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Abstract

When forecasting epidemics, the main interests lie in understanding the deter-

minants of transmission and predicting who is likely to become infected next.

However, for vector-borne diseases, data availability and alteration can constitute

an obstacle to doing so: climate change and globalized trade contribute to the

expansion of vector habitats to different territories and hence the distribution of

many diseases. As a consequence, in the face of a rapidly changing environmen-

tal and ecological climatic conditions, previously well-fitted models might become

obsolete soon. The demand for precise forecast and prediction of the spread of

a disease requires a model that is flexible with respect to the availability of vec-

tor data, unobserved random effects and only partially observed data for diseases

incidence. Thus, we introduce a combination of a mechanistic SIR model with

principled data-based methods from geostatistics. We allow flexibility by replac-

ing a parameter of a continuous-time mechanistic model with a random effect,

that is assumed to stem from a spatial Gaussian process. By employing Bayesian

inference techniques, we identify points in space where transmission (as opposed

to simply incidence) is unusually high or low compared to a national average.

We explore how well the spatial random effect can be recovered within a mech-

anistic model and only partially observed outbreak data available. To this end,

we extended the Python probabilistic programming library PyMC3 with our own

sampler to effectively impute missing infection and removal time data.
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Schlüter, Irene Kyomuhangi, Rachel Tribbick, Annabelle Edwards, the Lancaster

XV



XVI LIST OF FIGURES
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Chapter 1

Introduction and Background

1.1 Epidemics and overview

Each disease is unique with respect to its pathogen, its symptoms and especially its

transmission pathway. According to (for Disease Control and Prevention, 2012),

a disease outbreak is defined as an oft sudden increase of incident cases above the

normally expected levels. While the term outbreak is more used for a limited

geographical area, an epidemic affects are larger region culminating in a pandemic

if the epidemic has spread to several countries or continents.

In epidemiology the interests lie in studying the patterns and the determi-

nants of diseases and their transmissions. Of particular importance is the class of

infectious diseases as they can lead to fast spreading, major outbreaks. Recent

examples include the Foot-and-Mouth (FMD) epidemic in Great Britain 2001,

the worldwide prevalent Severe Acute Respiratory Syndrome (SARS) in 2003, the

Ebola outbreak in West Africa 2014, the emerging Zika virus disease in South

America in 2015, or the Coronavirus disease 2019 (COVID-19) pandemic, leading

to high morbidity and mortality rates as well as economic and social effects.

Infectious diseases are caused by pathogenic microorganisms, namely bacteria,

viruses, parasites or fungi. We distinguish between directly transmitted diseases,

e.g. influenza, and indirectly transmitted diseases, e.g. Malaria or Bluetongue, as

displayed in Figure 1.1. In the case of directly transmitted diseases, pathogens are

1
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a) b) c)

Host Host Host
Host Host Host

Environment Environment

Host Host Host

Vector Vector

Figure 1.1: Different infectious disease transmission pathways. They are clus-
tered in a) direct transmission and indirect transmission which is split into further
classification b) through the environment and c) through a vector.

not able to survive long outside of an host’s organism resulting in the diseases being

passed between individuals through close contact in the presence of an infectious

case. In contrast, the pathogens of indirectly transmitted diseases might even

have part of their life cycle outside of the host’s body and thus is not passed on

from one infected individual to the next. Indirect transmission can either occur

through shared environment, which is contaminated by an infected individual and

in turn able to infect susceptible individuals, or by means of a vector. In the latter

case, a vector takes in the pathogen through an interaction with an infected host

(e.g. a blood meal). Inside the vector, the pathogen multiplies over time and can

be injected into a previously disease free host during a subsequent blood meal.

Therefore, susceptible hosts can only acquire the disease in the presence of the

transmitting vector. It is to mention that examples of diseases with a mixture of

direct and indirect transmission exist: the Zika virus is transmitted by the Aedes

aegypti mosquitoes, but also directly through sexual contact and blood transfusions

(Brauer et al., 2016). Further, bovine Tuberculosis (bTB) is directly transmitted

amongst cattle and indirectly via environment contamination. Moreover, badgers

play an important vector role in bTB transmission, as they can acquire and pass

on the disease through the environment, but also through close contact with cattle

(Woodroffe et al., 2016).

In this thesis we focus on vector-borne diseases. According to the WHO, vector-

borne diseases account for more than 17% of all infectious diseases leaving over

one billion people infected and one million people dead every year (World Health

Organization, 2014). By now, more than half of the world’s population is at risk,

endangered by a great range of illnesses that can lead to severe sickness, hospital-

ization and permanent damage such as mutilations and distortions (World Health
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Organization, 2014). Examples of vectors and their transmitting diseases include

mosquitoes (Dengue Fever, Malaria, Bluetongue), flies (Leishmaniasis, Sleeping

sickness), bugs (Chagas disease), ticks (Lyme disease, Bovine Theileriosis), fleas

(Plague) and freshwater snails (Schistosomiasis).

A large proportion of the global burden from vector-borne diseases concentrates

in tropical and subtropical areas, where mosquitoes experience perfect breeding

conditions and where access to sanitary facilities and clean drinking water is not

always secured. However, climate change and globalized trade contribute to the

extension of vector habitats to different territories and hence the distribution of

many diseases (see e.g. Fischer et al. (2011); Medlock and Leach (2015); Campbell-

Lendrum et al. (2015)). For instance, Dengue Fever has experienced a 30-fold

increase over the past 50 years with a presence in more than 65% of all countries

worldwide (Murray et al., 2013; World Health Organization, 2014). Further, socio-

economic, environmental and ecological factors are linked to the emergence of new

diseases (Jones et al., 2008), for example Schmallenberg (Beer et al., 2013) or

the Bluetongue disease (Purse et al., 2005) causing a large epidemic in Europe in

ruminants.

In this thesis, we shall be concerned with the mathematical modelling of vector-

borne diseases. In situations with little knowledge about the vector population and

partially observed disease data, we aim to understand determinants of transmission

and to predict underlying vector risk surfaces. In specific, we develop an approach

that combines a mechanistic spatio-temporal epidemiological model with a spatial

empirical model. The flexible Bayesian framework and Markov Chain Monte Carlo

algorithms allow data augmentation and posterior inference on model parameters.

Our research displayed in this thesis can be applied to human as well as veterinary

diseases. Although we focus in particular on vector-borne diseases, our approach

leaves space to be adopted to other diseases as well.

The remainder of this introductory chapter is organized as follows: In Section

1.2 we give an outline of the Bayesian paradigm before we give an overview of

MCMC methods used in our context in Section 1.3. Thereafter we introduce a

stochastic processes for spatial variation, namely the Gaussian process (Section

1.4). In Section 1.5 we state an overview of epidemic modelling and embed our re-

search into the current literature. Finally, in Section 1.6 we introduce the outbreak
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we will test our methodology on and motivate the remainder of this thesis.
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1.2 Bayesian inference

Assume we have observed data which we perceive as the outcome of a random

process. We reconstruct this random process by means of a family of statistical

models which is parametrized through θ ∈ Θ, whereby Θ ⊆ Rd. On these grounds,

we can draw inference based on the given data. For example, we can estimate the

parameters or make predictions over future observations or investigate arbitrary

latent processes.

Let y = (y1, . . . , yn) be our dataset and f(y;θ) the likelihood of the data with

respect to the parameters θ. In the Bayesian setting these parameters are modelled

as a random variable θ. Therewith we can express the joint distribution of the

parameters and the data as

f(y, θ) = f(y | θ)f(θ) = f(θ | y)f(y) (1.1)

In a Bayesian setting we also call the conditional distribution f(y | θ) the likeli-

hood function. Here we use the notation f(y | θ) to emphasize that we condition

on the random parameters θ, as opposed to f(y;θ) where we take the parameters

θ as constant. The marginal distribution f(y) is then called marginal likelihood.

Further, let f(θ) denote the prior distribution, which incorporates the a priori

belief about the parameters in the absence of the data. Similarly, the conditional

distribution f(θ | y) of the parameters given the data is called posterior distribu-

tion.

In Bayesian statistics we are primarily interested in the posterior distribution

because we get a reassessment of the parameters given the data. Rearranging

Equation (1.1) leads to Bayes’ theorem (Bayes, 1763)

f(θ | y) =
f(y | θ)f(θ)

f(y)
=

likelihood× prior

marginal likelihood
(1.2)

From Equation (1.2) it becomes clear that inference about the parameters is

greatly influenced by two quantities: the likelihood and the prior distribution. As

samples size becomes large, the data, and therefore the likelihood as a function of

the data, will have an increasing effect on the posterior, similarly, if the prior is
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very concentrated around one point, the a priori knowledge will contribute more

towards the posterior. The selection of the prior distribution can be informed

by knowledge about the subject-matter from expert knowledge. In this case, we

call the prior informative. On the other hand, if we lack information or possess

only little knowledge about the parameters, we usually choose a noninformative

prior, for example one with a flat shape. When the prior f(θ) and the posterior

f(θ | y) belong to the same family of probability distributions, we call the prior

a conjugate prior. Such a choice of prior is largely used to facilitate mathematical

computations as we will see in later sections.

In order to obtain the posterior distribution analytically, the marginal likeli-

hood f(y), or marginal distribution of the data, needs to be calculated. However,

in most practical matters this computation is intractable, because it involves cal-

culating an integral , i.e.

f(y) =

∫
f(y | θ)f(θ)dθ

For many years this constituted an obstacle for the use of Bayesian inference

techniques for practical applications. However, by means of Markov Chain Monte

Carlo methods we can draw samples which are approximately distributed accord-

ing to the desired distribution. Especially the method by Metropolis-Hastings

(Hastings, 1970) circumvents the impediment of having to calculate the normal-

izing factor. It relies on the fact that one only needs to be able to calculate the

distribution of interest up to a constant of proportionality. Thus, with the marginal

likelihood as normalizing constant,

f(θ | y) ∝ f(y | θ)f(θ)

enables us to draw samples from the posterior distribution of the parameters given

the data. This was a driving force for the use of Bayesian inference techniques

in applied and fundamental research and it has become increasingly popular in

particular with the advancement in technology and the increase in computational

efficiency. We defer to introduce how to generate posterior samples by means of

MCMC to Section 1.3.
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1.3 Markov chain Monte Carlo

In Section 1.2 we introduce the Bayesian paradigm whose foundation for inference

constitutes the posterior distribution. However, to be able to draw samples directly

from the posterior, the normalization constant needs to be calculated which is often

not analytically tractable. By means of Markov chain Monte Carlo (MCMC) we

circumvent this intractability.

The idea of MCMC sampling is that we create a Markov chain whose invari-

ant distribution is the desired analytically intractable distribution. The most well

known MCMC method is the Metropolis-Hastings algorithm (Metropolis et al.,

1953; Hastings, 1970), which makes constructing such a Markov chain fairly easy.

It suffices to only be able to calculate the posterior distribution up to a propor-

tionality constant. Recently the Hamiltonian Monte Carlo method (Neal et al.,

2011) has also received wider attention in practical applications. In the follow-

ing chapters we describe these algorithms and introduce PyMC3 (Salvatier et al.,

2016), a statistical computing library for the programming language Python, by

means of which the research of this report has been conducted.

1.3.1 Metropolis-Hastings

Metropolis et al. (1953) introduced the concept of MCMC sampling first in the

context of physics before it was later generalized by Hastings (1970). The idea

of the Metropolis-Hastings algorithm is to explore the state space by means of a

user-defined proposal distribution. This proposal distribution is defined to be suf-

ficiently simple and straightforward to sample from directly. In each iteration of

the algorithm, we decide whether the proposed value is being accepted or rejected

with respect to a certain acceptance probability. We keep record of these samples

which, if the chain runs long enough, are assumed to be samples from our target

distribution.

Algorithm 1 represents the Metropolis-Hastings algorithm. To be more specific,

let f(θ | y) be the posterior distribution we want to obtain samples from. Suppose

θ(i) is the value of θ in the i-th iteration. We sample a new value θ∗ from a proposal
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Algorithm 1 Metropolis-Hastings

1: Input: n number of samples, q(·) proposal, f(θ,y) joint distribution
2: Initialize θ(0)

3: for i = 1, . . . , n do
4: Propose a sample θ∗ from q(· | θ(i))

5: α(θ∗, θ(i))← min
{

1, f(y,θ∗)q(θ(i)|θ∗)
f(y,θ(i))q(θ∗|θ(i))

}
. calculate acceptance probability

6: Obtain a sample u from U [0, 1]
7: if u < α(θ∗, θ(i)) then
8: Update θ(i+1) ← θ∗ . acceptance
9: else

10: Update θ(i+1) ← θ(i) . rejection
11: end if
12: end for

distribution q(· | θ(i)). Whether we accept θ∗ or not is governed by the acceptance

probability

min

{
1,
f(θ∗ | y)q(θ(i) | θ∗)
f(θ(i) | y)q(θ∗ | θ(i))

}
(1.3)

According to Equation (1.2), we may also write this in terms of the joint density

f(y, θ). The fact that we are not obliged to computing the normalization constant,

greatly facilitates posterior inference via the Metropolis-Hastings algorithm. For

our new sample θ(i+1) we store the current sampled value θ(i) in case of rejection

and the new sampled value θ∗ in case of acceptance and repeat the procedure.

The proposal distribution is chosen so as to be easy to sample from. In the

case of a symmetric proposal distribution the acceptance probability of Equation

(1.3) can be simplified, because the ratio q(θ(i)|θ∗)
q(θ∗|θ(i)) equals to unity. This form is

called Metropolis algorithm and dates back to Metropolis et al. (1953) (before it

was extended to include non-symmetric proposal distributions in the form of the

Metropolis-Hastings algorithm (Hastings, 1970)). A popular selection for a sym-

metric proposal distribution constitutes a Gaussian distribution which is centred

at the current sample value (Random Walk Metropolis algorithm). The choice of

the normal distribution is advantageous as it is easy to implement and can be

optimized straightforwardly. In this thesis we use a truncated Gaussian proposal
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distribution and adapt its variance as we iterate through the algorithm (see Section

2.4).

If we have a higher dimensional, say d-dimensional, posterior distribution, Al-

gorithm 1 performs a so-called single block update. That is, the new proposed

sample θ∗ is a vector of dimension d and in the acceptance-rejection step the pro-

posed values for all d dimensions get accepted or rejected at once. A different way

to approach this can be by means of the so-called Metropolis within Gibbs update.

One way to do this is to sequentially update only a certain number of dimensions

at a time conditioned on the current state of the remaining dimensions. To be

more specific, assume θ
(i+1)
K = (θ

(i+1)
1 , θ

(i+1)
2 , . . . , θ

(i+1)
k ) is a k < d dimensional

vector of the new updated values and θ
(i)
∼K = (θ

(i)
k+1, θ

(i)
k+2, . . . , θ

(i)
d ) is the vector

of the remaining – yet to be updated – dimensions of size d − k. Then, for a

new update step, we sample θ∗ from the one dimensional proposal distribution

q(· | θ(i+1)
K ,θ

(i)
∼K). Similarly we calculate the acceptance probability of Equation

(1.3) conditioned on θ
(i+1)
K ,θ

(i)
∼K .

The outcome of the Metropolis-Hastings algorithm are realizations of a Markov

chain, which exhibits f(θ | y) as its invariant distribution. This and further mild

conditions, namely aperiodicity and irreducibility, guarantee the convergence of

the Markov chain towards f(θ | y) (Tierney, 1994). This holds regardless of the

initial state of the Markov chain. Thus, by running the chain long enough, we

eventually obtain an approximate sample from f(θ | y).

As the initial state of the Markov chain may not be represented very well by

the posterior, we need a certain burn-in phase in order to reach a good first sample

to start with. This means that we discard a certain user-defined amount of first

links of the Markov chain.

We often need to perform lots of iterations to obtain a representative sample

from the posterior, because there is dependence between samples. A mechanism

called subsampling or thinning is a way to get a sample of a manageable size with

reduced dependence between each sample. In this procedure, we obtain samples

by taking every t-th link of the Markov chain, whereby t is chosen by the user.

How to choose the updating step and the variance parameter in a random walk

Metropolis algorithm may be adjusted according to the acceptance ratio, that is

the proportion of samples accepted. Roberts et al. (1997) showed that for a class



10 CHAPTER 1. INTRODUCTION AND BACKGROUND

of multi-parameter densities it is optimal to tune the acceptance rate to 23.4% and

subsequent work has shown this result to robust and a very good general guide.

1.3.2 Hamiltonian Monte Carlo and NUTS

As introduced in the last section, the Metropolis-Hastings algorithm is a simple

way of creating a Markov chain where the invariant distribution corresponds to

the target distribution. However, a major problem of the random walk is two-fold.

First, if the variance is chosen too small, we will progress only very slowly and

might be unable to explore the state space exhaustively. Second, if it is chosen

too large, we might reject too many proposed states, which also slows down the

exploration of the state space. Proper tuning of the algorithm becomes even more

difficult in high dimensions.

A work around here is a different MCMC method based on a physical analogy,

the Hamiltonian Monte Carlo algorithm. It’s idea is to imagine a Metropolis-

Hastings sampler with a proposal that first draws an auxiliary variable ρ (with

the same dimension as θ) according to a density g and then feeds a deterministic

function T with θ and ρ in order to obtain the newly proposed state θ∗. This

can be described by a density transformation which may be performed by a dif-

feomorphism T : (θ, ρ) 7→ (θ∗, ρ∗). Let J be the absolute value of the Jacobian

determinant of T , the acceptance probability can then be set up as

min

{
1,
f(θ∗,y)g(ρ∗)

f(θ,y)g(ρ)
J(θ, ρ)

}
(1.4)

where (θ∗, ρ∗) = T (θ, ρ) (Green, 1995).

Hamiltonian Monte Carlo (HMC) is an MCMC scheme that enjoys an ever

increasing popularity (Nishio and Arakawa, 2019) and is one of the main samplers

used in this thesis. It facilitates the proposition of distant states from the target

distribution while still maintaining high acceptance rates thus can circumvent the

slow exploration of the state space, which may result from random-walk proposals.

The following discourse on HMC is based on Neal et al. (2011) and Hoffman

and Gelman (2014).
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The physical analogy

We want to sample values of θ in exact proportion to the height of its probability

distribution f(θ | y) given some data y. For the Hamiltonian Monte Carlo algo-

rithm, we mirror the distribution and take the log to obtain −log(f(θ | y)). We

imagine a particle that slides frictionless over the surface with changing heights.

When we flick the particle in a random direction, it will flow and eventually turn

around. In this system, the particle experiences two types of energies: the poten-

tial energy P (θ) which relates to its position and is our variable of interest and

the kinetic energy K(ρ), which depends on the momentum ρ of the particle.

The potential energy P (θ) and the kinetic energy K(ρ) define a system of

energies, the Hamiltonian. In our context, it corresponds to the negative joint

loglikelihood, i.e.

H(θ, ρ) = −log(f(y | θ))︸ ︷︷ ︸
=P (θ)

−log(g(ρ))︸ ︷︷ ︸
=K(ρ)

where we agree that log(0) = −∞.

We can learn about the shape of the surface if we keep track of the particle’s

position along its path, before we give it another push in a random direction. The

Hamiltonian equations describe how θ and ρ change over time when the particle

moves and slides over the surface

∂θi
∂t

=
∂H

∂ρi
∂ρi
∂t

= −∂H
∂θi

(1.5)

whereby θ = (θ1, ..., θd) and ρ = (ρ1, ..., ρd).

Obtaining new samples

Generating transitions for θ follows a two step process before we consider an ac-

ceptance step: First, we sample a new momentum variable ρ according to g. Given

(θ, ρ), as a second step we follow the dynamics according to the Hamiltonian equa-

tions (Equation (1.5)) for a fixed time s and obtain a new state (θ∗, ρ∗).

When ’transitioning backwards’ that is starting at (θ∗, ρ∗), it is very unlikely
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to end up at (θ, ρ) again. A way to get around this is to negate the momentum

variable after having solved the Hamiltonian equations. This defines a map T :

(θ, ρ) 7→ (θ∗,−ρ∗), which is a diffeomorphism. Besides, because of the volume

preservation property of the Hamiltonian dynamics, the Jacobian determinant of

T equals 1.

If we choose g to be symmetric, i.e. K(ρ) = K(−ρ),then

H(θ∗, ρ∗) = −ln(f(θ,y))− ln(g(ρ∗)) = −ln(f(θ,y))− ln(g(−ρ∗)) = H(θ∗,−ρ∗)

and together with Equation (1.4) the acceptance probability reads

min {1, exp (H(θ, ρ)−H(θ∗, ρ∗))}

where we agree that exp(−∞) = 0.

It is an intrinsic property of the Hamiltonian dynamics that it leaves the value of

H invariant at all times. Thus, in an ideal world, where we are able to follow these

dynamics accurately, we will never reject a proposed state, as H(θ∗, ρ∗) = H(θ, ρ)

and thus the acceptance probability equals 1.

Unfortunately, it is generally infeasible to simulate the Hamiltonian dynamics

exactly. Thus, we need to rely on an approximation scheme. In order to maintain

a viable acceptance probability, this scheme should also define a diffeomorphism

and hopefully maintain the volume preservation property. A common solver that

meets these requirements is the so-called leapfrog integrator and is depicted in

Algorithm 2. However, due to numerical approximation errors, we have to give up

the invariance with respect to H.

To be more specific, we start at the current values of (θ, ρ). We first draw a

new sample for the momentum variable. For ease of computation in practice it is

common to use ρ∗ ∼ N(0,Σ). The leapfrog integrator discretizes time by using a

small step size ε and computes the trajectory for L steps at times ε, 2ε, . . . , Lε. In

every iteration it alternates between half steps for the momentum variable ρ and

a full steps for the position variable θ as displayed in Algorithm 2.

Since the position variable is of our interest, in case of acceptance, we store the
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Algorithm 2 Leapfrog integrator

1: Input: ε step size, L number of steps, (θ, ρ) current samples whereby ρ ∼
N(0,Σ)

2: for i = 1, . . . , L do
3: ρ∗ ← ρ− ε

2
∂P
∂θ

4: θ∗ ← θ + εΣ−1ρ∗

5: ρ∗ ← ρ∗ − ε
2
∂P
∂θ∗

6: ρ← ρ∗

7: θ ← θ∗

8: end for
9: Return (θ∗, ρ∗)

new sample θ∗ and in case of rejection we store the current sample θ, before we

continue to draw a new sample for the momentum variable.

In summary, we can construct a Markov chain that alternates between updates

for the auxiliary momentum variables, which are typically independent Gaussians,

and a Metropolis update of the position variable, which is the variable of our target

distribution. For the latter, a new value is proposed by calculating a trajectory

due to the Hamiltonian. In most cases, the implementation must be discretized

using the leapfrog algorithm, which depends on a step size and a desired number

of steps. This way, proposals can be distant, yet with a high probability of accep-

tance.

Limitations of the Hamiltonian Monte Carlo algorithm

The greatest limitation of the algorithm is that fact that it is only suitable for

continuous state spaces with the additional condition that the gradient of the log

probability with respect to the state variables needs to be able to be computed

quickly with sufficient accuracy. Else, the computational time needed may make

the sampler inefficient.

For some distributions the sampler has difficulties exploring the whole state

space. For example if f(θ,y) is not strictly positive, we might run into problems

since the Hamiltonian dynamics are unable to pass regions where it is zero.

The overall performance of the Hamiltonian Monte Carlo algorithm is very
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sensitive with respect to the step size and the desired number of steps in the

leapfrog method. If the number of steps is chosen to be too small, the exploration

of the state space can be impaired as in the case of a random walk. On the

other hand, if the number of steps is chosen too large, it can lead to unnecessary

computation due to u-turns. Also, if the step size is too small, too many small

steps will be taken. If it is too large, the leapfrog integration will be less accurate

leading to more rejected proposals.

A possible work around would be to find a rule to adjust the step size dy-

namically in order to avoid u-turns. However, it is hard to find one that respects

the dynamics equally in both directions, forward and backward. Ultimately, this

would violate the necessary reversibility of the dynamics.

No-U-Turn Sampler (NUTS)

The No-U-Turn Sampler (NUTS) is an extension of the Hamiltonian Monte Carlo

sampler Hoffman and Gelman (2014). It addresses the aforementioned issues re-

garding the tuning of the number of steps and the step size. Its idea is to automati-

cally tune the Hamiltonian algorithm and to avoid for the Hamiltonian trajectories

to go backwards and thus making u-turns. Therewith it reduces the dependence

between samples and the computational cost.

It starts with proposing a new momentum variable. In order to find out when

a u-turn takes place, NUTS simulates in both directions of time, forwards and

backwards at each iteration. This can be represented by a balanced tree that grows

in depth by one and doubles the number of nodes per iteration. As it also doubles

computation time, the algorithm terminates when either the maximal tree depth

allowed is reached, or the trajectory has started to turn back on itself. Finally, the

transitions are sampled from the binary tree with respect to multinomial sampling

with a bias towards more distant nodes.

The NUTS performs at least as well as the Hamiltonian Monte Carlo sampler

and automatically tunes the parameters and thus fully circumvents the hand-

tuning of the sampler.

For a vivid comparison of the random walk Metropolis algorithm, the Hamil-

tonian Monte Carlo and the NUTS sampler, see for example McElreath (2017).
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1.3.3 PyMC3

PyMC3 (Salvatier et al., 2016) is a Python package for Bayesian statistical mod-

elling and probabilistic machine learning. It is open source and allows to fit

Bayesian models using MCMC methods like Metropolis but also state of the

art gradient-based Hamiltonian Monte Carlo (HMC) and the No U-turn Sam-

pler (NUTS). By relying on the python library Theano as the computational back

end it renders computation optimization, dynamic C compilation as well as simple

GPU integration.

The interface is programmed such that high-dimensional and complex mod-

els can be fitted with only a little specialized knowledge of the complex internals

and the underlying fitting algorithms. Thus PyMC3 is bridging the gap between

statistical theory and the user application. However, so far, its implementation

does not include epidemic models because they do not fall into the category of

hierarchical models: they cannot be represented as a product of conditional distri-

butions with respect to single infection times. Consequently, model specification is

not straightforward within the PyMC3 environment. Our research aims to address

this problem.

Note, the programming code for the extension of the PyMC3 framework and

the models can be found at https://fhm-chicas-code.lancs.ac.uk/koeppell/

py-mc-3-epi-extension.

https://fhm-chicas-code.lancs.ac.uk/koeppell/py-mc-3-epi-extension
https://fhm-chicas-code.lancs.ac.uk/koeppell/py-mc-3-epi-extension
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1.4 Gaussian process

In this section we turn to another stochastic process, namely the Gaussian process.

They enjoy increasing popularity in spatial statistics (Diggle and Ribeiro, 2007;

Diggle and Giorgi, 2019). A Gaussian process is a semiparametric approach to

modelling and is commonly used in machine learning for 1-d regression problems.

We start by first recalling the definition of a normal distribution and some of its

properties before we proceed to introduce Gaussian processes and how they can

be used for prediction.

1.4.1 Multivariate normal distribution

Definition 1: A univariate random variable X follows a 1-dimensional normal

distribution (or Gaussian distribution) with mean µ ∈ R and variance σ2 > 0 if

its probability density function pX reads

pX(x ∈ R | µ, σ2) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)

Extending this concept to a multivariate setting with d random variables X =

(X1, ..., Xd) it is not sufficient to only consider their marginal means and variances.

The random variables X1, ..., Xd may be correlated, which is why the marginal

variance for each of the random variables in general does not comprise enough

information about the joint probability distribution, Therefore, instead of dealing

with a single vector for the variance parameter, we consider the covariance matrix

Σ, whose i, j-th entry is the covariance between the i-th and j-th random variable,

that is Σij = Cov[Xi, Xj] = E[(Xi − E[Xi])(Xj − E[Xj])]. The covariance matrix

has two properties: Σ is symmetric and Σ is positive-semidefinite. The latter states

that for any vector y ∈ Rd we have yTΣy ≥ 0 (Bishop, 2006). Furthermore, we

note that since Cov[Xi, Xi] = V[Xi], its diagonal elements consist of the marginal

variances.

Assuming that the determinant of Σ is not equal to 0 and thus the inverse Σ−1

exists, we can proceed with the following definition:
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Definition 2: A d-dimensional random variable X follows a multivariate normal

distribution if its probability density function pX reads

pX(x | µ,Σ) =
1√
|2πΣ|

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(1.6)

for x ∈ Rd, the mean vector µ ∈ Rd, the covariance matrix Σ ∈ Rd×d and | · |
denotes the determinant of a matrix.

The multiplicative factor in front of the exponent is a normalization constant for

the density function to integrate to one. The interesting and distinct characteristic

of the distribution in Equation (1.6) is the exponent, because it can be viewed as a

certain measure of distance. In fact, dM(x,µ) =
√

(x− µ)TΣ−1(x− µ) is called

the Mahalanobis distance between the points x and µ.

The Mahalanobis distance takes into account the different standard deviations

of the Xis, and also their correlations. It is mainly governed by the inverse of the

covariance matrix, which is also referred to precision matrix.

To illustrate the relationship of Σ and the Mahalanobis distance, we consider

the bivariate case as depicted in Figure 1.2 a) - c). Given a center point, all points

with the same Mahalanobis distance from this centre lie on an ellipse. These

ellipses constitute the contour lines and produce a picture that is familiar from

the bivariate normal distribution. In particular, in a) the random variables are

uncorrelated and have equal variances, hence we receive a circular round shape.

In b) the random variables are still uncorrelated but the variance of X1 is higher

then the variance of X2 leading to an oval shape stretched horizontally. Finally, c)

extends case b) and further illustrates the case with an entry in the off-diagonal

denoting a correlation between the two variables. This leads to a rotation of the

space.

1.4.2 Slicing of the multivariate normal distribution

Let X be an (n + m) - dimensional random variable that follows a multivariate

Gaussian distribution X ∼ N (0,Σ) with mean vector 0 and covariance matrix Σ.
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Σ =

[
σ2

1 0
0 σ2

1

]
Σ =

[
σ2

1 0
0 σ2

2

]
σ2

2 < σ2
1 Σ =

[
σ2

1 σ2
1σ

2
2c

σ2
1σ

2
2c σ2

2

]
−1 < c < 1

Figure 1.2: Examples of the Mahalanobis distance for 3 different settings for 2-
dimensional random variables. a) uncorrelated with equal variances, b) uncor-
related with different variances c) (in this example positively) correlated with
different variances.

With the following partitionsA = (X1, X2, . . . , Xn)T andB = (Xn+1, Xn+2, . . . , Xn+m)T

of dimensions n and m respectively, we have[
A

B

]
∼ N

([
0

0

]
,

[
ΣAA ΣAB

ΣBA ΣBB

])
whereby the covariance matrix is sliced into four block matrices with respect

to A and B. The elements of these block matrices are the covariances evaluated

for every two random variables in the corresponding partitions. For example, ΣAB

is a matrix of size (n×m) and

ΣAB =


Cov[X1, Xn+1 ] Cov[X1, Xn+2 ] . . . Cov[X1, Xn+m ]

Cov[X2, Xn+1 ] Cov[X2, Xn+2 ] . . . Cov[X2, Xn+m ]
...

Cov[Xn, Xn+1 ] Cov[Xn, Xn+2 ] . . . Cov[Xn, Xn+m ]


A nice property of the multivariate normal distribution is that the marginal

distribution of the partition A (and B respectively) is given by the slices
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A ∼ N (0,ΣAA)

Further, if we condition B on the partition A, the resulting conditional distri-

bution is again multivariate normal (Bishop, 2006). To be precise, we get

(B | A = a) ∼ N ( ΣBAΣ−1
AAa , ΣBB − ΣBAΣ−1

AAΣAB) (1.7)

This concept is the central pillar of prediction with Gaussian processes, as we

will see later in Section 1.4.6.

1.4.3 Sampling from a multivariate normal distribution

In this thesis, we will be confronted with sampling from a Gaussian process, which

is why this chapter focuses on a sampling algorithm from such a multivariate

normal distribution.

Let us first look at the linear transformation of a multivariate normal distri-

bution. For this purpose, let X ∼ N(0, I) be a standard multivariate normal

distributed random variable with mean vector 0 and the identity matrix I as co-

variance matrix. We apply the transformation Y = µ + LX with an invertible

matrix L. By means of the linearity of the expectation and the bilinearity of the

covariance we get

E[Y ] = µ+ LE[X] = µ

V[Y ] = E[(Y − E[Y ])(Y − E[Y ])T ]

= E[(Y − µ)(Y − µ)T ]

= E[(LX)(LX)T ]

= E[LXXTLT ]

= LE[XXT ]LT

= LLT

(1.8)

It is easy to show, that a linear transformation of a multivariate normal random

variable is again a multivariate normal random variable. Therefore, with the fact

that Y is normal and (1.8), it follows that Y ∼ N(µ, LLT ). We can now make
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use of the Cholesky decomposition (Press et al., 1992), which states that for any

symmetric, positive definite matrix Σ, there exists a composition

Σ = LLT

with L being a lower triangular matrix with strictly positive entries on the diagonal.

Assuming we are able to sample from a 1-dimensional normal distribution (see

for example Box and Muller (1958)) and we have a fixed covariance matrix, then

Algorithm 3 describes how to sample from a multivariate normal distribution. The

algorithmic complexity is of O(n3) for the Cholesky decomposition, O(n) to draw

n one-dimensional samples and O(n2) for the matrix-vector multiplication. This

results in an algorithm with cubic complexity overall.

Algorithm 3 Sampling from a multivariate normal distribution N (µ,Σ)

1: Input: Σ: n× n covariance matrix, µ: 1× n vector
2: L← CholeskyDecomposition(Σ)
3: for j = 1, 2, . . . , n do
4: Draw a sample x(j) from N (0, 1)
5: end for
6: x← (x(1), x(2), . . . , x(n))T

7: Store y←µ+ Lx
8: Return y

1.4.4 Defining a Gaussian process

An intuitive idea to describe a Gaussian process is to consider it as a distribution

over functions. More formally, we cite the definition of Rasmussen and Williams

(2006):

Definition 3: A Gaussian process is a collection of random variables, any finite

number of which have a joint Gaussian distribution.

Let this collection of random variables be a real valued process F (x) that
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projects elements from a space X onto the real line. We write

F ∼ GP [m(x), c(x, x
′
)]

whereby its mean function m : X → R is given by

m(x) = E[F (x)]

and its covariance function c : X 2 → R is given by

c(x, x′) = E
[(
F (x)− E[F (x)]

)(
F (x′)− E[F (x′)]

)]
= E

[(
F (x)−m(x)

)(
F (x′)−m(x′)

)]
.

The mean function may encode a priori information for the expectation of the

function. However, in the following we assume without loss of generality m(x) = 0

for all x ∈ X .

The covariance function determines the entries of the covariance matrix. It

gives information about, given two points x and x′, what the relationship of their

function values F (x) and F (x′) are. In other words, it tells us about the correlation

of F (x) and F (x′) with respect to x, x′ ∈ X . Hence, the covariance function is

responsible for the smoothness of the process. This measure of similarity and

smoothness can be implemented in many ways and we are free to choose any

function c : R2 → R that is symmetric in its arguments and positive-semidefinite.

In other words, for d real numbers x1, . . . , xd it must hold, c(xi, xj) = c(xj, xi),

and the matrix Σ with entries Σij = c(xi, xj) must be positive semi-definite. In

the next section we present a selection of different types of covariance functions,

though a more detailed overview of covariance functions and their construction

can be found in Rasmussen and Williams (2006).

1.4.5 Covariance functions

In this section we list some common examples for covariance functions. In each of

the examples, ρ is a scaling parameter, also referred to as lengthscale parameter,

that governs how fast the correlation decreases; the parameter σ2 governs the vari-
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ance. To illustrate the various covariance functions, Figure 1.3 depicts the decay

with respect to distance of these functions and some realizations of a Gaussian

process with respect to different covariance functions.

• Squared exponential (SE) or Gaussian covariance function

c(x, x′) = σ2 exp

(
− ||x− x

′||2

2ρ2

)
For points that lie very close, the squared exponential covariance function

takes values close to σ2. It then decreases exponentially as the distance

of the points increases. Since realizations of a process with this function

are infinitely differentiable (Rasmussen and Williams, 2006), this covariance

function entails a very smooth process.

• Exponential covariance function

c(x, x′) = σ2 exp

(
− ||x− x

′||
ρ

)
The exponential covariance function is also σ2 when points are equal, but

decreases at a faster rate for small distances compared to the SE covariance

function. It leads to realizations that are continuous but not differentiable

(Rasmussen and Williams, 2006), and is a very rough process.

• Matérn class

c(x, x′) = σ2 21−v

Γ(v)

(√
2v||x− x′||

ρ

)v
Kv

(√
2v||x− x′||

ρ

)
,

where Kv is the modified Bessel function of the second kind (Abramowitz

and Stegun, 1965). It is a generalization of the above covariance functions,

and thus more flexible but also more complex. For half integer values of v,

that is v = m+0.5,m ∈ N, the function takes a simpler form: it decomposes

into a product of an exponential and a polynomial of order m. The resulting

realizations are v − 1 times differentiable (Rasmussen and Williams, 2006),

which accounts for their smoothness. Examples are
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• v = 1/2: This simplifies to the exponential covariance function

• v = 3/2: The functional form of a Matern(3/2) covariance function

reads

c(x, x′) = σ2

(
1 +

√
3||x− x′||

ρ

)
exp

(
−
√

3||x− x′||
ρ

)
• v →∞: In the limit, it simplifies to the SE covariance function

Figure 1.3: Comparison of different covariance functions. a) Decay of the co-
variance functions with increasing distance of the points. b) Realizations from
processes with the according covariance function with a function approximation
of 500 points. In both plots, the lengthscale is ρ2 = 1.5 and the prior variance is
σ2 = 1.

Another way of classifying covariance functions is by certain properties:

If a function c(x, x′) can be reduced to be a function of the difference between

the two points, that is

c(x, x′) = c∗(x− x′) ∀x, x′ (1.9)

then the covariance function is called stationary. In other words, the output of c is

only depending on the vector between these two points. Hence, it is independent

of where in space the points lie.
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An even stronger characteristic is if the covariance function can be expressed

as a function of only the Euclidean distance between the points, that is

c(x, x′) = c∗(||x− x′||) ∀x, x′ (1.10)

then the covariance function c is called isotropic. In this case the output of c is

only depending on the distance between the two points, that is the length of the

vector between the two points. Hence, c is translation invariant but also invariant

of the direction of the vector. Since Equation (1.10) is implying Equation (1.9),

any isotropic covariance function is also stationary.

All covariance functions of Example 1.4.5 are isotropic and thus stationary

because they only depend on the Euclidean distance of the points. Note that

there exist a variety of other non-stationary covariance functions. In fact, one can

combine or modify existing covariance functions to make new ones (see for example

Rasmussen and Williams (2006)). This variability can be made use of and should

be considered when constructing a model for a specific application because the

type of covariance function should be chosen with respect to a priori information

about the process.

For our context, the Matern(3/2) covariance function is of particular interest

because of its simple form and its degree of smoothness: it is not unrealistically

smooth as the squared exponential function, but also it is not unrealistically rough

as the exponential function.

In geostatistics, instead of working with a covariance function, one can also

use the so-called (semi-)variogram (see for example Diggle and Ribeiro (2007)),

as there exists a one-to-one mapping between the two. This exceeds the scope of

this thesis, why we will not go into further detail here.

1.4.6 Predictions using Gaussian processes

In this chapter we are particularly interested in the posterior distribution of a

Gaussian process after having observed the values at a finite number of points. In

other words, we are interested in the distribution over functions that are restricted

to pass through (or lie close) to the observations. In Figure 1.4 this concept is

illustrated: in a) we see random draws from a Gaussian process evaluated at 500
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Figure 1.4: a) Sample paths from a Gaussian process (Prior) b) Sample paths
from a Gaussian process after the noiseless observation. In both pictures, the
black line denotes the mean function and the grey area denotes the 95% credible
region evaluated pointwise.

points with mean function m(x) = 0 for all x ∈ R and a for illustration purposes,

a squared exponential covariance function with parameters σ2 = 1 and ρ2 = 0.5.

The black line denotes the mean function, the grey area denotes the area between

the mean and two times the standard deviation. Since every marginal distribution

is normal, this corresponds to the 95% credible region evaluated at each point.

Figure 1.4 b) displays sample paths of this Gaussian process after having observed

the red points. It becomes clear that the more points are observed the more certain

we are about the curvature of the functions. As the variability decreases close to

points and increases as you move away from points, at areas with less observations

(e.g. at the borders) the uncertainty about the functions is higher and the credible

region is broader.

To express this in mathematical notation, let A denote a finite set of observa-

tions, usually referred to as training points. Conditioning on the training points

A we are interested in predicting the values for the new unobserved points B.

According to the Definition 3 of Gaussian process, the joint distribution of A and

B is a multivariate normal. By means of the slicing properties of a multivariate

normal distribution from Section 1.4.2, we can state the conditional distribution,

or in other words the posterior given the observations A, as
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(B | A = a) ∼ N ( ΣBAΣ−1
AAa , ΣBB − ΣBAΣ−1

AAΣAB)

B is always assumed to be a finite set by which the posterior function is approx-

imated. For every point we achieved a normal distribution as posterior distribution

given the observations and thus we can calculate estimators and credible regions.

In a geospatial setting, this type of Gaussian regression and prediction is also

referred to as Kriging (Krige, 1951).

In reality, observations are assumed to be measured with noise. To take account

of that, we assume that the noise at each point is normal distributed with mean

0 and variance σ2, that is E ∼ N (0, σ2I). It follows that the noisy version of the

observation A is distributed (A+ E) ∼ N (0,ΣAA + σ2I).

Therefore, the joint distribution of the training and predictive points changes

to [
A+ E
B

]
∼ N

([
0

0

]
,

[
ΣAA + σ2I ΣAB

ΣBA ΣBB

])
It is to note that the noise term σ2I is only added to the covariance matrix of

the training points as we do not want to predict with an error. Using Equation

(1.7) the posterior distribution given the noisy observation A+ E becomes

(B | A+E = a+ε) ∼ N ( ΣBA(ΣAA+σ2I)−1(a+ε) , ΣBB−ΣBA(ΣAA+σ2I)−1ΣAB)

Figure 1.4 displays the prediction using the assumption of noiseless data. Using

the same prior assumptions in Figure 1.5 a), that is m(x) = 0 for all x ∈ R and

a squared exponential covariance function with parameters σ2 = 1 and ρ2 = 0.5,

Figure 1.5 illustrates the prediction this time with noisy training data. Whereas

a) is identical to Figure 1.4a), in b) we notice that the credible region around the

observed points is broader compared to Figure 1.4b). That means, that the choice

of functions is less limited to pass exactly through the observed points.
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Figure 1.5: a) Sample paths from a Gaussian process (Prior) b) Sample paths from
a Gaussian process after the noisy observation. In both pictures, the black line
denotes the mean function and the grey area denotes the 95% credible interval
evaluated pointwise.
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1.5 Epidemic modelling

1.5.1 History of epidemic modelling

The use of mathematics for modelling infectious diseases and practical disease

control has a long history. A nice overview can be found for example in the paper

of Brauer (2017) or Serfling (1952).

Analysing data of infectious diseases began in 1662 with John Graunt with his

work on “The Bills of Mortality”. These records comprised weekly data starting

from 1592 on the counts and the cause of deaths of citizens in London parishes. In

his analysis, Graunt estimated the risk of dying due to a certain disease setting the

grounds for the theory of competing risks. Later in 1766, the first approach of a

mathematical model for disease data was taken by the Swiss mathematician Daniel

Bernoulli where he analysed the prevention of (at that time endemic) smallpox

disease by inoculation. In his work he calculated life expectancies and death rates

and for the first time defined a force of infection parameter, the annual rate of

becoming infected, and a case fatality parameter, the proportion of infections

resulting in death (Dietz and Heesterbeek, 2000).

About 100 years later, before people had knowledge about the transmission

process of infectious diseases, John Snow studied the temporal and spatial pattern

of the cholera epidemic in London. In his work in 1855, he identified the water

pump at Broad Street as major force of cholera infection. A similar understanding

of the spatial spread of typhoid was achieved by William Budd in 1873. References

to these works can be found in Brauer (2017)

Finally, in the early twentieth century, the foundations to compartmental mod-

els were developed by public health physicians, namely R.A. Ross, W.H. Hamer,

A.G. McKendrick, and W.O. Kermack.

In the year of 1906, Hamer considered the spread of infections to be dependent

on the number of susceptible and infected individuals (Hamer, 1906). Ross studied

the transmission dynamics of malaria between mosquitoes and humans and his

work was honoured with the second Nobel Prize in Medicine. Contrary to the

common belief that malaria can only be eradicated with the elimination of all

mosquitoes, Ross showed with a compartmental model that it would suffice to
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reduce the number of mosquitoes below a critical threshold (Ross, 1911). This set

the basis for what is nowadays known as basic reproduction number. It is defined

as the average number of secondary cases that arise from one infected individual

in an otherwise susceptible population. Although McKendrick had developed a

stochastic version of the general epidemic model (McKendrick, 1926), it did not

receive much attention at that time. Instead a model which attract more attention

was the deterministic model of Kermack and McKendrick (1927). It is considered

to be the first complete mathematical model to describe the spread of an infectious

disease consisting of ordinary differential equations for the general epidemic model.

A stochastic model in discrete time which has received great attention in the

literature, is the chain-binomial model by Reed and Frost in 1928 (Fine, 1977). In

1949 Bartlett proposed a stochastic version of the aforementioned primal model by

Kermack and McKendrick (1927), which became known as the general stochastic

epidemic model (Bartlett, 1949).

This has entailed a great variety of research on epidemic modelling since.

Hence, elaborating further on the developments to be found in the literature would

exceed the scope of this report. Instead, we highlight key references which give an

overview of the mathematical modelling of infectious diseases. For the work on epi-

demic modelling before 1975, the book of Bailey (1975) is widely known. Further,

the monograph by Anderson and May (1991) is one of the most cited references

on epidemic models and covers almost exclusively deterministic models. Recent

books include Diekmann and Heesterbeek (2000), which focuses on deterministic

models, while the monographs by Andersson and Britton (2012) and Greenwood

and Gordillo (2009) focus on stochastic modelling. The books by Daley and Gani

(2001), and Keeling and Rohani (2007) introduce aspects of both approaches.

1.5.2 Epidemiological models

By means of mathematical modelling we can obtain a better understanding of

disease transmission dynamics and the infection process. Using underlying as-

sumptions of the disease, we can express the epidemic process as a simplified

reality, that captures the essential features of this system. Fitting such a model

leads us to estimate disease transmission parameters of interest. Further, models



30 CHAPTER 1. INTRODUCTION AND BACKGROUND

can provide predictions of the disease spread in space and time, and thus, may be

of great help to guide policy makers in their decision making for targeted counter-

measures, such as for instance vaccination, trading restrictions zones, fogging of

areas or even culling of farms.

There exists a wide variety of different approaches to infectious disease mod-

elling. In the literature these approaches are usually divided into mechanistic

and empirical (or statistical) models (see for example Diggle and Giorgi (2019)),

which is subject to oversimplification. Both, statistical and mechanistic models

in epidemiology, are utilized to analyse data for gaining better understanding of

diseases. The aim of a particular research study is to seek for knowledge which

is provided by the information we generate from the model. Since our research

deals with such a combination of these approaches, we elaborate shortly on their

differences.

The aim of mechanistic models is to mimic a real process to reflect this under-

lying data generating process. Hence, the structural composition of such a model

is informed by the contextual behaviour and seeks to conform with this. Examples

of mechanistic models include modelling the temporal and spatial progression of

a disease outbreak or modelling structural biological cell processes. The model

is built on the assumption that the complex system can be understood by the

functionalities of its individual parts, hence the structure of the model can be

responsive to the resolution of the data available; from a simple compartmental

SIR model (as given in Section 1.5.4) through to a full individual based modelling

framework. It is to mention that contrary to common belief, mechanistic models

are not deterministic by nature. Instead of using for example differential equations

we can also utilize stochastic approaches as we will see later in Section 1.5.4.

Instead of assuming a fixed model outline, for empirical models, we decide

from the data what the model should look like. That is, we test whether our

model assumption leads to a good explanation of the data or whether a different

model with maybe different covariates or unexplained random effects would explain

the observation better. Here, statistical testing and residual analysis are usually

applied to obtain the model of best fit. The aim is then to estimate covariate-

effects on an outcome variable, for example the effect of temperature on malaria
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incidences, or map unexplained (spatial) variation due to unknown factors that

have not yet been accounted for in the model, for example an unexplained spatial

effect in disease occurrence. Since choosing the right model is data-driven, the

flexibility of the model approach poses a risk for overfitting complex models to

sparse data.

In both cases, after we assume that our model is of great fit for the pur-

pose, we can find parameter estimates (either using a Bayesian or likelihood-based

approach) and predict; whether it is the probability of infection due to certain fea-

tures (covariates) of an individual by means of an empirical model, or the number

of infected individuals after some time by means of a mechanistic model.

Of course it cannot be denied that this partition is oversimplified. An empirical

model might be informed a priori about possible relationships between certain

covariates and the response variable. On the other hand, to fit a mechanistic

model we use statistical inference techniques. Nevertheless, we want to stick to this

separation as we see importance in considering their differences when choosing the

appropriate modelling approach, especially with respect to answering a research

question and analysing problems.

1.5.3 Stochastic versus deterministic modelling

While in the beginning of epidemic modelling there was more interest in determin-

istic models, stochasticity was subsequently added. The reason for having used

deterministic rather than stochastic models lies in their advantage of their simpler

analysis. They can have an increased level of complexity and yet - as long as

numerical solutions are available - can be analysed. By placing our trust on the

law of large numbers, they are suitable for large populations with a high level of

disease incidence.

However, there are a number of arguments why a stochastic model should

be preferred to a deterministic one. Firstly, in their nature disease outbreaks

are always stochastic: Starting with an initial setting and reversing time several

times, one cannot expect the exact same observation, that is the same number of

individuals being infected at the exact same time. Hence, the notion of probability

of infection plays an important role as we cannot state the definite outcome.
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Further, only stochastic models allow us to model stochastic phenomena such

as the probability of a major epidemic outbreak. Additionally, by means of a

stochastic model we cannot only make inference on model parameters, but also

gain information about the uncertainty of these estimates. Finally, in the era

of a tremendous increase in the speed and memory of computers, highly intense

computations are now possible in contrast to past decades. This gives rise to

enormous computational simulations of stochastic models.

Considering these above arguments, in this thesis we will only deal with stochas-

tic modelling approaches of infectious diseases.

1.5.4 Mechanistic models

S I R
λ γ

Figure 1.6: Graphical representation of a stochastic SIR compartment model

We start with a mechanistic modelling context in which we only consider the

so-called compartmental models. Such models describe disease dynamics in a pop-

ulation that is divided into a mutually exclusive discrete set of compartments or

states. The transition rules between different compartments is subject to prior in-

formation about the disease process. Since individuals transition between different

states, such models are also referred to as state-transmission models.

As displayed in Figure 1.6, a common example is the SIR model, where the

population consists of susceptible (S), infected (I) and removed/recovered (R)

individuals. Susceptible individuals can get infected with rate λ and only thereafter

can get removed from the system with rate γ, for instance by culling of farms

or death, or recover from the disease with a lifelong immunity. For the model

outline, let (S, I) denote the number of susceptible and infected individuals in the

respective compartment. Considering an outbreak as a sequence of subsequent

events (infection or removal), the time until the next event follows an exponential

distribution with rate λSI + γI. Either the next event is an infection, that is

(S, I) → (S − 1, I + 1) with probability λSI
λSI+γI

, or the next event is a removal,

that is (S, I)→ (S, I− 1) with probability γI
λSI+γI

. This leads to a Markov process



1.5. EPIDEMIC MODELLING 33

as the underlying distribution is exponential; the next event it is only dependent

of the current number of individuals in the compartments and independent of the

past.

Compartment models can be modified in many ways relevant to a particular

disease process: Individuals can transition to a previous compartment, for instance

when infected individuals become susceptible again (SIS model), or a new com-

partment can be added to the model, for example an exposed compartment prior

to infection, where the individual is infected but not yet infectious (SEIR model).

The simplest general setting is to assume that we have a homogeneously mix-

ing population where every individual is facing the same force of infection. In this

setting, only the total number of individuals in each compartment at each time

is important; since all individuals are identical, there is no need to track specific

individuals. In this sense, the model can be thought of as representing a mass-

action process. This approach is especially suitable for large populations with a

high number of infections. In such a setting individual characteristics are aggre-

gated out and stochastic effects do not play an important role. Relying on these

assumption, the epidemic process can be described by the deterministic model

of Kermack and McKendrick (1927), using a set of differential equations to de-

scribe the transition process. However, as discussed earlier, disease outbreaks are

stochastic in their nature. Thus, we seek for ways to introduce stochasticity to

such a model.

One approach is to start with a deterministic model and add observational

noise. For example in the deterministic model for plague transmission via human

ectoparasites from Dean et al. (2018), parameter samples of their respective poste-

rior distributions are used to solve a set of differential equations. Its deterministic

solution is then used as the mean of a Poisson distribution modelling the mortality

count. In a different research from Samat and Percy (2012) to study dengue disease

in Malaysia, a (SIR-SI) model is proposed consisting of a discrete spatio-temporal

susceptible - infective - recovered model for human populations and a susceptible -

infective model for mosquito populations. They use a set of differential equations

to describe the disease transmission process. In order to reflect the randomness
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inherent in the data, one of the parameters in one of the differential equations,

namely the number of new infectives, is assumed to be Poisson distributed with a

mean depending on elements of the transmission.

Although such an approach can bring computational advantages as one can rely

on techniques used for deterministic models, it does not incorporate the individual

nature. Such individual stochastic effects, also referred to as demographic stochas-

ticity, can be implemented by assuming underlying distributions for the transition

process for each individual. Supposing that these distributions are all exponen-

tials with respective transition rates, we get a Markov process. That is, due to the

memorylessness property of the exponential distribution, it is only important in

which compartment an individual is at a given time in order to determine where

and when the individuals is moving next. Examples in the literature for homoge-

neous mixing in a Markovian epidemic modelling manner can be found in O’Neill

and Roberts (1999); Xiang and Neal (2014).

1.5.5 Homogeneous vs heterogeneous mixing in mechanis-

tic models

It can be argued whether the assumption of homogeneous mixing of the population

is realistic. So far we have assumed that the probability of interaction does not

depend on the location or social group behaviour, and every individual is facing the

same amount of infectious pressure. However, for example clustering of individuals,

social interaction or intrinsic conditions may increase the risk of infection for some

susceptibles and influence the dynamics of disease spread.

In fact, to take account for heterogeneities in population-based epidemiological

studies has shown to be important (Coutinho et al., 1999). For example, White

et al. (2010) reasons that due to environmental conditions, vector and host-related

factors individual heterogeneity arises in malaria transmission and failing to ac-

count for them can lead to biased estimates of malaria vaccine efficacy.

Thus, in the following we want to introduce some approaches on how hetero-

geneity in their given context is modelled.

Network models provide a powerful tool when individuals are in contact with
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only a small proportion of the population. They can aid to investigate disease

dynamics, if the focus lies especially on the interaction between individuals or dif-

ferent groups. For example, in the case of livestock diseases, an outbreak can be

investigated with respect to the underlying trade network (Koeppel et al., 2018;

Lentz et al., 2016). In such an analytic approach, a farm is represented as a node,

and an edge between two nodes exists if there is a possibility of disease transmis-

sion between the two farms; that is, if the respective farms traded with each other.

On a similar basis, Britton and O’Neill (2002) consider a Markovian stochastic epi-

demic model in which the underlying social structure of a population is described

by a Bernoulli random graph. A different theoretical approach is random geomet-

ric graphs theory (Penrose et al., 2003). Here, a spatial Poisson process is used to

create a point pattern and the points that lie within a certain distance are then

connected. As an example, Preciado and Jadbabaie (2009) study the dynamics

of a viral spreading process and describe a spreading model in random geomet-

ric graphs. Further types of networks commonly used within an epidemiological

context can be found in Keeling and Rohani (2007).

A different from of heterogeneity in the spread of diseases can arise due to spa-

tially varying factors, which cause differences between individuals or populations

at different geographical locations. For example, climatic and environmental con-

ditions can have an impact on the habitat of vectors and their distribution, and

thus on the infection risk they pose. Further, the social structure of human pop-

ulations might vary spatially due to a higher contact rate in cities than in smaller

villages. To capture such features, there are many different forms of spatial models

that can be adapted to the scale of data we possess, the amount of knowledge

of the population’s behaviour. An overview is given in the book by Keeling and

Rohani (2007) out of which we briefly mention the most important ones.

Within spatial models, metapopulation models provide a powerful framework

to account for features that occur naturally at some locations but not at others.

In such a model the population is divided disjointly into smaller populations with

own independent dynamics. The model allows additionally for different rates of

infection between the populations. Further inside to applications of this approach

especially within ecology can be found in Hanski et al. (2004).

If the spatial location of the individuals is seen to be important, though a nat-
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ural partitioning in discrete subpopulations is not possible, we can take advantage

of lattice-based models. They are essentially a special form of metapopulation mod-

els because a lattice or grid partitions the population and all individuals within

one grid are grouped together to form a subpopulation. The difference is that the

interaction between the subpopulations (grid cells) is tightly constrained such that

interactions occur only localized with the nearest or nearest and next-nearest cells.

For example Kao (2003) used a model of foot-and-mouth disease transmission on

a hexagonal lattice of farming premises to investigate whether alternative policies

would have resulted in significantly better control of the epidemic.

Although lattice models provide a framework to take account of the spatial

location, the discretization of space can be a disadvantage as the exact position of

an individual is limited by the size of the grid it is located in. A workaround would

be to consider space and population on a continuous scale by decreasing the grid

size infinitely small (Keeling and Rohani, 2007). This leads to continuous-space

models that uses partial differential equations or integro-differential equations. Al-

though this approach allows for flexible modelling, it is mathematically complex

and can be computationally expensive.

The purest form of heterogeneity are individual-based models which can include

complex and detailed individual behaviour and features and is the focus of this

report. They are linked with the above concepts: when we consider a fully con-

nected graph where every node depicts one individual or a metapopulation model

where every subpopulation has population size 1. In a fully individual model, we

can incorporate spatial influences on a susceptible individual due to the certain

location and the environmental factors at that particular location. For example,

one individual might face a higher mosquito density due to advantageous mosquito

habitat conditions at its location, compared to little mosquito presence at a loca-

tion of an individual living in a climatic much cooler environment. To incorporate

the varying susceptibility of an individual that influenced T. orientalis (Ikeda)

spreading, (Jewell and Brown, 2015) included parameters for the occurrence of

the transmitting vector, but also environmental factors.

Moreover, such an individual-based model allows for individual transmission

rates λij for a susceptible j who receives infectious pressure from an infected in-
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dividual i. This is especially valuable when relying on the assumption that geo-

graphically close infected individuals exert more infectious pressure than infected

individuals further away. This feature of spatial variation in infectious pressure

can be modelled using a so-called transmission kernel or spatial kernel. It is a

function of distance, which decreases as distance gets large. For example in Jewell

et al. (2009) and Xiang and Neal (2014), the spatial kernel represents the environ-

mental transmission rate between farms i and j for foot-and-mouth disease using a

Cauchy-type kernel, whereas Gibson (1997) uses a power-law decay to model the

spatial spread of Citrus Tristeza virus.

So far, the above approaches were based on a Markov process with a Poisson

point process for infections (exponential waiting times between events) and ex-

ponential infectious periods. The choice of an exponential distribution is rather

motivated by its simplicity for the model because the memorylessness property

enables us to reduce the process history to only the previous event to compute

the current one. But it can be argued whether it is realistic. To circumvent this

problem, some literature introduce a new exposed state prior to being infected to

avoid exponential infectious periods (see for example Jewell et al. (2009); Lekone

and Finkenstädt (2006)). However, as this is not the focus of this report, we will

not go into further detail here.

1.5.6 Empirical models

Geostatistical models are typically empirical in character. In geostatistics, we

decide from the data, what the model should be and chose the appropriate model

that explains the observed data best.

Here, the class of generalized linear models (GLM) introduced by Nelder and

Wedderburn (1972) is of particular focus. They use the framework of a linear

regression, where the response variable follows a Normal distribution, and extend

it to response variables with distributions from the exponential family. The linear

predictor consists of a linear combination of explanatory variables, or covariates,

and is linked to the expectation of the response variable by means of a link function.

In case of linear regression, this link function is simply the identity function. We
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assume that the response variables are independent and that the covariates are

measured exactly, that is without measurement errors.

Sometimes, however, the data shows greater variability than what we would

be able to explain from fitting a GLM with fixed effects. To take account of an

unobserved factor which has not been considered by any of the included covariates,

we can add random effects to the linear predictor. This yields a model which

includes both, fixed and random effects, and thus is called generalized linear mixed

model (GLMM). In geostatistics, modelling a random effect for unobserved spatial

correlation by means of a Gaussian process received much attention over past years

(see Diggle and Ribeiro (2007)).

We shortly want to introduce the reader to the concept of a geostatistical gen-

eralized linear mixed model. Suppose at n locations `1, `2, . . . , `n, we have corre-

sponding observations Y1, Y2, . . . , Yn. For each location `i, i = 1, . . . , n, we further

associate k explanatory variables Xi = (Xi1, Xi2, . . . , Xik)
T . For a geostatistical

generalized linear mixed model we define the linear predictor ηi as

ηi = XT
i β + s(`i)

where β = β1, β2, . . . , βk are the unknown parameters for the fixed effects and the

unknown spatial effect s(`i) is modelled through a Gaussian process
(
s(`)

)
`∈R2 with

constant 0 mean function, and some stationary and isotropic covariance function.

We link the linear predictor consisting of the fixed and random effects to the

observed outcome random variable Yi using an appropriate link function g : R→ R
with

E(Yi) = g(ηi)

In epidemiology especially Poisson and Binomial models are of importance. By

means of these distributions we can model disease or vector counts and relate this

number to observed features at the location of a population or individuals, and

unobserved effects. For example, Diggle et al. (2007) used a Binomial model with

an logit link function to create prevalence maps of the parasitic Loa loa infection

in West Africa. In a different study, McCann et al. (2017) modelled the abundance

of adult malaria vectors inside people’s houses using a Poisson model with a log

link function. They included environmental covariates specific to the location of
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the house and features of the household affecting Malaria transmission (e.g. the

use of insecticides or different wall types). Next to a spatial random effect, they

also included an unobserved independent random effect specific to each household

in the linear predictor.

In geostatistical modelling we may observe an additional summand in the linear

predictor, the so-called nugget effect. This is an independent random effect specific

to the location `i. It consists of two components, a microscale variation and a

measurement error. In this thesis we neglect this effect as it would add complexity

and further non-identifiabilities when combining mechanistic and empirical models.

Including terms for unobserved (spatial) effects gives rise to great flexibility

in constructing a suitable model. Sometimes the available dataset might be in-

complete and come with a low resolution spatially and/or temporally which is

true especially for low-to-middle-income-countries where disease registries are non-

existent or have a partially complete geographical distribution (Diggle and Giorgi,

2019). In these situations, such a geostatistical model finds great use due to its

flexible structure.

1.5.7 Combination of mechanistic and empirical models

While mechanistic models are being constructed using information out of the con-

textual knowledge, empirical models acquire information from data. As Diggle

and Giorgi (2019) reason, mechanistic models can oversimplify the process and

thus, including a data-based empirical model can improve their fit. In this thesis

we want to introduce a combination of a mechanistic SIR model with principled

data-based methods from geostatistics. The idea behind this approach is to allow

a parameter of a continuous time mechanistic model to be replaced by a term

consisting of covariates and a latent spatial Gaussian process which operates on a

continuous space.

We list some literature on combining a mechanistic with an empirical model

which we will put into context relating our research in Section 1.5.8.

Mugenyi et al. (2017) investigated a deterministic malaria SIS model where they

estimated the force of infection using the point prevalence. This prevalence was

modelled by means of a generalized linear mixed model to account for individual-
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and household-specific clustering. That way, they were able to model the intrinsic

observed and unobserved heterogeneity of the individual risk of malaria infection

within a compartment model framework.

Samat and Percy (2012) studied dengue disease in Malaysia with a discrete

spatio-temporal combination of a SIR model for human populations and SI model

for mosquito populations (SIR-SI) model. The model uses deterministic differen-

tial equations to describe the disease transmission process, and adds a stochastic

component by assuming the number of new infectives to be Poisson distributed.

The mean of this distribution is defined by a linear predictor term consisting of

an intercept and a spatial random effect using a conditional autoregressive CAR

prior.

A time continuous susceptible-infected-detected (SID) model is proposed by

Jewell and Brown (2015) to model host incidence cases of Theileria Orientalis in

New Zealand. They include a term for indirect observations of vector activity in

the intensity functions of the infection process modelled as Poisson processes. By

means of Bayesian inference methods, he is able to map a seasonal discrete-space

latent risk surface and is able to give prediction estimates of the future incident

counts of the outbreak.

For our research, this model by Jewell and Brown (2015) constitutes the basis

and our aim is to further extend it to a continuous spatial scale.

1.5.8 Modelling vector-borne diseases

Vector-borne diseases are characterized through the indirect transmission of

pathogens by a vector specific to the disease (Figure 1.1). An essential approach in

protecting humans and veterinary health from the burden caused by vector-borne

disease agents is controlling the vector population. Ross (1911) modelled the in-

teraction between mosquitoes and humans for Malaria infection, where he showed

it would suffice to reduce the number of mosquitoes below a critical threshold to

eradicate Malaria. Later, George Macdonald developed this methodology further

and linked metrics for measuring the important components of transmission to the

model.

However, vector habitats, vector behaviour and thus the distribution of the
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pathogen are influenced by environmental factors and meteorology: climate change

and globalized trade contribute to the extension of vector habitats to different ter-

ritories and hence the distribution of many diseases (see e.g. Fischer et al. (2011);

Medlock and Leach (2015); Campbell-Lendrum et al. (2015)). Only concentrat-

ing on meteorological data, that influence the vector habitat has its limitation,

as Ostfeld et al. (2005) points out clearly; while there might be a high density in

vector presence due to advantageous conditions for the vector’s habitat, the actual

number of infected vectors can still be small. On the other hand, when only con-

centrating on disease incidence cases, the underlying risk might not be displayed

correctly; for instance due to a small susceptible population size in a high risk

region.

Hence, we seek for a joint approach that combines the meteorological data and

the host incidence cases. As farmers are obliged to report a suspicion of notifi-

able diseases, veterinary host incidence data is usually available from government

databases. In contrast, collecting data about all possible vector populations and

their habitat with the vector’s rapid adaptation to changing ecological and envi-

ronmental conditions is unfeasible (Braks et al., 2011; Purse et al., 2005; Parham

et al., 2015). Further, in the face of a rapidly changing environmental and ecolog-

ical climatic conditions previously well fitted models might become obsolete soon.

Hence, the need for a model which is flexible with respect to the availability of the

data increases.

Here, a Poisson or Binomial model (see Section 1.5.6) can be of great use.

However, such models are concerned with predicting the intensity or the probabil-

ity of disease infection and not necessarily the spatio-temporal progression of the

outbreak. Thus, stochastic mechanistic vector-borne disease transmission mod-

els seem to be more suitable in this context. Szmaragd et al. (2009) proposed

a model for bluetongue virus transmission within and between farms in Great

Britain. However, their approach only accounts for the farm’s local temperature

and no other meteorological data that might influence the vector’s distribution.

Similarly, Sumner et al. (2017) studied bluetongue virus and Schmallenberg virus

by assuming that the vector-mortality rate is temperature-dependent and added

a function for seasonal vector activity based on previous knowledge.

So far, the flexibility of including meteorological data, that influence vector be-
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haviour, into compartment models seems to remain a challenge. Thus, combining

a rather rigid mechanistic approach with flexible methods from geostatistics can

provide a suitable solution.

One such an approach is proposed by Samat and Percy (2012), who developed a

spatio-temporal combination of a stochastic SIR model for human populations and

a deterministic SI model for mosquito populations. The number of new infections is

modelled using a Poisson distribution, where the mean consists of a linear predictor

term that includes an intercept and a spatial random effect. They propose to

include other covariates, which for example can be of meteorological character.

Although this approach provides a great combination of an epidemic model with

an empirical model by including spatial components within a compartment model,

it has two major disadvantages: It does not include individual stochastic effects,

and it operates on a discrete time scale and on discrete space.

On a continuous time scale, Jewell and Brown (2015) link data on host incidence

cases with indirect observations of vector activity and predict the spatio-temporal

variation in disease transmission in response to a sudden incursion of the novel

strain of Theileria Orientalis in New Zealand. In the absence of detailed informa-

tion on vector ecology, their Bayesian dynamical model learns sequentially with

the progression of the epidemic, tracks the disease process and is able to forecast

ongoing disease spread. This approach is based on estimating a discrete-space la-

tent risk surface for the vector presence, which provides a good approximation of

key components of vector presence. However, it is limited by its level of discretiza-

tion: there might be considerable variability in risk over a district with districts

possibly being too coarse a scale for reasonable estimation of the risk.

To the knowledge of the author, so far there exists no disease modelling ap-

proach that operates on a continuous time scale as well as on a continuous spatial

scale. In this thesis, we for the first time propose a model that accounts for conti-

nuity in both, time and space, by including a Gaussian processes framework into a

compartmental SIR model. This way, we are able to account for variability in risk

for reasonable estimation within a larger district. Using these augmented data, the

prediction of the likelihood of the disease arriving in different parts of the country

together with the vector population’s propensity to spread the disease once it has

arrived will be more accurate.
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As described in Jewell et al. (2009), a Bayesian approach to data assimilation

and forecasting allows for flexibility with the choice of the model, and enables

us to include missing data, such as infection times or vector population related

information, or latent variables. In our approach we can take great advantage of

well-developed, complex frameworks like Gaussian processes. Furthermore, we are

able to marginalize over unobserved or latent quantities in order to estimate model

parameters, which is otherwise difficult in the frequentist framework. Moreover,

such marginalizations take into account the uncertainty arising from an estimation

of these unknowns.
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1.6 Bluetongue virus outbreak

In this section we introduce the real world outbreak by which we test our method-

ology in this thesis. The dataset of the bluetongue outbreak in 2007 in the United

Kingdom is particularly suitable for developing and testing our model, being a well-

characterised outbreak of a notifiable vector-borne disease occurring when little in

the way of prophylactic control had been implemented. First, we will elaborate on

the background of the disease and the outbreak, before we describe the datasets

of the outbreak and the meteorological data we will be working with. This way

we point out characteristics of the datasets that will motivate the forthcoming

chapters in this thesis.

1.6.1 Bluetongue virus

Bluetongue is a serious illness affecting ruminants and is caused by the bluetongue

virus (BTV) with so far 24 different known serotypes (Friedrich-Loeffler-Institut,

2014). It is often subclinical or unapparent, though for sheep and cattle the disease

is acutely progressing. Symptoms generally include high fever, excessive salivation,

nasal discharges, swelling of the head and neck, and potentially reddening of the

tongue, hence the disease’ distinct name. This leads to high mortality in suscep-

tible animals and production loss. Vaccination of ruminants against bluetongue

exists and is an effective protection against the spread of the disease (Science

Media Centre, 2007).

The virus is transmitted by biting midges of the genus Culicoides. Their biting

activity is usually highest between dusk and dawn and about seven days after

a bloodmeal from an infected animal, the midges are able to transmit the virus

further to susceptible animals in a subsequent bloodmeal. Meterological factors

like hot temperature and humidity are favourable for midge reproduction and

activity. Therefore, bluetongue infections are highly seasonal and most prevalent

during warm, wet months in late summer and autumn. Furthermore, wind can

carry the midges over great distances due to their small size (1-3 mm), leading to

the introduction of the disease into previously disease-free regions. Historically,

Bluetongue was first recognized in South Africa and only prevalent in tropical
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and subtropical areas. However, climate change and globalized trade contributed

drastically to the increased spread of the disease to temperate regions (Maclachlan,

2011).

One of the most severe outbreaks in Northern Europe 2006 - 2008 was caused

by the Bluetongue virus serotype 8 (BTV-8). The route of BTV-8 introduction to

Central Europe in 2006 is still unknown, but independently, BTV-8 found a new

vector, midges of the group Culicoides obsoletus. They are indigenous in Central

and Northern Europe while being highly adapted to ruminants. In 2006 cases were

reported in the tri-border region between Germany, the Netherlands and Belgium

to all neighbouring countries. In the following year 2007, first cases were confirmed

in Germany which confirmed that the virus was able to overwinter. Subsequently

the disease appeared again in all countries where BTV-8 was prevalent in 2006

and finally with additional cases in UK in fall 2007. With major economic losses,

enhanced by trade restrictions, the disease was only eradicated in 2008 after a

major vaccination campaign (Ganter, 2014).

1.6.2 BTV-8 outbreak progression in UK

Although Bluetongue virus 8 was already present in mainland Europe in 2006, it

only reached UK in 2007. The introduction to the UK is hypothesised to be due

to wind carrying the midges from mainland Europe to the East coast of England.

Seemingly unlikely at first, Gloster et al. (2008) states that such a long-distance

transport of BTV-infected vectors by wind has already been recorded in history.

For this to happen they agree that the following conditions must be met:

• First, hot temperatures need to be present for the enhancement of virus

replication within the midges and midge reproduction resulting in high abun-

dances of infected midges.

• Second, suitable winds directed from infected areas on the continent to the

South-East coast in England must be present being able to transport midges

over long distances.

• Third, a susceptible host population needs to be present at their arrival

destination for the midges to bite and infect before they die.
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In a retrospective analysis, Burgin et al. (2009) investigated how these con-

ditions were met for the years 2006 – 2008. Their findings were in line with the

appearance of cases in the UK.

While in 2006 the hot temperatures were ideal for a spread of the disease on

the continent, only a limited number of suitable days were present for windborne

carriage of the infected midge population to the UK. However, in 2007 after having

overwintered on the continent, hot temperatures enhanced the rapid replication of

the infected midge population. Moreover, Gloster et al. (2008) identified at least

40 opportunities where meteorological conditions were favourable for windborne

introduction of BTV from the Ostend area of the continent to the South East

coast of England. In their risk assessment they predicted that the greatest risk of

BTV-8 introduction through midges transported by wind was between May and

October 2007 (Gloster et al., 2007). In fact, the first case in the UK was detected

on September 15, 2007 in a cow on a farm in Suffolk. Within only a few days,

BTV-8 was confirmed on a second animal on the same farm and other farms in

Lowestoft and Essex. Following this, more cases appeared in Eastern England

with simultaneous appearances of cases that were about 100 km distant and for

which no direct link to infected farms could be found. As animal movements from

infected areas were restricted and rigourous testing of livestock from disease-free

areas was performed, it seems very unlikely that the introduction of BTV-8 into

the country was due to trading with infected livestock. This suggests that the

possibility of potential windborne spread of BTV to the UK.

Although hot temperatures in 2008 provided ideal breeding conditions for

midges, there existed a significant difference to the previous years: Starting from

April of 2008, an extensive vaccination campaign drastically decreased the num-

ber of susceptible livestock. Areas of infected farms from the previous year and on

the South East coast of England were given priority in case infected midges were

able to overwinter or in case of new windborne Bluetongue introduction. In the

following months it was extended to farms located further North and West. These

counter measures were so successful that no new BTV-8 cases were reported in

UK in 2008 or subsequent years.
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1.6.3 The datasets

1.6.3.1 Host data

The following data on livestock farms was used for the analysis in this thesis:

• Farm demographic data for Great Britain from the Animal & Plant Health

Agency (APHA). This includes the OS map reference of cattle, sheep, deer,

and goat farm population data for the whole of Great Britain (England,

Scotland, Wales).

• Bluetongue case record data for Great Britain from APHA. This includes

the OS map reference for the farms, as well as the farm detection date (i.e.

time of first suspicion and restriction imposed on the farm).

Figure 1.7: The spatial distribution of farms in Great Britain and farms with
BTV-8 confirmation in red.
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By means of the OS map reference, we linked cases to demographic data. The

dataset comprises information on the location of 94310 farms in Great Britain

which is depicted in Figure 1.7. Since the outbreak never spread further than

South East England, we restricted the dataset to farms in this area resulting in

14266 farms (Figure 1.8).

Figure 1.8: The spatial distribution of farms in Great Britain restricted to the
smaller area of South East England. Red points denote infected farms.

In the dataset 129 BTV-8 cases were reported in GB. In two cases we identified

two cases on the same location. Since we perform our analysis on farm level, it

diminishes the number to 127 infected farms, which aligns with reports from Burgin

et al. (2009). For two further cases their detection date was recorded in May
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2008 which cannot be matched to information found in the literature. These cases

appear with a time gap of more than 240 days after the last case, thus we discarded

them from our dataset to avoid any bias for our epidemiological model. Figure 1.9

displays the chronology of the BTV-8 outbreak in Great Britain. The outbreak

started on 20 September and lasted until 3 December 2007. It is to note that three

days after the introduction of the first case, 64 cases were reported on the same day.

This is presumably due a sudden increase in testing and thus an accumulation in

reporting and/or entering into the database. We therefore assume that the disease

had been present on these farms before. The remaining ongoing of the outbreak

is characterized by local spreading to farms close by and simultaneously random

distant appearances that would then form new small outbreak foci.

Figure 1.9: Chronology of the number of detected BTV-8 infections in Great
Britain.

1.6.3.2 Environmental information

As mentioned before, midges are very susceptible to environmental conditions.

Thus, for each farm we mapped meteorological data obtained from World Cli-

mate Research Programme (WCRP) (2016): CMIP5 monthly data on single lev-

els, IPSL-CM5A-MR (IPSL, France), Copernicus Climate Change Service (C3S)
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Climate Data Store (CDS). to include in our model. We only consider those covari-

ates we believe midges are most affected by: temperature, precipitation, humidity,

wind speed, and u/v wind direction. The data contains gridded 0.25 x 0.25-degree

estimates. This corresponds to a spatial resolution of about 27-28 km for the

length of the grid cell. Since our model will not be time dependent, we averaged

the value of the monthly estimates for September, October, November, December

in 2007 and mapped the farm locations to the nearest point in the grid.

We performed principal component analysis on the six environmental covariates

and identified that the top two principal components (PCs) explain 97% of the

variation in the data, out of which the first PC accounts for 67.64% and the second

PC accounts for 28.97%. As the contribution of the third PC is very small (2.6%),

we will be using only the top two PCs to inform our model on meteorological

data. Their spatial distribution is displayed in Figure 1.10. It becomes apparent,

that the principal components give a coarse representation of the environmental

information of the South East of England.

Figure 1.10: Spatial distribution of the first principal component (left) and the
second principal component (right) obtained from the PCA of the environmental
covariates.

The ethical approval for working with these datasets in context of this the-

sis was obtained by the Lancaster Medical School on 04 July 2019, Reference:

FHMREC18100.
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1.7 Remainder of this thesis

First in Chapter 2 we explain how we link data on host incidence cases with indirect

observations of vector activity by constructing a joint epidemic and geostatistical

model. We investigate parameter estimates of the joint model as well as the spatial

variation of the underlying unknown vector risk surface.

In Chapter 3 we describe how we can deal with the computational demand

when dealing with big data. Although we have already diminished the number

of farms in the United Kingdom to only the ones located in South East England

(Figure 1.8), we still face a challenge with an individual based model including

roughly 15,000 farms. We investigate how computational efficiency can be reached

in the framework of this epidemiological problem.

In the Chapter 4 we turn to the problem of the aggregated detection dates in

our dataset: Half of the infected farms are recorded to be detected on the same

day (Figure 1.9), which is presumable a consequence of the data collection and

does not reflect reality. We thus treat them as unobserved and investigate the

model parameter estimates when marginalizing over these latent quantities using

a Bayesian approach.

All of the above chapters will be accompanied by extensive simulation studies

in order to investigate the model’s behaviour and limits.

Finally, in Chapter 5 we test our fully developed methodology by means of the

real world disease outbreak BTV-8 in UK in 2007, before we end this thesis with

a discussion and concluding remarks in Chapter 6.
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Chapter 2

The joint model framework

In this chapter we specify our joint model. First, we display how we model the

infection process and derive its likelihood. Afterwards, we elaborate on the joint

model framework and simplify it for our use. We then construct an MCMC al-

gorithm to efficiently draw samples from the posterior distribution. Thereafter,

we perform a simulation study to investigate the model’s behaviour and conclude

with a discussion.

2.1 Infection process

As introduced in Section 1.5.4, we describe the outbreak dynamics by means of

a mechanistic Susceptible - Infected - Removed/Recovered (SIR) model (Figure

1.6) where the population is divided into mutually exclusive compartments. The

time until an infection is represented by a Markov property: The probability of

infection only depends on the current number of individuals and is independent of

the past. This can be also rephrased as the present observation is dependent on

the observations of the previous time point and is independent of the observations

before. The only continuous distribution that satisfies such a memorylessness

property is the exponential distribution. Thus, in the following, we first introduce

the exponential distribution to model the time until infection and gradually extend

the concept for our use. Being part of our modelling framework, we derive the

likelihood of the infection process for a whole population, which enables us to do

53
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inference on its parameters.

A reference to an article where exponential distributions were used to model

epidemics would be for example Andersson and Britton (2012), and a selection

of articles in an applied setting is Jewell et al. (2009), Jewell and Brown (2015),

Xiang and Neal (2014).

2.1.1 Exponential distribution

Our aim is to model the temporal progression of epidemics. This means that we

want to model the time until an infection occurs. These times are also referred to

as waiting times.

Since the infection process is Markovian, the natural choice to be looking for

modelling such waiting times is the exponential distribution as it has the mem-

orylessness property: the waiting time until the next event in the future is inde-

pendent of how much time we have already waited. In other words, for a waiting

time T ∈ [0,∞) and any given time t′ with 0 ≤ t′ ≤ t we have

P (T ≤ t | T ≥ t′) = P (T ≤ t− t′) (2.1)

The probability that we at most wait t given that we have already waited t′ is

the same as the probability that we at most wait t − t′. The only continuous

probability distribution that fulfills this property is the exponential distribution

(Forbes et al., 2010). Hence, for any random variable T ∈ [0,∞) that fulfills (2.1),

the probability density is given by

P (T ≤ t) =

∫ t

0

λe−λxdx

for all t ∈ [0,∞) and a fixed λ ∈ (0,∞). The parameter λ can be interpreted as a

rate or intensity parameter and governs the length of the waiting time:

E(T ) =

∫ ∞
0

x · λe−λxdx

=
[
− xe−λx

]∞
0

+

∫ ∞
0

e−λx
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= (0 + 0) +
[
− 1

λ
e−λx

]∞
0

=
1

λ

The mean of the waiting time states how long we have to wait on average for

an event to occur. Hence, a large λ leads to a short waiting time, a small λ

entails a longer waiting time on average. In our case for the waiting time until

infection, a higher number of infected people corresponds to a higher infection

pressure and thus a higher λ and the waiting time to one’s own infection is shorter.

Analogously, a lower number of infected people reduces the infection pressure and

thus, λ becomes smaller and the waiting time longer.

2.1.2 Simultaneous exponential distributions

In the previous section we introduced the exponential distribution to represent the

waiting time until an infection occurs. In an outbreak scenario we are interested in

modelling several waiting times simultaneously. Consider a population of individ-

uals where we want to model the waiting times until an infection of any individual

occurs. We can then raise the questions of who will become first infected and

when? The following theorem clarifies this.

Theorem 1: Let X1, X2, . . . , Xm be independent exponentially distributed ran-

dom variables with intensities λ1, λ2, . . . , λm respectively. Further let

Z ··= min{X1, X2, . . . , Xm}.
a) Z is a exponentially distributed with rate λ ··= λ1 + λ2 + · · ·+ λm.

b) The probability that the event of Z belongs to Xi is

P ({Xi < Xj, for all j 6= i}) =
λi
λ

Proof. a)

P ({Z ≤ y}) = 1− P ({Z > y})

= 1− P ({min{X1, X2, . . . , Xm} > y)

= 1− P (X1 > y,X2 > y, . . . , Xm > y)
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= 1−
m∏
i=1

P (Xi > y) (Independence)

= 1−
m∏
i=1

exp (−λiy)

= 1− exp

(
−

m∑
i=1

λiy

)

b) We are interested in P ({Xi < Xj, for all j 6= i}). We show that it holds for

the case of two independent exponential distributions, that is P ({X1 < X2}). We

write

P ({X1 < X2}) =

∫ ∞
0

∫ ∞
x

λ1e
−λ1x · λ2e

−λ2y dy dx

=

∫ ∞
0

[
λ1e

−λ1x · (−e−λ2y)
]∞
x
dx

=

∫ ∞
0

λ1e
−(λ1+λ2)x dx

=
λ1

λ1 + λ2

∫ ∞
0

(λ1 + λ2)e−(λ1+λ2)x dx

=
λ1

λ1 + λ2

[
− e(λ1+λ2)x

]∞
0

=
λ1

λ1 + λ2

Theorem 1 tells us that considering several exponential distributions simulta-

neously is the same as considering one exponential distribution with the sum of

its rates. Further, the infection event can be attributed to an individual with its

probability being the proportion of its rate out of the sum of all rates.

2.1.3 Piece-wise constant rates

In the previous section we considered a collection of independent exponential dis-

tributions by which we model the waiting time until the first event. So far we

assumed that all distributions are independent of each other. However, this is
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often too simple for practical matters, as in an outbreak scenario, the waiting time

can be influenced by the infection events of the other exponential distributions.

Consider an outbreak scenario where the number of infected individuals in-

creases, that is we observe an event for an exponential distribution as described in

the previous chapter. As now there are more infected individuals, the infectious

pressure on a single individual increases and we expect a shorter waiting time until

its infection. Thus, we want to condition the waiting time of one individual on

the events of all other individuals. This leads us to a conditional distribution for

the time until infection where the rate changes each time we observe an event in

any of the other distributions. Given a series of infection event times, what is the

distribution of the waiting time conditioned on these external events?

Figure 2.1: Waiting time with changing rates over time. The cross marks the
event.

For this let us consider a small example depicted in Figure 2.1. The waiting

process until infection starts as an exponential distribution with rate λ0 at time

point t0. At time point t1, we observe an external event that leads to an increase in

the rate to λ1. We recall that the exponential distribution has the memorylessness

property (Equation (2.1)). It does not matter how much time has already passed

for the probability of the next event to happen. We can thus ”reset” the waiting

process at time point t1 and start a new exponentially distributed waiting time

with the altered rate λ1. We can analogously take advantage of the memoryless-

ness property at time points t2 and t3, where we each start a new exponential

distribution with the altered rate λ2 and λ3, respectively. Finally at time point

t∗ the individual becomes infected and the waiting process terminates. We no-
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tice that the rate is piece-wise constant in between consecutive events and jumps

as soon as a new external event occurs (at time points t1, t2, t3) and thus a new

exponential distribution was started.

The probability that the event happens at t∗ entails that it happened after t3

as t∗ > t3. Further, the probability that the event did not happen entails that the

event also did not happen until t2 and until t1 because t1 < t2 < t3. In other words

P (X = t∗) = P (X = t∗, X ≥ t3)

P (X ≥ t3) = P (X ≥ t1, X ≥ t2, X ≥ t3)

The probability that the event did not occur until a certain time is called

survival and is expressed as one minus the cumulative distribution function of the

exponential distribution for the time since starting the process. On the contrary,

for the occurrence of the event, we state the density of the exponential distribution

evaluated at the amount of time that has passed since starting the process.

We are now in the position to state the distribution of X.

P (X = t∗ | t1, t2, t3)

=P (X = t∗, X ≥ t1, X ≥ t2, X ≥ t3)

=P (X ≥ t1) · P (X ≥ t2 | X ≥ t1) · P (X ≥ t3 | X ≥ t2) · P (X = dt∗ | X ≥ t3)

=e−λ0t1 · e−λ1(t2−t1) · e−λ2(t3−t2)λ3e
−λ3(t∗−t3)

Generalizing this concept to n external events at time points t1 < · · · < tn, we

can state the probability for a susceptible person to get infected at t∗ as

exp
(
−

n−1∑
i=0

λi(ti+1 − ti)
)
· λn exp(−λn(t∗ − tn)) (2.2)

with t0 ··= 0.

2.1.4 Likelihood of the infection process

In the previous section we introduced the theory behind the waiting time process

which enables us to model a time until infection with varying rates over time.

The amount of variation of the rates may be determined by parameters. We are



2.1. INFECTION PROCESS 59

interested in drawing inference on these parameters given only the observed event

times in reality. Hence, we rely on the likelihood function, which is the interface

between the observed event times and the unknown parameters: it is a function

of the parameters given the data. Therefore, we now derive the likelihood given

observed event times; that is, the value of the density function evaluated at the

observation.

In Section 2.1.3 we introduced the waiting time of an individual conditioned on

the waiting times of other individuals. As we have seen from the example in Figure

2.1, the rate of the conditional waiting time changes over time. A different way to

perceive this is to model the rate as a function of time t 7→ λ(t) with λ(t) ∈ [0,∞)

for all t ∈ [0,∞), that is piece-wise constant and continuous from above. Assume

t1 < t2 < · · · < tn < t∗, where t∗ denotes the time of the event. Then we write

λ(t) =



λ0 t < t1

λ1 t1 ≤ t < t2
...

λn−1 tn−1 ≤ t < tn

λn tn ≤ t < t∗

0 t∗ ≤ t

(2.3)

After the event at t∗ occurred, the rate or intensity function becomes 0 as no

further event is possible anymore.

In the following, let λ(I−) denote the rate that was present right before the

infection occurred. For example, in Equation (2.3), this would equal to λn. Using

(2.3) we can rewrite Equation (2.2) as follows

exp

(
−
∫ t∗

t0

λ(t)dt

)
λ(I−)

with t0 ··= 0.

It may happen that the end of our observation period tend has been reached

before an event was observed. In this case, the density term for the infection drops
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and we get

exp

(
−
∫ tend

t0

λ(t)dt

)
We are now in the position to derive the likelihood of the infection process for

all individuals in a whole population. Let I be the vector of observed infection

times and Ij be the entry for individual j. In case of no infection until the end

of the observation period tend, we set the infection time to infinity. Please note

that the first infected individual, denoted by i0, does not receive any infectious

pressure.

f(I | θ) =
∏

j:Ij<∞
j 6=i0

 exp

− tend∫
min{I}

λj(t)dt

λj(I
−
j )

× ∏
j:Ij=∞

exp

− tend∫
min{I}

λj(t)dt



= exp

−∑
j

tend∫
min{I}

λj(t)dt

 ∏
j:Ij<∞

λj(I
−
j )

(2.4)

Please note, that this theory on the infection process may also be perceived as

the sum of conditional Poisson processes. A Poisson process is a counting process

with exponentially distributed waiting times between events. In this case, we

model the time until infection for a single individual through a Poisson process

conditioned on all other Poisson processes. The intensity function is set to 0 as soon

as the infection occurred and therefore, the Poisson process of a single individual

may jump at most once. A more detailed coverage of this concept is provided in

the Appendix (A.1).
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2.2 The joint model specification

As discussed in Sections 1.5.7 and 1.5.8, our research combines a mechanistic

model with an empirical modelling approach: the idea is to allow a parameter

of a continuous time mechanistic model to be replaced by a term consisting of

covariates and a random effect, which operates on a continuous spatial scale. In

our context of vector-borne disease modelling, these added covariates and random

effects represent factors that influence the vector’s habitat or the vector’s activity.

Note that this approach is also applicable, for example, to directly transmitted

diseases. In such a scenario, the latent spatial random effect may reflect areas of

unknown spatial transmission risk.

In order to investigate the need of integrating a Gaussian process into the

model, we can plot the infected individuals at equally distant, consecutive time

points and look at the spatial distribution of the infections. If we notice a pattern

of delayed new infections close to previously infected individuals, we can assume

a spatial influence over time between the infected individuals. In some areas

the infection might spread faster (or slower), with equal distance between the

individuals. This can further provide proof that an underlying risk surface has

impact on the disease transmission dynamics.

We use a SIR state transition model to describe the epidemic process as in-

troduced in Section 1.5.4. The population of n individuals, labelled 1, 2, . . . , n, is

divided into three mutually exclusive sets: susceptible S, infected I and removed

or recovered R individuals. We assume that the population is closed, that is, there

are no births, deaths, immigration or emigration during the course of the epidemic.

This entails that the number of susceptibles, infected and removed individuals at

any time t sums to n. Such an assumption is reasonable if the disease outbreak

lasts only for a relatively short period in which major demographic changes will

most likely not occur.

Transitioning between different states is only allowed when susceptibles get

infected, or when infecteds die or acquire life-long immunity to the disease. In

the latter case, removed individuals still count as part of the system (because

the population is closed) but do not play any further role in the spread of the

disease. In fact, any contact between an infected individual and another infected
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or removed individual does not have any effect as individuals can only get infected

once.

We model the infection and removal process per individual (individual-based

model). The removal process is governed by the infectious period which is the time

between infection and removal events and is distributed according to a random

variable Q ∼ Gamma(δ, δγ) with probability density

fQ(x) = (δγ)δxδ−1 exp(−δγx))/Γ(δ). The reciprocal of γ reflects the average length

of the infectious period with E(Q) = δ/(δγ) = 1/γ.

Note that a Gamma(δ, δγ) distribution with an integer shape parameter δ is

the sum of δ exponential distributions each with mean δγ. This is quite convenient

for epidemic modelling as it allows us to combine a chain of events (e.g. different

stages of the infection process). Thus, for δ = 1, we get an exponential distribution

with mean 1/γ and variance 1/γ2. If we increase δ, the expectation stays constant,

however, the variance decreases: V(Q) = δ/(δγ)2. In the literature (Xiang and

Neal, 2014), γ = 4 was found to be a good value for the shape parameter for the

Gamma distribution of the infectious period, which is why we adapt it for our

method.

Whilst each infectious period is independent of the rest of the process, the

same does not hold for the time until infection. The infectious pressure on every

individual depends on several factors and on the infection state of other individuals.

It changes over time and is different for every individual as introduced in the

previous section.

To be more specific, we suppose that a susceptible j is more likely to be infected

if other infected individuals are close. This can be modeled by a spatial kernel

K which describes the infectious pressure depending on the distance to other

infecteds. For two individuals, dij denotes their Euclidean distance and this is

equivalent to ||`i − `j|| where `i is the spatial location of individual i. We make

use of an exponential kernel K(dij;κ) = exp(−dij · κ) with scale parameter κ

where the infectious pressure is high for close contact and decreases as the distance

becomes large. Here κ governs the speed of the decay, that is for larger κ the

infectious pressure decreases more rapidly with distance (see Figure 2.2). The

total infectious pressure exerted on a susceptible individual j from all surrounding

infected individuals at time t is then ψ
∑

i∈I(t) K(dij;κ), where I(t) denotes the
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Figure 2.2: The decay of the spatial kernel function exp(−dij · κ) for different
values of κ.

set of indices from all infected individuals at time t and ψ is an infection rate

parameter.

Furthermore, the spatial location of a susceptible can play a role in the risk

of infection. Advantageous ecological and environmental conditions may increase

vector activity or vector reproduction, thus imposing a greater risk by for example

an increased vector presence at a specific location. In the following, let `j be the

location of an individual j expressed in spatial coordinates (X and Y coordinates).

We want to incorporate indirect but measurable vector related information at

location `j into our model. We define

v(`j) = XT
`j
β + s(`j)

v(`j) incorporates explanatory variables X`j = (X`j1, . . . , X`jk)
T with respect

to location `j, and corresponding unknown parameters β = β1, . . . , βk. Examples

for such covariates may include remotely sensed environmental data, such as tem-

perature, humidity and precipitation, but also vector density if such information

is available.

s(`j) describes the remaining spatial effect that was not yet accounted for by

any of the covariates. To be more specific, the collection s =
(
s(`)

)
`∈R2 of con-

tinuous random variables are assumed to constitute a Gaussian process. Conse-

quently, for the random variables at a finite set of observation points with locations



64 CHAPTER 2. THE JOINT MODEL FRAMEWORK

L = (`1, . . . , `n), we have sL = (s(`1), . . . s(`n))T ∼ N (0,Σ) with mean vector 0

and covariance matrix Σ. Σij is calculated using a Matern(3/2) covariance function

such that

Σij = σ2

(
1 +

√
3dij
ρ

)
exp

(
−
√

3dij
ρ

)
As discussed in Section 1.4.5, the choice of a Matern(3/2) covariance function is

suitable due to its simple form and its degree of smoothness: it is not unrealistically

smooth as the squared exponential function, but also not unrealistically rough as

the exponential function.

We further include a basic infectious pressure parameter α, which captures

infections that cannot otherwise be explained by the spatial kernel. Another im-

portant quantity in infectious disease modelling is the transmission rate ψ, which

can be higher for some diseases like Measles and lower for others, like Leprosy.

We are now in the position to state the infection process as introduced in Sec-

tion 2.1. Assume in the beginning of an outbreak, one initial infective introduces

the disease into an otherwise totally susceptible population. For a susceptible in-

dividual j, we model the infection process through a conditional Poisson process,

where the intensity function is given by the force of infection on j

λj(t) =


ψ ·

(
α + exp(v(`j))

∑
i∈I(t)

exp(−dij · κ)

)
j ∈ S(t)

0 else

(2.5)

Conditioned on all others, each individual undergoes an infection process whereby

its intensity function reduces to 0 after infection. Until infection the intensity func-

tion changes its values according to the other individuals with piece-wise constant

intensity in between successive events.

We allow v(`j) to be real-valued and by taking the exponential function to map

v(`j) to a positive number. Note that v(`j) can be thought of as the susceptibility

of individual j and that Equation (2.5) is only positive for susceptible individuals.

Consequently, for every individual we can observe at most one event denoting

the time of its infection, leading to an intensity function which is constantly 0

afterwards.
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When individuals move in space, for example through livestock trade or ran-

dom movement of humans, the infectious pressure can alter, because the spatial

kernel K is defined on their Euclidean distance. However, in our research we do

not include any term representing the movement of individuals which is a reason-

able assumption when considering notifiable livestock diseases: as soon as such a

disease is detected, a farmer is obliged to report it to national authorities lead-

ing in a comprehensive animal movement ban. If such a movement ban is only

partial, one could extend the model using data on for example the animal trad-

ing network. In the case of human diseases, there exist modelling approaches for

movement of individuals that are based on the concept of flux models where the

infectious contacts of individuals are determined by a mobility kernel, that is, a

function representing the probability that two individuals at different locations

make contact (Riley et al., 2015).
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2.3 The likelihood

Given data from an outbreak, we are interested in making inference about the

unknown parameters in the model set up defined in the previous section. We

only consider completed epidemics: by the end of the data observation all infected

individuals have recovered/removed and there are no more infected individuals

among the population. In practice, we assume that (for our veterinary example)

individuals are removed as soon as they are detected. As soon as an outbreak is

observed by noticing respective symptoms, the corresponding animals or farms are

being taken out of the system. In contrast, the true times of infection are rarely

observed and thus we treat them as missing data for our purposes.

In order to construct the likelihood let R = (R1,R2, . . . ,Rn) ∈ {[0, tend]∪{∞}}n

denote the observed removal times and I = (I1, I2, . . . , In) ∈ {(−∞, tend] ∪ {∞}}n

the infection times of the n individuals. Here, tend states the end of the observation

period. If an individual is not observed as a removal by tend it does not get infected

and we set its infection and removal time to ∞. Note that i0 ∈ {1, . . . , n} is the

first infective who introduces the disease into the population. Its infection time Ii0

is part of I and thus, is unknown and can become negative due to the updating

step during the MCMC.

For the infection process let us recall the likelihood (Equation (2.4)) and the

specification of the intensity function λj(t) for a susceptible individual j at time t

(Equation (2.5)).

The removal process of an infected individual is determined though the length

of its infectious period Q, which we modelled Q ∼ Gamma(δ, δγ).

The likelihood of the infection process and the removal process reads

f(R, I | θ) = exp
(
−
∑
j

tend∫
min{I}

λj(t)dt
) ∏
i:Ii<∞
i 6=i0

λi(I
−
i )

×
∏

i:Ii<∞

(δγ)δ(Ri − Ii)
δ−1 exp(−δγ(Ri − Ii))/Γ(δ)

(2.6)

θ = (α, β, ψ, κ, γ, δ, sL) is the vector of parameters. The expression I−j denotes

the time just right before individual j got infected. min{I} = Ii0 refers to the time
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point of the first infection and is the start of the outbreak.

Equation (2.5) states the intensity function of the infection process for a sus-

ceptible individual. This intensity function is defined in such a way that it only

changes after an infection or removal of any of the other individuals occurred.

Thus, it is piecewise constant in between events. Further it is to note that the

infectious pressure of an infected individual i onto a susceptible individual j is

constant over time. Consequently, if we know for every susceptible individual j,

how much time and the amount of infectious pressure that was exerted from ev-

ery infected individual on j, we are in a position to simplify the integral term in

Equation (2.6).

In order to derive such an expression, let a ∧ b ··= min{a, b}. With

Tij = (Ri ∧ Ij)− (Ii ∧ Ij) (2.7)

we obtain total duration in which an infected individual i exerted infectious pres-

sure on a susceptible individual j. Equation (2.7) becomes clear when considering

the three different cases:

• Ii < Ij < Ri

j experiences infectious pressure from i since Ii got infected until its own

infection Ij;

duration of exerted infectious pressure on j: Ij − Ii

• Ii < Ri < Ij

j experiences infectious pressure throughout the whole infectious period of

i;

duration of exerted infectious pressure on j: Ri − Ii

• Ij < Ii

j became infected before i;

duration of exerted infectious pressure on j: Ij − Ij = 0

For the amount of infectious pressure from all infected individuals {i : Ii <∞}
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onto a susceptible individual j, we define

Λj =

∫
λj(t)dt = α(Ij −min{I}) +

∑
i:Ii<∞

Tij · exp (v(`j))K(dij;κ) (2.8)

With Equations (2.7) and (2.8), we simplify the likelihood from Equation (2.6)

for piecewise constant intensity functions to

f(R, I | θ) = exp

[
−ψ ·

∑
j

Λj

] ∏
i:Ii<∞
i 6=i0

λi(I
−
i )

×
∏

i:Ii<∞

(δγ)δ(Ri − Ii)
δ−1 exp(−δγ(Ri − Ii))/Γ(δ)
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2.4 Constructing an MCMC algorithm

We are interested in obtaining samples from the posterior distribution f(θ | R).

In order to do so, we follow a Bayesian approach to draw samples from the joint

posterior distribution

f(I,θ | R) ∝ f(R | θ, I)f(I | θ)f(θ) (2.9)

Since the true times of infection are unobserved, we treat them as missing data. We

would like to marginalize them out in order to draw inference over the parameter

in the model. However, marginalization involves intractable computation, because

we have to sum over all possible infection times of every individual within our

population. This is an infeasible task. Therefore, we take samples from the joint

posterior (Equation (2.9)) and discard the infection times to mimic a marginaliza-

tion.

Setting up an MCMC algorithm to obtain samples from f(I,θ | R) can be

done using a Metropolis within Gibbs algorithm. That is, we update the infection

times I given θ and R, and the parameters θ given I and R in turns.

By means of the Python library PyMC3, the parameters θ can be updated using

the integrated NUTS (No U-turn) sampler which relies on the Hamiltonian Monte

Carlo algorithm. With Hamiltonian Monte Carlo methods we can update a set a

parameters simultaneously and can speed up the computation time (see Section

1.3.2). Compared to a random walk Metropolis update, Hamiltonian Monte Carlo

circumvents the slow exploration of the state space and is especially suited for

high-dimensional problems.

For updating the infection times, one has to think about how to do this in an

efficient manner. Jewell et al. (2009) updated them one at a time sequentially,

whereas Neal and Roberts (2005) updated them one at a time randomly chosen

per MCMC iteration. The conditional distribution of the infection times given the

parameters is too complicated to be able to sample directly from it. Taking into

account that the infectious period is Gamma(α, β) distributed, Neal and Roberts

(2005) used an independence sampler by sampling Q∗ from Gamma(α, β) and

proposing a new infection time through I∗j = Ri −Q∗.
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For our research, it was found to be more effective to use a Random Walk

Metropolis (RWM) update step rather than an independence sampler proposal.

For every infected individual i with Ri < ∞ in our dataset and with current

infection time Ii, the new value I∗i is proposed by sampling from a truncated Normal

distribution N (Ii, σ
2)|(−∞,Ri). The truncation is necessary because the infection

time of an individual cannot lie past its removal time. As mentioned earlier in

Section 1.3.1, the variance σ2 should be chosen in such a way that about a quarter

of the proposed samples are accepted. We follow the approach suggested by Xiang

and Neal (2014) and adapt σ2 according to whether a proposed move is accepted or

not. To be precise, let J be the iteration number. Then after a proposed infection

time I∗i we update σ2 according to

σ2 =

σ2 + 3 σ2

100
√
J

I∗i was accepted

σ2 − σ2

100
√
J

I∗i was rejected

Shifting the infection times in such a manner is not built in into the PyMC3

framework intrinsically. Therefore, we extended the features of PyMC3 with our

own implementation of an adaptive Random Walk Metropolis (-Hastings, due to

the truncation of the normal distribution) sampler for shifting the infection times.

The programming code is available at https://fhm-chicas-code.lancs.ac.uk/

koeppell/py-mc-3-epi-extension.

The pseudocode in Algorithm 4 below summarises the MCMC algorithm to

obtain samples from f(I,θ | R). One way to initialize the infection times is to

include prior belief about the length of the infectious period. Here, we assumed

that it lasts d days on average.

https://fhm-chicas-code.lancs.ac.uk/koeppell/py-mc-3-epi-extension
https://fhm-chicas-code.lancs.ac.uk/koeppell/py-mc-3-epi-extension
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Algorithm 4 Sampling from f(I,θ | R) using Hybrid NUTS-Metropolis within
Gibbs

1: Input: s number of samples, nI number of total infections in the outbreak, d
prior belief about length of infectious period, In×1 an n× 1 vector of all ones

2: Initialize: Set I(0) ← (R− dIn×1)
3: for k = 1, . . . , s do
4: Obtain a sample θ(k+1) from (θ | R, I(k)) using the NUTS sampler
5: for i do = 1, . . . , nI:
6: Obtain a sample I

(k+1)
i from (Ii | R, I(k)

−i ,θ
(k+1))

using adaptive Metropolis-Hastings
7: end for
8: k ← k + 1
9: end for

2.5 Parameter reduction to increase MCMC ef-

ficiency

Several experiments revealed that poor mixing of the infection times leads to poor

mixing of the other parameters. Thus, it is important to investigate MCMC meth-

ods with greater focus on updating the infection times than updating the param-

eters θ. One approach is to analytically integrate out parameters if possible. This

can improve the mixing of the MCMC algorithm because we diminish the dimen-

sion of the sampling target space. This approach was applied in Neal and Roberts

(2005), as well as in Kypraios (2007) accompanied with extensive simulation stud-

ies, and subsequently used in Xiang and Neal (2014).

To integrate out parameters, we make use of conjugate priors. We know from

Bayes’ theorem that for a parameter θ and data y,

f(θ)f(y | θ) = f(y)f(θ | y).

A prior f(θ) is called conjugate for the likelihood f(y | θ) if it belongs to the

same family of distributions as the posterior distribution f(θ | y). Our aim is

to integrate out θ, that is
∫
f(y | θ)f(θ)dθ = f(y) and note that this yields

the marginal likelihood. Thus, if we know the functional form of our posterior

from the conjugacy, integration can be easily performed. First, we rearrange the
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joint distribution into the functional parts of the parameter of interest and the

rest. Since the normalization constant of the posterior is uniquely defined, we can

expand the expression by multiplying and dividing by it, which yields the posterior

distribution and the marginal likelihood, our desired integral.

Recall from Equation (2.5), the intensity function for a susceptible individual

j at time t is λj(t) = ψ
(
α + exp(v(`j))

∑
i∈I(t) exp(−dijκ)

)
. It becomes apparent

that the two parameters κ and ψ have an inherent colinearity: as soon as κ in-

creases, the spatial kernel decreases and in order to account for the lower infectious

pressure ψ has to be increased as well. In this setting, the parameter κ already

incorporates the information of ψ due to their relationship and having informa-

tion about κ is informative about ψ. Thus, ψ constitutes a perfect candidate for

being integrated out. We assume that we have independent Gamma priors for

each of the parameters with Gamma(nv, δv) denoting the prior for parameter v

and v = κ, ψ, γ. The joint distribution ordered for all terms of ψ equals

f(R, I,θ) ∝ ψnI−1 × exp

(
−ψ ·

∑
j

∑
i:Ii<∞

Tij
(
α + evj−κdij

))
× ψnψ−1 exp(−δψψ)

× C

with

C =
∏

i:Ii<∞
i 6=i0

α +
∑

i∈I(t−i )

evi−κdij

× ∏
i:Ii<∞

(δγ)δ(Ri − Ii)
δ−1 exp(−δγ(Ri − Ii))/Γ(δ)

× exp(−sTLΣ−1sL/2)× κnκ−1 exp(−δκκ)× γnγ−1 exp(−δγγ)

Rearranging yields

f(R, I,θ) ∝ ψ(nI+nψ−1)−1 × exp

[
−ψ ·

(
δψ +

∑
j

∑
i:Ii<∞

Tij
(
α + evj−κdij

))]
× C

(2.10)

Looking at the functional form of Equation (2.10), we notice that it equals the

kernel of a Gamma distribution with shape δψ +
∑

j

∑
i:Ii<∞ Tij

(
α + evj−κdij

)
and
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rate nI +nψ−1. Therewith we conclude that the desired marginal likelihood reads

f(R, I,θ\{ψ}) ∝
C · Γ(nI + nψ − 1)[

δψ +
∑

j

∑
i:Ii<∞ Tij (α + evj−κdij)

]nI+nψ−1

whereby θ\{ψ} denotes the set of parameters θ without ψ.

2.5.0.1 Summary

In summary, our model outline comprises Gamma distributions for the infectious

periods and a single conditional Poisson process for the infection of every individual

in our population. A piecewise constant intensity function allows us to compute

the likelihood in simple arithmetic terms. Based on a Bayesian approach, we

construct an MCMC algorithm to draw samples from the joint conditional distri-

bution of the infection times and the parameters, given the data of the removal

times. For updating the parameters we choose the NUTS sampler. Updating the

infection times is done in a sequential manner with our own implementation of an

adaptive Metropolis-Hastings algorithm using a truncated Gaussian proposal. In

order to facilitate MCMC mixing we integrate out the infection rate parameter ψ

from the joint distribution of the parameters and the data utilizing the prior con-

jugacy property. This yields our desired target distribution up to a proportionality

constant

f(I,θ\{ψ} | R) ∝


Γ(nI + nψ − 1)×

∏
i:Ii<∞
i 6=i0

(
α +

∑
i∈I(t−i )

evi−κdij

)
[
δψ +

∑
j

∑
i:Ii<∞

Tij (α + evj−κdij)

]nI+nψ−1


×
∏

i:Ii<∞

(δγ)δ(Ri − Ii)
δ−1 exp(−δγ(Ri − Ii))/Γ(δ)

× exp(−sTLΣ−1sL/2)× κnκ−1 exp(−δκκ)× γnγ−1 exp(−δγγ)

(2.11)
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2.6 Simulation studies outline

This thesis is accompanied with simulation studies to evaluate how well the pa-

rameters for transmission, the environmental covariates and the spatial random

effect, that is the Gaussian risk surface, can be estimated from simulated outbreak

data. By means of our inference algorithm we recover the spatial risk surface at

a finite number of locations of the individuals in our population. This enables

us to interpolate the spatial random effect for the remaining area. Such a pre-

diction, also referred to as Kriging (e.g. Diggle and Giorgi (2019)), is common

in geospatial statistics within the generalized linear model framework. Its use

in this epidemiological context slightly differs from the generalized linear model

framework: instead of linking the linear predictor directly to the expectation of

our model distribution, we incorporate the effects as part of the intensity function

within the infection process.

In this section we describe how we simulate epidemics and explain the basic

set up of the simulations including the interpolation of the spatial random effect

for the whole area.

2.6.1 Epidemic outbreak simulation

Recall that an outbreak involves a sudden increase of incident cases of the normally

expected levels in that area (Chapter 1.1). We will refer to this in the remainder

of this thesis, in particular in Chapter 4 and 5, where we observe a jump in the

number of infected individuals instead of following a fast rising but smoother curve.

Throughout the simulation study, we used a Doob-Gillespie algorithm (Al-

gorithm 5) to simulate an epidemic outbreak in continuous time. An outbreak

comprises the development of random times which either indicate an infection or

act as a countdown towards removal. The algorithm alternates between two steps:

first, it draws an exponentially distributed time based on the cumulative rates of

all competing random times. Second, it normalizes the involved rates to obtain

probabilities which are then utilized to decide which event (infection or (partial)

removal) has occurred.

Let us recall that we model the infection process by means of a Poisson process
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Algorithm 5 Doob-Gillespie algorithm

1: Input: n population size; t current time; λj infectious pressure on individual
j; 4γ removal rate; Z array of infection/removal state with length n; Up-
date infection rates() function to update λj for all susceptible individuals j

2: Output: S, I, R number of susceptibles, infected and removed individuals; T
time points

3: Initialize: Set S = n− 1, I = 1, R = 0, t = 0, Z = zeros(n)
4: Obtain a random integer k from U{1,...,n} . first infective
5: Z[k] = 1
6: while I > 0 do
7: Update infection rates()
8: C = 4γI +

∑
j:Z[j]=0

λj

9: Obtain a sample t∗ from Exp(C) . obtain new event time
10: Update t← t+ t∗

11: Obtain a sample u from U[0,1] . decide which event happened

12: if u < 4γI
C

then . removal
13: Sum = 0
14: for i in {i with Z[i] > 0} do
15: Sum = Sum+ 4γ
16: if u < Sum

C
then

17: if Z[i] < 4 then . partial removal
18: Z[i] = Z[i] + 1
19: else . full removal
20: Z[i] = −1
21: Update I ← I − 1
22: Update R← R + 1
23: T.append(t)
24: end if
25: break for loop
26: end if
27: end for
28: else . infection
29: Sum = 4γI
30: for i in {i with Z[i] == 0} do
31: Sum = Sum+ λi
32: if u < Sum

C
then

33: Z[i] = 1
34: Update S ← S − 1
35: Update I ← I + 1
36: T.append(t)
37: break for loop
38: end if
39: end for
40: end if
41: Store.append((S, I, R))
42: end while
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with piecewise constant intensity functions between events (Equation (2.5)). The

infectious period follows a Gamma distribution with Q ∼ Gamma(4, 4γ) which

equals the sum of four independent exponential distributions each with rate 4γ.

We can make use of this fact by introducing artificial stages to the infectious period

and keeping record of which state an individual is in before it gets removed. In

other words, when infected, an individual enters stage 1 and for k = 1, . . . , 4, it

spends an exponential time in stage k (with rate 4γ) before moving on to the next

stage, or in case of k = 4, before recovering from the disease (getting removed). The

exit time from stage 4 is the removal time and there is no difference in infectivity

between these different stages.

As displayed in Algorithm 5, we draw the time until the next event (including

artificial partial removals) from an exponential distribution with cumulative rate

C = 4γI+
∑

j:Z[j]=0 λj. Here, λj is the sum of the infectious pressure on individual

j from all infected individuals in the population and the entry Z[j] denotes the

current infection/removal state of an individual j, that is Z[j] = 0: j is susceptible,

Z[j] = k > 0: j is in its artificial partial removal state k and infectious, and

Z[j] = −1: j is removed. It then converts rates into probabilities by taking the

proportion of the individual rates with respect to the cumulative rate C. By

means of a sample from a standard uniform distribution u, we decide which event

happened. In case of a partial removal we update the artificial status of the chosen

individual, in case of an infection we update the time and numbers in each class.

In every iteration the infectious pressure on susceptibles is updated by means of

the function Update infection rates(). The infectious pressure follows the intensity

function of Equation (2.5). It is constant in between events and only alters with

the occurrence of a removal (less infectious pressure) or an infection (additional

infectious pressure). Thus, it suffices to update the infectious pressure on each

susceptible individual j at the beginning of each iteration. Finally, this algorithm

runs until no infected individual is left.

2.6.2 Basic setup

We performed simulation studies with different simulated disease outbreaks. For

the initialization of each outbreak the first infected individual was chosen uniformly
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and its infection time marked the start of the observation period, that is t = 0.

The rest of the population was assumed to be entirely susceptible. The parameters

for the simulations in this thesis were chosen specific to each individual outbreak

and are provided accordingly. The epidemic was simulated using a Doob-Gillespie

algorithm (Algorithm 5), where the infectious process, that is transitioning from

the susceptible to infected state, was governed by the intensity function described

in Equation (2.5).

The data we obtained from a simulation are the locations L = (`1, . . . , `n) and

a vector R = (R1, . . . ,Rn) ∈ {[0, tend]}n of the removal times of the n individuals

in the population, where the observation period is [0, tend]. A removal time is set

to be tend if an individual escaped infection (and was therefore never removed). In

practice the true times of infection I ∈ {(−∞, tend]}n are not observed and hence

treated as missing data for our purposes. Since this quantity is unknown, the

inference algorithm allows an infection to have happened before the beginning of

the observation period.

We follow a Bayesian approach to draw samples from the joint posterior distri-

bution f(I,θ\{ψ} | R) (Equation (2.11)) with a Hybrid NUTS/Metropolis within

Gibbs Sampler as specified in Section 2.4. We state the different prior choice with

each example and performed sensitivity analyses to investigate the robustness of

the prior. The length of the burn-in phase was set according to the inspection of

the MCMC outputs.

Due to reasons of display, we show results from simulation studies that are

based on a single dataset (produced by single set of parameters). We want to

emphasize that we performed further simulations with differing outbreaks and

differing parameters to be able to make generalized statements on the inference

setting.

2.6.2.1 Risk surface prediction

With samples from the posterior distribution of sL for the observed locations L,

conditioned on the observed removal times R we are able to predict the value of

the Gaussian process for any new unobserved location in the grid of our simulation

study. As a result, we can create infographic maps that inform about areas of high
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susceptibility.

Let sL = (s(`1), . . . , s(`k)) be a realization of the Gaussian process at k train-

ing locations L = (`1, . . . `k). For a sequence of unobserved locations L∗ =

(`k+1, `k+2, . . . `k+p), we are now interested in predicting the distribution of sL∗ =

(s(`k+1), . . . , s(`k+p)) conditioned on sL. From Section 1.4 we know that the con-

ditional distribution is of the form

(sL∗ | sL) ∼ N ( ΣL∗LΣ−1
LLsL , ΣL∗L∗ − ΣL∗LΣ−1

LLΣLL∗) (2.12)

We perform the simulation study with n different locations. Assume further

we have m samples

sL =


s

(1)
1 , . . . , s

(1)
n

...

s
(m)
1 , . . . , s

(m)
n


from (sL | R) for each of the sites. Utilizing the i-th sample s(i) = (s

(i)
1 , . . . , s

(i)
n ) as

training data, we can calculate the predictive distribution of (sL∗ | sL = s(i)) with

Equation (2.12) and hence obtain the predicted mean of the Gaussian process at

the new locations L∗

µ̂
(i)
L∗

= ΣL∗LΣ−1
LLs

(i)

This collection of mean values can be used to create infographic maps high-

lighting areas of high spatial transmission risk. This can aid policy makers in their

decision process for appropriate counter measures fighting a disease outbreak. One

way of getting suitable point estimates at each location, is to average the predicted

means µ̂L = 1
m

∑m
i=1 µ̂

(i)
L∗

. However, because the marginal distributions at each

location are Gaussian distributions, the samples can take values from the whole of

the real axis, in particular negative values. For informing policy makers on previ-

ously unknown high risk areas we would like to talk in the notion of probability.

Therefore, a different way to plot such a risk map is to consider p-values. We are

particularly interested in the p-values of µ̂ with respect to the prior mean in our

model. Hence, to get information on how likely it is to have values of 0 and greater

we take into account how spread out the distribution is for a single location. We

define
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µ̂∗`∗ ··=
1

m

m∑
i=1

1{µ̂(i)`∗ >0}

as the exceedance probability for every location `∗, where 1 serves as the indicator

function. In other words, for each location, it gives us the relative frequency that

the predicted mean is greater than the average of the spatial random effect, which

is 0.

Risk maps with respect to µ̂ and µ̂∗ look very similar apart from the scale of

the colorbar, thus we will only depict the prediction plots with respect to µ̂∗ for

better interpretability in this thesis.

2.6.3 Model diagnostics and comparators

For comparisons of the sampling efficiency and performance we need diagnostic

tools and make use of the autocorrelation function and the effective sample size.

A more detailed coverage can be found for example in Rubin (2013).

For samples from independent identically distributed random variables the cen-

tral limit theorem provides information about the uncertainty in the model. Cen-

tral limit theorems exist for Markov processes but with larger variance (due to the

positive correlation). The effective sample size (ESS) allows us to compare the vari-

ance for a dependent sample with an independent sample. If the MCMC chain has

variance V and independent samples have variance S, we calculate ESS = n ·S/V ,

where n is the sample size from the MCMC.

In the remainder of this thesis will use the effective sample size and the auto-

correlation function for comparison of inference outputs.
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2.7 Simulation study: Investigating

non-identifiabilities

In this section we explore the performance of our joint model. We analyse our

model’s behaviour and investigate non-identifiabilities of the parameters.

To do so, we first analyse risk surfaces for the random effect matching our

simulation specification, that is Matern(3/2) risk surfaces, and investigate their

recovery. We then explore how well our algorithm is performing with respect

to misspecification of the covariance function by choosing surfaces that do not

match the inital model description. Thereafter we include solely environmental

information and finally consider the full model specification by incorporating a

spatial random effect and fixed effects.

The basic setup was identical in all simulations in this section and comprised

a population of size n = 100 with locations L = (`1, . . . , `100). The locations were

sampled independently on a 100 x 100 square area in a uniform manner with the

exception of example 2.1 d).

In all simulations we applied the infectious pressure with respect to Equation

(2.5) and fixed the basic infectious pressure α to 10−6. The length of the infectious

period was modelled as γ = 1/7 throughout. In other words, on average individuals

were infectious for 7 days. The parameters ψ and κ were chosen specific to each

individual outbreak and marked accordingly in Tables 2.1, 2.4 and 2.6.

If not stated otherwise, we chose Gamma(0.1, 0.1) priors for the parameters

κ, ψ and γ. We remind the reader that we analytically integrated out the param-

eter ψ (see Equation (2.11)) For the estimation of the spatial effect, we fixed the

values for the hyperparameters of the Matern(3/2) covariance function either to

the true value or state the priors used. For each example we drew 50,000 samples

together with an additional 10% for the burn-in (5000 samples). Inspection of the

MCMC outputs suggested this was enough.

For the purpose of model investigation, we selected outbreak examples where

about 60% of the population was infected. This provided enough information

about the outbreak dynamics, that is a reasonable number of infected individuals,

to be able to infer parameter estimates. On the other hand, disease-free areas

remained to investigate the impact of the risk surface as the driver of infection.
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As there is a lot of randomness in outbreak simulations, we also investigated

the behaviour of outbreaks scenarios with the same infection parameters, varying

spatial location of the first infected individual, and different random risk surfaces.

Similar results were observed and the results proved to be robust with respect

to the above mentioned randomness. Thus, we restrict ourselves to the example

selection in this thesis to illustrate features of the model and sampler behaviour.

2.7.1 Simulating from the model

We now turn to the investigation of how well we can recover the risk surface when

we simulate the data from the model directly. As specified in Section 2.2, we model

the spatial random effect using a Gaussian process with a Matern(3/2) covariance

function. Recall that the Matern(3/2) function depends on the distance between

points, c(xi, xj) = σ2
(
1 +

√
3dij
ρ

)
exp
(
−
√

3dij
ρ

)
. It is determined by the marginal

variance parameter σ2 and the lengthscale ρ.

We simulated three different Matern(3/2) risk surfaces with constant σ2 = 3

and varying lengthscale ρ = 20, 40, 100 on a 100×100 grid (Table 2.1). We did not

alter σ2 to make the simulations comparable as a higher σ2 would lead to higher

and lower values in the risk surface which can resemble a risk surface with a lower

lengthscale.

In this section we only included a random spatial effect for simplicity, that

is v(`j) = s(`j) for all j = 1, . . . , 100. The more complex case, when addition-

ally adding fixed effects is covered in Section 2.7.3. Recall that the population

size is 100. Therefore, we have 100 points of the risk surface at the locations

L = (`1, . . . , `100) of our individuals and 1002 points from the grid. Thus, for the

inference we sample from the 100 + 1002 dimensional normal distribution with

mean vector equal to 0 and covariance matrix Σ, whereby the entries of Σ follow

the above mentioned Matern(3/2) covariance function using the Euclidean metric.

Example d) in Table 2.1 illustrates an outbreak scenario with a spatially non-

uniform distribution of points. The locations were sampled around the margins

to mimic high and low point density regions determined by environmental factors,

for example valleys and mountains.

In the following, we first investigate the mixing behaviour of the model and then
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consider the accuracy of the posterior parameter estimates. Finally, we analyze

the recovery of the risk surface and conclude with a remark.
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2.7.1.1 Mixing behaviour

In the following we discuss the features of the mixing behaviour of the joint mod-

elling approach. We exemplify the characteristics of the inference by means of

the outbreak simulations from Table 2.1 as reference. Different starting points

for the MCMC chain did not alter the results and the mixing behaviour obtained

from other outbreak simulations looked similar. Thus we refrain from displaying

further figures with similar characteristics from different simulations for the dis-

cussion of the model behaviour. Table 2.2 gives an overview over the different

inference scenarios.

For simplicity reasons we first fixed the parameters of the covariance functions

to their true values when making inference. We were particularly interested in the

posterior mean infectious time as a key summary statistic for the infection times

I. We chose Gamma(0.1, 0.1) priors for the spatial kernel parameter and for the

removal rate parameter. Although they have a lot of mass on 0, they are relatively

flat for values greater than zero. The impact with respect to a more informative

priors is discussed further on.

Figure 2.3: MCMC traceplot of posterior samples with respect to the outbreak
simulations of Table 2.1. We fixed the parameters of the Matern(3/2) covariance
function to their true values. The burn-in phase of the first 5000 samples is included
in the plot. Parameters shown are the infection and removal process parameters κ
and γ, the mean of the spatial random effect s̄ and the mean infectious period IR.



2.7. SIMULATION STUDY: INVESTIGATING NON-IDENTIFIABILITIES 85

κ γ IR σ2 ρ s̄

Outbreak a)

Fixed I, ρ, σ2 16,891 25,375 - - - 46,464
Fixed σ2, ρ 401 168 110 - - 16,045
Fixed s 719 99 60 - - -
Fixed ρ
Set σ2 = 1

1,162 354 237 - - 57,614

Fixed none
σ2 ∼ Uniform(0, 10)
ρ ∼ Gamma(200, 10)

181 109 63 232 27,088 8,305

Set s = 0 2359 793 688 - - -

Outbreak b)

Fixed ρ, σ2 310 137 127 - - 20,878
Fixed σ2, ρ
γ ∼ Gamma(14, 100)

404 241 199 - - 26,566

Outbreak c)

Fixed ρ, σ2 133 125 66 - - 841
Fixed none
σ2 ∼ Uniform(0,10)
ρ ∼ Gamma(1000, 10)

169 156 74 1,493 99,745 594

Fixed none
σ2 ∼ Uniform(0,10)
ρ ∼ Gamma(200, 10)

167 179 96 252 15,722 761

Fixed none
Set σ2 = 1
ρ ∼ Gamma(200, 10)

228 179 131 - 49,742 3,642

Outbreak d)

Fixed ρ, σ2 602 632 483 - - 72,046

Table 2.2: Effective sample size (ESS) of different MCMC chains from outbreak
simulations from Table 2.1. If not otherwise specified, we chose Gamma(0.1, 0.1)
priors. If fixed, the parameter was set to its true value and denoted by - in the
table.
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Figure 2.3 displays the MCMC traceplot of the infection and removal process

parameters, the mean of the spatial random effects and the mean infectious period

for outbreak a) in Table 2.1. We noticed that the mixing of the MCMC algorithm

was reasonable with the mean spatial random effect performing best and the mixing

of the mean infectious period performing worst. This behaviour is also reflected

in the autocorrelation of the MCMC chains with the slowest decay for IR and

the fasted decay for s̄. Moreover, the effective sample size (ESS) of the chains

confirmed the above observation with κ : 401, γ : 186, s̄ : 16, 045 and IR = 110.

Figure 2.4: Violin plots of the effective sample sizes (ESS) of the set of infection
times I and the spatial random effects s with respect to the data of the outbreak a)
(Table 2.1). s Inf and s NInf denote the subsets of random effects at the locations
of the infected and non-infected individuals, respectively. In the inference the
hyperparameters of the Gaussian process were fixed to their true value.

The mean infectious period and the mean spatial random effect are summary

statistics which is why we investigated the individual infection time and random

effect mixing behaviour in more detail through violin plots of their effective sample

sizes in Figure 2.4. These plots confirmed that in general the mixing of the infection

times was very slow and that there was a great variability in particular in the

mixing of the spatial effect. It became clear that for the non-infected individuals

the ESS of the spatial random effect was on average much higher than for the

infected individuals. This suggested that the shifting of the infection times plays

a major role in the behaviour of the MCMC mixing. In fact, when fixing the

infection times to their true value, we obtained a smoother mixing and comparable

high values for the ESS of the other parameters κ : 16, 891, γ : 25, 375, s̄ : 46, 464
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in contrast to not fixing the infection times (κ : 401, γ : 186, s̄ : 16, 045). Here, the

dimension of the sample space has been reduced massively, that is almost halved,

which let the sampler traverse more easily through the state space. When fixing

the random effects and thus, decreasing the dimension of the sample space by the

population size, and not only the number of the infected individuals, the mixing

was still a lot slower (κ : 719, γ : 99, IR : 60) than when fixing the infection times.

This again indicated that the shifting of the infection times poses a hardship for

the sampler.

Such a slow mixing behaviour when shifting the infection times has also been

observed before in the literature, see for example Neal and Roberts (2005). An

overview on efficiently updating the infection times in SIR-type of models and

quantitatively assessment of the fit of proposed models is also provided in Aris-

totelous (2020). In the course of the simulation study we investigated different

updating schemes for shifting the infection times. The best performing approach,

whose results are displayed in the simulation studies, was a random walk update

with varying variance (see Section 2) but for the purpose of completeness we also

want to mention other attempts:

• We used a Metropolis sampler for all parameters instead of a the hybrid

version (NUTS and Metropolis). There is a tendency that using the same

sampler worsens mixing behaviour. This can largely explained by the fact

that the NUTS sampler is optimized for high dimensional problems.

• A non-centered parametrization approach: In a Bayesian hierachical model,

we term the parametrization for the data Y and parameters Θ centered, if the

missing data lie (are centered) between the observations Y and the parame-

ters Θ. If we can reparametrize the model in such a way that the centered

node is a deterministic function of the parameters and some unknown data,

we term this non-centered approach. In the literature it was shown that

a different parametrization might boost MCMC efficiency (Papaspiliopou-

los and O Roberts, 2003), however for our model we did not observe any

discernible difference.

• Sequential updates, that is updating all infection times sequentially, or block

updates, that is updating a certain percentage of the infection times before
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they are subject to the accept-reject step, did not improve sampling perfor-

mance

• Estimating the variance of the random walk update during the burn-in phase

and fixing it, improved computation time slightly but not the mixing be-

haviour.

• Choosing an exponentially distributed infectious period (vs. the sum of

several identically exponentially distributed infection times) increased the

variance of the distribution and added additional uncertainty into the esti-

mator.

• Running the chain for longer and greater thinning can reduce the autocorrela-

tion between the samples. However, this becomes a matter of time feasibility

and availability of the computational resources, which are often limited.

For sensitivity analysis, we investigated the mixing behaviour when a priori

information on the parameters estimates were translated into the model by in-

formative priors. We inferred that in general informative priors improve mixing

of the MCMC chain, but they have only smaller effects. For example, the ESS

for the parameter estimates in outbreak b) improved from κ = 310, γ = 137, s̄ =

20, 878, IR = 127 with a Gamma(0.1,0.1) prior on γ to κ = 404, γ = 241, s̄ =

26, 566, IR = 199 using a Gamma(14,100) prior. Similar effects were observed

when placing an informative prior on κ in outbreak a).

So far for simplicity reasons we had fixed the hyperparameters σ2 and ρ of the

Gaussian process. When estimating them additionally, the mixing for σ2 and ρ

is reasonable. The sampler seemed to have more difficulties estimating σ2. The

additional parameter estimates slowed down the mixing of the other parameters

in outbreak a), whereas it improved mixing in outbreak c).Fixing σ2 to 1 lead to

an overall improved mixing of the remaining parameters. This held true, even in

the case of a prior for ρ which is centered away from the true parameter value in

outbreak c). In fact, the mixing in the inference for outbreak a) and c) was better

when setting σ2 to 1 than when fixing it to the true parameter.

Putting a prior on ρ which is centered away from the true parameter value

slowed down the mixing of the parameter ρ with yet a reasonable performance.
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The mixing of the other parameters seemed to be robust towards that prior mis-

specification.

In conclusion, mixing of the MCMC chain is robust towards the estimation of

the hyperparameters even in the case of wrongly specified priors and performs well

for fixing σ2 to 1.

Parameter non-identifiability

Figure 2.5: Pairwise correlation of posterior samples from an MCMC chain of
outbreak simulation a) (Table 2.1). For the inference we fixed the hyperparameters
of the Gaussian process s̄ to their true value and chose Gamma(0.1, 0.1) priors for
the spatial kernel parameter κ and the infectious period γ. The mean infectious
period is denoted by IR.

The plot in Figure 2.5 gives us insight into the pairwise correlation of the
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parameters. This plot is with reference to the outbreak simulation a) and the

MCMC chain with fixed Gaussian process hyperparameters and Gamma(0.1, 0.1)

priors for the spatial kernel parameter κ and the infectious period γ. There is a

clear negative correlation between γ and the mean infectious period, which was

expected as the reciprocal of γ is the mean length of the infectious period. Apart

from that, the displayed parameters do not seem to be correlated.

In some simulations we noted a slight non-identifiability between the spatial

kernel lengthscale parameter κ and the Gaussian process s. This can be explained

by the fact that both parameters account for spatial variation in the data. We

sought to find the relationship between these two and investigated the lengthscale

versus the Pearson correlation coefficient of s̄ and κ, the lengthscale of the Gaus-

sian process versus the effective sample size of κ, as well as the Pearson correlation

coefficient of the lengthscale and κ. The results indicated no obvious trend.

Effect of distribution of locations

For outbreaks it might happen that the spatial location of individuals is more

dense or more sparse in some areas than others due to environmental factors, such

as mountains, lakes, etc.. When investigating the effect of the spatial location of

individuals on the model inference we observed that the distribution of the less

centralized locations in outbreak d) improved mixing of the MCMC chain (ESS

for κ : 602, γ : 632, s̄ : 72, 046, IR : 483) compared to the outbreak b) on the same

risk surface with a different distribution of points over the whole observation area

(ESS for κ : 310, γ : 137, s̄ : 20, 878, IR : 127). A possible explanation could be that

the spatial distribution of the points can heavily influence the infection behaviour

within the population: the spatial kernel determines that the next infections must

be close around a current infected individual. The fixed locations along the margins

of the observation area limit the possibilities of the next infection and thus the

ongoing of the outbreak. This is also reflected in the bimodal infection curve, with

the infection process first proceeding to the left and then to the right of the first

infected individual. Therefore, the spatial location can add information a priori

into the model making it easier for the sampler.
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κ γ 1/IR IR σ2 ρ s̄

Outbreak a)

True params 0.3 0.14 0.154 6.475 3 20 1.692
Fixed I, ρ, σ2 0.264 0.154 - - - - 0.127
Fixed σ2, ρ 0.246 0.157 0.156 6.418 - - 0.091
Fixed σ2, ρ
κ ∼ Gamma(30,100)

0.277 0.162 0.160 6.246 - - 0.127

Fixed s 0.262 0.156 0.155 6.470 - - -
Fixed ρ
Set σ2 = 1

0.215 0.169 0.167 5.977 - - 0.021

Fixed none
σ2 ∼ Uniform(0, 10)
ρ ∼ Gamma(200, 10)

0.252 0.160 0.158 6.314 3.956 20.096 0.139

Set s = 0 0.203 0.191 0.189 5.285 - - -

Outbreak b)

True params 0.3 0.14 0.141 7.078 3 40 2.001
Fixed ρ, σ2 0.205 0.155 0.150 6.683 - - 0.453
Fixed σ2, ρ
γ ∼ Gamma(14, 100)

0.209 0.148 0.146 6.836 - - 0.460

Outbreak c)

True params 0.35 0.14 0.146 6.857 3 100 1.770
Fixed ρ, σ2 0.697 0.153 0.151 6.630 - - 0.880
Fixed none
σ2 ∼ Uniform(0,10)
ρ ∼ Gamma(1000, 10)

0.361 0.151 0.149 6.709 2.662 100.088 0.606

Fixed none
σ2 ∼ Uniform(0,10)
ρ ∼ Gamma(200, 10)

0.360 0.147 0.145 6.877 1.846 19.938 0.058

Set σ2 = 1
ρ ∼ Gamma(200, 10)

0.343 0.151 0.149 6.698 - 19.900 0.011

Outbreak d)

True params 0.3 0.14 0.153 6.545 3 40 2.001
Fixed ρ, σ2 0.349 0.203 0.199 5.021 - - 0.273

Table 2.3: Posterior mean estimates of outbreak simulations from Table 2.1. If
not specified else, we chose Gamma(0.1, 0.1) priors. If fixed, the parameter was
set to its true value and denoted by - in the table.
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2.7.1.2 Parameter estimates

Table 2.3 gives an overview over the parameter estimates for different inference

scenarios. The simulation study revealed that some parameters were difficult to

estimate and the parameter estimates depended on the outbreak simulation as well

as on the a priori information we put into the inference through fixing parameters

or deploying informative priors. In more detail:

• A priori information: Fixing parameters or placing more informative pri-

ors on parameters in the inference, lead to tighter posteriors and thus less

uncertainty in the estimates. This can be seen for example in the 95%

credible intervals when fixing ρ and σ2 compared to when additionally fix-

ing the infection times. The credible intervals of γ, κ and s̄ shrunk from

[0.124, 0.193], [0.146, 0.354],[-1.157, 1.299] to [0.136, 0.174], [0.204, 0.322]

and [−1.094, 1.354], respectively.

• Removal rate γ: Throughout all inference settings, the removal rate pa-

rameter γ was estimated higher than the true value. For outbreak a) this

was not surprising, as the reciprocal of the mean infectious period was also

higher for this particular outbreak simulation. However, for the other sim-

ulations the mean infectious period was also overestimated. If it is possible

to obtain a reasonable estimate of the length of the infectious period from

expert opinion, we could place a more informative prior on gamma, such as

Gamma(14, 100) with mean set to the estimate and variance kept small to

0.0014. For example, for outbreak b) the posterior mean of γ shifted closer

to the true value as well as the 95% credible interval of γ decreased from

[0.104, 0.218] to [0.111, 0.193]

• Spatial kernel κ: In all the examples, the spatial kernel parameter κ was

underestimated. This might be a prior effect due to the large mass on 0 of a

Gamma(0.1, 0.1) prior. Choosing a more informative Gamma(30,100) prior

for κ in outbreak a) improved the posterior mean and credible intervals for κ

(0.277, CI: [0.202, 0.351] in contrast to 0.246, CI: [0.146, 0.354]). Addition-

ally, it shifted the posterior mean of s̄ closer to its true value from 0.091 to

0.127, though the estimate of γ worsened. Thus, we can conclude that with
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a more informative prior on κ, we add more spatial information improving

the estimates of κ and s̄.

• Nonidentifiability between κ and s̄: The deviation of the κ estimate

and the great underestimation of s̄ might be partially explained by the non-

identifiability between the spatial kernel parameter κ and the mean of the

spatial random effect s̄. Both parameters account for spatial variation. Fix-

ing s to its true values in outbreak a) led to a better posterior mean of κ

than when fixing the hyperparameters of the Gaussian process alone. On

the other hand, putting a more informative prior on κ let to better estimates

of s̄ than when only fixing the hyperparameters. However, we could not de-

termine any correlation structure between the two parameters (see Section

2.7.1.1).

• Estimating the lengthscale of the Gaussian process: The value of s̄

intrinsically depends on σ2 and ρ. A priori we do not have any information

on these hyperparameters because we want to model an unknown random

effect. However, very low estimates of the lengthscale would result in different

independent point risks and very large estimates would lead to a flat risk

surface. Thus, we need to adapt the prior of the lengthscale to the scale

of the observation area we are working on. Outbreak c) illustrates that

the posterior lengthscale estimate is very prior sensitive. However, the prior

choice for ρ placing mass away from the true parameter, e.g. Gamma(200,10)

with mean 20 whereas the true value is at 100, mainly affects its own estimate

and s̄. All other parameter estimates are still reasonable.

• Fixing the marginal variance σ2 of the Gaussian process: From the

different inference scenarios of outbreak c) we can infer that σ2 is really

difficult to estimate. However, we are not interested in the value of σ2

directly, but in the areas of higher and lower spatial risk in general. We

investigated the impact of fixing the marginal variance to 1. This influenced

the estimate of s̄ and thus the estimates of the other parameters as well. For

outbreak a), for instance, this lead to the overall worst parameter estimates

out of all scenarios. However, on the contrary, for outbreak c) it lead to
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quite reasonable estimates except s̄ as expected, even though, the prior for

the lengthscale was chosen far away from the true value.

We noticed that recovering the true parameters of the Gaussian process within

an epidemiological setting can pose a real challenge. Thus, a fundamental question

that arises in this context is: Are the overall dynamics of the outbreak still captured

despite the deviating parameters estimates from the true values?

a) b)

Figure 2.6: Investigation of the outbreak dynamics by the model. We simulated
200 disease outbreaks from the posterior distribution given outbreak c). The model
captured the temporal dynamics (a)) as well as the spatial distribution (b)) of the
outbreak. The red curve in a) displays the true outbreak data and the colormap
in b) represent the frequency of how often an individual got infected within the
200 simulations.

Using Outbreak c) we simulated 200 outbreaks from posterior samples of the

MCMC chain for which we had fixed σ2 to 1 (true value 3) and had chosen a

shifted prior for the lengthscale, that is Gamma(200,10) with mean 20, where the

true value was 100 (Table 2.1). This resulted in an posterior mean estimate for

the lengthscale that is far away from the true value (19.9). Despite the difficulty of

recovering the true parameters of the Gaussian process, it became clearly visible

in Figure 2.6 that the model was able to capture the dynamics of the outbreak.

The true infection curve (red curve in Figure 2.6 a)) lies in the middle of the

shaded outbreak curves representing the temporal distribution of the outbreak.

Furthermore, we notice that points infected by the posterior outbreaks are in line

with the spatial distribution of the original outbreaks (Table 2.1).
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2.7.1.3 Prediction

In this section we compare the true risk surfaces with the predicted risk surfaces

given the data of the outbreaks. Figures 2.7 and 2.8 display the predicted risk

surfaces for Outbreaks a) - d) of Table 2.1.

As a first step we fixed the hyperparameters ρ and σ2 of the Gaussian process

to their true values and investigated how well the risk surface of the random

spatial effect can be recovered by our method. When excluding the special case of

Outbreak d), we observed that the high risk area from the simulation was mostly

identified in all of the predicted risk surfaces. The model obtains most information

on the risk surface in areas of infections, thus some high risk areas were not able

to be identified, e.g. in Outbreak c) at the center bottom. On the other hand, the

model was able to capture also lower risk areas exemplified clearly in prediction by

Outbreak a) and in Outbreak b) on the left bottom corner. For better inference

on such areas, it is necessary to include other spatial covariates as additional data.

The prediction of Outbreak c) in 2.8 has a very narrow colormap scale repre-

senting minimal variation in the severity of the spatial risk. In comparison to the

other true risk surfaces, the scale of the colormap is also narrower because of a

larger lengthscale (ρ = 100), thus less variation in the prediction was expected.

However, with more spatial information from other covariates we might be able

infer a better risk surface at areas of no infection, e.g. on the top left.

The prediction of the risk surface in Outbreak d) (Figure 2.8) serves as an

exception to the remaining outbreaks. Here the non-centered spatial distribution

of the individuals’ locations affected the prediction of the random risk surface

immensely. The model does not have information in areas where no individuals

reside and thus cannot capture any features of the surface anywhere else. In other

words, if the accumulation of points is too sparse with respect to the varying

features of the surface, the model is not able to capture these variations.

Given that we had fixed ρ and σ2 so far, we can also conclude that the method

performs similarly well when including their estimation in the inference. This is

represented through the prediction plots of Outbreak a) which look very similar.

In order to analyze the impact of the slow mixing, we also investigated the

difference in the risk surface when fixing and estimating the infection times. For
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True risk surface Prediction for Outbreak a)

ρ = 20, σ2 = 3

Fixed ρ = 20, σ2 = 3

Fixed ρ = 20, σ2 = 3, I

Fixed none

Figure 2.7: Comparison of the simulated (left) and predicted (right) Matern(3/2)
risk surfaces for Outbreak a). Different parameters were fixed according to the
inference scenarios. The grey circles and black points denote individuals that were
removed and survived the outbreak, respectively.
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True risk surface Prediction for Outbreaks b) - d)

ρ = 40, σ2 = 3

Outbreak b)
Fixed ρ = 40, σ2 = 3

Outbreak d)
Fixed ρ = 40, σ2 = 3

ρ = 100, σ2 = 3
Outbreak c)

Fixed ρ = 100, σ2 = 3

Figure 2.8: Comparison of the simulated (left) and predicted (right) Matern(3/2)
risk surfaces for Outbreaks b) - d). The hyperparameters of the Gaussian process
were fixed to the true values in the inference. The grey circles and black points
denote individuals that were removed and survived the outbreak, respectively.
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Outbreak a) in Figure 2.7 the different prediction plots are displayed. Due to their

high similarity, we can place a lower weight on the slower mixing of the infection

times after all.

2.7.1.4 Why is a vector model needed?

In this section we want to elaborate why such a joint approach is needed and why

an epidemic model alone does not suffice. To answer this, we used the outbreak

example a) from Table 2.1 and made inference without estimating a spatial random

effect, that is setting the spatial random effect to 0.

a) b)

Figure 2.9: Investigation of the outbreak dynamics by the model. We simulated
200 simulated disease outbreaks from the posterior distribution given the data
of outbreak c). a) displays the temporal dynamics with the red curve being the
true data, and b) the spatial distribution of the outbreaks with the colormap
representing the frequency of how often an individual got infected within the 200
simulations.

Compared to the model when fixing the hyperparameters of the Gaussian pro-

cess to their true value and estimating the random effect, we obtained noticeably

poorer estimates for the other parameters (see Table 2.3), in particular the mean

infectious period was estimated more than a whole day shorter (6.5 vs 5.3). More-

over, the spatial kernel was estimated much lower to seemingly account for the

missing infectious pressure.

The same holds for the dynamics of the outbreak. Figure 2.9 pictures 200 sim-

ulated outbreaks from the posterior samples of the MCMC chain. We can clearly
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see that the true infection curve (red line) does not represent the overall infection

curves (Figure 2.9 a) ). Furthermore, when comparing the spatial distribution of

the outbreaks, that is the frequency of individuals getting infected in Figure 2.9

b), we can clearly see that the outbreaks have a tendency of going north. The true

outbreak spread (Table 2.1 a) ) however, was also driven by the underlying risk

surface, which is located at the bottom center and thus would imply a tendency

towards the west as well.

This example displays that if we neglect the impact of the spatial random

effect on the outbreak, it leads to poor parameter estimates and different outbreak

dynamics.

2.7.1.5 Remark 1

From this simulation study of the joint approach we can conclude:

• Including stronger prior information improves the identifiability of the pa-

rameters.

• As expected, prior information on the parameters increases the identifiabil-

ity of the parameters. However, such data is often difficult to obtain, in

particular for a random effect. In this case it is advisable to adapt the spa-

tial scale parameter of the Gaussian process to the appropriate scale of the

observation area by means of an informative prior. Besides, we found out

that the variance parameter of the Gaussian process, σ2, was very difficult

to estimate. Moreover, fixing σ2 did not influence the mixing behaviour.

Thus, it is advisable to fix this parameter to decrease the sampling space

and facilitate inference.

• The mixing of the MCMC method was reasonable with the infection times

performing worst and the spatial random effect performing best. The latter

is also represented by the similar prediction plots when fixing or estimating

the parameters in the inference.

• Although mixing might not be optimal, this can still be acceptable because

we are not interested in the exact estimation of the parameters and rather
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in the forecast or prediction of an ongoing disease spread. Obtaining similar

outbreak characteristics from posterior samples showed that we captured the

outbreak dynamics.

• Shifting the infection times posed a hardship for the sampler and slowed

down the mixing also for the other parameters. This became clear in the

effective sample size, in particular, when fixing the infection times to their

true values. Several approaches for improving the shifting of the infection

times did not lead to better results.

• The removal rate, also given by its reciprocal the infectious period, may

be estimated roughly through expert opinion or from literature and can be

translated into a suitable prior for γ.

• In the course of this simulation study we inferred that the spatial location of

the individuals impact model inference, if the number of individuals cannot

represent the variation of the risk surface adequately.

In summary, simulating from the model and making inference and prediction,

leads to reasonable results as anticipated. Although the mixing of the infection

times is rather slow, it does not pose a problem for capturing the dynamics of

the model. Stronger prior information about the parameters leads to better iden-

tifiability of the parameters. In our outbreak setting this could be realized by

gathering information about the length of the infectious period and adapting the

prior for lengthscale to the observation area. Furthermore, other data on spatial

covariates may contribute to the better estimation of the risk surface in areas of no

disease occurrence. In the remainder of this thesis, we will not analyze the mixing

in detail and refer to Section 2.7.1.1 for a thorough discussion.
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2.7.2 Exploring further risk surfaces

So far, in Section 2.6.2, we worked with Matern(3/2) risk surfaces, as this reflects

our simulation of the covariance function in the model setup of the Gaussian pro-

cess. However, usually we do not have much information about the spatial effect

a priori. Thus, we want to explore how the algorithm is performing in case of mis-

specification of the model. Hence, in the following sections we explore three other

risk surfaces: a flat risk surface, a surface with a high risk area in the upper left

corner and a sinusoidal risk surface - all estimated with a Matern(3/2) covariance

function. In all examples we follow the procedure of simulation, inference and

prediction described in Section 2.6.2. We neglect the discussion about the mixing

of the algorithms as it was similar to the model performance described in Section

2.7.1.1.
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2.7.2.1 Flat risk surface

We simulated an outbreak without a spatial random effect and misspecified our

model by trying to recover a flat risk surface with a Matern(3/2) covariance func-

tion. The outbreak simulation is displayed in Table 2.4 e). In contrast to all other

outbreaks so far, the driving force of infection was solely the distance between the

individuals governed by κ and the infection rate parameter ψ.

a) b)

Figure 2.10: Comparison of the predicted risk surfaces for Outbreak e) with a)
fixed σ2 = 1, ρ = 40, and b) estimated hyperparameters (σ2 ∼ U(0, 10) and
ρ ∼ Gamma(40, 1)).

To stabilize inference, we first fixed the hyperparameters σ2 = 1 and ρ = 40

(estimated based on the size of the surface). Predicting the spatial random effect

from posterior samples showed a higher probability at all infected individual’s

locations (Figure 2.10 a)). In the upper left corner there was slight increase in the

posterior probability for the spatial risk surface. This might be attributable to the

fact that the outbreak started there (see Table 2.4 e)). However, the weight given

to the spatial random effect, that is the posterior probability for values greater

than 0, is not as strong as compared for example to the prediction of Outbreak

a) (Figure 2.7). Furthermore, the posterior estimate for the mean s̄ = 0.013 is

very close to the true value of 0 denoting a small effect. The posterior mean

estimate of κ = 0.589 was overestimated, which led to a notable decrease of the

infectious pressure attributed to the spatial kernel. We additionally sampled from

the posterior distribution of the infection rate parameter ψ (Section 2.5), and
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Mean posterior estimate
κ γ 1/IR IR σ2 ρ s̄

Outbreak e)
True parameters

0.42 0.14 0.138 7.27 - - 0

Fixed ρ = 40, σ2 = 1 0.589 0.154 0.152 6.578 - - 0.013
Fixed none
σ2 ∼ Uniform(0, 10)
ρ ∼ Gamma(40, 1)

0.305 0.151 0.150 6.660 2.219 40.829 0.095

Outbreak f)
True parameters

0.5 0.14 0.085 11.650 - - 0.162

Fixed ρ = 50, σ2 = 3 0.535 0.074 0.073 13.630 - - 0.698
Fixed ρ = 100, σ2 = 1 0.431 0.078 0.078 12.823 - - 0.243
Fixed none
σ2 ∼ Uniform(0, 10)
ρ ∼ Gamma(40, 1)

0.480 0.080 0.080 12.530 4.39 40.266 1.109

Outbreak g)
True parameters

0.4 0.14 0.098 10.227 - - -0.050

Fixed ρ = 30, σ2 = 3 0.327 0.089 0.088 11.304 - - 0.070
Fixed none
σ2 ∼ Uniform(0, 10)
ρ ∼ Gamma(40, 1)

0.339 0.090 0.089 11.196 6.274 36.209 0.378

Effective sample size
κ γ IR σ2 ρ s̄

Outbreak e)
Fixed ρ = 40, σ2 = 1 408 223 188 - - 7706
Fixed none
σ2 ∼ Uniform(0, 10)
ρ ∼ Gamma(40, 1)

177 170 99 221 5968 1319

Outbreak f)
Fixed ρ = 50, σ2 = 3 51 61 29 - - 1131
Fixed ρ = 100, σ2 = 1 88 82 44 - - 6133
Fixed none
σ2 ∼ Uniform(0, 10)
ρ ∼ Gamma(40, 1)

36 94 44 157 3030 100

Outbreak g)
Fixed ρ = 30, σ2 = 3 250 175 96 - - 6523
Fixed none
σ2 ∼ Uniform(0, 10)
ρ ∼ Gamma(40, 1)

137 92 54 370 1353 1029

Table 2.5: Mean posterior estimates and effective sample sizes for outbreak sim-
ulations e) - g) from Table 2.4. If not otherwise specified, we chose Gamma(0.1,
0.1) priors.
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noticed a large increase in infectious pressure from originally 10 to 31.24. This in

particular explains the model dynamics displayed in Figure 2.11: the disease was

a lot more infectious to account for the missing infectious pressure, but the spatial

kernel inhibited the spread in most cases leading to smaller outbreak size (a) and

b)) and only local spread in the upper left corner (c)).

Setting priors with a large variance on the hyperparameters of the Gaussian

process results in an even more pronounced hotspot in the upper left corner. The

posterior estimate for ρ was very close to its mean despite the large variance (40).

The marginal variance σ2 was estimated higher with a uniform prior than the

previously fixed value (1), attributing a greater variability to the spatial random

effect. This is a result of the misspecification of the model. Yet, the mean spatial

effect was still close to 0.

In contrast to the fixed hyperparameter case, κ was underestimated attributing

more infectious pressure to individuals lying even further away (Table 2.5). The

posterior mean of the infectious rate parameter (ψ = 5.14) revealed that the

distance to other individuals and the underlying spatial random effect played the

major role in transmission, instead of the infectiousness of the disease.

In Figure 2.11 it is visible that the dynamics of the outbreak was captured in

the mean when estimating the hyperparameters, despite the deviating parameter

estimates.

In both inference scenarios the removal rate was slightly lower than the true

value, shortening the infectious period and giving more weight of the infectious

pressure to the other parameters.

This example of a simulated flat risk surface exemplified the overfit of the model

by integrating spatial information that were never used in the data generating

process. When controlling the marginal variance of the Gaussian process (fixing

σ2 to 1), we obtain a relatively flat risk surface such that the random spatial effect

was not as pronounced, but the outbreak dynamics are only partially captured.

When setting priors on the hyperparameters, we obtain a more pronounced risk

surface, not reflecting the truth.

Thus we can conclude, for this case, if we focus on capturing the dynamics of

the outbreak, using non-informative priors for the hyperparameters of the Gaussian
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a) b) c)

Figure 2.11: Comparison of outbreak dynamics of the MCMC chain with fixed
hyperparameters (top row) and estimated hyperparameters (bottom row) for Out-
break e). 200 outbreaks were simulated from posterior samples. Column a) dis-
plays a histogram of the outbreak size, column b) the temporal progression, and
column c) the spatial progression of the outbreak. The red lines refer to the original
outbreak simulation.

process is favourable, whereas estimating the spatial random effect works better if

we fix these parameters.
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2.7.2.2 Shifted and scaled normal risk surface

This risk surface was created by means of a bivariate normal distribution with mean

µ = (20, 80) and covariance matrix Σ = [[45, 0], [0, 45]]. The density f(` | µ,Σ) was

evaluated at all locations ` in the grid and transformed by f(` | µ,Σ) ·55000−1.5.

It yielded a surface with a high risk area in the upper left corner of the grid.

The simulated outbreak (Table 2.4 f)) can be characterized by two outbreak

waves. The first wave started with the first infected individual in the right upper

corner where the risk surface displays lower values. The spread evolved locally

on the right hand side due to the restriction of the spatial kernel. As soon as an

individual within the high risk area was infected, the outbreak kicked off leading

to a second outbreak wave and an infection of all individuals in the high risk zone

within a short time interval (about 5 days).

For inference, we first tried to fit the Matern covariance function with an in-

formed guess about the parameters to the risk surface. We first fixed ρ = 50

and σ2 = 3 due to the slow decay of risk across space.The posterior mean esti-

mates were somewhat close to the true values, except that the mean of the spatial

kernel was estimated higher. This decreases when setting the marginal variance

σ2 = 1, as expected. Apart from that, note that the parameter estimates did not

vary much in the different inference scenarios despite the change of hyperparam-

eters for the Gaussian process. Even estimating the posterior distribution of the

hyperparameters led to similar results.

Thus, we can infer that the parameter estimates seem to be robust towards

varying the hyperparameters. Figure 2.12 confirms this observation, as the predic-

tion plots capture the same features with only varying intensities. By highlighting

the upper part of the grid, the algorithm captures the simulated risk coming from

the spatial random effect. Yet, it also attributes a lot of infectious pressure to the

whole of the top half, which is an overestimation of the infectious pressure and

does not reflect the true risk surface.

Our model is set up in such a way that host incidence cases inform on vector

presence. Hence, if the disease has not arrived in particular areas and no individual

was infected there (in this example in the bottom half of the picture), we cannot

draw conclusions on the vector population and the values will average them out
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to the mean of the spatial effect.

Although the model proved to be robust towards varying the hyperparameters

of the covariance function, it also had difficulties to capture details of the risk

surface with the misspecification of the function family.

a) b)

c) d)

Figure 2.12: Comparison of the a) simulated and predicted risk surfaces with b)
Fixed σ2 = 3, ρ = 50, c) Fixed σ2 = 1, ρ = 100, and d) Estimated hyperparam-
eters with priors σ2 ∼ U(0, 10) and ρ ∼ Gamma(40, 1) with respect to outbreak
simulation f)
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2.7.2.3 Sinusoidal risk surface

The sinusoidal risk surface at coordinate (x, y) is defined as

2 sin
(

1.1π
√

(x− 3) + (y − 3) + 300
)

The risk surface is characterized by parallel, alternating stripes of high and low

risk. They are diagonal from the left bottom corner to the right upper corner of

the grid.

The outbreak depicted in Table 2.1 g), is confined to a certain area of high

spatial risk. By the end of the outbreak individuals lying on the left stripe of high

risk were infected, in contrast to the individuals lying on the bottom risk stripe.

This can be explained by the partially sparse distribution of susceptibles and the

local transmission restriction. The low risk valley between the high risk areas may

have further reduced the spread of the disease.

For the inference and the prediction, we first fixed the lengthscale of the Gaus-

sian process to ρ = 30 because it takes about 30 units to get from the highest

point to the lowest point of the colorbar considering the width of the stripes. The

marginal variance was fixed to a higher value of σ2 = 3 in order to give the model

a chance to capture this variation in the surface. In general the posterior mean

estimates reflected the true values reasonably well. Although the true mean spatial

infectious pressure has a negative value (-0.05), it is still very close to 0, just like

the estimate (0.07).

The results obtained when setting flat priors on the hyperparameters are similar

with the main difference that the marginal variance was estimated about twice as

high (6.3). This is reflected in a slightly higher mean spatial risk.

Comparing the simulated sinusoidal risk surface and predicted risk surface given

only the removal data of the outbreak (Figure 2.13), we can conclude that the

risk surface was well recovered where possible. Due to the information obtained

from the infectives, the upper stripe of high risk was able to be recovered well.

However, we did not have any information in the lower left corner, which is why the

Gaussian process was not able to capture any variation in the surface. The choice

of covariance function is certainly not optimal in this scenario. By informing the

inference and prediction algorithm with a periodic covariance function, chances are
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a)

b) c)

Figure 2.13: Comparison of the a) simulated sinusoidal risk surface from Outbreak
g) with the predicted risk surfaces. In b) fixed the hyperparameters σ2 = 3, ρ = 30,
and in c) estimated the hyperparameters using priors σ2 ∼ U(0, 10) and ρ ∼
Gamma(40, 1)).

higher to reconstruct the period structure reflected in the simulated risk surface.

2.7.2.4 Remark 2

In this chapter we investigated the behaviour of this joint epidemiological and

empirical modelling approach with different spatial risk surfaces not simulated

from the model. It became clear our model showed robustness towards varying

the hyperparameters of the covariance function. It was able to identify the spatial

high risk areas where possible, that is where enough information of the outbreak

was given, and showed a poor performance of recovering the underlying true risk
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surface in the remaining area. In this case further spatial covariates are needed to

inform the model.

In the special case where we tried to recover a non-existing underlying spatial

random effect, we overfitted the model and obtained deviating posterior estimates

as well as slightly different outbreak dynamics. Here, fixing the parameters leads

to a better estimation of the spatial random effect, whereas non-informative priors

are expedient for capturing the dynamics of the outbreak.
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2.7.3 Including observed spatial information

In the previous section it became evident, that additional spatial covariates can

inform the model to better identify the spatial random effect, in particular in

areas of no infection. Thus, in this section we investigate the model behaviour

when including observed spatial information into the epidemiological model. These

data can be for example environmental or meteorological covariates influencing

the vector’s habitat and disease transmission. A different example for COVID-19

could be spatially varying covariates, such as socioeconomic or age distributions,

which could provide information on the population risk of disease transmission

and severity.

In this section, we first analyse the model’s ability to identify coefficients for

fixed effects only before we additionally recover the spatial random effect. All

results are displayed in Table 2.7.

2.7.3.1 The outbreak

The outbreak creation was performed by means of the Matern(3/2) risk surface

with a lengthscale ρ = 20 from Outbreak a). Furthermore, the two risk surfaces

of Sections 2.7.2.2 and 2.7.2.3 (see Outbreaks f) and g)) served as the fixed effects

with corresponding coefficients β0 and β1 respectively for our model. The outbreak

progression and its features are displayed in Table 2.6. The disease appeared first

in the middle on the top and spread first towards the left upper corner before

almost all individuals on the left half of the plot got infected. The spread can be

attributed to the influence of the high risk areas of the fixed effects at first with

the random effect contributing rather at the bottom towards the outbreak. As

it is displayed in the joint spatial risk surface, the individuals on the top right

corner were not infected, because the low spatial risk prevented the outbreak from

spreading to that corner.
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Outbreak h)

Joint
spatial risk

Only
random effect
risk

Only
fixed effects
risk

Only
fixed effect
X0

Only
fixed effect
X1

Number of in-
fectives

Outbreak size 64

Parameters κ = 0.3 γ = 0.143 ψ = 0.3 β0 = 1 β1 = 2

Table 2.6: Overview of simulated epidemic outbreak h). Black and red points
represent susceptible and infected individuals respectively, grey circles denote re-
moved individuals.
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2.7.3.2 Fixing spatial random effect

In the inference scenarios we first fixed the random spatial effect to its true value

in order to investigate how well the model can identify the coefficients of the

spatial fixed effects (β0, β1). We chose normally distributed priors with mean 0

and varying variance (2 and 100) for the coefficients (see Table 2.7).

It became clear that a less informative prior on the fixed effect parameters did

not influence parameter estimates and did not affect the mixing behaviour much.

All estimates were reasonable and the true parameter was always contained in the

95% credible interval. In other simulations the wider variance in the prior led to

wider confidence intervals. Note that the ratio β0/β1 = 0.5 was inferred by the

ratio of the according posterior means 0.84/1.69 = 0.50.

Thus, we can infer that the model can identify the parameters well and that

a less informative prior on the fixed effect parameters has almost no influence the

model inference.

2.7.3.3 Fixing Gaussian process hyperparameters

As a next step, we fixed the hyperparameters of the Gaussian process to its true

values (σ2 = 3 and ρ = 20) and estimated the spatial random risk surface s.

Comparing the scenario to fixing s (Table 2.7), the parameters were estimated

equally reasonable, except that the sinusoidal risk surface was given less impact

in the infectious pressure; its posterior mean coefficient β1 deviates further from

the true value (1.01 compared to 1.69, true value: 2), the credible interval widens

but still contains the true value ([-0.24, 2.35]). A noticeable change is that the

ratio between the posterior means of β0 and β1 increases from 0.5 to almost 1.

Furthermore, the mean spatial random effect was underestimated despite fixing

the hyperparameters of the Gaussian process to their true value. With more

parameters accounting for spatial influence on the infectious pressure (κ, β0, β1, s)

the sampler has a harder time to identify the spatial parameters. The outbreaks

dynamics in terms of outbreak size, temporal progression and spatial spread are

still captured by the model as displayed in Figure 2.15.

The predicted surface for the random spatial effect is displayed in Figure 2.14

b). The three hot spots are clearly identified by the model.
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2.7.3.4 Estimation of Gaussian process hyperparameters

In this section we additionally estimate the Gaussian process parameters (Table

2.7). An informative prior on the lengthscale ρ and a uniform prior on σ2 led to

very similar results as fixing the hyperparameters. However, in a real scenario draft

we do not have information about the random spatial effect. Thus, we checked

the model inference when assuming the mean lengthscale of ρ to lie at 40 due to

the size of the observation area and use a Gamma(40,1) prior for a wider variance.

We further fixed σ2 to 1 to stabilize the inference. In this example, the posterior

mean parameters deviated further away from the true values, however the changes

are not drastic. The lengthscale was estimated higher which can be attributed to

a prior effect. Since the marginal variance parameter σ2 was fixed to 1, the mean

spatial random effect was estimated lower than in the other scenarios, but this

observation is in line with previous simulation studies.
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Analyzing the outbreak dynamics, in Figure 2.15 it becomes clear, that the

outbreak size, the temporal progression and the spatial spread of the outbreak is

captured by the model.

We were also interested in the prediction of the random spatial effect when

having estimated all parameters (Figure 2.14 c)). The prediction plot of the sce-

nario with an informative prior on the lengthscale looks very similar to fixing the

hyperparameters to their true value (Figure 2.14 b)). This is not surprising as the

posterior estimates are very similar.

When choosing a prior for the lengthscale which lies further away from the

mean, we still capture the high risk area with a little less detail due to the broader

lengthscale (Figure 2.14 d)).

The fixed effects coefficients β0, β1 add more information to the model. If we

fix them to their true values, we obtain a prediction plot of the spatial random

risk which clearly focuses on the infection pressure on the bottom (Figure 2.14

e)). In comparison to all other predictions of Figure 2.14, on the top left quarter,

e) has the lowest infection pressure. Thus, it can differentiate better between

the risk coming from the spatial random effect and the other parameters of the

epidemiological model. In the area of no infection, the predictions look very similar

regardless of the additional information on the fixed effects.

2.7.3.5 Remark 3

We can conclude that if we only want to estimate the fixed effects and leave out

the estimation of the spatial random effect, the model performs reasonable well.

A less informative prior on the fixed effect parameters has almost no influence

towards the model inference. The more spatial parameters are estimated in the

model, the harder it is to identify them. We noted that the model responds to a

change of prior, but not drastically. When we consider the predictive distribution

of the risk surface and the outbreak dynamics, the exact parameter estimates are

less important; instead we can infer that our results reflect the model scenery we

are working in. To sum up, the model responses to the change of prior but is still

able to identify the outbreak dynamics and the random risk surface where possible.
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2.8 Discussion

In this chapter we developed and elaborated on the joint epidemiological and

empirical modelling approach for disease outbreaks. We inferred the likelihood

and constructed an efficient MCMC algorithm for inference.

In the course of the simulation study, we inferred that the mixing performance

of the sampler was reasonable, yet suboptimal. In particular the data augmenta-

tion of the infection times slowed down the sampler. This effect has been observed

in the literature before and a possible solution (if time and computational resources

allow) would be to let the chain run longer and to perform greater thinning for

less autocorrelation of the samples. Stronger prior information about the parame-

ters stabilized the inference which could be obtained through experts’ opinion and

information about the epidemiology of a particular disease.

In summary, the model showed robustness towards varying the hyperparame-

ters of the covariance function of the Gaussian process. It was also able to predict

high risk areas of risk surfaces not simulated from the model. However, sufficient

information on the outbreak needs to be presented in order to improve prediction

results, that is the outbreak size and a sufficient density and spatial spread of the

individuals to capture the variation of the spatial risk surface adequately.

The more information about spatial fixed effects we inserted into the model,

the better the random effect could be predicted. However, this came with the

cost of non-identifiability of the parameters as all of them compete for the spatial

infectious pressure. Yet as displayed in the simulation study, the dynamics of the

outbreak in terms of outbreak size, temporal progression and spatial distribution

were able to be captured. We were hoping to identify the unknown spatial trans-

mission better in areas of no infection by including fixed effects into the model. In

our simulation study this was not the case. With limited amount of data on the

outbreak available, including more data on fixed effects might ease this problem.

Stated from a practical point of view, if we had additional information about the

risk surface (e.g. from vector trapping studies), this would help us to pin down

the latent risk surface more accurately.

We performed the simulation study on a population size of 100 individuals for

the ease of computational efficiency. Here, we chose outbreaks with about 60%
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infections to obtain enough information for inference. In the following chapters we

also investigate outbreaks with less percentages of infections.

We can conclude, it is a valuable approach for informing about the ongoing

transmission of the disease, covariates that are drivers of morbidity and mortality

and unknown spatial hot spots of disease transmission.



120 CHAPTER 2. THE JOINT MODEL FRAMEWORK

a)

b) c)

d) e)

Figure 2.14: Comparison of the a) simulated random spatial risk surface from
Outbreak h) with the predicted risk surfaces. Inference scenarios are b) hyper-
parameters fixed to their true values ρ = 20, σ2 = 3 c) ρ ∼Gamma(200, 20),
σ2 ∼ U(0, 10), and d) fixed σ2 = 1 and ρ ∼Gamma(40,1). In a)-d) we used N(0,2)
priors for c and Gamma(0.1, 0.1) else. In e) has the same scenario as c) with
additionally fixing β0 and β1 to their true values.
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a) b) c)

Figure 2.15: Analysis of outbreak dynamics of the MCMC chain for Outbreak h).
Fixed hyperparameters (top row), estimated hyperparameters ρ ∼Gamma(200,10)
and σ2 ∼ U(0, 10) (middle row), and estimated hyperparameters ρ ∼Gamma(40,1)
and σ2 = 1 (bottom row). 200 outbreaks were simulated from posterior samples.
Column a) displays a histogram of the outbreak size, column b) the temporal
progression, and column c) the spatial progression of the outbreak. The red lines
refer to the original outbreak simulation.
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Chapter 3

Scaling to a larger population size

So far, the size of the population with 100 individuals was relatively small. When

working with real disease data the population size can be up to 100 to 1000 times

greater. Such big data pose a challenge for computer algorithms with respect to

run time and memory usage. Thus, efficient algorithms that suit the available

computational resources are needed.

One such example in big data settings are high dimensional matrices. The

efficiency of the matrix operations mainly depends on the sparsity of a matrix:

the proportion of zero entries among all entries in the matrix. A matrix is called

sparse if it contains mostly zero values, and dense if it contains mostly non-zero

values.

In sparse matrices only non-zero elements need to be stored with a desired

storage complexity of at most O(n) in contrast to O(n2) for dense matrices. De-

pending on the desired matrix operation thereafter different data structures for

sparse storage can be used. Examples include:

• Coordinate list (COO): a list storing three element tuples of [row, column,

value] for each non-zero entry. This allows for fast access and value modifi-

cation.

• Compressed sparse row (CSR): three one-dimensional arrays storing the non-

zero values, the column indices and the extents of rows by means of row

pointers (in contrast to the row indices). This allows for fast row access and

slicing, and matrix vector product, but slow column operations.

123
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• Compressed sparse column (CSC): similar to CSR except that the row indices

and the column extents are stored. This allows for fast column access and

slicing, and matrix vector products, but slow row operations.

Scaling up our methodology to a big data setting, in this chapter we explain

how we make use of the structure of sparse matrices in two different scenarios: 1.)

calculating the infectious pressure, in particular the value of the spatial kernel,

and 2.) representing Gaussian processes by Gaussian Markov random fields to

estimate the spatial random effect. Note, that the goal of our work is not to ap-

proximate Gaussian processes via Gaussian Markov Random fields, as covered for

example in Lindgren et al. (2011). Instead, we explicitly use the term represent to

emphasize that we use the spatial structure of a Gaussian process to derive spatial

association through a Gaussian random Markov field. This allows us to circumvent

calculations with the dense covariance matrix by dealing with the sparse precision

matrix instead.
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3.1 Efficient computation of the infectious pres-

sure

First, we recall that the infectious pressure on an individual j is modelled through a

Poisson process with intensity function λj(t) = ψ·
(
α + exp(v(`j))

∑
i∈I(t)K(dij;κ)

)
.

It depends on the number of infected individuals at time t and thus alters after

each event (infection or removal). An efficient way to calculate the sum over all

infected individuals is via matrix representation of the spatial kernel. We define

the symmetric matrix D = [dij]i,j∈{1,...,n} where the element dij is the Euclidean

distance between individual i and j. We then apply the function K(· ;κ) element-

wise and write

K(D;κ) =


K(d11;κ) K(d12;κ) . . . K(d1n;κ)

K(d21;κ) K(d22;κ) . . . K(d2n;κ)
...

K(dn1;κ) K(dn2;κ) . . . K(dnn;κ)


Summing over the corresponding row of a susceptible and only taking into

account the columns of infected individuals at time t yields the total infectious

pressure from other infected individuals. In Chapter 2 we introduced K to be an

exponential distance kernel. Therefore, all entries of K(D, κ) are non-zero and the

matrix is dense. When sampling with MCMC methods, (n2 + n)/2 entries have

to be calculated for every sample of κ, because D is symmetric . With a large

population size of 104 or more individuals this can constitute a high computational

burden.

In order to reduce the complexity O(n2) to at most O(n) we make use of the

fact, that spatial kernels are decaying functions. The spatial kernel function

K(dij;κ) =

exp(−dij · κ) dij < c

0 else
(3.1)

where c serves as a threshold for ”cutting off” the spatial kernel as illustrated

in Figure 3.1, yields a sparse matrix: entries are 0 for all pairs of individuals with
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distance greater than c. The threshold c is determined through prior information

about the infectiousness of the disease and the spatial decay of infectious pressure.

Figure 3.1: The decay of the spatial kernel function K(d|κ) for different values of
κ. The dotted black line denotes the distance after which the value of the spatial
kernel is 0.

Equation (3.1) is advantageous for efficient computing because it is clear a

priori which elements are zero and which need computing.
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3.2 Gaussian Markov Random Fields

In spatial statistics we often want to infer a spatially continuous random effect over

an area of interest. Here, Gaussian processes constitute are a popular tool where

the correlation structure between any two points is determined by the covariance

function. However, sampling from a Gaussian process has complexity O(n3) due

to the Cholesky decomposition of the covariance matrix (Section 1.4.3). This

becomes infeasible for large n and is thus informally denoted as the big n problem.

An alternative are the computationally more attractive Gaussian Markov Ran-

dom Fields (GMRF). They are jointly Gaussian and have a Markov property in

space: given an underlying network, the distribution of data at a certain location

in space conditioned on the values of its neighbours is independent of the value

of all other locations. This network structure is displayed in the precision matrix

where an entry is nonzero if and only if the nodes are neighbours in the network.

With only a small number of neighbours for each location, the precision matrix

becomes sparse. For MCMC based inference this constitutes computational advan-

tages because the Gaussian densities can be computed in linear time with respect

to the number of locations n.

In this section we first explain the concept of how to define such an underlying

network structure and the concept of conditional independence in undirected net-

works before we move on to the definition of GMRF and how to sample from it.

A thorough coverage of this topic including proofs and applications can be found

in Rue and Held (2005).

3.2.1 Voronoi tessellation and Delaunay triangulation

In this section we are interested in imposing a neighbourhood structure of a set of

points in order to create an underlying graph.

Definition 4:

Given a set of locations L = {`1, `2, . . . , `n} in an area A ⊂ R2. A graph over L

is a tuple G = (L, E), whereby L is the set of nodes or points, and E ⊆ {(`i, `j) ∈
L2, `i 6= `j} is the set of edges in the graph.
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The graph is called undirected, if (`i, `j) ∈ E ⇔ (`j, `i) ∈ E for all i, j ∈ {1, . . . , n}.
We call `i a neighbour of `j (and write `i ∼ `j) with respect to G if there exists

an edge (`i, `j) ∈ E .

In the following we will exclusively deal with undirected graphs. If we are free

to select L in order to cover a certain area, we might choose the points to lie on the

corners of a regular grid. Then it is straightforward to define the respective four

neighbouring points by means of the edges of the grid cells. However, for disease

outbreaks, the points, for example the locations of livestock farms, are fixed and

typically not arranged on a grid but rather irregularly scattered within the area

of interest. Thus, we deploy an alternative method by first partitioning the plane

into regions based on the Euclidean distance of the farms and thereafter defining

a neighbourhood structure by means of neighbouring regions.

This section belongs to the field of computational geometry. More details in-

cluding various properties of the below concepts can be found in Okabe et al.

(2009).

Definition 5:

Let L = {`1, `2, . . . , `n} be points in a region A ⊂ R2 and let || · || denote the

Euclidean distance. The Voronoi region V (`) of a point ` is defined as

V (`) = {x ∈ A | ||x− `|| ≤ ||x− `′|| ∀`′ ∈ L}

and the Voronoi diagram or Voronoi tessellation of L is

V (L) =
⋃
` 6=`′

V (`) ∩ V (`′)

The Voronoi region of a point ` contains all points in A that are at least as close

to ` than to any other point in L. It also follows that
⋃
`∈L V (`) = A. Voronoi

regions can be unbounded if they lie on the border of A. Figure 3.2 a) exemplifies

a Voronoi tessellation.
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Definition 6:

Given the set of Voronoi regions {V (`)}`∈L, the graph G = (L, E) with (`, `′) ∈ E
iff V (`) and V (`′) share an edge, is called Delaunay triangulation of the convex

hull of L.

The Delaunay triangulation is the straight-line dual of the Voronoi diagram

and as displayed in Figure 3.2 b), the edges E of its graph G cover the convex hull

of L with triangles.

Given a set of irregularly scattered points L on our area of interest A, our

aim was to define a neighbourhood structure for L. The set of edges E from the

Delaunay triangulation of L enables us to do so, as ` ∼ `′ ↔ (`, `′) ∈ E .

a) b)

Figure 3.2: a) Voronoi tessellation and b) Delaunay triangulation of 15 spatially
uniformly distributed points.

3.2.2 Conditional Independence

Two random variables are called independent if their joint distribution factorizes

into marginal distributions. The concept of conditional independence involves a

third random variable, as we see in the following definition.

Definition 7:

Let A,B and C be three random variables. We call A and B conditionally inde-
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pendent given C and write A ⊥⊥ B | C iff

f(A,B|C) = f(A|C)f(B|C)

The joint conditional distribution of A and B given C factorizes into conditional

marginal distributions for any value of C. It should be noted that two random

variables can be conditionally independent but unconditionally dependent.

For our purpose in the context of Gaussian Markov Random Fields, we are

interested in verifying conditional independence in undirected graphs (Definition

4). The following theorem, which we state without proof (see e.g. Bishop (2006)),

provides such a tool.

Theorem 2:

Let G = (L, E) be an undirected graph and let A,B and C be three disjoint subsets

of L. A path in G is a sequence of nodes such that every two successive nodes in

the sequence are neighbours with respect to G. To see whether A ⊥⊥ B | C, it

suffices to check whether all paths from any node in A to any node in B pass

through a node in C.

Restating Theorem 2, when we remove all nodes of C together with any edges

connected to C from the graph G, the conditional independence property holds if

no path from A to B exists in the resulting graph.

For a single node in an undirected graph, it is straightforward to see that con-

ditioning on all its neighbours, it is independent from all other points as illustrated

in Figure 3.3. This is one of the pillars for the theory of Gaussian Markov Random

Fields as we will see in the next section.

3.2.3 Definition of Gaussian Markov Random Fields

A Gaussian Markov Random Field (GMRF) is defined on a graph G = (L, E).

Each node (or location) `i ∈ L with i = 1, . . . , n is assigned a random vari-

able Y (`i). For simplicity in the following we write Yi := Y (`i) and Y−i ··=
{Y (`1), . . . , Y (`i−1), Y (`i+1), . . . , Y (`n)}. Let Ni denote the set of neighbouring
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Figure 3.3: Conditional independence property for undirected graphs. When con-
ditioning on its neighbours, the red point is conditionally independent on the
remaining points (light blue): There exists no path from the red point to a light
blue point without passing through any of the red point’s neighbours.

nodes of i with respect to G and j ∼ i represents that `j and `i are neighbours.

For a GMRF the following conditional independence property and the Gaussian

distribution hold

(
Yi|Y−i = y−i

) d
=
(
Yi|Yj = yj, j ∈ Ni

)
∼ N

(
µi + α

∑
j∈Ni

bij(yj − µj), τi

)
(3.2)

whereby µi are respective marginal means parameters, α is a spatial correlation

parameter, the bij’s determine the weights of the spatial influence with bii = 0, and

τi are the marginal conditional variances. Here,
d
= denotes equality in distribution.

According to (Besag, 1974) the joint distribution is then uniquely specified as

Y =
(
Y1, Y2, . . . , Yn

)
∼ N

(
µ, (I − αB)−1M

)
(3.3)

µ = (µ1, . . . , µn) is the vector of the marginal means, I is a n× n identity matrix

and M is an n× n diagonal matrix with marginal conditional variances τi on the

diagonal. B is an n×n weight matrix with entries bij controlling the impact of the

neighbouring values (see Equation (3.2)). In order to define a proper probability

distribution, the elements of B must satisfy certain conditions:

i) the rows must sum up to 1, i.e.
∑

j bij = 1

ii) bijτj = bjiτi to ensure symmetry of the variance-covariance matrix
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iii) bii = 0

iv) bij = 0⇔ i 6∼ j

Rewriting the covariance matrix (I − αB)−1M = (M−1(I − αB))
−1

, we notice

that the covariance matrix may be specified through its inverse, the precision ma-

trix

Q ··= M−1(I − αB). Because M−1 is a diagonal matrix and thus, M−1I is di-

agonal, the off-diagonal entries only depend on αM−1B. Furthermore, with the

constraint iv) on the entries of B, it follows

Qij = 0 ⇔ `i 6∼ `j, i 6= j

In other words, whether `i and `j are neighbours can be directly inferred from

the precision matrix Q−1 and vice versa. If the locations `i and `j are not neigh-

bours, and thus Yi and Yj are independent given Y−ij , the respective entry in the

precision matrix is 0. This is also true vice versa, if Qij = 0 then the according

locations are not neighbours and Yi and Yj are conditionally independent.

This close connection between the underlying graph of a Gaussian Markov

Random Field and its precision matrix accounts for its computational advantages:

with only small numbers of neighbours for example defined through a Delaunay

triangulation (Section 3.2.1), the precision matrix becomes sparse.

3.2.4 CAR Models

As introduced earlier the weight matrix B must fulfil constraints i) – iv) to obtain a

proper definition for the probability distribution. These weights can be determined

in several ways and define specific types of a GMRF; for example, it can be a

function of distance, where the function value decreases with increasing distance

of two points normalized by the row sum of the weight matrix.

A popular way in spatial statistics is to set the mean of the conditional dis-

tribution as the average of the value of the neighbouring nodes. This leads to a

model known as conditional autoregressive (CAR) model and is specified by
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bij =

0, i 6∼ j, i 6= j or i = j

1
|Ni| , i ∼ j

with the choice of conditional marginal covariance

τi ··=
1

σ2|Ni|

σ2 is a shared parameter among all nodes and |Ni| represents the number of ele-

ments in Ni. The formulation of τi is functional, because we assume that having

more neighbours leads to more information on the estimation of Yi and thus, a

higher precision. It can be easily checked that constraints i) – iv) are satisfied

using this choice of weights and conditional marginal covariance. Without loss

of generality, in the following we set µ = 0. The full conditional distribution

specification for the CAR model can be written as follows

(
Yi|Y−i = y−i

)
∼ N

(
α

|Ni|
∑
j∈Ni

yj,
1

σ2|Ni|

)
(3.4)

In order to express the joint probability distribution as in Equation (3.3), we

first simplify the precision matrix Q = M−1(I − αB). Let us rewrite the diagonal

matrix M−1 = σ2D, where D is a diagonal matrix with |Ni| in the i-th row. Sim-

ilarly, the weight matrix B can be expressed through the product D−1A, whereby

A denotes the adjacency matrix with entries aii = 0, aij = 1⇔ i ∼ j and 0 else.

This is true because the inverse of D scales the adjacency matrix such that the

row sum is equal to 1.

It follows for the precision matrix:

Q = M−1(I − αB)

= σ2D(I − αD−1A)

= σ2(D − αDD−1A)

= σ2(D − αA)

(3.5)

Consequently, the joint distribution of the CAR model becomes
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Y ∼MVN
(

0,
(
σ2(D − αA)

)−1
)

So far with the Markov property defined on the network we conditioned only

on adjacent neighbours of a particular location. Such a model is called a first-

order conditional autoregressive model. This can of course be extended to a model

of higher order neighbours (which includes conditioning on the neighbours of the

neighbours and their neighbours and so forth) resulting in a k-order CAR model.

3.2.5 Sampling from a GMRF

Gaussian Markov Random Fields are multivariate normal distributions. In a sim-

ilar fashion to Algorithm 3, we can sample from the Gaussian distribution which

now is defined by its precision matrix.

Algorithm 6 Sampling from a multivariate normal distribution N (µ, Q−1)

1: Q: n× n precision matrix, µ: 1× n vector
2: L← CholeskyDecomposition(Q)
3: for j = 1, 2, . . . , n do
4: Draw a sample x(j) from N (0, 1)
5: end for
6: x← (x(1), x(2), . . . , x(n))T

7: Solve LTz = x for z
8: Store y(i) ← µ+ z

Because LT is an upper triangular matrix, solving the system of linear equa-

tions in line 7 of Algorithm 6 can be done through backwards substitution. This

algorithm yields samples from the desired distribution:

Cov[y] = Cov[L−Tx] = L−TCov[x]L−1 = L−T IL−1 = (LLT )−1 = Q−1

Analogously to Algorithm 3, the bottleneck of the overall computational com-

plexity is the matrix decomposition in line 2. In general the Cholesky decompo-

sition has complexity O(n3), however a sparse precision matrix can reduce this to

O(n3/2) for spatial GMRFs (see Section 2.4 of Rue and Held (2005) for algorithmic

details). For repetitive sampling when drawing inference on the GMRF, line 2 has
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to be executed for each sample separately because the parameters of the precision

matrix are random variables themselves and are updated as well.

The question arises, is there a way to draw repetitive samples from a GMRF

that circumvents the Cholesky decomposition and that is computationally more

efficient? The answer to this is yes.

Instead of sampling directly from the Gaussian distribution, we make use of MCMC

inference techniques. In the following we will show how we can efficiently evaluate

the log-density of a Gaussian distribution while fully exploiting the sparse struc-

ture of the precision matrix Q. This is particularly suitable within an inference

framework such as the Python library PyMC3 as it is easy to implement and makes

use of the integrated NUTS sampler (Joseph, 2016).

We are interested in calculating

log(f(Y | σ, α)) =
1

2

[
log (det(Q))− Y TQY

]
+ const

In order to facilitate the computation of the determinant of Q we reformulate

with respect to the notation of Equation (3.5):

log (det(Q)) = log
(
det(σ2(D − αA))

)
= log

(
(σ2)ndet(D − αA)

)
= nlog(σ2) + log (det(D − αA))

Further, Jin et al. (2005) showed that

det(D − αA) = c
n∏
i=1

(1− αλi)

with λ1, . . . , λn being the eigenvalues of D−
1
2AD

1
2 , and c a multiplicative con-
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stant. We can then simplify

log (det(D − αA)) = log

(
c

n∏
i=1

(1− αλi)

)

= log(c) + log

(
n∏
i=1

(1− αλi)

)

= log(c) +
n∑
i=1

log(1− αλi)

After dropping additive constants, we are left with calculating

1

2

[
nlog(σ2) +

n∑
i=1

log(1− αλi)− Y TQY
]

For repetitive sampling we only need to calculate the eigenvalues of D−
1
2AD

1
2

once. This is because the adjacency matrix A and the diagonal matrix D are

independent of the parameters α and σ2. This can be done ahead of time with

cubic complexity for dense matrices by means of the Jacobian eigenvalue algorithm

and thus at most cubic for sparse matrices.

The complexity of evaluating the log-density is of order O(n): for the multipli-

cation of Y TQY we exploit the sparse structure of Q; multiplying a vector with

a sparse matrix with n non-zero entries requires n multiplications and thereafter

n− 1 summations. Thus, the computation of Y TQY can be done in linear time.

Additionally, calculating nlog(σ2) and
∑n

i=1 log(1 − αλi) can each be done in at

most linear time.

Embedding the log-density evaluation into the HMC framework leads to an

overall complexity of O(n3 + dn5/4) for d samples (Hoffman and Gelman, 2014).

Compared to O(dn3) for sampling from a Gaussian process, this signifies a major

speed-up in terms of the computational complexity.

3.2.6 An intuition on why GMRF’s represent GP’s well

Consider a 2 dimensional map that represents the heat of a surface and assume

that heat only flows through this surface and not beneath or above it. This can be
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modelled through a Gaussian process. Here, the covariance function may describe

the conductivity of the surface in a homogeneous, but also a nonhomogeneous

sense. Figure 3.4 a) gives an example of such a map.

a) b)

Figure 3.4: Intuition on the GMRF’s representation of GPs. The points X and
Y are conditionally independent given the area A for a) a continuous heat surface
and b) a tessellation thereof.

Since the locations X and Y are spatially separated through area A, it is

intuitively clear that X and Y are conditionally independent given A. In our

context, this supposes that there is no heat radiation able to cross area A.

Next, we partition A into smaller areas and choose one representative location

per segment as in Figure 3.4 b). Depending on the fineness of the partitioning,

X and Y exhibit more or less approximate independence given only the represen-

tatives of A’s tessellation. For example, if the correlation of two locations decays

only slowly with distance, the segments can be chosen relatively large.

Similarly, two random variables in a Markov Random Field are conditionally

independent given a set of other random variables that separate them from each

other. Thus, the above discretization of GP’s through representatives with respect

to a partitioning, yields a GMRF. Here, the Voronoi tessellation is the appropriate

tool to define the segments that make up the partition based on a given set of

locations.
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3.3 Simulation study: GMRFs in the epidemio-

logical model framework

In this section we investigate the model’s behaviour when representing Gaussian

processes by GMRFs and when then scaling up the population size. We com-

pare the prediction with Gaussian processes to the prediction with GMRFs and

afterwards analyze the inclusion of the GMRFs into the epidemiological modelling

framework first on a small population and finally on a larger population. We

conclude this simulation study with a discussion.

3.3.1 Estimation of a Gaussian process using a GMRF

In this section we compare how well the prediction obtained by a GMRF can

represent a Gaussian process risk surface. For this reason, we take Outbreak h)

as an example (Section 2.7.3) whose random spatial effect was simulated using a

Gaussian process with a Matern(3/2) covariance function. We predicted the risk

surface with a GMRF. In Figure 3.5 the comparison of a) the original simulated

plot, b) its prediction via a Gaussian process, and in c) and d) its prediction via

a GMRF is displayed. For comparability of the risk surface predictions, we chose

the same prior distributions for the remaining epidemic parameters in all of these

settings.

The Voronoi tessellation of the space by the GMRF c) gives a more coarse

discretization than the prediction by the Gaussian process b). Compared with the

true risk surface, in c) we identify the high risk areas at the bottom left quadrant

and the lower risk in the top left corner. From the single high risk areas only the

bottom left corner was identified. This is particularly pronounced when plotting

only the extremes, that is only the areas with a probability of more than 80% of

lying above the mean value 0, i.e. {s | P (s) > 0.8}. The computational benefits

are particularly pronounced: the inference using the Gaussian process took 3 hours

4 minutes, the GMRF only needed 1 hour 27 minutes on an Intel i7 4x2Ghz CPU

with 8GB RAM. While the computation time is halved for this example, it will

be scaled down further with the sparse structure of the GMRF considering an

increased population size. The exact scaling depends on the number of individuals
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a) b)

c) d)

Figure 3.5: Comparison of the a) simulated random spatial risk surface based on a
Gaussian process from Outbreak h) with the predicted risk surfaces from different
inference scenarios. b) Gaussian process parameterized by ρ ∼Gamma(200, 20),
σ2 ∼ U(0, 10), c) GMRF with σ2 ∼ Gamma(2,2) and fixed α = 0.9. d) same
inference as c) with prediction of {s | P (s) > 0.8}. In b)-d) we used N(0,2) priors
for the fixed effect coefficients β0, β1 and Gamma(0.1, 0.1) else.

and their spatial location.

In this example we used a first-order conditional autoregressive model for infer-

ence. Increasing the dependence on further neighbours in the model may improve

the prediction of the GMRF. However, we stick to the approach of depending on

the first order neighbours (Section 3.2.4) in order to make full use of the spar-

sity and the computational benefits of using GMRFs, in particular with the larger

population sizes in the following sections. Thus, we conclude that the GMRF is
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still able to identify higher risk regions, though with less detail than the Gaussian

process but with the gain of computational resource usage.

3.3.2 Inference behaviour of GMRFs

We now explore the model’s sensitivity when integrating GMRFs into the epidemi-

ological model framework. Therefore, we try to recover the spatial risk (prediction)

when having simulated from the model. We do not consider misclassification of

the model nor prior choices of the epidemic parameters since this was already done

in the previous Section 2.7.2.

In Outbreak i) (Table 3.1) we simulated all three risk surfaces (with a random

effect and two fixed effects) from a GMRF using σ2 = 0.1 and α = 0.99 (see

Equation (3.4)). We selected high spatial correlation (Figure 3.1) in order to

mimic the risk surfaces generated by the Gaussian process in Chapter 2. All three

risk surfaces have about the same range. The joint spatial risk surface is therefore

determined by the coefficient of the fixed effect covariate (β0 = 3). The outbreak

has a steep increase in number of infected individuals in the beginning, which

coincides with the location of the high risk regions of the joint spatial risk surface.
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Outbreak i)

Joint
spatial risk

Only
random effect
risk

Only
fixed effect
X0

Only
fixed effect
X1

Number of
infectives

Outbreak size:
43

Table 3.1: Overview of simulated epidemic outbreak i). Black and red points repre-
sent susceptible and infected individuals respectively, grey circles denote removed
individuals.
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3.3.2.1 Sampling performance

The sampling behaviour is analogous to the description in Chapter 2 where we

displayed the characteristics of the joint model. Adding the shifting of the infection

times and more parameters to the inference, slowed down the sampler as observed

before, yet the performance is reasonable.

In the first inference scenarios, we set the coefficients of the fixed effects to

their true values and concluded that all parameters were estimated reasonably

well, except σ2 was overestimated (see Table 3.2).

Several model parameters account for the spatial variation as observed before

in Section 2.7.1.1. Thus, non-identifiabilities between the parameters σ2, α, β0, β1

and κ were expected. The scale up and the resulting cut off of the spatial kernel

might have stabilized the estimation of its parameter κ.

The additional estimation of the spatial correlation parameter α influenced the

overall parameter estimation slightly but not drastically. α itself was estimated

very close to the true value with small credible regions despite the uninformative

uniform prior (e.g. 0.988 [0.955, 0.999]) with true value 0.99 when fixing β0 and

β1). Although the sampling was stabilized more by fixing α, the estimation of

β0 and β1 was better without fixing α. This again can be attributed to the non-

identifiability between the parameters.

We further tested the robustness of the model towards changing σ2. A larger σ2

in the simulation leads to a decreased range of the spatial random effect, e.g. 1.3

for σ2 = 5 compared to 7 with σ2 = 0.01 in Outbreak i). While with a Gamma(2,2)

prior on σ2 the larger σ2 parameter was underestimated (0.8), the other parameters

were estimated reasonably well. Placing a more informative prior on σ2 with mean

5 led to a better estimate 4.7 for σ2 as expected. Note, that the posterior estimates

of the other parameters did not vary significantly and furthermore, the prediction

plots and the outbreak dynamics for both inference scenarios look very similar.

In other simulations with different parameter values, we noticed similar non-

identifiability and autocorrelation behaviour. The parameter estimates responded

to a change of prior, but not in a drastically.
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3.3.2.2 Prediction performance and outbreak dynamics

By means of our inference scenarios, we recover high risk areas of the spatial ran-

dom risk surface where possible (Figure 3.6), i.e. where we had enough information

from the outbreak data. While the high risk area at the top and on the right were

captured, the single hot spot in the middle could not be identified due to the lack

of infections in that area.

Fixing the covariate coefficients leads to more information about the model

which is why the prediction of the high risk areas is more pronounced in b) than

when estimating all parameters in d). The small shift of uncertainty in the pre-

diction is pronounced when comparing the regions with a risk of higher than 0.8

and lower than 0.2: in comparison to the plot of the more informed model in c),

the high risk area shrinked by a small proportion in e). Nevertheless, in general

the prediction plots are very similar confirming that they are robust towards esti-

mating more parameters. The same holds true for a different prior choice of σ2,

such as a distribution with mean away from the true value, or a more informative

prior towards α as the highest and lowest risk areas were still captured.

For the inference note that the spatial random effect has similar hot spots at

the top center as the fixed effect X0. Despite this non-identifiability issue and the

more pronounced effect by β0 = 3, the model was able to capture the risk area on

the top for the unknown spatial random effect.

Similarly to the prediction plots that looked similar, the outbreak dynamics

were also captured by the model and looked similar for the different inference

scenarios.
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a)

b) c)

d) e)

Figure 3.6: Comparison of a) the simulated random spatial risk surface of Outbreak
i) with risk surface predictions from inference scenarios b) GMRF with α and β0, β1

fixed d) priors α ∼ U(0, 1) and β0, β1 ∼ N(0, 2). c) and e) highlight areas of higher
(yellow = {s | P (s) > 0.8}) and lower (dark blue = {s | P (s) < 0.2}) posterior
probability for b) and d), respectively.
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3.3.3 Scaling up the population size

So far we have dealt with outbreaks where the outbreak covered most of the

observation area. Scaling up the population size with still a relatively small number

of infected individuals can influence in particular the spatial spread. In this setting,

it is important to consider the background infection pressure ε since it plays a

major role in the spatial (distant) spreading of the outbreak. A lower ε leads to an

outbreak cluster where the distance between individuals governs the spread, while

a larger ε can cause different outbreak clusters at distant random locations.

Thus, in the following, we investigate the influence of the background infection

pressure on the inference. For simplicity we only display simulations that were

generated with solely a random spatial risk surface and no fixed effects. All the re-

sults previously discussed on fixed effects also hold true for an increased population

size.

3.3.3.1 Small background infection pressure

We scaled up the population size to spatially uniformly distributed 10,000 indi-

viduals and simulated an outbreak with ε = 0 denoting no background infection

pressure (Outbreak j), Figure 3.8). Note that ε is independent of the introduction

of the disease, as we start to model and investigate the outbreaks after the first

infection had taken place. The underlying spatial random effect was simulated

using a GMRF with parameters σ2 = 0.05 and α = 0.98 (Figure 3.7).

The final size of the outbreak was 134 and the temporal spread of the outbreak

is characterized by two waves as displayed in Figure 3.8. This resulted from the

spread first proceeding south and then towards east due to the higher spatial risk.

Figure 3.9 shows that the outbreak is characterized by only one outbreak cluster

with a high density region of infections leaving the most of the observation area

untouched by the disease.

In its nature the Outbreak j) resembles the outbreaks we covered in the pre-

vious chapters. However, here we see many non-infected individuals surround-

ing the outbreak herd. Thus, we performed inference on a smaller area cropped

to the outbreak and first used the same inference setting for the full observa-

tion area for comparison. The smaller area was chosen such that {(X, Y ) |
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Figure 3.7: GMRF risk surface simulated with α = 0.98 and σ = 0.05 with
population size 10,000. The black and the grey circles point towards the location
of Outbreak j) and k), respectively.

500 < X < 1400, 750 < Y < 1750} for the longitude and latitude yielding 2251

individuals, that is about a quarter of the whole area. This smaller area is indi-

cated by the rectangle in Figure 3.9.

For both scenarios we chose κ, γ ∼ Gamma(0.1, 0.1), σ2 ∼ Gamma(2,2) and

α ∼ U(0, 1) priors.
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a)

b)

Figure 3.8: Spread of the Outbreak simulation j). a) Temporal spread b) Spatial
spread at different time points. The outbreak is depicted on top of the random
spatial risk surface and the plots are zoomed in to the area of infection, whereby
red points denote infected, black denote susceptible and grey circles detected in-
dividuals, respectively.

Inference on the smaller area led to reasonable parameter estimates (Table 3.3)

as well as recovered outbreak dynamics (Figure 3.11), as expected based on previ-

ous simulation studies. Performing inference with the same settings on the larger

population size, the effective sample size worsened but led to similar parameter

estimates and comparable high risk regions (Figure 3.10). In order to distinguish

between the two scenarios in more detail, in the plot we chose the probability of

the posterior mean to be greater than 98%. A threshold of 80% as in figures before

would lead to very similar high risk areas for both scenarios. There is not much

data on the remaining non-infected area, as the infections feed the model with
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Figure 3.9: Simulated outbreak with 10,000 individuals and small background
infection pressure. The red points denote all infected individuals of the outbreak
and the green diamond on the top left corner represents the first infected individual.
The square denotes the cropped area for inference on a smaller population.

Parameter True value
Small area
Posterior
mean

Large area
Posterior
mean

Small
area
ESS

Large
area
ESS

κ 0.27 0.166 0.183 262.3 89.1
γ 0.142 0.143 0.140 110.0 72.1

IR 6.728 6.998 7.159 68.9 37.0
σ2 0.05 0.138 0.156 186.1 37.0
α 0.98 0.999 0.999 2188.2 343.2

Table 3.3: Mean posterior estimates and effective sample size for simulated Out-
break j)

most information, which is why the model could not estimate heterogeneity there.

The outbreak dynamics of both population sizes are similar (Figure 3.11) and
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a) b)

Figure 3.10: Estimated high risk regions {s | P (s) > 0.98} for Outbreak simulation
j). a) Prediction on larger population b) Prediction on smaller population.

matched the simulated outbreak. Due to the fact that the larger dataset enabled

a further outbreak spread, there were slightly more outbreaks with a larger final

size.

We can conclude, that cropping the area to a region that is smaller to the area

of infection stabilizes the inference and saves time and computational resources

with comparable results.
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a) b) c)

Figure 3.11: Analysis of outbreak dynamics of the MCMC chain for Outbreak
j). 1000 outbreaks were simulated from posterior samples. Top row is regarding
the smaller population, bottom row regarding the larger population. Column a)
displays a histogram of the outbreak size, column b) the temporal progression,
and column c) the spatial progression of the outbreak. The red lines refer to the
original outbreak simulation.

3.3.3.2 Greater background infection pressure

In this section we investigate inference when using a larger background infection

pressure. For this reason we created Outbreak k) on the same observation area

with 10,000 individuals and spatial risk surface as in Section 3.3.3.1 (Figure 3.7).

The exact simulation parameters are stated in Table 3.4. The simulation had an

outbreak of size 187 and led to several spatial outbreak clusters (Figure 3.12). In

fact, we can identify five different clusters marked with circles. With ε = 10−6, and

ψ = 1, on average 10−6 × 10000× 47 = 4.7 infections arise due to the underlying

infection pressure given the outbreak duration of 47 days. Thus, every cluster

after the introductory case presumably started with one infected individual due

to the background infectious pressure ε. It then evolved locally or died out due

to the fact that no other individual nearby was infected, such as for example the

single infected individual in the center of the picture for the latter case. In the
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Figure 3.12: The spatial spread for Outbreak k). The green diamond represents
the first infected individual. Each circle denotes one outbreak cluster presumably
attributable to the background infectious pressure ε. The rectangle limits the
smaller area for inference.

temporal progression of the outbreak (Figure 3.13), we can make out remarkable

rises beginning at around time points 0, 13 and 23, which can be attributed to the

three remaining bigger clusters.

From the previous section we learned that the sampler stabilizes when cropping

the observation area further towards the infected individuals. Thus, for this out-
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Figure 3.13: The temporal spread of Outbreak k)

Parameter True value
Small area

Posterior mean
Large area

Posterior mean

Small
area
ESS

Large
area
ESS

κ 0.25 0.263 0.121 21 19
γ 0.142 0.120 0.120 28 43

IR 6.960 8.309 8.346 13 28
σ2 0.05 0.057 0.160 28 18
α 0.98 0.999 0.999 381 56

Table 3.4: Mean posterior estimates and effective sample size for simulated Out-
break k)

break we also investigated a smaller area cropped to the two outbreak clusters on

the top left, that is {(X, Y | 100 < X < 770, 1250 < Y < 2000)}. This decreased

the population size to 1282 out of which 126 were infected.

In Table 3.4 the posterior estimates are displayed. In these scenarios, we fixed

the parameter ε to its true value in order to stabilize inference. The two scenar-

ios yield similar reasonable posterior estimates, whereby for the smaller area the

posterior estimates are slightly closer to the true values than for the larger area

(e.g. κ and σ2). The larger population size introduces more uncertainty into the

model. The small ESS values, in particular for α reflects that the sampler algo-

rithm had difficulties sampling from the joint distribution. A potential approach

for the larger area could be to perceive the single outbreak clusters as independent

outbreaks with their own dynamics instead of one large outbreak. The likelihood
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would then be the product of these cluster terms and the parameter estimates

would be local. Here, the limitation is that we would have to be able to separate

the outbreak clusters clearly.

We furthermore investigated the estimation of the background infectious pres-

sure ε. Even an informative Gamma(10, 107) prior slowed down the mixing of

the other parameters even further, such that with 50,000 samples there was not a

visible convergence of the chain.

The impact of fixing ε to a different value than the true value showed a tendency

towards changing the spatial kernel parameter: a too small background infection

pressure led to a smaller κ, thus a less steep decrease of the spatial kernel allowing

distant infections to become more likely. On the other hand, a larger background

infection pressure led to a higher estimate of κ, and thus to less infectious pres-

sure in the distance. These results have to be taken with care as the sampling

performance again was very slow.

Figure 3.14: Estimated high risk regions {s | P (s) > 0.8} for Outbreak simulation
k). Prediction on the a) larger and b) smaller population.

The prediction in Figure 3.14 displays that in the larger area all five outbreak

clusters were captured by the model and high risk regions were identified. The

same holds for the smaller area. Comparing both predictions, the larger area

shows smaller high risk regions at the same probability level of 80%. This could be
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attributed to the additional uncertainty introduced when scaling up the population

size further.

Considering the dynamics of the outbreak, the background infection pressure

can cause local infection foci anywhere in a greater observation area. The exact

location, however, determines the further spread and the ongoing spread of the

epidemic, e.g. in a more densely populated area, the infection will spread faster

than in a area with a lower population density, analogously for high/low spatial

risk. The recovery of the spatial and temporal spread cannot be compared well to

the original outbreak as they are subject to great variation.
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3.4 Discussion

In this chapter we explored the integration of Gaussian Markov Random fields

(GMRFs) into the epidemiological model framework in order to cope with larger

population sizes. Scaling up to a larger population size poses several challenges,

such as computationally in terms of memory usage and computation time, in terms

of parameter estimation and their identifiability, and in terms of reconstructing the

underlying spatial effect (no information for the most area).

We first showed that by means of GMRFs we can represent the main features of

Gaussian processes within our epidemiological framework. By the cost of a higher

coarseness, we gain computational efficiency through the sparse representation of

the precision matrix and the simplified computation of the determinant. One clear

limitation of this approach is that we need to find all eigenvalues of the matrix

D−
1
2AD

1
2 . This might run into computational issues for a too large matrix dimen-

sion. For example, the calculation of all eigenvalues for a 15, 000× 15, 000 matrix

takes about 15 minutes on an Intel i7 4x2Ghz CPU with 8GB RAM using the

python package NumPy and its method linalg.eigvals(). For a matrix of dimen-

sion 25, 000 × 25, 000, the computation exceeded resource capacity. In the latter,

we would refer the reader to sampling from a GMRF via the sparse Cholesky

decomposition from Rue and Held (2005) which is for example provided by the

scikit-sparse library in Python.

The amount of sparsity of the precision matrix depends on the connectivity of

the underlying network. If we choose a larger k in a k-th order CAR model, the

prediction can be refined, however the methods for sparse matrices might not be

fully applicable any more by the cost of the computational advantages.

GMRFs are one possible option to overcome the Big n problem. In our scenario

it has worked sufficiently well which is why we did not explore further options, such

as for example inducing points (Quinonero-Candela and Rasmussen, 2005).

It became clear in the simulation study with a population size of 100, that

the parameters were able to be estimated reasonably well, but also the underlying

spatial effect was able to be recovered. However, when dealing with a larger

population size and a relatively small number of infected individuals (for example

less than 2% of the population), we do not have much information about the disease
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progress or dynamics in most of the area. There, the estimate of the spatial random

effect will revert to its mean. As displayed in the simulation studies, it yet provides

enough information to capture the outbreak dynamics.

The inference contains a lot of uncertainty which is pronounced in the

non-identifiability of the spatial parameters and the slower mixing of the MCMC

chain. When scaling up the population size, the sampler has different possibil-

ities of attributing the infectious pressure to individuals far away from the area

of infection: one way is to increase the background infection pressure for random

appearances of infections within the observation area. Another way would be to

scale the spatial kernel in such a way that individuals far away would be also

exposed to infectious pressure from currently infectious individuals. To decrease

the non-identifiability between the parameters, it is important to have a priori

information, such as for example the parametrization and cut off of the spatial

kernel. This can furthermore help to stabilize the inference and increase the effec-

tive sample size (as discussed in Section 2.8). Assuming a certain level of spatial

correlation and fixing α reduces the parameter space and thus can help the sampler

to explore the parameter space better. Fixing α to exactly 1 leads to calculating

the determinant of a matrix that is not positive definite any more. For this case,

a different approach one could consider are intrinsic CAR models (ICAR), though

whose joint distribution is improper (Besag et al., 1991).

If possible, it is advisable to scale down the population size as this saves time

and computational resources and additionally stabilizes inference. Care has to be

given not to crop the observation area too close to the infected herd to avoid edge

effects as the model also gets information on individuals nearby not having been

infected. The chosen distance could be in line e.g. with the cut off of the spatial

kernel to obtain sparsity of the precision matrix for the GMRF.

In summary we can state that including GMRFs into the epidemiological set-

ting is a hard problem, but it can represent Gaussian processes and identify its

highest risk regions given that sufficient detailed data on the outbreak and the

infected individuals are provided.
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Chapter 4

Aggregated data collection

This chapter is concerned with the inherent uncertainty in the dataset of the Blue-

tongue outbreak in Great Britain 2007 (see Section 1.6.3). We observe that at the

beginning of the outbreak half of the infected farms were detected simultaneously

three days after the first case became known (Figure 1.9). Such a sudden and

unusual increase in case numbers suggests that the data does not reflect the un-

derlying truth. One possibility for this phenomenon is that it may result from the

increased coverage of testing after the first observed case leading to many more

positive farms simultaneously. This however neglects the fact that the virus may

have been present on the farm before. An alternative is that the detection date in

the data gives the date on which the detection was entered into the database. The

time point of detection itself, however, can differ. Therefore, we must assume that

the detection date provided in the data set is the latest possible date for detection.

When applying inference methods, such an uncertainty in the data can pose

a problem with respect to the reliability of the resulting parameter and outbreak

dynamics estimates. In this chapter we will treat the aggregated data as missing

data and propose a way to deal with it based on a Bayesian data augmentation

approach. Afterwards, we conduct a simulation study to test the limits of how

little data is required for good inference on the parameters.

159
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4.1 Treating missing removal times

Our epidemiological setting is based on a SIR model. The detection times corre-

spond to the removal times because we assume that as soon as a farm is detected

it is removed from the system (Section 2.2). Recall that R = {R1, . . . ,Rn} is

the set of the detection times of all n individuals in the population. We de-

note the reporting time of the cases and thus entering them into the database

by N = {N1, . . . ,Nn}. The time at which the detection of i is reported, Ni, is

left-centered and therefore satisfies Ri ≤ Ni (detection time before or equal to

reporting time).

Assume that for the first m removals Ri < Ni, that there is a delay between

detection and reporting, as displayed in Figure 4.1 scenarios A and B. For the

later detections we take Ri = Ni (the detection time corresponds to the reporting

time, Figure 4.1 scenario C). We do not model a specific distribution for Ni − Ri

(delay from detection to reporting), but assume reporting kicks in at some time,

t say, with detections after time t being reported in a timely manner (ie. when

they occur). Until time t we only know that a removal occurred before that time.

Thus, for individuals similar to A or B we augment infection and detection time,

for individuals similar to C we only augment infection time.

Figure 4.1: Illustration of augmented data. We are given reporting data. Thus,
for scenarios A and B we augment both, infection and removal times. For C we
only augment infection times, because the reporting date equals the removal date.

Let RM ··= {R1, . . . ,Rm | R1 = · · · = Rm} be the removal times of all the

m farms that were detected simultaneously on this particular m-th day of the

outbreak. Then for all Ri ∈ RM we have Ri ≤ Ni, while for all Ri ∈ RT ··= R\RM
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we assume Ri = Ni. Thus, for the purpose of this thesis we will treat the set RM

for which the detection time is uncertain as missing data.

Marginalization allows us to deal with missing data while incorporating uncer-

tainty in the removal time. However, in practice this is an infeasible task because

it involves summing over all possible removal times of all individuals with removal

time in RM. Therefore we mimic a marginalization by sampling from the joint

posterior distribution and eventually neglect the value of the missing data. The

joint posterior distribution is given by

f(θ, I,RM | RT) ∝ f(RT | θ, I,RM)f(RM | θ, I)f(I | θ)f(θ) (4.1)

McKinley et al. (2014) used such a Bayesian approach to augment removal

times within a day, that is to impute exact removal times given daily data. For our

purpose, we assume the unknown detection times lie before the recorded reporting

date and we are not interested in imputing the exact date. Instead, we want to

use this uncertainty in the detection times in order to gain estimates for the model

parameters that govern disease transmission.

4.2 Augmenting missing removal times

Our aim is to sample from the joint posterior distribution f(θ, I,RM | RT) (Equa-

tion (4.1)) to marginalize out missing detection times.

In order to do so, we adapt Algorithm 4 for making inference on the parameters

using a hybrid NUTS-Metropolis within Gibbs algorithm and include an indepen-

dence sampler to sample the missing removal times RM given the current samples

of the parameters and the infection times. This is displayed in Algorithm 7.

For updating the missing removal times, one has to think about how to do this

in an efficient manner. As the conditional distribution of the removal times given

the parameters and the infection times is too complicated to be able to sample

directly from it, we make use of Metropolis within Gibbs. Recall that the infectious

period is Gamma(α, β) distributed. We use an independence sampler by sampling

an infectious period Q∗ from Gamma(α, β) and proposing a new removal time

through Rj = Ij + Q∗. In case the proposed value lies beyond the original date
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Algorithm 7 Sampling from f(θ, I,RM | RT) using Hybrid NUTS-Metropolis
within Gibbs

1: Input: s number of samples, nI number of total infections in the outbreak, d
prior belief about length of infectious period, In×1 an n× 1 vector of all ones

2: Initialize: Set I(0) ← (R− dIn×1), R
(0)
M ← RM

3: for k = 0, . . . , s− 1 do
4: Obtain a sample θ(k+1) from (θ | RT,R

(k)
M , I(k)) . Update parameters

using the NUTS sampler
5: for i = 1, . . . , nI do: . Update infection times
6: Obtain a sample I

(k+1)
i from (Ii | R, I(k)

−i ,θ
(k+1))

using adaptive Metropolis-Hastings
7: end for
8: for i = 1, . . . ,m do: . Update m removal times
9: Choose a removal time Rj from RM randomly

10: Obtain a sample R
(k+1)
j from (Rj | RT,RM

(k)
−j
, I(k+1),θ(k+1))

using Metropolis-Hastings
11: end for
12: k ← k + 1
13: end for

in the dataset, that is the date in R
(0)
M , we discard it and draw a new sample for

the infectious period. For our setting an independence sampler was found to be

more effective than a Random Walk Metropolis update. Furthermore, experiments

revealed that it is more efficient to update the missing removal times one at a time

with the removal time chosen uniformly at random rather than to use a sequential

or block updating scheme.
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4.3 Simulation study:

Augmenting detection times

It is of great value to investigate how well the Gaussian process risk surface and the

outbreak characteristics can be recovered given only partially observed epidemic

outbreak data. Therefore, we performed a simulation study using the Outbreak

i) from Table 3.2 and slightly altered the data in similarity to the BTV-8 data

by setting a proportion of the infected population to the same calendar date of

detection. We investigated the model behaviour for the three different scenarios:

augmenting 50%, 60% and 70% of the detection times. This is displayed in Figure

4.2.

a) b) c)

Figure 4.2: Number of infected and removed individuals when altering a) 50%, b)
60% and c) 70% of the data.

In Table 4.1 the mean posterior estimates are displayed. In order to compare

the scenarios, we chose the same priors in all of the settings, that is

κ, γ ∼ Gamma(0.1, 0.1), β0, β1 ∼ N(0, 2), σ2 ∼ Gamma(2,2) and fixed α and ε to

their true values for simplicity reasons. The estimates from the augmented in-

ference scenarios are comparable, in particular the estimate of the spatial kernel

and the coefficients of the fixed effects. The mean infectious time becomes shorter

as less data on the detection is available. This effect is particularly pronounced

with more than 2 days difference in the mean infectious period if we compare the

augmented scenarios (4.9 days for 70% augmented data) with the inference on the

full data (7 days).

The 95% credible intervals of the parameter estimates provide a measure for

uncertainty. While the length of κ is about 0.25 without additional augmentation,
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True value 50%
augmented

60%
augmented

70%
augmented

0%
augmented

κ 0.3 0.323
[0.189,0.471]

0.349
[0.198, 0.517]

0.349
[0.201, 0.504]

0.305
[0.184, 0.437]

γ 0.143 0.170
[0.133, 0.212]

0.201
[0.150, 0.254]

0.207
[0.164, 0.254]

0.143
[0.110, 0.177]

IR 7.006 5.923
[4.867, 6.915]

5.025
[4.003, 6.230]

4.875
[4.098, 5.643]

7.047
[5.695, 8.478]

β0 3 2.675
[1.721, 3.678]

2.546
[1.536, 3.629]

2.560
[1.695, 3.448]

2.528
[2.086, 2.956]

β1 1 0.323
[-0.368, 1.010]

0.222
[-0.447, 0.889]

0.277
[-0.410, 0.928]

0.250
[-0.426, 0.911]

σ2 0.1 0.622
[0.026, 1.756]

0.719
[0.040, 1.895]

0.503
[0.029, 1.299]

0.959
[0.081, 2.283]

Table 4.1: Mean posterior estimates and 95% credible intervals for augmented
detection data of Outbreak i)

it increases to 0.28 for 50% and even 0.3 for 70% augmented data reflecting more

uncertainty. On the scale for the spatial kernel function, this can have much effect

on the distance of transmission (see Figure 3.1). However, the credible interval of

the mean infectious period shortens with more data augmentation. This can be

explained by the fact that with more data missing at the start of the epidemic, we

can only capture the dynamics of the tail of the epidemic. As displayed in Figure

4.2, there are some new infections after time point 15, which leads to information

towards the parameter estimates. This might not reflect the dynamics of the whole

outbreak progression, as indicated by the lower mean infectious period estimate

(4.9 days compared to 7 days).

Comparing the 0% and the 50% augmented data setting, the credible intervals

become wider with less observed data for β0, as there is more uncertainty in the

estimation. For a higher percentage of augmentation they have approximately

at the same length because the number of new infections are the same in all

the augmented scenarios. Similarly, β1 preserves the same level of uncertainty

throughout all scenarios. With a less coarse structure on the fixed effects, the

uncertainty in the estimators could be reduced in particular for the 0% augmented

case.
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σ2 had wide credible intervals and differing mean estimates for all of the scenar-

ios. With less information about the reporting time, we also have even less infor-

mation about the drivers of the infection which is why the sampler had difficulties

exploring the state space. In fact, the effective sample sizes for the parameters for

the full data were κ : 389, γ : 146, s̄ : 1509, IR : 107, β0 : 1507, β1 : 1794, σ2 : 669 in

comparison to κ : 197, γ : 73, s̄ : 928, IR : 38, β0 : 50, β1 : 372, σ2 : 393 for the half

of the data augmented confirming the statement.

a) b)

c) d)

Figure 4.3: Prediction plots of a) 0% b) 50% c) 60% and d) 70% augmented data
of Outbreak i)

The prediction plots in Figure 4.3 look very much alike. Here, we do not notice
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a substantial difference which confirms that even with a high percentage of the

reporting times augmented, we achieve similar results in the random risk surface.

It is remarkable that the lower risk at the top left within an infected area was

identified by all scenarios. There, individuals became infected at a later time of

the epidemic and the reporting time corresponds to their detection time. For other

locations we have less information in particular with the percentage of reporting

times augmented increased.

Figure 4.4: Boxplot of the difference between the true removal times and their
posterior mean estimate for a) 50% b) 60% and c) 70% augmented data.

Investigating the posterior estimate of the augmented reporting time, the box-

plot of the deviations of the posterior mean from the reporting times is displayed

in Figure 4.4. In the mean the reporting times are estimated a little bit later.

With more data augmented, the variation of the estimates, that is the uncertainty

towards the true reporting time, becomes larger.

4.4 Discussion

Imputing data can be a very valuable tool when dealing with missing data. For

this complex model, we deal with a relatively small amount of data: in our case,

we do not only impute the missing infection times but further aim to impute part

of the reporting time. Imputing the reporting times leads additionally to a higher

dimensional sampler space causing the sampler to slow down and more uncertainty

in the deviations in the posterior estimates.
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From the simulation study we can infer that this approach can be applied to

the data we have, yet it is not an ideal situation. With more data missing at the

start of the epidemic, we can only capture the dynamics of the tail of the epidemic.

However, these might not reflect the dynamics of the whole outbreak. Less detailed

data introduce more uncertainty, which is why stronger priors on the parameters,

e.g. the typical infectious period and a good understanding of the effects of the

covariates may aid in coping with the difficulties. Thus, in summary care has to

be taken when applying this approach to data with other forms of missing data.
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Chapter 5

Application: BTV-8 outbreak in

UK 2007

In this chapter we display the application of our methodology developed in the

previous chapters on the BTV-8 data in Great Britain. Details of the disease, the

outbreak and the dataset can be found in Section 1.6.

5.1 The model

The BTV-8 outbreak in Great Britain emphasizes the probable associated impact

of climate change on animal disease. Moreover, it highlights the importance of

modelling the introduction of a disease in previously disease free regions with a

total susceptible host population. As discussed previously, a stochastic mechanis-

tic vector-borne disease transmission model seems to be suitable in this context

(Section 1.5.8). We do not aim to find the best model for BTV transmission, but

rather display an application of our methodology in this section.

The final dataset we analyzed contained 14266 livestock farms with information

on their location, their date of infection (this is set to the end of the observation

period for farms that did not get infected within that time frame) and two me-

teorological information for each farm’s location that resulted from a principal

component analysis of the meteorological dataset (Figure 1.8). More detailed in-
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Parameter Prior choices

κ
Gamma(0.1, 0.1)
Gamma(6.2718, 19.299)

γ Gamma(0.1, 0.1)

β0, β1 N(0,2)

σ2 Gamma(2, 2)
Gamma(2, 20)

α Fixed to 0.99

ε
Gamma(0.01, 0.01)
Gamma(9, 3)

Table 5.1: Prior choices for the inference on the BTV-8 dataset

formation on the dataset and its sources can be found in Section 1.6.3.

For the GMRF usage, we first performed a Delaunay triangulation and the

resulting network contained 42766 edges. The respective sparse precision matrix

of the Gaussian Markov Random field of size 14266×14266 contained 2×42766 +

14266 = 99798 non-zero entries (due to symmetry and the diagonal elements),

which is only 0.05% of all entries.

For the spatial kernel in the model (Equation (3.1), Figure 3.1), we determined

that the cut off distance at 40 is sensible for a midge-borne disease. That implies

that infected individuals may exert infectious pressure only within a distance range

of 40 units onto susceptibles.

5.1.1 Inference and results

5.1.1.1 Inference scenarios

As displayed in the chronology of the BTV-8 outbreak in Figure 1.9, 64 out of 129

(50%) infections on farms were reported just shortly after the introductory case. In

our model we assume that the disease must have been present on the farms before

and augment their date of detection in addition to their infection times. We used

different inference scenarios with varying prior distributions in order to investigate

the robustness towards varying the prior distributions. Table 5.1 summarizes the

different prior combinations we considered.
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The parametrization of the informative Gamma(6.2718, 19.299) prior for κ

was chosen in such a way that the 98% of the distribution mass was contained

within the range of [0.1, 0.7], whose values were inferred to be reasonable from

the spatial kernel decay in Figure 3.1. A larger background infectious pressure ε

led to spatially random infection appearances (Section 3.3.3). Thus, for pushing

ε towards greater values, we made use of a Gamma(9,3) prior. To allow the

contrary, a small background infection pressure, we also considered the scenario

of a Gamma(0.01, 0.01) prior. In order to give more information to σ2 (and

thus more impact of the spatial random effect towards the infection), we further

analyzed the more informative case with a Gamma(2, 20) prior. Estimating α led

to a destabilization of the sampling in the other parameters, in particular σ2 which

is why we fixed it to a value close to 1 accounting for high spatial correlation.

To avoid the conflict of a wrong kernel choice for this example, we also inves-

tigated the approach of using a Gaussian Kernel instead of an exponential kernel.

This leads to more infection pressure near infected individuals before it decreases

with distance.

5.1.1.2 Inference results

In all scenarios the mixing was slow, yet with more information put into the infer-

ence the mixing stabilized. In the different inference settings we see a consistency

in the estimation. The parameter estimates responded to a change of prior but

not drastically (as observed in previous chapters). The length of infection was

estimated to be around 5 to 6 days. The coarse meteorological covariates data

did not provide much information input towards the inference. β0 was estimated

close to 0 (posterior mean 0.027 for scenario I) and -0.117 for scenario V) ). β1

was more informative with 5 different values on the area instead of 3 (Figure 1.10)

and was estimated with -1.903 in scenario I and -4.529 in scenario V. Fixing the

covariates to 0 led to a stabilization of the sampler for the other parameters. This

can be attributed to the impact of the fixed effects on the outbreak, presumably

introducing more non-identifiability between the other spatial variables.

In order to display the spatial prediction for two extremes with more and less
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Prior choice κ γ IR β0 β1 σ2 ε

I
κ ∼ Gamma(0.1, 0.1)
σ2 ∼ Gamma(2,2)
ε ∼ Gamma(0.01, 0.01)

0.126 0.192 5.523 0.027 -1.903 0.849 0.458

II
κ ∼ Gamma(6.3, 19.3)
σ2 ∼ Gamma(2,2)
ε ∼ Gamma(0.01, 0.01)

0.158 0.210 4.973 0.069 -1.857 1.014 0.303

III
κ ∼ Gamma(0.1, 0.1)
σ2 ∼ Gamma(2,2)
ε ∼ Gamma(9,3)

0.126 0.178 5.973 -0.125 -4.168 0.659 2.630

IV
κ ∼ Gamma(6.3, 19.3)
σ2 ∼ Gamma(2,2)
ε ∼ Gamma(9, 3)

0.151 0.193 5.449 -0.117 -4.530 1.014 2.601

V
κ ∼ Gamma(6.3, 19.3)
σ2 ∼ Gamma(2,20)
ε ∼ Gamma(9,3)

0.130 0.177 5.930 -0.115 -3.688 0.211 2.679

VI

κ ∼ Gamma(6.3, 19.3)
σ2 ∼ Gamma(2,2)
ε ∼ Gamma(0.01,0.01)
Fixed β0 = 0

0.155 0.193 5.454 - -2.135 0.841 0.353

VII

κ ∼ Gamma(6.3, 19.3)
σ2 ∼ Gamma(2,2)
ε ∼ Gamma(9,3)
Fixed β0 = β1 = 0

0.114 0.196 5.411 - - 0.050 1.890

Gaussian kernel

VIII
κ ∼ Gamma(6.3, 19.3)
σ2 ∼ Gamma(2,2)
ε ∼ Gamma(9,3)

0.111 0.183 5.842 -0.038 -3.790 1.006 2.671

IX

κ ∼ Gamma(6.3, 19.3)
σ2 ∼ Gamma(2,2)
ε ∼ Gamma(0.01,0.01)

0.113 0.179 5.921 0.077 -1.895 0.742 0.866

Table 5.2: Mean posterior estimates for BTV-8 data. If not specified else, we chose
β0, β1 ∼ N(0, 2) and γ ∼ Gamma(0.1, 0.1) priors and fixed α = 0.99.
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a priori information, we chose the scenarios of the most difference in priors, that

is

I) κ ∼ Gamma(0.1, 0.1), ε ∼ Gamma(0.01, 0.01), σ2 ∼ Gamma(2, 2)

V) κ ∼ Gamma(6.2718, 19.299), ε ∼ Gamma(9, 3), σ2 ∼ Gamma(2, 20).

Scenario I) Scenario V)

Figure 5.1: Comparison of the estimated random spatial risk surface for the two
inference scenarios I) and V).

As displayed in Figure 5.1 we obtained very similar spatial random effect risk

surfaces in both cases. This also held true for the other scenarios. Only when leav-

ing out the fixed effect covariates (setting their parameters to 0 in the inference),

we obtained a slightly more pronounced spatial random effect taking into account

the missing infectious pressure. However, it did not change the overall result.

In their risk prediction, the plots were comparable. We can clearly identify two

main hot spots. There, we also have the highest density of infected farms.

In our model the infections that are assumed to arise from the background

infections are calculated by ψε×14266 (population size)×75 (length of outbreak).
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Whereas the remaining infections would rather be attributed to the background

infection pressure. Between an ε = 0.458 and ψ = 1.3 × 10−5 (scenario II) and

ε = 2.679 and ψ = 8.302 × 10−8 (scenario V), we infer between 6.37 and 2.4

infections due to random background infections.

Using a Gaussian kernel (scenario VIII and IX) in contrast to an exponential

kernel had very little effect on the parameter estimates and resulted in a compa-

rable spatial random effect recovery.

5.1.1.3 Model fit

In this section we investigated how well our model fitted the data.

Figure 5.2 displays the outbreak dynamics that were created from posterior

samples of scenario V) κ ∼ Gamma(6.2718, 19.299), ε ∼ Gamma(9, 3), σ2 ∼
Gamma(2, 20) (see Table 5.2).

a) b)

Figure 5.2: Posterior outbreak dynamics of BTV-8 outbreak data with a) his-
togram of the outbreak size; the red lines refer to the original outbreak size. b)
temporal progression of posterior outbreaks.

It became clear that the outbreaks created from the posterior samples differed

from the original BTV-8 outbreak data. Most of the simulated outbreaks from

the posterior samples led to outbreak sizes that were far below the original out-

break. Only a very little number of the simulations led to more than 300 infected

individuals, which is more than double the number of infections in the real data.

Posterior predictive plots of other inference scenarios (Table 5.2) led to similar
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results. This suggests that there are features in the real data generating process

that we did not capture. Possible reasons for this lack of fit might be for example

the spatially coarse structure of the meteorological covariates as introduced earlier.

Additionally, we only considered the mean values of these variables over a period

of three months. Furthermore, BTV-8 can also be asymptomatic which we did not

account for in the model. Further work is needed to address those issues.

In summary, from the posterior predictive plots we can infer that the data

was not generated by the model we are proposing. However, we did not mean to

provide a detailed analysis of the 2007 UK BTV-8 outbreak. Instead, our goal was

to demonstrate our proposed joint modelling framework.
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5.2 Discussion

Using the BTV-8 outbreak as an example, we showed that our methodology is ef-

fective at identifying spatial hotspots and differentiated between inter-farm trans-

mission and background infections.

For a more precise modelling of the BTV-8 disease dynamics other features

should be included. For example the incubation period, the time from the indi-

vidual being infected to when they become infectious, or a less perfect detection

probability can be added, as BTV-8 can be asymptomatic. The background in-

fectious pressure took into account spontaneous infections in previously disease

free regions which could not be attributed to the transmission from a proximate

infected farm. This also comprised strong winds that carried infected midges over

long distances leading to cases in distant locations. Although we included wind di-

rection and speed within the fixed effects, the information does not contain enough

detail, including time-dependence, to allow for detailed inference.

This chapter illustrates the importance of the data quality for modelling and

parameter estimation. For the case data we had information on who is infected.

However, the main limitation of the dataset was that we did not know when the

infection happened and, additionally, for a considerable proportion of the farms

the detection date was imprecise. Proper record keeping to obtain better detection

time estimates enhances the model’s estimates and predictions as shown.

Besides, with a more heterogeneous structure in the fixed effects, we would

have been able to obtain a better prediction of the risk surface in particular in

areas of no infection. There, the Gaussian process reverts to its mean, neglecting

the strength of the model. Higher resolution earth observational data can provide

an alternative to missing or highly coarse freely available meteorological data.

Additionally, better data quality leads to less imputation and thus a shorter

runtime of the model. The BTV-8 model from this chapter took about 2 weeks for

50,000 samples, which does not qualify as a modeling tool for emergency response.

Thus, apart from more informative data, further software engineering is needed to

be able to inform epidemiologists in a short time.

We can conclude that this modelling approach needs detailed data for a rather

complicated inference setting. The low level of infections (less than 1% of the indi-
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viduals) increased the complexity to differentiate between the importation of cases

and the farm-to-farm transmission. Furthermore, we imputed half of the infection

times and dealt with a population size of almost 15,000 individuals introducing

much more uncertainty into the model. With infection data that is very limited

by its location and date, more detail on the fixed covariates can inform the model

better. Furthermore, to stabilize inference prior distributions should be informed

by epidemiologists and experts.
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Chapter 6

Conclusions and Discussion

This thesis aimed at developing an approach for emergency response to vector-

borne disease outbreaks when there is not enough data on the vector population yet

available. In contrast to other models that deal with vector density or biting rate,

we inform the model indirectly about vector presence by introducing covariates

that influence the vectors’ habitat and behaviour. This allowed us to estimate key

disease dynamic parameters, such as transmission and infection-to-detection rates,

as well as to recover the spatial random effect of the vector risk across the country.

We showed that epidemiological models can be combined with methods from

spatial statistics. In the simulation studies, we were able to capture the dynamics

of the outbreak and recover the risk surface of the spatial random effect where

possible. We estimated the parameters that govern the transmission process and

investigated non-identifiabilities between parameters accounting for spatial varia-

tion. Through various simulation studies we could infer that the mixing in particu-

lar of the augmented infection times was slow, yet reasonable. In order to decrease

the sampling space, we analytically integrated out the infection rate parameter ψ,

which stabilized the mixing of the remaining parameters. Different attempts did

not improve the sampling performance of the infection times and remains subject

to further research.

Depending on the population size the computational complexity must be taken

into account. While Gaussian processes are a common tool in geostatistics, it

comes with a cubic complexity. Thus, for an increased population suitable alter-
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natives need to be considered. In this thesis we investigated the representation of

Gaussian processes by Gaussian Markov random fields within the epidemiological

framework and made use of the computational benefits through its sparse precision

matrix. The estimates of both approaches were reasonable with less precision in

the risk surface through the GMRF but with gains in computational efficiency.

We could conclude that estimating the hyperparameters is difficult and destabi-

lizes the sampling in both scenarios. In fact, fixing one of the parameters, e.g. the

marginal variance of the Gaussian process or the spatial correlation parameter for

the GMRF, can help with the inference.

Furthermore, scaling up the population size leads to large areas of no infection,

and thus only very little information. Using meteorological data with a sufficiently

fine grid adds heterogeneity and yields more information outside the infected herds

when fitting the model. For computational benefits, the spatial kernel can be

defined in such a way that no infectious pressure is able to be transmitted given a

certain distance. This way, efficient matrix multiplication can speed up the runtime

of the MCMC sampling. In all cases, informative prior distributions should be

preferred where possible to stabilize inference. The estimates do respond to a

change of priors but not in a drastic way still capturing the dynamics of the

outbreak.

We applied this approach to a real disease outbreak which is the UK 2007

BTV-8 outbreak, where half of the population had accumulated detection data.

We acknowledge that a small proportion of infected individuals(less than 1%)

provides only limited data for a complex model to fit. Though, accumulated data in

addition includes more uncertainty into the model as the dimension of the sampling

space and thus the computational time to sample from the posterior distribution

increases. However, we showed that this provides a useful tool for dealing with

accumulated or missing data given sufficient computational resources.

We illustrated that our methodology is working well as we could identify high

risk regions and obtain reasonable parameter estimates. However, we also con-

cluded that there are certain constraints on the data: for this rather complex

model we need sufficient information for good predictions and inference. The

larger the population size and the more data that needs to be augmented, the

greater the runtime of the model and more uncertainty is included in the esti-
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mation. Discussions with experts and epidemiologists can help specify the prior

distributions and thus stabilize inference. A crucial aspect to exploit the strength

of this approach, is that the spatial heterogeneity in the data is provided. The

density of observation points has to be high enough in relation to the variation in

the surface. This is important to give the model a chance to succeed in capturing

the characteristics of the random surface. Furthermore, the remote sensing data

needs to be sufficiently detailed in order to predict the risk for areas that have not

yet experienced the outbreak.

Thus, the availability and quality of data are practical limitations to the use

of the model in the real world. For emergency response to disease outbreaks,

we recommend that fine-scale remote sensing data should be made freely - and

therefore quickly - available. The runtime of the model benefits from the above

mentioned data availability. Furthermore, for the policy-makers to be able to act

upon the model predictions, more software engineering is needed to shorten the

runtime from the range of a couple weeks to a few days or even overnight.

The outcome of this thesis is a generic vector-borne disease forecasting system,

capable of assimilating case, demographic, and remotely sensed environmental data

to rapidly predict high risk areas of transmission should a new incursion occur even

if the new incursion requires a hitherto understudied vector population. As such,

it yields rigorous disease control policy evidence for a future outbreak, even in the

presence of considerable uncertainty concerning the disease transmission process.

6.1 How to take this thesis forward?

To generalize this method, the type and features of the disease outbreak we wish

to model have to be considered and adapted to the purpose. For example, we did

not account for the movement of the individuals as we assume a movement ban

was set in place shortly after the outbreak started and thus farms did not trade

during the observation period. However, additional features such as partial trad-

ing restrictions or moving individuals, can be included by making use of contact

networks and graph theory.

This method can be applied as well to other forms of disease transmission.
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For instance, for bovine tuberculosis Woodroffe et al. (2016) suggest, to consider

disease transmission through contamination of the host’s and vector’s shared en-

vironment. In this case, the time independent spatial risk would highlight areas

of contaminated cattle pasture and hence areas of high disease risk.

In cases where for example the environment and hence the location of the

vector with the pathogen changes rather quickly, the method can be extended

by a time dependent spatial random effect and further by temporarily changing

covariates. A piecewise constant intensity function for the Poisson process is not

applicable here, as the value of the covariates are only able to change when an

event (infection or removal) happens and is not independent of the event. For

this, the nonhomogeneous Poisson process is suitable (Appendix A.1.2) for which

new ways for efficient and fast computation have to be considered.

Besides, in a future study it might be useful to investigate how many infected

individuals are needed before predictions become practically useful, given some

policy-derived objective function (e.g. predictive variance of the epidemic size).

For simplicity reasons we used a standard SIR epidemic model, though, our

approach leaves room for extensions to other epidemic models, e.g. with additional

states such as exposed (SEIR) or vaccinated (SVIR), or the chance of recovering

from the infection (SIS), as well as lifelong infection (SI).

In this thesis, we only considered completed outbreaks. However, when working

with online data, that is, data of an ongoing outbreak, we would want to predict the

likelihood of the disease arriving in currently uninfected areas of the country and

predict the vector population’s propensity to spread the disease once it has arrived.

Besides, the framework is an individual-based model and thus can stand only if

the data on the location and status of all farms (infected and, in particular, not

infected) are available. Further research is needed on how to relax this requirement.

Chapter 4 stands alone. This approach can be used in different areas, such

as for example in diagnostics: the development of a far more sensitive test would

lead to a sudden and steep increase of the number of infected individuals, which

is difficult for epidemiological models to capture. These detection times can be

augmented as shown to fit the model better and predict the ongoing of the outbreak

dynamics.

This approach can presumably be applied to a variety of diseases, in particular
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the whole class of vector-borne diseases. In can be highly beneficial in situations

with a lack of or obsolete information about the vector, with environmental data

in the public domain particular provided. We highly recommend and anticipate

the use of the self implemented epidemiological extension to the PyMC3 library

as it facilitates the use of statistical computing and its applications. The pro-

gramming code is available under https://fhm-chicas-code.lancs.ac.uk/koeppell/

PyMC3 Epi Extension.
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Appendix A

Appendix

A.1 Poisson Process

In the following, we consider a stochastic process which enables us to model the

occurrence of infection events. In particular, we focus on the so-called Poisson

point process or Poisson process. We utilize the concept of Poisson process to

model the time points of infections instead of their location. A reference to an

article where Poisson processes were used in a one dimensional, temporal setting

to model epidemics would be for example Andersson and Britton (2012), and a

selection of articles in an applied setting is Jewell et al. (2009); Jewell and Brown

(2015); Xiang and Neal (2014).

In the following, we introduce the Poisson process first in its simplest form

before we gradually extend it for our use. Being part of our modelling framework,

we derive its likelihood, which enables us to do inference on its parameters.

A.1.1 Homogeneous Poisson process

A Poisson process can be defined in several ways (Ross, 2013). In a one dimensional

setting, the most intuitive approach is to model a sequence of waiting times each

ending with an event. Hence, these waiting times are also referred to as inter-event

times. The simplest continuous distribution for modelling the inter-event times is

the exponential distribution as it has the memorylessness property: the waiting

time until the next event in the future is independent of how much time we have
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already waited. In other words, for a random waiting time T ∈ [0,∞) and any

given time t′ with 0 ≤ t′ ≤ t we have

P (T < t | T > t′) = P (T < t− t′) (A.1)

The probability that we at most wait t given that we have already waited t′ is

the same as the probability that we at most wait t − t′. The only continuous

probability distribution that fulfils this property is the exponential distribution

(Forbes et al., 2010). Hence, for any random variable T ∈ [0,∞) that fulfils (A.1),

the probability density is given by

P (T ≤ t) =

∫ t

0

λe−λxdx

for all t ∈ [0,∞) and a fixed λ ∈ (0,∞). The parameter λ can be interpreted as a

rate parameter and governs the length of the waiting time:

E(T ) =

∫ ∞
0

x · λe−λxdx

=
[
− xe−λx

]∞
0

+

∫ ∞
0

e−λx

= (0 + 0) +
[
− 1

λ
e−λx

]∞
0

=
1

λ

The mean of the inter-event time states how long we have to wait on average for

an event to occur. So if we wait 1/λ for one event, we expect λ events to take

place within one time unit. Hence, the rate parameter λ controls the intensity

of occurring events over time; a higher λ leads to an increasing number of events

happening, a lower λ leads to less events.

We are now able to introduce the Poisson process. We will start with the def-

inition of a simple Poisson process, which models inter-event times at a constant

rate. Then, we extend this concept to the heterogeneous Poisson process to model

short and long inter-event times. Finally, we further condition the occurrence of
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new events on the information of all events in the past by introducing a conditional

intensity function for the Poisson process. We close this chapter with deriving the

formula for the likelihood.

Definition 8: Let T1, T2, . . . be i.i.d. random variables that follow an exponential

distribution with parameter λ. The counting process

Nt ··= max{n | T0 + T1 + · · ·+ Tn ≤ t}, with T0 ··= 0

is called homogeneous Poisson process with intensity λ.

Nt counts the number of events that happen up to time t. We now show that

this number of occurred events until time t is Poisson distributed with parameter

tλ.

Theorem 3: P (Nt = n) = (tλ)n

n!
e−tλ

Proof. First it is to note that the sum of independent identical exponential distri-

butions is Erlang distributed (Forbes et al., 2010). In other words, let T1, T2, . . .

be independent identical exponential distributed random variables with a common

rate λ, then

P (T0 + T1 + · · ·+ Tn+1 ≤ t) = 1−
n∑
i=0

1

i!
e−λt(tλ)i

From Definition (8) we have {Nt ≥ n} = {T0+T1+· · ·+Tn ≤ t} for n ∈ N∪{0}
and thus {Nt > n} = {T0 + T1 + · · ·+ Tn+1 ≤ t}. Then

P (Nt ≤ n) = 1− P (Nt > n)

= 1− P (T0 + T1 + · · ·+ Tn+1 ≤ t)

=
n∑
i=0

1

i!
e−λt(tλ)i
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Since this holds for each n, we get

P (Nt = n) =
1

n!
e−λt(tλ)n

Figure A.1: Simulation of 10 Poisson processes (horizontal) for λ =
0.2, 0.4, . . . , 2.0. Every point marks one event.

Figure A.1 displays the simulation of 10 homogeneous Poisson processes (Def-

inition (8)) each with different rate parameter λ. It becomes apparent how the

rate λ is influencing the event count: a high λ leads to short inter-event times and

thus many events over time, whereas a low λ entails longer waiting times and thus

a smaller number of events over time.

Although this process enables us to model short and long inter-event times and

thus low and high intensities, it is often too simple for practical matters as we will

see in the next section.

A.1.2 Nonhomogeneous Poisson process

In the previous section we introduced a Poisson process with a constant intensity

λ. Hence, this process is called homogeneous Poisson process. In real word ap-

plications, though, we are often interested in intensities that change over time for

example due to seasonal variations. To include such a feature we should be able
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to alter λ over time as opposed to leaving it constant. This can be done by con-

sidering the rate parameter λ, meaning the intensity, as function of time t 7→ λ(t)

with λ(t) ∈ [0,∞) for all t ∈ [0,∞). The intensity function λ(t) governs how the

occurrence of events of a Poisson process is changing depending on time. To do

so, we need the integral Λ(t) of λ on the interval [0, t]

Λ(t) ··=
∫ t

0

λ(s)ds

Λ is monotonic increasing, though not strictly monotonic increasing: λ(s) can

be 0 over a certain interval leaving the inverse function not uniquely defined.

Therefore, Λ−1(s) = inf{t | Λ(t) = s}.

Definition 9: Let T1, T2, ... ∈ [0,∞) be identically, independent random variables

that follow an exponential distribution with mean 1. The counting process Nt with

Nt ··= max{n ∈ N ∪ {0} | T0 + Λ−1(T1 + ...+ Tn) ≤ t}, whereby T0
··= 0

is called nonhomogeneous Poisson process.

Here Λ−1 transforms the sum of the inter-event times and stretches or com-

presses it according to the intensity function λ. Please note that if no event

happens until time t, we get Nt = 0.

Theorem 4: P (Nt = n) = Λ(t)n

n!
e−Λ(t)

Proof. This can be verified similarly to the homogeneous Poisson process case

(proof of Theorem (3)).

Comparing the homogeneous Poisson process (Definition (8)) with the nonho-

mogeneous Poisson process (Definition (9)), we notice that the latter is a general-

ization of the former one: we obtain the homogeneous Poisson process as a special

case of the heterogeneous Poisson process by taking a constant intensity λ.

Figure A.2 illustrates a nonhomogeneous Poisson process with intensity func-

tion λ(t) = 1 + cos(t). It becomes clear that the number of events increases and
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Figure A.2: Nonhomogeneous Poisson process with intensity function λ(t) = 1 +
cos(t). Every point marks one event.

decreases with increasing and decreasing values of the periodic function λ(t).

A.1.3 The likelihood

In the previous chapter we introduced a Poisson process which enables us to model

a process with varying event frequencies over time. The amount of variation may

be determined by the parameters of its intensity function. We are interested in

drawing inference on these parameters given only the observed event times in

reality. Hence, we rely on the likelihood function, which is the interface between

the observed event times and the unknown parameters: it is a function of the

parameters of an empirical model given the data.

Therefore, we now derive the likelihood of a nonhomogeneous and thus homo-

geneous Poisson process given the event times; that is, the value of the density

function evaluated at the observation. First we define random variables X1, X2, . . .

by

Xk ··= Λ−1(T1 + ...+ Tk) (A.2)

In the following we will denote the density of (Xk | Xk−1 = xk−1) evaluated

at xk by pXk|Xk−1
(xk | xk−1). This conditional distribution is necessary to derive

the density of a Poisson process. The following Lemma helps us to understand its

functional form.

Lemma 1:

pXk|Xk−1
(t | xk−1) = 1{t>xk−1}λ(t)e

−
(

Λ(t)−Λ(xk−1)

)
(A.3)
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Proof. First we show that the sequence X1, X2, ... forms a Markov chain, that is

Xk is independent of X1, . . . , Xk−2 given Xk−1, and then utilize it to prove the

functional form of the conditional distribution pXk|Xk−1
(xk | xk−1).

Taking into account Equation (A.2), the distribution of Xk given all previous

random variables is

(Xk | Xk−1 = xk−1, Xk−2 = xk−2, . . . , X1 = x1) = Λ−1(t1 + · · ·+ tk−1 + Tk)

= Λ−1
(

Λ(Λ−1(t1 + · · ·+ tk−1)) + Tk

)
= Λ−1(Λ(Xk−1 = xk−1) + Tk)

= (Xk | Xk−1 = xk−1)

Thus, the sequence X1, X2, ... forms a Markov chain. We infer its functional form

by applying a transformation on Tk with the function f(s) = Λ−1(Λ(xk−1)+s). We

know that Tk is exponentially distributed with mean 1, that is P (Tk ≤ t) = 1−e−t.

⇒ P (Xk ≤ t | Xk−1 = xk−1) = P
(
Λ−1(Λ(xk−1) + Tk) ≤ t

)
= P (Tk ≤ Λ(t)− Λ(xk−1))

= 1− e−(Λ(t)−Λ(xk−1))

Taking the derivative, we obtain the density for Xk

λ(t)e
−
(

Λ(t)−Λ(xk−1)

)
(A.4)

In (A.4), the next event time t is not depending on any previous events and thus

can be any positive value. However, by definition events happen consecutively

and thus the event can only occur only after xk−1, the time of the (k− 1)st event.

Hence, we have to restrict the density to be 0 unless t > xk−1 holds and this

completes the proof.

We are now able to derive the likelihood function of the nonhomogeneous Pois-

son process with observed event times t1 < t2 < ... < tn within the observation

period [0, tend]. Because the chronology of the event times in the observation is
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known a priori, the indicator function in Equation (A.3) of Lemma 1 is always

1 given the (ordered) observation. Thus, we will neglect this term in the follow-

ing. Let pX1(t1) constitute the density of X1 evaluated at t1, then the likelihood

L(t1, ..., tn, tend) of this observation reads

L(t1, ..., tn, tend) =
(
pX1(t1)

n∏
k=2

pXk|Xk−1
(tk | tk−1)

)
P (Xn+1 > tend | Xn = tn)

=
(
λ(t1)e−Λ(t1)

n∏
k=2

λ(tk)e
−(Λ(tk)−Λ(tk−1))

)(
1− (1− e−(Λ(tend)−Λ(tn)))

)
∗
= e

−Λ(t1)+Λ(tn)−Λ(tend)+
n∑
j=2

Λ(tj−1)−Λ(tj)
n∏
k=1

λ(tk)

= e −Λ(tend)

n∏
k=1

λ(tk)

The asterisk indicates that the product of the exponential distributions can be

simplified to a telescoping sum in the exponent, in which the terms cancel each

other out, leaving one summand, namely e −Λ(tend).

A.1.4 Conditional Poisson process

The inhomogeneous Poisson process seems to be quite flexible because its intensity

function can be adjusted to one’s needs to model short as well as long inter-event

times. However, for practical matters we face a significant drawback: dependen-

cies cannot be modelled. For example in a disease outbreak, infected individuals

are more likely to infect individuals that are located nearby than the ones that are

further away. Hence, for a given individual, the probability of infection depends

on the location of the other infected individuals. When incorporating such depen-

dencies into our model, the stochastic process has to be able to include the past

events up to any given time t. Generally speaking, the process has to condition

on the past! With respect to the Poisson process, this can be realized by working

with a conditional intensity function. This function conditions on all events that

occurred up until any time point t and changes its values accordingly. It is even

possible to consider several Poisson processes in parallel, whose intensity functions
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at a given time t condition on all events of all processes up until t. This becomes

important especially when we consider the infection process of an individual as

a Poisson process that conditions on all infection events of all other Poisson pro-

cesses until a certain time point t.

In the following we refer to a Poisson process with a conditional intensity

function as conditional Poisson process. Let Ht denote all information until time

point t (excluding). Then, λ∗(t | Ht) is the intensity function that conditions

on all past events that happened before t, that is on all events at time points

t1 < t2 < ... < tn < t.

Example 1: (Hawkes process) Let t1 < ... < tn be the time points of events until

time t. The so-called Hawkes process (Hawkes, 1971) is defined by its intensity

function

λ∗(t | Ht) = µ+ α
n∑
i=1

e−(t−ti)1{t≥ti}

This process behaves as follows: whenever an event occurs, the intensity increases

by α and thereafter decreases exponentially over time. The minimal intensity is

determined by µ. Figure A.3 displays a simulation of a variety of Hawkes processes

with µ = 0.2 and α = 1, . . . , 8. As expected the events tend to occur in clusters and

are not uniformly distributed (homogeneous Poisson process) or do not occur with

respect to the value of a function that is independent of the past (heterogeneous

Poisson process).

In Example 1 it becomes clear that conditioning on past events is an additional

feature of a Poisson process. When extending the nonhomogeneous and hence the

homogeneous Poisson process by this feature, it is to note that the increments of

the conditional Poisson process are not independent anymore.

We are now able to express the likelihood of the conditional Poisson process

with respect to the previous Section A.1.3. With Λ∗(t | Ht) =
∫ t

0
λ∗(t | Ht)dt, the
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Figure A.3: Simulation of a Hawkes process with µ = 0.2 and α = 1, ..., 8.

likelihood reads

L(t1, ..., tn, tend) = e−Λ∗(tend|Htend )

n∏
k=1

λ∗(tk | Htk)

We have now expanded the Poisson process to such an extent that we are

able to model many complex processes of the real world including changes in the

intensity functions at arbitrary time points.
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Lentz, H. H. K., Koher, A., Hövel, P., Gethmann, J., Sauter-Louis, C., Selhorst,

T., and Conraths, F. J. Disease spread through animal movements: A static

and temporal network analysis of pig trade in germany. PLOS ONE, 11:1–32,

05 2016.

Lindgren, F., Rue, H., and Lindström, J. An explicit link between gaussian fields

and gaussian markov random fields: the stochastic partial differential equation

approach. Journal of the Royal Statistical Society: Series B (Statistical Method-

ology), 73(4):423–498, 2011.

Maclachlan, N. J. Bluetongue: history, global epidemiology, and pathogenesis.

Preventive veterinary medicine, 102(2):107–111, 2011.

McCann, R. S., Messina, J. P., MacFarlane, D. W., Bayoh, M. N., Gimnig,

J. E., Giorgi, E., and Walker, E. D. Explaining variation in adult anopheles

indoor resting abundance: the relative effects of larval habitat proximity and

insecticide-treated bed net use. Malaria journal, 16(1):288, 2017.



BIBLIOGRAPHY 201

McElreath, R. Markov Chains: Why Walk When You Can Flow? https:

//elevanth.org/blog/2017/11/28/build-a-better-markov-chain/, 2017.

Accessed: 2020-10-29.

McKendrick, A. Applications of mathematics to medical problems. Proceedings of

Edinburgh Mathematical Society, 44:98–130, 1926.

McKinley, T. J., Ross, J. V., Deardon, R., and Cook, A. R. Simulation-based

bayesian inference for epidemic models. Computational Statistics & Data Anal-

ysis, 71:434–447, 2014.

Medlock, J. M. and Leach, S. A. Effect of climate change on vector-borne disease

risk in the uk. The Lancet Infectious Diseases, 15(6):721–730, 2015.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller,

E. Equation of state calculations by fast computing machines. The journal of

chemical physics, 21(6):1087–1092, 1953.

Mugenyi, L., Abrams, S., and Hens, N. Estimating age-time-dependent malaria

force of infection accounting for unobserved heterogeneity. Epidemiology & In-

fection, 145(12):2545–2562, 2017.

Murray, N. E. A., Quam, M. B., and Wilder-Smith, A. Epidemiology of dengue:

past, present and future prospects. Clinical epidemiology, 5:299, 2013.

Neal, P. and Roberts, G. A case study in non-centering for data augmentation:

stochastic epidemics. Statistics and Computing, 15(4):315–327, 2005.

Neal, R. M. et al. Mcmc using hamiltonian dynamics. Handbook of markov chain

monte carlo, 2(11):2, 2011.

Nelder, J. A. and Wedderburn, R. W. Generalized linear models. Journal of the

Royal Statistical Society: Series A (General), 135(3):370–384, 1972.

Nishio, M. and Arakawa, A. Performance of hamiltonian monte carlo and no-u-

turn sampler for estimating genetic parameters and breeding values. Genetics

Selection Evolution, 51(1):73, 2019.

https://elevanth.org/blog/2017/11/28/build-a-better-markov-chain/
https://elevanth.org/blog/2017/11/28/build-a-better-markov-chain/


202 BIBLIOGRAPHY

Okabe, A., Boots, B., Sugihara, K., and Chiu, S. N. Spatial tessellations: concepts

and applications of Voronoi diagrams. John Wiley & Sons, 2009.

O’Neill, P. and Roberts, G. Bayesian inference for partially observed stochas-

tic epidemics. Journal of the Royal Statistical Society: Series A (Statistics in

Society), 162(1):121–129, 1999.

Ostfeld, R. S., Glass, G. E., and Keesing, F. Spatial epidemiology: an emerging

(or re-emerging) discipline. Trends in Ecology and Evolution, 20(6):328 – 336,

2005.

Papaspiliopoulos, O. and O Roberts, G. Non-centered parameterisations for hier-

archical models and data augmentation. 7:307–326, 01 2003.

Parham, P. E., Waldock, J., Christophides, G. K., Hemming, D., Agusto, F.,

Evans, K. J., Fefferman, N., Gaff, H., Gumel, A., LaDeau, S., et al. Climate,

environmental and socio-economic change: weighing up the balance in vector-

borne disease transmission. Phil. Trans. R. Soc. B, 370(1665), 2015.

Penrose, M. et al. Random geometric graphs, volume 5. Oxford university press,

2003.

Preciado, V. M. and Jadbabaie, A. Spectral analysis of virus spreading in random

geometric networks. In Proceedings of the 48h IEEE Conference on Decision and

Control (CDC) held jointly with 2009 28th Chinese Control Conference, pages

4802–4807. IEEE, 2009.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. Numerical

Recipes in C: The Art of Scientific Computing. Cambridge University Press, 2

edition, 1992.

Purse, B. V., Mellor, P. S., Rogers, D. J., Samuel, A. R., Mertens, P. P., and

Baylis, M. Climate change and the recent emergence of bluetongue in europe.

Nature Reviews Microbiology, 3(2):171, 2005.

Quinonero-Candela, J. and Rasmussen, C. E. A unifying view of sparse approxi-

mate gaussian process regression. The Journal of Machine Learning Research,

6:1939–1959, 2005.



BIBLIOGRAPHY 203

Rasmussen, C. E. and Williams, C. K. I. Gaussian Processes for Machine Learning.

The MIT Press, 2006.

Riley, S., Eames, K., Isham, V., Mollison, D., and Trapman, P. Five challenges

for spatial epidemic models. Epidemics, 10:68–71, 2015.

Roberts, G. O., Gelman, A., Gilks, W. R., et al. Weak convergence and optimal

scaling of random walk metropolis algorithms. The annals of applied probability,

7(1):110–120, 1997.

Ross. University of Münster, Mathematics, Lecture Notes Stochastik: Chap-

ter I The Poisson Process, 2013. URL: https://www.uni-muenster.de/

Stochastik/lehre/WS1314/BachelorWT/Daten/StPro_Ross1.pdf. Accessed

2019/02/12.

Ross, R. The prevention of malaria, with addendum on the theory of happenings.

Murray, London, 1911.

Rubin, D. B. Bayesian data analysis. 2013.

Rue, H. and Held, L. Gaussian Markov random fields: theory and applications.

Chapman and Hall/CRC, 2005.

Salvatier, J., Wiecki, T. V., and Fonnesbeck, C. Probabilistic programming in

python using pymc3. PeerJ Computer Science, 2:e55, 2016.

Samat, N. and Percy, D. Vector-borne infectious disease mapping with stochastic

difference equations: an analysis of dengue disease in malaysia. Journal of

Applied Statistics, 39(9):2029–2046, 2012.

Science Media Centre. bluetongue disease.

https://www.sciencemediacentre.org/blue-tongue-disease/, 2007.

Serfling, R. Historical review of epidemic theory. Human Biology, 24(3):145–166,

1952.

Sumner, T., Orton, R. J., Green, D. M., Kao, R. R., and Gubbins, S. Quantifying

the roles of host movement and vector dispersal in the transmission of vector-

borne diseases of livestock. PLoS computational biology, 13(4):e1005470, 2017.

https://www.uni-muenster.de/Stochastik/lehre/WS1314/BachelorWT/Daten/StPro_Ross1.pdf
https://www.uni-muenster.de/Stochastik/lehre/WS1314/BachelorWT/Daten/StPro_Ross1.pdf


204 BIBLIOGRAPHY

Szmaragd, C., Wilson, A. J., Carpenter, S., Wood, J. L., Mellor, P. S., and Gub-

bins, S. A modeling framework to describe the transmission of bluetongue virus

within and between farms in great britain. PLOS ONE, 4(11):e7741, 2009.

Tierney, L. Markov chains for exploring posterior distributions. the Annals of

Statistics, pages 1701–1728, 1994.

White, M. T., Griffin, J. T., Drakeley, C. J., and Ghani, A. C. Heterogeneity in

malaria exposure and vaccine response: implications for the interpretation of

vaccine efficacy trials. Malaria journal, 9(1):82, 2010.

Woodroffe, R., Donnelly, C., Ham, C., Jackson, S., Moyes, K., Chapman, K.,

Stratton, N., and Cartwright, S. Badgers prefer cattle pasture but avoid cattle:

implications for bovine tuberculosis control. Ecology Letters, 2016.

World Climate Research Programme (WCRP) (2016): CMIP5 monthly data on

single levels, IPSL-CM5A-MR (IPSL, France), Copernicus Climate Change

Service (C3S) Climate Data Store (CDS). https://cds.climate.copernicus.

eu/cdsapp#!/dataset/projections-cmip5-monthly-single-levels?tab=

overview. Accessed 2019/07/02.

World Health Organization. Vector-borne diseases. Technical report, WHO Re-

gional Office for South-East Asia, 2014.

Xiang, F. and Neal, P. Efficient mcmc for temporal epidemics via parameter

reduction. Computational Statistics & Data Analysis, 80:240–250, 2014.

https://cds.climate.copernicus.eu/cdsapp#!/dataset/projections-cmip5-monthly-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/projections-cmip5-monthly-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/projections-cmip5-monthly-single-levels?tab=overview

	Introduction and Background
	Epidemics and overview
	Bayesian inference
	Markov chain Monte Carlo
	Metropolis-Hastings
	Hamiltonian Monte Carlo and NUTS
	PyMC3

	Gaussian process
	Multivariate normal distribution
	Slicing of the multivariate normal distribution
	Sampling from a multivariate normal distribution
	Defining a Gaussian process
	Covariance functions
	Predictions using Gaussian processes

	Epidemic modelling
	History of epidemic modelling
	Epidemiological models
	Stochastic versus deterministic modelling
	Mechanistic models
	Homogeneous vs heterogeneous mixing in mechanistic models
	Empirical models
	Combination of mechanistic and empirical models
	Modelling vector-borne diseases

	Bluetongue virus outbreak
	Bluetongue virus
	BTV-8 outbreak progression in UK
	The datasets
	Host data
	Environmental information


	Remainder of this thesis

	The joint model framework
	Infection process
	Exponential distribution
	Simultaneous exponential distributions
	Piece-wise constant rates
	Likelihood of the infection process

	The joint model specification
	The likelihood
	Constructing an MCMC algorithm
	Parameter reduction to increase MCMC efficiency
	Summary

	Simulation studies outline
	Epidemic outbreak simulation
	Basic setup
	Risk surface prediction

	Model diagnostics and comparators

	Simulation study: Investigating non-identifiabilities
	Simulating from the model
	Mixing behaviour
	Parameter estimates
	Prediction
	Why is a vector model needed?
	Remark 1

	Exploring further risk surfaces
	Flat risk surface
	Shifted and scaled normal risk surface
	Sinusoidal risk surface
	Remark 2

	Including observed spatial information
	The outbreak
	Fixing spatial random effect
	Fixing Gaussian process hyperparameters
	Estimation of Gaussian process hyperparameters
	Remark 3


	Discussion

	Scaling to a larger population size
	Efficient computation of the infectious pressure
	Gaussian Markov Random Fields
	Voronoi tessellation and Delaunay triangulation
	Conditional Independence
	Definition of Gaussian Markov Random Fields
	CAR Models
	Sampling from a GMRF
	An intuition on why GMRF's represent GP's well

	Simulation study: GMRF
	Estimation of a Gaussian process using a GMRF
	Inference behaviour of GMRFs
	Sampling performance
	Prediction performance and outbreak dynamics

	Scaling up the population size
	Small background infection pressure
	Greater background infection pressure


	Discussion

	Aggregated data collection
	Treating missing removal times
	Augmenting missing removal times
	Simulation study: Augmenting detection times
	Discussion

	Application: BTV-8 outbreak in UK 2007
	The model
	Inference and results
	Inference scenarios
	Inference results
	Model fit


	Discussion

	Conclusions and Discussion
	How to take this thesis forward?

	Appendix
	Poisson Process
	Homogeneous Poisson process
	Nonhomogeneous Poisson process
	The likelihood
	Conditional Poisson process

	References


