ≥ 1−ATc−2D.

Finally, by Corollary 3.17

dBW(δξmulti
t
⊗m[0,T ], µ̄t ⊗m[0,T ])→ 0 (3.99)

in probability as c→ 0.

Then by the triangle inequality,

dBW(δξt ⊗m[0,T ], µ̄t ⊗m[0,T ]) ≤ dBW(δξt ⊗m[0,T ], δξ∗t ⊗m[0,T ])

+ dBW(δξ∗t ⊗m[0,T ], µ̄t ⊗m[0,T ]),

and on E1 ∩ E2 this is bounded by

T

(
T

c
+ 2

)
D + dBW(δξmulti

t
⊗m[0,T ], µ̄t ⊗m[0,T ]).

Hence as c−1D = o(1), this upper bound tends to zero in probability as c → 0 and

P(E1 ∩ E2)→ 1, giving us dBW(δξt ⊗m[0,T ], µ̄t ⊗m[0,T ])
p→ 0 as required.
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Chapter 4

Stability of the ALE for η > 1

We showed in the previous chapter that for η > 1 the ALE(η, 0) model started from an

initial configuration with k slits of a constant size converges as c → 0 to the Laplacian

path model (LPM) started from the same configuration.

A natural question which arises is the stability of the ALE in this regime.

In [4], Carleson and Makarov established several stability results for variants of the

Laplacian path model. For example, their Theorem 3 states (for the chordal geodesic

LPM, where all slits grow from 0 in the domain C\ [0,∞)) that for an initial configuration

with two arms, both arms survive if η < 2, and if η > 2 this is not always the case. This

should be interpreted as increasing stability as η increases: they show that for η > 2 a

one-arm solution is a local attractor for the dynamics, and introducing a small perturba-

tion by adding a sufficiently small second arm does not affect the long-term behaviour:

the ratio of the lengths of the arms is o(1) as the cluster grows.

We will also show a phase transition in the stability of the ALE(0, η) model as η varies

in the “LPM-like” region η > 1.

To simplify matters, we will consider an initial configuration with only two arms,

attached at opposite sides of the circle. Let a0, b0 > 0, and K0 = (1, 1+b0]∪ [−1−a0,−1).

Exploiting the symmetry of this configuration, if Φ0 is the conformal map ∆ → ∆ \ K0

with Φ0(z) = ec0z +O(1) near ∞, we can decompose Φ0 in two ways:

fa0,π ◦ fb̃0,0 = Φ0 = fb0,0 ◦ fã0,π, (4.1)

where ã0 = −f−1
b0,0

(−1− a0)− 1 < a0 and b̃0 = f−1
a0,π(1 + b0)− 1 < b0, and fd,θ attaches a

slit of length d at eiθ. This is shown in Figure 4.1.

As we have already shown it has the same limit as the ALE, we will use the multinomial

model from Chapter 3. So when we have attached n particles, let pan = |Φ′′n(1)|−η
|Φ′′n(1)|−η+|Φ′′n(−1)|−η

and pbn = 1−pan. With probability pan, let θn+1 = 1, and with probability pbn let θn+1 = −1.

Then let Φn+1 = Φn ◦ fθn+1 .

The nth cluster Kn still consists of two straight slits attached at ±1, so let the length
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fã,π

fb̃,0

fb,0

fa,π

Φ

Figure 4.1: The two ways we can compose maps to construct the two-slit cluster.

of the left slit at −1 be a(n), and the length of the right slit at +1 be b(n).

Now we can state our stability result, which is that there is a phase transition in the

stability of the multinomial model (and hence the ALE) at η = 2.

Theorem 4.1. Let Φn be the multinomial model as above with η > 1. Fix a constant T

and b0 > 0, and let a0 = d(c). Then as c→ 0,

a(bT/cc)→ 0 in probability ⇐⇒ η ≥ 2.

Proof. See Proposition 4.2 and Proposition 4.3.

4.1 The stable region: η ≥ 2

We claim that for η ≥ 2 the multinomial model with one arm is stable, in the sense that if

we add an extra small arm then the small arm only grows to size o(1) for small c in time

T .

Proposition 4.2. Consider the multinomial model as above. Then if η ≥ 2, a(bT/cc)→ 0

in probability as c→ 0.

Proof. Let Cn be the capacity of the map fã(n),π, which is given by eCn = (ã(n)+2)2

4(ã(n)+1) , and

satisfies Cn � ã(n)2. Then a(bT/cc)→ 0 if and only if CbT/cc → 0.

Using the first decompositions of Φn in (4.1), we can find

∣∣Φ′′n(1)
∣∣ =

∣∣∣f ′′
b̃(n),0

(1)
∣∣∣× ∣∣∣f ′a(n),π(1 + b̃(n))

∣∣∣
=

1 + b̃(n)

2
√

1− e−c(̃b(n))

(1 + b(n))(2 + b̃(n))

1 + b̃(n)

1√
b̃(n)2 + 4e−c(a(n))(1 + b̃)

,

90



where c(̃b(n)) is the capacity of the map f
b̃(n),0

and c(a(n)) is the capacity of the map

fa(n),π. Since T < ∞, there is a constant A > 0 depending on T and b0 such that all

of b(n), b̃(n) and c(̃b(n)) are bounded below by A−1 and above by A. Hence, possibly

modifying A, we have

A−1 ≤ |Φ′′n(1)| ≤ A.

Using the second decomposition in (4.1) and similar arguments, we have

A−1

√
Cn
≤ |Φ′′n(−1)| ≤ A√

Cn
. (4.2)

Hence we can find pan ≤ AC
η/2
n .

Consider the change in Cn when we add the (n + 1)th particle. If θn+1 = −1 then

Cn+1 = Cn+c. If θn+1 = +1 then Cn+1 ≤ Cn. Hence the process (Cn)n≤bT/cc is dominated

by the Markov process (Ĉn)n≤bT/cc with Ĉ0 = c and

Ĉn+1 =

{
Ĉn + c with probability AĈ

η/2
n ∧ 1

Ĉn with probability (1−AĈη/2n ) ∨ 0
.

To see that ĈbT/cc → 0 in probability as c → 0, fix ε > 0 sufficiently small so that

Aεη/2 < 1.

Let Tj be time of the (j − 1)th increase of Ĉ, i.e. Tj = min{n : Ĉn = jc}, and let

Sj = Tj+1 − Tj be the jth holding time.

Then Sj ∼ Geometric
(
A(jc)η/2

)
, and Tdε/ce =

∑dε/ce−1
j=1 Sj , and the random variables

Sj are independent. If ε < 1, P[Ĉn ≥ ε] is decreasing in η, so we only need to consider

η = 2. Since ESj = A−1(jc)−η/2, we can calculate

ETdε/ce ≥ A−1c−1 log
ε

c

for sufficiently small c, and since Var(Sj) ≤ A−2(jc)−η, we have Var(Tdε/ce) ≤ A−2c−1

and so by Chebyshev’s inequality

P[ĈbT/cc ≥ ε] = P[Tdε/ce ≤ bT/cc] .
1

(log ε
c)2
→ 0

as c→ 0, hence Ĉn → 0 in probability.

4.2 The unstable region: 1 < η < 2

In this section we will prove the more difficult half of Theorem 4.1, that when 1 < η < 2,

a particle of size o(1) grows to something of order 1 in a finite time T .

As we did above, let Cn be the capacity of a single slit of length ã(n). Then for a fixed

T , a(bT/cc)→ 0 as c→ 0 if and only if CbT/cc → 0.

Hence, to show that a(bT/cc) 6→ 0 as c→ 0, we will show that Cn reaches some positive
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size within time bT/cc. We will do this by defining a stopping time which indicates when

Cn has reached this size, and then showing this stopping time is not too large.

Proposition 4.3. Let 0 < ε < ε0 for some constant ε0. Let τε = inf{n : Cn ≥ ε}. Then

if ε0 is sufficiently small, we have

lim inf
c→0

P[τε ≤ bT/cc] > 0,

and moreover

lim
ε→0

lim inf
c→0

P[τε ≤ bT/cc] = 1.

As we did in the stable regime η ≥ 2, we will prove this result by comparing Cn with

a Markov chain.

Recall that if θn+1 = −1, then Cn+1 = Cn + c. To show CbT/cc is not too small, we

will need to show Cn does not decrease by too much when θn+1 = +1.

Lemma 4.4. If θn+1 = +1, then

Cn+1 − Cn ≥ c− eCn(ec − 1).

If Cn < 1/2 and c is sufficiently small, this implies

Cn+1 ≥ e−3cCn.

Together with the lower bound in (4.2), this allows us to find a lower bound on Cn

using another process.

Definition. Let (X(n))n≥1 be a Markov chain with X(0) = c and

X(n+ 1) =

{
X(n) + c with probability A(X(n))η/2 ∧ 1

e−3cX(n) with probability (1−A(X(n))η/2) ∨ 0.

It is easy to see from Lemma 4.4 that (Cn)n≥1 stochastically dominates (X(n))n≥1 up

until the first time that Cn ≥ 1/2.

Proof of Lemma 4.4. Consider Loewner’s equation on the time interval (nc, (n+ 1)c), i.e.

the transition from Φn to Φn+1. If θn+1 = +1, then the driving function ξt = +1 for all

t ∈ (nc, (n+ 1)c). Let Ct be the capacity of a slit of length ãt, and C ′t the capacity of the

right slit, of length bt. Since capacity is additive, Ct + C ′t = c0 + t. It is a general fact

about slit maps that eC
′
t = (bt+2)2

4(bt+1) , so d
dte

C′t = ḃt
bt(bt+2)
4(bt+1)2 . Using

d

dt
Φt(z) = Φ′t(z)z

z + 1

z − 1

and taking the limit z → 1, we have

ḃt = 2Φ′′t (1).
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Using the second decomposition in (4.1) and the fact that f ′bt,0(1) = 0, we have

Φ′′t (1) = f ′′bt,0(1)× (f ′ãt,π(1))2.

Using the explicit forms of both and again using eC
′
t = (bt+2)2

4(bt+1) , we can find

(f ′ãt,π(1))2 = eCt/2 = ec0+t 4(bt + 1)

(bt + 2)2
,

f ′′bt,0(1) =
1 + bt

2
√

1− e−C′t
=

(bt + 1)(bt + 2)

2bt
,

and so

Φ′′t (1) = 2ec0+t (bt + 1)2

bt(bt + 2)
.

Hence

d

dt
eC
′
t = ec0+t,

and so eC
′
n+1 − eC′n = ec0+n(ec− 1). Then Cn+1−Cn = c− (C ′n+1−C ′n), and by the mean

value theorem

C ′n+1 − C ′n ≤
ec0+n(ec − 1)

eCn′
= eCn(ec − 1),

which gives the claimed bound.

Corollary 4.5. For n < inf{n′ ≥ 0 : Cn′ ≥ 1/2}, Cn dominates X(n).

So to show CbT/cc 6→ 0 in probability as c → 0, we will show the same for X.

More precisely, we will show that there is a constant ε0 = ε0(T, η) ∈ (0, 1/2) such that

P[X(bT/cc) ≥ ε0] 6→ 0 as c→ 0.

The change of scale from c to ε0 makes the process X difficult to analyse, as larger

values of X(n) decrease the probability of taking a downward step, but increase the size

of the downward steps when they do occur. Rather than examining X itself, we will find

it more convenient to keep track of the number of upward steps of X.

Definition. For n ≥ 1, let K(n) be the number of upward steps taken by the process X.

For k ≥ 1, let Tk be the time of the kth increase of X, i.e. Tk = min{n : K(n) = k}, and

let Sk be the kth holding time, S1 = T1, Sk = Tk − Tk−1 for k ≥ 2, the time taken for K

to jump from k − 1 to k.

Remark. If K(n) = k then X(n) is minimised among all possible orderings of the n steps

if the first k steps are upward and the remaining n − k steps are downward, giving the

almost-sure bound X(n) ≥ e−3(n−K(n))c(K(n)+1)c. If n ≤ bT/cc then 3(n−K(n))c ≤ T
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almost surely, and so we have an almost-sure bound

X(n) ≥ e−3T (K(n) + 1)c (4.3)

for all n ≤ bT/cc.
Hence to show X(bT/cc) 6→ 0 as c→ 0, it will suffice to show the same for cK(bT/cc).

Lemma 4.6. For k ≥ 0 let pk = Ae−3ηT/2(k + 1)η/2cη/2 ∧ 1, and let (Ŝk)k≥1 be a family

of independent random variables with Ŝk ∼ Geometric(pk−1). Then for any k,

P [Tk ≤ bT/cc] ≥ P

 k∑
j=1

Ŝj ≤ bT/cc

 . (4.4)

Proof. If K(n) = k then X(n) is minimised if the first k steps are upward and the

remaining n − k steps were downward. So, almost surely on the event {K(n) = k},
we have X(n) ≥ e−3(n−k)c(k + 1)c. But if n ≤ bT/cc, then 3(n − k) ≤ T , and so

X(n) ≥ e−3T (k + 1)c. We can then find a lower-bound on the probability of an upward

step,

P(X(n+ 1) = X(n) + c |K(n) = k) ≥ pk (4.5)

for all n ≤ bT/cc. Hence P(K(n+ 1) = k + 1 |K(n) = k) ≥ pk for n ≤ bT/cc.

We can couple X and the family (Ŝk)k≥1 as follows: let (Uk,s)k≥0,s≥1 be independent

random variables uniformly distributed on [0, 1). Let Ŝk = min{s ≥ 1 : Uk−1,s < pk−1}.
Then (Ŝk)k≥1 are independent random variables with Ŝk ∼ Geometric(pk−1).

Informally, X uses the kth row of (Uk,s)k≥0,s≥1 while K(n) = k to decide whether to

jump down or up, starting from the beginning of each row. More formally, for n ≥ 1, we

set X(n+1) = X(n)+c if UK(n),n−TK(n)+1 < A(X(n))η/2∧1, and otherwise set X(n+1) =

e−3cX(n). Under this construction, Sk = min{s ≥ 1 : Uk−1,s < A(X(Tk−1 + s))η/2 ∧ 1},
with T0 := 0.

On the event {
∑k

j=1 Ŝj ≤ bT/cc}, for all 1 ≤ j ≤ k, we claim Sj ≤ Ŝj almost surely.

We prove this claim by induction. Since on the given event we have Ŝ1 ≤ bT/cc, we

have A(X(s))η/2 ∧ 1 ≥ p0 almost surely for all 1 ≤ s ≤ Ŝ1, and so U0,s < p0 implies

U0,s < A(X(s))η/2 ∧ 1 if s ≤ Ŝj . This implies S1 ≤ Ŝ1 almost surely.

Suppose for k′ ≤ k that Sj ≤ Ŝj for all 1 ≤ j ≤ k′ − 1 almost surely. Then the

given event implies that
∑k′

j=1 Ŝj ≤ bT/cc, which, together with the induction hypothesis,

implies that Tk′−1 + Ŝk′ ≤
∑k′

j=1 Ŝj ≤ bT/cc almost surely. Hence Tk′−1 + s ≤ bT/cc for

all 1 ≤ s ≤ Ŝk′ , and so Uk′−1,s < pk′−1 implies Uk′−1,s < A(X(Tk−1 + s))η/2 ∧ 1 for s in

this range. As above, this implies Sk′ ≤ Ŝk′ almost surely.

Hence the claim holds by induction. It follows that on the event {
∑k

j=1 Ŝj ≤ bT/cc},
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we have Tk =
∑k

j=1 Sj ≤
∑k

j=1 Ŝj ≤ bT/cc almost surely. Therefore

P

 k∑
j=1

Ŝj ≤ bT/cc

 ≤ P [Tk ≤ bT/cc]

as required.

Since
∑k

j=1 Ŝj is a sum of independent geometric random variables, we can use stan-

dard methods to show P
[∑k

j=1 Ŝj ≤ bT/cc
]
6→ 0 as c → 0 for an appropriately chosen

k = k(c).

Proposition 4.7. Suppose 1 < η < 2. There exists an ε0 > 0 depending only on η and T

such that if 0 < ε < ε0 then, for kε,c = dε/ce,

lim inf
c→0

P

kε,c∑
j=1

Ŝj ≤
T

c

 > 0,

and moreover

lim
ε→0

lim inf
c→0

P

kε,c∑
j=1

Ŝj ≤
T

c

 = 1.

Proof. First, note that for any ε,

E
kε,c∑
j=1

Ŝj =

kε,c∑
j=1

1

pj−1
,

and recall the definition pj−1 = Ae−3ηT/2jη/2cη/2∧1. For a sufficiently small ε0 depending

only on η and T , if ε < ε0 then pj−1 = Ae−3ηT/2jη/2cη/2 for all 1 ≤ j ≤ kε,c. Therefore

E
kε,c∑
j=1

Ŝj ≤
e3ηT/2

A
c−η/2

kε,c∑
j=1

j−η/2

≤ e3ηT/2

A
c−η/2

∫ kε,c

0
x−η/2 dx

=
e3ηT/2

A(1− η/2)
c−η/2k

1−η/2
ε,c ,

and note that 1− η/2 > 0. Then c−η/2k
1−η/2
ε,c = c−η/2(dε/ce)1−η/2 ≤ 2c−η/2(ε/c)1−η/2 for

sufficiently small c. This simplifies to give us

E
kε,c∑
j=1

Ŝj ≤
2e3ηT/2

A(1− η/2)
× ε1−η/2

c
.

So by Markov’s inequality,

P

kε,c∑
j=1

Ŝj >
T

c

 ≤ 2e3ηT/2

AT (1− η/2)
ε1−η/2,

95



which is strictly less than 1 if ε0 is sufficiently small, and tends to 0 as ε→ 0.

Proof of Proposition 4.3. Using Corollary 4.5 and Lemma 4.6, the result of Proposition 4.7

implies Proposition 4.3.

Hence we have shown both parts of the phase transition result for stability stated in

Theorem 4.1.
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