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size (<20 nm), polydispersity index (<0.290) and conductivity (0.04-0.07 mS cm−1  ),
among others. Linear discriminant analysis (LDA) after selection of variables using the
successive projections algorithm (SPA) and soft independent modelling of class
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concentrations of OMC (1.0 to 10.0%). In the case of LDA, seven Raman spectral
variables were previously selected by SPA and after this SPA-LDA model resulted in
one error in the prediction set achieving an accuracy of 98%. The SIMCA model
(α=0.05) presented an explained variance higher 97% using four principal components
and it allowed the correct classification of 100% of the samples (N=15). In the
quantitative analysis, partial least squares (PLS) was used to determine OMC in a
range according to international legislation. The model presented optimal statistical
parameters (R2  =0.9699; RMSEP=0.54%) and the prediction of samples were in close
agreement with HPLC method. Moreover, the greenery of the method was estimated
using the AGREE metric and an optimal value of 0.85 was obtained demonstrating the
proposed analytical method results environmentally friendly.
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Abstract 

This work proposes a green analytical method based on confocal Raman 

spectrometry and chemometrics tools for the qualitative and quantitative 

analysis of oil in water microemulsions loaded with the UVB filter octyl p-

methoxycinnamate (OMC). The method does not use reagents and only 10 µL 

of sample are needed. The analyzed microemulsion samples were synthetized 

in the laboratory using decaethylene glycol mono-dodecyl ether (21.9%) as 

non-ionic surfactant, ethyl alcohol (7.3%) as co-surfactant, oleic acid (1.5%) as 

oil phase and water (69.3%). A physicochemical characterization of the 

samples was carried out obtaining expected values for droplet size (<20 nm), 

polydispersity index (<0.290) and conductivity (0.04–0.07 mS cm−1), among 

others. Linear discriminant analysis (LDA) after selection of variables using 

the successive projections algorithm (SPA) and soft independent modelling of 

class analogy (SIMCA) were employed to classify microemulsions with 

different concentrations of OMC (1.0 to 10.0%). In the case of LDA, seven 

Raman spectral variables were previously selected by SPA and after this SPA-

LDA model resulted in one error in the prediction set achieving an accuracy of 

98%. The SIMCA model (α=0.05) presented an explained variance higher 97% 

using four principal components and it allowed the correct classification of 

100% of the samples (N=15). In the quantitative analysis, partial least squares 

(PLS) was used to determine OMC in a range according to international 

legislation. The model presented optimal statistical parameters (R2=0.9699; 

RMSEP=0.54%) and the prediction of samples were in close agreement with 

HPLC method. Moreover, the greenery of the method was estimated using the 

AGREE metric and an optimal value of 0.85 was obtained demonstrating the 

proposed analytical method results environmentally friendly. 
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1. Introduction 

Pharmaceutical and personal care products (PPCPs) comprise different 

kind of formulations that include products for sun protection, which present 

one or more chemical species that can reduce the negative effects of solar 

radiation [1,2]. Chemical sunscreens are organic molecules with chromophoric 

groups that absorb radiation in the UV region [3,4]. Octyl p-

methoxycinnamate (OMC) is a lipophilic UVB filter (290-320 nm) belonging 

to the methoxycinnamate group widely used in PPCPs [5]. However, some side 

effects are associated with OMC such as minor skin irritation and dryness or 

hardening of the skin. Rarely, people may develop more serious skin side 

effects such as burning, stinging, and swelling or rash [6]. On the other hand, 

concentrations of OMC lower than declared in the product represents a 

significant risk to the health since the protection against sun exposure would 

not be guaranteed. Thus, OMC is usually present in the concentration range 

from 0.1% to 10% (w/w) in PPCPs taking into account the technical 

specifications of the Food and Drug Administration (US) and the European 

Union, which authorize a maximum level of 7.5% (w/w) and 10% (w/w), 

respectively [7,8]. On this form, the quality control of formulation containing 

OMC is necessary.  

It is important to note that OMC decreases its efficacy as a sunscreen when 

exposed to sunlight. The direct photolysis of the OMC produces their 

photoisomerization, changing octyl p-methoxy-trans-cinnamate (trans-OMC) 

to octyl p-methoxy-cis-cinnamate (cis-OMC). The molar absorption coefficient 

of the cis-isomer (εcis = 12,600 L mol−1 cm−1) is markedly lower than trans-

isomer (εtrans = 24,000 L mol−1 cm−1) resulting in a reduction of the OMC 

efficiency as UV filter [9]. This problem can be solved using appropriate 
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vehicles as carriers of OMC such as microemulsion systems [10]. 

Microemulsions (MEs) are organized, transparent and thermodynamically 

stable systems widely used in PPCPs for the topical administration of various 

components. These systems consist of two immiscible liquids (aqueous phase 

and oily phase) stabilized by the presence of a surfactant and, in some cases, a 

cosurfactant [11]. MEs present advantages such as the ability to protect labile 

compounds increasing the bioavailability. Besides, because of the presence of 

both lipophilic and hydrophilic domains, MEs are appropriate systems to 

incorporate a wide range of molecules [12]. However, the analytical study of 

this kind of systems may become difficult due to their physicochemical 

characteristics and the high concentration of components with different 

solubility (surfactant, co-surfactant, oily phase). 

The methods applied for the determination of OMC in PPCPs are based on 

chromatographic techniques such as high-performance liquid chromatography 

(HPLC) [13] and gas chromatography (GC) [14], amperometric techniques 

[15], and spectroscopic techniques such as UV-Vis spectroscopy [16], mass 

spectrometry [17], nuclear magnetic resonance spectroscopy [18], infrared 

spectroscopy [19] and Raman spectroscopy [20]. Since OMC is usually present 

in complex matrices, most of these spectroscopic techniques cannot be used 

for direct analysis without sample pretreatment [21,22]. Confocal Raman 

spectroscopy (CRS) has been widely used to determine the composition and 

structure of different materials.  The main advantages of CRS are allowing the 

analysis of samples without previous pretreatment; a rapid analysis; and it is a 

non-destructive technique, among others [23,24]. The use of CRS combined 

with chemometrics tools is presented as a powerful analytical alternative since 

relevant information can be extracted from the Raman spectra to obtain 
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classification and quantification models for different species in complex 

samples [25-29]. Soft independent modeling of class analogy (SIMCA) is a 

supervised pattern recognition method that uses principal component analysis 

(PCA) to model the hyperspace of each class [30]. The PCA method promotes 

compression of a large data set and the variance is concentrated in few 

variables called principal components. However, when employing a large data 

set in the construction of mathematic models, such as a full spectrum, many 

variables are redundant and/or non-informative, and their inclusion may 

affect the quality of the final model. To overcome this drawback, the use of 

variable selection techniques is an appropiate alternative [31]. Successive 

projection algorithm (SPA) is the forward algorithm, with restriction that the 

selected variable in each interation is the least collinear to other selected 

variables [32]. Pontes et al. [33] adapted SPA so that it can be used with linear 

discriminant analysis (LDA) in the variable selection to solve classification 

problems. SPA-LDA is employed as supervised classification technique that 

focuses at selecting a subset of variables with minimal collinearity and 

appropriate discriminating ability [34]. On the other hand, partial least 

squares (PLS) is a well known algorithm applied successfully for building 

regression models. PLS technique makes use of the inverse calibration 

approach, where it is possible to calibrate for the desired component while 

implicitly modeling the other sources of variation. The inversion problem is 

resolved by replacing the original variables with linear combinations of the 

variables normally called factors. The optimum number of factors is often 

chosen on the basis of the quality of the results for the samples in the 

prediction set [30].  
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The combination of CRS with classification and calibration techniques is 

well documented for a wide type of samples. However, the use of CRS assisted 

by chemometrics tools in MEs systems is still limited [35].  

As is known, the analytical determination of drugs is normally carried out 

by separation techniques, such as HPLC and GC. These techniques use organic 

solvents that are not environmentally friendly and are normally energy and 

time-consuming. The principles of green analytical chemistry (GAC) 

emphasize the use of safer and less toxic solvents, as well as reducing energy 

consumption and waste generation, avoiding derivatization, and favoring the 

use of substances based on renewable sources, among others [36]. The correct 

application of GAC provides many benefits in various aspects of sustainability. 

GAC comprises 12 principles that serve as a guide to defining the framework of 

green analytical procedures. In the last years, a trend to design 

environmentally friendly procedures in analytical chemistry has been 

highlighted [37,38] and the adoption of this kind of procedures is mandatory 

for adherence to ISO14000 guidelines. However, the application of green 

chemistry metrics for the evaluation of the greenery of analytical methods is 

restricted [39]. 

This work proposes classification and multivariate calibration green 

methods for the analysis of OMC loaded MEs samples applying chemometrics 

tools to the spectral data obtained by CRS. Class discrimination was carried 

out for samples containing different concentrations of OMC (1.0 to 10%) using 

the SIMCA and SPA-LDA algorithms. Moreover, the quantification of OMC in 

MEs was carried out using PLS algorithm. Moreover, the degree of the 
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greenness was estimated by using the green metric analytical approach 

(AGREE). 

 

2. Material and Methods 

2.1 Reagents 

All the reagents were analytical-grade chemicals and ultra-pure water (18 

MΩ cm−1) was obtained from a Barnsted® water purification system. 

Decaethylene glycol mono-dodecyl ether (DME; Sigma-Aldrich®) and ethyl 

alcohol (ET; Dorwil®) were used as non-ionic surfactant and co-surfactant, 

respectively. Oleic acid (OA; Applichem®) was used as oil phase and octyl-p-

methoxy cinnamate (OMC; Parafarm®) was used as UVB filter.  

 

2.2 Preparation of the OMC loaded microemulsions 

An o/w microemulsion based on biocompatible materials and composed of 

21.9% of DME (surfactant), 7.3% of ET (cosurfactant), 1.5% of OA (oil phase) 

and 69.3% of water was used for this study and obtained as described by the 

authors in a previous work [9]. Briefly, different amounts of OMC were added 

to the oil phase by stirring at 25 °C in order to obtain a final UV filter 

concentration of 1.0, 3.0, 5.0, 7.0 and 10.0% (w/w). These dosages were 

chosen taking into account the technical specifications for the United States 

Food and Drugs Administration and the European Union, which authorize a 

maximum level of 7.5 and 10% (w/w) of OMC, respectively [8,9]. Also, it is well 

known that microemulsions used as delivery vehicles of lipophilic molecules 

should kept both surfactant and co-surfactant levels as low as possible. In this 
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case, the used concentrations of both DME (21.9%) and ET (7.3%) were 

appropriate for this kind of formulations. Then, the mixture OMC-oil phase 

was added to the DME:ET (3:1) mixture and titrated with ultra-pure water 

under moderate magnetic stirring. All prepared OMC loaded MEs were 

visually examined for transparency and stored in amber-glass containers at 

room temperature (25 °C). 

 

2.3 Characterization of the OMC loaded microemulsions 

Different parameters were studied in order to corroborate the structure, 

stability and capability of the obtained o/w microemulsions. 

Average droplet size (Z) and polydispersity index (PdI) were determined 

by dynamic light scattering (DLS) using a Malvern Zetasizer Nano Series 

instrument (Malvern, UK). After 10-fold dilution in ultra-pure water, the 

samples were magnetically stirred for 5 min and the measurements were 

carried out at 25 °C, in an optical quality 4 mL borosilicate cell and at 90° 

angle. Then, Z and PdI were calculated by the Zetasizer 7.13 software (Malvern, 

UK) using the time correlation function. The conductivity of the preparations 

(25 °C) was determined using an Adwa model AD32 conductivity meter (Adwa, 

Hungary). The pH measurements were performed by using an Orion model 

710 A pH meter with an Orion-Ross® model 81-02 electrode (Thermo, USA). 

For this, 1.0 g of sample was dispersed in 10 mL of ultra-pure water and stirred 

during 60 min at 25 °C.  

In addition, the sun protection factor (SPF) was determinate by the in vitro 

Mansur method [40]. Briefly, the o/w microemulsions were diluted in ethanol 

at a final concentration of 0.2 mL mL−1. Then, the spectrophotometric 
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measurements between 290 and 320 nm with an interval of 5 nm were 

obtained by using a Hewllet Packard 8453 UV-Vis spectrophotometer (Agilent 

Technologies, Inc., USA) equipped with a quartz cell (10 mm optical path). The 

SPF was calculated as follows: 

𝐒𝐏𝐅 = 𝐂𝐅 ∑  𝐄𝐄(𝛌)
𝟑𝟐𝟎
𝟐𝟗𝟎  𝐈(𝛌) 𝐀(𝛌)                                                                    Eq. 1 

where CF is a correction factor (in this case, 10), EE is the erythemal effect 

spectrum, I is the solar intensity spectrum and A is the measured absorbance 

of the OMC-ME at each wavelength (λ). The relationship between the 

erythemal effect spectrum and the solar intensity spectrum at each wavelength 

(EE×I) was determined as described by Sayre et al. [41] (Table S1). 

 

2.4 Spectral data acquisition 

The Raman spectra were acquired with an inViaTM confocal microscope 

(Renishaw, UK) equipped with a 532 nm excitation wavelength laser and a 

L50x objective.  The Wire 4.1 software (Renishaw, UK) was used to acquire the 

Raman spectra in the range from 600 to 1700 cm−1. 10 μL of sample were 

prepared on glass slides and the scattered light was collected in 

the backscattering geometry onto a 2400 l/mm grating and a cooled charged-

coupled device (CCD). All spectra were single accumulation collected for 20 s. 

Five spectra per sample were collected and then randomized. The samples 

were scanned in a streamline HR mode with 0.8 s exposure and 100% laser 

power. Each sample generated is aimed to produce quantitative concentration 

maps constituted from 17 x 12 pixels of area for each formulation. 

 

https://www.sciencedirect.com/topics/chemistry/raman-spectrum
https://www.sciencedirect.com/topics/chemistry/backscattering
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2.5 Preparation of training and prediction sets 

The Kennard-Stone (KS) uniform sampling algorithm [42] was used for 

the construction of both training and prediction sets. The training set 

contained samples in six levels of OMC concentrations ranging from 0 to 10% 

(0, 1.0, 3.0, 5.0, 7.0 and 10% w/w). In the case of the prediction set, it 

presented samples with three levels of OMC concentrations (3.0, 5.0 and 7.0% 

w/w). Five replicates of each sample were prepared rendering a total of 30 and 

15 samples of training and prediction sets, respectively (Table S2). Both sets 

were used to perform the classification (LDA and SIMCA) and quantitative 

(PLS) analysis. 

 

2.6 Data analysis 

2.6.1 Spectra preprocessing and exploratory analysis. Usually, Raman 

spectra require a baseline correction. Asymmetric least squares (AsLS) 

algorithm [43] is adequate since it avoids the semi manual and individual 

correction of baseline that is subjective and time consuming. The parameters 

asymmetry (p) and smoothness (λ) were tested and the selected values were 

0.001 and 103, respectively. In addition, the spectra were smoothed using the 

Savitzky-Golay (SG) algorithm [44] with a second-order polynomial and a 7-

point window. On the other hand, PCA algorithm was used as unsupervised 

pattern recognition technique in the exploratory analysis of the spectral data. 

 

2.6.2 Multivariate classification models. SPA-LDA and SIMCA were employed 

as supervised pattern recognition techniques for screening analysis.  
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LDA is focused on finding optimal boundaries between classes, 

maximizing between-class separability while minimizing within-class 

variability. However, LDA requires a selection of variables when full-spectrum 

data is available [45]. In SPA-LDA a training set consisting of n samples with 

known class labels is used to perform the process of variable selection. In the 

case of Raman spectroscopy, each sample consists of a spectrum with k 

wavenumbers. At first, the n training samples are centered on the mean of 

each class and stacked in the form of a X matrix (n × k), where each column of 

X corresponds to a variable. Then, projection operations related to the 

columns of X are carried out to create k chains with l variables. Due to the loss 

of freedom degrees in the process of calculating class means, the chain length 

is limited by n − c, where c is the number of classes involved in the problem. 

Each time, the chain is initialized by one of the available k variables. 

Subsequent variables are selected to the chain in order to display the least 

collinearity with the previous ones, which is evaluated by the correlation 

between the respective column vectors of X. Finally, a total of k×l subsets of 

variables can be generated. These candidate subsets are assessed in terms of a 

cost function involving the average risk of misclassification over the validation 

set [33]. On this form, the optimal number of variables (NVs) is established for 

SPA-LDA model. 

SIMCA is based on the advantage of soft modeling where each class can be 

independently modeled. This classification technique is based on producing a 

PCA model for each class of sample and then comparing their distance to the 

class confidence limits. On this form, SIMCA allows the analysis of a large data 

set concentrating the variance in few variables called principal components 

(PCs). Considering a set of n objects (samples) measured in k sensors 
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(wavenumbers in Raman spectroscopy) generating the X matrix (n × k), PCA 

reduced the matrix X into a product of two other arrays of low dimensionality 

T (n x A) and L (k x A) called scores and loadings, respectively, where A 

represents the number of new variables considered to be significant for the 

model of each class. The new variables in T present the advantage of being 

mutually orthogonal allowing the use of all spectral information in the 

construction of the SIMCA model. This characteristic permits the detection of 

anomalous samples or outliers, present in the data set. Finally, the 

classification of new samples is carried out by means of an F-test at a given 

significance level. The optimal number of PC’s can be selected by leave-one-out 

cross-validation using the training set by means of the calculation of the root 

mean square error of cross validation (RMSECV) [30]. 

The optimal NVs and PCs were established for SPA-LDA and SIMCA, 

respectively. The performance of the classification models was evaluated by 

accuracy, which is defined using the ratio of samples in the test set correctly 

assigned into their respective classes. 

 

2.6.3 Multivariate calibration model. Regression analysis was performed by 

applying the PLS algorithm. PLS is a factor analysis method which the full-

spectrum advantage is retained by forming a new coordinate system, as follow: 

 

  𝐗 = 𝐓 𝐱 𝐋 + 𝐄                                                                                             Eq. 2 

 

where X is the m x n matrix of calibration spectra, L is a h x n matrix with the 

rows of L being the new PLS basis set of h full-spectrum vectors, often called 

loading vectors or loading spectra. T is an m x h matrix of intensities (scores) 
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in the new coordinate system of the h PLS loading vectors for the m sample 

spectra. E is now the m x n matrix of spectral residuals not fit by the optimal 

PLS model. The spectral intensities in the new coordinate system can be 

related to concentrations using least-squares analysis: 

 

𝐜 = 𝐓 𝐱 𝐛 + 𝐞                                                                                             Eq. 3 

 

where b is the h x l vector of coefficients relating the scores to the 

concentrations, T is the matrix of scores from the PLS spectral decomposition 

(Eq. 2) and e an error vector. The concentration in an unknown sample is 

obtained by using the previously calculated b coefficients [30].     

In this work, the PLS model and its performance was evaluated by leaving 

one out cross validation, in which each sample of the calibration set was left 

out once, and its concentration was estimated by a model built with the 

remaining samples. The models were evaluated by calculating analytical 

parameters as the determination coefficient (R2), root mean square error of 

prediction (RMSEP) and the relative error of prediction (REP%). In addition, 

figures of merit as sensitivity (SEN) was calculated as SEN = 1/||bk|| and limit 

of detection (LOD) and limit of quantification (LOQ) were calculated as LOD 

(or LOQ) = k α ||bk||, where k= 3.3 for LOD, and k= 10 for LOQ, α is the 

standard deviation of the net analytical signal (NAS), and ||bk|| is the 

Euclidean norm of the vector of regression coefficients estimated from the 

multivariate calibration model for analyte k. 

Multivariate data analysis including KS, AsLS, SG, SPA-LDA, SIMCA and 

PLS algorithms was performed using MatLab R2018 software (The 

MathWorks, USA).  
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2.7 HPLC analysis 

The quantification of OMC in the o/w microemulsions was performed by 

using a HPLC Agilent 1260 Infinity system equipped with an Eclipse Plus 

(Agilent Technologies) C18 reverse phase column (3.5 µm spherical particles 

covered with octadecylsilane, 100 × 4.6 mm).  Methanol and ultrapure water in 

an 85:15 (v/v) ratio was the mobile phase and was controlled by the activation 

of quaternary pumps at 25 °C. The flow rate was 0.5 mL min-1. OMC was 

monitored at 311 nm using a UV detector. Moreover, isocratic mode was 

employed and the injected sample volume was 20 µL. An external calibration 

curve was constructed using standard solutions of OMC in the range of 10-150 

mg L-1. Finally, the peak area obtained for a retention time of 16.5 min was 

used for the OMC quantification. 

 

3. Results and discussion 

3.1 Characterization of the OMC loaded microemulsions 

As shown in Table 1, the Z values for all formulations were less than 100 

nm, varying between 9.99 and 15.14 nm, in agreement with expected values for 

microemulsions [12]. In addition, the size was increasing as the concentration 

of OMC increased. The corresponding histograms are showing in Fig. S1. Thus, 

from the size distribution it is possible to obtain the PdI, which is the ratio 

between the standard deviation and the mean droplet size. PdI values between 

0.1 and 0.25 indicate a narrow size distribution whereas a PdI>0.5 indicates a 

very broad size distribution. All the formulations presented a PdI between 

0.082 and 0.286 (Table 1), indicating that the microemulsions tended to 
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approach monodispersion and become stable systems due to the uniformity in 

the drops. 

On the other hand, the conductivity of the microemulsions were in range 

0.04-0.07 mS cm−1, demonstrating that all the systems were o/w type. 

Furthermore, as expected, the values of conductivity decreased as the OMC 

concentration was higher (Table 1). All the OMC-MEs presented a pH range 

between 3.5 and 4.0 which is suitable for topical use [11]. Finally, as expected, 

the SPF values were increasing as the OMC concentration in the formulation 

increased (Table 1). 

 

3.2 Band assignments  

The Raman spectra of OMC, DME, OA and the 0/w microemulsion are 

shown in Fig. 1 along with the chemical structures of the microemulsion 

components. As can be seen, the spectrum of OMC (green line) shows five 

strong peaks around 1171, 1204, 1605, 1635 and 1706 cm-1.  The peak at 1171 

cm-1 is assigned to the C–H bend, while the mode at 1204 cm-1 correspond to 

the C–O–C bend of the p-methoxy group. The modes at 1605 cm-1 are assigned 

to aromatic ring vibrations. In addition, the peaks at 1706 and 1635 cm-1 are 

assigned to the conjugated ester C=O stretch and the conjugated exocyclic C=C 

stretch, respectively [46]. In the case of the oleic acid (red line) the spectrum 

shows peaks at 1655, 1439 and 1302 cm−1. The peak at 1655 cm−1 can be 

attributed to the stretching C=O bonds in the carboxylic group. The peak at 

1439 cm−1 is assigned to CH2 scissoring mode while the peak at 1302 cm−1 is 

attributable to CH2 wagging and the carboxylic C–O stretching mode. In 

addition, the peaks at 1274, and 972 cm−1 can be assigned to stretching C–O 
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bonds, and OH out of plane bending modes, respectively [47]. Concerning the 

DME spectrum (blue line), it shows the main peaks around 1606, 1562, 1413, 

1347, and 1040 cm-1.  The peaks at 1606, 1562 and 1413 cm−1 are attributed to 

the stretching C=C bonds while the O-H in plane bending appears at 1347 cm-1. 

Further, the band at 1040 cm-1 correspond to the C–O stretching vibration 

[48]. Finally, the ME spectrum (black line) was similar to the surfactant 

spectrum with bands in 1606, 1562, 1413, 1347 and 1040 cm-1 due to the fact 

that the ME contains DME as principal component (21.9%). 

 

3.3 Multivariate analysis 

Before the multivariate analysis, the spectra data were preprocessed as 

described in section 2.6.1. Fig. S2a and S2b show the Raman spectra 

corresponding to the training and the prediction sets before and after the data 

preprocessing step using AsLS and SG algorithms, respectively. Moreover, an 

exploratory analysis of the data was performed using PCA. As can be seen in 

Fig. S3, the graph of scores (PC1 vs PC2) shows that discrimination of the 

samples was not achieved and the use of supervised pattern recognition 

techniques was required. 

 

3.3.1 Multivariate classification models  

The statistic results corresponding to SPA-LDA and SIMCA methods 

obtained for the classification of o/w microemulsion samples containing 

different concentrations of OMC are presented in Table 2. 

In the case of SPA-LDA, the minimum value of the cost function (0.378) 

was obtained using seven spectral variables. Fig. 2 shows a Raman spectrum of 
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an OMC loaded microemulsion (5.0%) indicating the seven selected variables 

by SPA: 1171, 1340, 1370, 1400, 1560, 1580 and 1605 cm-1. As can be seen, 

several variables agree with the regions of higher intensity for OMC (1171, 1580 

and 1605 cm-1). However, some variables outside these regions are important 

and have also been identified by SPA. For example, the variables 1340, 1370, 

1400 and 1560 corresponding to the surfactant (DME) were also selected. 

Then, a LDA model was obtained and the graph of the Fisher discriminant 

functions (DF) are showed in Fig. 3. As can be seen, the discrimination 

between ME/ME-1%OMC and ME-1%OMC/ME-3%OMC samples in DF1 is 

observed, whereas DF2 discriminated ME-7%OMC/ME-10%OMC samples. 

Likewise, ME-3%OMC samples were discriminated from ME-5%OMC samples 

and ME-5%OMC samples were discriminated from ME-7%OMC samples in 

DF4. In terms of performance, the SPA-LDA model achieved an accuracy of 

97.8% since only one sample corresponding to ME-7%OMC class was 

misclassified.  

On the other hand, for SIMCA model the optimal number of principal 

components for defining each class was four with an explained variance higher 

than 97% (α=0.05). As can be seen in the Coomans graph (Fig. S4), the model 

allowed the correct classification of all analyzed samples achieving an accuracy 

of 100%. However, it is important to note that SIMCA used a total of 930 

spectral variables in contrast to SPA-LDA which used only 7, reducing in a 

99.2% the number of variables used to the construction of the classification 

model. 
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3.3.2 Multivariate calibration model  

PLS regression was performed using six latent variables (PCs) which 

explained 97.5% of the total variance. The analytical parameters (R2, RMSEP 

and REP%) and figures of merit (SEN, LOD and LOQ) of the PLS calibration 

model are shown in the Table 3. The R2 (0.9699) was appropriate and both 

RMSEP (0.5434% (w/w)) and REP (9.88%) values were reasonably low 

indicating that the proposed method is accurate in the prediction of samples. 

This fact is important since that the samples contain high concentrations of 

other components such as oil (OA), surfactant (DME) and cosurfactant (ET) 

which could interfere significantly. With regard to the figures of merit, 

satisfactory values for SEN (52.19% (w/w)), LOD (0.0300% (w/w)) and LOQ 

(0.0990% (w/w)) were obtained considering the OMC concentration present 

in the analyzed formulations. However, the LOD and LOQ values were higher 

than those obtained by other authors using separation techniques as HPLC 

[49-53].  

 

3.4 Mapping analysis  

The ultra-high resolution (both spectrally and spatially) of the Raman 

microscope provides information about the identity and presence of specific 

components and reveals their location and distribution within a sample area 

[29]. The proposed PLS-CRS method allowed obtaining distribution maps (2D 

image) which provided a visual representation of the OMC distribution in the 

analyzed samples. A rainbow color-coded composite image was developed to 

show the localization of OMC. Fig. 4 shows the color spatial mapping 

corresponding to the predicted distribution of OMC in formulations with 
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different concentration of OMC (3.0, 5.0 and 7.0%). The pixel concentration 

was predicted by multiplying each Raman spectrum by the corresponding PLS 

regression vector. As can be seen, over an area of 204 μm2, the pixels that 

present orange-yellow color intensity correspond to higher concentrations of 

OMC, showing in light blue-blue regions with lower concentrations of OMC. As 

expected, the orange-yellow color pattern represented a larger area as the 

concentration of OMC increased. In relation to distribution, the OMC seems 

non-homogeneously distributed in the microemulsion samples. It is possible 

that oil drops have different drug loading capacity, which is reflected in regions 

with different concentrations of OMC. It is important to note that CRS was 

appropriate to predict the content of OMC and to depict its distribution in 

samples containing different concentrations of the UV-filter. 

  

3.5 Validation of CRS-PLS method 

Validation of trueness was carried out by comparison of the results 

obtained by the proposed method with the ones obtained by the reference 

method (HPLC). The statistical comparison was carried out using the joint 

interval test for the slope and the intercept [54]. The values obtained by the 

proposed method were regressed against the HPLC method. The estimated 

intercept (a) and slope (b) obtained, were compared with the ideal values of 

intercept = 0 and slope = 1. The elliptical joint confidence regions obtained 

(Fig. S5) indicate that there are no significant statistical differences between 

the results obtained by both methods, considering an overall significance level 

of α = 0.05. From these results it can be concluded that, in comparison to the 

reference method, there is no bias in the results obtained for OMC. 
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On the other hand, Table 4 compares the proposed method with respect to 

different HPLC methods [49-53] developed to quantify OMC in different 

PPCPs. As can be seen, the proposed CRS-PLS method does not require a 

separation technique or the use of organic solvents. Moreover, the analysis 

time is short mainly due to the fact that a rapid instrumental response is 

obtained using CRS in comparison to the HPLC methods. 

 

3.6 Green approach 

In order to assess the greenness of an analytical methodology, it is 

necessary to have metrics to evaluate and easily quantify this parameter. The 

AGREE metric [55] is a recently proposed method that provides an analytical 

greenness estimation calculator, based on the twelve principles of GAC. The 

Fig. S6a and S6b show the colored pictogram corresponding to the proposed 

green CRS and HPLC methods, respectively. As can be seen, a numerical value 

of 0.85 was obtained for the proposed method, which is close to the ideal value 

of 1.0, demonstrating the greenery of the method. This fact is relating to a non-

destructive analysis of the sample, requiring a minimal volume of it for the 

complete analysis (10 µL). In addition, there was no need of any pretreatment 

or derivatization steps, which significantly reduces the total time of analysis. 

The procedure did not include reagents and organic solvents and no waste was 

generated, which is an important benefit in terms of safety for both, the 

operator and the environment. Since the waste generation is one of the most 

important points in the evaluation of greenness of an analytical method we 

assigned a higher weight value to this parameter. This fact can be observed in 

the pictogram in which all the points represent the same area with the 



22 
 

exception of number seven which correspond to waste. On the other hand, the 

points 3, 5 and 8 were not green, indicating a certain distance from the ideal 

value that is 1.0. As can be seen in Fig. S7, the point 3 is related to: If possible, 

the measurements should be performed in situ. In our case, this point was the 

farthest from the ideal greenness value, since the measurement device was in 

off-line position. Although these measurements were carried out off-line 

smaller at-line Raman spectrometers could be used instead once analytical 

methods are established. Point 5 states: Automated and miniaturized method 

should be selected. In the pictogram this point was yellow representing a 

smaller distance from the ideal value since the proposed method did not 

include automation. Finally, point 8 is related to: Multi-analyte or multi-

parameter methods are preferred versus methods using one analyte at a 

time. This point was distant from the ideal value for two reasons: firstly, 

because only one analyte was determined and after because the throughput 

was 15 h-1. This value was relatively less because included the chemometric 

analysis step. On the contrary, the pictogram corresponding to the HPLC 

method shows that the overall value of greenness provided by the metric is 

much lower (0.47). This fact is mainly due to the use of organic solvents 

required by the chromatographic technique, the absence of automation and/or 

miniaturization, and the impossibility of performing in situ analysis, among 

others. In particular, the use of methanol negatively impacts the analysis since 

this solvent is not obtained from renewable sources and it is a potentially 

dangerous solvent for the operator and the environment (toxic and highly 

flammable). Moreover, the HPLC method generated waste which should be 

avoided (Fig. S7). In conclusion, the value obtained for the proposed CRS 



23 
 

method is much higher than the HPLC method and it corresponds to an 

excellent greenness. 

 

4. Conclusions 

This work demonstrated that the combination of confocal Raman 

spectroscopy and chemometrics is a potential tool to both qualitative and 

quantitative analysis of OMC loaded in oil in water microemulsions, 

alternatively to the traditionally chromatographic methods. In addition, 

confocal Raman spectroscopy allowed direct analysis of samples containing 

high concentration of surfactant, cosurfactant and oil phase, avoiding 

pretreatment steps, and obtaining fast, simple and reliable analytical methods 

in concordance whit the principles of green analytical chemistry. The 

combination of confocal Raman spectroscopy and SPA-LDA and SIMCA 

provided accurate methods for discriminate different percentages of OMC in 

microemulsion samples demonstrating the potential use of this methodology 

as a screening tool. On the other hand, a PLS model based on the analysis of 

Raman spectra exhibited optimal analytical parameters for the quantification 

of OMC at different concentration levels which represents an important fact 

since the concentration of OMC is directly related to the solar protection factor 

and therefore with the efficacy of the formulation. In addition, the proposed 

PLS-CRS method allowed obtaining distribution maps which provided a visual 

representation of the OMC distribution in the analyzed samples. Finally, the 

use of green chemistry metrics allowed to demonstrate the greenery of the 

proposed method obtaining a high value, which was close to the corresponding 

an ideal green methodology.  
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Tables 

Table 1. Physicochemical characterization of the analyzed OMC loaded o/w 
microemulsions (1.0; 3.0; 5.0; 7.0 and 10%). Z: average droplet size; PdI: 
polydispersity index; C: conductivity; SPF: solar protection factor. All 
measurements were performed in triplicate. 
 

 
 
 
 
 
 
 
 

 

 

 

 
 
 
 

 

 

 

 

 

Sample Z (nm) PdI C (mS cm-1) pH SPF 

ME-1%OMC 9.99 ± 0.04 0.101 ± 0.070 0.070 ± 0.002   4.10 ± 0.01 1.73 ± 0.04 

ME-3%OMC 9.93 ± 0.11 0.086 ± 0.045 0.060 ± 0.001  4.10 ± 0.01 3.92 ± 0.03 

ME-5%OMC 10.25 ± 0.05 0.286 ± 0.046 0.050 ± 0.001  4.20 ± 0.03 4.12 ± 0.01 

ME-7%OMC 13.71 ± 0.23 0.281 ± 0.071 0.050 ± 0.002  4.00 ± 0.01 5.13 ± 0.04 

ME-10%OMC 15.14 ± 1.36 0.285 ± 0.018 0.040 ± 0.001  4.10 ± 0.02 18.20 ± 0.07 
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Table 2.  Summary of the statistical results (95% confidence level) for SPA-

LDA and SIMCA models applied to confocal Raman spectra data for the 

classification of o/w microemulsion samples containing different 

concentration of OMC. 

 

 

Sample data set 
SPA-LDA SIMCA 

NVs Error Accuracy (%) PCs Error Accuracy (%) 

Training (N=30) 

7 

0 100 

4 

0 100 

Prediction (N=15) 1 97.8 0 100 

NVs: number of variables; PCs: principal components 
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Table 3. Analytical parameters of the PLS calibration model for OMC 
determination in microemulsion samples. 
 
 

 

Analytical parameter Value 

Spectral range (cm-1) 600-1700 

Concentration range (% w/w) 0-10 

Latent variables            6 

R2 0.9699 

RMSEP (% w/w) 0.5434 

REP (%) 9.88 

SEN (% w/w) 52.19 

LOD (% w/w) 0.0300 

LOQ (% w/w) 0.0990 
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Table 4. Comparison of methods developed to determination of OMC in different PPCPs. 
 
 

Method Separation technique Detection technique Sample Solvent Time analysis (s) 

[45] HPLC UVS (310 nm) o/w microemulsion ACN : Water (80:20; v/v) ND 

[46] HPLC UVS (307 nm) o/w emulsion Water : MeOH (12:88; v/v) 330 

[47] HPLC UVS (310 nm) Gel cream Water : MeOH : (13:87; v/v) ND 

[48] HPLC UVS (313 nm) Sunscreen/Cosmetics EtOH : Acetic Acid 1% (70:30; v/v) 420 

[49] HPLC UVS (320 nm) Sunscreen ACN:Water (90:10; v/v) 600 

This work Not used CRS (600-1700 cm-1) o/w microemulsion Not used 20 

UVS: UV spectroscopy; ND: not declared 
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Figure captions 

 
Figure 1. Raman spectra corresponding to OMC-ME (black line), DME (blue 
line), OA (red line) and OMC (green line). Wavenumbers (cm-1) of the 
principal peaks are indicated along with the chemical structure of the 
components. The spectra have been shifted along the y-axis for a better 
comprehension. 
 
 
Figure 2. Raman spectrum corresponding to a OMC loaded microemulsion 
(5.0%). The circles in black indicates the seven variables selected by SPA 
algorithm (1171, 1340, 1370, 1400, 1560, 1580 and 1605 cm-1). 
 
Figure 3. Fisher’s discriminant functions (DF) obtained by SPA-LDA applied 
to Raman data set. The samples are represented as ME (blue circle), ME-
1%OMC (red asterisk), ME-3%OMC (black diamond), ME-5%OMC (yellow 
square), ME-7%OMC (green star) and ME-10%OMC (violet cross). 
 
 
Figure 4. Distribution maps representing the OMC predicted concentration 
by PLS regression in different o/w microemulsion samples (ME-1.0%OMC; 
ME-3.0%OMC; ME-7.0%OMC). The pixels that present highest colour 
intensity (orange-yellow) correspond to higher concentrations of OMC. 
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Figure 1 
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Figure 2 
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Abstract 

This work proposes a green analytical method based on confocal Raman 

spectrometry and chemometrics tools for the qualitative and quantitative 

analysis of oil in water microemulsions loaded with the UVB filter octyl p-

methoxycinnamate (OMC). The method does not use reagents and only 10 µL 

of sample are needed. The analyzed microemulsion samples were synthetized 

in the laboratory using decaethylene glycol mono-dodecyl ether (21.9%) as 

non-ionic surfactant, ethyl alcohol (7.3%) as co-surfactant, oleic acid (1.5%) as 

oil phase and water (69.3%). A physicochemical characterization of the 

samples was carried out obtaining expected values for droplet size (<20 nm), 

polydispersity index (<0.290) and conductivity (0.04–0.07 mS cm−1), among 

others. Linear discriminant analysis (LDA) after selection of variables using 

the successive projections algorithm (SPA) and soft independent modelling of 

class analogy (SIMCA) were employed to classify microemulsions with 

different concentrations of OMC (1.0 to 10.0%). In the case of LDA, seven 

Raman spectral variables were previously selected by SPA and after this SPA-

LDA model resulted in one error in the prediction set achieving an accuracy of 

98%. The SIMCA model (α=0.05) presented an explained variance higher 97% 

using four principal components and it allowed the correct classification of 

100% of the samples (N=15). In the quantitative analysis, partial least squares 

(PLS) was used to determine OMC in a range according to international 

legislation. The model presented optimal statistical parameters (R2=0.9699; 

RMSEP=0.54%) and the prediction of samples were in close agreement with 

HPLC method. Moreover, the greenery of the method was estimated using the 

AGREE metric and an optimal value of 0.85 was obtained demonstrating the 

proposed analytical method results environmentally friendly. 
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1. Introduction 

Pharmaceutical and personal care products (PPCPs) comprise different 

kind of formulations that include products for sun protection, which present 

one or more chemical species that can reduce the negative effects of solar 

radiation [1,2]. Chemical sunscreens are organic molecules with chromophoric 

groups that absorb radiation in the UV region [3,4]. Octyl p-

methoxycinnamate (OMC) is a lipophilic UVB filter (290-320 nm) belonging 

to the methoxycinnamate group widely used in PPCPs [5]. However, some side 

effects are associated with OMC such as minor skin irritation and dryness or 

hardening of the skin. Rarely, people may develop more serious skin side 

effects such as burning, stinging, and swelling or rash [6]. On the other hand, 

concentrations of OMC lower than declared in the product represents a 

significant risk to the health since the protection against sun exposure would 

not be guaranteed. Thus, OMC is usually present in the concentration range 

from 0.1% to 10% (w/w) in PPCPs taking into account the technical 

specifications of the Food and Drug Administration (US) and the European 

Union, which authorize a maximum level of 7.5% (w/w) and 10% (w/w), 

respectively [7,8]. On this form, the quality control of formulation containing 

OMC is necessary.  

It is important to note that OMC decreases its efficacy as a sunscreen when 

exposed to sunlight. The direct photolysis of the OMC produces their 

photoisomerization, changing octyl p-methoxy-trans-cinnamate (trans-OMC) 

to octyl p-methoxy-cis-cinnamate (cis-OMC). The molar absorption coefficient 

of the cis-isomer (εcis = 12,600 L mol−1 cm−1) is markedly lower than trans-

isomer (εtrans = 24,000 L mol−1 cm−1) resulting in a reduction of the OMC 

efficiency as UV filter [9]. This problem can be solved using appropriate 



5 
 

vehicles as carriers of OMC such as microemulsion systems [10]. 

Microemulsions (MEs) are organized, transparent and thermodynamically 

stable systems widely used in PPCPs for the topical administration of various 

components. These systems consist of two immiscible liquids (aqueous phase 

and oily phase) stabilized by the presence of a surfactant and, in some cases, a 

cosurfactant [11]. MEs present advantages such as the ability to protect labile 

compounds increasing the bioavailability. Besides, because of the presence of 

both lipophilic and hydrophilic domains, MEs are appropriate systems to 

incorporate a wide range of molecules [12]. However, the analytical study of 

this kind of systems may become difficult due to their physicochemical 

characteristics and the high concentration of components with different 

solubility (surfactant, co-surfactant, oily phase). 

The methods applied for the determination of OMC in PPCPs are based on 

chromatographic techniques such as high-performance liquid chromatography 

(HPLC) [13] and gas chromatography (GC) [14], amperometric techniques 

[15], and spectroscopic techniques such as UV-Vis spectroscopy [16], mass 

spectrometry [17], nuclear magnetic resonance spectroscopy [18], infrared 

spectroscopy [19] and Raman spectroscopy [20]. Since OMC is usually present 

in complex matrices, most of these spectroscopic techniques cannot be used 

for direct analysis without sample pretreatment [21,22]. Confocal Raman 

spectroscopy (CRS) has been widely used to determine the composition and 

structure of different materials.  The main advantages of CRS are allowing the 

analysis of samples without previous pretreatment; a rapid analysis; and it is a 

non-destructive technique, among others [23,24]. The use of CRS combined 

with chemometrics tools is presented as a powerful analytical alternative since 

relevant information can be extracted from the Raman spectra to obtain 
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classification and quantification models for different species in complex 

samples [25-29]. Soft independent modeling of class analogy (SIMCA) is a 

supervised pattern recognition method that uses principal component analysis 

(PCA) to model the hyperspace of each class [30]. The PCA method promotes 

compression of a large data set and the variance is concentrated in few 

variables called principal components. However, when employing a large data 

set in the construction of mathematic models, such as a full spectrum, many 

variables are redundant and/or non-informative, and their inclusion may 

affect the quality of the final model. To overcome this drawback, the use of 

variable selection techniques is an appropiate alternative [31]. Successive 

projection algorithm (SPA) is the forward algorithm, with restriction that the 

selected variable in each interation is the least collinear to other selected 

variables [32]. Pontes et al. [33] adapted SPA so that it can be used with linear 

discriminant analysis (LDA) in the variable selection to solve classification 

problems. SPA-LDA is employed as supervised classification technique that 

focuses at selecting a subset of variables with minimal collinearity and 

appropriate discriminating ability [34]. On the other hand, partial least 

squares (PLS) is a well known algorithm applied successfully for building 

regression models. PLS technique makes use of the inverse calibration 

approach, where it is possible to calibrate for the desired component while 

implicitly modeling the other sources of variation. The inversion problem is 

resolved by replacing the original variables with linear combinations of the 

variables normally called factors. The optimum number of factors is often 

chosen on the basis of the quality of the results for the samples in the 

prediction set [30].  
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The combination of CRS with classification and calibration techniques is 

well documented for a wide type of samples. However, the use of CRS assisted 

by chemometrics tools in MEs systems is still limited [35].  

As is known, the analytical determination of drugs is normally carried out 

by separation techniques, such as HPLC and GC. These techniques use organic 

solvents that are not environmentally friendly and are normally energy and 

time-consuming. The principles of green analytical chemistry (GAC) 

emphasize the use of safer and less toxic solvents, as well as reducing energy 

consumption and waste generation, avoiding derivatization, and favoring the 

use of substances based on renewable sources, among others [36]. The correct 

application of GAC provides many benefits in various aspects of sustainability. 

GAC comprises 12 principles that serve as a guide to defining the framework of 

green analytical procedures. In the last years, a trend to design 

environmentally friendly procedures in analytical chemistry has been 

highlighted [37,38] and the adoption of this kind of procedures is mandatory 

for adherence to ISO14000 guidelines. However, the application of green 

chemistry metrics for the evaluation of the greenery of analytical methods is 

restricted [39]. 

This work proposes classification and multivariate calibration green 

methods for the analysis of OMC loaded MEs samples applying chemometrics 

tools to the spectral data obtained by CRS. Class discrimination was carried 

out for samples containing different concentrations of OMC (1.0 to 10%) using 

the SIMCA and SPA-LDA algorithms. Moreover, the quantification of OMC in 

MEs was carried out using PLS algorithm. Moreover, the degree of the 
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greenness was estimated by using the green metric analytical approach 

(AGREE). 

 

2. Material and Methods 

2.1 Reagents 

All the reagents were analytical-grade chemicals and ultra-pure water (18 

MΩ cm−1) was obtained from a Barnsted® water purification system. 

Decaethylene glycol mono-dodecyl ether (DME; Sigma-Aldrich®) and ethyl 

alcohol (ET; Dorwil®) were used as non-ionic surfactant and co-surfactant, 

respectively. Oleic acid (OA; Applichem®) was used as oil phase and octyl-p-

methoxy cinnamate (OMC; Parafarm®) was used as UVB filter.  

 

2.2 Preparation of the OMC loaded microemulsions 

An o/w microemulsion based on biocompatible materials and composed of 

21.9% of DME (surfactant), 7.3% of ET (cosurfactant), 1.5% of OA (oil phase) 

and 69.3% of water was used for this study and obtained as described by the 

authors in a previous work [9]. Briefly, different amounts of OMC were added 

to the oil phase by stirring at 25 °C in order to obtain a final UV filter 

concentration of 1.0, 3.0, 5.0, 7.0 and 10.0% (w/w). These dosages were 

chosen taking into account the technical specifications for the United States 

Food and Drugs Administration and the European Union, which authorize a 

maximum level of 7.5 and 10% (w/w) of OMC, respectively [8,9]. Also, it is well 

known that microemulsions used as delivery vehicles of lipophilic molecules 

should kept both surfactant and co-surfactant levels as low as possible. In this 
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case, the used concentrations of both DME (21.9%) and ET (7.3%) were 

appropriate for this kind of formulations. Then, the mixture OMC-oil phase 

was added to the DME:ET (3:1) mixture and titrated with ultra-pure water 

under moderate magnetic stirring. All prepared OMC loaded MEs were 

visually examined for transparency and stored in amber-glass containers at 

room temperature (25 °C). 

 

2.3 Characterization of the OMC loaded microemulsions 

Different parameters were studied in order to corroborate the structure, 

stability and capability of the obtained o/w microemulsions. 

Average droplet size (Z) and polydispersity index (PdI) were determined 

by dynamic light scattering (DLS) using a Malvern Zetasizer Nano Series 

instrument (Malvern, UK). After 10-fold dilution in ultra-pure water, the 

samples were magnetically stirred for 5 min and the measurements were 

carried out at 25 °C, in an optical quality 4 mL borosilicate cell and at 90° 

angle. Then, Z and PdI were calculated by the Zetasizer 7.13 software (Malvern, 

UK) using the time correlation function. The conductivity of the preparations 

(25 °C) was determined using an Adwa model AD32 conductivity meter (Adwa, 

Hungary). The pH measurements were performed by using an Orion model 

710 A pH meter with an Orion-Ross® model 81-02 electrode (Thermo, USA). 

For this, 1.0 g of sample was dispersed in 10 mL of ultra-pure water and stirred 

during 60 min at 25 °C.  

In addition, the sun protection factor (SPF) was determinate by the in vitro 

Mansur method [40]. Briefly, the o/w microemulsions were diluted in ethanol 

at a final concentration of 0.2 mL mL−1. Then, the spectrophotometric 
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measurements between 290 and 320 nm with an interval of 5 nm were 

obtained by using a Hewllet Packard 8453 UV-Vis spectrophotometer (Agilent 

Technologies, Inc., USA) equipped with a quartz cell (10 mm optical path). The 

SPF was calculated as follows: 

𝐒𝐏𝐅 = 𝐂𝐅 ∑  𝐄𝐄(𝛌)
𝟑𝟐𝟎
𝟐𝟗𝟎  𝐈(𝛌) 𝐀(𝛌)                                                                    Eq. 1 

where CF is a correction factor (in this case, 10), EE is the erythemal effect 

spectrum, I is the solar intensity spectrum and A is the measured absorbance 

of the OMC-ME at each wavelength (λ). The relationship between the 

erythemal effect spectrum and the solar intensity spectrum at each wavelength 

(EE×I) was determined as described by Sayre et al. [41] (Table S1). 

 

2.4 Spectral data acquisition 

The Raman spectra were acquired with an inViaTM confocal microscope 

(Renishaw, UK) equipped with a 532 nm excitation wavelength laser and a 

L50x objective.  The Wire 4.1 software (Renishaw, UK) was used to acquire the 

Raman spectra in the range from 600 to 1700 cm−1. 10 μL of sample were 

prepared on glass slides and the scattered light was collected in 

the backscattering geometry onto a 2400 l/mm grating and a cooled charged-

coupled device (CCD). All spectra were single accumulation collected for 20 s. 

Five spectra per sample were collected and then randomized. The samples 

were scanned in a streamline HR mode with 0.8 s exposure and 100% laser 

power. Each sample generated is aimed to produce quantitative concentration 

maps constituted from 17 x 12 pixels of area for each formulation. 

 

https://www.sciencedirect.com/topics/chemistry/raman-spectrum
https://www.sciencedirect.com/topics/chemistry/backscattering
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2.5 Preparation of training and prediction sets 

The Kennard-Stone (KS) uniform sampling algorithm [42] was used for 

the construction of both training and prediction sets. The training set 

contained samples in six levels of OMC concentrations ranging from 0 to 10% 

(0, 1.0, 3.0, 5.0, 7.0 and 10% w/w). In the case of the prediction set, it 

presented samples with three levels of OMC concentrations (3.0, 5.0 and 7.0% 

w/w). Five replicates of each sample were prepared rendering a total of 30 and 

15 samples of training and prediction sets, respectively (Table S2). Both sets 

were used to perform the classification (LDA and SIMCA) and quantitative 

(PLS) analysis. 

 

2.6 Data analysis 

2.6.1 Spectra preprocessing and exploratory analysis. Usually, Raman 

spectra require a baseline correction. Asymmetric least squares (AsLS) 

algorithm [43] is adequate since it avoids the semi manual and individual 

correction of baseline that is subjective and time consuming. The parameters 

asymmetry (p) and smoothness (λ) were tested and the selected values were 

0.001 and 103, respectively. In addition, the spectra were smoothed using the 

Savitzky-Golay (SG) algorithm [44] with a second-order polynomial and a 7-

point window. On the other hand, PCA algorithm was used as unsupervised 

pattern recognition technique in the exploratory analysis of the spectral data. 

 

2.6.2 Multivariate classification models. SPA-LDA and SIMCA were employed 

as supervised pattern recognition techniques for screening analysis.  
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LDA is focused on finding optimal boundaries between classes, 

maximizing between-class separability while minimizing within-class 

variability. However, LDA requires a selection of variables when full-spectrum 

data is available [45]. In SPA-LDA a training set consisting of n samples with 

known class labels is used to perform the process of variable selection. In the 

case of Raman spectroscopy, each sample consists of a spectrum with k 

wavenumbers. At first, the n training samples are centered on the mean of 

each class and stacked in the form of a X matrix (n × k), where each column of 

X corresponds to a variable. Then, projection operations related to the 

columns of X are carried out to create k chains with l variables. Due to the loss 

of freedom degrees in the process of calculating class means, the chain length 

is limited by n − c, where c is the number of classes involved in the problem. 

Each time, the chain is initialized by one of the available k variables. 

Subsequent variables are selected to the chain in order to display the least 

collinearity with the previous ones, which is evaluated by the correlation 

between the respective column vectors of X. Finally, a total of k×l subsets of 

variables can be generated. These candidate subsets are assessed in terms of a 

cost function involving the average risk of misclassification over the validation 

set [33]. On this form, the optimal number of variables (NVs) is established for 

SPA-LDA model. 

SIMCA is based on the advantage of soft modeling where each class can be 

independently modeled. This classification technique is based on producing a 

PCA model for each class of sample and then comparing their distance to the 

class confidence limits. On this form, SIMCA allows the analysis of a large data 

set concentrating the variance in few variables called principal components 

(PCs). Considering a set of n objects (samples) measured in k sensors 
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(wavenumbers in Raman spectroscopy) generating the X matrix (n × k), PCA 

reduced the matrix X into a product of two other arrays of low dimensionality 

T (n x A) and L (k x A) called scores and loadings, respectively, where A 

represents the number of new variables considered to be significant for the 

model of each class. The new variables in T present the advantage of being 

mutually orthogonal allowing the use of all spectral information in the 

construction of the SIMCA model. This characteristic permits the detection of 

anomalous samples or outliers, present in the data set. Finally, the 

classification of new samples is carried out by means of an F-test at a given 

significance level. The optimal number of PC’s can be selected by leave-one-out 

cross-validation using the training set by means of the calculation of the root 

mean square error of cross validation (RMSECV) [30]. 

The optimal NVs and PCs were established for SPA-LDA and SIMCA, 

respectively. The performance of the classification models was evaluated by 

accuracy, which is defined using the ratio of samples in the test set correctly 

assigned into their respective classes. 

 

2.6.3 Multivariate calibration model. Regression analysis was performed by 

applying the PLS algorithm. PLS is a factor analysis method which the full-

spectrum advantage is retained by forming a new coordinate system, as follow: 

 

  𝐗 = 𝐓 𝐱 𝐋 + 𝐄                                                                                             Eq. 2 

 

where X is the m x n matrix of calibration spectra, L is a h x n matrix with the 

rows of L being the new PLS basis set of h full-spectrum vectors, often called 

loading vectors or loading spectra. T is an m x h matrix of intensities (scores) 
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in the new coordinate system of the h PLS loading vectors for the m sample 

spectra. E is now the m x n matrix of spectral residuals not fit by the optimal 

PLS model. The spectral intensities in the new coordinate system can be 

related to concentrations using least-squares analysis: 

 

𝐜 = 𝐓 𝐱 𝐛 + 𝐞                                                                                             Eq. 3 

 

where b is the h x l vector of coefficients relating the scores to the 

concentrations, T is the matrix of scores from the PLS spectral decomposition 

(Eq. 2) and e an error vector. The concentration in an unknown sample is 

obtained by using the previously calculated b coefficients [30].     

In this work, the PLS model and its performance was evaluated by leaving 

one out cross validation, in which each sample of the calibration set was left 

out once, and its concentration was estimated by a model built with the 

remaining samples. The models were evaluated by calculating analytical 

parameters as the determination coefficient (R2), root mean square error of 

prediction (RMSEP) and the relative error of prediction (REP%). In addition, 

figures of merit as sensitivity (SEN) was calculated as SEN = 1/||bk|| and limit 

of detection (LOD) and limit of quantification (LOQ) were calculated as LOD 

(or LOQ) = k α ||bk||, where k= 3.3 for LOD, and k= 10 for LOQ, α is the 

standard deviation of the net analytical signal (NAS), and ||bk|| is the 

Euclidean norm of the vector of regression coefficients estimated from the 

multivariate calibration model for analyte k. 

Multivariate data analysis including KS, AsLS, SG, SPA-LDA, SIMCA and 

PLS algorithms was performed using MatLab R2018 software (The 

MathWorks, USA).  
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2.7 HPLC analysis 

The quantification of OMC in the o/w microemulsions was performed by 

using a HPLC Agilent 1260 Infinity system equipped with an Eclipse Plus 

(Agilent Technologies) C18 reverse phase column (3.5 µm spherical particles 

covered with octadecylsilane, 100 × 4.6 mm).  Methanol and ultrapure water in 

an 85:15 (v/v) ratio was the mobile phase and was controlled by the activation 

of quaternary pumps at 25 °C. The flow rate was 0.5 mL min-1. OMC was 

monitored at 311 nm using a UV detector. Moreover, isocratic mode was 

employed and the injected sample volume was 20 µL. An external calibration 

curve was constructed using standard solutions of OMC in the range of 10-150 

mg L-1. Finally, the peak area obtained for a retention time of 16.5 min was 

used for the OMC quantification. 

 

3. Results and discussion 

3.1 Characterization of the OMC loaded microemulsions 

As shown in Table 1, the Z values for all formulations were less than 100 

nm, varying between 9.99 and 15.14 nm, in agreement with expected values for 

microemulsions [12]. In addition, the size was increasing as the concentration 

of OMC increased. The corresponding histograms are showing in Fig. S1. Thus, 

from the size distribution it is possible to obtain the PdI, which is the ratio 

between the standard deviation and the mean droplet size. PdI values between 

0.1 and 0.25 indicate a narrow size distribution whereas a PdI>0.5 indicates a 

very broad size distribution. All the formulations presented a PdI between 

0.082 and 0.286 (Table 1), indicating that the microemulsions tended to 
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approach monodispersion and become stable systems due to the uniformity in 

the drops. 

On the other hand, the conductivity of the microemulsions were in range 

0.04-0.07 mS cm−1, demonstrating that all the systems were o/w type. 

Furthermore, as expected, the values of conductivity decreased as the OMC 

concentration was higher (Table 1). All the OMC-MEs presented a pH range 

between 3.5 and 4.0 which is suitable for topical use [11]. Finally, as expected, 

the SPF values were increasing as the OMC concentration in the formulation 

increased (Table 1). 

 

3.2 Band assignments  

The Raman spectra of OMC, DME, OA and the 0/w microemulsion are 

shown in Fig. 1 along with the chemical structures of the microemulsion 

components. As can be seen, the spectrum of OMC (green line) shows five 

strong peaks around 1171, 1204, 1605, 1635 and 1706 cm-1.  The peak at 1171 

cm-1 is assigned to the C–H bend, while the mode at 1204 cm-1 correspond to 

the C–O–C bend of the p-methoxy group. The modes at 1605 cm-1 are assigned 

to aromatic ring vibrations. In addition, the peaks at 1706 and 1635 cm-1 are 

assigned to the conjugated ester C=O stretch and the conjugated exocyclic C=C 

stretch, respectively [46]. In the case of the oleic acid (red line) the spectrum 

shows peaks at 1655, 1439 and 1302 cm−1. The peak at 1655 cm−1 can be 

attributed to the stretching C=O bonds in the carboxylic group. The peak at 

1439 cm−1 is assigned to CH2 scissoring mode while the peak at 1302 cm−1 is 

attributable to CH2 wagging and the carboxylic C–O stretching mode. In 

addition, the peaks at 1274, and 972 cm−1 can be assigned to stretching C–O 
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bonds, and OH out of plane bending modes, respectively [47]. Concerning the 

DME spectrum (blue line), it shows the main peaks around 1606, 1562, 1413, 

1347, and 1040 cm-1.  The peaks at 1606, 1562 and 1413 cm−1 are attributed to 

the stretching C=C bonds while the O-H in plane bending appears at 1347 cm-1. 

Further, the band at 1040 cm-1 correspond to the C–O stretching vibration 

[48]. Finally, the ME spectrum (black line) was similar to the surfactant 

spectrum with bands in 1606, 1562, 1413, 1347 and 1040 cm-1 due to the fact 

that the ME contains DME as principal component (21.9%). 

 

3.3 Multivariate analysis 

Before the multivariate analysis, the spectra data were preprocessed as 

described in section 2.6.1. Fig. S2a and S2b show the Raman spectra 

corresponding to the training and the prediction sets before and after the data 

preprocessing step using AsLS and SG algorithms, respectively. Moreover, an 

exploratory analysis of the data was performed using PCA. As can be seen in 

Fig. S3, the graph of scores (PC1 vs PC2) shows that discrimination of the 

samples was not achieved and the use of supervised pattern recognition 

techniques was required. 

 

3.3.1 Multivariate classification models  

The statistic results corresponding to SPA-LDA and SIMCA methods 

obtained for the classification of o/w microemulsion samples containing 

different concentrations of OMC are presented in Table 2. 

In the case of SPA-LDA, the minimum value of the cost function (0.378) 

was obtained using seven spectral variables. Fig. 2 shows a Raman spectrum of 
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an OMC loaded microemulsion (5.0%) indicating the seven selected variables 

by SPA: 1171, 1340, 1370, 1400, 1560, 1580 and 1605 cm-1. As can be seen, 

several variables agree with the regions of higher intensity for OMC (1171, 1580 

and 1605 cm-1). However, some variables outside these regions are important 

and have also been identified by SPA. For example, the variables 1340, 1370, 

1400 and 1560 corresponding to the surfactant (DME) were also selected. 

Then, a LDA model was obtained and the graph of the Fisher discriminant 

functions (DF) are showed in Fig. 3. As can be seen, the discrimination 

between ME/ME-1%OMC and ME-1%OMC/ME-3%OMC samples in DF1 is 

observed, whereas DF2 discriminated ME-7%OMC/ME-10%OMC samples. 

Likewise, ME-3%OMC samples were discriminated from ME-5%OMC samples 

and ME-5%OMC samples were discriminated from ME-7%OMC samples in 

DF4. In terms of performance, the SPA-LDA model achieved an accuracy of 

97.8% since only one sample corresponding to ME-7%OMC class was 

misclassified.  

On the other hand, for SIMCA model the optimal number of principal 

components for defining each class was four with an explained variance higher 

than 97% (α=0.05). As can be seen in the Coomans graph (Fig. S4), the model 

allowed the correct classification of all analyzed samples achieving an accuracy 

of 100%. However, it is important to note that SIMCA used a total of 930 

spectral variables in contrast to SPA-LDA which used only 7, reducing in a 

99.2% the number of variables used to the construction of the classification 

model. 
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3.3.2 Multivariate calibration model  

PLS regression was performed using six latent variables (PCs) which 

explained 97.5% of the total variance. The analytical parameters (R2, RMSEP 

and REP%) and figures of merit (SEN, LOD and LOQ) of the PLS calibration 

model are shown in the Table 3. The R2 (0.9699) was appropriate and both 

RMSEP (0.5434% (w/w)) and REP (9.88%) values were reasonably low 

indicating that the proposed method is accurate in the prediction of samples. 

This fact is important since that the samples contain high concentrations of 

other components such as oil (OA), surfactant (DME) and cosurfactant (ET) 

which could interfere significantly. With regard to the figures of merit, 

satisfactory values for SEN (52.19% (w/w)), LOD (0.0300% (w/w)) and LOQ 

(0.0990% (w/w)) were obtained considering the OMC concentration present 

in the analyzed formulations. However, the LOD and LOQ values were higher 

than those obtained by other authors using separation techniques as HPLC 

[49-53].  

 

3.4 Mapping analysis  

The ultra-high resolution (both spectrally and spatially) of the Raman 

microscope provides information about the identity and presence of specific 

components and reveals their location and distribution within a sample area 

[29]. The proposed PLS-CRS method allowed obtaining distribution maps (2D 

image) which provided a visual representation of the OMC distribution in the 

analyzed samples. A rainbow color-coded composite image was developed to 

show the localization of OMC. Fig. 4 shows the color spatial mapping 

corresponding to the predicted distribution of OMC in formulations with 
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different concentration of OMC (3.0, 5.0 and 7.0%). The pixel concentration 

was predicted by multiplying each Raman spectrum by the corresponding PLS 

regression vector. As can be seen, over an area of 204 μm2, the pixels that 

present orange-yellow color intensity correspond to higher concentrations of 

OMC, showing in light blue-blue regions with lower concentrations of OMC. As 

expected, the orange-yellow color pattern represented a larger area as the 

concentration of OMC increased. In relation to distribution, the OMC seems 

non-homogeneously distributed in the microemulsion samples. It is possible 

that oil drops have different drug loading capacity, which is reflected in regions 

with different concentrations of OMC. It is important to note that CRS was 

appropriate to predict the content of OMC and to depict its distribution in 

samples containing different concentrations of the UV-filter. 

  

3.5 Validation of CRS-PLS method 

Validation of trueness was carried out by comparison of the results 

obtained by the proposed method with the ones obtained by the reference 

method (HPLC). The statistical comparison was carried out using the joint 

interval test for the slope and the intercept [54]. The values obtained by the 

proposed method were regressed against the HPLC method. The estimated 

intercept (a) and slope (b) obtained, were compared with the ideal values of 

intercept = 0 and slope = 1. The elliptical joint confidence regions obtained 

(Fig. S5) indicate that there are no significant statistical differences between 

the results obtained by both methods, considering an overall significance level 

of α = 0.05. From these results it can be concluded that, in comparison to the 

reference method, there is no bias in the results obtained for OMC. 
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On the other hand, Table 4 compares the proposed method with respect to 

different HPLC methods [49-53] developed to quantify OMC in different 

PPCPs. As can be seen, the proposed CRS-PLS method does not require a 

separation technique or the use of organic solvents. Moreover, the analysis 

time is short mainly due to the fact that a rapid instrumental response is 

obtained using CRS in comparison to the HPLC methods. 

 

3.6 Green approach 

In order to assess the greenness of an analytical methodology, it is 

necessary to have metrics to evaluate and easily quantify this parameter. The 

AGREE metric [55] is a recently proposed method that provides an analytical 

greenness estimation calculator, based on the twelve principles of GAC. The 

Fig. S6a and S6b show the colored pictogram corresponding to the proposed 

green CRS and HPLC methods, respectively. As can be seen, a numerical value 

of 0.85 was obtained for the proposed method, which is close to the ideal value 

of 1.0, demonstrating the greenery of the method. This fact is relating to a non-

destructive analysis of the sample, requiring a minimal volume of it for the 

complete analysis (10 µL). In addition, there was no need of any pretreatment 

or derivatization steps, which significantly reduces the total time of analysis. 

The procedure did not include reagents and organic solvents and no waste was 

generated, which is an important benefit in terms of safety for both, the 

operator and the environment. Since the waste generation is one of the most 

important points in the evaluation of greenness of an analytical method we 

assigned a higher weight value to this parameter. This fact can be observed in 

the pictogram in which all the points represent the same area with the 
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exception of number seven which correspond to waste. On the other hand, the 

points 3, 5 and 8 were not green, indicating a certain distance from the ideal 

value that is 1.0. As can be seen in Fig. S7, the point 3 is related to: If possible, 

the measurements should be performed in situ. In our case, this point was the 

farthest from the ideal greenness value, since the measurement device was in 

off-line position. Although these measurements were carried out off-line 

smaller at-line Raman spectrometers could be used instead once analytical 

methods are established. Point 5 states: Automated and miniaturized method 

should be selected. In the pictogram this point was yellow representing a 

smaller distance from the ideal value since the proposed method did not 

include automation. Finally, point 8 is related to: Multi-analyte or multi-

parameter methods are preferred versus methods using one analyte at a 

time. This point was distant from the ideal value for two reasons: firstly, 

because only one analyte was determined and after because the throughput 

was 15 h-1. This value was relatively less because included the chemometric 

analysis step. On the contrary, the pictogram corresponding to the HPLC 

method shows that the overall value of greenness provided by the metric is 

much lower (0.47). This fact is mainly due to the use of organic solvents 

required by the chromatographic technique, the absence of automation and/or 

miniaturization, and the impossibility of performing in situ analysis, among 

others. In particular, the use of methanol negatively impacts the analysis since 

this solvent is not obtained from renewable sources and it is a potentially 

dangerous solvent for the operator and the environment (toxic and highly 

flammable). Moreover, the HPLC method generated waste which should be 

avoided (Fig. S7). In conclusion, the value obtained for the proposed CRS 
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method is much higher than the HPLC method and it corresponds to an 

excellent greenness. 

 

4. Conclusions 

This work demonstrated that the combination of confocal Raman 

spectroscopy and chemometrics is a potential tool to both qualitative and 

quantitative analysis of OMC loaded in oil in water microemulsions, 

alternatively to the traditionally chromatographic methods. In addition, 

confocal Raman spectroscopy allowed direct analysis of samples containing 

high concentration of surfactant, cosurfactant and oil phase, avoiding 

pretreatment steps, and obtaining fast, simple and reliable analytical methods 

in concordance whit the principles of green analytical chemistry. The 

combination of confocal Raman spectroscopy and SPA-LDA and SIMCA 

provided accurate methods for discriminate different percentages of OMC in 

microemulsion samples demonstrating the potential use of this methodology 

as a screening tool. On the other hand, a PLS model based on the analysis of 

Raman spectra exhibited optimal analytical parameters for the quantification 

of OMC at different concentration levels which represents an important fact 

since the concentration of OMC is directly related to the solar protection factor 

and therefore with the efficacy of the formulation. In addition, the proposed 

PLS-CRS method allowed obtaining distribution maps which provided a visual 

representation of the OMC distribution in the analyzed samples. Finally, the 

use of green chemistry metrics allowed to demonstrate the greenery of the 

proposed method obtaining a high value, which was close to the corresponding 

an ideal green methodology.  
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Tables 

Table 1. Physicochemical characterization of the analyzed OMC loaded o/w 
microemulsions (1.0; 3.0; 5.0; 7.0 and 10%). Z: average droplet size; PdI: 
polydispersity index; C: conductivity; SPF: solar protection factor. All 
measurements were performed in triplicate. 
 

 
 
 
 
 
 
 
 

 

 

 

 
 
 
 

 

 

 

 

 

Sample Z (nm) PdI C (mS cm-1) pH SPF 

ME-1%OMC 9.99 ± 0.04 0.101 ± 0.070 0.070 ± 0.002   4.10 ± 0.01 1.73 ± 0.04 

ME-3%OMC 9.93 ± 0.11 0.086 ± 0.045 0.060 ± 0.001  4.10 ± 0.01 3.92 ± 0.03 

ME-5%OMC 10.25 ± 0.05 0.286 ± 0.046 0.050 ± 0.001  4.20 ± 0.03 4.12 ± 0.01 

ME-7%OMC 13.71 ± 0.23 0.281 ± 0.071 0.050 ± 0.002  4.00 ± 0.01 5.13 ± 0.04 

ME-10%OMC 15.14 ± 1.36 0.285 ± 0.018 0.040 ± 0.001  4.10 ± 0.02 18.20 ± 0.07 
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Table 2.  Summary of the statistical results (95% confidence level) for SPA-

LDA and SIMCA models applied to confocal Raman spectra data for the 

classification of o/w microemulsion samples containing different 

concentration of OMC. 

 

 

Sample data set 
SPA-LDA SIMCA 

NVs Error Accuracy (%) PCs Error Accuracy (%) 

Training (N=30) 

7 

0 100 

4 

0 100 

Prediction (N=15) 1 97.8 0 100 

NVs: number of variables; PCs: principal components 
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Table 3. Analytical parameters of the PLS calibration model for OMC 
determination in microemulsion samples. 
 
 

 

Analytical parameter Value 

Spectral range (cm-1) 600-1700 

Concentration range (% w/w) 0-10 

Latent variables            6 

R2 0.9699 

RMSEP (% w/w) 0.5434 

REP (%) 9.88 

SEN (% w/w) 52.19 

LOD (% w/w) 0.0300 

LOQ (% w/w) 0.0990 
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Table 4. Comparison of methods developed to determination of OMC in different PPCPs. 
 
 

Method Separation technique Detection technique Sample Solvent Time analysis (s) 

[45] HPLC UVS (310 nm) o/w microemulsion ACN : Water (80:20; v/v) ND 

[46] HPLC UVS (307 nm) o/w emulsion Water : MeOH (12:88; v/v) 330 

[47] HPLC UVS (310 nm) Gel cream Water : MeOH : (13:87; v/v) ND 

[48] HPLC UVS (313 nm) Sunscreen/Cosmetics EtOH : Acetic Acid 1% (70:30; v/v) 420 

[49] HPLC UVS (320 nm) Sunscreen ACN:Water (90:10; v/v) 600 

This work Not used CRS (600-1700 cm-1) o/w microemulsion Not used 20 

UVS: UV spectroscopy; ND: not declared 
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Figure captions 

 
Figure 1. Raman spectra corresponding to OMC-ME (black line), DME (blue 
line), OA (red line) and OMC (green line). Wavenumbers (cm-1) of the 
principal peaks are indicated along with the chemical structure of the 
components. The spectra have been shifted along the y-axis for a better 
comprehension. 
 
 
Figure 2. Raman spectrum corresponding to a OMC loaded microemulsion 
(5.0%). The circles in black indicates the seven variables selected by SPA 
algorithm (1171, 1340, 1370, 1400, 1560, 1580 and 1605 cm-1). 
 
Figure 3. Fisher’s discriminant functions (DF) obtained by SPA-LDA applied 
to Raman data set. The samples are represented as ME (blue circle), ME-
1%OMC (red asterisk), ME-3%OMC (black diamond), ME-5%OMC (yellow 
square), ME-7%OMC (green star) and ME-10%OMC (violet cross). 
 
 
Figure 4. Distribution maps representing the OMC predicted concentration 
by PLS regression in different o/w microemulsion samples (ME-1.0%OMC; 
ME-3.0%OMC; ME-7.0%OMC). The pixels that present highest colour 
intensity (orange-yellow) correspond to higher concentrations of OMC. 
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