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Abstract—The reconfigurable intelligent surface (RIS) can
proactively modify the wireless communication environment and
further improve the service quality of the wireless networks.
Motivated by this vision, in this paper, we propose to introduce
the RIS into the unmanned aerial vehicle (UAV) enabled mobile
edge computing (MEC) systems. Considering both the amount
of completed task bits and the energy consumption, the energy
efficiency of the RIS-assisted UAV-enabled MEC systems is maxi-
mized by jointly optimizing the bit allocation, phase shift, and UAV
trajectory via an iterative algorithm with a double-loop structure.
Simulation results show that: 1) the UAV tends to fly closer to
the RIS rather than the IoT devices; 2) the energy efficiency first
increases and then decreases with the increase of the total amount
of task-input bits of IoT devices; 3) higher energy efficiency can
be achieved by our proposed algorithm.

I. INTRODUCTION

In recent years, the number of Internet of Things (IoT)
devices is dramatically increasing, which generates enormous
volumes of data traffic and triggers higher demand for com-
munication and computing capacities. Mobile edge computing
(MEC) is recognized as an effective solution to tackle the
computation-intensive and latency-critical tasks generated by
these IoT devices [1]. However, the infrastructure-based MEC
systems are difficult to provide MEC services for IoT devices
located in remote areas. Fortunately, thanks to the inherent
attributes such as flexible deployment, the unmanned aerial
vehicle (UAV) can provide reliable computing services for IoT
devices by equipping with an MEC server [2]–[5].

In order to further improve the offloading performance of
IoT devices, an emerging technology called reconfigurable
intelligent surface (RIS) has drawn great attentions and been in-
troduced into the MEC systems recently. For instance, during a
given mission period, the total amount of completed task-input
bits is maximized in [6]–[8]. Simulation results demonstrate
that the significant performance enhancement for MEC systems
is able to be achieved with the aid of RIS. Aiming to minimize
the energy consumption, the phase shift, transmit power, time
and the decoding order are jointly optimized in [9]. Besides,
the latency minimization and energy efficiency maximization

problems in the RIS-assisted MEC are investigated in [10] and
[11], respectively.

However, there are still few works focusing on the opti-
mization of MEC systems assisted by both the UAV and RIS.
The deployment of RIS to a certain extant facilitates the task
offloading of IoT devices, but when a large amount of task
bits is offloaded to the UAV-mounted MEC server, it will
threaten the system’s operating time considering the UAV’s
limited energy storage. Besides, although the UAV trajectory
design has been intensively studied in UAV-assisted networks
without RIS, the proposed algorithms cannot be directly applied
to design the UAV trajectory with the participation of RIS. This
is because the angle of departure (AoD) of the signal from
the RIS to the UAV varies with the positions of UAV, which
means the UAV trajectory design is coupled with the phase
shift optimization.

Therefore, to bridge this research gap and tackle the afore-
mentioned challenges, we investigate the RIS-assisted UAV-
enabled MEC systems to maximize the energy efficiency, where
the task bit allocation between IoT devices and MEC server,
phase shift of RIS, and the UAV trajectory are jointly opti-
mized. Simulation results verify that our proposed algorithm
is able to achieve higher energy efficiency compared to the
schemes with random phase, without trajectory optimization,
without RIS, and the full offloading scheme.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model
We consider an RIS-assisted UAV-enabled MEC system,

where an UAV mounted with an MEC server is employed to
provide computing services for I IoT devices. An RIS with M

reflection elements is installed on the surrounding building wall
to assist IoT devices’ task offloading. To ease of exposition, the
IoT devices are denoted by i ∈ I

Δ
= {1, 2, ..., I}. The reflection

elements of RIS are indexed by m ∈ M
Δ
= {1, 2, ...,M}.

The mission period T is discretized into N time slots and
indexed by n ∈ N

Δ
= {1, 2, ..., N}. A 3D Cartesian coordinate

system is adopted to describe the positions of UAV, RIS, and978-1-6654-5975- 4/22/$31.00 c© 2022 IEEE



the IoT devices. Specifically, the horizontal position of the UAV
at time slot n is represented as q[n] = (xU[n], yU[n]). Similar
to [1], the altitude of UAV is H , with H > 0. The horizontal
position and the altitude of the first element on RIS are given
by wR = (xR, yR) and hR, respectively. Besides, for the i-th
IoT device, its altitude is zero and the horizontal position is
wi=(xi, yi).
1) Communication Model: Owing to the fact that the UAV

flies at a high altitude, and the RIS is installed on the façade
of a building, the communication link between the UAV and
RIS can be assumed to be a line-of-sight (LoS) channel [12].
Thus, the channel gain between the UAV and the RIS at time
slot n can be given by

hU
R[n] =

√
ρd−2

RU [n]
[
1, ..., e−j 2π

λ (M−1)dϕRU[n]
]
, (1)

where ρ is the path loss at the reference D0 = 1m;
dRU[n] =

√
(H − hR)

2
+ ‖q[n]−wR‖

2 denotes the distance
between the UAV and the RIS at the n-th time slot; d is the
antenna separation; λ is the carrier wavelength; ϕRU[n] =
(xR − xU[n])/dRU[n] is the cosine of the AoD of the signal
from the RIS to the UAV at time slot n.

The direct links from the IoT devices to the UAV are assumed
to be blocked [2]. Thus, the channel gain from the i-th IoT
device to the UAV at time slot n can be expressed as

hU
i [n] =

√
ρd−ε

iU [n]giU, (2)

where diU[n] =

√
‖q[n]−wi‖

2
+H2 is the distance between

the UAV and the i-th IoT device at time slot n; ε is the path loss
exponent and giU represents the random scattering component.

For the communication links from the IoT devices to the
RIS, we assume that they are Rician fading channels [2],
consisting of the LoS and non-LoS (NLoS) components. Hence,
the channel gain between the i-th IoT device and the RIS at
time slot n can be given by

hR
i [n]=

√
ρd

−γ
iR [n]

(√
β

1 + β
hLoS
iR +

√
1

1 + β
hNLoS
iR

)
, (3)

where diR =

√
‖wi −wR‖

2
+ hR

2 is the distance between the
i-th IoT device and the RIS; γ denotes the path loss exponent;
β represents the Rician factor; hLoS

iR and hNLoS
iR are the LoS

component and NLoS component, respectively. For hLoS
iR , we

have hLoS
iR [n] =

[
1, e−j 2π

λ dϕiR , ..., e−j 2π
λ (M−1)dϕiR

]T
, where

ϕiR = (xi − xR)/diR is the cosine of the angle of arrival
(AoA) of the signal from the i-th IoT device to the RIS.

Since the phase shift of each element of RIS can be dynam-
ically adjusted by a controller, in this paper, the phase shift
matrix of the RIS can be given by [13]

Φ[n] = diag
{
ejθ1[n], ..., ejθM [n]

}
, (4)

where θm[n] ∈ [0, 2π] is the phase shift of the m-th RIS

element at the n-th time slot. Thus, the combined channel gain
from the i-th IoT device to the UAV at time slot n can be
expressed as

hi[n] = hU
i [n] + (hR

i [n])
HΦ[n]hU

R[n]. (5)

Denote the bandwidth of the system as B. Benefiting from
the partial offloading paradigm, the IoT devices can offload
parts of their task-input data to the UAV. Besides, when the IoT
devices offload tasks, the NOMA protocol is adopted to further
improve the energy efficiency. To be specific, at each time slot,
the IoT devices are ranked by the UAV in the ascending order
of channel gain. Therefore, the order of the IoT devices for
the UAV is denoted by Π = {π1 [n] , π2 [n] , ..., πI [n]}, where
πi [n] is the index of the IoT device with the i-th smallest
channel gain to the UAV during time slot n.

After receiving the IoT device’s signal, the UAV adopts
the successive interference cancellation (SIC) technique to
decode signals from multiple IoT devices. Specifically, when
the UAV decodes the signal from IoT device πi [n], the signals
from IoT device π1 [n] to IoT device πi−1 [n] are regarded as
interference. Thus, the offloading data rate of IoT device πi [n]
at the n-th time slot can be expressed as [3]

Roff
πi

[n] = B log

(
1 +

pπi [n]|hπi [n]|
2∑i−1

j=1 pπj [n]
∣∣hπj [n]

∣∣2 + σ2

)
, (6)

where σ2 is the noise power. pπi [n] is the transmit power of
IoT device πi[n], which is assumed to be predetermined in
this paper. If the time slot index can be shown clearly in the
variables, the order index πi[n] in the subscript is reduced to
πi for ease of exposition.
2) Computation Model: The task of each IoT device can

be denoted by a positive tuple {Li, Ci}, where Li represents
the minimal amount of task-input bits of IoT device i in
the mission period. At each time slot, the IoT devices can
simultaneously perform local computing and task offloading.
Denote the amount of task bits that is computed by the UAV
for IoT device i at time slot n as lUAV

i [n]. Since the UAV can
only compute the task that has been offloaded and received, we
have

Roff
i [n] t ≥ lUAV

i [n] , ∀i ∈ I, n ∈ N . (7)

In addition, to meet all IoT devices’ minimum computation
requirements, we have

N∑
n=1

(
lloci [n] + lUAV

i [n]
)
≥ Li, ∀i ∈ I. (8)

where lloci [n] is the task bits computed locally at IoT device i.
3) Energy consumption model: During time slot n, the task

offloading energy consumption of IoT device i can be expressed
as

Eoff
i [n] = pi[n]t. (9)

Then, based on [3], the local computing energy consumed



by IoT device i can be modeled as

Ecom
i [n] =

κIoT

(
lloci [n]

)3
t2

, (10)

where κIoT is the effective capacitance coefficient.
With a similar model to the IoT device, the computing energy

consumption of the UAV at time slot n is given by

Ecom
U [n] =

I∑
i=1

κUAV

(
lUAV
i [n]

)3
t2

, (11)

where κUAV is the UAV’s effective capacitance coefficient.
The flying energy consumption of the UAV is modeled as

[14]
E

fly
U [n] = t

(
τ1v

3 [n] +
τ2

v [n]

)
, (12)

where τ1 and τ2 are two parameters related to the UAVs’
specifications.

B. Problem Formulation

In this paper, we aim to maximize the energy efficiency
of the RIS-assisted UAV-enabled MEC system. At each time
slot, the total amount of completed task bits are comprised of
the offloading task bits and those computed locally at the IoT
devices. Thus, at time slot n, the total amount of completed
task bits of the system is

L [n] =

I∑
i=1

(
lloci [n] +Roff

i [n] t
)
. (13)

Meanwhile, the total energy consumption includes all IoT
devices’ energy consumption and the UAV’s energy consump-
tion, which can be given by

E[n] =
I∑

i=1

(Eoff
i [n] + Ecom

i [n]) + E
fly
U [n] + Ecom

U [n] (14)

Define the energy efficiency as the ratio of the total amount of
completed task bits over the total energy consumption in the
mission period [15]. Thus, the energy efficiency maximization
problem for RIS-assisted UAV-enabled systems is formulated
as

max
z

∑N
n=1 L [n]∑N
n=1 E [n]

(15a)

s.t. |θm[n]| = 1, ∀m ∈ M,n ∈ N, (15b)
q[1] = q0,q[N + 1] = qF , (15c)
||v[n]|| ≤ VMax, ∀n ∈ N, (15d)
lloci [n]Ci

t
≤ Fi, ∀i ∈ I, n ∈ N , (15e)∑I

i=1 l
UAV
i [n]Ci

t
≤ FUAV, ∀n ∈ N , (15f)

(7), (8). (15g)

where z =
{
lloci [n], lUAV

i [n], θm[n],q[n]
}

. Constraint (15b)
represents the feasible set of RIS’s phase shift. Constraint
(15c) is UAV’s initial and final horizontal locations. Constraint
(15d) represents that the speed of UAV must be less than the
maximum speed. Fi and FUAV are maximum CPU frequencies
of IoT device i and the UAV, respectively. Constraints (15e)
and (15f) mean that the workloads of IoT devices and UAV
cannot exceed their maximum CPU frequencies.

III. SOLUTION TO THE FORMULATED PROBLEM

Due to the fractional structure of the objective function,
and the closely coupled optimization variables in (15), it is
difficult to obtain the globally optimal solution in polynomial
time. To tackle these challenges, an iterative algorithm with
a double-loop structure is proposed to maximize the energy
efficiency and optimize the bit allocation lloci [n] and lUAV

i [n],
phase shift of RIS θm[n], and the UAV trajectory q[n]. In the
outer loop, we exploit the Dinkelbach’s method to handle the
fraction programming and obtain the energy efficiency. With
the given energy efficiency, the coupled variables are iteratively
optimized in the inner loop.

Firstly, we equivalently transform problem (15) as the fol-
lowing parametric problem:

max
z,α

N∑
n=1

L[n]− α
N∑

n=1
E[n],

s.t.(15b)− (15g),
(16)

where α is the introduced auxiliary parameter. According to the
Dinkelbach’s method, the optimal solution z∗ of problem (15)
can be obtained when max

z

(∑N
n=1 L[n]− α∗ ∑N

n=1 E[n]
)
=

0, where α∗ is the optimal objective value of problem (15).
However, the optimal α∗ cannot be obtained in advance. Hence
we propose an iterative algorithm to update α. The details can
be seen in Algorithm 1.

In Algorithm 1, problem (16) needs to be solved with given
α(k). However, with given energy efficiency α(k), problem
(16) is still non-convex due to the coupling among optimiza-
tion variables. Therefore, we decompose problem (16) into
three subproblems by adopting the BCD technique, namely,
bit allocation, phase shift optimization, and UAV trajectory
optimization. And then an iterative algorithm is proposed to
solve them in an alternating manner.

A. Bit Allocation Among IoT devices and the UAV

With given θm[n] and q[n], the bit allocation problem is
reformulated from (16) as

max
lloci [n],lUAV

i [n]

N∑
n=1

L[n]− α

N∑
n=1

E[n] (17a)

s.t.(15e)− (15g). (17b)

Note that problem (17) is a standard convex optimization
problem, and can be readily solved via CVX.



Algorithm 1 Dinkelbach’s algorithm for maximizing the en-
ergy efficiency

1. Initialize z, iterative number k = 1.
2. repeat:
3. Solve problem (16) for given α(k), and obtain the

optimal solution z(k).

4. Calculate F (α(k)) =

∣∣∣∣ N∑
n=1

L[n]− α
N∑

n=1
E[n]

∣∣∣∣
(k)

.

5. if F (α(k)) ≤ δ then
6. α∗ =

∑N
n=1 L[n](k)∑
N
n=1 E[n](k) ; z∗ = z(k); break.

7. else α(k+1) =
∑N

n=1 L[n](k)∑
N
n=1 E[n](k) ; k = k + 1.

8. Until k ≥ Nmax.
9. Output: the optimal energy efficiency α∗ and the

corresponding solution z∗.

B. Phase Shift Optimization for RIS
For given lloci [n], lUAV

i [n], and q[n], problem (16) can be
reformulated as

max
θm[n]

N∑
n=1

I∑
i=1

BtRoff
πi

[n],

s.t. |θm[n]| = 1, ∀m ∈ M,n ∈ N.

(18)

To solve problem (37), we first define hRIS
πi

[n] =
hR
πi
[n]Hdiag

(
hU
R[n]

)
. Then, the channel gain between IoT

device πi[n] and the UAV can be expressed as

|hπi [n]|
2
=

∣∣∣hU
πi
[n] + (hR

πi
[n])

H
diag(Φ[n])hU

R[n]
∣∣∣2

= Tr (Hπi [n]Θ[n])+
(
hU
πi
[n]

)2
,

(19)

where Hπi [n] =

(
hRIS
πi

[n]
H
hRIS
πi

[n] hRIS
πi

[n]
H
hU
πi
[n]

hU
πi
[n]hRIS

πi
[n] 0

)
,

and Θ[n] = Φ̄[n]
(
Φ̄[n]

)H is a positive semidefinite matrix
with Φ̄[n] = [ejθ1[n], ..., ejθM [n], x]T . x is an auxiliary scalar.
By substituting (19) into problem (18), we have

Roff
πi
[n]=log2

(
i∑

j=1

pπj [n](Tr(Hπj [n]Θ[n])+(hU
πj
[n])

2
)+σ2

)

−log2

(
i−1∑
j=1

pπj [n]

(
Tr(Hπj [n]Θ[n])+

(
hU
πj
[n]

)2
)
+ σ2

)

= W i
1 [n]−W i

2 [n]
(20)

Thus, problem (18) can be transformed into

max
Θ[n]

N∑
n=1

I∑
i=1

(
W i

1 [n]−W i
2 [n]

)
(21a)

s.t.Θm,m[n] = 1, ∀m ∈ M, n ∈ N , (21b)
rank(Θ[n]) = 1, ∀n ∈ N . (21c)

We find the objective function of (21) is the difference of
concave functions, which can be handled by exploiting the

DC programming technique [8]. Thus, the second term of the
objective function can be approximated as

W i
2 [n] ≤

∑i−1
j=1 pπj

[n]
〈
(Θ[n]−Θ[n](l)),∇ΘTr(Hπj

[n]Θ[n])|
Θ=Θ

(l)

〉

ln 2

(∑i−1
j=1 pπj

[n]

(
Tr(Hπj

[n]Θ[n](l))+
∣∣∣hD

πj
[n]

∣∣∣2
)
+σ2

)

+(W i
2[n])

(l) = W̃ i
2[n]

(22)
For constraint (21c), we exploit the semi-definite program-

ming relaxation (SDR) technique such that problem (21) can
be expressed as [16]

max
Θ[n]

N∑
n=1

I∑
i=1

(
W i

1[n]− W̃ i
2[n]

)
(23a)

s.t.Θm,m[n] = 1, ∀m ∈ M, n ∈ N , (23b)
Θ[n] � 0, ∀n ∈ N , (23c)

Note that problem (23) is a standard convex semi-definite
programming and can be handled via classic convex toolboxes,
such as the SDP solver in the CVX tool [17]. Then, we itera-
tively update Θ[n] by solving problem (23) until convergence.
During the iteration, when the rank of Θ[n] is larger than one,
the Gaussian randomization method is adopted to recover Φ[n]
from Θ[n].

C. UAV Trajectory Optimization

Finally, supposing lloci [n] and lUAV
i [n], as well as θm[n] are

given, problem (16) can be reformulated as

max
q[n]

N∑
n=1

I∑
i=1

BtRoff
πi

[n]− tα
N∑

n=1

(
τ1v

3[n] + τ2
v[n]

)
s.t.(7), (15c), (15d).

(24)

Due to constraint (7) and the objective function, problem
(24) is also non-convex and difficult to solve. Therefore, we
firstly define M i

1[n] = B log
(∑i

j=1 pπj [n]
∣∣hπj [n]

∣∣2 + σ2
)

and M i
2[n] = B log

(∑i−1
j=1 pπj [n]

∣∣hπj [n]
∣∣2 + σ2

)
. The of-

floading rate of IoT device πi[n] at time slot n can be given
by Roff

πi
[n] = M i

1[n]−M i
2[n]. With optimal phase shift θm[n],

the channel gain between IoT device πi[n] and the UAV can
be expressed as [18]

hπi [n] = hU
πi
[n] + (hR

πi
[n])

H
Φ[n]hU

R[n]

=
√
ρ|gπiU|
d
ε/2
πiU

[n]
+

√
ρ
∑M

m=1 |hπiR,m|
dRU[n] .

(25)

Then, the auxiliary variables uπi [n] and w[n] are introduced
with dπiU[n] ≤ uπi [n], dRU[n] ≤ w[n]. By replacing the term
dπiU[n] and dRU[n] in M i

1[n] with uπi [n] and w[n], we can
obtain

M̃ i
1[n] = B log

⎛
⎝ i∑

j=1

pπi [n] Ξ(uπi[n], w[n])
2
+ σ2

⎞
⎠ , (26)



TABLE I: Simulation Parameters [6] [14]

Parameters Values Parameters Values
B 30 MHz θ1, θ2 0.00614, 15.976

Vmax 10 m/s β0 -30 dB
N 20 σ2 -50 dBm
H 40 m hR 20 m
Fi 3 GHz FUAV 12 GHz
γ 2.8 ε 3.5

where Ξ (uπi [n], w[n]) =
√
ρ|gπiU|

u
ε/2
πiU

[n]
+

√
ρ
∑M

m=1 |hπiR,m|
w[n] . Simi-

larly, for M i
2[n], we have

M̃ i
2[n] = B log

⎛
⎝i−1∑

j=1

pπi [n] Ξ(uπi [n], w[n])
2
+ σ2

⎞
⎠ . (27)

In addition, for the term v[n] in the denominator, v̄[n] is
introduced with v̄[n] ≤ v[n]. Then, a lower-bound of M̃ i

1[n]
can be expressed as

M̃ i
1[n]≥M̂ i

1[n]=logAi[n]+
Bi[n]

Ai[n] ln 2 (uπi [n]−uπi[n]
(l))

+ Ci[n]
Ai[n] ln 2 (w[n] − w[n]l),

(28)
where Ai[n] =

∑i
j=1 pπj [n]Ξ

(
uπj [n]

(l)
, w[n]

(l)
)2

+ σ2 ,

Ci[n] = −pπi [n]Ξ
(
uπi[n]

(l)
, w[n]

(l)
) √

ρ
∑M

m=1 |hπiR,m|
w2[n] , and

Bi[n] = −pπi [n]Ξ
(
uπi[n]

(l)
, w[n](l)

)
ε
√
ρ|gπiU |

u
ε/2+1
πi

[n]
.

Similarly, constraints (47b)-(47d) can be approximated as

(dπiU [n])
2 + (uπi [n]

(l))2 − 2uπi [n]
(l)uπi [n] ≤ 0, (29)

(dRU [n])
2 + (w[n](l))2 − 2w[n](l)w[n] ≤ 0, (30)

v̄[n]2t2 +
∥∥∥q[n](l) − q[n− 1]

(l)
∥∥∥2

−2
(
q[n]

(l) − q[n− 1]
(l)
)T

(q[n]− q[n− 1]) ≤ 0.
(31)

Then, problem (24) can be reformulated as a convex op-
timization problem, and can be solved efficiently by CVX
[19]. The auxiliary variables uπi [n], w[n], v̄[n] and q[n] are
iteratively updated until convergence. Finally, problem (24) is
effectively solved and the optimized UAV trajectory can be
obtained.

Based on the obtained solutions to the three subproblems, the
proposed BCD algorithm for solving problem (16) with given
energy efficiency is summarized in Algorithm 2. Therefore,
according to Algorithm 1, the original problem (15) is able to be
effectively tackled by iteratively updating the energy efficiency
in the outer-loop and jointly optimizing lloci [n] and lUAV

i [n],
θm[n], and q[n] in the inner-loop via Algorithm 2.

IV. SIMULATION RESULTS

In this section, we present simulation results and compare the
proposed energy efficiency maximization algorithm with other
baselines. In the simulations, there are 6 IoT devices and they

Algorithm 2 BCD algorithm for solving Problem (16)
1. Initialize αk, iterative number l = 1.
2. repeat:
3. Solve problem (17) to obtain lloci [n]

(l) and
lUAV
i [n](l) for given θm[n] and q[n].

4. Solve problem (18) to obtain θm[n](l) according to
the updated lloci [n]

(l), lUAV
i [n]

(l) and given q[n].
5. Solve problem (23) to obtain q[n](l) with updated

lloci [n]
(l), lUAV

i [n]
(l), and θm[n](l).

6. Calculate F
(
z(l)

)
=
∣∣∣∑N

n=1 L[n]−αk

∑N
n=1 E[n]

∣∣∣.
7. Update the iterative index l = l + 1.
8. Until: l > Nmax or

∣∣F (z(l+1))− F (z(l))
∣∣ ≤ δ.

9. Output: bit allocation lloci [n]∗ and lUAV
i [n]∗, phase

shift θm[n]∗, and UAV trajectory q[n]∗.

have the same amount of task-input bits, i.e., L1=L2= ...=LI .
The rest of simulation parameters is summarized in Table I.

Fig. 1(a) demonstrates the convergence behaviours of the
proposed energy efficiency maximization algorithm in the RIS-
assisted UAV-enabled MEC system with T = 10 sec. We
observe that the energy efficiency is increased rapidly at first
and converges after around 5-6 iterations. Moreover, under
different numbers of RIS elements, the proposed algorithm still
converges fast.

Fig. 1(b) illustrates the trajectory of UAV under two different
scenarios. Under the scheme without RIS, it can be observed
that the UAV tends to fly closer to the IoT devices in order to
achieve higher channel gains. On the contrary, in our proposed
RIS-assisted UAV-enabled MEC system, we observe that the
UAV tends to fly closer to the RIS. The reasons behind that
can be explained as follows. When the RIS is deployed to help
IoT devices’ task offloading, there is a compromise for the UAV
between the direct links and the reflecting links. By exploiting
our proposed algorithm to reconfiguring the phase shift of RIS,
the reflected signals is able to be combined constructively to
greatly enhance the UAV’s received signal power. Therefore,
the UAV tends to fly closer to the RIS rather than the IoT
devices in order to fully utilize the channel gains brought by
the RIS and increase the energy efficiency.

Fig. 1(c) shows the energy efficiency versus the total amount
of task-input bits of IoT devices. With the deployment of
RIS, we observe that our proposed algorithm can achieve a
higher energy efficiency than the other schemes, since the
bit allocation, phase shift, and UAV trajectory are jointly
optimized. Moreover, because the increase rate of exponential
function is faster than the linear function, it can be seen that
besides the full offloading scheme, the energy efficiency of all
schemes first increases and then decreases. While for the full
offloading scheme, the energy efficiency only shows a decrease
trend since the amount of offloading bits of IoT devices in the
full offloading scheme is greatly larger than the other schemes.
Besides, it can also be observed that if the phase shifts are
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Fig. 1. (a) Energy efficiency versus the iteration index. (b) UAV trajectories under two different scenarios. (c) Energy
efficiency versus the amount of task-input bits of IoT devices.

randomly chosen, the performance gain brought by the RIS
over the scheme without RIS is negligible. This is because for
the random phase scheme, the channel gain of the reflecting link
is nearly equal to zero when those reflected signals via RIS are
combined at the UAV. This result demonstrates the significance
of phase shift optimization in our proposed system.

V. CONCLUSION

In this paper, the RIS-assisted UAV-enabled MEC systems
were investigated with the aim to maximize the energy effi-
ciency, where an iterative algorithm with a double-loop struc-
ture was proposed to jointly optimize the bit allocation, phase
shift, and UAV trajectory. Simulation results have shown that
our proposed algorithm outperformed other baselines. It was
also observed that with the aid of RIS, the energy efficiency
can be greatly improved only when the phase shift was carefully
designed, and the UAV tended to fly closer to the RIS to obtain
a better channel condition, which was quite different from the
UAV-enabled MEC without RIS.
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