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Abstract

Intelligence is a critical tool in modern security operations that provides insight into

current and future operational conditions. It is a concept that transfers to other applica-

tions where monitoring activities or situations is imperative, such as ecological research.

As technological advances in the past decades lead to increased availability of potential

intelligence, we concentrate on source selection to ensure the resulting intelligence is of

high quality and fit for purpose. We wish to bring focus to the more varied nature of

intelligence than what is currently reflected in models of its collection and evaluation.

Therefore, we examine the intelligence collection and analysis process in two separate

scenarios; one treats it as a ongoing strategic activity, in another intelligence collection

is carried out with an investigative intent.

The first problem we formulate concerns source selection with a random time delay

in feedback, corresponding to the collection and evaluation time of the intelligence.

Both the distributions of such time delay and the outcome of the intelligence eval-

uation are unknown, giving rise to the classic exploration-exploitation dilemma in a

long-run setting. We develop promising approaches to accommodate the novel features

of the model based on Gittins indices and the knowledge gradient, and examine the

issues presented when incorporating structures of dependence between the time delay

and the outcome of the evaluation.

Next, we develop a novel intelligence collection problem rooted in tactical level source

selection, aiming to piece together an intelligence picture comprised of multiple types

of information, for example, where and when an attack is planned. We demonstrate
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that when all elements of the model are known, dynamic programming provides the

optimal policy. When some elements are unknown, which introduces an exploration-

exploitation aspect to the model, we find that in certain cases the ability to learn is

severely limited.
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Chapter 1

Introduction

1.1 Motivation

The rapid technological advancement of the past few decades has significantly enhanced

intelligence collection capabilities, making a large amount of data available. For exam-

ple: in 2010 the National Security Agency collected roughly two billion communications

per day (Kaplan, 2012). However, data in its raw form carries little meaning and fur-

ther resources must be expended to produce intelligence from it, through what has been

termed as the intelligence cycle.

Kaplan (2012) describes five components of the intelligence cycle: planning, collec-

tion, processing, analysis, and dissemination. Examples of collected data include tips

from informants, intercepted emails, and satellite images. The processing and analysis

components allow the intelligence team to determine the quality of the items. Examples

of processing include translating an email and image enhancement. The resulting in-

formation is ”made sense of” in the following analysis phase, where the the intelligence

team ultimately determines the value of the item, producing intelligence. However, a

sizeable proportion of data collected is discarded without ever being examined due to

insufficient manpower and resources, leading to the loss of potentially valuable intelli-

gence. To improve efficiency and reduce such loss, collection efforts should concentrate

on high quality intelligence sources that are reliable and provide relevant intelligence.

1
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Often, the quality of intelligence sources is initially unknown, only to be determined

through analysing the incoming items. This makes the decision about which sources to

utilise challenging. The same limitations on resources such as time and manpower that

are responsible for the discarded items mean that only a small number of intelligence

items from various sources can be analysed. Hence the intelligence team must balance

exploration and exploitation in choosing which sources to use, as the intelligence team

needs to explore many sources to generate reasonable estimates of source quality. In

terms of the intelligence cycle, our research covers the collection, processing, and anal-

ysis phases, gathered under the term evaluation, with a particular focus on collection:

which source should the intelligence team query for its next piece of intelligence? In

this thesis we devise approaches to guide the intelligence team in how to choose among

intelligence sources of different but unknown quality. The quality of sources can be

established by sampling from the sources one by one, learning about them while trying

to find relevant intelligence, making this a sequential decision problem.

1.2 Models of Intelligence Collection and Analysis

There is limited work in the non-confidential literature on mathematical models of in-

telligence collection, processing, and analysis, Most of the relevant literature fall under

one of two streams of research: one by Kaplan and collaborators (Kaplan, 2010; Ka-

plan and Feinstein, 2012; Seidl et al., 2016; Wrzaczek et al., 2017) and the other out of

the Naval Postgraduate School, primarily lead by Szechtman (Costica, 2010; Marshall,

2016; Tekin, 2016).

The Kaplan research lines examine intelligence collection and processing at macro level:

plots are hatched, detected, investigated, and interdicted at known rates. In the orig-

inal model, information regarding potential terror plots queue for analysis in a role

equivalent to that of a customer and intelligence agents are treated as the servers of

such a terror queue (Kaplan, 2010). The intelligence agents successfully complete a
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service if they are able to investigate, infiltrate, and interdict the terror plot. Attacks

are detected and interdicted at constant, known rates. While in the queue waiting for

service, plots may be successfully executed which is equivalent to the customer leaving

the queue. There are several follow-on studies to the original terror queue paper. Seidl

et al. (2016) examines optimal control for how many agents should perform detection

(against undetected plots) versus interdiction (against detected plots). The work of

Wrzaczek et al. (2017) pushes this concept further by formulating a game where the

terror group chooses its attack rate and the government chooses its staffing level. The

extension in Kaplan and Feinstein (2012), which also uses a queue to track plots (cus-

tomers) and intelligence analysts (servers) focuses on the trade-off between collecting

more raw intelligence versus the processing and analysis of that raw intelligence to guide

action to thwart attacks.

In these papers the intelligence collection and vetting of sources is not modelled ex-

plicitly, though the underlying mechanism by which agents detect and interdict plots

is presumably very similar to our focus. In that sense our work is complimentary, as

we examine the micro level of how agents actually execute their investigation: examin-

ing intelligence from many different sources of varying and potentially unknown quality.

The work out of the Naval Postgraduate School also examines the micro level. Costica

(2010) uses a queue to examine the arrival of incoming tips, some of which are rele-

vant and some are worthless. An initial processing server determines whether each tip

should be sent to the analysis server or discarded. The processing server makes both

false positives and false negatives. The primary metric of interest is the rate of relevant

tips evaluated by the analysts. However, this model does not consider separate intel-

ligence sources and assumes all parameters are known. The theses of Marshall (2016)

and Tekin (2016) started a stream of research led by Szechtman with a focus similar to

ours. Marshall (2016) and Tekin (2016) have multiple intelligence sources of unknown

qualities. Each period the decision maker obtains intelligence items called tips from

a subset of the sources, and they must consider the trade-off between exploration and
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exploitation to obtain the largest cumulative number of relevant tips over time. Carmeli

(2021) assumes each piece of intelligence has a value associated with it and the value

distribution depends upon the source and is unknown. Collectors must spend resources

to obtain intelligence each period and desire to obtain high value intelligence. If the

resources spent are insufficient, the intelligence obtained is worthless. Dimitrov et al.

(2016) considers an investigation of a network (e.g., phone calls), where the collector

examines one edge per period. The likelihood an edge contains relevant intelligence and

the value of each node are unknown and the distributions for these quantities update as

the investigation proceeds. Kronzilber (2017) also considers a network but from a cyber

perspective: an attacker can either gather information from a computer it has access

to or attack another computer in the network. The likelihood of obtaining relevant

information from each computer is unknown.

These papers focus on screening sources of intelligence for relevant or high value items,

with two overarching assumptions, each presenting a gap in the models available. The

first gap identified is that intelligence is collected at discrete, evenly spaced periods.

However, this does not account for inherent variation in the required resources, for ex-

ample time, to distill the data gathered into intelligence. While Marshall (2016) allows

the processor to make multiple observations of the intelligence item before reaching

a decision, the time spent on an item is controlled by the decision maker. Similarly,

the resources allocated to a source are controlled by the intelligence team in Carmeli

(2021) with a constant budget for every period. We are not aware of any literature on

intelligence collection that addresses stochasticity in either the time or other resources

required to obtain and assign a value to an intelligence item.

The second assumption present in the cited research is that only one type of intel-

ligence exists, and individual items only differ from each other by their values. This is

a too significant aspect to ignore, as in an operational setting intelligence items may

possess attributes not captured by their value, which could mean they cannot be treated

equivalent. Examples of possible attributes include the type of information they carry
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(who is planning an attack and where), or the intelligence question they pertain to (i.e.

surveillance on different organisations). Such a feature has not made an appearance in

the study of intelligence collection or processing to the best of our knowledge.

While not the primary focus of such models, intelligence plays a role in a variety of

problems. For example, Kress and MacKay (2014) includes intelligence in a Lanchester

combat model that allows one side to better aim their fire when they obtain better

intelligence. The search problem in Atkinson et al. (2016) also incorporates the con-

cept of intelligence. Every piece of intelligence provides information to a searcher who

may use the intelligence received so far to take action, or decide to wait for further

intelligence.

1.3 Contributions

In this section we briefly outline the structure of this thesis and take the opportunity

to highlight the contributions made.

Chapter 2 provides an overview of the relevant theoretical background. We introduce

Markov and semi-Markov decision processes, bandit processes and multi-armed bandits,

with dynamic programming, Gittins indices and the knowledge gradient as potential

solution approaches.

Chapter 3 contains the first research problem of this thesis, which we termed the intel-

ligence problem. Our main contributions in this chapter are:

• Addressing one of the gaps in modelling approaches currently present in the lit-

erature as discussed in Section 1.2, by explicitly modelling the time required to

obtain and analyse an intelligence item.

• Developing two novel heuristic policies to address the new features of the model

based on the ideas underlying the Gittins index, namely the Expected Generalised

Gittins Index (EGGI) and the Calibrated Knowledge Gradient Index (CKGI).
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In our setting, both the relevance of the intelligence item and the time required to

determine it is a characteristic of the source of the item, and both are quantities which

we permit to be random with an initially unknown distribution. Incorporating a time

delay so that rewards associated with obtaining a relevant piece of intelligence are only

received once such determination is made, bringing our model even closer to a real-life

intelligence collection and analysis process. We consider two variants: one where the

quality of an item is independent from its evaluation time, the other where dependence

is present.

In Chapter 4 we develop the problem of the intelligence puzzle, which is a novel intelli-

gence collection problem featuring multiple types of intelligence. Our most important

contributions are:

• Proposal of a completely new problem, which captures a previously ignored aspect

of intelligence collection, namely the availability of distinct types of information.

• Initial exploration of the new problem, with the decision makers having access to

both perfect and imperfect information on the problem parameters.

• Establishing the optimal policy when decision makers possess perfect information,

and developing the Expected Completion Cost (ECC) policy, a heuristic designed

for when only imperfect information is available.

The intelligence puzzle is motivated by intelligence collection on the tactical level, in

which case intelligence is gathered with the purpose of investigating a specific intelli-

gence question in mind. The intelligence team must examine intelligence items from

a selection of sources in search of one of each required types to complete the puzzle.

However, both the occurrence and the relevance of the intelligence items are random,

and their distributions depend on which source they originate from. As the intelligence

puzzle corresponds to an open intelligence question, completion of the puzzle is time

sensitive and must be done as quickly as possible. As it is a novel problem, we first

examine a version in which the distribution of both the occurrence and the relevance

of the types are known, followed by variants in which the distribution of either is only
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learnt through repeated observation.

In Section 5.1 we summarise our achievements and has some concluding remarks. Fi-

nally, Section 5.2 we presents potential avenues of future work for both the intelligence

problem and the intelligence puzzle, including some extensions which may be applied

to both models.



Chapter 2

Methodologies

The overarching methodological theme of this thesis is to model problems inspired by

the intelligence collection and analysis process as Markov and semi-Markov decision

processes, and as multi-armed bandits. In Chapter 2 we set out the relevant mod-

elling and solution approaches that we consequently employ in later chapters. The

main sources that informed this discussion are Puterman (1994) for Section 2.1 and

Section 2.2, and Gittins et al. (2011) for Section 2.3 and Section 2.4. The thought

experiment we introduce in Section 2.5 is well laid out with an abundance of additional

discussion in Powell and Ryzhov (2012).

2.1 Markov and Semi-Markov Decision Processes

Markov Decision Processes

A Markov decision process, or MDP for short, is a type of sequential decision-making

process. Properties and solution approaches to MDPs have been studied at large scale,

being the standard approach to model not only academically, but industrially interest-

ing problems. A survey of applications was presented by White (1993), and since then

the variety of settings it has been studied in has grown.

We describe the key elements of such a decision problem in the same order as en-

countered in Puterman (1994). First of all, we must define when decisions take place.

8
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These points in time are referred to as decision epochs, and are denoted as e. In the

setting of Markov decision processes the set of decision epochs, denoted as Se, is discrete

and its elements spaced evenly so that we may say without loss of generality that the

time between decision epochs is 1. In that case Se is written as

Se = {0, 1, ..., H} H ≤ ∞, (2.1.1)

where H denotes the horizon of the decision problem. If H =∞, the decision problem

is said to be of an infinite horizon with no clear end. Otherwise, it is a finite horizon

problem of H periods where the last decision is made at decision epoch H − 1. The

decision problem terminates at decision epoch H: despite referring to it as such, no

decision takes place and is only included to record the final state of the system. This

is the same as the convention used by Puterman (1994). Note that when not stated

otherwise, by decision epoch e we mean decision epoch e ≤ H − 1.

The next element of the decision problem is the aforementioned system state, denoted

as s ∈ Ss where Ss is the set of states the system may occupy. Depending on the

application, these states may represent conditions of a physical system or knowledge

regarding the system. At every decision epoch e the decision maker is faced with a

choice. Given that the state of the system is s at decision epoch e, they may choose to

take any action a ∈ Sa(s), where Sa(s) is the set of permitted actions is state s. As a

consequence of choosing action a in state s at decision epoch e, the system transitions to

state s′ with transition probability P(s′ | s, a) and the decision maker receives a reward.

While such a reward may take many forms, it must not be affected by actions taken

at later decision epochs and either its value or expected value, denoted as r(s, a), must

be known before the action is chosen. In a finite horizon setting a reward might also

be received at the last decision epoch H for the decision process terminating in state

s. We denote the expectation of such a terminal reward as r(s).

There may exist a preference towards receiving rewards earlier rather than later in

the process, which can be expressed via the use of discounting. The discount factor
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0 < d < 1, measures the value provided at decision epoch e + 1 by what is 1 unit of

reward at the current decision epoch e. It is most commonly present in infinite horizon

processes, but can also form part of the decision process in the finite horizon case.

What sets a Markov decision process apart from a more general, discrete-time sequen-

tial decision process is that the available set of actions, and the rewards and transition

probabilities associated with them are independent of past actions taken, states visited,

and rewards received. The history of the decision process only affects these through

the state the system currently occupies.

A Markov decision process may be alternatively defined, building it up from Markov

chains and Markov reward processes. In that case a Markov decision process is a type

of Markov reward process where the transition probabilities can be influenced through

the actions taken. We do not wish to delve too deep into the details of the above. For

a detailed examination of Markov chains and Markov reward processes we refer the

reader to Tijms (2003).

A decision rule determines which action to take in each state of a given decision epoch

e. A policy π is a sequence of decision rules which prescribes the action to take at all

decision epochs: it provides a decision rule for all possible combinations of state and

decision epoch. A Markov decision rule only depends on the history of the process

through the current decision epoch e and system state se. A generalisation of a Markov

policy is a history dependent one, in which the state and decision epoch alone is not

enough to dictate which action a policy prescribes. We also wish to distinguish between

deterministic and randomised policies. As the name suggests randomised policies con-

tain random elements, while deterministic ones do not. Our primary focus will be on

the class of deterministic Markov policies, which we denote as ΠMD. Implementing a

policy produces a random sequence of rewards of length H, one for each decision epoch

when an action was made, or of H + 1 if a terminal reward is present. The decision

maker wishes to apply the policy which results in the highest valued sequence of rewards
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and therefore they need to be able to assign a value to these reward sequences. In the

finite horizon case, the reward sequences tend to be compared based on the expected

total reward of applying policy π, defined as

Eπ,s

[
H−1∑
e=0

r (se, π(se)) + rH (sH)

]
, (2.1.2)

which may be adapted to include the discount factor as necessary. In the infinite horizon

case of the problem the decision problem produces an infinite, random reward stream.

Sometimes the expected total reward we get from letting H approach ∞ in (2.1.2) is

still an appropriate measure, but such approach often leads to assigning a value to the

reward stream that does not converge, possibly taking on a value of −∞ or ∞. To be

able to compare different reward streams, we need a finite-valued measure to compare

them by. In the case of undiscounted rewards, it is typical to define the value of the

reward stream as the expected average reward of policy π, given as

lim
H→∞

1

H
Eπ,s

[
H−1∑
e=0

r (se, π(se))

]
. (2.1.3)

In the presence of a discount factor the value of the reward stream is given by the

expected total discounted reward of policy π, namely

Eπ,s

[
∞∑
e=0

der (se, π(se))

]
. (2.1.4)

Note that while neither the limit in (2.1.3) or (2.1.4) is guaranteed to converge, they do

converge under quite general assumptions such as discrete decision epochs, finite set of

states and finite set of actions. As the decision problems at the focus of this thesis are

of the undiscounted variety, here and in following sections discounted decision problems

are only briefly discussed. For more details see Puterman (1994).

The optimality criterion states the condition a policy π must satisfy to be consid-

ered optimal, which is to produce the highest valued reward sequence or stream with

respect to a model-appropriate measure of value. Following the convention of Puterman

(1994), designate a Markov decision process coupled with an optimality criterion, as a

Markov decision problem. We also refer to the optimality criterion as the objective of
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the decision maker. While we have introduced the decision problem in terms of max-

imising rewards, it is trivial to adapt it to r(s, a) representing a cost. We can do so by

either defining costs as negative rewards so that r(s, a) ≤ 0, alternatively, the objective

is to be redefined to minimise a sequence of positive costs.

Semi-Markov Decision Processes

Semi-Markov decision processes (SMDP) generalise Markov decision processes to a

continuous-time setting, where the decision epochs occur at random according to a

probability distribution, and may be, but are not necessarily triggered by a change

in the state of the system. Such a decision problem offers more flexibility than an

MDP, and is used in queueing (Afanasyeva et al., 2012) and in modelling financial risks

(Janssen and Manca, 2007) to name a few.

The elements of the semi-Markov decision process are the same as that of a Markov

decision process, but adapted to the continuous-time setting. Note that in some special

cases semi-Markov decision processes can be reformulated as Markov decision processes.

The set of decision epochs is defined as a collection of random points in time, and the

time elapsed between two consecutive decision epochs e and e+ 1 is referred to as the

sojourn time Te. While the set of system states is defined similarly as it is for Markov

decision processes, a state must be defined for any given time, not just at the decision

epochs. The action a taken in a given state s jointly controls the probability of the

system occupying state s′ at the next decision epoch P(s′ | s, a) and the probability

distribution of the associated sojourn time. In a continuous time setting there are two

types of rewards the decision maker can receive. They may receive a lump-sum reward

in response to taking action a in state s which is analogous to the rewards defined

for MDPs and denoted as k(s, a). Rewards may also be accrued continuously at rate

w(s′′t , s, a) for the process occupying state s′′t at time t following action a in state s. The

inclusion of s′′t is to keep the formulation general as in semi-Markov models multiple

transitions may occur between decision epochs. However, the reward rate depending

on either s′′t , s, or a is not a necessity. Then the reward associated with taking action
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a in state s is written as

R(s, a) = k(s, a) +

∫ te+1

te

w(s′′t , s, a)dt, (2.1.5)

where te is the time of decision epoch e. Note that this reward is a random quantity as

both s′′t and te are random.

The semi-Markov qualifier is used for such a continuous-time decision process because

the sojourn times are random, and the distribution of sojourn times and the transition

probabilities as defined above only depend on the history of the process through the

current state and action chosen at the current decision epoch.

The reward sequence or reward stream of a semi-Markov decision process is also a

random quantity, and therefore we need to define what we mean by the value of such

sequence. Finite horizon semi-Markov decision processes are much less studied (Mamer,

1986; Huang and Guo, 2011) than those with an infinite horizon for which Baykal-

Gűrsoy (2011) provides an overview.

The optimality criterion of the semi-Markov decision problem is then defined analo-

gously to that of the Markov decision problem. We consider two optimality criteria for

infinite horizon semi-Markov decision processes, the first of which is the one favoured

by Puterman (1994), the ratio average reward criterion. It uses a reward measure for-

mulated as the ratio of the expected sum of rewards and the expected sum of sojourn

times, giving rise to an optimality criterion of the form

max
π

lim inf
H→∞

Eπ,s

[
H∑
e=0

Re (se, π(se))

]

Eπ,s

[
H∑
e=0

Te

] . (2.1.6)

The second optimality criterion we include here quantifies the reward stream in terms

of the long-run average reward of policy π, and so is defined as

max
π

lim inf
H→∞

1

H
Eπ,s

[
eH−1∑
e=0

k(se, π(se)) +

∫ H
0

w(s′′t , set , π(set))dt

]
. (2.1.7)
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Note that in the infinite horizon limit H →∞ the number of decision epochs up to H,

denoted as eH also goes to infinity. While the reward measure used here is similar in

form to
∑eH−1

e=0 R(se, π(se)), the upper limit of the integral stretches to H instead of the

time that corresponds to eH − 1. The optimality criteria in (2.1.6) defines the horizon

in terms of how many decision epochs take place, similarly to discrete time Markov

processes. At the same time (2.1.7) interprets it as a point in real time, H. Under some

circumstances the two decision criteria agree, although that is not the case in general.

We omit discussion of discounted semi-Markov decision problems here, but refer the

reader to Chapter 11 of Puterman (1994), as it offers a detailed examination of semi-

Markov decision problems.

2.2 The Bellman Equation and Backward Induction

In this section we discuss finding the optimal policy for some of the optimality criteria

set out in Section 2.1, with primary focus on Markov decision problems.

We preface this discussion by stating a well established result without proof, which

is that for Markov and semi-Markov decision problems the optimal policy will belong

to the class of deterministic Markov policies (Puterman, 1994). This allows us to intro-

duce the optimality equations, otherwise known as Bellman equations (Bellman, 1957),

in the framework of deterministic Markov policies without having to examine a more

general case first.

The Optimality Equations

First of all, we consider a finite-horizon Markov decision problem with an optimality

criterion that requires the optimal policy to maximise the expected total reward over

the horizon, calculated via (2.1.2). Then a deterministic Markov policy π ∈ ΠMD is

considered optimal in state se, if starting from state se in decision epoch e it achieves

the highest expected total reward out of all other policies. Since we only care about
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the optimality of π from decision epoch e onwards, it does not matter how the policy

performed at earlier decision epochs. This leads to the idea of constructing the optimal

policy of the entire decision problem π∗ = π∗0 by finding the optimal policy at decision

epoch H − 1, namely π∗H−1, and incrementally expanding it to include earlier decision

epochs of the problem in a manner that preserves the optimality of the policy. The

above line of thought is formalised in the Bellman equations, which are the series of H

equations written as

V (e, se) = max
a∈Sa
{Va (e, se)} , e = {0, ..., H − 1} (2.2.1)

where V (e, se) is referred to as the value function of state se at decision epoch e, and

the expression the equations maximise over

Va (e, se) = r(se, a) +
∑
s′∈Ss

P (s′ | se, a)V (e+ 1, s′) , (2.2.2)

is called the value function of action a in state se at epoch e. We must combine the

above with the boundary condition of the decision problem, which is determined by the

terminal value of the final state sH and is written as

V (H, sH) = rH(sH). (2.2.3)

The equations in (2.2.1) together with (2.2.3) can be used to find the value function

at any decision epoch e for any state se the system may occupy at that time, which

is the expected total reward of the optimal policy from e onward. The value function

of the starting state V (0, s0) is solved for in the same manner to obtain the expected

total reward of the decision problem with starting state s0 under the optimal policy π∗.

Furthermore, any policy π that achieves V (0, s0) is optimal, and therefore the Bellman

equations can also be used to determine the optimality of a given policy.

Backward Induction

Backward induction (Puterman, 1994) is an algorithm based on the optimality equations

that is commonly used to efficiently solve finite-horizon discrete time Markov decision

problems. The term ”dynamic programming” is often used synonymously to backward
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induction, but it may be used to refer to methods and results for sequential decision

problems in general. Let us denote by Sse the set of states the system may occupy at

decision epoch e, and by Sase the set of actions available at decision epoch e in state

se. We set out the backward induction algorithm as follows.

The Backward Induction Algorithm

1. Start at e = H and record

V (H, sH) = rH(sH) for all sH ∈ SsH ,

2. Move on to the previous decision epoch e := e− 1.

Compute

Va (e, se) = r(se, a) +
∑
s′∈Ss

P (s′ | se, a)V (e+ 1, s′) for all se ∈ Sse .

Record

V (e, se) = max
a∈Sa
{Va (e, se)} ,

a∗ (e, se) = arg max
a∈Sa

{Va (e, se)} .

3. If e = 0, stop.

Otherwise, repeat step 2.

Upon completion, the backward induction algorithm will have determined and recorded

the value function of all states s ∈ Ss and the optimal policy π∗ as the collection of

optimal actions a∗(e, s).

The Bellman equations are straightforward to adapt to the discounted total reward

criterion over an infinite horizon. Using the expanded form of Va (e, se) they take the

form

V (e, se) = max
a∈Sa

{
r(se, a) +

∑
s′∈Ss

d P (s′ | se, a)V (e+ 1, s′)

}
. (2.2.4)

However, when faced with an infinite horizon MDP, backward induction is not suitable.

One notable exception is when the infinite horizon problem can be truncated to that
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of a finite horizon in a way that the expected total reward of the decision problems

are comparable. When such approach is not appropriate, there are alternatives in

the form of the value iteration and policy iteration algorithms. We do not include a

discussion of those here, instead redirecting those interested to Puterman (1994) for

details. That, specifically Chapter 11 is also where an in depth discussion on the

optimality equations of semi-Markov bandits can be found. Here we only mention that

while one can analogously define them with discounted rewards over infinite horizon,

in general there are differences present.

2.3 Bandit Processes and Multi-Armed Bandits

In this section we introduce bandit processes and multi-armed bandits. Here and in

Section 2.4 we often refer to (Gittins et al., 2011) as a resource that covers the topics

in both sections.

Families of Alternative Bandit Processes

A bandit process is a type of semi-Markov decision process in which at every decision

epoch e there are two actions, often referred to as controls, available to the decision

maker. The effect of applying control 1, also known as continuation control, is to allow

the underlying reward process in state s to transition to its next state s′ with tran-

sition probability P(s′ | s) and receive the associated reward r(s). This reward may

be discounted with discount factor d. We must note the probability that the sojourn

time is no more than t depends on the transition that takes place and is denoted as

P(T ≤ t | s, s′). Applying control 0 is equivalent to freezing the bandit. For the dura-

tion control 0 is in place no transitions occur and no reward is received. However, every

point in time becomes a decision epoch where the decision maker can opt to carry on

with freezing the bandit or apply the continuation control.

As the bandit process may spend some time frozen, we distinguish the time the process

was under the continuation control as the process time. Then the sequence of process



CHAPTER 2. METHODOLOGIES 18

times when the continuation control is applied, along the sequence of states at those

times is called the realisation of the bandit process. It is important to note that such a

realisation of any bandit process b is independent of the sequence of controls that was

applied, as control 0 only freezes the process. In a Markov bandit process the above

still applies, except that under the continuation control all sojourn times are equal and

therefore can be set to 1.

By family of alternative bandit processes (FABP), which is an old fashioned but in

our opinion apt term, we refer to a decision process defined as a collection of N inde-

pendent bandit processes. Starting from decision epoch e = 0 only one of the N bandit

processes is chosen to apply the continuation control to, and the rest are frozen until

the next decision epoch of the continued bandit process is reached. This practice of

applying control 1 to one of the bandits while applying control 0 to the rest until the

continued bandit arrives at its next decision epoch is repeated for the duration of the

decision process. The frozen arms do not influence the one that is being continued, and

vice versa.

The set of available actions for a FABP that consists of N arms is a subset of Sa =

{1, ..., N}, where taking action a ∈ Sa is equivalent to continuing bandit a and freezing

all others. If at all decision epochs the set of available actions is the entirety of the

set Sa it is a simple family of alternative bandit processes (SFABP). The state of the

system s can be expressed as a vector of the states of the individual bandits so that

s = (s1, ..., sN), and therefore the state space of the multi-armed bandit is the product

of their state space, Ss =
∏N

a=1 Ssa .

Being a semi-Markov decision process, the decision epochs of a semi-Markov FABP

occur at random points in time so that the sojourn time following decision epoch e is a

random variable Te. Considering the definition of FABP, if at decision epoch e bandit a

was chosen to continue, then Te = T a(se) which is the sojourn time of bandit process a

in state se. For Markov bandits the question of decision epochs is much simpler. Since
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the sojourn time of all continued Markov bandit processes are 1, the set of decision

epochs of Markov FABP are discrete, e = 0, 1, ....

Note that while a Markov policy for Markov or semi-Markov FABP prescribes the

bandit to continue at each decision epoch e based on the complete state of the decision

problem at that decision epoch se, the transition probabilities, rewards, and in the case

of semi-Markov FABPs the following sojourn time only depend on the bandit process

a chosen for continuation and its state at that particular decision epoch sae . As we

will see in Section 2.4, this feature of the decision problem can be exploited to great

effect in devising a solution approach. Same as in the decision problems in Section 2.1,

applying policy π to a FABP produces a sequence of rewards which can be compared

to those of other policies through the performance measure (payoff ) used to formulate

the objective of the decision problem.

Multi-Armed Bandits

A large area of interest in bandit literature is that of multi-armed bandits, MAB for

short, which is an online learning problem. A multi-armed bandit is a SFABP in which

the expected value of the reward received for continuing bandit a is unknown, and the

distribution of said reward may only be learnt from repeatedly continuing bandit pro-

cess a and observing the rewards received. In the context of multi-armed bandits we

may refer to the constituent bandits as the arms of the multi-armed bandit, and the

action of continuing arm a as pulling or playing arm a. These terms derive from the

original motivating example of the model, a series of fruit machines (one armed bandit)

with initially unknown rewards over which a gambler wishes to maximise their earnings.

In such a decision problem the states of the different arms are information or knowledge

states, which capture the knowledge the decision maker possesses regarding the distri-

bution of possible rewards. The reward received for pulling any given arm is not only

a reward, but also provides information regarding the reward distribution of said arm.

For that reason we may use the expression ”make an observation on arm a” synony-
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mously to pulling an arm. The phrase online learning refers to the fact that the decision

maker must learn the reward distributions simultaneously to accumulating the rewards

which they wish to maximise, as opposed to offline learning, in which rewards are only

gathered after an initial period focused on learning. The online nature of learning in

multi-armed bandits requires a balance to be struck between exploring the arms to

obtain reliable estimates of their expected rewards and exploiting the arm believed to

have the highest expected reward. While the terms exploration and exploitation have

been long in use, learning and earning has been increasing in popularity to refer to the

same concept.

Depending on if we are discussing semi-Markov or discrete-time multi-armed bandits

they are still either a semi-Markov or a discrete-time Markov decision problem, and as

such the Bellman equations can be used to produce an optimal policy. However, due to

the so called curse of dimensionality such approach becomes increasingly less helpful the

more arms a multi-armed bandit possesses. For that reason other options are sought.

Under some circumstances heuristic rules approach optimality (Kelly, 1981), but that

is not the case in general.

Two well established bandit algorithms are Thompson sampling and the Upper Con-

fidence Bound (UCB) approach. Thompson Sampling was introduced in Thompson

(1933). It generates a sample of the unknown parameters from a posterior distribu-

tion at each decision epoch and then chooses the action that maximizes the expected

reward, assuming the sampled values are the true parameter values. The Upper Confi-

dence Bound approach (Auer et al., 2002) chooses an action in each decision epoch that

maximizes the sum of the current expected reward with an extra bounding term. This

bounding term increases with the number of decision epochs and decreases with the

number of times the particular action is chosen. UCB usually performs well by ensur-

ing a sufficient amount of exploration is done while still primarily making exploitative

choices. We do not go into further detail regarding either Thompson sampling or UCB,

as these methods are not the primary focus of our thesis. For more details on Thompson
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sampling see Chapter 36 of Lattimore and Szepesvári (2020), and part II of the same

for UCB.

The solution approaches that are relevant to the research in this thesis are discussed

in the remaining sections of this chapter. In Section 2.4 we consider the Gittins index

policy, which is optimal for infinite horizon discounted SFABPs and may serve as a

heuristic in other cases. Another method is the knowledge gradient algorithm, which

can be applied to a wide variety of learning problems both online and offline. We discuss

knowledge gradient in Section 2.5.

2.4 The Gittins Index

The Gittins index theorem was first published in Gittins and Jones (1974) then Gittins

(1979), developed not for multi-armed bandits, but for a different bandit process. In

this section we use discrete-time infinite horizon discounted SFABPs to introduce the

concept Gittins indices. Note that the same ideas can be extended for semi-Markov

infinite horizon discounted SFABPs. For more details on that, see Section 2.8 of Gittins

et al. (2011).

First, we define an index policy as a policy in which an index ν(a, sa) ∈ R is assigned to

each bandit dependent only on the current state sa of said bandit and the bandit a with

the biggest index is chosen to continue. Such an index policy is optimal for SFABPs,

and may be calculated based on a comparison with a so called standard bandit. In

the discrete time setting a standard bandit process is guaranteed to produce a reward

of λ every decision time it has been chosen for continuation. Let us construct a new

SFABP for every bandit process in the original SFABP made up of a standard bandit

and the bandit of interest. For the remainder of the section we focus on the two-bandit

SFABP created for bandit a. If from the start only the standard bandit is continued,

the expected discounted total reward over the infinite horizon is λ
1−d . Presume bandit

a was continued at decision epoch e = 0, after which the bandit to continue is deter-
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mined by the optimal policy. Imagine, that according to the optimal policy at decision

epoch e∗ the standard bandit must be continued. In that case, at e∗ + 1 the state of

the two bandit SFABP is identical to what it was as the standard bandit only has one

state, and bandit a has been frozen and therefore remained in the state it was in at e∗.

Consequently, if it was optimal to continue the standard bandit at e∗ it will also be the

optimal action at e∗ + 1, and following the same logic it must be for all e ≥ e∗. Then

the expected discounted total reward of the optimal policy is

sup
e∗>0

E

[
e∗−1∑
e=0

der(sae , a) + de
∗ λ

1− d
| sa0 = sa

]
. (2.4.1)

Note that while the superscript a signals that sae is the state of bandit a, de is to be

read as d to the power of e.

The next step in finding the Gittins index is why this method of deriving it is called

the calibration approach, as we wish to find the value of λ for which we are indifferent

between continuing either bandit with both actions optimal. By equating the payoffs

of the two options and rearranging it to standard form we get

0 = sup
e∗>0

E

[
e∗−1∑
e=0

der(sae , a) +
(
1− de∗

) λ

1− d
| sa0 = sa

]
(2.4.2)

which has one unique root

λ = (1− d) sup
e∗>0

E
[∑e∗−1

e=0 der(sae , a) | sa0 = sa
]

1− E [de∗ | sa0 = sa]
= sup

e∗>0

E
[∑e∗−1

e=0 der(sae , a) | sa0 = sa
]

E
[∑e∗−1

e=0 de | sa0 = sa
] .

(2.4.3)

This unique root λ = ν(a, sa) is the Gittins index of bandit process a. Then the Gittins

index policy chooses to continue at every decision time e the bandit with the largest

index given by ν(a, sae), which is the optimal policy for a discrete-time SFABPs. Proof

of the above and further examination of the Gittins index is found in Gittins et al.

(2011). Use of the Gittins index drastically reduces the computational complexity of

the decision problem as it allows the decision maker to evaluate and compare the con-

stituent bandits separately instead of having to consider the whole SFABP.
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In some special cases, such as Beta-Bernoulli MABs a good approximation of the Gittins

index can be obtained via dynamic programming. For that, we need to approximate the

infinite horizon problem with a finite horizon one. For a comprehensive survey on finite

horizon Beta-Bernoulli bandits we direct the reader to Jacko (2019). Due to the effect

of discounting, if the finite horizon is sufficiently large it has an expected cumulative

reward comparable to that of the infinite horizon problem, and backward induction can

be used to find the Gittins index via the above calibration approach.

2.5 The Knowledge Gradient

The knowledge gradient method was initially proposed in Gupta and Miescke (1996)

then further developed in Frazier et al. (2008) for a different learning problem, namely

ranking and selection. It was shortly after adapted to multi-armed bandits by Ryzhov

et al. (2012). We introduce the underlying idea using a thought experiment in terms of

a discrete time undiscounted finite horizon MAB.

Imagine the following scenario in which we wish to control a discrete-time undiscounted

multi-armed bandit with N arms. In total we may make H observations corresponding

to having a finite horizon H to maximise the observed rewards over. At epoch e the

MAB is in state se = (s1
e, ..., s

N
e ) after learning from the e observations made so far.

The expected reward of each arm a is given by r(sae , a). In this thought experiment we

become unable to update our beliefs after n observations. Without learning, the knowl-

edge states remain the same and therefore the MAB occupies state sn with expected

rewards r(san, a) for all decision epochs n ≤ e ≤ H corresponding to the remaining

H − n+ 1 observations. With learning infeasible, attention must be turned to exploit-

ing the information already gathered through continuing the arm we believe best till

the horizon is reached. Then the expected reward from e = n onwards is

(H − n+ 1) max
a∈Sa

E [rn(san, a)] . (2.5.1)

Now let us alter the thought experiment in a way that while we may still learn from the

n+1th observation made at e = n, learning ceases at e = n+1. Similarly to the previous
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setting, the expected reward from e = n+1 onward is (H − n) max
a∈Sa

rn+1(san+1, a). Since

at decision epoch e = n we still have one more observation available to us before learning

stops, the expected total reward of continuing arm a at decision epoch e = n is the

combined reward of observing arm a at e = n and the rewards accumulated from the

decision epochs n+ 1 ≤ e ≤ H. We write it as

E [rn(san, a)] + (H − n) max
a′∈Sa′

E
[
rn+1(sa

′

n+1, a
′) | sn, ae = a

]
. (2.5.2)

To maximise the expected reward from e = n onward we must choose the arm a that

maximises (2.5.2).

The knowledge gradient policy uses the thought process from the above thought exper-

iment to select which arm to play at every decision epoch e. It regards every decision

epoch e to be the last opportunity to gather further information on the reward distri-

butions of the arms, then uses

arg max
a∈Sa

E [r(sae , a)] + (H − e) max
a′∈Sa′

E
[
re+1(sa

′

e+1, a
′) | se, a

]
(2.5.3)

to select the arm which contributes the most, either by virtue of its high expected re-

ward or via knowledge the observation provides. Note that this is not an index policy

as the states of the other arms are necessary to calculate the second half of the sum.

While the Gittins index simplifies the MAB by considering the arms separately, in

essence the knowledge gradient breaks them into a series of one step learning problems.

For some versions of the MAB problem the knowledge gradient policy has been shown

to be optimal (Ryzhov et al., 2012). However, Edwards et al. (2017) demonstrated its

weak performance in a Beta-Bernoulli setting.



Chapter 3

The Intelligence Problem with

Delays

3.1 Introducing the Intelligence Problem

The first contribution in this thesis concerns what we dub the intelligence problem,

which falls under the multi-armed bandit paradigm, but with the addition of non-trivial

complications, namely delayed reward observations and binding time commitment. Our

model is set out as follows. An intelligence team has access to a number of sources.

Each source generates a stream of intelligence items, which we call tips. The intelligence

team only has enough resources to collect and analyse one tip from one source at time.

At each decision point, one source is chosen and that source produces a tip. The tip is

evaluated as either relevant or nuisance. While in reality the usefulness of a tip may

be better captured as a continuum, this work views them as binary, which is consistent

with much of the literature (Costica (2010); Marshall (2016); Tekin (2016)). Intuitively,

even in the presence of continuous values some items are clearly too low quality to be

useful, with the opposite also true. By treating intelligence items in a binary fashion,

only the nuance for mid-value intelligence items is lost. There are no false positives or

false negatives. Examples of sources include informants, phone taps, monitoring chat

rooms, Intelligence, Surveillance, and Reconnaissance (ISR) assets (e.g., UAV), and

surveillance of a suspect.

25
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There may be a delay between when a source is chosen to when the tip is collected,

which we call the collection time. For example if the intelligence team decides to moni-

tor a phone tap, a chat room, or surveil a suspect’s house, it will take some time before

something interesting occurs that qualifies as a tip. After the tip is obtained, there

will be further processing and analysis time to determine the result of the tip: relevant

or nuisance. This additional time analysing a tip is the analysis time. For example, a

suspicious phone conversation about a meeting might require additional investigation

to determine if it is relevant to the investigation. We combine the collection time and

analysis time into one entity that encapsulates all temporal delays between the selec-

tion of a source and the evaluation result and call this the evaluation time. Once the

intelligence team has chosen a source, they must complete the evaluation of the tip ob-

tained from it. By picking one of the sources they commit to waiting the full evaluation

time to observe the results and receive the associated reward. Only after that are they

able to switch to a different source. While prior work has focused on the quality of

sources, very little research on the intelligence cycle has incorporated this time delay.

Explicit modelling of the evaluation time and the potential delays and lulls involved in

the intelligence cycle is the most significant contribution of this work.

The intelligence team desires not just high quality sources, but sources that gener-

ate intelligence that moves quickly from the start of collection through to the end of

analysis. As the quality of sources may initially be unknown, the team needs to balance

exploitation and exploration. The team must spend effort using all available sources to

obtain accurate estimates of the relevance and evaluation times of the tips belonging

to each of the sources (exploration) to ensure it utilizes the best sources. Once the

intelligence team is reasonably confident in the quality of sources, they should exploit

the highest quality sources to generate the most accurate intelligence picture.

While we focus on the intelligence scenario, our model applies for any application

where a decision maker must choose among several entities that produce items of vary-
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ing quality at different frequencies. An ecology scenario would involve the placement of

sensors (e.g., cameras, observers, traps) at various locations to monitor wildlife. There

may be some activity of interest (e.g., mating, hunting, childcare) that the researchers

want to monitor.

The remainder of this chapter consists of four parts. First, as a precursor to tack-

ling the intelligence problem, in Section 3.2 we consider multiple models which could

be used to describe the intelligence problem. We consider these models in the simplest

scenario in which all relevant parameters are known, then gradually introduce layers of

stochasticity to them. The main body of this chapter consists of two parts. Section 3.3

delves into a variant of the intelligence problem in which the relevance and evaluation

time of tips are independent of each other, while Section 3.4 considers the case in which

dependence is present.

3.2 Modelling of the Intelligence Problem

In order to proceed, we need to precisely define what the exact problem of interest faced

by the intelligence team is. We need to specify the objective of the problem and the

metrics of interest, as well as the known and unknown quantities present in the model.

Depending on the underlying scenarios and assumptions different metrics are appropri-

ate. In this section we discuss our assumptions and come up with our choice of metric

to use in Section 3.3 and Section 3.4. Throughout, we model the sources of intelligence

as a multi-arm bandit, which is suitable for sources that are independent of each other.

We recognise that this is a major assumption and may not always apply. However,

it is necessary to gain an understanding of the problem. Table 3.2.1 shows correspon-

dence between typical bandit terminology and the elements of the intelligence problem.

An intelligence problem with A available sources is modelled as a semi-Markov multi-

armed bandit with A arms, where each arm corresponds to a source. The outcomes of

tips from arm a, namely Xa, a ∈ {1, ...,A}, form a sequence of i.i.d. Bernoulli random
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Intelligence Bandits

source arm

tip outcome

relevant tip success outcome

nuisance tip failure outcome

relevance probability success probability

evaluation time inter-decision time

Table 3.2.1: Terminology equivalence of the intelligence and bandit problems

variables, where a success Xa = 1 represents a tip deemed relevant and a failure Xa = 0

a nuisance tip. Each tip also has an associated evaluation time, which depends on the

arm chosen. These evaluation times determine the sojourn times of the process, and the

timing of the decision epochs. The system state of the multi-armed bandit describes

the knowledge of the decision maker regarding the success probabilities and evaluation

times of the arms.

There are several modelling choices for the rewards received and the objective the

decision maker might wish to optimise against, each motivated by different real life

intelligence problems. They are described in more detail further on in this section.

IP1. Obtain as many relevant tips as possible in the long run.

IP2. Obtain as many relevant tips as possible in the long run, with preference to do so

early on.

IP3. Obtain as many relevant tips as possible before a given deadline. There may or

may not be a preference towards finding relevant tips early on.

IP4. Obtain a good rate of relevant tips per unit resource consumed.

While we spend little time considering IP2 and IP3, we include them in this discussion

for completeness and to demonstrate the range of modelling options that was available
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to us.

We first consider these under a simplified scenario, in which all the probabilities of

observing a relevant tip are known and the associated evaluation times are determinis-

tic rather than random. From there, we progressively add layers of randomness to the

problem to work up to the scenario in which both the success probabilities and the pa-

rameters governing the evaluation times are unknown. These cases are summarised in

Table 3.2.2. Throughout these investigations all previous assumptions of the problem,

such as evaluating tips one at a time, binary outcomes, delayed rewards, and not being

able to renege on a chosen source remain.

Tip Relevance Evaluation Time

Case 1 Random, known success probability Deterministic

Case 2 Random, unknown success probability Deterministic

Case 3 Random, unknown success probability Random, known distribution

Case 4 Random, unknown success probability Random, unknown distribution

Table 3.2.2: Nature of the relevance probabilities and the evaluation times considered

in the cases of Section 3.2.

Case 1

In the first case we examine, the probability that a tip from arm a is relevant is known

and given by pa, so that Xa ∼ Bernoulli(pa). Likewise, the associated evaluation time,

which we denote as ta is also known. The state of any arm a is given by the deci-

sion maker’s knowledge of said arm, sa = (pa, ta), which are both known quantities

as mentioned before and therefore remain the same throughout the problem. Since

the arms are independent, the state of the multi-armed bandit as a whole is given by

s = (s1, ..., sA). Note that as a consequence of the individual arms only occupying one

state throughout the problem the system is also limited to one state only.
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At every decision epoch e an arm a is selected to continue, which is equivalent to

sampling a tip from source a to evaluate. Regardless of the arm chosen, only self tran-

sitions occur, with a probability of P(s | s, a) = 1. There is no continuously accrued

reward gained from playing arm a, however, there is a lump-sum reward based on the

expected outcome of the evaluation.

While all four intelligence problems share some similarities, they need different mod-

elling approaches. As sources may have different evaluation times and therefore in

general ta 6= ta
′
, for all a 6= a′, in the case of intelligence problems IP1-IP3 the time

between decisions is not constant. This necessitates their formulation as a semi-Markov

multi-armed bandit. Since the ta’s are known, the sojourn time Te that follows decision

epoch e is directly determined by the arm a chosen as P (Te = ta | a) = 1. When formu-

lating the reward structure of IP1.-IP3., we find that for all three cases the lump-sum

reward is the expected outcome of the evaluation received upon its completion,

k (s, a) = pa. (3.2.1)

However, their associated optimality criteria differ.

IP1. In the case of IP1, the problem description suggests we are in an undiscounted

infinite horizon regime. In a semi-Markov setting this leads to two possible objective

criteria, one in terms of the long-run average reward (2.1.7), the other in terms of the

ratio average reward (2.1.6).

Let us first consider the long-run average reward criterion. For the reward in (3.2.1) it

simplifies to

max
π

lim
H→∞

1

H
Eπ,s

[
eH−1∑
e=0

k(se, π(se))

]
= max

π
lim
H→∞

1

H
Eπ

[
eH−1∑
e=0

pπ(se)

]
. (3.2.2)

Since in all deterministic Markov policies the action prescribed only depends on the

state of the process of which there is only one here se = s ∀e ∈ Se, any such policy

would select an arm a at the beginning of the decision problem and continue playing
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that arm throughout. Given that, we can rewrite the objective as

max
a∈Sa

lim
H→∞

1

H
Eπ

[
eH−1∑
e=0

pa

]
= max

a∈Sa
lim
H→∞

eHp
a

H
= max

a∈Sa

pa

ta
, (3.2.3)

where we noted that the number of observations made if arm a was continued from

the beginning till the end of the horizon is eH = H/ta. What (3.2.3) shows is that the

policy which chooses the arm a with the highest ratio of pa/ta, a quantity we refer to

as the reward rate of that arm, is optimal.

The ratio average reward criterion is adapted as follows. Then

max
π

lim inf
H→∞

Eπ,s
[∑H−1

e=0 k(se, π(se))
]

Eπ,s
[∑H−1

e=0 Te

] = max
π

lim
H→∞

Eπ
[∑H−1

e=0 pπ(se)
]

Eπ
[∑H−1

e=0 tπ(se)
] , (3.2.4)

and after invoking the argument based on only considering deterministic Markov policies

we find that the objective is of the form

max
a∈Sa

lim
H→∞

∑H−1
e=0 pa∑H−1
e=0 ta

= max
a∈Sa

lim
H→∞

(H)pa

(H)ta
= max

a∈Sa

pa

ta
, (3.2.5)

which is the same policy we found to be optimal with respect to the long-run average

reward criterion.

IP2. The intelligence problem described in IP2 is that of a discounted infinite horizon

decision problem, for which the expected discounted total reward criterion is most

suitable. Discounting in a semi-Markov setting was not discussed in detail in Chapter 2,

and for reasons similar to those stated there, we will not consider the corresponding

optimality criterion further.

IP3. The third potential definition of the intelligence problem suggests a finite horizon

decision problem either with or without discounting. We only consider the undiscounted

variety of this intelligence problem, but it may be adapted to discounting in a similar

manner to IP2. Over a finite horizon H the objective is to find the policy which

maximises the total expected reward over said horizon. In the reward structure defined,
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that can be written as

Eπ,s

[
eH−1∑
e=0

k(se, π(se))

]
= Eπ

[
eH−1∑
e=0

pπ(se)

]
. (3.2.6)

While the evaluation times of the tips do not explicitly feature in the expected total

reward, alongside the horizon they constrain how many evaluations may take place.

Then the objective criterion is

max
π

Eπ

[
eH−1∑
e=0

pπ(se)

]
(3.2.7)

with the implicit constraint that for every policy π and every realisation of the decision

problem
eH−1∑
e=0

tπ(se) ≤ H. (3.2.8)

The equations (3.2.7) and (3.2.8) in essence describe a knapsack constrained bandit

problem (Tran-Thanh et al., 2012; Graczová and Jacko, 2014).

IP4. The last intelligence problem in our list of examples stands apart as we can

formulate it as a discrete time decision problem instead of a semi-Markov one, where

the evaluation times no longer dictate when the decision epochs occur, instead e ∈

{0, 1, ..., H − 1}. We achieve this by disconnecting the the evaluation times of the tips

from the decision epochs, treating them as usage of some kind of resource. In this

reading of the problem an infinite horizon, such as the one present in IP1, would be

translated to an infinite budget which we wish to utilise wisely, despite being infinite.

Then the time spent on evaluating tips is the equivalent of the intelligence team ex-

changing some amount of resource for an opportunity to observe a tip, wishing to obtain

high rewards for the resource invested.

The rewards are still only received upon completion of the evaluation process, set to

coincide with the next decision epoch so that the reward from decision epoch e only

materialises when decision epoch e+ 1 is triggered. To capture the resources spent on

obtaining the tip, the reward of an arm is given by the utilisation rate of the time-
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resource of the chosen arm, which for arm a in state s is

r(s, a) = Es
[
Xa

ta

]
=
pa

ta
, (3.2.9)

which is received upon completion of the evaluation. High rewards are achieved by arms

that either have high success probabilities, short evaluation times or both. If (but only

if) the problem is over an infinite horizon, we expect such a model to be equivalent to

IP1. With an infinite horizon and no discounting we find the long-run average reward

criterion to be the most suitable, taking the form

max
π

lim
H→∞

1

H
Eπ

[
H−1∑
e=0

r(se, π(se))

]
= max

π
lim
H→∞

1

H
Eπ

[
H−1∑
e=0

pπ(se)

tπ(se)

]
. (3.2.10)

Since we expect all policies to continually play only one of the arms a it simplifies to

max
a∈Sa

lim
H→∞

1

H − 1

H∑
e=0

pa

ta
= max

a∈Sa

pa

ta
. (3.2.11)

which is the same as the optimality criterion of IP1.

While the intelligence problems IP2 and IP3 lead to interesting model formulations,

for the remainder of the cases we focus on IP1 and IP4.

Case 2

Next, we deliberate a version of the intelligence problem in which the evaluation time

associated with arm a remains a known quantity for all a ∈ Sa, but the success probabil-

ities of the arms are unknown, and are modelled as random variables P a. To incorporate

our initial beliefs and facilitate Bayesian learning of P a we place a prior on it which is

updated with the outcomes of the evaluated tips. In such a case the knowledge available

to the decision maker is summarised by the collection of posterior parameters, denoted

as ρa and the values of the ta. Then the state of the system in any epoch e is given

by s = (s1, ..., sA) where sa = (ρa, ta). However, as all ta’s remain constant through

the problem, one might not even consider them part of the state. While everything

regarding the sojourn times and the spacing of the decision epochs is the same as in

the previous case, the system is no longer restricted to one state only and it transitions
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to a new state in response to evaluating a tip from arm a. Let sa+ and sa− denote the

state of the system after a tip sampled from arm a in system state s evaluated to a

relevant and nuisance tip respectively. Then the transition probabilities from state s

given arm a is chosen are

P (sa+ | s, a) = P (Xa = 1 | ρa) = Es [P a] (3.2.12)

P (sa− | s, a) = P (Xa = 0 | ρa) = Es [1− P a] . (3.2.13)

IP1 Let us first look at what these changes mean for the intelligence problem IP1.

The lump-sum reward k(s, a) associated with continuing arm a in state s, which now

includes the belief regarding P a through ρa, is given by the expected outcome of the

evaluation

k(s, a) = P a. (3.2.14)

Note that the lump sum reward is a random quantity, of which the expectation with

respect to the state of the system is taken within the optimality criteria.

The long-run average reward criterion takes a form similar to (3.2.2)

max
π

lim
H→∞

1

H
Eπ

[
eH−1∑
e=0

Ese
[
P π(se)

]]
. (3.2.15)

We note that as H →∞ so does eH →∞.

Let us examine the reward measure we wish to maximise more closely with the intent

of simplifying it. We start by multiplying the expression within the first expectation

by eH/eH to get

lim
H→∞

1

H
Eπ

[
eH−1∑
e=0

Ese
[
P π(se)

]]
= lim
H→∞

Eπ

[
1

H
eH
eH

eH−1∑
e=0

Ese
[
P π(se)

]]
. (3.2.16)

Assuming all conditions as per the Lebesgue convergence theorem (Bartle, 1995) are

met, we can exchange the limit and the expectation with respect to policy π and (3.2.16)

takes the form

Eπ

[
lim
H→∞

eH
H
× lim
H→∞

1

eH

eH−1∑
e=0

Ese
[
P π(se)

]]
= Eπ

[
lim
H→∞

eH
H
× lim

eH→∞

1

eH

eH−1∑
e=0

Ese
[
P π(se)

]]
.

(3.2.17)
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If only one arm a is ever sampled from, through learning, the expectation Es [P a]

converges to its underlying true value p̂a. We assume that as the process progresses,

any policy that satisfies the optimality criteria would eventually ”settle” on one of the

arms, deviating from it with smaller and smaller probabilities. The arm the policy

settles on in such way is the one that performs best according to some appropriate

metric, namely arm π(se→∞). In the context of the intelligence problem this is not

an unreasonable assumption as we expect an optimal policy to be able to identify and

exploit the best source. Admittedly, one may construe a deterministic Markov policy

that continues exploring the arms forever, but such policy would not be optimal as it

fails to exploit the knowledge it gains from the exploration and therefore would never

satisfy the optimality criteria. Consequently we write,

lim
eH→∞

Eπ

[
1

eH

eH−1∑
e=0

Ese
[
P π(se)

]]
= Eπ

[
p̂π(se→∞)

]
, (3.2.18)

and

lim
H→∞

eH
H

=
1

tπ(se→∞)
, (3.2.19)

which can be used to simplify (3.2.17) to get

Eπ
[
p̂π(se→∞)

tπ(se→∞)

]
. (3.2.20)

Therefore the optimality criteria in terms of the long-run average reward is

max
π

Eπ
[
p̂π(se→∞)

tπ(se→∞)

]
, (3.2.21)

and any policy which eventually, and presumably through learning correctly identifies

and chooses to exploit the arm Eπ [se→∞] = a which has the highest p̂a/ta is optimal.

For Case 2, the ratio average reward criterion is written as

max
π

lim inf
H→∞

Eπ,s
[∑H−1

e=0 re(se, π(se))
]

Eπ,s
[∑H−1

e=0 Te

] = max
π

lim
H→∞

Eπ
[∑H−1

e=0 Ese
[
P π(se)

]]
Eπ
[∑H−1

e=0 tπ(se)
] . (3.2.22)

For the same reasons as earlier, we presume policy π to settle on arm π(se→∞). Then

lim
H→∞

1

H
Eπ

[
H−1∑
e=0

tπ(se)

]
= Eπ

[
tπ(se→∞)

]
, (3.2.23)
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together with (3.2.18) can be used to re-write the objective as

max
π

Eπ
[
p̂π(se→∞)

]
Eπ [tπ(se→∞)]

, (3.2.24)

therefore a policy for which settles on arm Eπ [se→∞] = a so that

a := arg max
a′∈Sa

p̂a
′

ta′
, (3.2.25)

is optimal. Note that while (3.2.21) and (3.2.24) are not the same, identification and

exploitation of the arm considered best with respect to the metric p̂a/ta leads to opti-

mality in both cases.

IP4. The introduction of unknown success probabilities affects the expected reward

of continuing arm a in state s of IP4 in a similar way it did IP1, so that

r(s, a) = Es
[
Xa

ta

]
=

E [P a]

ta
. (3.2.26)

Following the same reasoning that any optimal policy converges to playing only one of

the arms, as well as the arguments for E [P a]→ p̂a apply, and therefore the optimality

criterion of IP4 is

max
π

lim
H→∞

1

H
Eπ

[
H∑
e=0

E
[
P π(se)

]
tπ(se)

]
= max

π
Eπ
[
p̂π(se→∞)

tπ(se→∞)

]
, (3.2.27)

which is the same optimality criterion as seen in (3.2.21). Therefore once again we

conclude that any policy that is optimal for either formulation of IP1 or IP4 will be

optimal for the others. In addition, any policy that ultimately identifies the arm with

the highest underlying reward rate is optimal. However, we find it important to note

that this conclusion only holds in the infinite horizon limit as we have made use of

asymptotic results. If the horizon is not infinite, only very large, we cannot guarantee

that the optimal polices will be identical. Furthermore, the speed at which the best

arm is identified will play a role in maximising the expected reward from a given policy,

as the time available to exploit said arm is not longer infinite.
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Case 3

In the third case of the intelligence puzzle both P a and T a ∼ f(t | θa) are random

quantities, but through θa the distribution of the evaluation time is known. The state

sa of arm a is described very similarly to the previous case where the evaluation times

were known, so that sa = (ρa,θa) and the system state of the multi-armed bandit is

given by s =
(
s1, ..., sA

)
. Choosing arm a no longer guarantees a certain evaluation

time, instead, it determines the distribution of said evaluation time at epoch e so that

f(Te = t | a) = f(T a = t | θa), (3.2.28)

and therefore its expected duration is

E [Te | s, a] = E [T a | sa] . (3.2.29)

Since the θa’s are known, the second component of any sa is constant. Therefore

transitions only occur with respect to the first components, the ρa, with the associated

transition probabilities the same as stated in (3.2.12) and (3.2.13).

IP1. The reward associated with selecting arm a in state s is the same as in case

2, given by the expected outcome of the evaluation defined in terms of the lump sum

reward k(s, a), and shown in (3.2.14).

We found that non-deterministic evaluation times severely limit the ways in which

we can manipulate the long-run average reward criterion. We start by writing

max
π

lim
H→∞

1

H
Eπ,s

[
eH−1∑
e=0

k(se, π(se))

]
= max

π
lim
H→∞

1

H
Eπ,s

[
eH−1∑
e=0

P π(se)

]
. (3.2.30)

However, eH is no longer only a function of policy π but also of θ and consequently s,

through the realisation of the random sequence of evaluation times that result in eH

decision epochs within horizon H. For that reason manipulating the above expression

into showing explicit dependence of the evaluation times is difficult.
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In contrast, there is little in addition to the steps needed in case 2 to suitably adapt

the ratio average reward criterion to case 3. We write

max
π

lim inf
H→∞

Eπ,s
[∑H−1

e=0 re(se, π(se))
]

Eπ,s
[∑H−1

e=0 Te

] = max
π

lim
H→∞

Eπ
[∑H−1

e=0 Ese
[
P π(se)

]]
Eπ
[∑H−1

e=0 Ese [T π(se)]
] . (3.2.31)

A set of arguments similar to those leading to (3.2.24) can be used here as well. As the

number of samples taken from arm a increases, Es [P a] converges to p̂a, while Es [T a]

remains constant. Same as before, we posit that optimal policies eventually settle on

one of the arms which we denote by π(se→∞), and that we may use this property in

manipulating the optimality criteria. The observation in (3.2.18) applies as stated, and

for the current numerator we write

lim
H→∞

1

H
Eπ

[
H∑
e=0

Ese
[
T π(se)

]]
= Eπ

[
Eθπ(se→∞)

[
T π(se→∞)

]]
. (3.2.32)

Then the objective can be rewritten as

max
π

Eπ
[
p̂π(se→∞)

]
Eπ [Ese→∞ [T π(se→∞)]]

, (3.2.33)

which is a similar result to that of the previous case.

IP4. Our approach to IP4 changes little with the introduction of random evaluation

times, the expected reward of continuing arm a in state s is still given by the expected

reward rate

r(s, a) = Es
[
Xa

T a

]
= Es

[
P a

T a

]
. (3.2.34)

Then the optimality criterion of IP4 is

max
π

lim
H→∞

1

H
Eπ

[
H−1∑
e=0

Es
[
P π(se)

T π(se)

]]
. (3.2.35)

As before, we made use of the asymptotic convergence of policy π.

Note that while in cases 1 and 2 the three optimality criteria considered in more detail

were satisfied by the same policies, by allowing the evaluation times to be random we

moved to a regime where that is no longer true. While we have not been able to write

the long-run average reward criterion of IP1 in terms of p̂ and T , it is clear that (3.2.33)

and (3.2.35) are not equivalent.
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Case 4

Last but not least we consider the intelligence problem in its most complex form, where

the evaluation times are not only random with T a ∼ f(t | Θa), but the Θa’s are only

known through their prior and posterior distributions, characterised by parameters ψa.

In such a multi-armed bandit the state of arm a is given by the posterior parameters of

both P a and Θa, that is sa = (ρa,ψa). As we have seen before, the state of the system

is s = (s1, ..., sA). At every decision epoch e the distribution of the evaluation time and

the transition probabilities are determined by the state s and the arm a chosen. The

distribution and expectation of the evaluation time Te following decision epoch e are

f(Te = t | a) = f(T a = t | sa) (3.2.36)

Ese [Te | a] = Esae [T a] . (3.2.37)

Note that the expectation with respect to the state s includes taking the expectation

with respect to both Θa and ψa as well as ρa. State transitions must account for

changes in the state based on both the observed outcome of evaluating a tip and the

observed evaluation time. Let us denote by sa+,t the state after choosing arm a and

consequently having observed a relevant tip Xa = 1 following an evaluation time of

T a = t. Then the transition probability from s to sa+,t is simply the joint probability

of the two required events

P (sa+,t | a, sa) = P (Xa = 1, T a = t | a, sa) , (3.2.38)

and the transition probability from s to sa−,t is similarly defined as

P (sa−,t | a, sa) = P (Xa = 0, T a = t | a, sa) . (3.2.39)

The discussion around the reward structure and optimality criteria for IP1 and IP4 is

very similar to what came before. So much so that we refer to case 3 for all relevant

quantities, with the exception that when an expectation is taken with respect to s, the

state is as defined for case 4 instead.

While it is not our main focus, we must mention Cayci et al. (2019), which proposes
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a model similar to IP3 under case 4. Nonetheless, there are some major differences

between the problem as we described it and the problem defined by the work above,

the most significant of which is that it allows interruption to the evaluation process.

Choosing the Intelligence Problem

The question that remains is which of these intelligence problems and optimality cri-

teria we wish to investigate for the remainder of this chapter. While it may be up

for debate which of the four intelligence problems reflects the everyday reality of an

intelligence team the best, we thought IP1, coupled with the long-run average reward

criterion described our aim the best, set out in Section 3.1. Unfortunately, we have

seen that when evaluation times are random they only feature in the objective criteria

implicitly, making construction of decision rules that take them into account difficult.

As demonstrated, in the presence of deterministic evaluation times (cases 1 and 2),

both the ratio average reward criterion of IP1 and the average reward criterion of IP4

are asymptotically equivalent to the reward criterion we wish to optimise against. In

Section 3.3 and Section 3.4 we approximate the long-run average reward criterion with

the optimality criterion of IP4, and use the expected reward rate Es [P a/T a] as a basis

for developing an index of any arm a of the multi-armed bandit. While any method

based on this approximation is not expected to be optimal, we reckon they are sufficient

for designing heuristic polices.

We recognise that a different metric, inspired by the ratio average reward criterion

of IP1 and defined as Es [P a]/Es [T a] could be just as valid. For further considera-

tion of the metric Es [P a]/Es [T a] we refer the reader to Section 3.5.1, where we briefly

consider how such a choice changes the heuristics we develop in Section 3.3.
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3.3 The Intelligence Problem with Independent Pa-

rameters

In this section we examine the intelligence problem chosen in Section 3.2, which is to

obtain as many relevant tips as possible in the long run. In a perfect world we would use

a metric motivated by IP1, but as discussed in Section 3.2 we use the metric motivated

by IP4 as an approximation. We consider a variant in which the probability that a tip

is relevant is independent of its evaluation time and develop heuristic policies based on

the expected reward rate of the available sources.

3.3.1 Model Description

In this section we detail the model of the intelligence problem, including the underly-

ing Bayesian structure of the learning problem. While we repeat some aspects already

outlined in Section 3.2, we do so for the sake of completeness.

The tips from source a, a ∈ {1, ...,A}, form a sequence of IID Bernoulli random vari-

ables, Xa ∼ Bernoulli(P a), therefore the jth outcome from arm a is xaj ∈ {0, 1}, and the

tip is deemed relevant with P(xaj = 1) = P a or a nuisance tip with P(xaj = 0) = 1−P a.

The time required to evaluate a tip from source a, determining which category it falls

into is represented by random variable T a, with realisations ta ∈ (0,∞). The observed

outcomes of Xa and T a are recorded in the vectors xa and ta.

Since in this section all P a and T a are independent, our chosen metric, the predic-

tive expectation of the reward rate simplifies to

E
[
P a

T a

]
= E [P a]E

[
1

T a

]
, (3.3.1)

but no further.

We consider two model variants, which differ only in the distribution of T a. To distin-

guish them from models introduced in Section 3.4, we refer to them (perhaps unimag-
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inatively) as Independent Model 1 (IM1) and Independent Model 2 (IM2). They are

introduced with focus on a single arm to allow us to drop the arm-identifying super-

scripts.

Independent Model 1

In IM1 a conjugate Beta prior is placed on P , so that the relevance of a tip is given by

X ∼ Bernoulli(P ), (3.3.2)

P | x ∼ Beta(α, β), (3.3.3)

where α and β are posterior shape parameters. Once another observation X = x is

made they are updated according to

α′ = α + x, (3.3.4)

β′ = β + 1− x. (3.3.5)

For this model the evaluation times are given by the sum of a known and deterministic

minimum evaluation time, which we denote as tmin, and an exponentially distributed

excess evaluation time T̃ so that T = T̃ + tmin;

T̃ ∼ Exponential(Λ), (3.3.6)

Λ | t̃ ∼ Gamma(γ, δ), (3.3.7)

where Λ is an unknown rate parameter on which a Gamma prior was placed. The

parameters γ, δ are its posterior shape and rate parameters. After observing T̃ = t̃ we

update them using

γ′ = γ + 1, (3.3.8)

δ′ = δ + t̃. (3.3.9)

As discussed in Section 3.2 the state of any arm is a knowledge state, which consist of

its posterior parameters. In this case that state is given as (α, β, γ, δ). Since tmin is a

constant, it need not form part of the state.
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The expectation of P has a well known closed form,

E [P ] =
α

α + β
. (3.3.10)

However, no closed form formula exists for E [1/T ], so it needs to be evaluated numer-

ically from the following

E
[

1

T

]
=

∫ ∞
0

∫ ∞
0

1

t̃+ tmin
Λ exp(−Λt̃)

δγ

Γ(γ)
Λγ−1 exp(−δΛ) dΛdt̃

=

∫ ∞
0

1

t̃+ tmin

γδγ

(t̃+ δ)γ+1
dt′. (3.3.11)

After having determined the expectations of P and T , we can simply use (3.3.1) to find

E [P/T ].

Sampling provides an alternative way to obtain the distribution and expectation of

P/T . To generate the jth sample:

1. Sample Λj from Gamma(γ, δ).

2. Sample t̃j from Exponential(Λj).

3. Sample Pj from Beta(α, β).

4. Then the jth sample is given by
Pj

t̃j + tmin
.

Then the expectation is given by the sample mean. Here, sampling is used mainly to

visualise the distribution of P/T , by plotting a histogram of the samples as shown in

Figure 3.3.1. The value of tmin is observed to have a significant effect on the shape of

the distribution, as it determines the maximum achievable P/T .

Note that in the following investigations whenever E [P/T ] is required (3.3.10) and

(3.3.11) are used, not sampling. Sampling was only used to visualise the distribution

of P/T .
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Figure 3.3.1: Distribution of P/T for a range of expected success probabilities with

small tmin = 0.1 and large tmin = 1 minimum evaluation times. We can see that the

choice of tmin influences the shape of the distribution.

Independent Model 2

The relevance of a tip in IM2 is modelled identically to IM1, as a Beta-Bernoulli random

variable with its distribution and Bayesian updating shown (3.3.2) to (3.3.5). The two

models are set apart by how the evaluation times are modelled; in this case T follows

a Log-Normal distribution. The evaluation times are given by T = exp(T̃ ) where T̃

is the log-evaluation time, which is Normally distributed with unknown mean Υ. To

facilitate Bayesian learning we place a Normal prior on on Υ. We summarise the above

as

T̃ ∼ Normal(Υ, s2), (3.3.12)

Υ | t̃ ∼ Normal(µ, σ2), (3.3.13)

where µ and σ2 are the posterior mean and variance of Υ. The variance of the log-

evaluation times, s2, is a known constant. After observing another evaluation time with
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T̃ = t̃, we update µ and σa according to

σ′
2

=

(
1

s2
+

1

σ2

)−1

, (3.3.14)

µ′ = σ′
2

(
µ

σ2
+

t̃

s2

)
. (3.3.15)

The state of an arm is given by its posterior parameters, which in this case is (α, β, µ, σ2).

The expectation of P is given by (3.3.10), same as in the previous model. Unlike

in Section 3.3.1, a close form formula is available for E [1/T ], shown in (3.3.16).

E
[

1

T

]
= exp

(
−µ+

σ2 + s2

2

)
, (3.3.16)

Then the expectation of P/T can also be given in a closed form.

E
[
P

T

]
=

α

α + β
exp

(
−µ+

σ2 + s2

2

)
(3.3.17)

Just like in Section 3.3.1, sampling provides an alternative way to obtain the distribution

and expectation of P/T . To generate a sample:

1. Sample Υj from Normal(µ, σ2).

2. Sample t̃j from Normal(Υj, s
2).

3. Sample Pj from Beta(α, β).

4. Then the jth sample is given by
Pj

exp(t̃j)
.

Note that sampling was only used to visualise the distribution of P/T . Whenever

E [P/T ] is required (3.3.10) and (3.3.16) are used, not sampling. Figure 3.3.2 shows

the distribution of the reward rate. The distribution of P/T under IM2 is very similar

to that of IM1, but without a minimum evaluation time there is no upper limit on the

reward rates.



CHAPTER 3. THE INTELLIGENCE PROBLEM WITH DELAYS 46

Figure 3.3.2: Distribution of P/T for a range of expected success probabilities with

small s2 = 0.1 and large s2 = 1. The appearance of the distributions shown is very

similar to what we have seen for IM1 in Figure 3.3.1.

3.3.2 Policies

This section describes the policies that have been developed or adapted to determine

the source a tip should be evaluated from at any given decision time. Since this requires

us to consider multiple arms again, we return to our previous notation of distinguishing

arms using index a as a superscript.

Myopic Policy

The first policy to consider is a simple myopic policy that chooses the arm to play in a

greedy manner: that the arm with the highest expected reward is chosen. Therefore at

every decision time arm a∗ is continued, where

a∗ := arg max
a

E
[
P a

T a

]
. (3.3.18)

This policy is pure exploitation without exploration. It does not aim to learn about

the arms to make a more informed decision at the next decision time, only focusing on

achieving the best reward from the current decision, making it myopic.
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Bather Index

The Bather Index, also known as the Randomised Allocation Index, is an asymptotically

optimal modification of the above myopic policy, first discussed in Bather (1980). The

index for arm a is defined as the sum of the greedy term E [P a/T a] and a random term

that decreases with the number of observations made on arm a. Here, a general case

of such index was considered, so that the arm continued at the current decision time is

given by

a∗ := arg max
a

E
[
P a

T a

]
+ b1b

na

2 Y, (3.3.19)

where b1 ≥ 0 is a scaling term, 0 ≤ b2 ≤ 1 governs how fast the random term decreases

with the number of observations na and Y is an Exponential(1) random variable inde-

pendently observed for all arms and decision times.

The parameters b1 and b2 control the exploration process, with either b1 = 0 or b2 = 0

equating the method to the myopic policy, where no exploration takes place. To achieve

good performance b1 and b2 need to be tuned; the best values can be determined us-

ing a grid-search over a reasonable range of parameters. This is further discussed in

Section 3.3.3.

Expected Generalised Gittins Index

One of the two major methodological contributions found in Section 3.3.2, the Expected

Generalised Gittins Index (EGGI) heuristic defines a novel decision rule, based on an

extension of the Gittins Index that allows for deterministic, but non-unit inter-decision

times.

The Gittins Index provides an optimal policy over an infinite horizon, and serves as a

good heuristic over a finite horizon. In the well studied case of deterministic unit length

inter-decision times it arises from comparing the arm in question, arm a, independently

of the other arms of the multi-armed bandit to a standard bandit arm that yields a

guaranteed reward of λ on every pull. Depending on the properties of arm a and the
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value of λ, we may prefer to pull one or the other. However, we are free to adjust λ so

that the expected rewards of arm a equal the expected rewards of the standard arm.

In that case we are indifferent to which arm is pulled; we have found a standard arm

of equivalent value to the original bandit arm a. In essence, the Gittins Index is this

equivalent value λ = ν where it is equally optimal to pull either the standard arm or

arm a. We discussed Gittins indices in more detail in Section 2.4. As the Gittins Index

was developed for infinite horizons with discounted rewards, the value of the index also

depends on the discount factor d.

We can define the Gittins index for a bandit with deterministic, non-unit inter-decision

time ka the same way. Note that this is the same regime as defined in Case 2 of Sec-

tion 3.2. Then the index νa(ka, d) is determined by equating the expected rewards from

the standard arm and arm a as follows.

νa(ka, d)

1− d
= sup

τ
E

[
τ−1∑
e=0

dk
aera(e) + dk

aτ ν
a(ka, d)

1− d

]
, (3.3.20)

νa(ka, d) = (1− d) sup
τ>0

E

[
τ−1∑
e=0

dk
aera(e)

]
1− E

[
dk

aτ
] , (3.3.21)

where τ is a positive stopping time, defined in terms of the decision epochs, after which

the standard arm is continued instead of arm a, ra(e) is the reward at decision epoch

e, and d is the discount factor. For ka = 1 the original Gittins index is recovered.

For Beta-Bernoulli bandits the calibration approach as described above does not only

provide a definition for the Gittins index, but also a computationally efficient, direct

way to calculate it. Every arm of the bandit is considered independently of the others,

only compared to a standard arm that acts as a measuring device.

In every state, determined by the number of successes αa and failures βa observed,

two actions are available; pull the standard arm for a reward of λ, or the non-standard

arm that is under evaluation. The best action is to pull the arm that results in the

maximum expected reward over the infinite horizon. For any given λ, backward recur-
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sion is used to calculate the maximum expected reward R(λ, αa, βa) of each state and

determine which of the two arms should be continued. While the decision problem con-

sidered is an infinite horizon one, we can approximate it with a finite horizon equivalent

due to the presence of discounting. Note that the closer d is to 1, the larger the finite

horizon must be to obtain accurate indices. For the purposes of calculating the index,

the horizon is the total number of observations in the decision problem, N .

The recursion starts from states where no more decisions are left, so the terminal states

must satisfy αa + βa = N . Their values are set irrespective of λ to E [P a] so that

R(λ, αa, βa) =
αa

αa + βa
. (3.3.22)

The recursion equation for all other states αa + βa < N is given as

R(λ, αa, βa) = max

{
λ

1− d
,

αa

αa + βa
[
1 + dk

aR(λ, αa + 1, βa)
]

+
βa

αa + βa
[
dk

aR(λ, αa, βa + 1)
]}
,

(3.3.23)

a version of what appears in Gittins et al. (2011), modified to allow for k 6= 1. The

recursion stops at the state the first decision must be made in. The first term in (3.3.23)

is the total return if the standard arm is activated, while the second term is the ex-

pected total reward if the non-standard arm is activated. Note that once the standard

arm is optimal to pull, it will remain optimal to pull in all subsequent decision times,

as the state of the non-standard arm does not change.

The above process of finding the optimal policy for every state is repeated for gradually

increasing values of λ ∈ [0, 1). The Gittins Index ν(ka, d) for a state is given by the

mid-point between the largest λ for which it is optimal to activate the non-standard

arm, and the smallest λ for which it is optimal to activate the standard arm.

Calculation of the index in such a way is very efficient. Table 3.3.1 shows the recorded

run-times required in Julia to generate the indices for a range of N ’s. Note that the

run-times are quick for integer instances of k, and given that tables of indices can be
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N Integer k Non-integer k

100 0.17s 12.89s

200 0.70s 49.72s

500 5.14s 304.3s

1000 32.06s 1371s

2000 141.2s 1657s

Table 3.3.1: Table of CPU times for generation of the non-unit inter-decision time

Gittins index.

pre-generated even for non-integer k’s the run-times are reasonable. Note that the dif-

ference is due to having to exponentiate to k, which is a computationally more intensive

step for non-integer values.

A useful property of νa(ka, d) is that in the undiscounted limit d → 1 it takes the

form

lim
d→1

νa(ka, d) = sup
τ>0

E

[
τ−1∑
e=0

ra(e)

]
kaE [τ ]

=
lim
d→1

νa(1, d)

ka
, (3.3.24)

which is the well established Gittins index for deterministic unit inter-decision times

divided by the non-unit inter-decision time, as illustrated in Figure 3.3.3. This property

suggests that in the undiscounted limit there is no need to calculate and store a table

of indices for every arm with a different ka, it is sufficient to obtain a single table of

Gittins indices where k = 1 and adjust the values using (3.3.24) and the appropriate

ka. Tables of Gittins Indices for k = 1 with d = 0.99 are available in Gittins et al.

(2011), but can also be calculated for Beta-Bernoulli bandits via (3.3.23) for any d.

In the context of the intelligence problem the deterministic non-unit inter-decision times

equate to tips requiring a known, fixed evaluation time to determine the relevance of a

tip. However, the bandits considered in Chapter 3 have random evaluation times, and

therefore the Gittins index policy cannot be applied in the above form.
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Figure 3.3.3: Generalised Gittins indices for the Beta-Bernoulli bandit with discount

factor d = 0.999 for deterministic evaluation times k = 1, 2, 3, 4, 5.

Since the intelligence problem was defined without discounting, we propose a heuristic

based on (3.3.24). By replacing ka with T a, the random evaluation time, and taking

the expectation with respect to the posterior distribution of T a, we define a new index

given as

E
[
lim
d→1

νa(T a)
]

= E

[
lim
d→1

νa(1, d)

T a

]
= E

[
1

T a

]
lim
d→1

νa(1, d). (3.3.25)

Since E [1/T a] is straightforward to calculate using either (3.3.11) or (3.3.16), obtaining

this index is similarly clear cut. Therefore we can use it to construct a heuristic policy

which we call the Expected Generalised Gittins Index (EGGI) policy. At every decision

time it continues arm a∗, where

a∗ := arg max
a

E
[
lim
d→1

νa(T a)
]
. (3.3.26)

Knowledge Gradient

As we have already introduced the knowledge gradient policy for multi-armed bandits

in Section 2.5, here we only provide a brief run-down. The knowledge gradient for

MAB assumes that while rewards are collected till the end of the horizon, there is only



CHAPTER 3. THE INTELLIGENCE PROBLEM WITH DELAYS 52

one further opportunity to learn, after which we will cease to update our beliefs. The

knowledge gradient policy then chooses one of the arms to learn about as to maximise

the expected total reward over the horizon. The knowledge gradient policy for a MAB

with random evaluation times is defined following the same logic.

Define the sets T ax ⊂ R+, x ∈ {0, 1} so that

T ax =

{
t;E

[
P a

T a
| xa, ta, x, t

]
≥ max

a′ 6=a
E
[
P a′

T a′
| xa′ , ta′

]}
, (3.3.27)

the sets of outcomes T a = t accompanied by Xa = x from observing arm a that result

in arm i having the highest expected reward rate.

Suppose that there is one more opportunity to learn within the residual horizon Hr,

and arm a is chosen. The sample from a is observed, and the posterior of arm a is then

updated. Any remainder of the horizon is then taken up by continuous sampling from

whichever source has the highest predictive expected success rate. From the definition

of T ax , if t ∈ T ax arm a has a higher expected reward rate than the best alternative, and

therefore will be continued for the rest of the horizon. Otherwise the best alternative,

arm argmax
a′ 6=a

E
[
P a′/T a

′ | xa′ , ta′
]

will be continued. Note that for the arm with the

current highest expected predictive reward rate, the best alternative is the arm with

the second highest rate, while for all other arms the best alternative is the one with

the current highest rate. The expected predictive reward rate of the best alternative is

independent of the new observation, and remains unchanged.

Then the total expected reward is given as

Ra
total = E [P a | xa, ta] +Ra

t∈T a0
+Ra

t6∈T a0
+Ra

t∈T a1
+Ra

t6∈T a1
, (3.3.28)

where E [P a | xa, ta] is the immediate expected reward of observing arm a, the terms

Ra
t∈T a0

=

∫
t∈T a0

[Hr − t]+ E
[
P a

T a
| xa, ta, 0, t

]
dπ (0, t | xa, ta) ,

Ra
t∈T a1

=

∫
t∈T a1

[Hr − t]+ E
[
P a

T a
| xa, ta, 1, t

]
dπ (1, t | xa, ta)
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are the probability weighted expected rewards if t ∈ T ax so that arm i is continued for

the rest of the horizon and the terms

Ra
t6∈T a0

= max
a′ 6=a

E
[
P a′

T a′
| xa′ , ta′

] ∫
t6∈T a0

[Hr − t]+ dπ (0, t | xa, ta) ,

Ra
t6∈T a1

= max
a′ 6=a

E
[
P a′

T a′
| xa′ , ta′

] ∫
t6∈T a1

[Hr − t]+ dπ (1, t | xa, ta)

are the probability weighted expected rewards if t 6∈ T ax so that the best alternative

arm a′ 6= a is continued for the rest of the horizon. Note that both Ra
t∈T ax and Ra

t6∈T ax

are functions of the best alternative reward rate max
a′ 6=a

E
[
P a′/T a

′ | xa′ , ta′
]

through T ax .

This knowledge gradient policy for a bandit would always play arm a∗, so that

a∗ := arg max
a

Ra
total. (3.3.29)

By assuming P a and T a independent, the following terms simplify to

E [P a | xa, ta] = E [P a | xa] , (3.3.30)

E
[
P a

T a
| xa, ta, x, t

]
= E [P a | xa, x]E

[
1

T a
| ta, t

]
, (3.3.31)

dπ (x, t | xa, ta) = P (X = x | xa) π(t | ta)dt, (3.3.32)

and the sets T ax take the form

T ax =

{
t;E [P a | xa, x]E

[
1

T a
| ta, t

]
≥ max

a′ 6=a
E
[
P a′

T a′
| xa′ , ta′

]}
. (3.3.33)

Theorem 3.3.1. Given that P a and T a are independent, T ax is defined by a threshold

tax;

T ax = {t; 0 < t ≤ tax} , (3.3.34)

so that t ∈ T ax if and only if 0 < t ≤ tax.

Theorem 3.3.1 can be proven using stochastic dominance, which we provide in Appendix

A.1. The conditions under which a similar assumption can be made for the dependent

case need further examination, but in general a single threshold does not define T ax .
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Considering all of the above, the expected total reward and its components simplify to

Ra
total = E [P a | xa] +Ra

t≤ta0
+Ra

t>ta0
+Ra

t≤ta1
+Ra

t>ta1
, (3.3.35)

where

Ra
t≤ta0

= P (X = 0 | xa)E [P a | xa, 0]

∫
t∈T a0

[Hr − t]+ E
[

1

T a
| ta, t

]
π(t | ta)dt,

Ra
t≤ta1

= P (X = 1 | xa)E [P a | xa, 1]

∫
t∈T a1

[Hr − t]+ E
[

1

T a
| ta, t

]
π(t | ta)dt,

Ra
t>ta0

= P (X = 0 | xa) max
a′ 6=a

E
[
P a′

T a′
| xa′ , ta′

] ∫
t6∈T a0

[Hr − t]+ π(t | ta)dt,

Ra
t>ta1

= P (X = 1 | xa) max
a′ 6=a

E
[
P a′

T a′
| xa′ , ta′

] ∫
t6∈T a1

[Hr − t]+ π(t | ta)dt.

The largest value of t to consider equals Hr, as we cannot get rewards past the horizon.

Therefore a threshold will fall under one of three cases. When tax ≤ tmin, the arm a

cannot produce a higher expected predictive reward rate than the best alternative.

Proposition 3.3.2. If evaluation times can take on arbitrarily small values (i.e. there

is no minimum evaluation time associated with the model), any arm a can produce a

better reward rate than that of the best alternative.

The second possibility is tmin < tax < Hr. If the observed outcome of T a falls below

the threshold, the expected predictive reward rate of arm a exceeds that of the best

alternative arm. The last and third case is Hr ≤ tax, when arm a will always be better

than the best alternative.

The knowledge gradient is not an index policy, the expected total reward is heavily

dependent on the reward rate of the best alternative arm. This adversely affects the

decision making. Observing an arm that is not the current best has limited downsides;

we either discover that it has a reward rate that is better than the current best, or in

the worst case we fall back on the current best. On the other hand, there are many po-

tential downsides evaluating the current best arm. Getting a bad result (failure and/or

long evaluation time) reduces the rewards expected then on, or even worse, we have
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to fall back on the best available alternative. This is only avoided when tbest
x ≥ Hr,

and we cannot observe an evaluation time long enough to make the current best arm

lose its position. As a consequence, the arm with the highest expected total reward

could have a low observed reward rate, with the expectation being high only due to

the high reward rate of the best alternate. If the policy picks the arm with the highest

expectation, it is bound to make some sub-optimal choices.

Calibrated Knowledge Gradient Index

To counter the problems with the knowledge gradient, we can define a new policy in

which the expected total reward is still calculated assuming only one opportunity to

learn, but we no longer compare arm a to the best alternative, but to a standard arm

with a known and guaranteed reward stream with rate λ.

Inspired by the calibration approach from the Gittins index literature we consider each

arm a separately. There are two options available; play the standard arm with a guar-

anteed constant reward rate of λ until the horizon is reached, or observe arm a one

more time and continue either arm i or the standard arm for the remainder of the

horizon, choosing the one with the higher expected reward rate. Then the value of λ,

where we are indifferent between observing arm a one more time and continuing the

standard arm straight away denoted as νaCKGI, can serve as an index and we name it

the Calibrated Knowldge Gradient Index (CKGI).

We define νaCKGI as

Hrν
a
CKGI = Ra

total(ν
a
CKGI), (3.3.36)
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where Ra
total(λ) is given as

Ra
total(λ) = E [P a | xa, ta] +Ra

t∈T a0 (λ)(λ) +Ra
t6∈T a0 (λ) (λ) +Ra

t∈T a1 (λ)(λ) +Ra
t6∈T a1 (λ) (λ)

= E [P a | xa, ta] +

∫
t∈T a0 (λ)

[Hr − t]+ E
[
P a

T a
| xa, ta, 0, t

]
dπ (0, t | xa, ta)

+ λ

∫
t6∈T a0 (λ)

[Hr − t]+ dπ (0, t | xa, ta)

+

∫
t∈T a1 (λ)

[Hr − t]+ E
[
P a

T a
| xa, ta, 1, t

]
dπ (1, t | xa, ta)

+ λ

∫
t6∈T a1 (λ)

[Hr − t]+ dπ (1, t | xa, ta) .

(3.3.37)

and the sets T ax (λ) are defined as

T ax (λ) =

{
t;E

[
P a

T a
| xa, ta, x, t

]
≥ λ

}
.

These equations are the same as in Section 3.3.2, but the expected reward here depends

on λ instead of max
a′ 6=a

E
[
P a′/T a

′ | xa′ , ta′
]
.

Let us restrict our view to cases where Theorem 3.3.1 holds. We have to make some

assumptions to ensure indexability.

Assumption 3.3.3. For every arm a there is exactly one indifference value of λ =

νaCKGI.

Assumption 3.3.4. Once the standard arm becomes optimal to play, it will stay opti-

mal to play.

Then we can define an index policy, where the arm to play is given by

a∗ := arg max
a

νaCKGI.

Even though this index does not depend on the state of the other arms, it does depend

on the residual horizon, Hr, and needs to be calculated for every arm at all decision

times.
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3.3.3 Applying the Policies

This section describes the specifics of how the policies described in Section 3.3.2 can be

applied to the models in Section 3.4.1.

Applying the myopic policy

The myopic policy is the simplest to apply to the models as it only requires the expected

reward rate E [P a/T a], given in (3.3.11) for IM1 and (3.3.16) for IM2. While the decision

maker needs to know E [P a/T a] of every arm at every decision time, it is only necessary

to recalculate for the arm that has just been observed; the expected reward rates of the

arms not observed do not change.

Applying the Bather index

As per the discussion in Section 3.3.2, the Bather index is the sum of the expected

reward rate, and a random term random term which consists of an Exponential(1)

random variable modified by scale parameter b1 and decay parameter b2. These were

determined by conducting a grid search over a range of parameter combinations. For

IM1 (Section 3.3.1), an 11× 11 grid with 0.1 between the grid points was used, so that

both the values of b1 and b2 fell within the interval (0; 1). For IM2 (Section 3.3.1), a 21

×11 grid with 0.1 between the grid points was used, so that the values of b1 fell within

(0; 2) and b2 fell within (0; 1). The range of values the scale parameter b1 could take

was chosen with the intent to ensure the best parameter combination was covered by

the grid. To find the best parameters, for every combination of b1 and b2 the policy was

applied to the same dataset used in the numerical experiments and the combination

that achieved the largest reward was chosen. The best parameter values depend not

only on the model but also on the horizon and to a lesser extent on the dataset itself.

They are are shown in Appendix A.2.

The above represents a significant effort to tune b1 and b2, making the approach im-

practical to use. However, the purpose of developing such a method was to give a lower
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bound estimate of the optimal rewards, to better contextualise the performance of the

other policies.

The performance of different combinations of b1 and b2 for the IM1 and IM2 have

been visualised using a form of regret, as shown in Figure 3.3.4 and Figure 3.3.5. This

measure provides the relative regret of using a certain policy based on the Bayes re-

ward of said policy and the Bayes reward of an omniscient decision maker. As it

used primarily to interpret the results of numerical experiments, we defer the more

detailed introduction until Section 3.3.4 and (3.3.40). The contour plots reveal a

structure in the rewards achieved that differs between the models and is influenced

by the horizon and the number of arms present. Across both models and indepen-

dent of the number of arms present, as the horizons increased the regions of lower

regret shifted upwards, towards higher b2s, meaning that it is worth investing more

resources into exploration when the horizon is large, compared to when it is small.

These low regret regions were also smaller for A = 5 than for A = 2 with the re-

gret increasing quickly as the parameter values deviated; the policy is more sensitive

to the values of the exploration parameters when there are more arms to explore.

Applying the EGGI

To find the Expected Generalised Gittins Index we can take advantage of the property

in (3.3.24). As discussed in Section 3.3.2 it is sufficient to pre-generate a single table of

Gittins indices with k = 1, which was done using backwards induction and the recursion

equation (3.3.23) with a discount factor of d = 1− 10−10.

Note that for d ∼ 1 some errors will be present in values of the Gittins indices which

come from using backwards recursion to calculate the total expected rewards, which

is a finite horizon approximation to an infinite horizon problem. These errors can be

reduced if the horizon is sufficiently large to approximate infinity, but as d approaches

1, longer and longer horizons are needed to approximate infinity which are not compu-
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Figure 3.3.4: Relative regret achieved by the Bather index as defined in (3.3.40), ob-

served for parameter combinations of b1 (horizontal axis) and b2 (vertical axis) with a

range of horizons and number of arms present, for IM1.
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Figure 3.3.5: Relative regret achieved by the Bather index as defined in (3.3.40), ob-

served for parameter combinations of b1 (horizontal axis) and b2 (vertical axis) with a

range of horizons and number of arms present, for IM2.
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tationally practical.

At every decision time the EGGI, E [νa(T a)], can be obtained for every arm a by mul-

tiplying the index found in the pre-generated table of Gittins indices that corresponds

to the αa and βa of the arm by E [1/T a]. Note that neither the state or E [νa(T a)] of

the arms not observed change, and so their EGGI also remains unchanged.

Applying the knowledge gradient and the CKGI

As seen in Section 3.3.2, both the knowledge gradient and the CKGI policies require

similar quantities to be calculated. To be able to discuss them together, let as use λ to

mean the best alternative reward rate, which, in the context of the knowledge gradient

is λ = max
a′ 6=a

E
[
P a′/T a

′ | ta′
,xa

′]
, while in the context of the CKGI λ is the guaranteed

reward stream of a standard arm. Past the different roles of λ, calculation of Ra
total(λ)

and the threshold tax(λ) are the same for both policies. For ease of notation let us focus

on the calculation of these quantities for one of the arms and drop the arm-identifying

superscript for the rest of this section.

As we have seen before, the threshold is the value of t, denoting the observed eval-

uation time where the expected reward rate of the arm after one last observation of t

and x equals that of the best alternative, λ. In the case of IM1, this expected reward

rate is only obtainable numerically, therefore numerical methods are also required to

find such a threshold. It is a root of the function

f(t) = E [P | x, x]E
[

1

T
| t, t

]
− λ.

Several numerical root finding algorithms exist, we opted to use the Newton-Rhapson

method which is an iterative algorithm. At each iteration we evaluate

t(n+1) = t(n) −
f(t(n))

f ′(t(n))
,
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where

f(t) =
α + x

α + β + 1

∫ ∞
0

1

t̃+ tmin

γ + 1

t̃+ δ + t

(
δ + t

t̃+ δ + t

)γ+1

dt̃− λ,

f ′(t) = − α + x

α + β + 1

∫ ∞
0

1

t̃+ tmin

γ + 1(
t̃+ δ + t

)3

(
δ + t

t̃+ δ + t

)γ (
δ + t− t̃ (γ + 1)

)
dt̃,

both of which are calculated numerically.

We consider to have found the root if the difference between t(n+1) and t(n) is smaller

than 10−5, with the threshold given by tx(λ) = t(n+1).

Once the thresholds are known, the total expected reward is given by

Rtotal(λ) = E [P | x] +Rt≤t0(λ) +Rt>t0(λ) +Rt≤t1(λ) +Rt>t1(λ). (3.3.38)

Its components Rt≤t0(λ), Rt≤t1(λ), Rt>t0(λ) and Rt>t1(λ) are given as

Rt≤tx(λ) = P (X = x | x)

∫ max{tx(λ),Hr}

0

(
Hr − (t+ tmin)

)
E
[
P

T
| t,x, t, x

]
π(t | t)dt,

Rt>tx(λ) = P (X = x | x)λ

∫ Hr
min{tx(λ),Hr}

(
Hr − (t+ tmin)

)
π(t | t)dt,

with

π (t | t) =
γδγ

(t+ δ)γ+1 ,

evaluated numerically.

We need to calculate these same quantities for IM2. We can find the threshold tx

by making use of the Bayesian update given in (3.3.15) to get

E [P | x, x]E
[

1

T
| t, tx

]
= λ,

α + x

α + β + 1
exp

(
− σ

2 ′

σ2
µ+

σ2 ′ + s2

2

)
exp

(
− σ

2 ′

s2
log tx

)
= λ,

(tx)
− σ2

s2 = λ
α + β + 1

α + x
exp

(
σ2 ′

σ2
µ− σ2 ′ + s2

2

)
,

tx =

[
λ−1 α + x

α + β + 1
exp

(
− σ

2 ′

σ2
µ+

σ2 ′ + s2

2

)] s2

σ2 ′
,
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where s2 is known and constant, α, β, µ and σ2 are the current prior parameters, and σ2 ′

is a posterior parameter after one more observation, given in (3.3.14). After expanding

σ2 ′ the threshold can be found as

tx = exp

(
− s

2

σ2
µ+

s2

σ2

2σ2 + s2

2

)(
λ−1 α + x

α + β + 1

)s2 + σ2

σ2
. (3.3.39)

(3.3.39) gives the threshold tx below which all t belong to τx.

The next step is to find Rt≤tx(λ) and Rt>tx(λ). We write

Rt≤tx(λ) =P (X = x | x)

∫ max{tx(λ),Hr}

0

(Hr − t)E
[
P

T
| t,x, t, x

]
π(t | t)dt,

=P (X = x | x)

∫ max{tx(λ),Hr}

0

(Hr − t)
α + x

α + β + 1

exp

(
− σ

2 ′

σ2
µ+

σ2 ′ + s2

2
− σ2 ′

s2
log t

)
1

t
√

2πσ2
exp(−(log t− µ)2

2σ2
)dt

=P (X = x | x)

∫ max{tx(λ),Hr}

0

(Hr − t)
α + x

α + β + 1

exp

(
−s2µ+ (2σ2 + s2) s2 − σ2 log (t)

σ2 + s2

)
1

t
√

2πσ2
exp

(
−(log(t)− µ)2

2σ2

)
dt

=P (X = x | x)
α + x

α + β + 1
exp

(
−s2µ+ (2σ2 + s2) s2

σ2 + s2

)
1√

2πσ2∫ max{log(tx(λ)),log(Hr)}

−∞

(
Hr − exp(t̃)

)
exp

(
−
(
t̃− µ

)2

2σ2
− σ2t̃

σ2 + s2

)
dt̃,

taking the integral with respect to the log time t̃ instead of the real time and get

Rt≤tx(λ) =P (X = x | x)
α + x

α + β + 1

1

2
exp

(
−µ+ s2 +

s2σ2

σ2 + s2

)
×
[
exp

(
2µ (σ4 + s4) + σ2s2 (4µ+ s2)

2 (σ2 + s2)2

)
×

(
erf

(
σ2 (µ+ s2 − log (max {tx(λ),Hr})) + s2 (µ− log (max {tx(λ),Hr}))√

2σ2 (σ2 + s2)

)
− 1

)

+ exp

(
σ6

2 (σ2 + s2)2

)
×

(
erf

(
σ4 + (log (max {tx(λ),Hr})− µ) (σ2 + s2)√

2σ2 (σ2 + s2)

)
+ 1

)]
.
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Finding Rt>tx(λ) does not require a change of variable and can be found in terms of real

time. It is given as

Rt>tx(λ) =P (X = x | x)λ

∫ Hr
tx

(Hr − t) π(t | t)dt,

=P (X = x | x)λ

∫ Hr
tx

Hr − t
t
√

2πσ2
exp

(
−(log(t)− µ)2

2σ2

)
dt

=P (X = x | x)λ

×
[
exp

(
µi +

σ2

2

)(
erf

(
µ+ σ2 − log(Hr)√

2σ2

)
− erf

(
µ+ σ2 − log (min {tx,Hr})√

2σ2

))
+ Hr

(
erf

(
µ− log (min {tx,Hr})√

2σ2

)
− erf

(
µ− log(Hr)√

2σ2

))]
.

Then the total expected reward is given by (3.3.38). Having obtained Rtotal(λ), from

this point onward we revert to using the arm-identifying superscripts again.

The differences in how the knowledge gradient and the CKGI are applied appear

once Ra
total (λ) is obtained. The knowledge gradient policy bases its decisions on di-

rectly comparing Ra
total (λ) where λ provides the best alternative reward rate λ =

max
a′ 6=a

E
[
P a′/T a

′ | ta′
,xa

′]
.

The CKGI requires a few more steps as described in Section 3.3.2 to find the index

νaCKGI. It must satisfy (3.3.36) and therefore νaCKGI is the root of the function

f (λ) = Ra
total (λ)−Hrλ.

To obtain the root, iterative root finding algorithms such as the Newton-Rhapson

method can be used, where one iteration is given as

λ(n+1) = λ(n) −
f
(
λ(n)

)
f ′
(
λ(n)

) .
The required differential f ′ (λ) can be found numerically.

We wish to finish the discussion around applying the different policies by consider-

ing the time required to compute the above discussed quantities. These are shown in
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Greedy Bather EGGI∗ KG CKGI

IM1 23.95 µs 25.03 µs 46.54 µs 837.24 µs 10.35 ms

IM2 0.15 µs 0.76 µs 0.20 µs 1.29 µs 21.23 µs

Table 3.3.2: Computational time of the knowledge gradient and the indices used by the

various policies for IM1 and IM2. Note that both micro and milliseconds are used.
∗ The times shown do not include the time taken to generate the index tables. For index generation

times see Table 3.3.1.

Table 3.3.2. It is clear that the lack of closed form formulas in the case of IM1 makes

obtaining these more costly, with the impact most significant for the knowledge gradi-

ent and the CKGI. While these times appear quite small, they represent the effort to

obtain a single quantity, and the calculations to obtain those may need to be repeated

few thousand times in the course of one instance of a simulation.

3.3.4 Numerical Experiments

Let us apply the policies described in Section 3.3.2 to the models, described in Sec-

tion 3.3.1. The priors used were αa(0) = 1, βa(0) = 1 for both IM1 and IM2, γa(0) =

1, δa(0) = 1 for IM1 and µa(0) = 0, σa2
(0) = 1 for IM2. All tmin and s2 were the same

for all arms. Whenever closed form formulas were not available for a quantity of in-

terest numerical methods were used. We ran these simulations for a range of horizons

(H = 100, 200, 500, 1000, and in the case of IM2 also H = 2000) and for A = 2 and

A = 5 arms. Note that the use of a finite horizon in the numerical study was motivated

by necessity, as we cannot simulate the problem with an infinite horizon. We calculated

the Bayes reward for all policies, simulating 10000 instances of the problem where the

parameters P a,Λa and Υa were sampled from their prior distributions.

To compare these rewards, we used a regret-type measure. We consider the super-

optimal policy to be one in which an omniscient decision maker that does not need to

learn about the arms and picks a single arm at the start to observe for all decision times,

identifying for every instance of the problem the arm that produces the highest realised
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reward over the horizon. Note that only a super-omniscient decision maker can make

such a selection. Then the Bayes reward of following the optimal policy is obtained the

same way as for any other policies. We define the (relative) regret of policy π as

Rπ =
Rewardπ

SO − Rewardπ

Rewardπ
SO (3.3.40)

the relative difference between the Bayes reward of the super-optimal policy πSO and

the Bayes reward of policy π.

Figure 3.3.6 displays the results of the numerical experiments, comparing the regrets

across the two models, IM1 with tmin = 0.1 and IM2 with s2 = 0.1. In general, a higher

regret was observed for A = 5 compared to A = 2 as the observations needed to be

split over more arms. What is clearly evident, is the importance of learning. The naive,

myopic policy consistently achieves the highest regret, and the Bather index performs

well by exploring the arms. When compared to the myopic policy, the EGGI, knowledge

gradient and CKGI policies realise a much lower regret for all horizons. However, there

is an issue with the Bather index; it requires a degree of omniscience as its performance

highly depends on the initial tuning of the exploration parameters. As we don’t have

an effective method to determine the best exploration parameters without experimen-

tation, the Bather policy proves impractical. Fortunately, none of the other methods

suffer from the same issue, which at the same time makes comparing the performance

of the EGGI, the knowledge gradient and the CKGI to the Bather policy unfair.

It is interesting to note, that while the EGGI achieves the lowest regret for IM1, for

IM2 it is the CKGI that performs best. This can be explained by the different ways

learning is approached by the two policies and the amount of information contained

in a single observation. In essence, when calibration is used to find either the EGGI

or the CKGI, a guaranteed reward stream is compared to the expected future reward.

While both heuristics are based on the Gittins index with some kind of approximation

of the expected future reward, the nature of the approximations make a big difference.

While the EGGI calculates the expected future rewards using and updating the poste-
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(a) Performance of policies as observed under IM1, with tmin = 0.1

(b) Performance of policies as observed under IM2, with s2 = 0.1

Figure 3.3.6: Relative regret Rπ, as defined in (3.3.40), achieved by the policies dis-

cussed in Section 3.4.2 in the numerical experiments of IM1 and IM2.
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rior distribution of P to an infinite horizon, the distribution of the evaluation time T

only contributes a point estimate. On the other hand, for the purposes of calculating

the expected future reward the CKGI only updates the posterior distribution of P with

the next observation, but also updates and uses the distribution of T .

In the case of IM2 the variance of the log-time s2 is a known parameter which we have

direct control over. When it is small, such as in the example shown in Figure 3.3.6, a sin-

gle observation carries a large enough amount of information about the distribution of

T a and where the true log-mean might lie that it is worth using that information, even if

learning needs to be limited to a single step ahead. In such scenario the knowledge gra-

dient and CKGI policies learn efficiently. On the other hand, when a single observation

does not carry enough information about the distribution of T a, it is more beneficial

to focus on learning about P a and use a point estimate instead of the distribution of T a.

To illustrate and further examine this point, we increased s2 as shown in Figure 3.3.7

and Figure 3.3.8. As s2 was increased, the amount of information on where the true

log-mean might lie was reduced and the performance of all but the EGGI policy quickly

deteriorated. The regrets achieved by the EGGI increased much slower, and therefore

its performance in comparison to the others improved. It first overtook the knowledge

gradient policy at s2 = 0.2 for A = 2 and at s2 = 0.5 for A = 5. At an even larger values

of s2 it even outperformed the CKGI. With s2 sufficiently increased, it was preferable

to use EGGI as seen with IM1. It is important to note that s2 had to be drastically

increased to achieve this; using s2 = 2 is a 20-fold increase from the original s2=0.1.

Figure 3.3.7 and Figure 3.3.8 also revealed that the KG and CKGI kept their advantage

over the EGGI for longer as s2 was increased for A = 5 than they did for A = 2. This

is quite intuitive; when there are more arms to chose the best from, making use of the

posterior distributions of both P and T is beneficial.

It is possible to choose an s2 large enough that looking only one step ahead the way the

knowledge gradient and the CKGI do becomes simply not good enough. For A = 2 and
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(a) s2 = 0.2

(b) s2 = 0.5

Figure 3.3.7: Performance of the policies in the extended study for IM2, with increasing

s2. Part 1, showing s2 = 0.2 and s2 = 0.5.

s2 = 2 the myopic index produces lower regrets than the KG for all observed horizons,

and lower regrets than the CKGI for H = 100 and H = 200. While the knowledge

gradient lost its advantage over the myopic index around s2 = 1 for both A = 2 and

A = 5, the CKGI still performed markedly better than the myopic index for all but the

A = 2, s2 = 2 case.
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(a) s2 = 1

(b) s2 = 2

Figure 3.3.8: Performance of the policies in the extended study for IM2, with increasing

s2. Part 2, showing s2 = 1 and s2 = 2.

3.4 The Intelligence Problem with Dependent Pa-

rameters

The work in Section 3.4 follows on from having developed models and solutions in

Section 3.3 where the relevance of tips was independent from the time it took to evaluate

them. Here we wish to establish models where the relevance of a tip depends on its

evaluation time.
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3.4.1 Model Description

We model the intelligence collection process very similarly to Section 3.3, but consider

models where the relevance probability of a tip pa is a function of T a, and changes across

observations depending on the realisation of T a = ta via the logistic link function. This

encapsulates the idea that evaluating a relevant and a nuisance tip may take different

amounts of time; evaluating a relevant tip is a longer process than determining a nui-

sance tip to be irrelevant. To characterise arm a, the expected reward rate E [pa/T a]

remains the metric of interest.

The tips from source a, a ∈ {1, ...,A}, form a sequence of IID Bernoulli random vari-

ables, Xa ∼ Bernoulli(pa), therefore the jth outcome from arm a is xaj ∈ {0, 1}, and the

tip is deemed relevant with P(xaj = 1) = pa or a nuisance tip with P(xaj = 0) = 1− pa.

The time required to evaluate a tip from source a, determining which category it falls

into is represented by random variable T a, with realisations ta ∈ (0,∞). The observed

outcomes of Xa and T a are recorded in the vectors xa and ta respectively. As neither

the parameters of the logistic link function or the distribution of T a are known initially,

we learn about them by making observations.

We consider two model variants, which differ only in the distribution of T a, namely

Dependent Model 1 (DM1) and Dependent Model 2 (DM2). Furthermore, these models

only differ from those in Section 3.3.1 in the distributions of the pa’s. We describe the

models focusing on a single arm only, and therefore drop the superscript denoting the

arm in question.

Dependent Model 1

Same as in IM1, the evaluation times under DM1 are given by the sum of a known,

deterministic minimum and random excess evaluation time so that T = tmin + T̃ . The

distribution of T̃ is that of a Gamma-Exponential, given by (3.3.6) and (3.3.7), and the

Bayesian updating of the parameters are shown in (3.3.8) and (3.3.9). As stated before,
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the relevance of a tip p depends on it evaluation time via the logistic link function,

X ∼ Bernoulli
(
p(t̃)

)
, (3.4.1)

p(t̃) =
1

1 + exp
(
−(B1 +B2t̃)

) , (3.4.2)

B1, B2 | x, t̃ ∼ BvNormal(m,V ). (3.4.3)

where B1 and B2 are unknown coefficients which we estimate in a Bayesian fashion.

The logistic link function was chosen as a it provides a straightforward approach to

translate measures of time to probabilities between 0 and 1. As no conjugate models

exist for such purpose, the Bayesian updating procedure is not trivial and will be dis-

cussed at the end of this section. As seen before, the state of an arm is given by its

posterior parameters, in this case by (m,V , γ, δ).

To evaluate E [p/T ], we need to integrate over B1, B2,Λ and t̃. It is found as

E
[ p
T

]
=

∫ ∞
0

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

1

t̃+ tmin

1

1 + exp
(
−
(
B1 +B2t̃

)) 1

2πσ1σ2

√
1− ρ2

exp

(
− 1

2(1− ρ2)

[
(B1 −m1)2

σ2
1

− 2ρ(B1 −m1)(B2 −mB)

σ1σ2

+
(B2 −mB)2

σ2
2

])
Λ exp(−Λt̃)

δγ

Γ(γ)
Λγ−1 exp(−δΛ) dB1dB2dΛdt̃

where m1 and m2 are the elements of the mean vector m of the Bivariate Normal pos-

terior of B1 and B2, while variances σ2
1 = V1,1, σ2

2 = V2,2 and correlation ρ = V1,2√
V1,1V2,2

are found from their covariance matrix V .

Jaakkola and Jordan (2000) provides a simplification that allows the integral over B1

and B2 to be reduced to a one dimensional integral∫ ∞
−∞

∫ ∞
−∞

1

1 + exp
(
−
(
B1 +B2t̃

)) 1

2πσ1σ2

√
1− ρ2

exp

(
− 1

2(1− ρ2)

[
(B1 −m1)2

σ2
1

− 2ρ(B1 −m1)(B2 −mB)

σ1σ2

+
(B2 −mB)2

σ2
2

])
dB1dB2

=

∫ ∞
−∞

1

1 + exp (−θ)
1√

2πσ2
eff

exp

(
−(θ − µeff)2

2σ2
eff

)
dθ,

(3.4.4)
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where µeff and σ2
eff are the effective mean and variance, given by

µeff = m1 +mB t̃,

σ2
eff = σ2

1 + 2ρσ1σ2t̃+ σ2
2 t̃

2.

Using the above simplification and taking the integral with respect to Λ, the expectation

E [p/T ]is reduced to

E
[ p
T

]
=

∫ ∞
0

∫ ∞
−∞

1

t̃+ tmin

1

1 + exp (−θ)
1√

2πσ2
eff

exp

(
−(θ − µeff)2

2σ2
eff

)
γδγ

(t̃+ δ)γ+1
dθdt̃,

(3.4.5)

which can be determined using numerical integration. The expectations found using

the simplification from Jaakkola and Jordan (2000) were compared to those found via

the full integrals and have found both to be accurate approximations.

Sampling provides an alternative way to obtain the expectation and visualise the dis-

tribution of p/T . To generate a sample:

1. Sample Λj from Gamma(γ, δ).

2. Sample t̃j from Exponential(Λj).

3. Sample B1j and B2j from BvNormal(m,V ).

4. Then pj =
1

1 + exp
(
−(B1j +B2j t̃j)

) .

5. Finally, the jth sample is given by
pj

t̃j + tmin
.

The expected value of p/T is then given by the sample mean.

Visualising the distribution of p/T with different values of m, V and tmin showed

that it is very sensitive to the values of these parameters, and that multiple modes may

be present. These findings can be seen in Figure 3.4.1.

Note that in the following investigations whenever E [p/T ] is required (3.4.5) is used,

not sampling. Sampling was only used for visualisation of the distribution of p/T .
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(a) Distribution of p/T with changes to tmin (b) Distribution of p/T with changes to V

(c) Distribution of p/T with changes to m

Figure 3.4.1: The shape of the distribution of p/T , dependent on tmin, m and V under

DM1. If not stated on the legend, the parameter values are γ = 1, δ = 2, tmin = 0.5,

m = (−2, 1) and V = 0.1I2.

Dependent Model 2

The evaluation times in DM2 are the same as in IM2 and follow a lognormal distribu-

tion so that T = exp(T̃ ) where T̃ follows a Normal distribution according to (3.3.12)

and (3.3.13), and the posterior parameters are found via (3.3.15) and (3.3.14). The

outcome of the evaluation is distributed the same way as it was in DM1, given by

(3.4.1)-(3.4.3). Under these conditions the state of an arm is given by (m,V , µ, σ2).
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We defer discussion regarding the Bayesian updating procedure to the end of the section.

The expectation E
[
p
T

]
is found as

E
[ p
T

]
=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

1

exp(t̃)

1

1 + exp
(
−
(
B1 +B2t̃

)) 1

2πσ1σ2

√
1− ρ2

exp

(
− 1

2(1− ρ2)

[
(B1 −m1)2

σ2
1

− 2ρ(B1 −m1)(B2 −mB)

σ1σ2

+
(B2 −mB)2

σ2
2

])
1√

2πσ′2
exp

(
−(t̃−Υ)2

2s2

)
1√

2πσ2
exp

(
−(Υ− µ)2

2σ2

)
dB1dB2dΥdt̃.

Taking the integral with respect to Υ and using the simplification from Jaakkola and

Jordan (2000) as seen before in (3.4.4), the formula reduces to

E
[ p
T

]
=

∫ ∞
−∞

∫ ∞
−∞

1

exp(t̃)

1

1 + exp (−θ)
1√

2πσ2
eff

exp

(
−(θ − µeff)2

2σ2
eff

)
1√

2π (σ2 + σ′2)
exp

(
− (t̃− µ)2

2 (σ2 + σ′2)

)
dθdt̃.

(3.4.6)

Again, sampling provides an alternative way to obtain the expectation E [p/T ]. To

generate a sample:

1. Sample Υj from Normal(µ, σ2).

2. Sample t̃j from Normal(Υ, s2).

3. Sample B1j and B2j from BvNormal(m,V ).

4. Then pj =
1

1 + exp
(
−(B1j +B2j t̃j)

) .

5. Finally, the jth sample is given by
pj

exp(t̃j)
.

The expected value of p/T is given by the sample mean.

Similarly to DM1, the distribution of p/T under this model was sensitive to the choice

of parameters, as seen in Figure 3.4.2.
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Figure 3.4.2: The shape of the distribution of p/T , dependent on m under DM2. If not

stated on the legend, the parameter values are µ = 0, σ2 = 0.1, s2 = 0.1 and V = 0.1I2.

Bayesian Learning of the Logistic Coefficients

Since p is a function of either the excess or log-evaluation time T̃ via the logistic link

function, the parameters of the logistic regression B1 and B2 need to be estimated. As

we set out to do so in a Bayesian fashion, a joint Bivariate Normal prior with mean

vector m(0) and covariance matrix V (0) is placed on B1 and B2. While these are not

conjugate priors, no options for such are available, but there are multiple methods that

use a normal approximation. For completeness of discussion we repeat the summary of

the Bayesian learning problem;

X ∼ Bernoulli(p(t̃)),

p(t̃) =
1

1 + exp(−(B1 +B2t̃))
,

B1, B2 ∼ BvNormal(m(0),V (0)),

B1, B2 | x, t̃ ∼ BvNormal(m(n),V (n)).

The methods considered for updating the parameters are an approximation based on

the Laplace method, described in Spiegelhalter and Lauritzen (1990), which will be

referred to as the SL approximation, and the variational Bayesian approach discussed

in Jaakkola and Jordan (2000).
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We denote the logistic function by s(y) so that

s(y) = logistic(y) =
1

1 + exp(−y)
.

Under the S-L approximation, the updates for the mean vector and covariance matrix

resulting from absorbing observation i are as follows.

V −1
(j) = V −1

(j−1) + s
(
m(j−1)

T T (j)

) [
1− s

(
m(j−1)

T T (j)

)]
T (j) T (j)

T , (3.4.7)

m(j) = m(j−1) +
(
x(j) − s

(
m(j−1)

T T (j)

))
V (j)T , (3.4.8)

where T (j) =
(
1, t̃ (j)

)T
, and where x(j) and t̃ (j) represent the jth paired observation of

X and T̃ .

Even though (3.4.7) and (3.4.8) fully define the updates, (3.4.7) can be rewritten using

the Sherman-Morrison formula (Sherman and Morrison, 1950) to avoid having to take

the inverse of the covariance matrix as part of the updating procedure. Then V is

found via

V (j) = V (j−1) −
s
(
m(j−1)

T T (j)

) [
1− s

(
m(j−1)

T T (j)

)] (
V (j−1)T (j)

) (
T (j)

T V (j−1)

)
1 + s

(
m(j−1)

T T (j)

) [
1− s

(
m(j−1)

T T (j)

)]
T (j)

T V (j−1)T (j)

.

(3.4.9)

The updates of the SL approximation are straightforward, using only the data and

the prior parameters. On the other hand, the variational Bayesian method includes a

new, variational parameter, resulting in a more complex but at the same time flexible

approach.

The logistic function has a quadratic variational lower bound given by

s(y) ≥ s(ξ) exp

(
y − ξ

2
− η(ξ)(y2 − ξ2)

)
,

where

η(ξ) =
1

2ξ

(
1

2
− s(ξ)

)
,
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and ξ is the variational parameter. Then the parameters of the Bivariate Normal prior

can be updated according to

V −1
(j) = V −1

(j−1) + 2η(ξ)T (j) T (j)
T ,

m(j) = V (j)

[
V −1

(j−1)m(j−1) +

(
x(j) −

1

2

)
T (j)

]
.

Analogously to (3.4.9), we can use the Sherman-Morrison formula to find

V (j) = V (j−1) −
2η(ξ) V (j−1) T (j) T (j)

T V (j−1)

1 + 2η(ξ) T (j)
T V (j−1) T (j)

,

and compute both V −1
(j) and V (j) in parallel. In addition, it is useful to consider

updating ln | V (j) | instead of calculating it for every iteration

ln | V (j) | = ln | V (j−1) | − ln
(
1 + 2η(ξ) T (j)

T V (j−1) T (j)

)
,

as this quantity is needed to evaluate the log of the variational lower bound L(ξ), found

in Drugowitsch (2013)

L(ξ) =
1

2
m(j)

T V −1
(j) m (j) +

1

2
ln | V (j) |+ ln(s(ξ))− ξ

2
+ η(ξ)ξ2,

that we aim to maximise.

The variational parameter ξ also requires estimation. It can be found using expec-

tation maximisation of the variational bound, resulting in a closed form update

ξ2 = T (j)
T V (j)T (j) +

(
T (j)

Tm(j)

)2
.

Every time a new observation is made, the variational parameter is set to zero so

that ξ(j)0 = 0 with η = 1/8, and the initial updates of V (j) , V
−1

(j) , ln | V (j) | and

m (j) are found based on those values. We then iterate between calculating ξ based

on the current values of V (j) (ξ), V −1
(j) (ξ), ln | V (j) (ξ)| and m (j) (ξ), and using its

newly obtained value to re-calculate V (j) (ξ), V −1
(j) (ξ), ln | V (j) (ξ)| and m (j) (ξ).

The next iteration of the procedure will then use these values to obtain an updated

value for ξ. We continue this procedure until the variational bound plateaus, so that

L(ξnew) − L(ξold) < 10−5L(ξnew), at which point we arrive at the final variational
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Bayesian estimate of m and V , and can move onto the next observation when it

becomes available.

The priors suggested in Drugowitsch (2013) are

m(0) =

0

0

 , V (0) =

1/2 0

0 1/2

 .

Table 3.4.1 shows the computational effort required to obtain the posterior values of m

and V , and the expectation E [pa/T a]. As we can see, computing the required expected

Expectation Updating

SL VB SL VB

M1D 22.45 ms 4.33 ms 6.97 µs 115.04 µs

M2D 38.78 ms 4.52 ms 7.41 µs 139.25 µs

Table 3.4.1: Computation time of the expectation E [pa/T a] and that of the updating

procedure used for m and V with SL and VB.

values is quite costly, which is due to the necessity of multidimensional integration.

A further, even more significant downside of both of the methods described is that

to achieve estimates close to the true parameters, a large number of observations are

required. As we have not addressed this weakness further, we see the effect it has on

the performance of the policies in Section 3.4.4, where it is discussed further.

3.4.2 Policies

In this section the applicability of the five policies proposed for the independent models

to the dependent models is considered.
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Myopic Policy

The first policy that was considered is a simple heuristic that always chooses the arm

with the highest expected reward. At every decision time arm a∗ is continued, where

a∗ := arg max
a

E
[
pa

T a

]
. (3.4.10)

This is the same myopic policy of pure exploitation that was applied to the independent

models, and could be applied without change to the dependent models.

Bather Index

The Bather Index, also known as the Randomised Allocation Index, is similarly straight-

forward to apply in the dependent case. The arm continued at the current decision time

is given by

a∗ := arg max
a

E
[
pa

T a

]
+ b1b

na

2 Y, (3.4.11)

where Y is an Exponential(1) random variable, b1 ≥ 0 is a scaling term and 0 ≤ b2 ≤ 1

governs how fast the random term decreases with with the number of observations na.

The parameters b1 and b2 determine the balance between exploration and exploita-

tion. The scale parameter b1 sets the upper limit of the initial random perturbation,

and the larger b2 is, the the faster the perturbation term tends to 0. The best val-

ues can be determined using a grid-search over a reasonable range of parameters. Since

evaluating the expected reward rate in the dependent case requires more computational

effort than in the independent case, conducting a grid search to find the best param-

eter combination in the search space also requires a significantly larger computational

investment for the dependent models. To address this, we propose a method to find

good exploration parameters that makes use of the independent models in Section 3.3.

First we note that the distribution of evaluation times of IM1 are the same as those of

DM1, and similarly the evaluation times of IM2 and DM2 are identically distributed.

Next, the distribution of the time dependent success probability p(T ) is approximated
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as a time independent mixture of symmetric Beta distributions. Then good explo-

ration parameters can be found by conducting a grid search using the corresponding

independent model, but instead of sampling the success probabilities from their prior

distributions to generate observations with, they are sampled from the Beta mixture

based on the dependent model. The parameters relating to the evaluation times are

still sampled from their respective priors.

To generate a sample of p(T )s that the mixture distribution can be fitted to, Λ or

Υ alongside (B1, B2) are sampled from their priors. The number of samples this pa-

rameter combination contributes is given by the expected number of observations over

a horizon of 100. Then a single sample of p(T ) is found by sampling an evaluation

time T and using it together with B1 and B2 to calculate p(T ). The above process is

repeated 10000 times to produce a large sample. Then the parameters of the mixture

model are determined using a maximum likelihood estimate.

We refer to this method as the Bather Index with Approximate Parameters, BIAP

for short.

Expected Generalised Gittins Index

The Expected Generalised Gittins Index (EGGI) rule was developed based on the as-

sumption that the evaluation times and the probability of a positive outcome are inde-

pendent which is explicitly not the case here. Therefore, we cannot use this policy.

Knowledge Gradient

The knowledge gradient rule for multi-armed bandits assumes that while rewards are

collected till the end of the horizon, there is only one more opportunity to learn, and

after that we will cease to update our beliefs. The knowledge gradient policy then

chooses one of the arms to learn about as to maximise the expected total reward

over the horizon. The extension of the above for multi-armed bandits with random

evaluation times was initially defined with dependence between p and T assumed and
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therefore there is no need to further adapt the policy. The policy always plays arm a∗,

so that

a∗ := arg max
a

Ra
total. (3.4.12)

This total expected reward Ra
total is approximated as

Ra
total = E [pa | xa, ta] +Ra

t∈τa0
+Ra

t6∈τa0
+Ra

t∈τa1
+Ra

t6∈τa1
(3.4.13)

= E [pa | xa, ta] +

∫
t∈τa0

[H − t]+ E
[
pa

T a
| xa, ta, 0, t

]
dπ (0, t | xa, ta)

+ max
a′ 6=a

E
[
pa
′

T a′
| xa′ , ta′

] ∫
t6∈τa0

[H − t]+ dπ (0, t | xa, ta)

+

∫
t∈τa1

[H − t]+ E
[
pa

T a
| xa, ta, 1, t

]
dπ (1, t | xa, ta)

+ max
a′ 6=a

E
[
pa
′

T a′
| xa′ , ta′

] ∫
t6∈τa1

[H − t]+ dπ (1, t | xa, ta) , (3.4.14)

where τax were sets of outcomes T a = t ∈ τax that result in arm i having the highest

expected reward rate, defined as

τax =

{
t;E

[
pa

T a
| xa, ta, x, t

]
≥ max

a′ 6=a
E
[
pa
′

T a′
| xa′ , ta′

]}
. (3.4.15)

In the cases where p and T were independent, each of the sets τax could be defined by

a single threshold, as E [pa/T a | xa, ta, t, x] was decreasing in t. However, that is not

always the case with either of the two dependent models, as shown in Figure 3.4.3.

Instead of a single threshold, there can be multiple values of t where the equality

E [pa/T a | xa, ta, x, t] = max
a′ 6=a

E
[
pa
′
/T a

′ | xa′ , ta′
]

holds, which can define start or end

points of sections that make up τax .

Since there is no closed form formula for E [pa/T a | xa, ta, x, t], such values can only

be found numerically, but numerical root-finding algorithms give no guarantee of find-

ing all roots when multiple are present, and the values found will depend on the starting

point given to them. Therefore τax is incredibly challenging to find, which prohibits the

calculation of Ra
total.
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(a) M1D with m = (−5, 5) (b) M2D with m = (−2, 2)

Figure 3.4.3: E [p/T | t, x] after observing T = t and X = x. All other parameters are

assumed to be prior parameters with values as stated in Section 3.4.4.

Calibrated Knowledge Gradient Index

As the Calibrated Knowledge Gradient Index (CKGI) requires the knowledge gradient

type expected reward Ra
total, which we could not obtain, we cannot apply this policy

either.

Ideas for approximate KG and CKGI

As discussed above, exact implementation of the knowledge gradient and the calibrated

knowledge gradient policies is not feasible. However, if the dependent posteriors could

be effectively approximated by independent posteriors we may be able to apply some

version of these policies.

In the dependent models the distributions used for T are the same as for the inde-

pendent models and is no need for approximations. On the other hand the success

probability has a Beta prior and posterior in the independent models but is a function

of the evaluation time in the dependent models. To approximate pa(T a) with a Beta

distribution, we can match its expectation and variance to a Beta(α, β) distribution
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with

α = −E [pa(T a)]
Var(pa(T a)) + E [pa(T a)]2 + E [pa(T a)]

Var(pa(T a))
,

β = (E [pa(T a)]− 1)

(
Var(pa(T a)) + E [pa(T a)]2 + E [pa(T a)]

)
Var(pa(T a))

,

where E [pa(T a)] and Var(pa(T a)) are the expectation and variance of the success prob-

ability in the dependent case, found numerically.

An issue with the above approach is that to get a valid Beta distribution both α, β > 0

must be true, which means

Var(pa(T a)) < E [pa(T a)] (1− E [pa(T a)])

must be satisfied, which we cannot guarantee.

Another option would be to sample from the posterior distribution of pa(T a) and fit a

Beta distribution to that sample using maximum likelihood estimates. The drawback

of this idea is that generating the sample and fitting to it is a time consuming process

and would significantly slow the simulations.

Whichever approach is used to obtain an approximating Beta distribution for pa(T a),

it could then be used along with the distribution of T in the knowledge gradient and

calibrated knowledge gradient policies as if we were dealing with he independent mod-

els. However, the practicalities of implementing these approximations would need to

be further investigated.

3.4.3 Applying the Policies

As discussed in Section 3.4.2, only the myopic policy, the Bather index and the Bather

Index with Approximate Parameters (BIAP) can be applied to the dependent models.

To follow the myopic policy, the decision maker needs to know the expected reward
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rate E [pa/T a] of every arm at every decision time, which we calculate using (3.4.5) and

(3.4.6) for DM1 and DM2 respectively. Note that the expectation only needs to be re-

calculated for the arm that has just been observed, the expected reward rates of the arms

not observed do not change.

As mentioned previously, the Bather Index is given by the sum of the expected re-

ward rate (calculated the same way as for the myopic policy) and a random term which

consists of an Exponential(1) random variable modified by scale parameter b1 and decay

parameter b2. To find the combination of values for b1 and b2 which produces the high-

est reward a grid search was conducted. For DM1, an 11×11 grid with 0.1 between the

grid points was used, so that both the values of b1 and b2 fell within the interval (0, 1).

For DM2, a 21× 11 grid with 0.1 between the grid points was used, so that the values

of b1 fell within (0, 2) and b2 fell within (0, 1). The range of values the scale parameter

b1 could take was chosen with the intent to ensure the best parameter combination was

covered by the grid. The best parameter combinations can be seen in Table 3.4.2.

The BIAP finds good parameter combinations by carrying out the grid search on the

independent models with modified distributions, so that the distribution of P a closely

approximates that of pa(T a).

The distribution of pa(T a) is found via sampling. Since there is only one sample gener-

ated, for the rest of this paragraph the superscript a holds no meaning and is therefore

omitted. First, B1, B2 and either Λ or Υ (dependent on the model) were sampled from

their prior. The number of observations this parameter combination will contribute to

the sample is given by dE
[

100
T

]
e, the expected number of observations (rounded up)

over a horizon of 100. Then for every observation, T is sampled and the resulting p(T )

added to the sample. Once observations have been obtained from 10000 parameter

combinations, maximum likelihood estimates are used to fit to this sample a mixture

distribution of the form

w1Beta(α1, α1) + w2Beta(α2, α2) + w3Beta(α3, α3),
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where the w are the weights of the components, and the α are the two shape parameters

which in this case are always equal. This mixture model is used to approximate the

distribution of p(T ). The sampled distribution of p(T ) with the mixture models are

shown in Figure 3.4.4 and the parameters of the mixtures are given in Table 3.4.2.

(a) DM1 (b) DM2

Figure 3.4.4: Fitting the Beta mixture to p(T ) under DM1 and DM2.

w1 α1 w2 α2 w3 α3

DM1 0.1469 0.7510 0.8282 3.4451 0.0249 0.1641

DM2 0.0211 0.5939 0.7617 2.7266 0.2173 1.3328

Table 3.4.2: Best fitting shape parameters and their associated weights used in BIAP.

In the independent case of the intelligence problem, P follow a Beta distribution and

are independent of T . In the independent approximation of the dependent case the

prior for all P is given by a Beta(1,1), same as in the independent case, but P follow

and their realisations are sampled from the above determined mixture of Beta distri-

butions as opposed to its prior. Therefore, to generate a dataset on which the grid

search can be performed, for each simulation the P are sampled from the appropriate

Beta mixture model, and the Λ or Υ from the priors used in the dependent case. Then

the grid search for the exploration parameters of the BIAP can be performed the same

way as the grid search in independent case, the only difference being a modified dataset.
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The results of the grid search for both the Bather index based on the SL approximation

and the BIAP are given in Table 3.4.3 for DM1 and Table 3.4.4 for DM2.

A = 2 A = 5

Bather Index BIAP Bather Index BIAP

H b1 b2 b1 b2 b1 b2 b1 b2

100 0.1 0.7 0.1 0.9 0.1 0.7 0.1 0.8

200 0.2 0.6 0.1 0.9 0.1 0.9 0.2 0.8

500 0.2 0.8 0.2 0.9 0.2 0.8 0.2 0.9

1000 0.2 0.8 0.2 0.9 0.2 0.9 0.2 0.9

Table 3.4.3: Exploration parameters of the Bather Index and the BIAP for DM1

A = 2 A = 5

Bather Index BIAP Bather Index BIAP

H b1 b2 b1 b2 b1 b2 b1 b2

100 1.4 0.2 1.3 0.3 2.0 0.2 1.6 0.3

200 1.7 0.2 1.6 0.3 2.0 0.3 1.6 0.3

500 1.0 0.3 1.6 0.4 1.6 0.3 0.9 0.5

1000 1.7 0.3 0.7 0.7 2.0 0.3 0.9 0.6

Table 3.4.4: Exploration parameters of the Bather Index and the BIAP for DM2

3.4.4 Numerical Experiments

As discussed in Section 3.4.2, we are only able to apply the myopic policy and the

Bather Index rule to the dependent models. The policies were considered using both

the Spiegelhalter-Lauritzen (SL) and the variational Bayesian (VB) updates.

The priors used were m = (0, 0), V =
( 1/2 0

0 1/2

)
for both models, γa(0) = 1, δa(0) = 1
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for DM1 and µa(0) = 0, σa2
(0) = 1 for DM2, with s2 given as 0.1. We ran these simula-

tions for a range of horizons and for A = 2 and A = 5 arms. We calculated the Bayes

reward for all policies, using 10000 simulated scenarios where the parameters (Ba
1 , B

a
2),

Λa and Υa were sampled from their prior distributions.

We compared these policies using the same regret type measure as in Section 3.3.

It is given by the relative difference between the Bayes reward of the super-optimal

policy πSO and the Bayes reward of policy π, as shown in Section 3.3.4. We consider a

policy to achieve a so called super-optimum if it is set by an omniscient decision maker

that knows all outcomes and picks a single arm to observe at every decision time, iden-

tifying for every instance the arm that produces the highest realised reward over the

horizon. The Bayes reward of following the super-optimal policy is obtained the same

way as for any other policies. The ”SL” and ”VB” in the name of a policy shows which

approximate method was used to update m and V .

Figure 3.4.5: Relative regrets Rπ as defined in (3.3.40), achieved by the policies dis-

cussed in Section 3.4.2 in the numerical experiments of DM1.

With one exception, the Bather type policies (Bather index, BIAP) achieve much lower
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Figure 3.4.6: Relative regrets Rπ as defined in (3.3.40), achieved by the policies dis-

cussed in Section 3.4.2 in the numerical experiments of DM2.

regrets than the myopic policy, regardless of the method used for inference. As ex-

pected, the best results were accomplished by the Bather Index, achieving the lowest

regret consistently and independent of the number of arms of the model. The BIAP

with SL is a close second. When the SL updates are used (as opposed to the variational

Bayesian updates) the same policies produce lower regrets. Note that in the case of

DM2 A = 2 using BIAP with the SL approximation results in regrets that are very

close to those observed with the Bather Index, but the regret of BIAP with the VB

approximation increases quickly, realising a regret even higher than one of the myopic

policies at H = 1000.

Similarly to the findings in the independent case, the regrets observed were higher

for DM1 than DM2, and the regrets observed for A = 5 were higher than for A = 2.

We can also see that the separation between the myopic and the Bather type policies

is more pronounced in the case of A = 5 compared to A = 2.

An unexpected observation is that while both types of regret decreased as the hori-
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zon increased for DM1, for DM2 the regret initially decreased only to increase again at

large horizons. The effect increased horizons had on the observed regret was examined

in more detail using the myopic policy. This policy was chosen as the vehicle of the

investigation since it does not require tuning and it is the least computationally inten-

sive policy developed both for DM1 and DM2. From H = 0 to H = 2000 the horizon

was increased in increments of 10, then from H = 2000 to H = 10000 increased in

increments of 100. The results can be seen in Figure 3.4.7.

(a) DM1 (b) DM2

Figure 3.4.7: The regret measure is demonstrated to increase after increasing horizons

past a certain point. RAR is a now defunct regret measure, which has been moved to

the appendix.

These experiments focusing on the regrets replicate the results seen in the initial nu-

merical experiments for H = 100, 200, 500 and 1000. However, they also uncovered that

past the original set of horizons the regrets of DM1 increase similarly to what was seen

for DM2. This was not observed in the initial numerical experiments, since the increase

is slow and starts around H = 1000, the last horizon initially considered. In the case of

DM2 the regrets increase more rapidly and from an earlier point onward which simply

made this behaviour easier to uncover in the original experiments. This increase in

regrets is contrary to our expectations, since a larger horizon implies more observations

and therefore more accurate estimates of the reward rates. However, as described in

Section 3.4.1, in the absence of conjugate models for p(T ) approximate methods were

used to update the posterior distribution. This reduced the accuracy of the parameter
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estimates, possibly leading to misidentification of the best arm. We found that the

estimates were more inaccurate for DM2 than for DM1, which could explain the more

rapid increase in regrets observed with DM2. For more details, see Appendix A.4.

3.5 Concluding Remarks

3.5.1 Discussion of Model Assumptions

Throughout Chapter 3 some choices and modelling assumptions have been made on

which we reflect here. The most important of those is the choice of metric made in

Section 3.2. We opted to approximate the semi-Markov long-run average reward op-

timality criterion with the optimality criterion of a discrete-time multi-armed bandit

problem, for which the expected reward rate of an arm E [P/T ] was an appropriate

metric, and therefore was used throughout Chapter 3. However, we had the option of

choosing a different semi-Markov optimality criterion to use in approximation, which is

based on the ratio average reward. This would have resulted in characterising the arms

of the MAB by a different metric, E [P ]/E [T ].

The most immediate advantage we see of using the metric E [P ]/E [T ] over E [P/T ]

is the ease with which it can be calculated. While considering IM1, we had to use

numerical integration as shown in (3.3.11) to evaluate E [1/T ]. Using the other met-

ric would have required calculation of E [T ] instead, which is straightforward and can

be done analytically. Consequently, application of the knowledge gradient and CKGI

policies would have required less numerical computation. In the dependent models

E [T ] would be obtained identically to the independent models, and only E [P ] would

be needed to be evaluated with respect to the full state. While this would not reduce

the dimensions needed to numerically integrate over in either (3.4.5) or (3.4.6), it would

lead to simpler integrands.

Given the above and that it is based on a semi-Markov optimality criterion, E [P ]/E [T ]

might have been a better choice of metric. However, without re-examining the intel-
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ligence problem, we cannot say how the performance of the solution methods would

compare; if E [P/T ] or E [P ]/E [T ] would yield better results.

One of our observations is regarding the knowledge gradient and the CKGI. We must

note that the intelligence problem is defined with an infinite horizon and that in the

numerical experiments a horizon is only present due to necessity. However, as the

knowledge gradient was adapted to our problem from a finite horizon formulation, it

makes use of the residual horizon in directing which arm should be continued. The

same applies to the CKGI as it was built on our adaptation of the knowledge gradient.

Given that the myopic, EGGI policies remain ignorant of the artificially present hori-

zon, the knowledge gradient and the CKGI may have an unfair advantage in knowing

when the problem terminates, potentially inflating the rewards seen in Section 3.3.4

and Section 3.4.4. In terms of applying these policies, this poses some difficulties.

To mitigate the above, the policies can be adjusted by keeping the residual horizon

Hr in their formulation a large constant value for every decision epoch. Ryzhov et al.

(2012) adapted the knowledge gradient policy to an infinite horizon by considering a

finite horizon problem then letting the horizon tend to infinity. One may wish to in-

vestigate the applicability of such an approach to our problem, though we recognize it

may require significant effort.

3.5.2 Summary of Results

For the independent case of the intelligence problem, the myopic policy performed

poorly. However, all other approaches devised to direct source selection for the inde-

pendent case of the intelligence problem performed well, even if the specifics depended

on the model and the number of sources present. While the Bather index is highly im-

practical due to the required tuning, the EGGI, the knowledge gradient and the CKGI

can be applied directly. We must emphasise the achievements of the CKGI. Although

it struggled in the presence of high observational uncertainties, extreme values of s2

were required to produce the decline in performance. Otherwise, the CKGI consis-



CHAPTER 3. THE INTELLIGENCE PROBLEM WITH DELAYS 93

tently attained one of the lowest regrets, for some cases of IM2 coming within ≈ 1% of

the super-optimal policy. While the knowledge gradient was shown to be less resilient

to increases in the observational uncertainties, the EGGI was the least affected. Con-

sequently, in those cases the EGGI clearly outperformed both the knowledge gradient

and the CKGI.

We found that the dependence structure examined between the relevance probabili-

ties of the tips and their evaluation times severely limited what we can achieve due

to computational difficulties. Even so, the BIAP, which selected the exploration pa-

rameters for the Bather index based on our prior beliefs performed similarly to the

Bather index, for which these parameters were directly tuned. Both of these methods

clearly outperformed the myopic policy. We found that for our purposes the simpler

SL approximation outperformed the more complex variational inference method when

updating the coefficients of the logistic link function. Ultimately, due to the approxi-

mate nature of these methods both are prone to incorrectly estimating the parameter

values.



Chapter 4

The Intelligence Puzzle

4.1 Introducing the Intelligence Puzzle

4.1.1 Motivation

While the work in Chapter 3 considers intelligence collection and analysis on strate-

gic time-scales, here in Chapter 4 we approach the problem on a tactical level. The

collection and analysis process is placed in an investigative setting, where intelligence

is viewed as a tool to solve a specific question, such as plans surrounding a terrorist

attack. Be it a friendly game of Cluedo or one of Agatha Christie’s detective novels,

we all know that an investigation often requires multiple types of information to be un-

covered, such as motives, opportunity and the weapon used. Similarly, an investigation

that aims to prevent crime or other adverse events is in need of a variety of types of

information.

The intelligence puzzle is a novel problem, where the intelligence team has to con-

sider a diverse assortment of tips; while the usefulness of a tip is still binary, either

relevant or nuisance, they all have an inherent type which corresponds to different top-

ics they may provide information on, such as ”what”, ”where” or ”when”. To answer

the intelligence question at hand, the intelligence team must solve an intelligence puzzle

where each piece is a single relevant tip providing a certain type of information. Such a

94
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tip from now on will be referred to as a magic bullet as only one needs to be uncovered

for each type to complete the puzzle. However, further complicating the issue there

are multiple sources and all may provide any type of information. The intelligence

question remaining unanswered carries a risk with it; the attack may be executed in

the absence of all relevant information for interdiction, and therefore the team must

complete the intelligence puzzle urgently. We set out to model such an intelligence

puzzle as a semi-Markov decision process, and develop policies to guide source selection

to minimise completion time of the puzzle.

The checklist problem studied in Atkinson and Kress (2018) can be interpreted as

a tactical level intelligence collection with multiple types of intelligence if the mission

represents a military operation, and the tasks that must be completed beforehand rep-

resent collection of intelligence. However, Atkinson and Kress (2018) allowed tasks to

go uncompleted, in turn carrying the risk of mission failure.

Some stochastic assignment problems include features similar to those of the intelli-

gence puzzle. The models most resembling ours are found in Ross and Wu (2013) and

its follow up Ross et al. (2021). Ross and Wu (2013) considered a selection of boxes

and a stream of sequentially arriving coupons, each characterised by an independent

identically distributed binary vector determining which box the coupon can be assigned

to. Their objective was to appoint a coupon to every box in manner that minimised

the number of coupons to fill the boxes. In Ross et al. (2021) the problem was ex-

amined for unknown distributions of the binary vector. Formulations similar to Ross

and Wu (2013) started to emerge for dynamic multi-item search (Dizon-Ross and Ross,

2020) and assortment planning problems (Ross and Seshadri, 2021). Although some

of these papers also studied a problem where each of a collection of distinct types of

items must be found, there are some key differences compared to the intelligence puzzle.

While their items all originated from a single source and any single item may belong

to more than one type, in the intelligence puzzle there are multiple sources present and

an item must have one, but only one type. Furthermore, a key element of the intel-
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ligence puzzle is the evaluation of the tips which is not present in the papers mentioned.

In Section 4.1.2 the main elements of the intelligence puzzle are introduced. Section 4.2,

Section 4.3 and Section 4.4 build on these to develop the intelligence puzzle for three

different versions, as well as explore some policy options.

4.1.2 Elements of the Intelligence Puzzle

In this section we introduce the main elements of the intelligence puzzle which provide

the structure common across all versions considered here. These are the physical state

of the intelligence puzzle, and three vector quantities that characterise the quality of

the sources.

We define the physical state of the intelligence puzzle as the collection of informa-

tion types which we have and have not found a magic bullet for. For an intelligence

puzzle consisting of M types of information its physical state s ∈ {0, 1}M is given by

the vector

s =


s1

s2

...

sM

 , (4.1.1)

where the elements sm represent the state of intelligence type m. A value of sm = 0

means that a magic bullet of type m intelligence has been uncovered, while a value of

sm = 1 means that we are still looking for a magic bullet of type m intelligence. This

state only depends on which types of information have or have not been uncovered,

and therefore only changes upon discovery of a magic bullet. There are two states that

deserve special mention; state 1M is the starting state where no pieces of information

have been discovered yet, and state 0M which is the end state where all required pieces

of information have been discovered.

The stage g ∈ {1, ...,M} of the intelligence puzzle is a sub-problem of the puzzle,



CHAPTER 4. THE INTELLIGENCE PUZZLE 97

characterised by the number of pieces of information discovered. Each physical state

unambiguously belongs to a stage of the puzzle. Stage g refers to the phase between the

(g− 1)th and gth discoveries. For example, stage 1 of the intelligence puzzle is when no

magic bullets have been encountered yet, and stage M is when only one type remains

to be discovered. Note that an intelligence puzzle withM types of information hasM

stages.

The novelty of the intelligence puzzle is in introducing types to the tips, leading to

a more complex characterisation of sources, provided by three vector quantities each.

Every source a ∈ {1, ...,A}, where A is the number of sources available, produces a

series of tips. The type of the tip is a random attribute M , which follows a Categorical

distribution. The probability of encountering a tip of type M = m ∈ {1, ...,M} on

source a is given by the encounter probability denoted as qam . For a given source a the

encounter probabilities can be grouped into a parameter vector;

qa =


qa1

qa2

. . .

qaM

 , (4.1.2)

which is the parameter vector of the Categorical distribution of M . For all a and m

0 ≤ qam ≤ 1. Since each tip must belong to one of the M categories, the encounter

probabilities must also satisfy the constraint

M∑
m=1

qam = 1 ∀a ∈ {1, ...,A} . (4.1.3)

The probability that a tip of type m is a magic bullet is given by its conditional success

probability, or success probability for short, and is denoted as pam. It is conditional on

the type of information (M = m) the tip contains. When the success probabilities are
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grouped into parameter vectors they are denoted as

pa =


pa1

pa2

. . .

paM

 , (4.1.4)

For all a and m 0 ≤ pam ≤ 1 and are assumed independent of each other. Note that

there is no requirement on the pam’s to add up to 1.

It is important to reiterate that only one magic bullet per type is needed for the com-

pletion of the intelligence puzzle. If a second magic bullet was to be encountered it

makes no difference as that aspect of the problem has already been solved. In practice

this suggests that the success probabilities are state dependent and the success proba-

bility of an already discovered type is 0 on every source. The state dependent success

probability vector is then denoted as pa(s) and is calculated as

pa(s) =


pa1(s)

pa2(s)

. . .

paM(s)

 =


pa1s1

pa2s2

. . .

paMsM

 . (4.1.5)

Since a tip is either a magic bullet (success) or a nuisance (failure), each of them

is represented by a random variable Xa
m, which is a shorthand for Xa

M | M = m. It

follows a Bernoulli distribution

Xa
m ∼ Bernoulli(pam). (4.1.6)

The Xa
m of a given source and type are independent and identically distributed, while

Xa
m of different sources and types are independent but may be distributed differently.

To determine the type and relevance of a tip, resources are expended which is cap-

tured in the evaluation time of the tips. The base evaluation time of a type m tip from
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source a is then given by tam. A distinction must be made between the base evaluation

time and the evaluation time as the latter is a function of the base evaluation time and

may evolve throughout the problem as described shortly. When grouped by sources the

base evaluation times are denoted as

ta =


ta1

ta2

. . .

taM

 . (4.1.7)

Having discovered a given type m, no more of the same type will be deemed relevant. In

such cases once the type has been established, the evaluation process can be halted and

therefore will take a shorter amount of time than if we were still looking for a relevant

tip. For this reason we assert that the evaluation time is a function of the physical state

of the problem; denoted as ta(s), and we reserve ta = ta(1M) to denote the starting

value of the evaluation-time vector; its value when no information has been discovered

yet and s = 1M.

The following rule for how the evaluation times change was chosen:

tam(s) =

t
a
m if sm = 1,

tam/c if sm = 0,

(4.1.8)

where c is a known constant. Setting c = 1 means that the evaluation times do not

depend on the types discovered, and setting c = ∞ means that no time is spent on

evaluating tips of a type where a discovery has already been made.

Initially, the intelligence puzzle was envisioned with a very specific objective in mind,

which is minimising its completion time. However, this can be generalised with the

inclusion of the state dependent cost rate w(s) to aiming to minimise the completion

cost of the intelligence puzzle.

Note that while the evaluation time of any type m on any source a is known, since
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the types occur at random, the evaluation time of a tip in general is random. Conse-

quently, the intelligence puzzle is best described as a semi-Markov decision problem,

and is set out using such a framework for three variants over the next three sections.

4.2 The Basic Intelligence puzzle

In what we consider to be the most basic version of the intelligence puzzle all three

parameter vectors introduced in Section 4.1.2, pa(s), qa and ta(s) characterising the

sources are known and their base equivalents remain constant throughout the puzzle.

For the duration of any given stage all elements of the intelligence puzzle remain the

same, and only change when the puzzle enters a new stage upon discovery of a magic

bullet. These changes are a direct consequence of the change in the physical state of

the system, and the rules governing them are described in (4.1.5) and (4.1.8).

As per the discussion in Section 4.1.2, Section 4.2.1 is devoted to describing this basic

intelligence puzzle as a semi-Markov decision process, which is followed by a discussion

on policy options in Section 4.2.2. These policies are then compared in a numerical

study presented in Section 4.2.3.

4.2.1 The Intelligence Puzzle in the Framework of Semi-Markov

Decision Processes

In the following, we formulate the intelligence puzzle described in Section 4.1.2 in the

framework of semi-Markov Decision Processes. The framework requires to define the

state space, decision epochs, action set, transition probabilities between the states, the

expected cost of actions and the criterion of the decision process.

When all parameter vectors are known, the state space of the intelligence puzzle is

given by its set of physical states as shown in Section 4.1.2; Ss = {0, 1}M, which is a

finite set of size 2M.



CHAPTER 4. THE INTELLIGENCE PUZZLE 101

Decision epochs occur at random points in time; at the start of the process then strictly

upon state transitions. This is quite intuitive: if the state does not change, neither does

the prescribed action. In the context of the intelligence puzzle it corresponds to the

beginning of the puzzle and subsequently the times of discoveries of the magic bullets.

Since the number of information pieces to discover is finite, so is the number of decision

epochs present in the puzzle, given by M.

The distinction between the decision epoch and the stage of the puzzle needs to be

made clear. When the state of the intelligence puzzle is simply given by the physical

state of the puzzle, (such as when all parameters of the intelligence puzzle are known,)

stage g follows on after the (g − 1)th decision epoch and is terminated by the gth deci-

sion epoch, and the durations of the stages correspond to the sojourn times. However,

such correspondence can not be made in general as we will see in Section 4.3.2 and

Section 4.4.2.

At every decision epoch e an action a(e) is chosen by the decision maker from the

action set Sa, the set of sources which provide tips to evaluate. The action set is state

independent and remains unchanged throughout the progression of the intelligence puz-

zle. It is given as Sa = {1, ...,A}. Note that according to the natural process of the

intelligence puzzle an action may be applied multiple times until a relevant tip is found,

but the action must remain the same until the next decision epoch. The action a and

the state s in which that action was taken together determine both the probability

distribution of the subsequent state and the distribution of time elapsed between the

action and the resulting transition.

To compute the probability distribution of the subsequent state we have to consider

the underlying natural process of the intelligence puzzle. First, let us denote by

P(sm+ | s, a) the probability that the process transitions to state sm+ by discover-

ing a magic bullet of type m, given that in state s action a was taken. Remember,

the same source may be sampled repeatedly, since observing a failure leaves the state
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unchanged, giving no reason to deviate from the previous action. Consequently, let

P(sm+ , k | s, a) denote the probability that the magic bullet of type m is discovered in

the kth sample. Then

P(sm+ | s, a) = P(sm+ , k = 1 | s, a) + P(sm+ , k > 1 | s, a). (4.2.1)

Any tip sampled from source a is type m with probability qam, and given that it is type

m, the probability of it being a magic bullet is pam(s). Therefore the probability that

in any sequence of tips sampled from source a the first one leads to a magic bullet

is independent of the length of the sequence and is given by P(sm+ , k = 1 | s, a) =

qampm(s). For the type m magic bullet to be discovered later in the sequence (k ≥ 2)

two independent events must occur: no magic bullet to be discovered from the first tip,

and that the process eventually transitions to state sm+ by discovering a magic bullet of

type m. The probability of the first event is
∑

m′ qm′(1−pam′(s)) =
∑

m′(1−qm′pam′(s)).

Since no transition has occurred, both the state and the action in space has remained

the same, and therefore the probability of the second event is P(sm+ | s, a), the quantity

we are looking for. Then

P(sm+ | s, a) = qampm(s) +
∑
m′

(1− qm′pam′(s))P(sm+ | s, a),

which we can rearrange to find

P(sm+ | s, a) =
qampm(s)∑
m′ qm′p

a
m′(s)

. (4.2.2)

This quantity may also be referred to as the transition probability from state s to state

sm+ under action a. Observe that all non-zero probability transitions have a clear di-

rectionality, they bring the intelligence puzzle closer to its end state. Consequently,

transition probabilities from state s = 0M are 0, and the puzzle never leaves the end

state once it has been reached.

In the intelligence puzzle there is no lump-sum cost associated with the actions taken,

but a continuous cost is incurred for the process staying in state s at rate w(s). Other

than the requirement that it stays constant while s is occupied, there are little restric-

tions on the cost rate. A notable exception is w(0M), the reward rate of the end stage.
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Once the end state is reached, the intelligence puzzle terminates, and no cost should

be further accrued. For that reason we assert that w(0M) = 0 for any version of the

intelligence puzzle.

This cost rate is used alongside the expected sojourn times to compute the expected

cost of choosing action a in state s. Let us denote by T a(s) the sojourn time that fol-

lows taking action a in state s. Then the cost of taking action a is simply w(s)T a(s),

and the expected cost w(s)E [T a(s)]. To find the expected sojourn time we again refer

back to the natural process of the intelligence puzzle. To discover a magic bullet of any

type and induce a transition, at least one tip must be evaluated. Conditional on this

tip being type m the evaluation takes tam, and therefore its expected evaluation time

is
∑M

m=1 q
a
mt

a
m(s). The probability that the first tip did not provide a magic bullet is

1 −
∑M

m=1 q
a
mp

a
m(s). If that occurs, further tips must be evaluated and time invested.

Since the outcome of the tips is independent of how many have been evaluated previ-

ously, the expected time until a magic bullet is discovered after the first one failed to

do so is still the expected sojourn time. Therefore we have

E [T a(s)] =
M∑
m=1

qamt
a
m(s) +

(
1−

M∑
m=1

qamp
a
m(s)

)
E [T a(s)] ,

which we rearrange to get

E [T a(s)] =

∑M
m=1 q

a
mt

a
m(s)∑M

m=1 q
a
mp

a
m(s)

. (4.2.3)

Therefore the expected one-period cost of action a in state s, which we denote as r(s, a)

is

r(s, a) = w(s)E [T a(s)] = w(s)

∑M
m=1 q

a
mt

a
m(s)∑M

m=1 q
a
mp

a
m(s)

. (4.2.4)

This quantity may also be referred to as the cost function of action a in state s.

Note that the expected time spent in state s = 0M is a special case. As it is the

end state the process never moves on from 0M. However, since the cost rate for 0M

has been set to 0 a process staying in its end state will not accumulate costs either.
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A policy π for a decision process is defined as any rule that selects the action to be

applied as a function of the entire history of the decision process. For the intelligence

puzzle we restrict our attention to deterministic stationary Markov policies, which con-

tain no randomisation, explicit time dependence, and is only a function of the state.

Then a policy directly prescribes the action based on the state of the decision process;

π(s) = a.

Next we define the objective function of the decision process. The original aim of the

intelligence puzzle to minimise the time taken to discover a magic bullet for all required

types of information corresponds to a cost rate of w(s) = 1 for all states s 6= 0M. How-

ever, to keep the formulation more general we define the objective function to minimise

the undiscounted cumulative cost

Obj: min
π

M−1∑
e=0

E [r (se, π(se))] , (4.2.5)

where se is the state at decision epoch e and π(se) the action prescribed by policy π.

4.2.2 Policies

In this section we discuss the policies the decision maker may use to determine which

action to take, i.e., which source to sample tips from. We consider the optimal policy

which is obtained via dynamic programming, and a myopic policy. The circumstances

required for optimality of the myopic policy are considered, and some sufficient condi-

tions given. Other policy options such as look-ahead policies, policies based on aggre-

gating the states of the intelligence puzzle and considering the sources separately are

also briefly examined. All policies considered in detail are to be applied as described

in the flowchart in Figure 4.2.1.

Optimal Policy via Dynamic Programming

Dynamic programming can be used to find the policy that optimally solves the decision

process. While the intelligence puzzle is an infinite horizon problem, a clear end state

exits and the number of decision epochs is finite and known. This structure lends itself
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Figure 4.2.1: The process of applying policy π(s) to the basic intelligence puzzle. The

updating process of physical state s has been described in detail in Section 4.1.2, and

π(s) may be any policy from Section 4.2.2.

to a solution approach based on backward recursion.

To construct the Bellman equation for backward recursion, for every available action

in every state we need the one-period transition probabilities between the states and

the expected cost of the action. As part of defining the semi-Markov decision process

in Section 4.2.1, we have derived the transition probability P(sm+ | s, a) and is shown

in (4.2.2). In that same section the expected cost r(s, a) of taking action a in state s

has been established and is given by (4.2.4).
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The last component of the backward recursion is the value function Va(s) which pro-

vides the total expected cost of taking action a in state s, given that after the resulting

transition the optimal policy is followed. The value of a state V(s) is the lowest value

of Va(s), formally defined as

V(s) = min
a∈A
{Va(s)} ,

and the minimising action the optimal action to take in that state. By calculating the

value V(s) of all states starting from the end of the problem where s = 0M and working

sequentially backward to the first stage where s = 1M we identify the optimal reward

V(1) for the initial state, which is the minimised expected cumulative cost from (4.2.5).

The recursion sequence of choices that lead to it is the optimal policy.

Once the end state is reached, the cost rate drops to w(0M) = 0, and therefore the

expected cost of any action taken in 0M is 0. As stated before, the process cannot

transition out of the end state, and therefore its value function is given as

V(0M) = 0 (4.2.6)

In any other state s the value of action a is obtained as the sum of the expected

immediate cost of the action, r(s, a) and the expected future cost due to the result-

ing transition,
∑M

m=1 P (sm+ | s, a)V (sm+). Therefore the value of every state can be

obtained via the following recursion

V(s) = min
a∈A

{
r(s, a) +

M∑
m=1

P (sm+ | s, a)V (sm+)

}

= min
a∈A

{
w (s)

∑M
m=1 q

a
mt

a
m(s)∑M

m=1 q
a
mp

a
m(s)

+

∑M
m=1 q

a
mp

a
m(s)V (sm+)∑M

m=1 q
a
mp

a
m(s)

}
. (4.2.7)

The last line of (4.2.7) was obtained by substituting (4.2.2) and (4.2.4). Then the

optimal policy in every state s is to take action a∗ so that

a∗ = πOPT(s) := arg min
a
{Va(s)} . (4.2.8)
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While the optimal policy of the basic intelligence puzzle has been found, it can be

impractical to use as it requires computing the value function for A2M state and action

combinations. Since its complexity grows exponentially withM, obtaining the optimal

policy for large puzzles is expected to be computationally challenging.

Myopic Policy

The myopic policy chooses the action with the smallest expected one-period cost r(s, a),

given by (4.2.4). It chooses the source that is expected to obtain the next magic bullet

the cheapest, with no regards to the states the puzzle may transition to afterwards.

Note that the cost rate w(s) is independent of the source chosen, and therefore the

cheapest option is equivalent to the quickest one and so the value of the cost rate does

not affect the decision making.

arg min
a∈A

{r(s, a)} = arg min
a∈A

{
w(s)

∑M
m=1 q

a
mt

a
m(s)∑M

m=1 q
a
mp

a
m(s)

}
= arg min

a∈A

{∑M
m=1 q

a
mt

a
m(s)∑M

m=1 q
a
mp

a
m(s)

}

Consequently, the myopic policy not only aims to minimise the cost incurred in the

current stage, but also the time spent in it. Then the myopic policy in every state is

to take action a∗ so that

a∗ = πMYO(s) := arg min
a∈A

{∑M
m=1 q

a
mt

a
m(s)∑M

m=1 q
a
mp

a
m(s)

}
. (4.2.9)

It is expected to be considerably faster than the optimal policy as it can be implemented

in an online fashion so that actions need to be only evaluated for theM states that are

visited throughout the puzzle.

Cases in which the myopic policy is optimal

In general, the myopic policy is not optimal as it ignores the path taken through the

state space to complete the intelligence puzzle. However, there are some special cases

where it is on par with the optimal policy.
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By rearranging (4.2.7),

Va(s) = w(s)

∑M
m=1 q

a
mt

a
m(s)∑M

m=1 q
a
mp

a
m(s)

+
M∑
m=1

qamp
a
m(s)∑M

m′=1 q
a
m′p

a
m′(s)

V(sm+) (4.2.10)

=
w(s)

∑M
m=1 q

a
mt

a
m(s) +

∑M
m=1 q

a
mp

a
m(s)V(sm+)∑M

m=1 q
a
mp

a
m(s)

(4.2.11)

=
w(s)

∑M
m=1 q

a
mt

a
m(s)∑M

m=1 q
a
mp

a
m(s)

(
1 +

∑M
m=1 q

a
mp

a
m(s)V(sm+)

w(s)
∑M

m=1 q
a
mt

a
m(s)

)
(4.2.12)

= r(s, a)

(
1 +

∑M
m=1 q

a
mp

a
m(s)V(sm+)

w(s)
∑M

m=1 q
a
mt

a
m(s)

)
, (4.2.13)

the immediate cost function, which the myopic policy is based on can be factored out

of Va(s). If the multiplier of r(s, a) equals 1, r(s, a) = Va(s) therefore the myopic and

the optimal policy are identical. This only occurs in the last stage of the intelligence

puzzle where V(sm+) = 0.

However, r(s, a) and Va(s) need not equal for the two policies to be the same, only

that

arg min
a∈A

{r(s, a)} = arg min
a∈A

{Va(s)} , (4.2.14)

arg min
a∈A

{∑M
m=1 q

a
mt

a
m(s)∑M

m=1 q
a
mp

a
m(s)

}
= arg min

a∈A

{
r(s, a)

(
1 +

∑M
m=1 q

a
mp

a
m(s)V(sm+)

w(s)
∑M

m=1 q
a
mt

a
m(s)

)}
.

(4.2.15)

Note that (4.2.15) is a very strong condition, which in general would not be satis-

fied. However, it is possible to identify some cases in which the condition holds. Since

(4.2.15) is a complicated condition, we restrict our attention to the smallest instance

of the intelligence puzzle, whereM = 2 and A = 2; there are two types of information

and two sources that can supply them. To further simplify the problem we set the

reward rate for all states w(s) = 1.
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This is a 2 stage problem with 4 available states,

s0 =

0

0

 , s1 =

0

1

 , s2 =

1

0

 , s3 =

1

1

 ,
and the sources are characterised by

qa =

qa1
qa2

 =

 qa1

1− qa1

 =

 qa

1− qa

 , pa =

pa1
pa2

 , ta =

ta1
ta2

 .
The state s0 is the end state of the puzzle and is not otherwise encountered. Stage 2

is the last stage of the problem and the puzzle is either in state s1 or s2. From either

of those states the only valid transition is to s0. For compactness sake we discuss the

conditions for optimality in terms of P (sm+ | s, a) , E [T a (s)] and V(s) as given in

(4.2.2), (4.2.3) and (4.2.7) respectively. Then the value functions of states s1 and s2

are

Va(s1) = E [T a (s1)] +
M∑
m

P (sm+ | s1, a)V (sm+)

= E [T a (s1)] + P (s0 | s1, a)V (s0)

= E [Ta (s1)] , (4.2.16)

Va(s2) = E [T a (s2)] +
M∑
m

P (sm+ | s2, a)V (sm+)

= E [T a (s2)] + P (s0 | s2, a)V (s0)

= E [T a (s2)] . (4.2.17)

Consequently, for the states available in stage 2 we have

arg min
a∈SA

Va(s1) = arg min
a∈SA

E [T a(s1)] , (4.2.18)

arg min
a∈SA

Va(s2) = arg min
a∈SA

E [T a(s2)] (4.2.19)

meaning that the myopic policy is optimal in states s1 and s2 regardless of the values

of qa,pa, and ta, as predicted based on (4.2.13).

In stage 1 no magic bullets have been discovered yet, and the puzzle is guaranteed
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to be is state s3. From there it may transition either to s1 or s2. The value function of

state s3 is then

Va(s3) = E [T a (s3)] +
M∑
m

P (sm+ | s3, a)V (sm+)

= E [T a (s3)] + P (s1 | s3, a)V (s1) + P (s2 | s3, a)V (s2) (4.2.20)

= E [T a (s3)] + P (s1 | s3, a)V (s1) + (1− P (s1 | s3, a))V (s2) . (4.2.21)

For the myopic policy to pick the same source as the optimal policy in state s3

arg min
a

Va(s3) = arg min
a

E [T a(s3)] (4.2.22)

needs to be satisfied, which means either (4.2.23) and (4.2.24)

V1(s3) ≤ V2(s3) (4.2.23)

E
[
T 1 (s3)

]
< E

[
T 2 (s3)

]
(4.2.24)

or (4.2.25) and (4.2.26)

V1(s3) ≥ V2(s3) (4.2.25)

E
[
T 1 (s3)

]
> E

[
T 2 (s3)

]
(4.2.26)

need to be simultaneously true. From that we can derive the necessary condition for

the optimality of the myopic policy to be

1 ≥ ∆P (s1 | s3)
min
a

E [T a(s1)]−min
a

E [T a(s2)]

E [T 2 (s3)]− E [T 1 (s3)]
(4.2.27)

where

∆P (s1 | s3) = P (s1 | s3, a = 1)− P (s1 | s3, a = 2) . (4.2.28)

The case E [T 1 (s3)] = E [T 2 (s3)] is considered separately along with the derivation of

the above condition in Appendix B.1.1. It is clear from (4.2.27) that strict conditions

are required even in the M = 2,A = 2 case for the myopic policy to be identical to

the optimal policy. By restricting the values of the relevant parameters, two cases have

been identified where these conditions are met. The common restrictions are as follows.

t11 = t12 = t21 = t22 = 1 identical unit evaluation times,

ta(s) = ta state independent evaluation times.
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In the first restricted case the success probabilities only depend on the type of infor-

mation, not on the source

p1
1 = p2

1 = p1, p1
2 = p2

2 = p2.

From this, two sub-cases emerge for which the myopic policy is optimal

(1− q1)

q1

(1− q2)

q2
<
p1

p2

where
p1

p2

< 1, (4.2.29)

(1− q1)

q1

(1− q2)

q2
>
p1

p2

where
p1

p2

> 1. (4.2.30)

In the second restricted case the success probabilities only depend on the source and

not on the type of information so that

p1
1 = p1

2 = p1, p2
1 = p2

2 = p2.

Then 2 sub-cases can be identified based on the relationship of p1 and p2. The condition

for p1 > p2 is

1

2

(
1−

√
1− 4

p1

p2
q1 (1− q1)

)
≤ q2 ≤ 1

2

(
1 +

√
1− 4

p1

p2
q1 (1− q1)

)
, (4.2.31)

and for p1 < p2 the condition is

q2 ≤ 1

2

(
1−

√
1− 4

p1

p2
q1 (1− q1)

)
or

1

2

(
1 +

√
1− 4

p1

p2
q1 (1− q1)

)
≤ q2.

(4.2.32)

The derivation of these conditions can be found in Appendices B.1.2 and B.1.3.

Look-ahead Policies

A compromise between the reduced computational complexity of the myopic policy and

the performance of the optimal policy can be made by considering a k-step look-ahead

policy. Instead of only looking at the costs acquired by selecting source a in the current

stage of the problem, a k-step look-ahead policy considers the cost of selecting source

a in the current stage and the costs that are acquired over the next k stages of the

problem. Most commonly costs acquired after the kth step are ignored, which makes
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the myopic policy equivalent to a 0-step look-ahead policy and the optimal policy to an

(M− 1)-step look-ahead policy, and for 0 < k <M− 1 the k-step look-ahead policy

a compromise between the two.

While one may define a look-ahead policy in which the costs after the kth step are

considered in an approximate manner, here we focus on the 1-step look-ahead policy

as defined above. At every stage of the puzzle source a∗ is selected so that

a∗ = πLA(s) =: arg min
a

{
w(s)E [T a (s)] +

M∑
m=1

P (sm+ | s, a)w(sm+) min
a′

E
[
T a′E (sm+)

]}
.

(4.2.33)

Note that E [T a (s0)] = 0. While it is not expected to be optimal apart from theM = 2

case, it requires significantly fewer calculations than finding the optimal policy via a

dynamic program as it only needs to consider the states that can be reached from the

current state.

Ordered Discoveries

Let us consider a variant of the intelligence puzzle, where the order in which the magic

bullets must be discovered is given. In such a case even if a magic bullet is encountered,

if it is not the specific type of magic bullet that we are looking for it will not contribute

to solving the intelligence puzzle and is discarded. Let us refer to such a magic bullet

as out of order. A model like this might be appropriate when one magic bullet pro-

vides context for another one, without which the information cannot be interpreted and

therefore the magic bullet could not be discovered.

Let us denote the stages of the puzzle by g = {1, ...,M}, and the required order of

discovery as O. Then the type that needs to be discovered during stage g, denoted as

m∗ is found as

m∗ = O(g). (4.2.34)

Observation 4.2.1. With the order of discoveries fixed, the physical state space of

the intelligence puzzle is only a subset of Ss, uniquely determined by O and denoted
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as SO. This SO contains only one state per stage which we denote as s(O, g) and

s(O, g + 1) ≡ sm∗+.

Since in stage g only the discovery of a type m∗ magic bullet results in state transition,

the expected sojourn time is dependent on m∗ and simply equals the expected time till

discovery of m∗, modified from (4.2.3) as

E [T a(s,m∗)] =

∑M
m=1 q

a
mt

a
m(s)

qam∗p
a
m∗

, (4.2.35)

since the expected evaluation time of any given tip includes time spent on evaluating

out of order (m 6= m∗) tips but only a tip of type m∗ may provide a magic bullet and

trigger a transition.

Proposition 4.2.2. When the magic bullets need to be discovered according to a fixed

order, a policy that at each stage selects the source a∗ given by

a∗ := arg min
a

E [T a(s,m∗)] (4.2.36)

is optimal.

Proof. The optimal policy is found via dynamic programming. Since the order of

discovery is fixed and therefore Observation 4.2.1 holds, the state transitions are in-

dependent of the source a chosen and deterministic with a transition probability of

P(sm∗+ | s, a) = P(s(O, g + 1) | s(O, g), a) = 1. Then the Bellman equation for

backwards recursion takes the form

VO(0M) = 0,

VO(s) = min
a
{r (s, a) + P(sm∗+ | s, a)VO(sm∗+)}

= min
a
{w(s)E [T a(s,m∗)] + VO(sm∗+)}

= min
a
{w(s)E [T a(s,m∗)]}+ VO(sm∗+).

The optimal policy is to take the minimising action a∗,

a∗ := arg min
a
{w(s)E [T a(s,m∗)]} = arg min

a
{E [T a(s,m∗)]} ,

since neither w(s) or VO(sm∗+) depends on a.
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Next suppose that while there needs to be a predetermined order of discovery, the deci-

sion maker is allowed to set that order at the start of the puzzle. Since the objective of

the intelligence puzzle is to minimise the cost of completion, the best order of discovery

is the one that achieves the lowest expected cost. The best order can be found via

backwards recursion, but we have to re-define the available actions and the associated

costs.

At every decision epoch instead of choosing a source the decision maker must choose

which type of information m∗ ∈ Sm(s) is best to discover next, where Sm(s) is the state

dependent action space which is the the set of types not yet discovered. The cost of

each action m is given by

r (s,m) = min
a

E [T a(s,m)] , (4.2.37)

since Proposition 4.2.2 states that if only type m may produce a magic bullet it is opti-

mal to choose the source a that minimises E [T a(s,m)]. Note that action m guarantees

transition from state s to sm+ and so we only need to consider the value of state sm+ ,

V(sm+).

Then the Bellman equation is given as

V (0M) = 0 (4.2.38)

V (s) = min
m
{r (s,m) + V (sm+)} (4.2.39)

= min
m

{
min
a

w(s)E [T a(s,m)] + V (sm+)
}

(4.2.40)

= min
m

{
min
a

w(s)

∑M
m′=1 q

a
m′t

a
m′(s)

qamp
a
m

+ V (sm+)

}
, (4.2.41)

and the sequence of minimising m∗’s that achieves V(1M), the value of the starting

state, is the optimal order O∗ to discover the magic bullets in.

In Section 4.1.2 the dependence of the evaluation times on the state of the puzzle

is described; the evaluation time of tips belonging to already discovered types may
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be reduced. Along similar lines we can motivate a model where the evaluation times

depend on the type of information that needs to be obtained to complete the current

stage. The reduced evaluation times correspond to only needing to evaluate which m

does a tip belong to, and once they are evaluated to be not the correct type there is

no need for further evaluation and no more resources are spent on them. Then the

evaluation times are no longer dependent on s but on the information type m∗ of the

stage, and are given as

tam(m∗) =

tm for m = m∗

t(tam, ...) otherwise

where t(tam, ...) is any function of tam and potentially other factors, for example the

function t(tam, c) = tam/c seen in Section 4.1.2. Note that in this scenario out of order

and already discovered types are treated the same. As a consequence, the expected

time to discover a relevant tip of prescribed type m∗ on any source a does not depend

on the state of the puzzle, only on m∗;

E [T a(s,m∗)] = E [T a(m∗)] (4.2.42)

=

∑M
m=1 q

a
mt

a
m(m∗)

qam∗p
a
m∗

(4.2.43)

=
qam∗t

a
m∗ +

∑
m 6=m∗ q

a
mt(t

a
m, ...)

qam∗p
a
m∗

. (4.2.44)

Since under such circumstances the time to discovery of type m∗ is independent of the

state of the problem: if all w(s) = w are equal, the order in which the different types

of magic bullets are discovered do not matter. We formalise this in Proposition 4.2.3

and Proposition 4.2.4.

Proposition 4.2.3. When the following applies to magic bullets:

(i) they must be discovered in a predetermined order,

(ii) the evaluation time of an out of order tip of a given type is the same as after

discovering a magic bullet of said type,
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(iii) w(s) = w,

the expected time to completion of the optimal policy equals
∑M

g=1 min
a
{wE [T a(O(g))]}.

Proof. Let us assume that the order of discovery is given by O. Since in the fixed order

regime the state s is uniquely determined by the order and the stage s = s(O, g), for

clarity we may change the notation and rewrite the Bellman equation using V(s) =

V(O, g) and the expanded form s(O, g).

V(O,M+ 1) = 0, (4.2.45)

V(O, g) = min
m∈Sm(O,g)

{
min
a
{w(s(O, g))E [T a(s(O, g),m)]}+ V (O, g + 1)

}
.

(4.2.46)

Then using (4.2.42) and the assumption that w(s(O, g)) = w (4.2.46) can be rewritten

as

V(O, g) = min
m∈Sm(O,g)

{
min
a
{wE [T a(m)]}+ V (O, g + 1)

}
(4.2.47)

and the value function of the starting state V(O, 1) can be calculated recursively

V(O,M) = min
m∈Sm(O,g)

{
min
a
{wE [T a(m)]}+ V (O,M+ 1)

}
= min

a
{wE [T a(O(M))]}

V(O,M− 1) = min
m∈Sm(O,g)

{
min
a
{wE [T a(m)]}+ V (O,M)

}
= min

a
{wE [T a(O(M− 1))]}+ min

a
{wE [T a(O(M))]}

=
M∑

g=M−1

min
a
{wE [T a(O(g))]} (4.2.48)

...

V(O, 1) =
M∑
g=1

min
a
{wE [T a(O(g))]} (4.2.49)

since the pre-determined order prescribes m∗ = O(g) at every stage so that Sm(O, g)

only ever has a single element.

Proposition 4.2.4. When the following applies to magic bullets:



CHAPTER 4. THE INTELLIGENCE PUZZLE 117

(i) they must be discovered in a predetermined order,

(ii) the evaluation time of an out of order tip of a given type is the same as after

discovering a magic bullet of said type,

(iii) w(s) = w,

the expected time to completion does not depend on the prescribed order of discovery

and
∑M

g=1 min
a
{wE [T a(O(g))]} =

∑M
m=1 min

a∈A
wE [T a(m)] for every order O.

Proof. Assume that the order of discovery O∗ is optimal. Let us define a modified order

O′ so that O′(l) = O∗(n) and O′(n) = O∗(l) where l, n ∈ {1, ...,M} and l < n. Then

the value of the starting state given order O′ can be found by rewriting (4.2.49)

V(O′, 1) =
M∑
g=1

min
a
{wE [T a(O′(g))]} (4.2.50)

= min
a
{wE [T a(O′(1))]}+ ...+ min

a
{wE [T a(O′(n))]}+ ...

+ min
a
{wE [T a(O′(l))]}+ ...+ min

a
{wE [T a(O′(M))]} . (4.2.51)

Since summation is commutative we can rearrange

V(O′, 1) = min
a
{wE [T a(O′(1))]}+ ...+ min

a
{wE [T a(O′(l))]}+ ...

+ min
a
{wE [T a(O′(n))]}+ ...+ min

a
{wE [T a(O′(M))]} (4.2.52)

= V(O∗, 1), (4.2.53)

therefore O′ is also an optimal order achieving the minimising expected completion

time. Since we made no assumptions on which two elements of the orders were ex-

changed, the above is also true for any other O′ 6= O∗. Consequently, the order of

discovery does not matter.

Make note that E [T a(O(g))] only depend on O and g since they determine the type m

to be discovered. As E [T a(m)] is the same irrespective of the stage it is assigned to be

discovered in, the summation can be rewritten in terms of the types to get

M∑
e=1

min
a
{wE [T a(O(g))]} =

M∑
e=1

min
a
{wE [T a(O′(g))]} =

M∑
m=1

min
a∈A

wE [T a(m)] .

(4.2.54)
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Intuitively, the orders O′ 6= O∗ are simply different permutations of the M types of

information, and the terms of V(O∗) and V(O′) can be rearranged into any order of

discovery through the commutative property of summation.

If the evaluation times of out of order types of information are treated differently to

those of already discovered types the symmetry is broken and the order in which the

types are discovered affects the expected cost of completion. However, backwards re-

cursion can still be used to find the optimal order.

Note that the above observations about optimality only hold when the specific set

of circumstances are present; in general we expect a better solution to exist without the

constraints on the parameters and the discoveries. Nevertheless, the above discussion

opens the door to developing heuristic approaches.

Order Based Heuristics

Based on the findings of ??, 4.2.3 and 4.2.4 we can define heuristic decision rules for the

version of the intelligence puzzle with no ordering present, as set out in Section 4.2.1.

We keep the idea of focusing our attention on one given type per stage, but acknowledge

that the magic bullet discovered may not be of the type we intended to discover, as not

only the type we focus on may yield magic bullets. This is in contrast to when a strict

ordering of discoveries was present.

The backwards recursion as described in (4.2.40) can be used to give an order to dis-

cover the magic bullets in. This order is only optimal when discoveries must be made

in order, but may still be a good order to aim to achieve when no order constraints are

present.

Then the order-based dynamic program (O-DP) policy can be defined as follows. First,

use (4.2.40) recursively to suggest the type m∗ we wish to discover during the next
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stage

m∗ = arg min
m∈Sm(s)

{
min
a

w(s)E [T a(s,m)] + V (sm+)
}
. (4.2.55)

This is an easier dynamic program to solve than the one in (4.2.7), as all stage transitions

are deterministic. There is no point in setting an order for the rest of the problem as

there is no guarantee it will be followed, as discoveries which in the restricted problem

would be out of order still count. The source a∗ is then chosen based on which type we

aim to discover so that in every state s

a∗ = πO-DP(s) := arg min
a∈Sa

{E [T a(s,m∗)]} = arg min
a∈Sa

{∑M
m=1 q

a
mt

a
m(s)

qam∗p
a
m∗

}
. (4.2.56)

Note that the name is somewhat misleading as it is built on the assumption of fixed

orders that is not guaranteed to be satisfied: while it is obtained via a dynamic program

the policy is still only a heuristic one.

The other heuristic is a short-sighted version of the above, motivated by Propositions

4.2.3 and 4.2.4 showing that in some cases the order of discovery does not matter. Due

to its short-sighted nature we name it the order-based myopic policy, O-MYO for short.

The conditions of Propositions 4.2.3 and 4.2.4 (except for the order constraint) are met

when there is no state dependence of the evaluation times and w(s) = w. Under such

circumstances in the ordered regime the order of discovery would not actually matter,

and if the targeted type m∗ could be announced along with the source chosen it would

be optimal to pick the source a∗ and type m∗ combination with the shortest expected

discovery time so that

a∗ = πO-MYO(s) := arg min
a

{
min
m∗∈µ

{∑M
m=1 q

a
mt

a
m(s)

qam∗p
a
m∗

}}
. (4.2.57)

Since these conditions are quite strict and are not generally met, (4.2.57) is not expected

to perform optimally. Note that for all a

min
m∗∈µ

{∑M
m=1 q

a
mt

a
m(s)

qam∗p
a
m∗

}
≥
∑M

m=1 q
a
mt

a
m(s)∑M

m=1 q
a
mp

a
m(s)

= E [T a(s)] , (4.2.58)

where the equality occurs at the last stage where only one type of magic bullet remains

to be discovered. Therefore we find that the decision rule in (4.2.57) is based on the

upper bound of E [T a(s)] as shown in (4.2.58).
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Some Discarded Policies

Some other policies were also considered but quickly discarded. They are included only

for the sake of completeness.

The first idea was to aggregate all states belonging to the same stage reducing the

state space and therefore the computational complexity of the dynamic program used

to solve the intelligence puzzle. In that case decisions are made based not on the state

of the problem, but based on the stage of the problem.

We can write the modified dynamic program as

V (M+ 1) = 0,

V (g) = min
a
{w(g)E [T a (g)] + P(g + 1 | g, a)V (g + 1)}

= min
a
{w(g)E [T a (g)]}+ V (g + 1) ,

where E [T a (g)] is the expected time spent in stage g given source a is selected,

P(g + 1 | g, a) is the transition probability from stage g to g + 1 given source a is

selected and V (g + 1) is the value function of stage g + 1. Since states are no longer

considered, w(g) is stage dependent surrogate to w(s).

However, P(g + 1 | g, a) = 1 for all g and a due to progression to the next stage

being guaranteed. As a consequence the value function of the next stage does not play

a role in selecting an source to continue. Such a policy is not only short-sighted but also

ignores the information contained in the current state without any benefit to balance

that ignorance out. Therefore a policy based only on the stage of the puzzle would be

expected to perform worse than the myopic policy in every scenario and will not be

further considered.

The next discarded idea was to consider the sources independently of the others within

the puzzle. Let us assume that once a source is selected, it will be played until all types

of magic bullets are discovered. At every stage the same source a is selected so that

the expected cost of discovering all remaining pieces of intelligence under the above
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assumptions, V (s, a), is minimised. That is

a∗ := arg min
a
{V (s, a)} .

However, to be able to calculate the expected costs, all states and the transition proba-

bilities between them need to be considered, and so it is easiest to calculate recursively

as follows.

V (s0, a) = 0,

V (s, a) = weE [T a (s)] +
M∑
m=1

P (sm+ | s, a)V (sm+ , a) .

Since all states of the puzzle must be considered to recursively calculate V (s, a), we

expect no reduction in the computational complexity compared to that of the optimal

policy in Section 4.2.2. For that reason this policy of considering the sources separately

is not taken further forward.

4.2.3 Numerical Experiments

The performance of the policies described in Section 4.2.2 is evaluated in a numerical

study based on simulations. For simplicity we set the cost rate of every non-terminal

(s 6= 0M) state to w(s) = 1 so that costs accrue at the same rate while the puzzle

remains incomplete. In this scenario the cost of completing the puzzle is the time

taken to complete the puzzle, and therefore the objective of minimising the comple-

tion cost is equivalent to minimising the completion time. In this numerical study the

parameter vectors of the simulated puzzles qa and pa are selected randomly, but all

base evaluation times were set to be tam = 1. Note that once all parameter values are

sampled, they remain the same throughout the puzzle and are made known to the de-

cision maker. The encounter probability vectors qa are sampled from a Dirichlet(1M)

distribution, while all conditional success probabilities pam are simply sampled from a

Beta(1,1)≡Uniform(0,1) distribution.

The simulations were run for A = 2 and A = 5, each with M ranging between 2
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and 10. Every such combination of A andM was examined with 3 different values of c,

the factor governing the evolution of the evaluation times. These were c = {1, 5,∞}. As

per (4.1.8) c = 1 corresponds to the evaluation times remaining unchanged throughout

the puzzle, and c =∞ means no time is spent on evaluating tips of already discovered

types.

For every combination of A, M and c we sampled 105 parameter combinations to

generate intelligence puzzles with. While we wish to make general observations on the

performance of the policies discussed, we must recognise that every parameter com-

bination creates a different intelligence puzzle and we cannot simply average over the

instances. Instead, every sampled parameter combination was simulated 10 times and

averaged over to provide the observation for that parameter combination. The fact that

this is quite a low number to average results over is recognised, but our efforts were

limited by the computational capacity of the systems available.

We compare the policies mainly in terms of the relative sub-optimality. To obtain

the mean relative sub-optimality of a policy π, the relative sub-optimality SOπ is cal-

culated for every parameter combination as

SOπ =
Cπ − CπOPT

CπOPT , (4.2.59)

which is the relative difference between the cost of completion C of the intelligence

puzzle using the optimal policy πOPT given in Section 4.2.2 and of policy π. It is then

averaged over all simulated parameter combinations to produce the mean relative sub-

optimality SOπ. To quantify the uncertainty in this measure 95% bootstrap confidence

intervals are used. Figure 4.2.2 and Figure 4.2.3 show the mean relative sub-optimality

as a function of M for A = 2 and A = 5 respectively. Acronyms are used to refer to

the policies as seen before in Section 4.2.2: MYO stands for the myopic policy, LA for

the 1-step look-ahead policy, O-DP for the order based dynamic programming policy

and O-MYO for the order based myopic policy.
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Figure 4.2.2: Mean relative sub-optimality SO for A = 2 as a function of M.

Figure 4.2.3: Mean relative sub-optimality SO for A = 5 as a function of M.

It is evident that the methods established under the assumption that there is a set

order in which the magic bullets need to be discovered perform worse than those with-

out this assumption. Since such an assumption significantly changes the dynamics of

the intelligence puzzle, it is not surprising that policies do not transfer well to the full

problem. Looking at the relative sub-optimalities of the myopic policy and the one-

step look-ahead policy the benefit of considering what might happen in the next stage

is clear. At M = 2 the one-step look-ahead policy is the same as the optimal policy,

but even for M > 2 it consistently outperforms the myopic policy, as is expected of a

method that is a compromise between the myopic and the optimal policy.
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As Table 4.2.1 and Table 4.2.2 demonstrates, the computational effort to determine

which source should be chosen is significantly higher for the optimal policy than it is

for the 1-step look-ahead or the myopic policy. The difference increases with the num-

ber of types of information present. However, it is important to note that we only need

to compute the optimal policy once for any set of parameters, and refer back to that

throughout the problem. Unless many puzzles need to be considered in quick succes-

sion or the number types increases beyond those shown here, even the optimal policy

computes in a reasonable time-frame.

M MYO LA DP

2 0.45 µs 9.36 µs 12.20 µs

5 0.46 µs 28.21 µs 335.81 µs

10 0.47 µs 122.64 µs 18.78 ms

Table 4.2.1: Computation time to determine the source to sample from in state s = 1M,

for A = 2

M MYO LA DP

2 2.67 µs 143.13 µs 222.25 µs

5 2.84 µs 251.69 µs 2.05 ms

10 2.87 µs 480.49 µs 87.79 ms

Table 4.2.2: Computation time to determine the source to sample from in state s = 1M,

for A = 5

Comparing Figure 4.2.2 and Figure 4.2.3 against each other we can see that in general

SO is larger for A = 5 than for A = 2. This is because more sub-optimal choices in the

form of more sources are available. The increase in sub-optimality as M is increased

has similar origins; the more stages there are to the problem the more choices of the

decision-maker have the chance to be sub-optimal.
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To shed a bit more light on how the completion time is split between the different

stages of the puzzle, the completion times of the individual stages are examined in de-

tail, focusing on the M = 2 and M = 5 cases. First, we compare the policies in terms

of the proportion of the total completion time spent on the different stages as shown

in Figure 4.2.4 for M = 2.

(a) A = 2

(b) A = 5

Figure 4.2.4: Proportion of completion time spent on each stage for M = 2. Since in

the M = 2 case the LA policy is identical to the DP policy it is not shown here.

At first glance the policies examined perform similarly, with their differences slightly

more distinct in the A = 5 case. While the difference is subtle, the policies that look
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ahead to future stages spend a higher proportion of the completion time on the first

stage compared to those that do not. Note that the difference in the proportion of time

spent on stage 1 and stage 2 is much larger for A = 2 than for A = 5, which is a direct

consequence of the number of sources available. In the last stage of the puzzle, all

but one type of tips will exclusively produce nuisance tips, and the decision maker will

spend a large amount of time evaluating these. When there are more sources to choose

from, it is more likely that at least one source will have a reasonably good combina-

tion of encounter and success probabilities so that this wasted time is reduced. While

having a larger selection of these randomly generated sources shortens the duration of

all stages of the puzzle, it is most difficult to find a magic bullet in the last stage and

therefore the biggest effect is on the discovery time of the final magic bullet. Shortening

the duration of the last stage leads to it taking up a smaller proportion of the com-

pletion time, automatically increasing the proportion of time taken up by earlier stages.

Figure 4.2.5 shows the proportion of time spent on the stages for the M = 5 case.

Similar observations can be made; for most combinations of M, A and c the later the

stage is, the larger the proportion of the evaluation time it takes up, and these differ-

ences are more pronounced in the A = 2 case.

The time spent on already discovered types can be used to explain another, quite

interesting feature. As c is increased, the difference between the proportion of time

taken up by the individual stages of the puzzle is seen to decrease. Since the effect of c

is to shorten the evaluation time of already discovered types of information, the larger

c is the less time is wasted on these types of tips. By spending less time on tips that

cannot yield a magic bullet the amount of time spent on discovering magic bullets at

later stages is significantly reduced, lowering the proportion of time late stages con-

tribute to the total completion time. This is taken to the extreme when c = ∞ and

no time is spent on already discovered types, resulting in almost equal time spent on

all stages. Furthermore, combined with the previously described effect having a wider

variety of sources has, in the case of A = 5 the order of proportions have flipped, with
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(a) A = 2

(b) A = 5

Figure 4.2.5: Proportion of completion time spent on each stage for M = 5.

earlier stages taking more time than later ones. This is not too surprising as all types

are encountered with the same probability throughout the stages, but while during the

first stage all of the encountered tips need evaluating and therefore time spent on, dur-

ing the last stage time is spent only on evaluating one type of tips.

The sub-optimality measure used earlier can be adapted to use on the completion

times of the stages instead of the completion time of the entire puzzle. The relative
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sub-optimality of stage g, SOπg , is calculated for every parameter combination as

SOπg =
Cπg − Cπ

∗
g

Cπ∗g
, (4.2.60)

which is the relative difference between the cost of completion of stage g, Cg, of the

intelligence puzzle using the optimal policy π∗ given in Section 4.2.2 and of policy π.

Note that as opposed to the sub-optimality measure before, the stage-wise relative sub-

optimality can take on negative values if a particular stage takes less time to complete

under policy π than under π∗. This does not discredit π∗ as the optimal policy since

it is only optimal in terms of the expected total completion time. To obtain the mean

relative sub-optimality of the stage SOπg the SOπg are averaged over all simulated pa-

rameter combinations. Figure 4.2.6 shows this stage-wise sub-optimality for M = 2,

and Figure 4.2.7 for M = 5.

These figures demonstrate that the different stages do not contribute equally to the

overall sub-optimality; short sighted policies demonstrate a high level of sub-optimality

in the last stage, while in earlier stages they have negative sub-optimality, having found

magic bullets quicker than the optimal policy. Indeed, both the myopic and the order-

based myopic policy aim to minimise the discovery time in the current stage, which the

results show they are successful at in the early stages of the problem. On the other

hand, their short-sightedness can lead them into a disadvantageous state in the last

stage which results in a large stage-wise relative sub-optimality. Since the duration

of the last stage tends to be the longest, a large stage-wise sub-optimality will have a

large impact on the overall sub-optimality. The impact of incorrect assumptions can

be seen when comparing the myopic policy and the order-based myopic policy. While

the myopic behaviour is clearly seen in the figures, the order-based myopic policy has

consistently greater sub-optimality than the myopic policy.

The one-step look-ahead policy is also short-sighted, even if to a lesser extent. As

expected, in the M = 2 case the relative sub-optimality associated with either of the

stages is 0, as the one-step look-ahead policy is identical to the optimal policy. How-
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(a) A = 2

(b) A = 5

Figure 4.2.6: Stage-wise mean relative sub-optimality SOg for M = 2. Since in the

M = 2 case the one-step look-ahead policy is identical to the optimal policy it is not

shown here.

ever, for M > 2 looking ahead for one step only is no longer optimal. As shown in

Figure 4.2.7, for theM = 5 case this policy’s ability to look ahead only one step makes

relatively little difference during the early stages of the intelligence puzzle and it be-

haves similarly to the myopic policy. The difference between the one-step look-ahead

and the myopic policy becomes apparent when looking at the previous to last stage of

the puzzle. At that point the look ahead policy can consider all the remaining stages,

and minimise the completion time of the puzzle from that point onward. This reduces
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(a) A = 2

(b) A = 5

Figure 4.2.7: Stage-wise mean relative sub-optimality SOg for M = 5.

the stage-wise sub-optimality of the last and longest stage, giving a clear advantage to

the look-ahead policy over the myopic policy.

While the order-based dynamic program does not suffer from the same issues as the

other methods and so are sub-optimal to a smaller extent than the myopic and the

order-based myopic policies for the last stage, the incorrect assumption of an enforced

discovery order impacts it strongly. For no stage does it achieve a shorter completion

time than the optimal policy and therefore becomes increasingly sub-optimal with every

stage, leading to a generally poor performance as seen in Figure 4.2.2 and Figure 4.2.3.
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4.3 The Intelligence Puzzle with Unknown Condi-

tional Success Probabilities

The intelligence puzzle can be extended so that the information available to the deci-

sion maker regarding some aspects of the problem is limited. An example of limited

availability of information is a scenario where any or all of the parameter vectors are

random, and only known to the decision maker through learning their probability dis-

tributions. Such a model is more reflective of what may be encountered in aiming to

solve a real intelligence question, as the quality of their sources is rarely pre-established.

In this section we focus on the version of the intelligence puzzle where the conditional

success probabilities are given by the random vector P a. The task of the decision maker

is not only to solve the puzzle, but in order to do so learn about the distribution of

the P a’s. The encounter probabilities qa and the evaluation times ta(s) are known

quantities and behave as described in Section 4.1.2, no different than their behaviour

in the basic intelligence puzzle. Then the base parameter vectors characterising each

source a ∈ {1, ..., A} are

qa =


qa1

qa2

. . .

qaM

 , P a =


P a

1

P a
2

. . .

P a
M

 , ta =


ta1

ta2

. . .

taM

 .

While qa and the base evaluation times ta remain unchanged throughout the puzzle,

our belief of the distribution of P a evolves with every tip evaluated from source a.

Note that the state dependence of the random conditional success probability follows

the same pattern as its known counterpart in Section 4.1.2.

Section 4.3.1 describes the conjugate Bayesian learning structure used to update our

beliefs about P a, while Section 4.3.2 describes the extended intelligence puzzle with

all its new features in the framework of semi-Markov decision processes. Section 4.3.3

follows on with a discussion of potential policies, many of which have been adapted
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from Section 4.2.2. Finally, a numerical study to evaluate these policies is presented in

Section 4.3.4.

4.3.1 Bayesian Learning of P a

Bayesian learning is used to estimate the distribution of all conditional success proba-

bilities. For this, we assume that all P a
m are independent of each other and the other

parameter vectors. For the remainder of this subsection we focus on a single source a,

and omit the superscript in P a denoting the source in question.

As described in Section 4.1.2 the relevance of a tip of type m is modelled by a Bernoulli

random variable Xm. However, now the success probability given by Pm, which itself

is a random variable. A success corresponds to discovering the one and only magic

bullet of type m, while a failure corresponds to a nuisance tip. To incorporate our

initial beliefs we place a conjugate Beta(α
(0)
m , β

(0)
m ) prior on Pm, where α

(0)
m and β

(0)
m are

the initial shape parameters of the Beta distribution and the superscript denotes the

number of observations that have been made. The structure of the Bayesian learning

problem can be summarised as

Xm | Pm ∼ Bernoulli(Pm),

Pm ∼ Beta(α(0)
m , β(0)

m ),

Pm | xm ∼ Beta(α(n)
m , β(n)

m ),

where xm is the vector of n observations of Xm. The posterior parameters are updated

as observations are absorbed. Due to the simple conjugate structure the updates are

as follows

α(n)
m = α(n−1)

m + x(n)
m ,

β(n)
m = β(n−1)

m + 1− x(n)
m .

In the above x
(n)
m is the nth realisation of Xm. In essence α

(n)
m is the sum of α

(0)
m and all

observed successes, while β
(n)
m is the sum of β

(n)
m and all observed failures. However, it

must be noted that all success probabilities of type m are set to 0 once a magic bullet of
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said type xm = 1 is encountered, and therefore in practice the α
(n)
m ’s are never updated,

making their initial values critical.

It is useful to note the expected values of Pm, which is

E [Pm |Xm = xm] =
α

(n)
m

α
(n)
m + β

(n)
m

, (4.3.1)

From (4.3.1) it is clear that the expectation only exists if α
(n)
m > 1 for all n. Due to

the update structure of α(n) this can be ensured by requiring α
(0)
m > 1. We can see from

(4.3.1) the detrimental effect on the expectations never updating α
(0)
m has. In such a

case, the expectation of Pm never goes above α
(0)
m

α
(0)
m +β

(0)
m

, and further decreases with every

update of βm.

With the Bayesian learning aspect of the problem discussed, we return to consider-

ing all sources and denoting a specific source by the superscript a.

4.3.2 Setting Out the SMDP Framework

In this section we formulate the intelligence puzzle as a semi-Markov decision process,

closely following and referring back to Section 4.2.1.

When all parameter vectors were known, the state space of the intelligence puzzle

was sufficiently described by the collection of physical states as set out in Section 4.1.2.

However, in this version of the puzzle our belief of P a
m can change through updates to

its posterior distribution, and the physical states are no longer sufficient to capture the

state of the intelligence puzzle on its own. We need to introduce the knowledge state of

the puzzle, which corresponds to the collection of our beliefs regarding every P a
m each

best captured by their posterior βam parameters. While the αam’s form part of our belief,

as highlighted in Section 4.3.1 for all practical purposes they are never updated and

therefore need not form part of the knowledge state.

Let us define αa as the vector of posterior αam parameters and βa as the vector of
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posterior βam parameters

αa =


αa1

. . .

αaM

 , βa =


βa1

. . .

βaM

 .
Then the knowledge state space of the intelligence puzzle Sβ is given by the set of all

possible β’s where

β = (β1, ...,βA).

Since the number of trials required to observe a magic bullet of type m has no upper

limit, neither does the value of βam’s and the knowledge state space Sβ is infinite.

The physical state space Ss of the intelligence puzzle is as set out in Section 4.1.2,

with the individual states denoted by a vector s. Its elements sm represent the state

of intelligence type m, sm = 0 and sm = 1 corresponding to having or having not been

discovered.

The combined state space (or state space for short) of the intelligence puzzle is the

product of the knowledge and physical state space; Ss,β = Ss ×Sβ, and its state is the

combination of its physical and knowledge state, denoted as the tuple (s,β). While the

physical state space is finite, the knowledge state space is not, and therefore the state

space of the intelligence puzzle with learning is also infinite.

Similarly to Section 4.2.1, decision epochs occur at random, upon state transitions.

In contrast to that previous model, the transitions do not have to be with respect to

the physical state, knowledge state transitions also trigger a new decision epoch. In

context, decision epochs correspond to the completion of the evaluation of individual

tips, which either result in physical state transition if a magic bullet is discovered or a

knowledge state transition if not. Therefore the sojourn times directly correspond to

the evaluation times of the tips. The start and end-point of individual stages of the

puzzle, described in detail in Section 4.1.2, coincide with decision epochs, but multiple

decision epochs may occur during a single stage. As before, a puzzle consisting of M
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types of information has M stages.

At every decision epoch an action a must be taken, chosen from the set of available

actions Sa which corresponds to the sources available. As in the previous section, the

action set Sa = {1, ...,A} is independent of the state of the decision process; any action

may be taken at any decision epoch. We consider only deterministic stationary Markov

policies in our investigations, so that policy π which determines the action taken at a

given epoch only depends on the state of the system and prescribes the action π(s,β).

The action a taken in state s determines the probability distribution of both the subse-

quent states, and the time till the next decision epoch. Since only one tip is evaluated in

each epoch, obtaining these quantities is straight-forward. First let us denote the prob-

ability that the process transitions from state (s,β) to (sm+ ,β) by P(sm+ ,β | s,β, a)

in response to action a. The probability that it transitions to (s,βam−), where βam−

denotes that the knowledge state has changed in response to observing a failure of type

m on source a is given by P(s,βam− | s,β, a). Note that one-epoch transitions involve

either the physical or the knowledge state, never both. Since the physical state transi-

tions to sm+ upon discovery of a type m magic bullet, the probability of such transition

is the product of the probability of encountering a type m tip and the expectation of

the conditional probability that it leads to discovering a magic bullet

P(sm+ ,β | s,β, a) = qamE [P a
m(s, αam, β

a
m)] = qam

αamsm
αam + βam

. (4.3.2)

Similarly, the knowledge state transitions to βam− when the tip does not provide a magic

bullet. This occurs with probability

P(s,βam− | s,β, a) = qam (1− E [P a
m(s, αam, β

a
m)]) = qam

(
1− αamsm

αam + βam

)
. (4.3.3)

When sm = 0 the probability in (4.3.3) simplifies to the encounter probability of type

m on source a as a magic bullet of that hype has already been discovered and therefore

observing a type m tip is guaranteed to be a nuisance tip. While observing tips of

already discovered types provide no useful information, they still lead to transitions on
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the knowledge state of the corresponding P a
m’s. However, this is only a formality as

these knowledge states are no longer relevant.

Since the process transitions after every evaluated tip, given action a the distribu-

tion of the sojourn times T a(s,β) is simply the the distribution of the evaluation times

of the tips

P (T a(s,β) = tam(s)) = qam (4.3.4)

Since this shows that the sojourn times do not depend on the information state we

drop the dependence in the notation as well and will denote it as T a(s). From its

distribution, the expected sojourn time may also be obtained

E [T a(s)] =
M∑
m=1

qamt
a
m(s). (4.3.5)

Let us define the cost structure of the decision process analogous to Section 4.2.1; with

no lump sum cost or reward present, and so that the continuous cost rate of the process

only depends on the physical state and is denoted as w(s). Then the expected cost of

action a in state (s,β) is

r(s,β, a) = w(s)
M∑
m=1

qamt
a
m(s). (4.3.6)

Note that regardless of the information state, once the physical end state is reached

w(0M) and therefore r(0M,β, a) is 0.

We define the objective function of the decision process to minimise the undiscounted

total accumulated cost over a finite, but unknown number of decision epochs

Obj: min
π

∑
e

E [r (se,βe, π(se))] , (4.3.7)

where se and βe are the physical and knowledge states at the eth epoch and π(se,βe)

the action prescribed by policy π.
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4.3.3 Policies

In this section we develop policies to determine good actions to take in any given state

of the intelligence puzzle with random conditional probabilities. We start by deriving a

policy based on dynamic programming, which is followed by an assortment of heuristic

decision rules based on the policies considered in Section 4.2.2.

Figure 4.3.1: The process of applying policy π(s,β) to the intelligence puzzle with

unknown conditional success probabilities. The updating process of physical state s

has been described in detail in Section 4.1.2. The process of updating β takes place

through updating the knowledge state of the source corresponding to the prescribed

action, which is βπ(s,β) and is discussed in Section 4.3.1. The policy π(s,β) may be

any policy in Section 4.3.3.
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As in Section 4.2.2, we provide a flowchart (see Figure 4.3.1) that describes how these

policies are applied to the intelligence puzzle with unknown conditional success prob-

abilities and further illustrates how the decision process moves through the different

states.

Dynamic Programming Approach

Following on from Section 4.3.2 we aim to recursively construct a policy for the intelli-

gence puzzle with random conditional probabilities. Due to the infinite knowledge state

space and lack of discounting, the decision process does not naturally lend itself to such

an approach. To get around this problem we truncate the infinite recursion sequence

by introducing artificial end-states to the knowledge state space by capping the values

of the βam’s at an arbitrary βmax.

Let us start by constructing the infinite recursion sequence. As stated in Section 4.3.2,

the immediate expected cost incurred is the cost of taking action a which is r(s,β, a),

shown in (4.3.6). For each type m of information 2 types of transitions are possible.

Either to state (sm+ ,β) with probability P(sm+ ,β | s,β, a) or to (s,βam−) with prob-

ability P(sm+ ,β | s,β, a). The value function of action a in state (s,β) is denoted as

Va(s,β). The only natural end state of the decision process is when the physical end

state s = 0M is reached. Since no costs are associated with such a state and the only

permitted transitions lead to states where s = 0M is still true, the value function for

any state (0M,β) is

Va(0M,β) = 0. (4.3.8)

In any other state we write the value function as the sum of the immediate cost of action

r(s,β, a) and the expected future costs due to either type of transition, P(sm+ ,β |

s,β, a)V(sm+ ,β) and P(s,βam− | s,β, a)V(s,βam−). Then the value of every state is
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recursively obtained via

V(s,β) = min
a∈Sa
{Va(s,β)}

= min
a∈Sa

{
r(s,β, a) +

M∑
m=1

P(sm+ ,β | s,β, a)V(sm+ ,β)

+
M∑
m=1

P(s,βam− | s,β, a)V(s,βam−)

}

= min
a∈Sa

{
w(s)

M∑
m=1

qamt
a
m(s) +

M∑
m=1

qam
αamsm

αam + βam
V(sm+ ,β)

+
M∑
m=1

qam

(
1− αamsm

αam + βam

)
V(s,βam−)

}
. (4.3.9)

Since no limit exists on β, (4.3.8) and (4.3.9) have no end-knowledge states from which

the backwards recursion could be started. As stated earlier, to enable calculation of the

recursion sequence we create such end states by truncating the knowledge state space,

and capping all βam at a maximum value, denoted βmax. Under this scheme the posterior

distribution of all P a
m are only updated while βam < βmax, after that no further learning

of the distribution takes place. While this makes the knowledge state no longer infinite,

the knowledge state space may still be large dependent on A, M and the βmax chosen.

Assuming identical caps for all βams, the size of the knowledge state space is bounded

by

| Sβ |= (βmax − β0 + 1)AM . (4.3.10)

When a type m is encountered under action a for which the cap is in effect so that

βam = βmax, the system can no longer transition to (s,βam−). Instead, with probability

P(s,βam− | s,β, a) it self transitions to (s,β). Let us introduce the set µ(βa) defined

as the set of types m for which βam = βmax

µ(βa) = {m; βam = βmax} . (4.3.11)



CHAPTER 4. THE INTELLIGENCE PUZZLE 140

By making use of µ(βa) the sum associated with the cost of knowledge state transitions

can be split and the recursion can be rewritten as

V(s,β) = min
a∈Sa

{
r(s,β, a) +

M∑
m=1

P(sm+ ,β | s,β, a)V(sm+ ,β)

+
∑

m 6∈µ(βa)

P(s,βam− | s,β, a)V(s,βam−) +
∑

m∈µ(βa)

P(s,βam− | s,β, a)V(s,β)


= min

a∈Sa

{
w(s)

M∑
m=1

qamt
a
m(s) +

M∑
m=1

qam
αamsm

αam + βam
V(sm+ ,β)

+
∑

m 6∈µ(βa)

qam

(
1− αamsm

αam + βam

)
V(s,βam−) +

∑
m∈µ(βa)

qam

(
1− αamsm

αam + βamax

)
V(s,β)

 ,

(4.3.12)

which can be rearranged to get

V(s,β) = min
a∈Sa


w(s)

M∑
m=1

qamt
a
m(s) +

M∑
m=1

qam
αamsm

αam + βam
V(sm+ ,β)

∑
m 6∈µ(βa)

qam +
∑

m∈µ(βa)

qam
αamsm

αam + βamax

+

∑
m 6∈µ(βa)

qam

(
1− αamsm

αam + βam

)
V(s,βam−)

∑
m6∈µ(βa)

qam +
∑

m∈µ(βa)

qam
αamsm

αam + βamax

 . (4.3.13)

The steps followed to get from (4.3.12) to (4.3.13) can be found in Appendix B.2.1.

Unfortunately, such a policy may not be practical to use. Even though truncating

the knowledge state space made it finite, it is still large. Since | Ss,β |=| Ss | × | Sβ |,

the size of the state space is

| Ss,β |= 2M
A∏
a=1

M∏
m=1

(
βmax − βam

(0)
)
.

which if all βam
(0) = β(0) simplifies to 2M(βmax − β(0))AM. Another issue lies in the

limited information available to learn from due to the reaction of the system to the

different outcomes of the tips. This affects the usefulness of considering transitions
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through the knowledge states. As discussed earlier, the only occasion parameter αam

is updated is when source a finds a magic bullet of type m. However, at that point

all interest in the distribution of P a
m and all other P a′ 6=a

m of the discovered type m is

lost. This manifests in the knowledge state being characterised only by the collection

of βam’s, which keep increasing. While it is only logical that the probability mass of P a
m

shifts to lower values with the observation of a failure, it has no opportunity to recover

to higher values. Therefore with every action a taken that results in the evaluation of

a type m tip the expectation of its success probability

qamE [P a
m(s, αam, β

a
m)] = qam

αamsm
αam + βam

decreases until it is set to zero upon discovery of the magic bullet, either through the

increase in βam or by sm changing to 0. Similarly, the expected probability that action

a results in the discovery of any magic bullet

M∑
m=1

P(sm+ ,β | s,β, a) =
M∑
m=1

qam
αamsm

αam + βam

is also decreasing every time action a is taken. From the above we can deduce that

V(s,β) is an increasing function of β and the outlook of the decision maker worsens with

every decision epoch. The truncated recursion suffers from the same problem. Since

in the knowledge end state all βam = βmax, the larger its permitted value, the smaller

the minimum permitted value of E [P a
m(s, αam, β

a
m)], which is encountered at the end

state becomes. As βmax →∞ the expected success probability E [P a
m(s, αam, βmax)]→ 0

for all a and m and the expected completion time and cost of the intelligence puzzle

diverges to∞. Similarly, the larger β is the higher the expected completion cost of the

puzzle is. Furthermore, with every non-magic-bullet observed, the expected probability

of observing a magic bullet in the following decision epoch reduces. To avoid this ever

worsening outlook regarding the future expectation of P a
m’s, the policies constructed

in the rest of the section do not consider how the knowledge state may change as a

consequence of the action taken.

There is another layer of difficulty to this version of the intelligence puzzle. While
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the decision maker can take any of the a ∈ Sa actions, they have no influence over

which type of tip may be encountered, only their knowledge of the qa’s. Since types

with larger qam’s are encountered more often, a large variation in how many samples are

used to estimate the distribution of the P a
m’s may be present.

Despite these challenges, in the rest of this section we present three policies which

disregard state transitions with regards to the knowledge states and are analogous the

policies in Section 4.2.2. Another method which is later used to obtain a lower bound

on the completion cost of the puzzle is discussed at the end.

Expected Completion Cost Policy (ECC)

As we have seen in Section 4.3.3, policies that consider the evolution of the knowledge

state of the system are not suitable. However, for a fixed knowledge state the value of

the physical state can be recursively calculated.

The value of the physical end state is always 0 independent of the knowledge state.

Assuming that the knowledge state is constant is equivalent to setting a non uni-

form βmax, positing that the knowledge state space is truncated for all a and m at

βmax = βam, the state currently occupied by the process. Therefore the value function

of the physical state s conditional on the knowledge state remaining at β throughout

is V(s | β) = V(s,βmax = β). Under this scenario the recursion in (4.3.13) simplifies

to

V(s | β) = min
a∈Sa
{Va(s | β)}

= min
a∈Sa


w(s)

M∑
m=1

qamt
a
m(s)

M∑
m=1

qam
αamsm

αam + βam

+
M∑
m=1


qam

αamsm
αam + βam

M∑
m′=1

qam′
αam′sm′

αam′ + βam′

V (sm+ | β)




,

(4.3.14)

which is analogous to the recursion equation of the basic intelligence puzzle found in

Section 4.2.2. The first term of the sum is the expected cost accrued during the current
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stage, while the second is the sum of the expected cost accrued in future stages of the

intelligence puzzle. In effect, the point estimates of the P a
m(s,α,β)’s fulfil the same

role as the pam(s)’s did in (4.2.7), making the recursion in (4.3.14) an approximation

based on deterministic equivalence. Therefore, just as how the value function V(s) in

Section 4.2.2 was a measure of the expected completion cost of the basic intelligence

puzzle in s, so is V(s | β) an estimate of the expected completion cost in s based on

the current knowledge state β. More precisely, V(s | β) is the approximate expected

completion cost of the intelligence puzzle based on deterministic equivalence.

For every state (s,β), in which β is the most up-to-date knowledge state based on

all previous observations, we define the expected completion cost policy (ECC) to pre-

scribe the action that minimises the expected completion cost, recursively calculated

using (4.3.14) from the end state till the current state. Which means that under the

ECC in every state (s,β) action a∗ is taken so that

a∗ = πECC(s,β) := arg min
a∈Sa

{Va(s | β)} . (4.3.15)

We must emphasise that in the regime of random P a
m’s the knowledge state is not fixed

and transitions with respect to it occur. Therefore the recursion has to be re-evaluated

from its end state (0M,β) to its current state for every knowledge state β the deci-

sion process visits. This makes the ECC a computationally complex policy, requiring

repeated calculations of a recursive cost sequence.

The application of the ECC policy can be further clarified with the help of Figure 4.3.1.

At every decision epoch e a source is selected to sample from as prescribed by (4.3.15),

choosing the source with the lowest estimated expected completion cost. If it yields a

magic bullet, the physical state is updated and the knowledge state remains unchanged.

If this completes the puzzle, the decision process ends, otherwise we roll forward to the

next decision epoch e + 1 and enter the next stage g + 1 of the problem. If the action

taken in decision epoch e does not yield a magic bullet, the physical state stays the

same, but the knowledge state is updated. Since no magic bullet was discovered we
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remain in the same stage g of the puzzle, but regardless of the stage we roll forward

to the next decision epoch e+ 1. In decision epoch e+ 1 when the next action to take

is being determined, the expected completion costs are calculated using the updated

state, regardless of which aspect of the state was updated following decision epoch e.

Let us mention on the side another measure which could alternatively be used for

the expected completion time; one that uses not only the point estimate of the P a
m’s

but their full distribution when computing the expected completion time. If this alter-

native expected completion time is denoted by V′(s | β), the alternate recursion takes

the form

V′(0M | β) = 0,

V′(s | β) = min
a∈Sa
{V′a(s | β)}

= min
a∈Sa

{
w(s)E

[ ∑M
m=1 q

a
mt

a
m(s)∑M

m=1 q
a
mP

a
m(s, αam, β

a
m)

]

+
M∑
m=1

E

[
qamP

a
m(s, αam, β

a
m)∑M

m′=1 q
a
m′P

a
m(s, αam, β

a
m)

]
V′ (sm+ | β)

}
,

where the expectations are taken with respect to the posterior distributions of the P a
m’s.

Generally, those expectations are only obtainable numerically, which would further in-

crease the computational effort required. For that reason this variant of the ECC will

not further be considered.

However, even without numerical integration the ECC is a computationally intensive

policy which may be slow for even moderate sized problems where M & 5. We refer

the reader back to Table 4.2.1 and Table 4.2.2 for an indication of the time required to

obtain the prescribed action at any one decision time, as the dynamic program we are

required to solve here is in essence the same as that in Equation 4.2.7. By restricting

the number of subsequent physical state transitions to consider in the recursion, its

complexity can be reduced.
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Myopic policy

The most drastic simplification of the ECC is to not consider any state transition at all,

and construct a policy aiming to minimise the cost accrued during the current stage of

the puzzle given its current state (s,β). We refer to such a policy as myopic since it

is short-sighted both in terms of the physical and the knowledge states the intelligence

puzzle may transition to as a consequence of its recommended action. As described in

Section 4.3.3, the expected duration of the current stage is given by the first term of

the sum in (4.3.14), and therefore the myopic policy prescribes action a∗ so that

a∗ = πMYO(s,β) : = arg min
a∈Sa

{
w(s)

∑M
m=1 q

a
mt

a
m(s)∑M

m=1 q
a
m

αamsm
αam+βam

}

= arg min
a∈Sa

{ ∑M
m=1 q

a
mt

a
m(s)∑M

m=1 q
a
m

αamsm
αam+βam

}
.

(4.3.16)

Observe that due to the cost rate only depending on the physical state, choosing the

action which minimises the expected cost accrued during the current stage is equivalent

to picking the action which minimises the duration of the stage. This has also been

observed in the myopic policy of the basic intelligence puzzle.

Note that the action prescribed by the myopic policy is re-evaluated at every deci-

sion epoch in accordance with Figure 4.3.1.

Similarly to how an alternative measure of the expected completion cost was avail-

able based on the posterior distribution instead of the point-estimate of P a
m, there is

one for the expected duration of the current stage, written as

E

[ ∑M
m=1 q

a
mt

a
m(s)∑M

m=1 q
a
mP

a
m(s, αam, β

a
m)

]
=

∫ 1

0

· · ·
∫ 1

0

∑M
m=1 q

a
mt

a
m(s)∑M

m=1 q
a
mP

a
m(s, αam, β

a
m)

M∏
m=1

π(P a
m)dP a

1 . . . dP
a
M,

(4.3.17)

where π(P a
m) is the Beta posterior distribution of P a

m with parameters αam and βam. Since

the denominator contains a weighted sum of the P a
m’s, the integral can only be evaluated
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analytically if exactly one type m∗ of magic bullet still awaits discovery. Then (4.3.17)

simplifies to

E

[ ∑M
m=1 q

a
mt

a
m(s)∑M

m=1 q
a
mP

a
m(s, αam, β

a
m)

]
=
αam∗ + βam∗ − 1

qam∗(α
a
m∗ − 1)

M∑
m=1

qamt
a
m(s),

otherwise (4.3.17) can only be evaluated numerically. The integral-myopic policy may

be defined as follows; at every decision time source a∗ is continued, where

a∗ := arg min
a∈Sa

{
E

[ ∑M
m=1 q

a
mt

a
m(s)∑M

m=1 q
a
mP

a
m(s, αam, β

a
m)

]}
. (4.3.18)

Unfortunately as M increases so do the dimensions of the integral and the computa-

tional effort required to obtain it. Furthermore, the requirement that all αam > 1 is

limiting, and so this version of the myopic policy is considered no further.

Look-ahead policy

A compromise between the complexity of the ECC and the drastic simplification of the

myopic policy is a one-stage look-ahead policy. We construct such a policy by adapting

the expected completion cost in (4.3.14) to consider only the expected cost of com-

pleting the current stage and the one immediately after, similarly to how the one-step

look-ahead policy of the basic intelligence puzzle was adapted from (4.2.7). In doing so,

the same assumptions were made during the calculations as in Section 4.3.3, that is the

knowledge state is fixed and is only used to provide the posterior point estimates for P a
m.

Then the one-stage look-ahead policy for the intelligence puzzle with unknown con-

ditional success probabilities takes action a∗ so that

a∗ = πLA(s,β)

:= min
a∈Sa

{
w(s)

∑M
m=1 q

a
mt

a
m(s)∑M

m=1 q
a
m

αamsm
αam+βam

+
M∑
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w(sm+)
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a′
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m=1 q
a′
m

αa′msm+,m

αa′m+βa′m


 . (4.3.19)
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Observe that just as the ECC policy used a deterministically equivalent approximation

of the expected completion cost, the one-stage look-ahead cost here is a deterministically

equivalent approximation of the one-stage look-ahead cost. Based on this, parallels may

be drawn between the one-stage look ahead policy here and the one-step look-ahead

policy (4.2.33) of the basic intelligence puzzle. It is important to note that while in

the case of the basic intelligence puzzle ”one-step” refers to one stage, one stage in the

case of the intelligence puzzle with unknown P a
m’s and the look-ahead policy currently

under discussion would include many decision epochs. For the sake of calculating the

expected costs in (4.3.19) the knowledge state is assumed to remain the same for all

decision epochs, but the policy is applied in a way that acknowledges that is not the

case. Again, we refer back to Figure 4.3.1. At every decision epoch e (4.3.19) is used

to determine the action to take given the current state (se,βe) of the intelligence puz-

zle, which transitions to its next state (se+1,βe+1) based on the outcome of the action

taken. At the next decision epoch e + 1, the action to take is again determined by

(4.3.19), but it will use the state at decision epoch e+ 1 (se+1,βe+1).

We finish discussion of the one-stage look-ahead policy by noting that for M = 2

the one-step look-ahead policy is identical to the ECC policy, as the decision process

consists only of two stages.

Super-optimal policy

The super-optimal policy is not intended as realistic policy a decision maker may adhere

to, but rather as a method of acquiring a lower bound on the expected cost of com-

pleting the intelligence puzzle. In its formulation it is identical to the optimal policy

found via dynamic programming in Section 4.2.2 and ignores the need to learn about

the conditional success probabilities. It treats the unknown parameter values as if they

were known, and therefore requires an omniscient decision maker.

The super-optimal policy is then applied as follows. For every realisation of the in-

telligence puzzle, the decision-maker is in possession of perfect information regarding
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the underlying values of the conditional success probabilities. In that case all parame-

ter vectors are known quantities to them. When all parameter vectors are known, the

intelligence puzzle is as described in Section 4.2, for which an optimal policy can be

obtained using the recursion in (4.2.7). As the P a
m’s are treated like known quantities,

information states are unnecessary and the optimal action only depends on the physical

state of the puzzle. Based on the above, the value of the super-optimal policy is then

obtained by repeatedly applying it to independently sampled instances of the puzzle

and averaging over the observed completion costs.

Since the super-optimal policy has access to information which is not otherwise avail-

able, it is able to achieve lower completion costs than any other policy that has no

access to additional information. Furthermore, since the super-optimal policy is given

by the optimal policy of the problem with additional information, no other policy can

achieve lower completion cost. For this property and its relative ease of computation

the super-optimal policy is used to provide a lower bound on the Bayes value of the

completion cost.

4.3.4 Numerical Experiments

The performance of the expected completion cost, myopic and one-step look-ahead poli-

cies described in Section 4.3.3 is evaluated numerically, using simulated instances of the

intelligence puzzle. The same instances of the intelligence puzzle are also used to obtain

the value of the super-optimal policy. We examine them using the same measures as in

Section 4.2.3 to which this study is set up similarly.

In this numerical study we set the cost rate of every physical state (apart from 0M)

to w(s) = 1, so that the objective of minimising the expected cost of completion is

equivalent to minimising the expected time till completion of the intelligence puzzle.

To keep the problem simple all evaluation times were set to be equal so that tam = 1

for all m and a. Like in the simulation study of the basic intelligence puzzle, the en-

counter probability vectors are sampled from a Dirichlet(1M) distribution. To evaluate
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the Bayes value of the expected completion cost of the puzzle, the underlying value

of the P a
m’s, which we use in generating the data and in applying the super-optimal

policy, is sampled from its prior distribution. We have opted to use the same, vague

conjugate Beta(1,1) prior distribution for all P a
m. Notice that the methods of obtaining

the underlying parameters of the intelligence puzzle here match those in Section 4.2.3.

Given that, we made concious effort to ensure that the dataset used in this numerical

study is a subset of the one used in Section 4.2.3. This allows us to compare the two

studies and identify the effects having to learn P a
m has on the outcome of puzzle.

We examine the intelligence puzzle for A = 2 and A = 5, each with M ranging

between 2 and 6. For every such combination 3 values of c, the factor that controls the

time dependence of the tam(s) as per (4.1.8), is considered. These are c = {1, 5,∞}.

At the two extremes c = 1 corresponds to no state dependence of evaluation times

while c = ∞ results in no time spent evaluating types for which sm = 0. For every

combination of A,M and c the dataset contains 104 intelligence puzzles defined by the

combination of the randomly sampled qa’s and realisations of P a
m. Each such puzzle is

simulated 10 times and averaged over. We have been limited to such a low number of

replications by the available computational capacity.

On the figures found in this section abbreviations are used to identify the policies;

ECC-P stands for the expected completion cost, LA-P the one step look-ahead and

MYO-P the myopic policy. The suffix ”P” is to signal that these are the versions of the

policy in which the distribution of P a
m are initially unknown.

First we compare the policies in terms of the mean regret of a policy π, which we

denote as Rπ
and is obtained it as follows. We start by calculating the regret of said

policy, denoted as Rπ, for every realisation of the intelligence puzzle via

Rπ =
Cπ − CπSO

CπSO , (4.3.20)
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Figure 4.3.2: Mean relative regret R for A = 2 as a function ofM with unit evaluation

times.

which is the relative difference between the cost of completion C of the intelligence puz-

zle using the super-optimal policy πSO and of policy π. These individual regret values

are averaged over to provide the mean regret Rπ
. We use the super-optimal policy as

our benchmark as the optimal policy is not known to us. Note the strong resemblance

this measure has to the relative sub-optimality used in Section 4.2.3. That, along with

the common dataset allows for direct comparison between numerical studies to examine

the effect of reduced information. Figure 4.3.2 and Figure 4.3.3 show the mean regret

as a function of M for A = 2 and A = 5 respectively.

One may notice that mean regrets are quite large for all A, M and c. This is partly

due to how little information the priors used provide. To reassure ourselves and the

reader the numerical experiments were repeated with more informative Beta(2,2) and

Beta(5,5) priors and figures equivalent to Figure 4.3.2 and Figure 4.3.3 were produced.

While these figures have been consigned to Appendix B.3, they show that the mean

regret of all policies is reduced with more informative priors in place.

As expected, the mean regret of puzzles with A = 5 are generally much larger than

those with A = 2 as in the A = 5 case fewer observations per source are made generally.
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Figure 4.3.3: Mean relative regret R for A = 5 as a function ofM with unit evaluation

times.

More available sources to choose from increase the chance of having good combinations

qam and P a
m = pam, reducing the average number of observations required to complete

the puzzle. This reduced number of observations is then split among 5 sources instead

of 2. Not surprisingly the regrets associated with both of these cases are well in excess

of the mean regret seen with the basic intelligence puzzle.

The overarching trend of decreasing mean regret asM is increased can be explained by

the increased number of observations required to complete the intelligence puzzle. As

discussed in Section 4.3.3, only learning through observed failures limits the decision

makers ability to learn the distribution of P a
m. Due to the inefficient nature of the

learning process, having the outcome of even a few additional observations makes a

noticeable impact on the mean regret. That is, until the limit of what can be learnt

from observing failures only is reached. This conjecture is supported by the decreasing

rate of improvement seen for all values of c for both A = 2 and A = 5.

In the case of c = 1 the expected order in terms of the performance of the policies

is clearly visible; while at M = 2 the ECC and the look ahead policy are identical,

for all other sizes of puzzle the ECC policy achieves the lowest regret, followed by the
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look-ahead and myopic policies. However the distinction between the policies decreases

as c is increased, becoming near imperceptible for c = ∞. Any differences in the per-

formances of the policies are dominated by common behaviours that can be explained

by the need to learn about the P a
m’s and how limited the ability to learn about these

parameters is. Both the increase in regret with c and the near-identical performance of

the policies can be attributed to the fact that neither of the policies can take effective

advantage of the reduction in evaluation times if they don’t possess reliable estimates

of the conditional probabilities. At the same time the super-optimal policy is free to

exploit this feature of the puzzle, reducing its average completion cost and therefore

increasing the mean regret of the other policies.

Figure 4.3.4 and Figure 4.3.5 show how the total completion time is distributed among

the stages of the decision process. Broadly speaking very similar observations may be

made as for the basic intelligence puzzle. A notable difference is that while the propor-

tion of time spent on later stages decreases as c is increased, they still took up a larger

proportion of the total completion time that earlier stages. The only exception to this

is the super-optimal policy in Figure 4.3.5b. Spending less time on already discovered

types of tips reduces the proportion of time spent on later stages, but without accurate

posterior estimates of the success probabilities the effect is not strong enough to change

the trend that later stages contribute more to the completion cost.

The regret measure used for the completion cost of the puzzle can be adapted to ex-

amine individual stages. We call this the stage-wise mean regret, and is calculated on

a stage by stage basis. The regret of a puzzle in any stage g is given by

Rπ
g =
Cπg − Cπ

SO

g

CπSO

g

, (4.3.21)

which is averaged over all randomly generated puzzles to get the stage-wise mean regret

Rπ

g of policy π. It compares the cost accrued during stage g by policy π to the cost ac-

crued during that same stage by the super-optimal policy. Note an important difference

from the mean regret; the stage-wise mean regret can take on a negative value if a policy
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(a) A = 2

(b) A = 5

Figure 4.3.4: Proportion of completion time spent on each stage forM = 2. The look-

ahead policy is not represented as it is identical to the ECC forM = 2. The one-stage

look-ahead policy does not feature in this figure as it is equivalent to the ECC policy

when M = 2.

completes a stage with less cost accrued than the super-optimal policy. Figure 4.3.6

and Figure 4.3.7 show the stage-wise mean regret for M = 2 and M = 5 respectively,

each with both A = 2 and A = 5. Just as the mean regret of every policy was higher

than those based on the basic intelligence puzzle, so are the stage-wise regrets. For all

but the c = 1 case of the puzzle with A = 2 and M = 5 all stage-wise regrets are

positive, which means that all stage durations were longer than the stage durations of

the super-optimal policy. While by itself this is not a surprising result, note that the
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(a) A = 2

(b) A = 5

Figure 4.3.5: Proportion of completion time spent on each stage for M = 5.

myopic and look-ahead policies developed for the basic intelligence puzzle did achieve

negative stage-wise mean regrets for the early stages of the puzzle.

The stage-wise regrets of the myopic and the look-ahead policy for M = 5 for all but

the c = ∞ case initially decrease then increase so that R1 > R2 but Rg < Rg+1 from

g = 2 onwards. Both policies are short sighted to a degree, focusing only on minimising

the costs from the current and in the case of the look ahead policy the subsequent

stage. This is difficult to do when the P a
m’s are estimated based on a small number

of observations, leading to a high regret for stage g = 1. During g = 2 estimates are

based on more observations and the decisions taken are more informed, which reduces
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(a) A = 2

(b) A = 5

Figure 4.3.6: Stage-wise mean relative regret Rg of each stage for M = 2. The one-

stage look-ahead policy does not feature in this figure as it is equivalent to the ECC

policy when M = 2.

the associated regret. However, early sub-optimal actions can lead to physical states

which are hard to transition out from, resulting in the increasing stage-wise regret for

later stages. The ECC is affected in a similar way; early actions are taken based on

little information, and the resulting transitions can force the process into physical states

from which completion of the intelligence puzzle is costly.

We conclude the numerical study by summarising our findings. We have seen that

while considering the physical state till the end of the problem will reduce the expected
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(a) A = 2

(b) A = 5

Figure 4.3.7: Stage-wise mean relative regret Rg of each stage for M = 5.

completion cost of the puzzle, the dominating issue is what sets this puzzle apart from

the basic intelligence puzzle; learning the distribution of the P a
m. The limitation on

our ability to learn due to basing posterior estimates only on repeated observations of

failures has a negative impact on the costs accrued throughout the intelligence puzzle.

However, the degree of learning which is possible under this model can still provide

actionable information; in puzzles which require more types of information and there-

fore need more observations to complete the mean regret is lower for all policies. The

inaccurate estimates of P a
m which the decision maker must rely on also limit any policy’s

ability to take advantage of reductions in evaluation times for the already discovered

types. Our results have also shown the negative impact sub-optimal actions taken early
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on have on the final stages of the intelligence puzzle. However, we expect this issue to

present in any version of the intelligence puzzle that involves the need to learn one or

more parameters of the problem.

4.4 The Intelligence Puzzle with Unknown Encounter

Probabilities

Similar to extending the intelligence puzzle to incorporate random conditional success

probabilities as shown in Section 4.3, the basic intelligence puzzle may be extended to

limit the information initially available on the encounter probabilities. In this section

we look at a a version of the intelligence puzzle where the encounter probabilities are

given by the random vector Qa. The task of the decision maker is not only to solve the

puzzle, but in order to do so learn about the distribution of Qa. The conditional success

probabilities pa(s) and the evaluation times ta(s) are treated as known quantities and

behave as described in Section 4.1.2, no different than their behaviour in the basic

intelligence puzzle. Then the base parameter vectors characterising each source a ∈

{1, ..., A} are

Qa =


Qa

1

Qa
2

. . .

Qa
M

 , pa =


pa1

pa2

. . .

paM

 , ta =


ta1

ta2

. . .

taM

 .

While pa and ta remain unchanged throughout the puzzle, our belief of the distribution

of Qa evolves with every tip evaluated from source a. As seen with qm, for all a and

m 0 ≤ Qa
m ≤ 1 and 0 ≤ Qa

m ≤ 1. Note that since each tip must belong to one of

the M categories, the random encounter probabilities must still satisfy the constraint∑M
m=1Q

a
m = 1.

Section 4.4.1 describes conjugate Bayesian learning structure used to update our beliefs
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of Qa, while Section 4.4.2 describes the intelligence puzzle with unknown encounter

probabilities in the framework of semi-Markov decision processes. Section 4.4.3 follows

on with a discussion of potential policies which have been adapted from Section 4.2.2

in a manner to mirror the policies constructed in Section 4.3.3. Finally, a numerical

study to evaluate these policies is presented in Section 4.4.4.

4.4.1 Bayesian Learning of Qa

Bayesian learning is used to estimate the distribution of all encounter probabilities.

For this, we assume that all Qa are independent of each other and the other parameter

vectors. Note that
∑M

m=1Q
a
m = 1 means that a dependence between the elements of

Qa is present. For the remainder of this subsection we focus on a single source a, and

omit the superscript in Qa denoting the source in question.

As described in Section 4.1.2, M is a random variable and its realisations determine

the type of intelligence a tip provides. It follows a Categorical distribution. Now the

parameter vector of this Categorical distribution is itself random, given by the vector

Q of length M. The Dirichlet distribution has the probability density function

f(φ) =
1

B(φ)

M∏
d=1

xφd−1
d where

M∑
d=1

xd = 1 and xd ∈ [0, 1] ∀d ∈ {1, . . . ,M} (4.4.1)

The vectors x and φ are both of lengthM and B(φ) is the multivariate beta function.

It is a conjugate prior to the Categorical distribution, therefore we place a conjugate

Dirichlet(φ(0)) distribution on Q. We will use the superscript to denote the number of

observations made. The structure of the Bayesian learning problem is summarised as

M | Q ∼ Categorical(Q),

Q ∼ Dirichlet(φ(0)),

Q |m ∼ Dirichlet(φ(n)),

where m contains n observations of M . The vectors φ(0) and φ(n) are the prior and the

posterior concentration parameters respectively. The posterior parameters are updated
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as observations are observed. For all j ∈ 1, ..., n

φ(n)
m =

φ
(n−1)
m + 1 if yn = m,

φ
(n−1)
m if yn 6= m,

where yn is the outcome of the nth observation of M , and m referring to the type of

the information in general. In essence φ
(n)
m is the sum of φ

(0)
m and the number of tips of

type m observed. Then the expected value of every q
(n)
m is

E
[
Q(n)
m

]
=

φ
(n)
m∑M

m′=1 φ
(n)
m′

. (4.4.2)

Note that observing any outcome of M changes the expected value of all Qm.

With the Bayesian learning aspect of the problem discussed, we return to consider-

ing all sources and denoting a specific source by the superscript a.

4.4.2 Setting out the SMDP framework

In this section we formulate the intelligence puzzle with unknown encounter proba-

bilities as a semi-Markov decision process. There are many similarities between this

formulation and that of the intelligence puzzle with unknown conditional success prob-

abilities, therefore Section 4.3.2 is often referred to.

Since not all parameter vectors are known, the state of the intelligence puzzle is not

sufficiently described by physical states. Similarly to Section 4.3.2 the state of the intel-

ligence puzzle will be a combination of the physical state and the knowledge state of the

unknown parameter vector. In this case the unknown parameter vectors are Qa, and

therefore the knowledge state of source a is given by its posterior φa parameter, which

captures our most up to date beliefs on the distribution of Qa. Then the knowledge

state of the intelligence puzzle Sφ is given by the set of all possible φ’s where

φ = (φ1, ...,φA).

Since there is no limit on the number of observations permitted of a given type and

source, the values of φam have no upper limit and the knowledge state space Sφ is infinite.
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The physical state space Ss of the intelligence puzzle is as set out in Section 4.1.2,

with the individual states denoted by a vector s. Its elements sm represent the physical

state of intelligence type m, sm = 0 and sm = 1 corresponding to having or having not

been discovered.

The combined state space of the intelligence puzzle is the product of the knowledge

and physical state space; Ss,φ = Ss×Sφ, and its state is the combination of its physical

and knowledge state, denoted as the tuple (s,φ). While the physical state space is

finite, the knowledge state space is not, and therefore the state space of the intelligence

puzzle with unknown encounter probabilities is also infinite.

The decision epochs and possible actions of the intelligence puzzle with unknown en-

counter probabilities is identical to those of the intelligence puzzle with unknown con-

ditional success probabilities, and is described in detail in Section 4.3.2. Here we offer a

condensed recap. Decision epochs occur at random intervals, triggered by state transi-

tions with respect to either the information and physical state or only the information

state. The timing of these decision epochs translate to having to make a new decision

after a tip is evaluated, and the sojourn times directly correspond to the evaluation

times of the tips. The start and end-point of individual stages of the puzzle, described

in detail in Section 4.1.2, always coincide with a decision epoch, but a single stage

may contain multiple decision epochs. As before, a puzzle consisting of M types of

information has M stages. At every decision epoch an action a must be taken, chosen

from the set of available actions Sa = {1, ...,A} which is independent of the state of the

decision process; any action may be taken at any decision epoch. We consider mainly

deterministic stationary Markov policies in our investigations, so that policy π which

determines the action taken at a given epoch only depends on the state of the system

and prescribes the action a = π(s,φ).

The action a taken in state s determines the probability distribution of both the subse-
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quent states, and the time till the next decision epoch. Since only one tip is evaluated

in each epoch, obtaining these quantities is straightforward. There is an important dif-

ference between the puzzles with unknown success and encounter probabilities in what

constitutes a one-epoch transition. When the success probabilities are unknown, the

system transitions either with respect to the knowledge state, or with respect to the

physical state. However, in the problem version with unknown encounter probabilities

every state transition is a transition with respect to the knowledge state, and may or

may not include a physical transition depending on the outcome of the evaluated tip.

This is due to the fact that every single tip belongs to one the M types, and therefore

the distribution of the encounter probability Qa is updated after every tip-evaluation.

It does not matter if that tip produced a magic bullet or not.

Let us denote by sm+ the resulting physical state of the puzzle after a type m magic bul-

let is discovered, and by φam+ the knowledge state resulting from encountering a type m

tip after taking action a. Then the probability that the process transitions from state

(s,φ) to (sm+ ,φam+) in response to action a is given by P(sm+ ,φam+ | s,φ, a). The

probability that in response to the same action it transitions to (s,φam+), is given by

P(s,φam+ | s,φ, a). Since the physical state transitions to sm+ upon discovery of a type

m magic bullet, for which encountering a type m tip is necessary, the probability of a

transition to (sm+ ,φam+) is the product of the probability of encountering a type m tip

and the expectation of the conditional probability that it leads to discovering a magic

bullet

P(sm+ ,φam+ | s,φ, a) = E [Qa
m(φ)] pam(s) =

φam∑M
m′=1 φ

a
m′

p(s). (4.4.3)

Similarly, the state transitions to (s,φam+) when a type m tip is encountered, but it

does not provide a magic bullet. This occurs with probability

P(s,φam+ | s,φ, a) = E [Qa
m(φ)] (1− pam(s)) =

φam∑M
m′=1 φ

a
m′

(1− pam(s)) . (4.4.4)

Since the process transitions after every evaluated tip, given action a the distribution

of the sojourn times T a(s,φ) is simply the the distribution of the evaluation times of
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the tips, namely

P (T a(s,φ) = tam(s)) = E [Qa
m] =

φam∑M
m′=1 φ

a
m′

. (4.4.5)

Since this shows that the sojourn times do not depend on the physical state we drop the

dependence in the notation as well and will denote it as T a(φ). From its distribution,

the expected sojourn time may also be obtained as

E [T a(φ)] =

∑M
m=1 φ

a
mt

a
m(s)∑M

m=1 φ
a
m

. (4.4.6)

The cost structure of the decision process is identical to that in Section 4.3.2 where the

continuous cost rate of the process only depends on the physical state and is denoted

as w(s). The only difference is how the expected sojourn time is obtained so that the

expected cost of action a in state (s,φ) is

r(s,φ, a) = w(s)

∑M
m=1 φ

a
mt

a
m(s)∑M

m=1 φ
a
m

. (4.4.7)

Note that regardless of the information state, once the physical end state is reached

w(0M) and therefore r(0M,φ, a) is 0.

Finally, the objective of the decision process is to minimise the undiscounted total

accumulated cost, and therefore

Obj: min
π

∑
e

E [r (se,φe, π(se,φe))] , (4.4.8)

where se and φe are the physical and knowledge states at the eth epoch and π(se,φe)

the action prescribed by policy π.

4.4.3 Policies

In this section we develop policies to determine good actions to take in any given state

of the intelligence puzzle with unknown encounter probabilities. Following the same

structure as we did in Section 4.3.3 we derive a policy based on dynamic programming,

then devise heuristic policies using the point estimates of Qa
m that are analogous to some
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of the policies in Section 4.2.2. As in previous sections, the flowchart in Figure 4.4.1 is

used to help describe how these policies are applied to the intelligence puzzle with

unknown encounter probabilities and to further illustrate how the decision process

moves through the different states.

Dynamic Programming Approach

Following on from Section 4.4.2 we recursively construct a policy for the intelligence

puzzle with unknown encounter probabilities. The infinite size of the state space leads

to the same problem present in Section 4.3.3, that there is no natural end state to use

in a backwards recursive solution. This is resolved by first constructing the infinite

recursion sequence, which is then truncated by limiting the number of observations

allowed of a single source.

To start the infinite recursion sequence we need the immediate expected cost incurred,

which is the cost of taking action a, namely r(s,φ, a). As a consequence of action a,

two types of transitions are possible, from state (s,φ) to (sm+ ,φam+) with probability

P(sm+ ,φam+ | s,φ, a) or to (s,φam+) with probability P(s,φam+ | s,φ, a). These are

given given in (4.4.3) and (4.4.4) respectively. The value function of action a in state

(s,φ) is denoted as Va(s,φ). The only natural end states of the decision process are at

(s = 0M,φ) which has no costs associated with it and from where the system cannot

transition to states with non-zero costs. Therefore the values of such states are

V(0M,φ) = 0. (4.4.9)

In any other state the value function is the sum of the immediate cost of action

r(s,φ, a) and the expected future cost due to transitioning to a different state, which

are P(sm+ ,φam+ | s,φ, a)V(sm+ ,φam+) and P(s,φam+ | s,φ, a)V(s,φam+). Then the value
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Figure 4.4.1: The process of applying policy π(s,φ) to the intelligence puzzle with

unknown conditional success probabilities. The updating process of physical state s has

been described in detail in Section 4.1.2. The process of updating φ takes place through

updating the knowledge state of the source corresponding to the prescribed action, and

is discussed in Section 4.4.1. The policy π may be any policy in Section 4.4.3.
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V(s,φ) of every state can be recursively obtained via

V(s,φ) = min
a∈Sa
{Va(s,φ)}

= min
a∈Sa

{
r(s,φ, a) +

M∑
m=1

P(sm+ ,φm+ | s,φ, a)V(sm+ ,φam+)

+
M∑
m=1

P(s,φm+ | s,φ, a)V(s,φam+)

}

= min
a∈Sa

{
w(s)

∑M
m=1 φ

a
mt

a
m(s)∑M

m=1 φ
a
m

+

∑M
m=1 φ

a
mp(s)V(sm+ ,φam+)∑M

m=1 φ
a
m

+

∑M
m=1 φ

a
m (1− pam(s))V(s,φam+)∑M

m=1 φ
a
m

}
. (4.4.10)

Since the knowledge state space is infinite, there are no natural values of φ which the

backwards recursion could be started from. Instead, to allow for recursive calculation

we cap the values of the posterior parameters at φmax so that

φmax =
M∑
m=1

φam. (4.4.11)

In effect, we limit the number of observations allowed from each source. Under this

scheme φa is only updated while
∑M

m=1 φ
a
m < φmax, and after that no further learning of

the encounter probability vector takes place. Assuming that all prior parameter vectors

and parameter caps are identical so that φ(0),a = φ(0) and φamax = φmax the size of the

knowledge state is

| Sφ |=
(
φmax −

∑M
m=1 φ

(0)
m − 1

M− 1

)A
, (4.4.12)

and consequently the size of the full state is

| Ss,φ |= 2M
(
φmax −

∑M
m=1 φ

(0)
m − 1

M− 1

)A
. (4.4.13)

While the state space is no longer infinite it is still large and grows quickly with in-

creasing A and M.

In the truncated version of the problem a source has either reached φmax or we are
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still able to learn about them. Let us denote by λ(φ) the set of actions where learning

has been constrained

λ(φ) =

{
a;
M∑
m=1

φam = φmax

}
. (4.4.14)

When learning is possible the value function of the action associated with the source is

given as in the non-truncated version of the problem;

Va6∈λ(φ)(s,φ) = w(s)

∑M
m=1 φ

a
mt

a
m(s)∑M

m=1 φ
a
m

+

∑M
m=1 φ

a
mp(s)V(sm+ ,φam+)∑M

m=1 φ
a
m

+

∑M
m=1 φ

a
m (1− pam(s))V(s,φam+)∑M

m=1 φ
a
m

.

However, when a ∈ λ(φ) the knowledge state φam+ does not exist. In that case the

process transitions to state (sm+ ,φ) or (s,φ) with the same probability it would have

transitioned to (sm+ ,φam+) and (s,φam+) and the value function takes the form

Va∈λ(φ)(s,φ) = w(s)

∑M
m=1 φ

a
mt

a
m(s)∑M

m=1 φ
a
m

+

∑M
m=1 φ

a
mp(s)V(sm+ ,φ)∑M
m=1 φ

a
m

+

∑M
m=1 φ

a
m (1− pam(s))V(s,φ)∑M

m=1 φ
a
m

, (4.4.15)

which can be rearranged to get

Va∈λ(φ)(s,φ) ≤ w(s)

∑M
m=1 φ

a
mt

a
m(s)∑M

m=1 φ
a
m∑M

m=1 φ
a
mp

a
m(s)∑M

m=1 φ
a
m

+

∑M
m=1 φ

a
mp(s)V(sm+ ,φ)∑M
m=1 φ

a
m∑M

m=1 φ
a
mp

a
m(s)∑M

m=1 φ
a
m

(4.4.16)

= w(s)

∑M
m=1 φ

a
mt

a
m(s)∑M

m=1 φ
a
mp

a
m(s)

+

∑M
m=1 φ

a
mp(s)V(sm+ ,φ)∑M

m=1 φ
a
mp

a
m(s)

, (4.4.17)

and denote the quantity in (4.4.17) as V′a(s,φ). The steps to arrive at (4.4.16) from

(4.4.15) can be found in Appendix B.2.2. In essence, the value functions of actions

in a given state provide an upper bound to the value function of the state, which is

the value function of the minimising action. Consequently, when in order to simplify

calculations the value of the state is replaced by the value of the action, the resulting

quantity, V′a(s,φ), serves as an upper bound to the value of the state Va(s,φ). Since

(4.4.16) evaluates to equality whenever a is the minimising action we can freely use the
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expression in (4.4.17) in the recursion. To capture which category an action belongs to

we define the indicator function I(φa) as

I(φa) =

1 if
∑M

m=1 φ
a
m = φmax,

0 if
∑M

m=1 φ
a
m < φmax,

and can write the truncated recursion as

V(s,φ) = min
a∈Sa
{I(φa)V′a(s,φ) + (1− I(φa))Va(s,φ)} . (4.4.18)

Learning of Qa in the setting of the intelligence process is well behaved, with none of

the issues seen in Section 4.3.3 regarding the learning of P a and the convergence of

V(s,β) present here. We expect that even a moderately large φmax would facilitate a

good level of learning and result in a close to optimal policy, which we define as follows.

A policy based on the recursion in (4.4.18) takes action a∗ in state (s,φ) so that

a∗ := arg min
a∈Sa

{I(φa)V′a(s,φ) + (1− I(φa))Va(s,φ)} . (4.4.19)

While the above policy is expected to have significant merit, its implementation is

beyond the scope of this work. Instead we focus on policies where the knowledge

state only provides point estimates to the distribution of Qa. These policies directly

correspond to the ones considered in Section 4.3.3, and therefore they are discussed in

less detail.

Expected Completion Cost Policy (ECC)

The expected completion cost of the puzzle in any given state is provided by V(s,φ) as

per (4.4.18). Having no interest in how the knowledge state may evolve as the process

progresses puts us in the same regime as if every source has reached their respective

φmax’s, obtaining estimates of the Qa’s based only on past observations. To signal that

the expected completion cost is only dependent on the knowledge state through its

point estimate and is treated as a constant in calculating this cost, we denote it as

V(s | φ).
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Since the value of any state in which the physical state has reached 0M is 0 inde-

pendent of the knowledge state, all (0M | φ) serve as end states with

V(0M | φ) = 0. (4.4.20)

The value of all other states can be recursively calculated from the end state. Since

learning is limited in the same way as in the artificial end states of the truncated

recursion min
a∈Sa
{Va(s | φa)} = min

a∈Sa
{V′a(s,φa)}, and the expected completion cost given

the current knowledge state can be written as

V(s | φ) = min
a∈Sa
{Va(s | φa)}

= min
a∈Sa

{
w(s)

∑M
m=1 φ

a
mt

a
m(s)∑M

m=1 φ
a
mp

a
m(s)

+

∑M
m=1 φ

a
mp(s)V(sm+ ,φ)∑M

m=1 φ
a
mp

a
m(s)

}
. (4.4.21)

The above is analogous to the recursion equation of the basic intelligence puzzle found

in Section 4.2.2. If we reintroduced the
∑M

m=1 φ
a
m terms by dividing both the numera-

tors and denominators of (4.4.21) by
∑M

m=1 φ
a
m, it would become apparent that (4.4.21)

is a deterministically equivalent approximation to the completion cost of the intelli-

gence puzzle as it replaces the unknown quantity Qa
m with its point estimate, a known

quantity. Then for every state (s,φ) the expected completion cost policy is defined as

a∗ = πECC(s,φ) := arg min
a∈Sa

{Va(s | φ)} . (4.4.22)

Note that while the expected completion cost is calculated under the assumption that

the information state remains constant till the end of the decision process, in reality

it is updated every decision epoch. This is reflected in how the policy is applied, for

which we refer to Figure 4.4.1. At every decision epoch e the policy in (4.4.22) is used

to determine the action to take. If it does not yield a magic bullet, the knowledge state

φ is updated, and we roll forward to the next decision epoch e+ 1. If a magic bullet is

discovered following the action in decision epoch e, both aspects of the state, namely

s and φ are updated, and when we roll forward to the next decision epoch e + 1 the

decision process also enters the next stage g + 1. Regardless of which aspects of the

state were updated following decision epoch e, when (4.4.22) determines the action to

take in decision epoch e+1 the updated state is used. Consequently, the recursion from
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the end state to the current state has to be computed for every decision epoch and the

states encountered throughout to determine the action dictated by such a policy, which

requires significant computational effort. We refer the reader back to Table 4.2.1 and

Table 4.2.2 for an indication of the time required to obtain the prescribed action at any

one decision time, as the dynamic program we are required to solve here is in essence

the same as that in Equation 4.2.7. This limits the use of the ECC to moderate-sized

problems with M . 5.

Myopic policy

We consciously mirror the policies developed for P a in Section 4.3.3, and therefore

move on to consider a policy which does not consider transitions with respect to either

state types in reaction to an action taken. As before, we refer to this policy as myopic

due to its short sighted nature.

While its aim is to minimise the expected cost of completing the current stage from its

current state, the action-independent cost rate of the intelligence puzzle leads to the

myopic policy prescribing the action a∗ that minimises the expected duration of the

stage. As seen previously, we use an approximation based on deterministic equivalence,

therefore the myopic policy takes the form

a∗ = πMYO(s,φ) := arg min
a∈Sa

{∑M
m=1 φ

a
mt

a
m(s)∑M

m=1 φ
a
mp

a
m(s)

}
,

which is calculated for every decision epoch e using the updated state of the puzzle in

accordance with Figure 4.4.1.

A different measure of the expected duration of the stage may also be used, which

utilises the distribution of Qa instead of its point estimates. This measure, written as

E

[∑M
m=1 Q

a
m(φa)tam(s)∑M

m=1 Q
a
m(φa)pam(s)

]
=

∫
∆M−1

∑M
m=1Q

a
m(φa)tam(s)∑M

m=1Q
a
m(φa)pam(s)

M∏
m=1

π(Qa)dQa,

is difficult to obtain however, as it requires numerical integration over the M − 1

dimensional simplex. In addition, certain parameter combinations require φam > 1 for
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all m for the integral to exist. Given the above, we do not consider this measure further.

One-Stage Look-Ahead Policy

To complete the set of policies that will be examined for the intelligence puzzle with

unknown encounter probabilities, we state the one-stage look ahead policy as

a∗ = πLA(s,φ)

:= arg min
a∈Sa

{
w(s)

∑M
m=1 φ

a
mt

a
m(s)∑M

m=1 φ
a
mp

a
m(s)

+
M∑
m=1

φamp
a
m(s)∑M

m′=1 φ
a
m′p

a
m′(s)

arg min
a′∈Sa

{
w(sm+)

∑M
m′′=1 φ

a′

m′′t
a′

m′′(sm+)∑M
m′′=1 φ

a′
m′′p

a′
m′′(sm+)

}}
.

which utilises a deterministically equivalent approximation of the one-stage look-ahead

cost. While it considers the physical state that immediately follows the current one,

it disregards any costs accrued from decisions that follow after. Just like the ECC

and the myopic policy, it treats the knowledge state as constant when determining the

action to prescribe. However, the states are updated following every decision epoch,

and at every decision epoch the policy determines which action to prescribe based on

the current state of the process, as shown in Figure 4.4.1. This one-stage look-ahead

policy is analogous to and is based on the same ideas as the one-step look-ahead policy

in Section 4.2.2 and the one-stage look ahead policy in Section 4.3.3. Note that for

M = 2 the one-step look-ahead policy is identical to the ECC policy.

Super-Optimal Policy

Much like in Section 4.3.3, we can define a so-called super-optimal policy that utilises

the optimal solution of the basic intelligence puzzle in Section 4.2.2 to obtain a lower

bound on the expected completion cost. There is no difference between how the super-

optimal policy is applied to an intelligence puzzle with unknown conditional success

probabilities and unknown encounter probabilities. The only difference is which pa-

rameter type’s value is unknown to the non-omniscient decision makers.
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The super-optimal policy is then applied as follows. For every realisation of the in-

telligence puzzle, the underlying values of the encounter probabilities are immediately

made known to the decision maker. Now all parameter vectors are known quantities to

them. When all parameter vectors are known, the intelligence puzzle is as described in

Section 4.2, for which an optimal policy can be obtained using the recursion in (4.2.7).

As the Qa’s are treated like known quantities, information states are unnecessary and

the optimal action only depends on the physical state of the puzzle. Based on the

above, the Bayes cost of the super-optimal policy is then obtained by repeatedly apply-

ing it to independently sampled instances of the puzzle and averaging over the observed

completion costs.

4.4.4 Numerical Experiments

This section examines the performance of the expected completion cost, myopic and one

step look-ahead policies, which have been described throughout Section 4.4.3. All are

compared to the super-optimal policy set out in the same section. Just as the policies

mirror those developed for the puzzle with unknown success probabilities, so do the

measures used to analyse their performance.

Just as in Section 4.3.4 we simplify the intelligence puzzle by setting the cost rate

of all states with s 6= 0M to 1, and all base evaluation times to tam = 1. Then minimis-

ing the expected completion time of the intelligence puzzle is an objective equivalent

to minimising its expected cost of completion. For every realisation of the intelligence

puzzle the underlying value of the encounter vector of source a, Qa is sampled from its

Dirichlet(1M) prior distribution, and all pam are independently sampled from a Beta(1,1)

distribution. We examine the intelligence puzzle for A = 2 and A = 5 combined with

M increasing from 2 to 6. Three values of c are considered, namely 1, 5 and ∞. For

every combination of these three parameters we consider 104 puzzles, defined by the

combination of the sampled pam’s and the realisations if Qa’s. Each such puzzle is sim-

ulated for and averaged over 10 instances.
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Note that the realisations of Qa and the pam are obtained from the same distributions

as the qa and the realisations of P a
m are in the unknown success probability case. In

addition, we are interested in the same combinations of A,M and c, which contain the

same number of realisations of the intelligence puzzle. This allows us to use the same

dataset as Section 4.3.4, only that instead of the values of P a
m = pam here the values of

Qa = qa are hidden from the decision maker.

In the figures found in this section abbreviations are used to identify the policies;

ECC-Q stands for the expected completion cost, LA-Q the one step look-ahead and

MYO-Q the myopic policy. The suffix ”Q” is to signal that these are the versions of

the policy in which the distribution of Qa are initially unknown.

Figure 4.4.2: Mean relative regret R for A = 2 as a function ofM with unit evaluation

times.

Following the same structure as Section 4.3.4, we start by examining the mean re-

gret of the policies, in which the regret of every realisation of the intelligence puzzle

is averaged over the 104 realisations which we base this study on. These individual

regrets are calculated using (4.3.20). Since we do not have access to the corresponding

optimal completion costs, the super-optimal policy is used as a benchmark in our in-

vestigations. Figure 4.4.2 and Figure 4.4.3 show the mean regret as defined above for
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Figure 4.4.3: Mean relative regret R for A = 5 as a function ofM with unit evaluation

times.

A = 2 and A = 5 respectively with increasing values of M. We note that for some of

the combinations of A, M and c the mean regrets are quite high. However, when the

numerical experiments were repeated using less vague Dirichlet(2M) and Dirichlet(5M)

priors, we found that the mean regret of all policies decreased. The figures showing

these findings can be found in Appendix B.3.

All in all, the behaviour of the three methods were very similar, and the expected

ordering in which the ECC had the lowest mean regrets while the myopic policy had

the largest is realised. Any differences in the performances of the policies were dom-

inated by common behaviours that can be explained by the need to learn about the

Qa’s and how learning of these parameters is carried out.

In stark contrast to our findings in Section 4.3.4, the mean regret increases withM, but

decreases with c, which is a behaviour that more closely resembles that of the basic in-

telligence puzzle than the intelligence puzzle with unknown success probabilities. While

the observed ranges of the mean regrets for c = 1 are similar to what is seen when it is

the P a
m’s that need to be learnt, the mean regrets for c = ∞ are more comparable to

the regrets observed when the encounter probabilities were known. The regret achieved
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by the three policies here are even lower than the regret of the order-based policies

considered in the no-learning case. The increase in regrets observed with the increase

of M is similar to what is seen in Section 4.2.3; a puzzle with more pieces takes more

epochs to solve and therefore there are more opportunities to take sub-optimal actions.

A reduction in regret as c is increased is caused by a combination of many factors.

This is a behaviour which was already observed in the basic intelligence puzzle for the

policies analogous to those we consider here. However, the original effect has been

made more prominent by an array of factors. First of all, we need to note that due to

the continued sequential learning of these parameters the best estimates of the Qa are

available at the end of the problem, and therefore that is when the decision maker can

make the best, most informed decisions. Furthermore, the estimates of the Qa improve

with every single observation even if the encountered type can no longer provide a

magic bullet as the Qa
m’s belonging to the same source are not independent. The more

types are discovered, a higher proportion of the encountered tips will be nuisance tips.

When c = 1 these contribute towards the completion cost in full, but as c increases

these contribute less and less. Ultimately, this leads to an increase in the number of

observations being made in order to complete the puzzle and consequently increased

accuracy of our beliefs regarding the Qa’s. This in turn helps the decision maker ex-

ploit the reduced evaluation costs of the discovered types and drastically reduce the

cost of completing the latter stages of the puzzle which require the most number of

observations. Therefore, the reduction in the regrets as c increases is due to being able

to obtain more accurate estimates of Q in the presence of a large c, but also due to the

high regrets observed with c = 1 due to the less accurate estimation of Qa.

The above reasoning is supported both by examining the proportion the different stages

contribute to the completion cost as shown in Figure 4.4.4 and Figure 4.4.5, and the

stage-wise mean regrets shown in Figure 4.4.6 and Figure 4.4.7. Looking at the pro-

portion of cost each stage is contributing, we see that the three policies behave very

similarly and that the super-optimal is somewhat more balanced with a higher pro-
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(a) A = 2

(b) A = 5

Figure 4.4.4: Proportion of completion time spent on each stage for M = 2. The one-

stage look-ahead policy does not feature in this figure as it is equivalent to the ECC

policy when M = 2.

portion of cost being attributed to the first stage and a lower proportion to the last

stage of the problem. The most striking feature of Figure 4.4.4 and Figure 4.4.5 is the

clear increase in the proportion of costs for early stages and a just as clear decrease

for the latter stages with the increase of c. However, similar features have been seen

in both other versions of the intelligence puzzle, and therefore these figures need to be

interpreted in conjunction with the stage-wise regret figures.
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(a) A = 2

(b) A = 5

Figure 4.4.5: Proportion of completion time spent on each stage for M = 5.

The stage-wise mean regrets used here are defined identically as before. The orig-

inal mean regret measure is adapted to the individual stages to compare the costs

accrued by the policies in a given stage g. The stage-wise-regret of a policy π for stage

g is denoted Rπ
g and is calculated using (4.3.21) for every realisation of the intelligence

puzzle considered. Similarly to the mean total regret the super-optimal policy is used

instead of the optimal policy as the basis of comparison. To get the mean stage-wise

regret of a policy π for stage g, the stage-wise regrets of the puzzles are averaged over.

As expected, Figure 4.4.6 and Figure 4.4.7 show the stage-wise mean regrets to be
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(a) A = 2

(b) A = 5

Figure 4.4.6: Stage-wise mean regret Rm for M = 2. The one-stage look-ahead policy

does not feature in this figure as it is equivalent to the ECC policy when M = 2.

much higher than they are in the basic intelligence puzzle. While small negative stage-

wise regrets can be seen in the c = 1 case for the first stages of the puzzle for all four

combinations of A and M, this is followed by very large mean stage-wise regrets in

later stages. Even when all parameters are known large last stage regrets may exist

due to a myopic outlook regarding physical state transitions of a policy, but the ECC

presenting with such large values suggests that the cause is sub-optimal actions in the

early stages. This supports our conjecture that in the c = 1 case not enough observa-

tions are made to effectively learn about the Qa’s. On the other extreme when c =∞,
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(a) A = 2

(b) A = 5

Figure 4.4.7: Stage-wise mean regret Rm for M = 5.

all mean stage-wise regrets are positive, but comparably small. Most noticeably the

mean stage-wise regret of the last stage has been much reduced. These results support

the earlier discussion that c = ∞ provides an environment in which over the course

of the intelligence puzzle an accurate estimate of the Q may be obtained and used to

exploit the reduced evaluation times.
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4.5 Conclusions

In the course of examining the intelligence puzzle, we have considered multiple variants

of the problem. We have modelled each of them as a semi-Markov decision problem

with the goal of bringing the investigation to its conclusion as quickly as possible by

means of finding the pieces of the intelligence puzzle.

To start, we examined the situation where all elements of the intelligence puzzle (en-

counter probabilities, success probabilities, evaluation time) were known. In this case,

we were able to optimally solve the problem via dynamic programming. We studied a

variant of the problem in which the pieces of the intelligence puzzle must be discovered

in a set order, and demonstrated that simple decision rules are optimal under these cir-

cumstances. Ultimately, we had to conclude that heuristic approaches based on those

ordered decision rules do not transfer over well. By comparing the time the myopic

policy spent on each stage of the problem with those of the optimal policy, we were

able to ascertain that the sub-optimality of short sighted policies are due to reaching

unfavourable states, from which discovery of the last magic bullet is time-consuming.

We found that when the vectors of conditional success probabilities were unknown,

active learning approaches were impractical. The structure of the intelligence puzzle

meant that only negative feedback could be used when updating our beliefs, leading

to an increasingly pessimistic outlook concerning the completion of the puzzle. How-

ever, combining passive Bayesian learning with dynamic programming focused on the

discovery of the intelligence pieces led to a heuristic which achieved lower regret than

the myopic policy. On the other hand, when the encounter probabilities were unknown,

we were able to incorporate learning about future information states in a dynamic pro-

gram. We formulated a dynamic program that considered establishing good estimates

of the encounter probabilities alongside the discovery of the intelligence pieces. We

implemented approaches with passive learning only, analogous to those applied to the

intelligence puzzle with unknown conditional success probabilities. Again, combining
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a dynamic program for the discovery of intelligence pieces with passive learning of the

encounter probabilities improved on the myopic outcomes.



Chapter 5

Conclusions and Further Research

In this chapter we conclude the thesis by providing a summarised overview of achieve-

ments and directions for potential further research.

5.1 Summary and Conclusions

In this section we summarise the research presented in this thesis, and highlight its

achievements. In both areas we considered, the focus was on efficient collection of

pieces of intelligence called tips, which originated from a variety of intelligence sources.

5.1.1 The Intelligence Problem

In Chapter 3 we examined the intelligence problem using a Bayesian multi-armed ban-

dit framework. The novelty of our approach was to explicitly model the random time

required to evaluate (i.e. collect, process and analyse) a tip, and to delay receipt of

the associated reward until the evaluation is completed. The value of intelligence was

treated as binary in nature, a tip was either relevant or not. After investigating a series

of modelling assumptions in Section 3.2, we chose an undiscounted infinite horizon for-

mulation where each arm of the MAB is characterised by their expected reward rate.

For this definition of the intelligence problem we considered four models, two in which

the probability that a tip is relevant is independent of its evaluation time, and two in

which a logistic link function is used to model the time dependence of the relevance

181
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probability.

We studied the two independent models, IM1 and IM2 in Section 3.3. To direct an

intelligence team in selecting sources we devised 5 policies. These include a simple

myopic rule that continues the arm with the highest expected reward rate, the Bather

index, which is a randomised index that adds diminishing perturbations to the myopic

rule, and the EGGI, a heuristic based on a novel generalisation of the Gittins index,

which allows for deterministic non-unit inter-decision times. The development of the

generalised Gittins index used in the EGGI is an important methodological contribu-

tion. While we use it to construct a heuristic rule, it provides an optimal policy for

a simplified intelligence problem with deterministic evaluation times. We have also

adapted the knowledge gradient approach to the specifics of the intelligence problem,

and is used to form the basis of the CKGI, a new innovative index policy. It marries

knowledge gradient type expected rewards and calibrating with regard to a standard

bandit, an approach it shares with the Gittins index. We examined the performance of

all policies using a regret-type measure, and found that the CKGI consistently performs

well with respect to that measure. While in general the EGGI did not perform excep-

tionally, in the presence of large uncertainties around the evaluation times it achieved

the best results. Even though in our numerical experiments the Bather index performed

well, the parameters governing the random perturbations required extensive tuning and

knowledge of the dataset, which made it impractical.

In Section 3.4 we explored the consequences of time dependent relevance probabili-

ties under two models, DM1 and DM2. We found the expected reward rates of the

arms were only possible to obtain numerically, making even the myopic and the Bather

index policies challenging to apply. To reduce the computational burden of tuning the

parameters of the Bather index we devised an approximate tuning method, which we

found to perform similarly to the fully tuned Bather index. While the EGGI could not

be applied due to incompatible assumptions, the limitations on applying the knowledge

gradient and the CKGI were due to the expected reward rate having a non-monotonic
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distribution under both DM1 and DM2. In the absence of closed form formulas this

posed a computational challenge, and ultimately prevented us from applying these poli-

cies to the dependent models.

Overall, in Chapter 3 we have developed promising solution approaches to accom-

modate the novel features of the intelligence problem with time independent relevance

probabilities, but had to conclude that in models that include dependencies devising

effective and practicable solution strategies poses a challenge.

5.1.2 The Intelligence Puzzle

In Chapter 4, we defined for the first time a new intelligence collection model called

the intelligence puzzle, which focused on investigating a single intelligence question. It

takes a novel approach to intelligence by allowing some tips to be fundamentally differ-

ent to others, assigning an inherent type to all tips. In such case, for every source the

probabilities of encountering different types of tips had to be specified, as well as for

each type and source combination the probability that they evaluate to magic bullets.

The objective of the intelligence puzzle was defined as observing a single relevant tip

(which we termed a magic bullet) of each available type and in doing so acquire the

least amount of cost. In our investigations, costs were defined in a way that minimising

them was equivalent to minimising the time taken to complete the intelligence puzzle.

We have found that in such a model the state of the decision problem is not simply

the collection of states associated with the sources, and therefore the intelligence puzzle

cannot be treated as a bandit problem. Instead, we modelled all variants of the intelli-

gence puzzle as a semi-Markov decision problem.

In Section 4.2 we considered the intelligence puzzle in its most basic form, where all

parameters that characterise a source are known. The optimal policy was found using

dynamic programming. We have shown that when magic bullets must be discovered

in a set order, a myopic approach is optimal, and that under some limited circum-

stances the order itself does not influence the completion time. However, in general a
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myopic policy was found not to be optimal, apart from a few specific cases. The poli-

cies we studied were the optimal policy, a myopic policy that selects the source with

the lowest expected cost of discovering a magic bullet, and as compromise between

these two a one-step look-ahead policy. We have also included two decision rules based

on our findings for ordered discoveries. When examining the relative sub-optimality

of these policies, we have found that policies based on ordered discoveries performed

poorly. Through examining the the time taken to discover each magic bullet, we traced

back the sub-optimality of the myopic and to a lesser extent the one-step look-ahead

policy to the time taken to discover the last magic bullet. While short sighted poli-

cies were quick to discover magic bullets early on, lack of forward planning often left a

type of magic bullet which was hard to find to discover last, which lead to a long search.

In Section 4.3 we extended the intelligence puzzle to allow the probability that a tip

evaluates to a magic bullet to be learnt through repeated observations. We found that

only requiring a single magic bullet per intelligence type meant learning could only take

place through negative feedback, which made dynamic programming unsuitable. On

the other hand, in Section 4.4 we found the distribution of encounter probabilities to

be straightforward to learn, and we expect the dynamic programming approach devel-

oped to provide a good approximation of the optimal policy. For both extensions of

the intelligence puzzle we devised deterministically equivalent analogues of the myopic,

one-step look-ahead and optimal policies developed for the basic intelligence puzzle,

and compared their performance to that of a super-optimal policy.

Our most important accomplishment in Chapter 4 was to define the intelligence puz-

zle and for the first time develop insights into the mechanics of such an intelligence

collection model. We have also demonstrated the challenges that come with allowing

some aspects of the problem to be initially unknown, especially when learning is only

possible through negative feedback.
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5.2 Further Research

In this section we discuss some avenues of future research that may be of interest,

which we organise into three sections. First we discuss topics relating to Chapter 3 in

Section 5.2.1, followed by Chapter 4 in Section 5.2.2.

5.2.1 Intelligence Problem

An immediate avenue of further research would be to reinvestigate the intelligence

problem in its current form, but in terms of the alternative metric, Es [P ] /Es [T ]. Sec-

tion 3.5.1 briefly discusses our expectations regarding this metric. One may also ex-

pand the range of methodologies considered for the intelligence problem; both Thomp-

son sampling (Thompson, 1933) and UCB (Auer et al., 2002) are well established for

multi-armed bandits. A similarly conspicuous possibility is to investigate a different,

perhaps better behaved dependence structure than that of Section 3.4. Indeed, there is

no inherent reason in the intelligence collection and analysis process why the relevance

probability should depend on the evaluation times and not the other way around. While

these are only a minor modifications to our work, there are multiple, more ambitious

extensions.

The Intelligence Problem with Discounted Rewards

As intelligence is usually collected with a purpose, be it in a police, military, anti-

terror or any other setting, preference towards receiving relevant tips sooner rather

than later is a plausible assumption. Such urgency can be modelled by discounting

future rewards. We have previously mentioned such a model in Section 3.2 as IP2. The

presence of discounting puts further focus on the semi-Markov nature of the problem.

However, in exchange for the increased difficulty the model would better represent the

environment in which intelligence collection takes place.
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Interrupted Evaluations

One of the main assumptions in our model is that the intelligence team may not renege

on a tip: once it is selected for evaluation the team must complete the evaluation before

being able to move on to evaluating the next tip. We propose to investigate the impact of

undoing this assumption. In that case the intelligence team is able to switch sources by

abandoning an evaluation process before it concludes, and forgoing any potential reward

from it. The intelligence team must weigh its options carefully: by reneging on a tip they

can avoid spending a long time on a single piece of intelligence, yet, if an evaluation is

interrupted, the knowledge gained from the partial observation is limited. The outcome

of the interrupted evaluation is not observed, and the distributions of the evaluation

times are only updated with right-censored observations. While similar mechanisms

have been studied in the context of knapsack constrained bandits (Abernethy et al.,

2016; Cayci et al., 2020b), and threshold bandits (Cayci et al., 2020a), these take place

over a finite horizon.

Non-Binary Value of Intelligence

Another assumption used in constructing the intelligence problem is that of binary out-

comes: a tip is either relevant or not. While much of the research on intelligence treats

them as such, binary outcomes can not reflect nuanced differences between the values of

tips. While Marshall (2016) assigned non-binary values to tips at the processing step,

in the end had to make a binary judgement on the tip being relevant or not. Modelling

the value of a tip as a continuous variable would also open a wider range of possibilities

to construct dependence between the evaluation time and the value of the tip.

Multiple Intelligence Teams

Models with multiple analysts are present in the intelligence literature, as well as multi-

armed bandits where more than one arm may be selected at every decision epoch.

While we believe in terms of the intelligence problem this is not a trivial extension,

we include some initial thoughts on the effects of multiple intelligence teams working
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in parallel. The presence of multiple intelligence teams in the intelligence problem

modifies when decision epochs take place. Furthermore, the sojourn times following a

given decision epoch would depend on actions chosen at previous sojourn times: tips

which are still under evaluation, chosen by a different intelligence team may complete

before the one whose evaluation starts at the current decision epoch. Consequently, due

to the presence of delayed feedback the intelligence teams must make their selections

on incomplete information.

Changing Availability of Sources

Sources of intelligence are not necessarily permanent. There are many reasons a source

can stop producing intelligence: satellites getting decommissioned, monitored commu-

nications moving to secure channels, the cover of informants getting blown, just to

name a few. Sources may also be whittled down due to the intelligence team needing

to focus on a decreasing number of sources as time goes on. However, new sources

can also become available over time. Examples of such are a decommissioned piece of

equipment getting replaced by more advanced technologies, placing wire-taps, or a new

agent going under-cover. As these changes may occur both over strategic and tactical

time-scales, extending both the intelligence problem and the intelligence puzzle is well

motivated. Changes in the availability of the sources are equivalent to the multi-armed

bandit loosing or acquiring new arms. One difficulty we foresee in such a model, de-

pending on how fast arms are acquired and dropped, is that knowledge of the sources

can be limited.

5.2.2 Intelligence Puzzle

As Chapter 4 demonstrates, the intelligence puzzle is a complex problem that we have

only scratched the surface of, and therefore there are many avenues of meaningful fur-

ther research even within the current context of the intelligence puzzle. In general, more

could be done to see the effects of restricting the encounter and success probabilities

to specific values or ranges and how such constraints change the interactions between

them.
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Learning Policies for the Intelligence Puzzle with Unknown Encounter Prob-

abilities

While the intelligence puzzle with unknown encounter probabilities is not limited in

learning the same way the intelligence puzzle is with unknown success probabilities,

the only policies we implemented only learnt about the distribution of the encounter

probabilities in a passive manner through Bayesian updating. The natural next step

for the intelligence puzzle in Section 4.4 is to develop and implement policies in which

learning takes center-stage. In Section 4.4.3 a dynamic programming policy was con-

structed based on both the physical and the truncated knowledge state of the decision

process. With a sufficiently permissive truncation point such a policy is a reasonable

approximation of the optimal policy. While feasible for the smallest instances, due to

the large state space of the intelligence puzzle such a dynamic programming approach

is not practical and approximate approaches should be explored.

Source Dependent Conditional Success Probabilities

As we have seen in Section 4.3.3, the fact that only one magic bullet is needed of any

one type severely limits our ability to learn the distribution of the conditional success

probabilities when they are unknown to start with. To mitigate that, we propose a

change to the intelligence puzzle. We require the conditional success probabilities to

not differ between the different types from the same source, i.e. making it a parameter

associated with the source instead of the source-type combination. When the success

probabilities are characteristics of the sources, there is a limited but present opportu-

nity to learn from the successes as well. Furthermore, this gives the decision maker

more direct control of the learning process. When every source-type combination has

a different conditional success probability, the decision maker can choose the source to

evaluate a tip from, but the encountered type and therefore the success probability they

learn about is random. With common success probabilities across all types, picking a

source to evaluate a tip from directly picks the success probability to learn about. We

believe it to be an interesting avenue for further research to examine the intelligence

puzzle that is structured in the above manner as it results in an improved ability to
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learn, with the benefit most apparent in puzzles where A is small in comparison toM.

The most important consequence of such a common conditional success probability

is the increased ability to learn in the intelligence puzzle with unknown conditional

success probabilities. In the case of either the basic intelligence puzzle or the intelli-

gence puzzle with unknown encounter probabilities opting for common pa’s is expected

to have limited impact.

Modifying the Cost Rates

While all three versions of the intelligence puzzle was described with a general physical

state dependent cost rate w(s), in the numerical experiments it was set to w(s) = 1 for

all s 6= 0M. While this is a very intuitive cost rate and results in an intelligence puzzle

which aims to minimise the time to completion, it results in a loss of generality.

Indeed, we can imagine some scenarios in which different states have different cost

rates. For example, if some types of information are considered more important then

others, states in which those remain undiscovered might accrue cost at a higher rate

than those in which they have been discovered. If not the status of a specific type, the

number of magic bullets that have been discovered can have an influence on the reward

rates. A cost rate that decreases as more types are discovered can be used to capture an

intelligence puzzle where the emphasis is on obtaining as many magic bullets as early

as possible instead of completing the puzzle.

While it may initially read like a change in the objective, modified cost rates can also

be used to model an intelligence puzzle where not all available types of magic bullets

are required for completion. Where completion of the puzzle requires any subset of size

M′ out of theM available types, modelling it is as straightforward as setting the w(s)

of all states associated with stages g >M′ to 0.

As we can see, taking advantage of the flexibility of the model and moving away from
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unit cost rates can result in many new flavours to the intelligence puzzle, which would

be interesting to explore.

A Different View of Intelligence Types

Our contribution in Chapter 4 is not simply developing the intelligence puzzle, but also

introducing the idea that pieces of information may have an inherent type. If we use

this type to represent an intelligence question, or a terror-plot queuing for interdiction,

one can come up with a model that straddles the microscopic and macroscopic view-

point of the intelligence cycle.

Imagine a series of intelligence questions, to which we refer to as plots queueing to

be investigated. To complete the investigation of a plot, a known number of relevant

tips must be found for it. However, the sources produce intelligence regarding all plots

in the queue, meanwhile relevant tips can only be found for those which are attended

by an intelligence team. This assumption reflects that the intelligence team(s) can only

find the answer to questions they know of. Over time the intelligence team(s) process

all plots waiting at the start.

If every plot only needs one tip to solve it, the formulation of the above problem is

identical to that of the intelligence puzzle. In the form described above, even with

multiple tips required for interdiction, we may view the problem as an extension of the

intelligence puzzle. We can extend both the intelligence puzzle and the queuing plots

interpretation with multiple intelligence teams or analysts. However, moving away from

the concept of the intelligence puzzle may motivate features unrealistic in the puzzle

setting. For example, one might consider a model where plots can not only leave the

queue, but also enter it. Furthermore, many features of Kaplan (2010), such as plots

expiring could be added to enrich the model. Some fascinating research questions arise

from this, including ”Under which conditions will the intelligence team(s) be over-

whelmed?”, ”How should the intelligence team(s) select sources to avoid that?”, and

”How should sources be selected to maximise the interdiction rate?”.
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Game Theoretical Considerations

As discussed in Section 5.2.1, sources may become available and unavailable for a variety

of reasons. In terms of the intelligence puzzle, we find the option of sources dropping

out more likely than new ones appearing. One scenario we find fitting with the problem

is where upon discovery of a magic bullet, a source stops producing intelligence. By

giving control of which source is eliminated to the adversary that is surveilled during the

course of the puzzle, we can define a game theoretical version of the basic intelligence

puzzle. The goal of the intelligence team is to counter the adversary by completing the

intelligence puzzle as quickly as possible, while the adversary eliminates sources one-by

one to maximise the time they are able to operate.
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Appendix to Chapter 3

A.1 Proving of Theorem 3.3.1

In this appendix we prove Theorem 3.3.1, given in Section 3.3.2, which was as follows.

Given that P a and T a are independent, T ax is defined by a threshold tax;

T ax = {t; 0 < t ≤ tax} ,

so that t ∈ T ax if and only if 0 < t ≤ tax.

The above can be proven using stochastic dominance. As the theory required to prove

Theorem 3.3.1 are not otherwise relevant to this thesis, we introduce them as part of

the proof. We follow it up by construct the proof of Theorem 3.3.1 in a general setting.

A.1.1 Required theorems and definitions

We use a general Bayesian model where X is a sample space and P = {Pθ}θ∈Θ is a

family of probability distributions on X. Let P be a prior distribution on sample space

Θ. Then X is a random sample with the values x ∈ X, X|Z = θ ∼ Pθ, where Z is a

Θ-valued random variable, Z ∼ P .

Denote by F (·|θ) the cdf of Pθ, and by f(·|θ) the pdf of that distribution. Similarly,

denote the cdf of the prior and posterior distributions of θ by P (·) and P (·|X = x), and
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their pdf by π(·) and π(·|X = x) respectively, where X ∼ Pθ. The posterior predictive

cdf and pdf of the next observation are denoted as F π
P (·|zn) and fπP (·|zn), where zn de-

notes the observed data, and π as seen in the superscript indicates what the predictive

distribution is with respect to.

Theorem A.1.1. FSD-theorem (Wolfstetter, 1996; Müller and Stoyan, 2002)

X is unanimously preferred to Y by all agents with monotone increasing utility functions

iff X ≥FSD Y .

X ≥ FSD Y ⇐⇒ E [U(X)] ≥ E [U(Y )] ∀U ∈ U ,

where U is the set of utility functions that are monotone increasing.

The preference ranking is reversed if the utility functions are decreasing.

Definition A.1.2. (Müller and Stoyan, 2002; Meczarski, 2015)

The random variable X is said to be larger than Y in likelihood ratio order (X ≥LR Y )

if X and Y have densities fX(.) and fY (.) such that

fX(t)

fY (t)
≤ fX(t′)

fY (t′)
∀t ≤ t′.

Equivalently, the ratio fX(t)
fY (t)

is an increasing function of t.

Theorem A.1.3. (Müller and Stoyan, 2002)

If X ≥ LR Y then X ≥ FSD Y .

The likelihood ratio order is sufficient but not necessary condition of first order stochas-

tic dominance.(The likelihood ratio order the stronger ordering.)

Theorem A.1.4. (Müller and Stoyan, 2002)

Assume that X ≥ LR Y and g is an increasing function. Then g(X) ≥ LR g(Y ).

Proof found in Müller and Stoyan (2002) can also be used to show that the ordering is

reversed when g is a decreasing function.

Theorem A.1.5. LR order of posteriors (Meczarski, 2015)

If the distribution of X is increasing with respect to the likelihood ratio order in θ, then
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the conditional distribution of θ under X = x is increasing in x with respect to the

likelihood ratio order.

Equivalently,

Pθ ≤ LR Pθ′ for θ ≤ θ′ =⇒ P (·|X = x) ≤ LR P (·|X = x′) for x ≤ x′,

where Pθ is a probability distribution of family P with parameter θ and P (·|X = x) is

the posterior distribution after observing X = x.

Theorem A.1.6. LR order of predictive distributions (Meczarski, 2015)

If for distributions of the predicted variable Y we have

F (· | θ, zn) ≤ LR F (· | θ′, zn), ∀zn, θ ≤ θ′, θ, θ ∈ Θ

and if P1 ≤ LR P2 then the likelihood ratio order transfers to the predictive distributions

so that

F π1
P (· | zn) ≤ LR F

π2
P (· | zn),

where F πi
P (· | zn) is the cdf of the predictive density function.

A.1.2 Proof of Theorem 3.3.1

We wish to show that E
[

1
T
| t, t

]
is decreasing in t.

Proof. Let us assume that the distribution of T is increasing with respect to the likeli-

hood ratio order in θ, so that

Pθ ≤LR Pθ′ ∀θ ≤ θ′.

This assumption can be checked for different families of probability distributions using

Definition A.1.2. Theorem A.1.5 states that the likelihood ratio order of sample dis-

tributions are preserved by posterior distributions, therefore the posterior distribution

that results from observation of T = t′ is larger than the posterior resulting from T = t

with respect to the likelihood ratio order for all t′ ≥ t.

Pθ ≤LR Pθ′ ∀θ ≤ θ′ =⇒ P (·|t) ≤ LR P (·|t′) ∀t ≤ t′
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Since the outcomes of T are IID and only depend on the past observations t through θ

we have

F (·|θ, t) ≤LR F (·|θ′, t) ≡ F (·|θ) ≤LR F (·|θ′) ≡ Pθ ≤LR Pθ′ ∀θ ≤ θ′, θ, θ′ ∈ Θ.

Using Theorem A.1.6 we can transfer the likelihood ratio order from the posterior to

the predictive distributions.

P (·|t) ≤ LR P (·|t′) ∀t ≤ t′

together with =⇒ F πt
P (·|t) ≤LR F

πt′
P (·|t).

Pθ ≤LR Pθ′ ∀θ ≤ θ′

Likelihood ratio ordering implies first order stochastic dominance as per Theorem A.1.3.

F πt
P (·|t) ≤LR F

πt′
P (·|t) =⇒ F πt

P (·|t) ≤FSD F
πt′
P (·|t)

The utility function U(T ) = 1/T is a monotone decreasing utility function, therefore

making use of Theorem A.1.1 we get

E
[

1

T
| t, t

]
≥ E

[
1

T
| t, t′

]
∀t ≤ t′,

meaning that E
[

1
T
| t, t

]
is decreasing in t, where the expectation is taken with respect

to the posterior predictive distribution of T .

Since E
[

1
T
| t, t

]
is decreasing in t, there must exists a tthreshold for which this expecta-

tion equals a given positive constant denoted as C.

Then

E
[

1

T
| t, t

]
≥ C ∀t ≤ tthreshold

E
[

1

T
| t, t

]
< C ∀t > tthreshold.

The value of t where the equality holds is the threshold.

In the context of the knowledge gradient that threshold tax is defined as

E
[

1

T a
| ta, t

]
= C =

1

E [P a | xa, x]
max
a′ 6=a

E
[
P a′

T a′
| xa′ , ta′

]
.
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A.2 Exploration parameters of the Bather index

A 2 5

H b1 b2 b1 b2

100 0.8 0.6 0.9 0.7

200 0.8 0.7 0.8 0.6

500 0.8 0.8 0.9 0.9

1000 0.8 0.8 0.9 0.9

2000 0.8 0.9 0.8 0.9

Table A.2.1: Exploration parameters of the Bather index for IM1, with tmin = 0.1.

s2 0.1 0.2 0.5 1.0 2.0

H b1 b2 b1 b2 b1 b2 b1 b2 b1 b2

100 2.0 0.2 1.6 0.2 1.8 0.3 1.3 0.4 1.4 0.5

200 1.8 0.3 2.0 0.3 1.7 0.4 1.4 0.5 2.0 0.4

500 0.8 0.5 2.0 0.4 1.7 0.5 1.1 0.6 1.6 0.6

1000 1.3 0.5 0.9 0.6 0.6 0.7 1.0 0.7 1.8 0.7

Table A.2.2: Exploration parameters of the Bather index for IM2, with A = 2.

s2 0.1 0.2 0.5 1.0 2.0

H b1 b2 b1 b2 b1 b2 b1 b2 b1 b2

100 1.2 0.3 1.5 0.3 1.7 0.3 2.0 0.3 2.0 0.3

200 1.7 0.3 1.9 0.3 1.5 0.4 1.0 0.5 1.9 0.5

500 1.4 0.4 1.6 0.4 1.1 0.5 1.7 0.5 1.6 0.6

1000 0.9 0.6 0.9 0.6 0.8 0.7 1.1 0.7 1.3 0.7

Table A.2.3: Exploration parameters of the Bather index for IM2, with A = 5.



APPENDIX A. APPENDIX TO CHAPTER 3 197

A.3 The Adjusted Relative Regret

The adjusted relative regret is a now defunct regret measure, which we only mention

here for completeness of description of work carried out. It was defined as a second

measure in addition to the relative regret in (3.3.40). In addition tot he super-optimal

policy, it takes into account a worst-case policy, which is the result of an omniscient

decision maker identifying and playing the worst arm in all instances:

Rπ
AR =

Rewardπ
SO − Rewardπ(

Rewardπ
SO − Rewardπ

WC
) , (A.3.1)

where πWC denotes the worst-case policy.

Regrets calculated this way proved to be very similar to those calculated via (3.3.40)

without providing additional insight, and was therefore deemed unnecessary to discuss

in the main body of the thesis.

A.4 Issues with the Approximate Bayesian Infer-

ence

As discussed in Section 3.4.4, both types of regrets were seen to initially decrease then

increase again as the horizon was increased. This is contrary to expectations, as a longer

horizon means more observations and a more accurate estimate of the parameters we

wish to learn about.

We investigated how the estimates of B1 and B2, given by m1 and m2 (components of

m) evolve as time passes. To be able to focus on learning, the decision making element

of the problem was removed with only a single arm at a time played till the horizon.

1000 such arms, all with B1 = 0.5 and B2 = 0.5 were simulated. The mean estimated

values of B1 and B2, along with bands representing the 95% confidence interval can be

seen in Figure A.4.1. For both models, the average estimates show a quick initial shift

towards the true value, explaining the initially decreasing regret. However, even the
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average estimates stop short the true values, potentially leading to mis-identification of

the best arm and an increased regrets. While the mean of the m1s is similar across the

two models, the mean of the m2s is much further from the true value of B2 under DM2

compared to DM1. This could explain why the regret increased earlier and at a faster

rate for DM2.

A much smaller number of these instances were also individually plotted. The indi-

vidual series of estimates in Figure A.4.2 confirm what we suspected from Figure A.4.1;

the estimated values of parameters B1 and B2 are not accurate and might not converge

to their true values in the time-frame/number of observations we are interested in. Even

more, the estimates of B1 and B2 cover a wide range of values.

Without accurate estimates of the parameters, the expected reward rate of the arms

will not be accurate either. This increases the chance of picking, and sticking to a

sub-optimal arm, leading to high regrets.
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(a) DM1, SL estimates (b) DM1, variational estimates

(c) DM2, SL estimates (d) DM2, variational estimates

Figure A.4.1: Mean and 95% confidence interval of 1000 estimated values of B1 and

B2. It is clear that the estimates of B2 are further away from the underlying value for

DM2 than they are for DM1.
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(a) DM1, SL estimates (b) DM1, variational estimates

(c) DM2, SL estimates (d) DM2, variational estimates

Figure A.4.2: Estimated values of B1 and B2 for 10 instances, where the underlying

value of both is 0.5. There are large differences between individual estimates, especially

those of B2.



Appendix B

Appendix to Chapter 4

B.1 Calculations Regarding the Optimality of the

Myopic Policy

B.1.1 General condition for A = 2, M = 2

As discussed in Section 4.2.2, the myopic policy is optimal if at every decision epoch it

assigns the same action as the optimal policy. Here we derive the necessary condition

of myopic optimality of the A = 2, M = 2 case with w(s 6= 1M) = 1, w(1M) = 0.

The optimal policy assigns action 1 if the value function associated with said action is

lower than that of action 2. It may also pick action 1 if the value functions are equal

and the optimal policy is indifferent between the options. It has been established in

Section 4.2.2 that the myopic policy is optimal in the last stage of the puzzle which

includes states s1 and s2, and therefore here we focus on state s3. The condition for

the optimal policy choosing source 1 in state s3 is (as it would be in any other state)

V1(s3) ≤ V2(s3).

201
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Using the expanded form of Va(s3) from (4.2.21) we can rewrite the above as

E
[
T 1 (s3)

]
+ P (s1 | s3, 1)V (s1) + (1− P (s1 | s3, 1))V (s2)

≤ E
[
T 2 (s3)

]
+ P (s1 | s3, 2)V (s1) + (1− P (s1 | s3, 2))V (s2)

E
[
T 1 (s3)

]
− E

[
T 2 (s3)

]
≤ P (s1 | s3, 2)V (s1) + (1− P (s1 | s3, 2))V (s2)

− P (s1 | s3, 1)V (s1)− (1− P (s1 | s3, 1))V (s2)

≤ V (s1) (P (s1 | s3, 2)− P (s1 | s3, 1))

+ V (s2) (P (s1 | s3, 1)− P (s1 | s3, 2)) .

By letting ∆P (s1 | s3) denote P (s1 | s3, 1)− P (s1 | s3, 2) we get

E
[
T 1 (s3)

]
− E

[
T 2 (s3)

]
≤ ∆P (s1 | s3) (V(s2)− V(s1)) . (B.1.1)

The myopic policy assigns action 1 if

E
[
T 1 (s3)

]
< E

[
T 2 (s3)

]
,

which means that

E
[
T 1 (s3)

]
− E

[
T 2 (s3)

]
< 0.

It may also assign action 1 when it is indifferent between the actions, however that is

only an optimal assignment if the optimal policy is also indifferent, and therefore is a

special case we will touch on later.

Combining the two conditions, we can divide by the left-hand-side of (B.1.1) to get

1 ≥ ∆P (s1 | s3)
(V(s2)− V(s1))

E [T 1 (s3)]− E [T 2 (s3)]
,

which, after expanding V(s1) and V(s2) according to (4.2.18) and (4.2.19), is identical

to the condition proposed in (4.2.27)

1 ≥ ∆P (s1 | s3)
min
a∈SA

E [T a(s1)]− min
a∈SA

E [T a(s2)]

E [T 2 (s3)]− E [T 1 (s3)]
.

The same may be obtained through considering the conditions required for both the

optimal and the myopic policy to suggest action 2. In that case the relation in (B.1.1)
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is reversed, and the myopic policy only picks action 2 unambiguously if E [T 1 (s3)] −

E [T 2 (s3)] > 0, leading to the same condition for optimality.

As mentioned before, we have not yet considered the possibility that the myopic policy

is indifferent to the action taken, in which case E [T 1 (s3)] = E [T 2 (s3)] and would lead

to a 0 in the denominator of the optimality condition. However, an indifferent myopic

policy is only optimal if the optimal policy is also indifferent, requiring that both

E
[
T 1 (s3)

]
− E

[
T 2 (s3)

]
= ∆P (s1 | s3) (V(s2)− V(s1))

E
[
T 1 (s3)

]
= E

[
T 2 (s3)

]
are satisfied, which combines to

0 = ∆P (s1 | s3) (V(s2)− V(s1)) .

Therefore an indifferent myopic policy is only optimal if the transition probabilities

associated with the two actions are identical, or the states to which the process may

transition to have equal values.

B.1.2 Simplified case with pam = pm

This section contains the calculations leading to the optimality conditions of the myopic

policy for the first simplified case of the A = 2, M = 2 basic intelligence puzzle with

w(s 6= 1M) = 1, as shown in (4.2.29) and (4.2.30). Here the success probabilities of a

given type is the same regardless of the source so that p1
1 = p2

1 = p1 and p1
2 = p2

2 = p2.

The other restrictions on the parameters are t11 = t12 = t21 = t22 = 1 and c = 1. We start

by separately computing the terms of (4.2.27). Using the definitions of P (s1 | s3, a)

and E [T a (s)] found in Section 4.2.1 and denoting q1
1 as q1 and q2

1 as q2 they simplify
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to

∆P (s1 | s3) = P (s1 | s3, 1)− P (s1 | s3, 2)

=
q1p1

1

q1p1
1 + (1− q1) p1

2

− q2p2
1

q2p2
1 + (1− q2) p2

2

=
q1p1

q1p1 + (1− q1) p2

− q2p1

q2p1 + (1− q2) p2

=
(q1p1) (q2p1 + (1− q2) p2)− (q2p1) (q1p1 + (1− q1) p2)

(q1p1 + (1− q1) p2) (q2p1 + (1− q2) p2)

=
p1p2 (q1 − q2)

(q1p1 + (1− q1) p2) (q2p1 + (1− q2) p2)
,

E
[
T 2 (s3)

]
− E

[
T 1 (s3)

]
=

q2t21 + (1− q2) t22
q2p2

1 + (1− q2) p2
2

− q1t11 + (1− q1) t12
q1p1

1 + (1− q1) p1
2

=
1

q2p1 + (1− q2) p2

− 1

q1p1 + (1− q1) p2

=
q1p1 + (1− q1) p2 − q2p1 − (1− q2) p2

(q1p1 + (1− q1) p2) (q2p1 + (1− q2) p2)

=
(q1 − q2) (p1 − p2)

(q1p1 + (1− q1) p2) (q2p1 + (1− q2) p2)
,

min
a

E [T a(s1)]−min
a

E [T a(s2)] = min
a

qata0/c+ (1− qa) ta1
(1− qa) p2

−min
a

qata0 + (1− qa) ta1/c
qap1

= min
a

1

(1− qa) p2

−min
a

1

qap1

.

Th expression for min
a

E [T a(s1)]−min
a

E [T a(s2)] can be further simplified by consid-

ering two scenarios,

min
a

E [T a(s1)]−min
a

E [T a(s2)] =


q1p1 − (1− q2) p2

q1 (1− q2) (p1 − p2)
if q1 > q2,

q2p1 − (1− q1) p2

q2 (1− q1) (p1 − p2)
if q1 < q2,
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Substituting back into (4.2.27), for q1 > q2 we get

1 ≥ p1p2 (q1 − q2)

(q1p1 + (1− q1) p2) (q2p1 + (1− q2) p2)

× (q1p1 + (1− q1) p2) (q2p1 + (1− q2) p2)

(q1 − q2) (p1 − p2)

q1p1 − (1− q2) p2

q1 (1− q2) p1p2

1 >
q1p1 − (1− q2) p2

q1 (1− q2) (p1 − p2)
.

From here we need to consider the cases p1 < p2 and p1 > p2 separately. For p1 < p2

the optimality condition is

q1
(
1− q2

)
(p1 − p2) < q1p1 −

(
1− q2

)
p2,

(1− q1)

q1

(1− q2)

q2
<
p1

p2

,

while for p1 > p2 it is

q1
(
1− q2

)
(p1 − p2) > q1p1 −

(
1− q2

)
p2

(1− q1)

q1

(1− q2)

q2
>
p1

p2

.

Similarly, for q1 < q2 we get

1 >
p1p2 (q1 − q2)

(q1p1 + (1− q1) p2) (q2p1 + (1− q2) p2)

× (q1p1 + (1− q1) p2) (q2p1 + (1− q2) p2)

(q1 − q2) (p1 − p2)

q2p1 − (1− q1) p2

q2 (1− q1) p1p2

1 >
q2p1 − (1− q1) p2

q2 (1− q1) (p1 − p2)
,

which is split into the cases p1 < p2

q2
(
1− q1

)
(p1 − p2) < q2p1 −

(
1− q1

)
p2

(1− q1)

q1

(1− q2)

q2
<
p1

p2

,

and p1 > p2

q2
(
1− q1

)
(p1 − p2) > q2p1 −

(
1− q1

)
p2

(1− q1)

q1

(1− q2)

q2
>
p1

p2

.



APPENDIX B. APPENDIX TO CHAPTER 4 206

Therefore the conditions for optimality emerge based only on the value of p1/p2. It is

(1− q1)

q1

(1− q2)

q2
<
p1

p2

if
p1

p2

< 1, (B.1.2)

(1− q1)

q1

(1− q2)

q2
>
p1

p2

if
p1

p2

> 1. (B.1.3)

B.1.3 Simplified case with pam = pa

This section contains the calculations leading to the optimality conditions of the myopic

policy for the first further simplified case of the A = 2,M = 2 basic intelligence puzzle

with w(s 6= 1M) = 1, as shown in (4.2.29) and (4.2.30). Here the success probabilities of

a given type is the same regardless of the source so that p1
1 = p1

2 = p1 and p2
1 = p2

2 = p2.

The other restrictions on the parameters are t11 = t12 = t21 = t22 = 1 and c = 1. We start

by separately computing the terms of (4.2.27). Using the definitions of P (s1 | s3, a)

and E [T a (s)] found in Section 4.2.1 and denoting q1
1 as q1 and q2

1 as q2 they simplify

to

∆P (s1 | s3) = P (s1 | s3, 1)− P (s1 | s3, 2)

=
q1p1

1

q1p1
1 + (1− q1) p1

2

− q2p2
1

q2p2
1 + (1− q2) p2

2

=
q1p1

q1p1 + (1− q1) p1
− q2p2

q2p2 + (1− q2) p2
= q1 − q2.

E
[
T 2 (s3)

]
− E

[
T 1 (s3)

]
=

q2t21 + (1− q2) t22
q2p2

1 + (1− q2) p2
2

− q1t11 + (1− q1) t12
q1p1

1 + (1− q1) p1
2

=
q2 + (1− q2)

q2p2 + (1− q2) p2
− q1 + (1− q1)

q1p1 + (1− q1) p1

=
1

p2
− 1

p1
=
p1 − p2

p1p2
.

min
a

E [T a(s1)]−min
a

E [T a(s2)] = min
a

qata0/c+ (1− qa) ta1
(1− qa) pa2

−min
a

qata0 + (1− qa) ta1/c
qapa1

= min
a

1

(1− qa) pa
−min

a

1

qapa
.

The expression for min
a

E [T a(s1)]−min
a

E [T a(s2)] can be further simplified if we were

to consider the 4 scenarios given by which actions are better in which states. In the
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first two the same action is optimal both in s1 and s2. Then

min
a

E
[
Ta(s

(1))
]
−min

a
E
[
Ta(s

(2))
]

=


2q1 − 1

q1 (1− q1) p1
if a = 1 is always better,

2q2 − 1

q2 (1− q2) p2
if a = 2 is always better.

Note that for action 1 to always be better both (1− q1) p1 > (1− q2) p2 and q1p1 > q2p2

must be satisfied, in which case p1 > p2 is always true. Similarly, if action 2 a better

choice the p1 < p2. Then the optimality condition in the case where action 1 is always

optimal can be derived by substituting the relevant expressions into (4.2.27) as follows.

1 ≥
(
q1 − q2

) 2q1 − 1

q1 (1− q1) p1

p1p2

p1 − p2
,

1 ≥ (q1 − q2) (2q1 − 1) p2

q1 (1− q1) (p1 − p2)
,

q1
(
1− q1

) (
p1 − p2

)
≥
(
q1 − q2

) (
2q1 − 1

)
p2,

q1
(
1− q1

)(p1

p2
− 1

)
≥
(
q1 − q2

) (
2q1 − 1

)
,

p1

p2
≥ (q1 − q2) (2q1 − 1) + q1 (1− q1)

q1 (1− q1)
,

p1

p2
≥ (q1)

2
+ q2 − 2q1q2

q1 (1− q1)
.
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Following similar steps with the case where action 2 is always better and noting that

p1 − p2 < 0 we get

1 ≥
(
q1 − q2

) 2q2 − 1

q2 (1− q2) p2

p1p2

p1 − p2
,

1 ≥ (q1 − q2) (2q1 − 1) p1

q2 (1− q2) (p1 − p2)
,

q2
(
1− q2

) (
p1 − p2

)
≤
(
q1 − q2

) (
2q2 − 1

)
p1,

q2
(
1− q2

)(
1− p2

p1

)
≤
(
q1 − q2

) (
2q2 − 1

)
,

−p
2

p1
≤ (q1 − q2) (2q2 − 1)− q2 (1− q2)

q2 (1− q2)
,

p2

p1
≥ q1 + (q2)

2 − 2q1q2

q2 (1− q2)
,

p1

p2
≤ q2 (1− q2)

q1 + (q2)2 − 2q1q2
.

The other set of two scenarios emerge when one action is better in one state and the

other in the other state. Then

min
a

E
[
Ta(s

(1))
]
−min

a
E
[
Ta(s

(2))
]

=


q2p2 − (1− q1) p1

(1− q1) p1q2p2
if a = 1 is better in s1,

q1p1 − (1− q2) p2

(1− q2) p2q1p1
if a = 2 is better in s1,
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Using (4.2.27) the case where a = 1 is preferred in s1 but not in s2, the optimality

condition if p1 > p2 is

1 ≥
(
q1 − q2

) q2p2 − (1− q1) p1

(1− q1) p1q2p2

p1p2

p1 − p2
,

1 ≥
(
q1 − q2

) q2p2 − (1− q1) p1

(1− q1) q2 (p1 − p2)
,

(
1− q1

)
q2
(
p1 − p2

)
≥
(
q1 − q2

)
q2p2 −

(
1− q1

)
p1,

(
1− q1

)
q2p1 −

(
1− q1

)
q2p2 ≥

(
q1 − q2

)
q2p2 −

(
q1 − q2

) (
1− q1

)
p1,

(
1− q1

)
q2p1 +

(
q1 − q2

) (
1− q1

)
p1 ≥

(
q1 − q2

)
q2p2 +

(
1− q1

)
q2p2,

q1
(
1− q1

)
p1 ≥ q2

(
1− q2

)
p2,

p1

p2

q2 (1− q2)

q1 (1− q1)
.

If p1 < p2, the same steps apply but the relation is reversed. Considering the case where

a = 2 is preferred in s1 but not in s2 results in the same conditions for optimality.

Therefore we have two sets of conditions; two for p1 > p2

p1

p2
≥ (q1)

2
+ q2 − 2q1q2

q1 (1− q1)
, (B.1.4)

p1

p2
≥ q2 (1− q2)

q1 (1− q1)
, (B.1.5)

and two for p1 < p2

p1

p2
≤ q2 (1− q2)

q1 + (q2)2 − 2q1q2
, (B.1.6)

p1

p2
≤ q2 (1− q2)

q1 (1− q1)
. (B.1.7)

Note that in each pair the second condition is more permissive condition. For (B.1.4)

and (B.1.5) we can show this by comparing the numerators of the right hand sides. The
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condition in (B.1.5) is more permissive if

q2
(
1− q2

)
≤
(
q1
)2

+ q2 − 2q1q2

0 ≤
(
q1
)2

+
(
q2
)2 − 2q1q2

0 ≤ q1

q2
+
q2

q1
− 2

2 ≤ q1

q2
+
q2

q1
.

Since the right hand side of the above expression has a minima at 2, we have shown

that (B.1.5) is more permissive than (B.1.4). The same could be done for (B.1.6) and

(B.1.7) by comparing the denominators on their right hand side.

We recognise that both (B.1.5) and (B.1.7) are quadratic inequalities and may be

rewritten as

0 ≤
(
q2
)2 − q2 +

p1

p2
q1
(
1− q1

)
if p1 > p2

0 ≥
(
q2
)2 − q2 +

p1

p2
q1
(
1− q1

)
if p1 < p2

which is for p1 > p2 solved by

1

2

(
1−

√
1− 4

p1

p2
q1 (1− q1)

)
≤ q2 ≤ 1

2

(
1 +

√
1− 4

p1

p2
q1 (1− q1)

)

and for p1 < p2 solved by

q2 ≤ 1

2

(
1−

√
1− 4

p1

p2
q1 (1− q1)

)
or

1

2

(
1 +

√
1− 4

p1

p2
q1 (1− q1)

)
≤ q2,

as stated in (4.2.31) and (4.2.32).
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B.2 Calculations Regarding the Dynamic Program-

ming Policies

B.2.1 Obtaining the minimising action and associated value

function with unknown conditional success probabilities

This section of the appendix contains the steps required to obtain the value function

of a state (s,β) when the state space is limited to βam ≤ βmax ∀m, a, namely (4.3.13),

from the expression in (4.3.12). Let us start by reminding the reader that the value

function of state (s,β) is

V(s,β) = min
a∈Sa
{Va(s,β)} (B.2.1)

where Va(s,β) is stating the value of action a in state (s,β), calculated as

Va(s,β) = w(s)
M∑
m=1

qamt
a
m(s) +

M∑
m=1

qam
αamsm

αam + βam
V(sm+ ,β)

+
∑

m6∈µ(βa)

qam

(
1− αamsm

αam + βam

)
V(s,βam−) +

∑
m∈µ(βa)

qam

(
1− αamsm

αam + βamax

)
V(s,β).

Let Sa∗(s,β) denote the set of minimising actions in state (s,β) so that

Sa∗(s,β) =

{
a; arg min

a∈Sa
{Va(s,β)}

}
.

Observe that as a consequence of (B.2.1), the relation

Va6∈Sa∗ (s,β) > Va∈Sa∗ (s,β) = V(s,β)

is true. Based on the above,

Va(s,β) ≤ w(s)
M∑
m=1

qamt
a
m(s) +

M∑
m=1

qam
αamsm

αam + βam
V(sm+ ,β)

+
∑

m6∈µ(βa)

qam

(
1− αamsm

αam + βam

)
V(s,βam−) +

∑
m∈µ(βa)

qam

(
1− αamsm

αam + βamax

)
Va(s,β),
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as V(s,β) in the last term of Va(s,β) has been replaced with with Va(s,β), and can

be rearranged to get

Va(s,β) ≤
w(s)

M∑
m=1

qamt
a
m(s) +

M∑
m=1

qam
αamsm

αam + βam
V(sm+ ,β)

∑
m 6∈µ(βa)

qam +
∑

m∈µ(βa)

qam
αamsm

αam + βamax

+

∑
m 6∈µ(βa)

qam

(
1− αamsm

αam + βam

)
V(s,βam−)

∑
m6∈µ(βa)

qam +
∑

m∈µ(βa)

qam
αamsm

αam + βamax

.

Let us denote the quantity on the right as V′a(s,β). Then we know that

V′a(s,β) = Va(s,β) ∀a ∈ Sa∗ ,

V′a(s,β) > Va(s,β) ∀a 6∈ Sa∗ ,

and therefore the minimising action set and minimising value of Va(s,β) and V′a(s,β)

are identical:{
a; arg min

a∈Sa
{Va(s,β)}

}
=

{
a; arg min

a∈Sa
{V′a(s,β)}

}
= Sa∗(s,β),

min
a∈Sa
{Va(s,β)} = min

a∈Sa
{V′a(s,β)} = V(s,β).

Therefore we may write

V(s,β) = min
a∈Sa


w(s)

M∑
m=1

qamt
a
m(s) +

M∑
m=1

qam
αamsm

αam + βam
V(sm+ ,β)

∑
m 6∈µ(βa)

qam +
∑

m∈µ(βa)

qam
αamsm

αam + βamax

+

∑
m 6∈µ(βa)

qam

(
1− αamsm

αam + βam

)
V(s,βam−)

∑
m 6∈µ(βa)

qam +
∑

m∈µ(βa)

qam
αamsm

αam + βamax


as given in (4.3.13).



APPENDIX B. APPENDIX TO CHAPTER 4 213

B.2.2 Obtaining the minimising action and associated value

function with unknown encounter probabilities

This section of the appendix contains the steps required to obtain the value function of

a state (s,φ) when the state space is limited to
∑M

m=1 φ
a
m ≤ φmax ∀a, namely (4.4.16),

from the expression in (4.4.15). Let us start by reminding the reader that the value of

action a ∈ λ(φ) in state (s,φ), calculated as

Va∈λ(φ)(s,φa) = w(s)

∑M
m=1 φ

a
mtm(s)∑M

m=1 φ
a
m

+

∑M
m=1 φ

a
mp(s)V(sm+ ,φ)∑M
m=1 φ

a
m

+

∑M
m=1 φ

a
m (1− pam(s))V(s,φ)∑M

m=1 φ
a
m

,

where λ(φ) is a set of actions for which
∑M

m=1 φ
a
m = φmax, and that the value function

of state (s,φ) is given as

V(s,φ) = min
a∈Sa
{Va(s,φ)} ,

irrespective of a belonging to λ(φ) or not. Let Sa∗(s,φ) denote the set of minimising

actions in state (s,φ) so that

Sa∗(s,φ) =

{
a; arg min

a∈Sa
{Va(s,φ)}

}
.

Observe that consequently, the relation

Va6∈Sa∗ (s,φ) > Va∈Sa∗ (s,φ) = V(s,φ)

is true. Based on the above we know that

Va∈λ(φ)(s,φa) ≤ w(s)

∑M
m=1 φ

a
mtm(s)∑M

m=1 φ
a
m

+

∑M
m=1 φ

a
mp(s)V(sm+ ,φ)∑M
m=1 φ

a
m

+

∑M
m=1 φ

a
m (1− pam(s))Va∈λ(φ)(s,φ)∑M

m=1 φ
a
m

,

which is straightforward to rearrange to get

Va∈λ(φ)(s,φ) ≤ w(s)

∑M
m=1 φ

a
mt

a
m(s)∑M

m=1 φ
a
m∑M

m=1 φ
a
mp

a
m(s)∑M

m=1 φ
a
m

+

∑M
m=1 φ

a
mp(s)V(sm+ ,φ)∑M
m=1 φ

a
m∑M

m=1 φ
a
mp

a
m(s)∑M

m=1 φ
a
m

,

and that is the expression in (4.4.16).
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B.3 Numerical Study with More Informative Priors

B.3.1 Unknown conditional success probabilities

The numerical experiments in Section 4.3.4 that study Rπ
were repeated to evaluate

the effects of a more informative prior. Apart from the priors, the same experimental

set-up was kept identical. The outcome of this study can be seen in Figure B.3.1 to

Figure B.3.4.

Figure B.3.1: Mean relative regrets of the ECC-P, LA-P and MYO-P policies with more

informative priors. Intelligence puzzle with unknown P a, A = 2 and Beta(2,2) priors.

Figure B.3.2: Mean relative regrets of the ECC-P, LA-P and MYO-P policies with more

informative priors. Intelligence puzzle with unknown P a, A = 5 and Beta(2,2) priors.
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Figure B.3.3: Mean relative regrets of the ECC-P, LA-P and MYO-P policies with more

informative priors. Intelligence puzzle with unknown P a, A = 2 and Beta(5,5) priors.

Figure B.3.4: Mean relative regrets of the ECC-P, LA-P and MYO-P policies with more

informative priors. Intelligence puzzle with unknown P a, A = 5 and Beta(5,5) priors.

It is clear from the above figures that the conclusions of Section 4.3.4 apply to this

numerical study as well. Notice that the more informative the chosen prior is, the lower

the observed mean relative regret is.

B.3.2 Unknown encounter probabilities

The numerical experiments in Section 4.4.4 that study Rπ
were repeated to evaluate

the effects of a more informative prior. Apart from the priors, the same experimental
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set-up was kept identical. The outcome of this study can be seen in Figure B.3.5 to

Figure B.3.8.

Figure B.3.5: Mean relative regrets of the ECC-Q, LA-Q and MYO-Q policies with

more informative priors. Intelligence puzzle with unknown Qa, A = 2 and Dirichlet(2)

priors.

Figure B.3.6: Mean relative regrets of the ECC-Q, LA-Q and MYO-Q policies with

more informative priors. Intelligence puzzle with unknown Qa, A = 5 and Dirichlet(2)

priors.
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Figure B.3.7: Mean relative regrets of the ECC-Q, LA-Q and MYO-Q policies with

more informative priors. Intelligence puzzle with unknown Qa, A = 2 and Dirichlet(5)

priors.

Figure B.3.8: Mean relative regrets of the ECC-Q, LA-Q and MYO-Q policies with

more informative priors. Intelligence puzzle with unknown Qa, A = 5 and Dirichlet(2)

priors.

It is clear from the above figures that the conclusions of Section 4.4.4 apply to this

numerical study as well. Notice that the more informative the chosen prior is, the lower

the observed mean relative regret is.
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