
Modelling and Estimation

of Time Series with Long

Memory

Keerati Suibkitwanchai, B.Eng., M.Sc (Dist.)

Submitted for the degree of Doctor of

Philosophy at Lancaster University.

July 2022



Abstract

Many real-world time series have been observed to have strong positive correlation be-

tween their long-term observed values, and this behaviour is known as long memory or

long-range dependence. However, many statistical models and estimation techniques

are built under the assumption of short memory (or sometimes complete indepen-

dence) and identically distributed data. This challenges the modelling and estimation

of time series with long memory. In the first half of this thesis, we investigate sev-

eral parametric models for time series with long memory, which are commonly known

as fractional models. We focus on the challenge of parameter estimation from sam-

pled time series, and compare numerous existing and novel methods in wide-ranging

simulation studies. The estimation results from all these methods are provided and

compared among each other to argue that a novel method, known as the debiased

Whittle likelihood estimator, originally proposed for time series with short memory,

is also the most appropriate method for long memory in terms of mean squared error,

consistency, asymptotic efficiency, and computational cost. We then implement this

estimator to study long-memory behaviour found in real-world financial time series,

as an example. In the second half of this thesis, we investigate two other applications
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of time series with long-memory behaviour in health sciences and sport sciences. Both

applications are concerned with high-frequency tracking of the movement of individ-

uals, the former concerned with monitoring activity levels of patients with advanced

dementia, and the latter concerned with footballers’ movements during professional

matches. In both applications, the observed time series exhibit cycles, trends, and

changes in variability, as well as long-memory behaviour. Therefore parametric mod-

els are difficult to construct for the time series of these applications, and we instead

propose nonparametric measures providing summary statistics jointly capturing long-

memory behaviour alongside other summary statistics of interest.



Acknowledgements

I would like to express my deepest gratitude to my supervisor, Dr Adam Sykulski, who

has given his full support to my PhD studies. His advice made me feel more confident

in conducting my research and writing this thesis. His comments and feedback on my

works were valuable for me to improve my research and other important skills for my

PhD studies. He is a great supervisor with whom I can discuss any problem, whether

or not it is related to my academic work for this thesis.

I also would like to thank all academic professors, professional and support staff,

colleagues, and friends who supported and helped me develop my work in this thesis.

These include all co-authors of my first published paper, especially Dr Guillermo

Perez Algorta, an academic professor in the Division of Health Research at Lancaster

University, who has supervised and helped me a lot regarding the collection of data

and their analysis on health sciences for this paper. Another project in sport sciences

in this thesis has been conducted with a lot of help from Dr Ian Cowling, a chief

technology officer of Sportlight Technology Ltd., who has provided the data for our

analysis and given me a lot of useful comments for my statistical analysis of these

data in sport sciences.

III



IV

Lastly, I am grateful to my parents for their support in everything that I have

made throughout my PhD studies.



Declaration

I declare that the work in this thesis has been done by myself and has not been

submitted elsewhere for the award of any other degree.

Keerati Suibkitwanchai

V



Contents

Abstract I

Acknowledgements III

Declaration V

Contents X

List of Figures XXIV

List of Tables XXVIII

List of Abbreviations XXIX

1 Introduction to Long-Memory Processes 1

1.1 Long-memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Financial Time Series . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

VI



CONTENTS VII

2 Background 14

2.1 Keywords and Functions of Time Series . . . . . . . . . . . . . . . . . 15

2.1.1 Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2 Autocovariance and Autocorrelation . . . . . . . . . . . . . . 16

2.1.3 Power Spectral Density Function . . . . . . . . . . . . . . . . 18

2.1.4 Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Fractional Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Fractional Gaussian Noise . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 The Fractionally Differenced Process . . . . . . . . . . . . . . . . . . 30

2.5 Pure Power Law Process . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Long-Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6.1 Fractional Gaussian Noise . . . . . . . . . . . . . . . . . . . . 36

2.6.2 The Fractionally Differenced Process . . . . . . . . . . . . . . 37

2.6.3 Fractional Brownian Motion . . . . . . . . . . . . . . . . . . . 38

2.6.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Estimation Methods 41

3.1 Maximum Likelihood Estimator . . . . . . . . . . . . . . . . . . . . . 42

3.2 Whittle Likelihood Estimator . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Debiased Whittle Likelihood Estimator . . . . . . . . . . . . . . . . . 46

3.4 Log-Periodogram Regression Estimator . . . . . . . . . . . . . . . . . 48

3.5 Estimators for the Stationary FD Process . . . . . . . . . . . . . . . . 49

3.6 Estimators for Discretely-Sampled FBM . . . . . . . . . . . . . . . . 49



CONTENTS VIII

3.7 Data Tapering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Simulation and Empirical Studies 55

4.1 Preliminary Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Estimation Results from Simulated FGNs . . . . . . . . . . . . . . . . 62

4.3 Estimation Results from Simulated FBMs . . . . . . . . . . . . . . . 77

4.4 Uncertainty Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Application on Log-Volatility Time Series . . . . . . . . . . . . . . . . 91

5 Nonparametric Statistics for High-Frequency Accelerometry Data

from Individuals with Advanced Dementia 95

5.1 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.1.1 Accelerometry data . . . . . . . . . . . . . . . . . . . . . . . . 100

5.1.2 Interdaily stability (IS) . . . . . . . . . . . . . . . . . . . . . . 103

5.1.3 Intradaily variability (IV) . . . . . . . . . . . . . . . . . . . . 104

5.1.4 DFA scaling exponent . . . . . . . . . . . . . . . . . . . . . . 105

5.1.5 Proportion of variance (PoV) . . . . . . . . . . . . . . . . . . 107

5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2.1 Accelerometry data . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2.2 Interdaily stability (IS) . . . . . . . . . . . . . . . . . . . . . . 110

5.2.3 Intradaily variability (IV) . . . . . . . . . . . . . . . . . . . . 111

5.2.4 DFA scaling exponent . . . . . . . . . . . . . . . . . . . . . . 116

5.2.5 Proportion of variance (PoV) . . . . . . . . . . . . . . . . . . 120

5.2.6 Comparison of statistical measures . . . . . . . . . . . . . . . 125



CONTENTS IX

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6 The Study of Several Measures to Detect Fatigue in Sport Sciences133

6.1 Materials and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2.1 Distance Covered . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.2.2 Significant Turns . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.2.3 Nonparametric Measures . . . . . . . . . . . . . . . . . . . . . 146

6.2.4 Comparison between Statistical Measures . . . . . . . . . . . . 148

6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.3.1 Distance Covered . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.3.2 Significant Turns . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.3.3 Nonparametric Measures . . . . . . . . . . . . . . . . . . . . . 160

6.3.4 Comparison of Nonparametric Measures . . . . . . . . . . . . 164

7 Conclusions 167

7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.2.1 Theoretic Properties of the Debiased Whittle Likelihood Esti-

mator for Long-Memory Processes . . . . . . . . . . . . . . . . 171

7.2.2 Methods and Models for Long-Memory Processes . . . . . . . 174

7.2.3 Stationarity vs. Nonstationarity . . . . . . . . . . . . . . . . . 176

7.2.4 Future Works on Fatigue Analysis . . . . . . . . . . . . . . . . 177



CONTENTS X

A Supplementary for Chapter 5 179

A.1 Demographic details of participants . . . . . . . . . . . . . . . . . . . 179

A.2 Nonparametric results . . . . . . . . . . . . . . . . . . . . . . . . . . 180

A.2.1 Summary statistics . . . . . . . . . . . . . . . . . . . . . . . . 180

A.2.2 Correlation between statistical measures . . . . . . . . . . . . 181

B Supplementary for Chapter 6 184

B.1 Ratio of the distance covered at high acceleration in magnitude v.s.

Time period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

C Supplementary for Chapter 7 186

C.1 Time complexity of the variance of linear combinations of periodogram

for FGN with a high value of the Hurst exponent . . . . . . . . . . . 186

Bibliography 189



List of Figures

2.2.1 Simulated FBMs with different true values of the Hurst exponent

such that HT ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Values are plotted at integer

values of t only. Each time series is generated from the cumulative

sum of simulated FGN (shown in Figure 2.3.1) with the same value

of HT . The true sample variance of FGN, denoted as σ2
T , is set as

one. The scale of the y-axis for each plot is different due to the

nonstationary behaviour of each FBM. . . . . . . . . . . . . . . . . 25

2.2.2 Time-averaged spectra of FBMs with HT = 0.1 (blue), HT = 0.3

(green), HT = 0.5 (orange), HT = 0.7 (red), and HT = 0.9 (violet).

All spectra are drawn from A = 1. The spectral values are in the

units of decibels (dB). . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Simulated FGNs with the same true value of the sample variance,

σ2
T = 1, but different true values of the Hurst exponent such that

HT ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Values are plotted at integer values

of t only. Details of the simulation algorithm are provided later in

Section 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

XI



LIST OF FIGURES XII

2.3.2 Spectra of FGNs with HT = 0.1 (blue), HT = 0.3 (green), HT =

0.5 (orange), HT = 0.7 (red), and HT = 0.9 (violet) by using the

approximated form in Equation (2.3.7) with M = 100. All spectra

are drawn from σ2
T = 1. . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6.1 Power spectral density functions of stationary (left) and nonstation-

ary (right) long-memory processes. The values of fractional param-

eters are {H, d, γ} = {0.7, 0.2,−0.4} for stationary processes, and

{H, d, γ} = {0.7, 1.2,−2.4} for nonstationary processes. . . . . . . . 40

3.7.1 Fejér kernels with n = {20, 50, 100, 1000}. . . . . . . . . . . . . . . 52

3.7.2 Rectangular (left) and 20% cosine (right) tapers. . . . . . . . . . . 53

4.1.1 The expected periodogram (green), the approximated aliased power

spectral density functions with M = 100 (blue) and M = 0 (red),

and the unaliased power spectral density function (orange) of each

simulated discrete-time FGN with HT ∈ {0.1, 0.3, 0.5} and σ2
T = 1.

The green, blue and red lines are often overlaid but small differences

do exist. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.2 The expected periodogram (green), the approximated aliased power

spectral density functions with M = 100 (blue) and M = 0 (red),

and the unaliased power spectral density function (orange) of each

simulated discrete-time FGN with HT ∈ {0.7, 0.9} and σ2
T = 1. The

green, blue and red lines are often overlaid but small differences do

exist. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



LIST OF FIGURES XIII

4.1.3 The expected periodogram without tapering (green), the approxi-

mated aliased power spectral density functions with M = 100 (blue)

and M = 0 (red), and the unaliased power spectral density func-

tion (orange) of each simulated discretely-sampled FBM with HT ∈

{0.1, 0.3, 0.5}. The level parameter of FBM is set as one, i.e., A = 1. 58

4.1.4 The expected periodogram without tapering (green), the approxi-

mated aliased power spectral density functions with M = 100 (blue)

and M = 0 (red), and the unaliased power spectral density func-

tion (orange) of each simulated discretely-sampled FBM with HT ∈

{0.7, 0.9}. The level parameter of FBM is set as one, i.e., A = 1. . . 59

4.1.5 The approximated aliased power spectral density function withM =

100 (blue), and the expected periodograms without (green) and with

20% cosine tapering (black) of each simulated FBM with HT ∈

{0.1, 0.3, 0.5, 0.7, 0.9} and A = 1. . . . . . . . . . . . . . . . . . . . 60

4.1.6 The chi-squared Q-Q plots of the distribution between the chi-squared

distributed data with two degrees of freedom, and either FGN (left)

or FBM (right) with HT = 0.7, and σ2
T = 1 (FGN) or A = 1 (FBM). 61



LIST OF FIGURES XIV

4.1.7 The linear regression plots for the estimation of the Hurst exponent

from simulated FGNs (upper) and FBMs (lower), each withHT = 0.3

(left), HT = 0.5 (middle), and HT = 0.7 (right). In each plot, the

x-axis is the low frequencies between 0 and π/8 radians per unit

time, and the y-axis is either the periodogram (I(ω)) of FGN or the

periodogram with 20% cosine tapering (J(ω)) of FBM. Both axes are

in logarithmic scales. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.1 The violin plots of estimated values of the Hurst exponent from sim-

ulated FGNs with HT = 0.1 (left) and HT = 0.9 (right) using four

different estimation methods. The orange horizontal line indicates

HT of these simulated processes. . . . . . . . . . . . . . . . . . . . 67

4.2.2 The violin plots of estimated values of the sample variance from sim-

ulated FGNs with HT = 0.1 (left) and HT = 0.9 (right) using three

different estimation methods. The orange horizontal line indicates

σ2
T of these simulated processes (σ2

T = 1). . . . . . . . . . . . . . . . 67

4.2.3 The line plots of mean absolute error and root-mean-square deviation

from the simultaneous estimation of both parameters of simulated

FGNs with σ2
T = 1 and HT varied between zero and one. Three

estimators are used for each plot including the WLE with M = 100

(blue), the WLE with M = 0 (red), and the DWLE (green). The

y-axis of each plot is in the logarithmic scale. . . . . . . . . . . . . 69



LIST OF FIGURES XV

4.2.4 The line plots of average computation time or CPU time for the

simultaneous estimation of both parameters of simulated FGNs with

σ2
T = 1 and HT varied between zero and one. Three estimators are

used including the WLE withM = 100 (blue), the WLE withM = 0

(red), and the DWLE (green). The y-axis is in the logarithmic scale.

CPU time is computed on a 1.8 GHz dual-core Intel Core i5 processor. 70

4.2.5 The line plots of the logarithmic functions of mean absolute error,

standard deviation, root-mean-square deviation, and the linear func-

tion of average CPU time against the logarithmic function of length

n from the estimation of the Hurst exponent of simulated FGNs with

HT = 0.1 (blue), HT = 0.3 (green), HT = 0.5 (orange), HT = 0.7

(red), and HT = 0.9 (violet) using the debiased Whittle likelihood

estimator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.6 The line plots of logarithmic functions of mean absolute error, stan-

dard deviation, root-mean-square deviation, and the linear function

of average CPU time against the logarithmic function of length n

from the estimation of the sample variance of simulated FGNs with

HT = 0.1 (blue), HT = 0.3 (green), HT = 0.5 (orange), HT = 0.7

(red), and HT = 0.9 (violet) using the debiased Whittle likelihood

estimator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



LIST OF FIGURES XVI

4.2.7 The line plots of mean absolute error and root-mean-square devia-

tion from the estimation with the modelling of FD processes to the

simulated FGNs used in Figure 4.2.3. Two estimators are used for

each plot including the WLE with M = 100 (blue) and the DWLE

(green). The y-axis of both plots is in the logarithmic scale. . . . . 75

4.2.8 The line plots of the mean of d̂ − Ĥ calculated from each set of
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Chapter 1

Introduction to Long-Memory

Processes

Time series analysis has been used to explain observed time-dependent data in various

aspects. A widely used way of representing this time-dependence is via the autoco-

variance, or its normalisation by the variance known as the autocorrelation. These

functions measure the covariance and correlation of values of time series at two differ-

ent points of time, given by t1 and t2, where their difference is called lag τ = t2 − t1.

When a time series is second-order stationary such that its first two central moments

do not depend on time, both autocovariance and autocorrelation at a particular lag

τ are constant for any times t1 and t2 that are lag τ apart. However, the autoco-

variance and the autocorrelation of a nonstationary time series, which is referred to

as any time series without second-order stationarity in this thesis, depend on both

lag τ and individual points of time. It is usually the case that both functions, the

autocovariance and the autocorrelation, generally decrease over lag τ . If these func-

1
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tions drop rapidly, like an exponential decay, or reach zero over a small number of

lags τ , the time series exhibits short-memory behaviour. In contrast, a more gradual

decrease of these functions over a large number of lags τ , like a power decay, rep-

resents long-memory behaviour of the time series. This behaviour corresponds to a

strong positive autocorrelation between values at distant points of time series, and

this is referred to as long-range dependence. More technical aspects of long memory

are deferred to Chapter 2. Time series in many real-world applications exhibit long-

memory behaviour with slow decay of its autocovariance, which has been empirically

observed.

The methodological treatment of time series with long memory is more challenging

than short memory due to the high correlation coefficients found in the autocorre-

lation, even at large lags. Many statistical models and their estimation techniques

are classically built from the assumptions of independence and identically distributed

data, or from short-memory time series, and do not trivially extend to time series with

long memory as shall become apparent. In this thesis, we will explore the modelling

and estimation of parameters that quantify the degree of long memory or long-range

dependence in time series. Some of the modelling and estimation techniques will

come directly from the autocovariance or autocorrelation, but others will use alter-

native representations such as the power spectral density function in the frequency

domain (also referred to as the spectrum in this thesis), or by directly modelling

and estimating the long-term variability or volatility of time series. Both existing

and novel estimation methods for long-memory parameters will be investigated. Re-

lated statistical measures, which capture other properties such as cyclical behaviour,
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will also be evaluated and compared alongside the estimation results of long-memory

parameters. In particular, in our application chapters, we will investigate the joint

estimation of multiple parameters and summary statistics, to investigate the ability

of capturing long memory in real-world datasets that are also influenced by other

properties such as cycles, trends, and changes of variability.

1.1 Long-memory Parameters

Long-memory parameters have been studied in many research works. Hurst (1951)

introduced a statistical measure called the rescaled range, which is the range of the

cumulative sum of a time series (after the mean has been subtracted), divided by the

standard deviation, and this has been often referred to as R/S analysis. Hurst (1951)

found that there is a strong linear relationship between the rescaled range from n

observed values and the logarithm of n, where n is a value between a small positive

number and the total length of the time series. A parameter representing the esti-

mated slope from the linear regression line of this relationship is nowadays known

as the Hurst exponent (H). Hurst (1951) also found that the Hurst exponent can be

estimated from the slope of the logarithm of the spectrum of the time series due to

its power-law relationship. The Hurst exponent can be used to measure the degree of

long-range dependence. The long-term positive autocorrelation of a long-memory pro-

cess results in a higher value of the Hurst exponent than a short-memory process. An

example of a process that has the Hurst exponent as its model parameter is fractional

Brownian motion (FBM) defined in terms of a stochastic integral equation (Mandel-
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brot and Van Ness, 1968). FBM is a nonstationary process which is a generalisation of

Brownian motion, which is classified as a Lévy process. The difference between FBM

and Brownian motion is that the increment, or the first-order difference process, of

the former allows for the dependence or correlation of their observed values, while the

increment of the latter is always Gaussian white noise with uncorrelated observations.

Thus, the increment of FBM is called fractional Gaussian noise (FGN). This process

is stationary and also has the Hurst exponent as its model parameter.

Another long-memory parameter found in the literature is the order of differencing

“d”, which is used in the fractionally differenced (FD) process proposed by Granger

and Joyeux (1980) and Hosking (1981). It is a special case of the autoregressive

fractionally integrated moving average or ARFIMA(p, d, q) process with the zeroth-

order of autoregressive and moving average parts (p = 0 and q = 0, respectively), and

therefore the FD process can be referred to as an ARFIMA(0, d, 0) process. We note

that sometimes FARIMA is used instead of ARFIMA in the literature. In general,

the value of d for the FD process can be any real number. Another process using

a long-memory parameter similar to H and d is a pure power law (PPL) process

with parameter γ. This parameter is used to explain the power-law behaviour of the

spectrum of the process at all observed frequencies. The PPL process is similar to

other long-memory processes such as FBM and the FD process, at low frequencies,

as we shall study further in Chapter 2. There are also widely used nonparametric

approaches for capturing long memory, for example, Peng et al. (1994) introduced

a long-memory summary statistic describing the scale invariance (or self-similarity)

of the fluctuation of time series, and named a statistical procedure to calculate this
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statistic as detrended fluctuation analysis (DFA). The summary statistic is called the

scaling exponent and defined as α, and is related to H as we shall show in Chapter 2.

Among all long-memory parameters and summary statistics mentioned above, we

will mainly focus on the Hurst exponent (H) and the scaling exponent from detrended

fluctuation analysis (α) in this thesis. The estimation of H from several parametric

methods and the nonparametric calculation of α will be explored in detail.

1.2 Estimators

Parameters of each fractional process (FBM, FGN, FD, or PPL) can be estimated

with several parametric methods. Many properties are considered as criteria to se-

lect the best estimator among them. These properties include unbiasedness, low

measurement errors, consistency, efficiency, and low computational cost. Fox and

Taqqu (1986) investigated the maximum likelihood estimator (MLE) for the esti-

mation of long-memory parameters. The advantage of this method is the consistency

and asymptotic efficiency of the estimator with a convergence rate of 1/
√
n, where n

is the length of the fractional process. This is also called
√
n-consistency. However,

the log-likelihood function of this estimator (see Brockwell (1987)) consists of the in-

version of the autocovariance matrix and this contributes to very high computational

cost for processes with high n, which is at least O(n2) in general. We therefore also

consider an estimator with lower computational cost, and this is an approximated

version of the MLE in the frequency domain called the Whittle likelihood estima-

tor (WLE) (Whittle, 1953). The log-likelihood function of this estimator utilises the
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power spectral density function and the periodogram, which is the asymptotically

unbiased estimator of the power spectral density function itself, and it still maintains

the consistency and asymptotic efficiency of the estimate with the same convergence

rate as the maximum likelihood estimator assuming certain assumptions are satis-

fied (Dzhaparidze and Kotz, 1986). However, the periodogram has been shown to

have large bias for certain processes with finite samples, and this bias can cause sub-

stantial bias of estimates from the WLE (Contreras-Cristán et al., 2006). To alleviate

this problem, Sykulski et al. (2019) proposed its debiased version with the replace-

ment of the power spectral density function by the expected periodogram. However,

they only proved consistency and asymptotic efficiency with some short-memory pro-

cesses such as the Matérn and autoregressive (AR) processes in their theoretical and

simulation studies. It is therefore of interest to see if the debiased Whittle likelihood

estimator (DWLE) can be applied to long-memory processes, and we shall investigate

this idea in this thesis.

1.3 Applications

The measurement of long memory has been conducted with time series of many ap-

plications in various fields of study, for instance, computer communications (Beran

et al., 1995; Paxson, 1997), ecology (Wang et al., 2011), thermodynamics (Doucoure

et al., 2016), hydrology (Hurst, 1951; Molz and Liu, 1997), oceanography (Sanderson

et al., 1990; Lilly et al., 2017), atmospheric pollutants (Knight et al., 2017), and wind

energy (Knight and Nunes, 2019). In this thesis, we will perform an analysis of long-
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memory time series derived from financial data. In fact, financial time series are a

widely-studied application area of long-memory behaviour as we shall now discuss.

1.3.1 Financial Time Series

In finance, the measurement of long memory has been performed with either the es-

timation of long-memory parameters or the modelling of fractional processes fitted

to the observed data. Couillard and Davison (2005) studied the log returns of S&P

500 index and stock prices from three large capitalisation companies, and reported

them as nonstationary Brownian motions according to the estimated Hurst expo-

nents from the adjusted R/S analysis introduced by Annis and Lloyd (1976). Qian

and Rasheed (2007) measured the Hurst exponent from the daily return of Dow Jones

index with the standard R/S analysis (Hurst, 1951). They suggested that its time

series is not totally random noise as the long-memory behaviour can be detected

according to the high local Hurst exponent changing over the observed time peri-

ods. Corazza and Malliaris (2002) used a modified R/S test from Lo (1991) to check

whether the daily returns of foreign exchange rates correspond to Brownian motion.

They found that the local Hurst exponents are consistent with persistent long-range

dependence of its increment process. These research works show examples of how

long memory-behaviour has been detected in various financial assets, but to varying

degrees, and motivates the need for good models and estimation methods to capture

these differences. Apart from multiple versions of R/S analysis, some other methods

that have been used to estimate the Hurst exponent from financial time series include

multiresolution analysis (Mallat, 1989; Karuppiah and Los, 2005; Kyaw et al., 2006),
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and the generalised Hurst exponent approach (Di Matteo et al., 2003; Barunik and

Kristoufek, 2010; Sensoy, 2013). Some research works suggested to use the FD or

ARFIMA(0, d, 0) process for modelling the time series of financial assets (Ding et al.,

1993; Man, 2003; Ellis and Wilson, 2004; Xiu and Jin, 2007). However, in this the-

sis, we will instead provide an example of the estimation of the Hurst exponent (H)

from financial data, as the order of differencing (d) of the FD process can be theo-

retically predicted from the Hurst exponent by using a single relationship, which will

be explained later. The financial data we shall study are log-volatility time series of

four stock indices. Gatheral et al. (2018) also studied these time series with different

financial assets and found that they behave like nonstationary fractional Brownian

motion exhibiting long-memory behaviour. Unlike this work, we will estimate both

global and time-local Hurst exponents from log-volatility time series along with their

uncertainty intervals from our own estimation methods. It is of interest to compare

how well our methods estimate the Hurst exponent from real financial data that have

already been analysed by different estimators in Gatheral et al. (2018).

In the second half of this thesis, high-frequency time series data from two other

applications in health sciences and sport sciences will be investigated in detail. Unlike

financial data, we will measure their long-memory behaviour by the scaling exponent

(α) from DFA and related nonparametric summary statistics as the data are more

complicated with trends and cycles, and therefore parametric models do not work well

here. Related previous works of estimating long-memory behaviour in both areas will

be provided later in Chapters 5 and 6.
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1.4 Contributions

This thesis is divided into three works with five chapters excluding the introduction

and conclusion. Our main work on the estimation and modelling of fractional pro-

cesses with long-memory parameters is explained in Chapters 2–4. The parametric

estimation will be applied to simulated time series and log-volatility time series from

financial assets. Then in Chapters 5–6, we will conduct two other research studies

on the applications of nonparametric statistical measures related to long memory to

high-frequency data. The first research has been published in the PLOS ONE Journal

with the title of “Nonparametric Time Series Summary Statistics for High-Frequency

Accelerometry Data from Individuals with Advanced Dementia,” cited as Suibkitwan-

chai et al. (2020), and this paper is given in Chapter 5. The second research uses

some nonparametric measures from this published paper along with new measures to

study the impact of fatigue on performance of footballers, and this is explained in

Chapter 6. All works in this thesis are concluded in the final chapter or Chapter 7.

A brief outline of our works in Chapters 2–6 is given as follows:

Chapter 2: Background reviews the properties of four fractional processes

studied in this thesis. The first two processes are nonstationary fractional Brownian

motion (FBM) and its first-order difference process called stationary fractional Gaus-

sian noise (FGN). Both depend on the Hurst exponent (H) with a value between zero

and one, which determines their degree of long memory or long-range dependence.

Another fractional process is the fractionally differenced (FD) process, which is a

discrete-time fractional process depending on the order of differencing (d) of Gaus-
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sian white noise. Lastly, the pure power law (PPL) process is another discrete-time

fractional process used to model the power-law behaviour found in the spectrum of

many time series with long memory. With each process, the conditions on the param-

eters for the existence of long memory and stationarity are also given.

Chapter 3: Estimation Methods describes existing and novel estimators for

long-memory parameters. The maximum likelihood estimator is explained but not

used in practice due to its high computational cost. Its approximated versions, the

Whittle likelihood estimator and the debiased Whittle likelihood estimator, are used

instead. The log-periodogram regression estimator is another method which esti-

mates long-memory parameters by performing regression on the logarithm of the pe-

riodogram at low frequencies. We shall also discuss that for a finite-length nonstation-

ary process, data tapering can be conducted before the estimation of the long-memory

parameter to reduce bias from the spectral leakage of its spectrum.

Chapter 4: Simulation and Empirical Studies performs detailed simulation

studies to assess the performance of the estimation methods provided in Chapter 3.

In particular, we compare estimated values of the Hurst exponent from simulated

time series of fractional Gaussian noise with various lengths and true values of the

Hurst exponent. Quantification of the uncertainty of these estimates is also discussed.

Lastly, we provide an example of our estimation of the Hurst exponent from the log-

volatility time series of four financial assets reported in the Oxford-Man Institute’s

realized library (https://realized.oxford-man.ox.ac.uk).

Chapter 5: Nonparametric Statistics for High-Frequency Accelerome-

try Data from Individuals with Advanced Dementia provides our published
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paper in the PLOS ONE Journal (Suibkitwanchai et al., 2020). The content of this

chapter is exactly the same as the paper. The abstract of this paper is given as follows:

“Accelerometry data has been widely used to measure activity and the circadian

rhythm of individuals across the health sciences, in particular with people with ad-

vanced dementia. Modern accelerometers can record continuous observations on a

single individual for several days at a sampling frequency of the order of one hertz.

Such rich and lengthy data sets provide new opportunities for statistical insight, but

also pose challenges in selecting from a wide range of possible summary statistics, and

how the calculation of such statistics should be optimally tuned and implemented. In

this paper, we build on existing approaches, as well as propose new summary statis-

tics, and detail how these should be implemented with high frequency accelerometry

data. We test and validate our methods on an observed data set from 26 recordings

from individuals with advanced dementia and 14 recordings from individuals without

dementia. We study four metrics: Interdaily stability (IS), intradaily variability (IV),

the scaling exponent from detrended fluctuation analysis (DFA), and a novel nonpara-

metric estimator which we call the proportion of variance (PoV), which calculates the

strength of the circadian rhythm using spectral density estimation. We perform a

detailed analysis indicating how the time series should be optimally subsampled to

calculate IV, and recommend a subsampling rate of approximately 5 minutes for the

dataset that has been studied. In addition, we propose the use of the DFA scaling

exponent separately for daytime and nighttime, to further separate effects between

individuals. We compare the relationships between all these methods and show that

they effectively capture different features of the time series.”
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We perform the analysis of high-frequency accelerometry data with the four statis-

tical methods given in the abstract. All of them are nonparametric as no parametric

assumptions are made for the distribution of their time series. Instead of the Hurst

exponent from a parametric model, we calculate the scaling exponent from DFA to

measure the degree of long memory in a time series. Several reasons are that (1) it is

highly likely that the time series are non-Gaussian and non-stationary due to the exis-

tence of the cyclical trend of the circadian rhythm which makes a complete parametric

model very difficult to construct, and (2) it would be complicated and require very

high computational time to estimate parameters of long time series of high-frequency

accelerometry data using any parametric estimation method in Chapter 3, due to the

volume and length of time series considered. Apart from long-memory behaviour, we

also measure the strength of circadian rhythm and the variability of time series from

three other statistical methods: IS, IV, and PoV. Finally, we perform a comparison

of numerical results from all methods applied to the time series of accelerometry data

from two groups of people with advanced dementia, who received either normal treat-

ment (non-intervention group) or special treatment (intervention group), and a group

of people without dementia.

Chapter 6: The Study of Several Measures to Detect Fatigue in Sport

Sciences is about the analysis of acceleration and related data from footballers to

study fatigue due to their activity and movement during professional football matches.

We received the data of their individual performance from Sportlight Technology Ltd.

(https://www.sportlight.ai), and these data are divided into two datasets. The first

set contains the information of position, speed, and acceleration of each player, while
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the second set reports the events of significant turns defined as the sudden changes

of players’ movement from high deceleration to high acceleration in a short period of

time. In this chapter, we report several measures including the total distance covered,

the rate of change of distance covered at high acceleration in magnitude, and the total

number of significant turns. Two nonparametric statistics from Chapter 5 including

the intradaily variability (IV) and the scaling exponent from DFA are evaluated for the

measurement of long memory in the time series of acceleration data from footballers.

Because each acceleration time series is non-Gaussian and non-stationary, which is

similar to what we found from the accelerometry time series in the previous chapter,

it is better to use DFA than the parametric estimation methods proposed in Chapter 3,

as once again a full parametric model is very difficult to construct for such complex

time series.

The main goal of this chapter is to detect the difference of these measures and

statistics from players in different positions, as well as the impact of fatigue to their

performance as the game progresses across the 90 minutes.



Chapter 2

Background

In this chapter, theoretical concepts of continuous-time and discrete-time fractional

processes along with their long-memory conditions are given. This chapter is divided

into six sections. Section 2.1 explains some important functions and keywords related

to time series analysis, and these will be used in the study of fractional processes in

other sections. Section 2.2 provides a brief introduction of continuous-time nonsta-

tionary FBM and its Hurst exponent. The general form, the autocovariance func-

tion, and the spectrum of this fractional process are also defined. Section 2.3 shows

these functions for discrete-time stationary FGN, which is the first-order increment

or difference process of regularly-sampled FBM. The approximation of the spectrum

that incorporates aliasing due to this sampling is mathematically given. Section 2.4

expresses the definition of the discrete-time FD process, and provides its several fea-

tures in both the time and frequency domains. The FD process is either stationary

or nonstationary depending on its parameter d representing the order of differencing

of Gaussian white noise, which is explained in this section. Section 2.5 provides the

14
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details of the discrete-time PPL process and the similarity between its spectrum and

that of other fractional processes at low frequencies related to the power-law relation-

ship. Lastly, Section 2.6 explains the requirements for long memory of a given time

series process as derived from its autocovariance and its spectrum. These conditions

are used to define the parameter regions for the existence of long memory from each

fractional process studied in this chapter.

2.1 Keywords and Functions of Time Series

2.1.1 Stationarity

Stationarity is a fundamental concept used in time series analysis to determine the

modelling of time series data or stochastic processes. Let {Xt | t ∈ T} be a real-

valued time series of length n generated from a stochastic process, where T is the

domain of values that t is allowed to take. If T is a continuous domain (such as

the set of real numbers R) then we say the stochastic process is “continuous-time”,

conversely if T is a discrete domain (such as the set of integers Z) then we say

the stochastic process is “discrete-time”. We shall work with both continuous- and

discrete-time processes in this thesis, but keep our definitions general where possible.

The time series {Xt | t ∈ T} is strictly or strongly stationary if the unconditional

joint probability distribution FX(Xt1 , Xt2 , . . . , Xtk) is identical to the unconditional

joint probability distribution FX(Xt1+τ , Xt2+τ , . . . , Xtk+τ ) such that t1, t2, . . . , tk ∈ T

and t1+τ, t2+τ, . . . , tk+τ ∈ T for any possible real value of lag τ and for any positive

integer k ≤ n. Furthermore, the time series is weakly or second-order stationary if



CHAPTER 2. BACKGROUND 16

• The mean is finite and constant, i.e., −∞ < E [Xt] = µX <∞.

• The variance is finite and constant, i.e., −∞ < Var[Xt] = σ2
X <∞.

• The autocovariance and autocorrelation only depend on lag τ .

The third assumption is about the property of autocovariance (or autocorrelation).

This function is used to describe the covariance (or correlation) of a single time series

at two different points of time such as t1 and t2. For a weakly stationary time series,

the autocovariance solely depends on lag τ = t2 − t1 such that for a given τ , the

observed times t1 and t2 have no effect on the autocovariance (or autocorrelation).

We provide the formal definitions in the next section.

In this thesis, we will use the word “stationary” as the same meaning as weakly

stationary. Furthermore, the word “nonstationary” is used to represent the behaviour

which is not weakly stationary such that at least one of these three given assumptions

is not satisfied.

2.1.2 Autocovariance and Autocorrelation

The theoretical autocovariance of a stationary time series {Xt | t ∈ Z}, is given at lag

τ ∈ Z by

sX,τ = Cov[Xt, Xt+τ ] = E [(Xt − E [Xt])(Xt+τ − E [Xt+τ ])]

= E [XtXt+τ ]− E [Xt]E [Xt+τ ]

= E [XtXt+τ ]− µ2
X

= sX,−τ , (2.1.1)
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such that the autocovariance is symmetric in τ . The autocovariance at lag τ = 0 is

represented as E [X2
t ]− µ2

X , which is equivalent to the second central moment or the

variance of {Xt}, denoted as σ2
X .

The definition above is given for a stationary time series sampled at integer times

(t ∈ Z), but applies to stationary stochastic processes in general. For example, if

we consider a continuous-time stationary stochastic process (t ∈ R), which we shall

henceforth denote {X(t)}, then the definition of the autocovariance is identical to

Equation (2.1.1), except replacing Xt by X(t), and allowing τ ∈ R. We will use

the term “autocovariance function” (ACVF) or sX(τ) when considering a continuous-

time stationary stochastic process, and the term “autocovariance sequence” (ACVS)

or sX,τ when considering a discrete-time stationary stochastic process or a sampled

time series (from either a continuous or discrete-time stationary stochastic process).

For a nonstationary process, the autocovariance and autocorrelation depend on both

time t and lag τ .

In practice, we can calculate the sample autocovariance of the observed time series

from {Xt | t ∈ T} sampled uniformly at times t = 1, 2, . . . , n as

ŝX,τ =
1

n

n−τ∑
t=1

(Xt − X̄)(Xt+τ − X̄), τ = 0, . . . , n− 1, (2.1.2)

where X̄ is the sample mean of the observed time series from {Xt | t ∈ T}.

The autocorrelation is often used interchangeably with the autocovariance in many

fields of study. However, in Statistics, these two terms are different such that the

autocorrelation is in fact the normalisation of the autocovariance by the variance.

This autocorrelation is often referred to as the autocorrelation coefficient, which is
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defined as ρX,τ for a sampled time series or discrete-time process, and ρX(τ) for a

continuous-time process. This coefficient always satisfies |ρX,τ | ≤ 1 or |ρX(τ)| ≤ 1 for

any observable lag τ , and is expressed for discrete-time stationary processes by

ρX,τ = Cor[Xt, Xt+τ ] =
Cov[Xt, Xt+τ ]

σXtσXt+τ

=
E [(Xt − E [Xt])(Xt+τ − E [Xt+τ ])]

σXtσXt+τ

=
sX,τ

σ2
X

=
sX,−τ

σ2
X

= ρX,−τ , (2.1.3)

and similarly for continuous-time stationary processes replacing Xt with X(t), and

ρX,τ with ρX(τ). In practice, the sample autocorrelation of the observed time series

from {Xt | t ∈ T} with t = 1, 2, . . . , n is given by

ρ̂X,τ =

∑n−τ
t=1 (Xt − X̄)(Xt+τ − X̄)∑n

t=1(Xt − X̄)2
, τ = 0, . . . , n− 1. (2.1.4)

The sample autocovariance (Equation (2.1.2)) and the sample autocorrelation (Equa-

tion (2.1.4)) are both asymptotically unbiased estimators of the autocovariance and

the autocorrelation, respectively, assuming stationarity is satisfied.

2.1.3 Power Spectral Density Function

The power spectral density function, which is also referred to as the spectrum in this

thesis, is used to show the distribution of the power of time series over frequency. Let

{X(t)} be a continuous-time and real-valued stationary process. The average power

of this process is shown as an integral in either the time or frequency domain using
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Parseval’s theorem, expressed by

P = lim
T→∞

1

T

∫ ∞

−∞
|X(t)|2 dt = lim

T→∞

1

T

∫ ∞

−∞
|Fω{X(t)}|2 dω, (2.1.5)

where Fω{X(t)} =
∫∞
−∞X(t)e−iωt dt is the Fourier transform of {X(t)} (i ≡

√
−1

is the imaginary number). The integrand |Fω{X(t)}|2 is equivalent to the Fourier

transform of the convolution of {X(t)} with itself, and this is given by

|Fω{X(t)}|2 =
∫ ∞

−∞

[ ∫ ∞

−∞
X(t+ τ)X(t) dt

]
e−iωτ dτ. (2.1.6)

The power spectral density function of {X(t)} at each frequency ω is defined as the

integrand of its average power in the frequency domain, i.e.,

S̃X(ω) = lim
T→∞

1

T
|Fω{X(t)}|2. (2.1.7)

By substituting the Fourier transform from Equation (2.1.6) into this definition of the

spectrum (Equation (2.1.7)), we can simplify the spectrum as

S̃X(ω) =

∫ ∞

−∞
E [X(t+ τ)X(t)] e−iωτ dτ =

∫ ∞

−∞
sX(τ)e

−iωτ dτ, (2.1.8)

where sX(τ) is the autocovariance function at lag τ of the process {X(t)}. From the

above equation, the spectrum and the autocovariance function are Fourier transform

pairs, i.e., sX(τ) ↔ S̃X(ω). The inverse Fourier transform of the spectrum is given by

sX(τ) =
1

2π

∫ ∞

−∞
S̃X(ω)e

iωτ dω. (2.1.9)

Similarly, for a discrete-time stationary process {Xt | t ∈ Z}, the spectrum and

the autocovariance sequence are related by the following equation:

SX(ω) =
∞∑

τ=−∞

sX,τe
−iωτ , (2.1.10)
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where sX,τ is defined in Equation (2.1.1) for τ ∈ Z. Hence, the spectrum is 2π-periodic

such that SX(ω) = SX(ω + 2πk) for k ∈ Z. Its inverse Fourier transform is given by

sX,τ =
1

2π

∫ π

−π

SX(ω)e
iωτ dω. (2.1.11)

Furthermore, the power spectral density function of a discrete-time stationary process

is not exactly the same as that of its corresponding continuous-time stationary process.

However, they are directly related by the following equation:

SX(ω) =
∞∑

k=−∞

S̃X(ω + 2πk), ω ∈ [−π, π] and k ∈ Z. (2.1.12)

2.1.4 Persistence

Persistence is a concept used to measure how close a single value of a time series is

to the others. This concept is usually explained by either the autocovariance or the

autocorrelation coefficient since both of them are used to measure the joint variability

between values at two different points of time, which has been previously described. A

time series of a discrete-time stationary process {Xt | t ∈ Z} is persistent if there exists

strong positive autocorrelation coefficients at large lags τ . This can be explained by

the summation of its autocovariance sequence or sX,τ such that (McLeod and Hipel,

1978)
∞∑

τ=−∞

sX,τ = ∞, τ ∈ Z. (2.1.13)

This definition also holds for the case of the autocovariance function of a continuous-

time stationary process, by replacing the summation with an integral. This behaviour

of the autocovariance is theoretically found in a long-memory process, and it is often
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referred to as long-range dependence. On the other hand, if the summation in Equa-

tion (2.1.13) is finite, the process is weakly or short-range dependent. A special case

of this behaviour is called anti-persistence such that the signs of the autocovariance

(or the autocorrelation coefficients) alternate between positive and negative, and this

results that the summation of autocovariance sequence over all lags τ is zero, i.e.,

∞∑
τ=−∞

sX,τ = 0, τ ∈ Z. (2.1.14)

Building on these definitions, we will study various fractional and long-memory pro-

cesses, and define their autocovariance functions (or sequences) and spectra as well as

discuss whether such processes exhibit persistence or anti-persistence across different

values of their parameters.

2.2 Fractional Brownian Motion

Fractional Brownian motion (FBM) was introduced by Mandelbrot and Van Ness

(1968). They defined this fractional process in terms of a stochastic integral equation

with the the Hurst exponent, denoted H, with a value between zero and one. This

parameter was first used in hydrology for the time series representing the level of

water flowing in a river, where its spectrum exhibits a power-law relationship (Hurst,

1951). It has then been widely used in various fields of study as a parameter measur-

ing the degree of long-range dependence or long-memory behaviour of the time series

or process with this power-law relationship. FBM, which we shall denote BH(t), is

a nonstationary process due to its increasing variance over time. Several important

characteristics of FBM include (1) its self-similar behaviour such that its autocovari-



CHAPTER 2. BACKGROUND 22

ance function is identical to that of its time- and amplitude-rescaled version given by

B̃H(t) ≡ βHBH(t/β), where β ∈ R+ is a scaling factor (Mandelbrot, 1985), (2) its

degree of fractal dimension or small-scale roughness of the process (Mandelbrot, 1985;

Falconer, 1990) which is regularly measured by the Hausdorff dimension D = 2−H,

ranging between one and two (Hausdorff, 1918; Adler, 1977; Gneiting and Schlather,

2004), and (3) its long-memory behaviour (Beran, 1994). FBM is always long-memory

with any value of the Hurst exponent between zero and one. In addition, it is the

only Gaussian stochastic process that is self-similar.

Definition 2.2.1 (General form of FBM): FBM is a class of stochastic process with

the following stochastic integral equation (Mandelbrot and Van Ness, 1968):

BH(t) =
A

Γ(H + 1/2)

[∫ 0

−∞

[
(t− τ)H−1/2 − (−τ)H−1/2

]
dW (τ)+

∫ t

0

(t− τ)H−1/2dW (τ)

]
, t ∈ R, (2.2.1)

where A is a parameter setting the level of process and H ∈ (0, 1). The initial condi-

tion on this stochastic integral equation is set as BH(0) = 0. W (·) is called the Wiener

process, and it is also known as ordinary Brownian motion. Thus, dW (·) can be in-

terpreted as continuous-time Gaussian white noise. When H = 1/2, Equation (2.2.1)

becomes

B1/2(t) = A

∫ t

0

dW (τ), t ∈ R, (2.2.2)

which recovers the Wiener process.

Definition 2.2.2 (Autocovariance function of FBM): The nonstationary autocovari-

ance function of FBM, which depends on both time t and lag τ , is defined as (Barton
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and Poor, 1988; Lilly et al., 2017)

sBH
(t, τ) = Cov[BH(t), BH(t+ τ)] =

VH
2
A2
(
|t+ τ |2H + |t|2H − |τ |2H

)
, (2.2.3)

where VH is a normalising constant given by

VH ≡ Γ(1− 2H) cos(πH)

πH
=

1

π

Γ(H)Γ(1−H)

Γ(2H + 1)
. (2.2.4)

With the substitution of τ = 0 into Equation (2.2.3), the nonstationary variance of

FBM takes the form

Var[BH(t)] = sBH
(t, 0) = VHA

2|t|2H . (2.2.5)

Hence, the variance increases without bound depending on time t, and at a rate

determined by H.

Definition 2.2.3 (Power spectral density function of FBM): The time-frequency

Kirkwood-Rihaczek spectrum (Kirkwood, 1933; Rihaczek, 1968) of FBM, which allows

for time-dependence in the power spectral density, is given by (Øig̊ard et al., 2006)

SBH
(t, ω) = πVHA

2 |t|2H δ(ω) + A2

|ω|2H+1

(
1− eiωt

)
, (2.2.6)

where δ(·) is the Dirac delta function, and ω is the angular frequency in the units

of radians per unit time. Lilly et al. (2017) presented its time-averaged spectrum by

applying the moving average filter to the Kirkwood-Rihaczek spectrum with window

size of T and then taking T → ∞, i.e.,

S̃BH
(ω) ≡ lim

T→∞

1

T

∫ t+T/2

t−T/2

SBH
(u, ω)du

=
A2

|ω|2H+1
. (2.2.7)
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This spectrum is in the power-law form and clearly independent of time t. In addition,

its rate of decay is controlled by a single parameter that is the Hurst exponent.

Although the general form of FBM is explained by the stochastic integral equation,

we can simulate this process with the cumulative sum of its first-order difference

process. Details of the simulation algorithm are provided later in Section 4.1. The

plots of simulated FBMs with different true values of the Hurst exponent, defined as

HT , and each with the same length n = 1000 are given in Figure 2.2.1. In each plot,

the time series is derived by sampling FBM at integer values of t only. Since a random

sequence is used in the simulation for each plot (see Section 4.1), the estimated value

of the Hurst exponent could be different from its true value, and this estimation

challenge will be studied extensively in Chapters 3 and 4. From this figure, the more

deterministic and straight-line behaviour is found in FBM with higher value of HT

as its time series is more persistent. Figure 2.2.2 shows the time-averaged spectra of

FBMs from Equation (2.2.7) taking T → ∞. The values of the Hurst exponent (H)

are the same as HT used in Figure 2.2.1, i.e., HT ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, and the

parameter A is set as one. The spectra are all symmetric around the zero frequency

due to the absolute value of ω in Equation (2.2.7), and this absolute value only exists

in the denominator of this equation meaning that the spectra always approach infinity

at the zero frequency. The steeper spectral line at all frequencies is observed from the

process with higher value of HT , as expected from this equation.



CHAPTER 2. BACKGROUND 25

HT = 0.1

Time

V
a

lu
e

s

0 200 400 600 800 1000

−6

−4

−2

0

2

4

HT = 0.3

Time

V
a

lu
e

s

0 200 400 600 800 1000

−10

−5

0

5

10

HT = 0.5

Time

V
a

lu
e

s

0 200 400 600 800 1000

−20

−10

0

10

20

30

40

HT = 0.7

Time

V
a

lu
e

s

0 200 400 600 800 1000

−50

0

50

100

150

200

HT = 0.9

Time

V
a

lu
e

s

0 200 400 600 800 1000

−50

0

50

100

150

200

250

300

Figure 2.2.1: Simulated FBMs with different true values of the Hurst exponent such

that HT ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Values are plotted at integer values of t only. Each

time series is generated from the cumulative sum of simulated FGN (shown in Fig-

ure 2.3.1) with the same value of HT . The true sample variance of FGN, denoted as

σ2
T , is set as one. The scale of the y-axis for each plot is different due to the nonsta-

tionary behaviour of each FBM.
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Figure 2.2.2: Time-averaged spectra of FBMs withHT = 0.1 (blue), HT = 0.3 (green),

HT = 0.5 (orange), HT = 0.7 (red), and HT = 0.9 (violet). All spectra are drawn

from A = 1. The spectral values are in the units of decibels (dB).

2.3 Fractional Gaussian Noise

The first-order increment or difference process of regularly sampled observations of

FBM is known as fractional Gaussian noise (FGN) (Mandelbrot and Van Ness, 1968).

Unlike FBM, its variance and autocovariance function are both independent of time,

making the process stationary. FGN is also controlled by the Hurst exponent ranging

between zero and one. This process with 1/2 < H < 1 has long-memory behaviour

such that it is persistent with strong positive autocovariance. This autocovariance has

a slow decay and it sums to infinity, in agreement with the definition of persistence

given in Equation (2.1.13). Equivalently, its spectrum has power-law decay with the

existence of a pole at the zero frequency, and this relationship with long memory will
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be discussed later in Section 2.6. Gaussian white noise, corresponding to FGN with

H = 1/2, on the other hand, is uncorrelated in time and has short memory with

the same spectral value at all frequencies as this process always has a flat spectrum.

The FGN with 0 < H < 1/2 is an anti-persistent process such that the signs of the

autocovariance alternate between positive and negative, and its spectrum approaches

zero at the zero frequency (Robinson, 2003).

Definition 2.3.1 (General form of FGN): The discrete-time FGN is defined as (Man-

delbrot and Van Ness, 1968; Percival and Walden, 2000)

Xt ≡ BH(t+∆)−BH(t), (2.3.1)

where BH(t) was defined in Equation (2.2.1), and ∆ ∈ R+ is the sampling interval.

Definition 2.3.2 (Autocovariance sequence of FGN): The autocovariance sequence

of FGN is stationary or independent from time t, and this is given by

sX,τ = Cov[Xt, Xt+τ ] =
VH
2
A2
(
|τ +∆|2H − 2|τ |2H + |τ −∆|2H

)
. (2.3.2)

Henceforth, the value of ∆ is set to one for simplicity, and without loss of generality.

The variance of {Xt} is derived by setting τ = 0 into Equation (2.3.2), i.e.,

Var[Xt] ≡ σ2
X = VHA

2. (2.3.3)

Because A is the parameter setting the level of FBM, we consider σ2
X as a parameter

setting the variance and the autocovariance sequence of FGN. Thus, the autocovari-

ance sequence of FGN can be specified by two parameters: H and σ2
X , where A is

then found using the relationship A = σX/
√
VH .
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According to Equation 2.3.1, {Xt} with a finite length of t = 1, 2, . . . , n can be

expressed as

Xt ≡
1∑

l=0

alBt−l, l ∈ Z, (2.3.4)

where Bt−l = BH(t − l). As we have set ∆ = 1 for simplicity, the impulse response

sequence of a linear filter {al} is simply given by a0 = −1, a−1 = 1, and ak = 0 for

any integer k ̸= 0,−1. A transfer function of a linear filter of width W is defined as

A(ω) ≡
W−1∑
l=0

ale
−iωl. (2.3.5)

Thus, the transfer function of our impulse response sequence can be written as A(ω) =

(cosω− 1)− i sinω. The power spectral density function of {Xt} is equivalent to the

multiplication of the spectrum of the regularly-sampled FBM with ∆ = 1 and the

squared gain function of this linear filter given by D(ω) = |A(ω)|2 = 4 sin2(ω/2) (Per-

cival and Walden, 2000). This allows us to express the spectrum of FGN from the

time-averaged spectrum of FBM in Equation (2.2.7).

Definition 2.3.3 (Power spectral density function of FGN): The spectrum of FGN

is given by

SX(ω) = 4 sin2

(
ω

2

) ∞∑
j=−∞

A2

|ω + 2πj|2H+1
, −π ≤ ω ≤ π. (2.3.6)

This spectrum is defined only within the range of discrete frequencies less than or equal

to the Nyquist frequency (or half of the sampling rate = 1/2 × 2π = π radians per

unit time) in magnitude. The infinite summation occurs because of the phenomenon

of aliasing. Aliasing occurs when a discrete-time process (such as FGN) is regularly

sampled from a continuous-time process (such as FBM) and the spectrum is now
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only defined at or below the Nyquist frequency rather than across all real-valued

frequencies. When this sampling occurs, the power at frequencies above the Nyquist

aliases to frequencies below the Nyquist (separated by modulus 2π) and is observed

together in aggregation. The infinite summation in Equation (2.3.6) has no exact

analytical or closed-form solution, and one option is to ignore the aliased frequencies

and simply just take the value of j = 0 in Equation (2.3.6)—we will call this the

unaliased FGN spectrum. A better approximation, however, can be obtained using

the Euler-Maclaurin formula such that (Percival and Walden, 2000)

SX(ω) ≈ 4 sin2

(
ω

2

)(
A2

(2π)2H+1

)(
M∑

j=−M

1

|f + j|2H+1
+

∑
l=−1,1

[
1

2H(lf +M + 1)2H
− (2H + 1)(2H + 2)(2H + 3)

720(lf +M + 1)2H+4
+

2H + 1

12(lf +M + 1)2H+2
+

1

2(lf +M + 1)2H+1

])
, −π ≤ ω ≤ π, (2.3.7)

where f = ω/2π and M is an arbitrary positive integer. Percival and Walden (2000)

suggested M = 100 yielding good approximation in practice. We will call the ap-

proximated spectrum of Equation (2.3.7) as the aliased FGN spectrum, and we will

compare with different values of M = 0 and M = 100 later in Chapters 3 and 4 for

the estimation of H and σ2
X .

Figure 2.3.1 shows several examples of simulated FGNs with different true values

of the Hurst exponent (the same set of HT used in the simulation of FBMs), all

with the same true value of the sample variance, denoted as σ2
T = 1. From this

figure, we observe that FGN is more persistent with higher HT , while there is a

negative autocorrelation of observed values of time series, or anti-persistence, in FGN
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with lower HT . These result in different characteristics of their spectra as shown in

Figure 2.3.2. Because there is no closed-from expression for the spectrum of a discrete-

time FGN, we used its approximated aliased form derived from the Euler-Maclaurin

formula in Equation (2.3.7) with M = 100. The spectrum of each persistent and

long-memory process with HT > 0.5 approaches infinity (∞ dB) at the zero frequency,

whereas the spectrum of each anti-persistent process with HT < 0.5 approaches zero

(−∞ dB) at this frequency. The spectrum of Gaussian white noise with HT = 0.5 is

constant and its amplitude is 10 log10(1/2π) = −7.9818 dB.

2.4 The Fractionally Differenced Process

The discrete-time fractionally differenced (FD) process has been often studied along-

side FGN and FBM. Instead of the Hurst exponent, this process has the parameter

d ∈ R to measure the degree of its long-range dependence. This parameter also repre-

sents the order of fractional differencing required for the process to become Gaussian

white noise, which is a collection of independent and identically distributed (i.i.d.)

random variables with zero mean and finite variance.

Definition 2.4.1 (General form of the FD process): Let {εt} be a white noise process

with a variance of σ2
ε . This process takes the form

εt = (1−B)dYt, (2.4.1)

where {Yt} is the FD process, and B is the backshift operator with BmYt = Yt−m.
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Figure 2.3.1: Simulated FGNs with the same true value of the sample variance, σ2
T = 1,

but different true values of the Hurst exponent such that HT ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

Values are plotted at integer values of t only. Details of the simulation algorithm are

provided later in Section 4.1.

For any real value of d, the term (1−B)d can be expanded using the Binomial series:

(1−B)d =
∞∑
k=0

(
d

k

)
(−B)k

= 1− dB +
d(d− 1)

2!
B2 − d(d− 1)(d− 2)

3!
B3 + . . . (2.4.2)
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Figure 2.3.2: Spectra of FGNs with HT = 0.1 (blue), HT = 0.3 (green), HT = 0.5

(orange), HT = 0.7 (red), and HT = 0.9 (violet) by using the approximated form in

Equation (2.3.7) with M = 100. All spectra are drawn from σ2
T = 1.

The general form of {Yt} is therefore given by

Yt = (1−B)−dεt

=

(
1 + dB +

d(d+ 1)

2!
B2 +

d(d+ 1)(d+ 2)

3!
B3 + . . .

)
εt, (2.4.3)

which represents an infinite moving average or MA(∞) process. This process is con-

trolled by two parameters: d and σ2
ε .

Definition 2.4.2 (Autocovariance sequence of the FD process): The FD process is

only stationary when d < 1/2. For d = 0, {Yt} is exactly the same as the white noise

process with the autocovariance of σ2
ε at lag zero and zero elsewhere. For other values

of d < 1/2, the autocovariance sequence is given by (Percival and Walden, 2000)

sY,τ = Cov[Yt, Yt+τ ] =
σ2
ε sin(πd)Γ(1− 2d)Γ(τ + d)

πΓ(τ + 1− d)
, (2.4.4)
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where Γ(·) is the gamma function. The variance of {Yt} is derived by setting τ = 0,

and hence it takes the form

Var[Yt] =
σ2
ε sin(πd)Γ(1− 2d)Γ(d)

πΓ(1− d)
=
σ2
εΓ(1− 2d)

Γ2(1− d)
. (2.4.5)

Definition 2.4.3 (Power spectral density function of the FD process): The squared

gain function for the dth order difference filter is given by Dd(ω) = (2 sin(ω/2))2d, and

thus the power spectral density function of {Yt} is

SY (ω) =
σ2
ε

(2 sin(ω/2))2d
, −π ≤ ω ≤ π. (2.4.6)

This can be rewritten as

SY (ω) =
σ2
ε

(2 sin(ω/2))2d

=
σ2
ε

(2(1− cos(ω))d

=
σ2
ε

((1− cos(ω))2 + sin2(ω))d

=
σ2
ε

|1− eiω|2d
, −π ≤ ω ≤ π, (2.4.7)

which is the same as that given by Adenstedt (1974). This spectrum is an even

function for all real values of d. It is the Fourier transform of the autocovariance

sequence in Equation (2.4.4) for d < 1/2. For d ≥ 1/2, the spectrum is non-integrable

as the variance and the autocovariance are nonstationary.

2.5 Pure Power Law Process

Previously, the power spectral density functions of FBM, FGN, and the FD process

have been given. One common feature of all these functions is that they are consid-

ered to have a power-law function at low frequencies (see Equations (2.2.7), (2.3.6),
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and (2.4.6) with the approximation of sin(ω/2) ≈ ω/2 when ω → 0). If this power-law

relationship were to be extended to all observed frequencies, we would call the process

with such behaviour as the pure power law (PPL) process which is a discrete-time

process as we shall now define.

Definition 2.5.1 (Power spectral density function of the PPL process): Let {Pt} be

the PPL process. Its power spectral density function is given by

SP (ω) = C|ω|γ, −π ≤ ω ≤ π, (2.5.1)

where C > 0 and γ ∈ R. {Pt} is either stationary with γ > −1 or nonstationary with

γ ≤ −1. This spectrum can be compared with those of other discrete-time fractional

processes. The spectrum of FGN at low frequencies is close to the spectrum of the

PPL process with γ = 1 − 2H. This relationship is derived from Equation (2.3.6)

with the approximation of sin(ω/2) ≈ ω/2 at low frequencies and by neglecting the

aliasing terms. Such an approximation can also be applied to the spectrum of FD

process at low frequencies from Equation (2.4.6), and this results in its approximated

form of C|ω|γ, where C = σ2
ε and γ = −2d. Unlike other fractional processes, there is

no exact analytical or close-form solution of the autocovariance sequence of the PPL

process.

Definition 2.5.2 (Autocovariance sequence of the PPL process): There is no closed-

form expression of the autocovariance sequence of the PPL process. However, the

autocovariance is equivalent to the inverse Fourier transform of the power spectral

density function, i.e.,

sX,τ =
1

2π

∫ π

−π

SX(ω)e
iωτdω =

C

2π

∫ π

−π

|ω|γeiωτdω. (2.5.2)
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The approximation of this integral can be performed using techniques such as Riemann

approximation with carefully selected bin widths, as developed in Grainger et al.

(2021), which we refer to the interested reader towards for more discussion.

2.6 Long-Memory Parameters

In this section, we provide conditions on parameters for each process discussed in

this chapter to be long-memory or long-range dependent. These depend on either

its autocovariance function (or sequence) or power spectral density function, which is

given as follows:

Let {Qt} be a discrete-time stationary fractional process. The process is long-

memory if it satisfies (Beran, 1994)

lim
τ→∞

sQ,τ

c1τβ
= 1, −1 < β < 0, c1 > 0, (2.6.1)

or

lim
ω→0

SQ(ω)

c2|ω|−β−1
= 1, −1 < β < 0, c2 > 0, (2.6.2)

where sQ,τ and SQ(ω) are the autocovariance sequence and the spectrum of {Qt},

respectively. Therefore, at increasing lags, the autocovariance sequence of a long-

memory process has slow power-law decay such that it is not absolutely integrable.

Furthermore, the spectrum of a long-memory process exhibits power-law decay at

low frequencies. This results in a pole at the zero frequency, and such behaviour is

in contrast to the spectrum of a fractional process with anti-persistence having its

spectrum approach zero at the zero frequency.
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We now formally establish the long-memory properties of each of the discrete-time

stationary fractional processes.

2.6.1 Fractional Gaussian Noise

First, we assume that {Qt} is a stationary FGN, whose properties were given in

Section 2.3. Its autocovariance sequence with ∆ = 1 in Equation (2.3.2) is rewritten,

by taking τ → ∞ and making use of the binomial series expansion, as

sQ,τ =
VH
2
A2|τ |2H

[∣∣∣∣1 + 1

τ

∣∣∣∣2H − 2 +

∣∣∣∣1− 1

τ

∣∣∣∣2H
]

≈ VH
2
A2|τ |2H

[
1 +

2H

τ
+
H(2H − 1)

τ 2
− 2 + 1− 2H

τ
+
H(2H − 1)

τ 2

]

=
VH
2
A2|τ |2H

[
2H(2H − 1)

τ 2

]

= VHA
2H(2H − 1)τ 2H−2, τ → ∞. (2.6.3)

With the substitution of this autocovariance sequence into Equation (2.6.1), the pro-

cess {Qt} is long-memory if and only if −1 < 2H − 2 < 0, i.e., 1/2 < H < 1,

and its autocovariance sequence decays like τ 2H−2 as τ → ∞. The power spectral

density function of FGN in Equation (2.3.6) at low frequencies can be approximated

to the power-law form of C|ω|1−2H , where C is a positive constant. According to

Equation (2.6.2), this spectrum belongs to a long-memory process if and only if

−1 < (1 − 2H) < 0 or 1/2 < H < 1, and this is the same condition as derived

from the autocovariance sequence.
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2.6.2 The Fractionally Differenced Process

Next, {Qt} is assumed to be a stationary FD process with d < 1/2, which was

previously discussed in Section 2.4. Its autocovariance sequence in Equation (2.4.4)

at large lag τ can be approximated by Stirling’s formula and this is given by

sQ,τ ≈ σ2
ε sin(πd)Γ(1− 2d)

π
τ 2d−1, τ → ∞. (2.6.4)

The process {Qt} is long-memory if and only if −1 < 2d − 1 < 0, i.e., 0 < d < 1/2,

and its autocovariance sequence decays like τ 2d−1 as τ → ∞. The power spectral

density function of the FD process in Equation (2.4.6) takes the approximated form

of C|ω|−2d with a positive constant C as ω → 0, and this also provides a result that

the process is long-memory if and only if 0 < d < 1/2.

Then we consider a nonstationary FD process {Q′
t} with d′ ≥ 1/2 (d′ is its order

of differencing). The stationary process {Qt} is the kth order difference of {Q′
t} with

k > 0, and hence its spectrum is given by

SQ(ω) ≡ SQ′(ω) · Dk(ω) =
σ2
ε

(2 sin(ω/2))2(d′−k)
, −π ≤ ω ≤ π, (2.6.5)

where Dk(ω) is the squared gain function of the kth order difference filter, i.e., Dk(ω) =

(2 sin(ω/2))2k. Hence, the spectrum of {Q′
t} is in the form of

SQ′(ω) =
σ2
ε

(2 sin(ω/2))2d′
, −π ≤ ω ≤ π. (2.6.6)

Percival and Walden (2000) defined the parameter d′ as the long-memory parameter

for nonstationary FD process. This process is always long-memory with d′ ≥ 1/2. The

power spectral density function of stationary and nonstationary FD processes (Equa-

tions (2.4.6) and (2.6.6)) can be used to deduce that the spectrum of the discrete-time
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long-memory process at low frequencies is in the form of C|ω|γ, where C > 0 and

γ < 0. This is equivalent to the spectrum of the PPL process shown in Section 2.5.

2.6.3 Fractional Brownian Motion

The power spectral density function of {Bt}, which we define to be a regularly-sampled

(or discretely-sampled) FBM with a sampling rate of ∆ = 1, is similar to that of FGN

in Equation (2.3.6), but without the squared gain function for the difference filter.

Because the spectral values at low frequencies are much greater than high frequencies

especially those above the Nyquist frequency, we can approximate the spectrum by

neglecting the folding from such high frequencies, i.e., SB(ω) ≈ A2/|ω|2H+1. Hence,

the process {Bt} is long-memory if and only if −1 − 2H < 0. As 0 < H < 1, this

concludes that FBM with discrete sampling is always long-memory for any value of

H.

2.6.4 Comparison

All specific conditions on parameters for the fractional processes discussed in this

chapter to be long-memory, stationary, and nonstationary, are summarised in Ta-

ble 2.6.1. The relationship of these parameters for long-memory processes can be

given by either H = d + 1/2 = (1− γ)/2 (stationary) or H = d− 1/2 = (−1− γ)/2

(nonstationary) depending on whether or not the processes are stationary. The PPL

process with γ = −1 is sometimes referred to as 1/f or pink noise. Its spectrum is in

the form of C/|ω|, and this behaviour is also found in the spectrum of the FD process
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with d = 1/2 at low frequencies. However, this form is unavailable for FGN and FBM

as the Hurst exponent cannot be exactly one or zero, but the limiting case between

FGN with H close to one and FBM with H close to zero can be considered to behave

like 1/f or pink noise.

Table 2.6.1: The range of parameters satisfying the conditions of long memory, sta-

tionarity, and nonstationarity, for four different fractional processes.

Process Long Memory Stationarity Nonstationarity

FBM (Discrete sampling) 0 < H < 1 − 0 < H < 1

FGN 1/2 < H < 1 0 < H < 1 −

FD d > 0 d < 1/2 d ≥ 1/2

PPL γ < 0 γ > −1 γ ≤ −1

Figure 2.6.1 illustrates examples of power spectral density functions of stationary

and nonstationary long-memory processes with H = 0.7. For each case (stationary

or nonstationary), their spectral lines are almost the same at low frequencies. In ad-

dition, they approach infinity when the frequency is close to zero. The nonstationary

processes have much higher spectra at low frequencies than the stationary processes

since their observed values are closer to each other or have higher degree of positive

autocorrelation, yielding smoother time series that are characteristic of low-frequency

dominated time series.
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Figure 2.6.1: Power spectral density functions of stationary (left) and nonstationary

(right) long-memory processes. The values of fractional parameters are {H, d, γ} =

{0.7, 0.2,−0.4} for stationary processes, and {H, d, γ} = {0.7, 1.2,−2.4} for nonsta-

tionary processes.



Chapter 3

Estimation Methods

In this chapter, we propose several parametric methods for the estimation of long-

memory parameters. Section 3.1 provides the details of the maximum likelihood esti-

mator (MLE). Despite its consistency and asymptotic efficiency, this estimator is not

implemented in practice in this thesis due to its high computational cost. Instead, its

approximated version in the frequency domain called the Whittle likelihood estimator

(WLE) will be used, and this is given in Section 3.2. The debiased Whittle likelihood

estimator (DWLE), which was recently proposed by Sykulski et al. (2019), will also

be used to reduce the bias of estimates from the WLE. Although Sykulski et al. (2019)

used the DWLE with some short-memory processes, we will instead investigate using

it with long-memory processes in this thesis. This debiased estimator is discussed in

Section 3.3. Next, the periodogram is the asymptotically unbiased estimator of the

spectrum, and a slope of its linear regression line at low frequencies in log-log space

can be used to estimate a long-memory parameter due to the power-law relationship.

This method is called the log-periodogram regression estimator (LPRE), and it is de-

41
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tailed in Section 3.4. All these four sections are explained in the context of estimating

H and σ2
X for stationary FGN. However, the principles and techniques apply to other

processes with some basic modifications. In particular, the details of the estimation

of parameters with the stationary FD process and a discretely sampled FBM process

are given in Sections 3.5 and 3.6, respectively. Because the periodogram is a biased

spectral estimator of the spectrum, especially with nonstationary processes such as

FBM, data tapering is proposed to reduce such bias, and this technique is described

in Section 3.7.

3.1 Maximum Likelihood Estimator

Let X = {Xt}nt=1 be discrete-time FGN with zero mean and unit variance. The like-

lihood function or joint probability density function is derived from the multivariate

normal distribution of all random variables in X, i.e.,

L
(
H, σ2

X

)
=

1

(2π)
n
2 |Σ| 12

exp

(
− 1

2
XTΣ−1X

)
, (3.1.1)

where Σ is an n× n autocovariance matrix with entries [Σ]ij = sX,|i−j|, which can be

expressed as sX,|i−j| = σ2
X(|i− j+1|2H −2|i− j|2H + |i− j−1|2H)/2, thus consisting of

both H and σ2
X . The superscripts “T” and “−1” denote the transpose and the matrix

inverse, respectively, while |Σ| is the determinant of Σ. The log-likelihood function

of Equation (3.1.1) is given by

ℓ
(
H, σ2

X

)
= −n

2
log(2π)− 1

2

(
log |Σ|+XTΣ−1X

)
. (3.1.2)
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Then the maximum likelihood estimation of parameters in a set of θ = {θ1, θ2} =

{H, σ2
X | 0 < H < 1, σ2

X > 0} is

θ̂MLE = argmax
θ

ℓ (θ) = argmin
θ

(
log |Σ|+XTΣ−1X

)
, (3.1.3)

where θ̂MLE is a set of estimates. The MLE is consistent such that the estimates

converge in probability to their true values, i.e.,

θ̂MLE
p−→ θT, (3.1.4)

where θT = {HT , σ
2
T} is the set of true values of parameters. In addition, the maxi-

mum likelihood estimates are
√
n-consistent with the convergence in distribution and

asymptotically efficient, i.e.,

√
n
(
θ̂MLE − θT

) d−→ N
(
0,F−1

)
, (3.1.5)

where F is the Fisher information matrix. This matrix is defined as the negative of

the expected value of the Hessian matrix H with its entry being the second partial

derivatives of the log-likelihood function given the true parameters, i.e.,

[F ]ij = −E [H]ij = −E
[
∂2

∂θiθj
ℓ (θT)

]
, (3.1.6)

where 1 ≤ i ≤ 2 and 1 ≤ j ≤ 2.

3.2 Whittle Likelihood Estimator

Although the MLE is consistent and asymptotically efficient, a huge disadvantage

of this estimator is its very high computational cost of estimation especially from
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the matrix inversion in the log-likelihood function of Equation (3.1.2), which requires

at least O(n2) operations in general. To reduce this cost, its approximated version

called the Whittle likelihood estimator (WLE) was proposed by Whittle (1953). The

log-likelihood function of this estimator in the frequency domain is given by

ℓWLE(θ) = −n
2
log(2π)− 1

2

∑
ω∈Ω

(
log
(
SX(ω|θ)

)
+

I(ω)

SX(ω|θ)

)
, (3.2.1)

where Ω is a finite set of discrete Fourier frequencies, i.e., Ω ≡ {ωj}nj=1 for each

ωj = 2π(j − ⌈n/2⌉)/n. Thus, the range of these frequencies is between −π and π

radians per unit time. SX(ω|θ) is the power spectral density function of X given the

set of θ = {H, σ2
X}, and I(ω) is the asymptotically unbiased estimator of the power

spectral density function called the periodogram which is defined as (Percival and

Walden, 2000)

I(ω) =
1

n

∣∣∣∣ n∑
t=1

Xt exp(−iωt)
∣∣∣∣2, ω ∈ Ω. (3.2.2)

The use of the periodogram in the likelihood of Equation (3.2.1) removes the need

to invert a covariance matrix as performed with the maximum likelihood in Equa-

tion (3.1.1). The periodogram of Equation (3.2.2) can be computed in O(n log n) op-

erations by making use of the Fast Fourier transform (FFT), thus making the Whittle

likelihood significantly faster to compute than the maximum likelihood, which is a key

reason for its wide appeal in many time series applications. The Whittle likelihood

estimates of θ is a set of values of parameters maximising the log-likelihood function

in Equation (3.2.1). This is equivalent to finding

θ̂WLE = argmin
θ

∑
ω∈Ω

(
log
(
SX(ω|θ)

)
+

I(ω)

SX(ω|θ)

)
, (3.2.3)
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where θ̂WLE is a set of estimates from the WLE. The WLE has also been shown to be

consistent and asymptotically efficient for a Gaussian process with long-memory time

series (Robinson, 2003), and a range of non-Gaussian processes, widening its appeal

in practice (Sykulski et al., 2019).

For a long-memory FGN with 1/2 < HT < 1, its power spectral density func-

tion approaches infinity at the zero frequency. Therefore, the summation in Equa-

tion (3.2.1) must exclude the zero frequency from Ω, which is a small disadvantage of

the WLE as the information contained in the periodogram at zero frequency is dis-

carded, slightly adding to the variance of the parameter estimates versus maximum

likelihood. Furthermore, because there is no closed-form expression of the spectrum

of FGN, an approximation must be used (see Equations (2.3.6) and (2.3.7)). We pro-

pose the use of three different functions which we now detail. The first two functions

are approximated aliased spectral density functions in Equation (2.3.7) withM = 100

and with M = 0, respectively. We use different values of M to observe the trade-off

between bias (lower bias when M is high) and computational time (lower computa-

tional time when M is low). The other function is obtained from the removal of the

infinite sum of the exact spectral density function in Equation (2.3.6) by setting j = 0,

and this results in using the unaliased spectral density function. The motivation for

considering all three forms is that they will have different computational complexities

to compute (with the unaliased spectrum being the fastest), and therefore helps to

understand how much correction to aliasing is necessary and reasonable to compute.

The estimation results from all these different forms of approximated spectrum will

be provided in Chapter 4.
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3.3 Debiased Whittle Likelihood Estimator

The debiased Whittle likelihood estimator (DWLE) was proposed by Sykulski et al.

(2019) to reduce the bias of estimates from the WLE. This estimator adjusts the log-

likelihood function of the WLE by replacing its power spectral density function with

the expected periodogram, and this is given by

ℓDWLE(θ) = −n
2
log(2π)− 1

2

∑
ω∈Ω

(
log
(
S̄(ω|θ)

)
+

I(ω)

S̄(ω|θ)

)
, (3.3.1)

where S̄(ω|θ) is the expected periodogram given the set of parameters. The expected

periodogram is defined as

S̄(ω|θ) ≡ E [I(ω)] =

∫ π

−π

SX(ν|θ)F(ω − ν) dν, (3.3.2)

which is the convolution of the power spectral density function and the Fejér kernel.

This kernel is given by

F(ω) ≡ sin2(nω/2)

n sin2(ω/2)
. (3.3.3)

Because the convolution for the expected periodogram has no closed-form expression,

it is transformed to the point-wise multiplication in the time domain as (Percival and

Walden, 1993)

S̄(ω|θ) =
n−1∑

τ=−(n−1)

E

 1
n

n−|τ |∑
t=1

XtXt+|τ |

 e−iωτ

=
n−1∑

τ=−(n−1)

(
1− |τ |

n

)
sX,τe

−iωτ

= 2 · Re

(
n−1∑
τ=0

(
1− τ

n

)
sX,τe

−iωτ

)
− σ2

X , (3.3.4)

where Re(·) indicates the real part. Hence, the expected periodogram can be com-

puted from the fast Fourier transform of the multiplication of the autocovariance
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sequence and the triangular function. Equation (3.3.4) also shows that aliasing is

accounted for by the discrete sampling of the autocovariance sequence sX,τ , and an

effect called spectral leakage (which we shall discuss further in Section 3.7) is ac-

counted for by the truncation of the infinite sum and the insertion of the triangu-

lar function 1 − τ/n, and both corrections are performed in a single operation by

Equation (3.3.4). This ensures that the DWLE can also be computed in O(n log n)

operations (as is the case with the WLE). However, for the DWLE, two FFTs are

required to computed Equation (3.3.1) — one to compute I(ω) and the other to com-

pute the expected periodogram S̄(ω|θ). Overall, the method is still fast to compute

in comparison to the exact maximum likelihood such that its O(n log n) complexity

significantly outperforms the O(n2) complexity of the MLE (in terms of reduced CPU

time), as demonstrated in Sykulski et al. (2019) and Grainger et al. (2021).

The debiased Whittle likelihood estimates maximise the log-likelihood function in

Equation (3.3.1). This is the same as optimising the following equation:

θ̂DWLE = argmin
θ

∑
ω∈Ω

(
log
(
S̄(ω|θ)

)
+

I(ω)

S̄(ω|θ)

)
. (3.3.5)

The expected periodogram of FGN is finite at all discrete Fourier frequencies whether

or not the process is long-memory. Thus, spectral values at all discrete Fourier fre-

quencies can be used in the optimisation for finding the debiased Whittle estimates,

in contrast to the WLE from Section 3.2. Moreover, we can compute the expected

periodogram exactly using Equation (3.3.4), in contrast to the WLE where the spec-

trum must be approximated as discussed in Section 3.2. Therefore, the DWLE has a

lot of advantages over WLE for FGN with regards to efficient implementation, as we
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shall discuss further.

3.4 Log-Periodogram Regression Estimator

The exact power spectral density function of FGN consists of an infinite sum, so either

its approximated aliased spectrum or its unaliased spectrum is used for the WLE, as

already discussed in Section 3.2. The latter takes the form of

S(U)(ω) = 4 sin2

(
ω

2

)
A2

|ω|2H+1
, −π ≤ ω ≤ π. (3.4.1)

For low frequencies, sin(ω/2) ≈ ω/2. This simplifies the unaliased spectrum as

S(U)(ω) ≈ A2|ω|1−2H , ω ≈ 0. (3.4.2)

Then the logarithm is applied to both sides of Equation (3.4.2) such that

logS(U)(ω) ≈ (1− 2H) log |ω|+ 2 log(A), ω ≈ 0, (3.4.3)

where A is independent of ω. If the periodogram is used as the spectral estimator

of this unaliased spectrum, the quantity 1 − 2H can then be estimated from the

slope of the linear regression line between the logarithm of the periodogram and the

logarithm of ω at low frequencies. We choose 0 < ω ≤ π/8 radians per unit time

as our preference for these low frequencies. The estimator from this slope is named

as the log-periodogram regression estimator (LPRE) in this thesis. For a stationary

FGN, the slope is likely to be between −1 and 1. The estimation of H from this slope

for FGNs with different true values of the Hurst exponent will be shown in Chapter 4.
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3.5 Estimators for the Stationary FD Process

The stationary FD process is similar to FGN as they are both fractional processes

with a single parameter controlling their long-memory behaviour. Although the Hurst

exponent (H) and the order of fractional differencing (d) are obtained from two dif-

ferent processes, they are related by H ≈ d+ 1/2. To investigate such a relationship,

in Chapter 4, we shall fit the time series of FGN with a stationary FD process. Both

parameters in the stationary FD process, d and σ2
ϵ , are estimated with the WLE and

the DWLE using its own autocovariance sequence and power spectral density function

in Equations (2.4.4) and (2.4.6), respectively.

3.6 Estimators for Discretely-Sampled FBM

The Hurst exponent (H) and the level variable (A) are two parameters in discretely-

sampled FBM, denoted as B = {Bt}nt=1. To perform parameter estimation, one

option is to take the first-order difference of this process and then fit FGN using

the estimation methods described in Sections 3.1–3.4 to recover estimates of H and

A. However, in Chapter 4, we will also study fitting FBM directly to data without

taking this first-order difference. With the WLE, we fit FBM using three different

forms of spectrum in the same way as fitting FGN in Section 3.2, but without using

the squared gain function of the difference filter. These forms of spectrum are derived
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from the following equation:

SB(ω) ≈

(
A2

(2π)2H+1

)(
M∑

j=−M

1

|f + j|2H+1
+

∑
l=−1,1

[
1

2H(lf +M + 1)2H
− (2H + 1)(2H + 2)(2H + 3)

720(lf +M + 1)2H+4
+

2H + 1

12(lf +M + 1)2H+2
+

1

2(lf +M + 1)2H+1

])
, −π ≤ ω ≤ π. (3.6.1)

The DWLE uses the expected periodogram instead of the power spectral density

function. The exact equation of the expected periodogram of FBM cannot be de-

rived due to its nonstationarity. However, with the adaptation of Equation (3.3.4)

and the assumption of mean centering of the process, i.e., E [Bt] = 0, the expected

periodogram of FBM with discrete sampling can be approximated as

S̄B(ω|θ) ≈
n−1∑

τ=−(n−1)

E

 1
n

n−|τ |∑
t=1

BtBt+|τ |

 e−iωτ

=
n−1∑

τ=−(n−1)

(
VHA

2

2n

n−|τ |∑
t=1

(|t+ τ |2H + |t|2H − |τ |2H)

)
e−iωτ

= 2 · Re

(
n−1∑
τ=0

(
VHA

2

2n

n−τ∑
t=1

(|t+ τ |2H + |t|2H − |τ |2H)

)
e−iωτ

)

− VHA
2

n

n∑
t=1

|t|2H , −π ≤ ω ≤ π. (3.6.2)

The time-averaged unaliased spectrum of FBM is A2|ω|−1−2H , which is in a power-

law form. For the LPRE, this relationship shows that the slope of the linear regression

line is therefore −1 − 2H. Because H is between 0 and 1, the slope of the log-

periodogram is likely to be between −3 and −1. This range of slope is completely

different from that for FGN, which is between −1 and 1, and both ranges are divided

by the boundary slope of −1. Thus, the LPRE can be used to evaluate whether or

not the process is stationary using this slope.



CHAPTER 3. ESTIMATION METHODS 51

3.7 Data Tapering

The periodogram in Equation 3.2.2 can be rewritten as

I(ω) =

∣∣∣∣ n∑
t=1

Xt√
n
exp(−iωt)

∣∣∣∣2, ω ∈ Ω. (3.7.1)

The multiplication of the time series and a finite sequence of 1/
√
n, which we shall

call the rectangular window, corresponds to a convolution in the frequency domain.

Specifically, the frequency response of this rectangular window is the Dirichlet kernel,

which is related to the expected periodogram via a convolution of the squared Dirich-

let kernel with the spectrum (see Equation (3.3.2)). The squared Dirichlet kernel,

also known as the Fejér kernel, consists of a main lobe centred at zero and sidelobes.

The closed-form expression of the Fejér kernel has already been expressed in Equa-

tion (3.3.3). The number of its sidelobes increases as the length of time series or

n increases. In addition, the highest value of kernel always occurs at the center of

main lobe and this is equal to n. We illustrate a plot of several Fejér kernels with

different values of n in Figure 3.7.1, as an example. The sidelobes of the Fejér ker-

nel create an effect called “spectral leakage” resulting in the incorrect distribution

of power across all frequencies. For FBM and other processes with a high dynamic

range in the spectrum, this phenomenon causes a large discrepancy between its power

spectral density function and the expected periodogram. This results in large bias of

parameter estimates from the WLE.

Data tapering can be used to reduce such bias and discrepancy by suppressing

these sidelobes. The tapered periodogram of {Bt}, which is a discretely-sampled
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Figure 3.7.1: Fejér kernels with n = {20, 50, 100, 1000}.

FBM with length n, takes the form

J(ω) =

∣∣∣∣ n∑
t=1

htBt exp(−iωt)
∣∣∣∣2, ω ∈ Ω, (3.7.2)

where ht is called the data taper such that
∑n

t=1 ht
2 = 1. The general form of the

periodogram, I(ω), utilises a rectangular window with the amplitude of ht = 1/
√
n

for all t = 1, 2, . . . , n as its data taper. We shall refer to this choice of taper as the

periodogram without tapering. However, when we use the periodogram with tapering,
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we shall apply a 20% cosine taper that is given by

ht =



C

2

[
1− cos

(
2πt

⌊pn⌋+ 1

)]
, 1 ≤ t ≤ ⌊pn⌋

2
;

C,
⌊pn⌋
2

< t < n+ 1− ⌊pn⌋
2

;

C

2

[
1− cos

(
2π(n+ 1− t)

⌊pn⌋+ 1

)]
, n+ 1− ⌊pn⌋

2
≤ t ≤ n,

(3.7.3)

where C is a normalising constant such that
∑n

t=1 ht
2 = 1 as required, and p is set

to 0.2 for this p × 100% cosine taper. Figure 3.7.2 shows the difference between the

rectangular and the 20% cosine tapers.
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Figure 3.7.2: Rectangular (left) and 20% cosine (right) tapers.

We can also use the data taper in combination with the DWLE. The expected

periodogram of discretely-sampled FBM with 20% cosine tapering is given by

S̄
(T )
B (ω|θ) = 2 · Re

(
n−1∑
τ=0

sB,(t,τ)htht+τe
−iωτ

)
−

n∑
t=1

h2t |t|2H , (3.7.4)
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where sB,(t,τ) is a time-dependent autocovariance sequence of discretely-sampled FBM,

which is defined as

sB,(t,τ) =
VHA

2

2

n−|τ |∑
t=1

(|t+ τ |2H + |t|2H − |τ |2H). (3.7.5)

These forms of the expected periodogram (Equations (3.6.2) and (3.7.4)) are expensive

to compute in the DWLE versus those for FGN (Equation (3.3.4)), but in the next

section, we shall explore the effectiveness of each estimation method in practice under

wide-ranging simulation studies.



Chapter 4

Simulation and Empirical Studies

4.1 Preliminary Analysis

The simulation of discrete-time FGN was implemented in RStudio with R version

4.0.0. First, we generated the autocovariance matrix of FGN, which is a Toeplitz

matrix derived from the autocovariance sequence with a true value of the Hurst ex-

ponent, denoted as HT , and a true value of the variance, denoted as σ2
T . Each FGN

was simulated by the multiplication of the lower triangular matrix from the Cholesky

decomposition of this autocovariance matrix and a vector of random numbers from

the Gaussian distribution with zero mean and unit variance. We used this technique

for all simulated FGNs with HT ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and σ2
T = 1, and several

examples of these processes with different HT were already shown in Figure 2.3.1

in Chapter 2. The cumulative sum of FGN results in discretely-sampled FBM, and

several examples of these were also shown in Figure 2.2.1.

All types of possible spectra used in Whittle likelihood estimation will now be

55
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compared. These include all three different forms of spectrum and the expected

periodogram, which were introduced earlier in Sections 3.2 and 3.3. These spectra of

simulated FGNs with σ2
T = 1 are illustrated in Figure 4.1.1 for HT ∈ {0.1, 0.3, 0.5}

and Figure 4.1.2 for HT ∈ {0.7, 0.9}.
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Figure 4.1.1: The expected periodogram (green), the approximated aliased power

spectral density functions with M = 100 (blue) and M = 0 (red), and the unaliased

power spectral density function (orange) of each simulated discrete-time FGN with

HT ∈ {0.1, 0.3, 0.5} and σ2
T = 1. The green, blue and red lines are often overlaid but

small differences do exist.
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Figure 4.1.2: The expected periodogram (green), the approximated aliased power

spectral density functions with M = 100 (blue) and M = 0 (red), and the unaliased

power spectral density function (orange) of each simulated discrete-time FGN with

HT ∈ {0.7, 0.9} and σ2
T = 1. The green, blue and red lines are often overlaid but

small differences do exist.

We observe that the expected periodogram and the aliased spectra of each FGN

in these two figures are very close at all frequencies as green, blue, and red lines are

almost inseparable in each plot. The unaliased spectrum is similar to the aliased

spectrum with M = 0 except that the summation terms including the parameter l in

Equation (2.3.7) are all removed. This results in its lower spectral values than other

spectra in the figure, especially evident at high frequencies. According to this finding,



CHAPTER 4. SIMULATION AND EMPIRICAL STUDIES 58

we expect a noticeable difference of estimation results of parameters for FGN with

the WLE using each of these spectral forms, as will be discussed later.

Unlike FGN, the spectrum of FBM is always the highest at the zero frequency

for all values of HT . All spectra and the expected periodogram (without tapering) of

discretely-sampled FBM with A = 1 are shown in Figure 4.1.3 for HT ∈ {0.1, 0.3, 0.5}

and 4.1.4 for HT ∈ {0.7, 0.9}.
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Figure 4.1.3: The expected periodogram without tapering (green), the approximated

aliased power spectral density functions with M = 100 (blue) and M = 0 (red), and

the unaliased power spectral density function (orange) of each simulated discretely-

sampled FBM with HT ∈ {0.1, 0.3, 0.5}. The level parameter of FBM is set as one,

i.e., A = 1.
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Figure 4.1.4: The expected periodogram without tapering (green), the approximated

aliased power spectral density functions with M = 100 (blue) and M = 0 (red), and

the unaliased power spectral density function (orange) of each simulated discretely-

sampled FBM with HT ∈ {0.7, 0.9}. The level parameter of FBM is set as one, i.e.,

A = 1.

From these two figures, the relationship between all three different forms of spec-

trum of FBMs is similar to those of FGNs such that the unaliased spectrum is lower

than the others. The expected periodogram without tapering is noticeably higher

than all other functions especially when HT ≥ 0.5, and this is due to accounting for

spectral leakage from the Fejér kernel. The 20% cosine taper could be applied to re-

duce the large bias of the spectral estimator of the expected periodogram. Figure 4.1.5
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shows that this taper can efficiently reduce the level of the expected periodogram to

be almost the same as the aliased spectrum for all cases of HT .
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Figure 4.1.5: The approximated aliased power spectral density function withM = 100

(blue), and the expected periodograms without (green) and with 20% cosine tapering

(black) of each simulated FBM with HT ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and A = 1.

There exists an asymptotic property of the periodogram such that twice the ratio

of the periodogram to the spectral density function is chi-squared distributed with

two degrees of freedom, i.e., 2(I(ω)/S(ω|θ)) ∼ χ2
2 as n → ∞, where S(ω|θ) is the

spectrum of either FGN or FBM. This distribution is equivalent to the exponential

distribution with the rate parameter of 1/2. Figure 4.1.6 presents the Q-Q plots of
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such a distribution derived from simulated FGN and FBM with long memory, both

with HT = 0.7 and time series of length n = 1000. Their exact spectrum is replaced

by its aliased form with M = 100, whereas the periodogram of FBM including the

20% cosine taper, as given by J(ω) in Equation (3.7.2), is used instead of I(ω). From

this figure, both plots show that these measures from simulated fractional processes

are highly likely to be chi-squared distributed with two degrees of freedom as most

points lie on the straight diagonal line with y = x. A few points deviate from this line

and this is due to the finite length of our simulated time series. These properties were

also found from simulated fractional processes with different values of HT or different

lengths of time series.
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Figure 4.1.6: The chi-squared Q-Q plots of the distribution between the chi-squared

distributed data with two degrees of freedom, and either FGN (left) or FBM (right)

with HT = 0.7, and σ2
T = 1 (FGN) or A = 1 (FBM).
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Figure 4.1.7 shows several examples of linear regression of the periodogram against

ω in log-log space at low frequencies from simulated FGNs and FBMs with HT =

{0.3, 0.5, 0.7}, and σ2
T = 1 (FGNs) or A = 1 (FBMs). The estimated Hurst exponents

derived from the slopes of these regression lines are 0.327, 0.469, and 0.726, respec-

tively, for simulated FGNs, and 0.255, 0.454, and 0.697, respectively, for simulated

FBMs. A regression line of a fractional process with long-memory time series always

has a negative slope. The comparison of estimation results between this method and

all other parametric estimators will be discussed later in this chapter.

4.2 Estimation Results from Simulated FGNs

First, we simulated five sets of zero-mean FGNs. Each set contains 10000 time series

of this fractional process with the same length n = 1000, each with the same true

value of the Hurst exponent with HT ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, and the same true value

of the sample variance with σ2
T = 1. The order of the simulated dataset corresponds

to the values of HT in ascending order, for example, the first dataset has HT = 0.1,

and the fifth dataset has HT = 0.9. The Hurst exponent and the sample variance

of each simulated FGN were simultaneously estimated with each likelihood-based

method given in Chapter 3 (excluding the MLE) using a derivative-free search called

the Hooke-Jeeves method (Hooke and Jeeves, 1961). This optimisation method finds

an optimal minimum point of the bivariate function which is the negative of log-

likelihood function with constraints of 0 < H < 1 and σ2
X > 0. This method was

implemented by the “fminsearch” function in the package “pracma” (Borchers, 2022)
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Figure 4.1.7: The linear regression plots for the estimation of the Hurst exponent

from simulated FGNs (upper) and FBMs (lower), each with HT = 0.3 (left), HT = 0.5

(middle), and HT = 0.7 (right). In each plot, the x-axis is the low frequencies between

0 and π/8 radians per unit time, and the y-axis is either the periodogram (I(ω)) of

FGN or the periodogram with 20% cosine tapering (J(ω)) of FBM. Both axes are in

logarithmic scales.

in RStudio. All estimation methods for simulated FGNs are numerically listed as

follows:

1. WLE using the approximated aliased spectrum withM = 100 (Equation (3.2.3)).

2. WLE using the approximated aliased spectrum with M = 0 (Equation (3.2.3)).

3. WLE using the unaliased spectrum (Equation (3.2.3)).
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4. DWLE (Equation (3.3.5)).

5. LPRE (Equation (3.4.3)).

We remind the reader that all forms of spectrum of FGN used for Methods 1, 2,

and 3 are given in Equations (2.3.6) and (2.3.7). The mean and standard deviation

of estimated values of the Hurst exponent and the sample variance from each set of

simulated FGN are summarised in Tables 4.2.1 and 4.2.2, respectively.

Table 4.2.1: The mean and standard deviation (mean ± SD) of estimated values of

the Hurst exponent (H) from each of the five different sets of FGNs.

Method

First set Second set Third set Fourth set Fifth set

(HT = 0.1) (HT = 0.3) (HT = 0.5) (HT = 0.7) (HT = 0.9)

1 0.102± 0.012 0.299± 0.017 0.499± 0.020 0.699± 0.021 0.901± 0.022

2 0.102± 0.012 0.297± 0.017 0.494± 0.019 0.691± 0.020 0.888± 0.021

3 0.005± 0.001 0.163± 0.024 0.399± 0.023 0.619± 0.023 0.833± 0.023

4 0.099± 0.012 0.299± 0.017 0.499± 0.019 0.699± 0.020 0.899± 0.020

5 0.027± 0.064 0.288± 0.061 0.499± 0.062 0.705± 0.061 0.910± 0.061

It is clear that Method 3 provides the worst estimation results with the largest

bias of both H and σ2
X since this method does not take into account aliasing from the

discrete sampling of FGN. We can estimate σ2
X through the parameter A, as shown in
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Table 4.2.2: The mean and standard deviation (mean ± SD) of estimated values of

the sample variance with σ2
T = 1 from each of the five different sets of FGNs.

Method

First set Second set Third set Fourth set Fifth set

(HT = 0.1) (HT = 0.3) (HT = 0.5) (HT = 0.7) (HT = 0.9)

1 0.997± 0.050 0.999± 0.046 1.000± 0.044 1.002± 0.056 1.064± 0.253

2 1.000± 0.050 1.007± 0.047 1.011± 0.045 1.008± 0.055 0.977± 0.186

3 50.896± 2.477 2.616± 0.370 1.490± 0.082 1.173± 0.054 0.824± 0.096

4 0.999± 0.050 0.999± 0.046 1.000± 0.044 1.000± 0.055 1.028± 0.206

Equation (2.3.3) by estimating the intercept term in the linear regression. However,

this is likely to provide high bias as Equation (3.4.3) is effective when ω is very close to

zero. Thus, Method 5 was only used to estimate the Hurst exponent in this analysis.

This method works quite well on FGN with H close to 0.5, but a large bias is observed

when H is close to 0 or 1. This is due to the weak correlation from the regression

plot of the logarithm of the periodogram, and the possibility that an estimated value

of the Hurst exponent from the slope is outside the range of H between 0 and 1.

These issues lead to a drawback of the LPRE. However, an important benefit of this

estimator is that it does not require any optimisation method for the estimation such

that it requires less computational time than other estimators proposed in this thesis.

Next, we show violin plots of estimated values of H and σ2
X from simulated FGNs
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with HT = 0.1 (highly anti-persistent short-memory process) and HT = 0.9 (highly

persistent long-memory process) in Figures 4.2.1 and 4.2.2. We exclude Method 3

due to its very poor performance across all values of HT . The violin plots from the

LPRE (Method 5) show higher bias and variance than the others, and this agrees

with the results shown in Table 4.2.1. The violin plots from Methods 1, 2, and 4

in Figure 4.2.1 are nearly the same. Their estimated values of H are approximately

normally distributed. Their mean values are all close to HT , and their variances are

almost identical. In Figure 4.2.2, the violin plots from these three methods are also

very similar. However, for very high HT , there is a possibility that the estimated

sample variance is much larger than its true value. This causes very high variance of

estimated values of sample variance shown by both the violin plot and Table 4.2.2.

One way of explaining this overestimation is that a simulated FGN with high HT

sometimes has very similar fractional behaviour to a nonstationary FBM with low

HT and non-constant variance. This can result in high estimated value of the sample

variance, caused by the persistent nature of the time series sampling larger than

expected values repetitively (see Figure 2.3.1 with HT = 0.9 and compare this with

Figure 2.2.1 with HT = 0.1). Despite this problem, we found that the mean of

estimated values of the sample variance with large sample size is close to its true

value and its distribution is still bell-shaped with slightly positive skewness.

To further investigate the impact of H on estimation performance, we now report

on two metrics for measuring estimation errors (or measurement errors). These include

the mean absolute error (MAE) and the root-mean-square deviation (RMSD). Here

we simulated FGNs with a higher range and resolution of values of HT such that
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Figure 4.2.1: The violin plots of estimated values of the Hurst exponent from simulated

FGNs with HT = 0.1 (left) and HT = 0.9 (right) using four different estimation

methods. The orange horizontal line indicates HT of these simulated processes.

Figure 4.2.2: The violin plots of estimated values of the sample variance from simu-

lated FGNs with HT = 0.1 (left) and HT = 0.9 (right) using three different estima-

tion methods. The orange horizontal line indicates σ2
T of these simulated processes

(σ2
T = 1).
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HT = 0.05 × S, where S is a positive number from 1 to 19, and σ2
T = 1. The length

of time series of each process is n = 1000, and the number of simulated time series

is set as 1000 for each value of HT . Figure 4.2.3 shows the measurement errors of

estimates derived from Methods 1, 2, and 4. Methods 3 and 5 are excluded from

this plot due to their large bias of estimates, which has already been discussed. From

this figure, all three estimators have very close measurement errors when HT ≤ 0.5.

However, when HT > 0.5, their measurement errors are quite different especially

those derived from time series of simulated FGNs with HT close to one. The DWLE

provides the lowest measurement errors of both estimates. The WLE with M = 100

and with M = 0 perform similarly with the former giving lower measurement errors

of the Hurst exponent, and the latter giving lower measurement errors of the sample

variance. Overall, we would expect M = 100 to be the better choice of the two as it

uses a more accurate approximation of the power spectral density function, however

it does take substantially longer to compute (as we shall shortly discuss further).

According to all plots in this figure, we may conclude that Method 4 or the DWLE

is likely to be the most appropriate method for the simultaneous estimation of the

Hurst exponent and the sample variance.

We propose two more reasons why the DWLE should be an optimal choice for

the estimation of parameters of FGN. First, this estimator utilises all discrete Fourier

frequencies in its optimisation of the log-likelihood function whether or not the time

series is long-memory. The WLE, however, excludes the spectral value at the zero fre-

quency as the spectrum approaches infinity at this frequency for the long-memory time

series, and this will contribute to slightly larger error of estimates than the DWLE.
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Figure 4.2.3: The line plots of mean absolute error and root-mean-square deviation

from the simultaneous estimation of both parameters of simulated FGNs with σ2
T = 1

andHT varied between zero and one. Three estimators are used for each plot including

the WLE with M = 100 (blue), the WLE with M = 0 (red), and the DWLE (green).

The y-axis of each plot is in the logarithmic scale.

Second, the DWLE requires less computational time or CPU time than the WLE

for the simultaneous estimation of parameters of FGN with any value of HT between

zero and one, as shown in Figure 4.2.4. The computation time for the summation of

the approximated aliased spectrum of FGN in Equation (2.3.7) is slightly slower then

the computational time for the fast Fourier transform of the expected periodogram in

Equation (3.3.4) at each iteration of the optimisation procedure in the “fminsearch”
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function. However, a large number of iterations to simultaneously find the optimised

values of the Hurst exponent and the sample variance result in much longer compu-

tational time for the WLE with the approximated aliased spectrum than the DWLE

with the expected periodogram, especially for the spectrum with M = 100. In addi-

tion, there is a slight increase of the computational time when HT approaches one for

each estimation method. This is likely due to the overestimation problem of σ2
X from

simulated FGN with high HT , as explained earlier, which makes the optimisation take

longer to converge as a wider range of σ2
X values are considered.
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Figure 4.2.4: The line plots of average computation time or CPU time for the si-

multaneous estimation of both parameters of simulated FGNs with σ2
T = 1 and HT

varied between zero and one. Three estimators are used including the WLE with

M = 100 (blue), the WLE with M = 0 (red), and the DWLE (green). The y-axis is

in the logarithmic scale. CPU time is computed on a 1.8 GHz dual-core Intel Core i5

processor.
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Next, we investigate the effect of different values of length n on the estima-

tion of parameters of simulated FGNs using the DWLE. Each set of 10000 time

series of FGNs with the same length n ∈ {256, 512, 1024, 2048, 4096}, the same

HT ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, and the same σ2
T = 1 was simulated. Figures 4.2.5

and 4.2.6 show the line plots of mean absolute error (MAE), standard deviation (SD),

root-mean-square deviation (RMSD), and average of CPU time derived from the si-

multaneous estimation of H and σ2
X against the logarithmic function of length n. All

these measures except the average of CPU time are in the logarithmic scale. These

two figures suggest that the MAE and the RMSD of both estimates decrease as n in-

creases. They are likely to be power-law functions of length n due to a nearly constant

slope of each line in their plots. Hence, we can expect that these measurement errors

are likely to approach zero as n approaches infinity, and this shows the consistency of

these estimates from the DWLE.

The logarithmic function of standard deviation of each estimate is also nearly

linearly related to the logarithmic function of length n. According to Sykulski et al.

(2019), the debiased Whittle likelihood estimates are
√
n-consistent, and this was

proven with the assumption that the time series are short-memory. Although we have

not established a complete mathematical proof for time series with long memory, we

can show that this convergence rate is likely to be applicable with time series of long-

memory process. Table 4.2.3 reports estimated slopes from regression lines of standard

deviation of estimates on length n in log-log space. In Equation (3.1.5), we reported

that estimates from the MLE are asymptotically efficient and
√
n-consistent. If we

assume that this statement also holds for estimates from the DWLE, we can expect
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Figure 4.2.5: The line plots of the logarithmic functions of mean absolute error,

standard deviation, root-mean-square deviation, and the linear function of average

CPU time against the logarithmic function of length n from the estimation of the

Hurst exponent of simulated FGNs with HT = 0.1 (blue), HT = 0.3 (green), HT = 0.5

(orange), HT = 0.7 (red), and HT = 0.9 (violet) using the debiased Whittle likelihood

estimator.

that the standard deviation of estimates is a power-law function of length n with

an exponent of −0.5, and this number is expressed by a slope of the linear regression

between standard deviation and length n in log-log space. Our estimated slopes are all

close to this value of power exponent despite slightly deviations from simulated FGNs

with very high HT , for example, HT = 0.9. We may deduce that the debiased Whittle
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Figure 4.2.6: The line plots of logarithmic functions of mean absolute error, standard

deviation, root-mean-square deviation, and the linear function of average CPU time

against the logarithmic function of length n from the estimation of the sample variance

of simulated FGNs with HT = 0.1 (blue), HT = 0.3 (green), HT = 0.5 (orange),

HT = 0.7 (red), andHT = 0.9 (violet) using the debiased Whittle likelihood estimator.

likelihood estimates are approximately
√
n-consistent and asymptotically efficient for

FGN, according to our findings from Figures 4.2.5 and 4.2.6. This is consistent with

findings in Robinson (2003), which state that the Whittle likelihood estimates are also

√
n-consistent for long-memory processes. In addition, these two figures consist of the

plots of average CPU time, and these two plots are identical due to the simultaneous

estimation of both parameters. Longer time series lengths require more average CPU
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time than shorter lengths, as expected. In general this rate of increase is expected to

scale as O(n log n) as n increases, due to the use of FFTs in DWLE, but the precise

relationship will depend on how the algorithms are implemented as n becomes very

large, the study of which we reserve for future work.

Table 4.2.3: Estimated slopes from regression lines of standard deviation of estimates

on length n in log-log space. These slopes are derived from each of the five different

sets of FGNs with different values of HT .

Parameter HT = 0.1 HT = 0.3 HT = 0.5 HT = 0.7 HT = 0.9

H −0.549 −0.516 −0.501 −0.498 −0.463

σ2
X −0.504 −0.500 −0.502 −0.506 −0.577

In Chapter 2, we showed that the relationship between long-memory parameters

of FGN and the stationary FD process is given by H = d + 1/2. This means that

the memory property between FGN with the estimated parameter of Ĥ and the FD

process with the estimated parameter of d̂ = Ĥ − 1/2 is theoretically identical. This

motivates us to apply the model of FD processes to simulated FGNs and observe how

the parameter d is estimated for each simulated FGN comparing with its estimated

value of the Hurst exponent. This also tests the ability of each estimation method

to be robust to related but misspecified long-memory models. We used all the same

simulated processes as those for analysing measurement errors in Figure 4.2.3. The

measurement errors including the mean absolute error (MAE) and the root-mean-
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square deviation (RMSD) from the estimation of d using the WLE with M = 100

and the DWLE are presented by the line plots in Figure 4.2.7. Other methods of

the WLE are possible to use, however they provide larger measurement errors than

the WLE with M = 100. This figure shows that both methods provide very similar

measurement errors. These errors from the debiased method are slightly lower at

most ranges of HT except at both extremes of HT . The MAE and the RMSD from

the estimation of d are likely to be the lowest when the simulated FGN is very close

to Gaussian white noise, i.e., HT = 0.5, which is as expected as both processes will

then exhibit very similar spectra and autocovariances.
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Figure 4.2.7: The line plots of mean absolute error and root-mean-square deviation

from the estimation with the modelling of FD processes to the simulated FGNs used in

Figure 4.2.3. Two estimators are used for each plot including the WLE withM = 100

(blue) and the DWLE (green). The y-axis of both plots is in the logarithmic scale.

Figure 4.2.8 shows the mean of the difference between estimates (the mean of
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d̂ − Ĥ) from each set of simulated FGNs with a fixed value of HT varied between

zero and one. This mean of difference corresponds to its theoretical aspect such that

d̂− Ĥ = −1/2 only when HT = 0.5. Using the approximation of sin(ω/2) ≈ ω/2, the

power spectral density function of FD process in Equation (2.4.6) at low frequencies

can be approximated as

S(ω) = σ2
ε |ω|−2d, ω ≈ 0. (4.2.1)

The variance of the white noise process or σ2
ε is only used to set the level of spectrum

although we estimate this parameter along with the order of differencing for modelling

of FD processes. We compare this equation with the unaliased power spectral density

function of FGN at low frequencies derived from the approximation of sin(ω/2) ≈ ω/2

and the substitution of j = 0 into Equation (2.3.6), i.e.,

SX(ω) = A2|ω|1−2H , ω ≈ 0. (4.2.2)

Hence, the spectrum of the FD process and the unaliased spectrum of FGN are

identical in shape at low frequencies. However, at higher frequencies, there will be

departures between the power spectral density function of FGN and the FD process

(see Figure 2.6.1), and these departures will increase as H moves away from 0.5 in

either direction and the dynamic range of the spectrum of both processes increases.

Therefore, model misspecification appears to impact long-memory parameter estima-

tion (either H or d) more significantly as H moves away from 0.5 (or equivalently d

from 0), but is more robust otherwise.
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Figure 4.2.8: The line plots of the mean of d̂−Ĥ calculated from each set of simulated

FGNs with a fixed value of HT varied between zero and one.

4.3 Estimation Results from Simulated FBMs

FBM is controlled by two parameters, H and A. The Hurst exponent or H describes

the fractional behaviour of this process, while the parameter A specifically sets its

level. By using Equations (2.2.4) and (2.3.3), this level variable can be written as a

function of both the Hurst exponent (H) and the variance of its first-order difference

process, denoted as σ2
X , and this is given by

A = f(H, σ2
X) =

σ2
XπΓ(2H + 1)

Γ(H)Γ(1−H)
. (4.3.1)

Figure 4.3.1 illustrates a line plot of A as a function of H when H is varied between

zero and one, and A is in the form of the multiple of σ2
X . When H = 0.5, A is exactly

equal to σ2
X , and this can also be derived from Equation (4.3.1). The relationship
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between A and H is represented by a left-skewed bell-shaped curve.
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Figure 4.3.1: The level variable (A), which is in a form of the multiple of σ2
X , as a

function of the Hurst exponent (H).

We fit time series with length n = 1000 to each discretely-sampled FBM derived

from the cumulative sum of simulated FGN used in Section 4.2. We simultaneously

estimate both H and A with all five estimation methods listed in that section. For

each of the five estimation methods, we consider three varying ways of estimating

parameters. We shall call these three variants (a), (b), and (c), respectively, where

(a) taking a first-order difference of the data and then fitting FGN as performed in

Section 4.2.

(b) fitting the data directly to FBM using the spectral density and expected peri-

odogram from Equations (3.6.1) and (3.6.2), respectively (see Section 3.6).
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(c) as in (b), but applying a 20% cosine taper as discussed in Section 3.7.

Figure 4.3.2 shows line plots of the comparison between HT and the mean of

estimated values of H using all five estimators proposed in Chapter 3. Each line rep-

resents the three varying ways of estimating parameters (a–c), as previously defined.

The bias of the estimated Hurst exponent from each method and variant applied to

simulated fractional processes with HT ∈ {0.1, 0.3, 0.5, 0.7, 0.9} is summarised in Ta-

ble 4.3.1. When HT > 0.5, the periodogram without tapering in variant (b) greatly

underestimates the Hurst exponent. However, the 20% cosine taper in variant (c) can

reduce this bias from variant (b). According to this table, the least bias of estimated

Hurst exponent from discretely-sampled FBM uses either variant (a) or (c) combined

with Method 4 (the DWLE).

Table 4.3.2 presents the average computational time for parameter estimation.

Each estimator, except Method 4, has similar values of computational time among

all variants. However, when HT is close to one, both variants (a) and (c) from the

first three methods have high computational time, likely due to the overestimation

problem of σ2
X for FGN (as discussed earlier), where this parameter is also required to

estimate the level parameter A for FBM. Variant (b) has less computation time than

variant (c) when HT is close to one, but it provides much higher bias, as described

earlier.

Method 4 is the only estimation method with much higher computational time

for variants (b) and (c) than variant (a). This is due to the double summation for

the nonstationary autocovariance to calculate the expected periodogram shown in
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Figure 4.3.2: The line plots of the comparison between the true values of the Hurst

exponent (HT ) and the mean of its estimates. All five methods are the same order

as those given in Section 4.2. Each figure includes three solid lines representing three

variants: (a)-blue, (b)-green, (c)-black. The orange dashed line is used as a reference

line with the mean of estimates Ĥ = HT .

Equation (3.6.2). This double summation means that computation of the expected

periodogram is an O(n2 log n) operation for variants (b) and (c). This is much more

expensive than variant (a) using Equation (3.3.4), which is O(n log n). By comparing

bias and average computational time from all methods and variants, we recommend

estimating the Hurst exponent by using the DWLE to fit FGN to the first-order
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Table 4.3.1: Bias of estimated Hurst exponent of discretely sampled FBM.

Method Variant HT = 0.1 HT = 0.3 HT = 0.5 HT = 0.7 HT = 0.9

1

(a) 0.002 −0.001 −0.001 −0.001 0.001

(b) 0.005 0.011 −0.001 −0.139 −0.377

(c) 0.005 0.006 0.020 0.044 0.070

2

(a) 0.002 −0.003 −0.006 −0.009 −0.012

(b) 0.005 0.009 −0.005 −0.144 −0.382

(c) 0.005 0.004 0.015 0.035 0.065

3

(a) −0.095 −0.137 −0.001 −0.081 −0.067

(b) −0.097 −0.120 −0.100 −0.228 −0.419

(c) −0.097 −0.123 −0.071 −0.025 0.042

4

(a) −0.001 −0.001 −0.001 −0.001 −0.001

(b) 0.001 −0.006 0.008 −0.123 −0.269

(c) 0.001 −0.004 −0.002 −0.010 −0.024

5

(a) −0.073 −0.012 −0.001 0.005 0.010

(b) −0.078 0.008 −0.007 −0.153 −0.372

(c) −0.067 0.012 0.051 0.119 0.283
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Table 4.3.2: Average computational time in second(s) for parameter estimation of

discretely sampled FBM.

Method Variant HT = 0.1 HT = 0.3 HT = 0.5 HT = 0.7 HT = 0.9

1

(a) 2.835 2.369 1.893 2.414 4.861

(b) 2.926 3.111 2.275 2.525 1.986

(c) 3.285 2.781 2.018 2.726 17.889

2

(a) 0.157 0.129 0.107 0.131 0.233

(b) 0.155 0.145 0.118 0.136 0.110

(c) 0.179 0.144 0.109 0.140 0.807

3

(a) 0.139 0.065 0.032 0.029 0.041

(b) 0.447 0.064 0.037 0.041 0.028

(c) 0.503 0.067 0.029 0.028 0.131

4

(a) 0.076 0.060 0.050 0.064 0.113

(b) 15.733 17.385 25.534 77.682 219.638

(c) 21.377 18.110 13.754 15.881 28.213

5

(a) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

(b) 0.001 0.002 0.003 0.001 0.001

(c) 0.002 0.001 0.001 0.001 0.001
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difference of the data as this provides less bias and average computational time than

the others.

4.4 Uncertainty Estimation

In this section, we discuss about uncertainty estimation of estimated parameters from

a single simulated time series of a stationary fractional process. We assume that this

process is FGN or {Xt} with constant mean and variance over time. We consider the

case where the debiased Whittle likelihood was used to estimate both H and σ2
X of

this process. Let θ̂ = {Ĥ, σ̂2
X} be a set of estimates from this method. The standard

error of these estimates can be approximated from the square root of their variances

from the diagonal elements of the inverse of Fisher information matrix, i.e.,

se[θ̂] ≈
√
Var[θ̂] =

√
diag(F−1(θ̂)), (4.4.1)

whereF is the Fisher information matrix. This approximation comes from asymptotic

theory of maximum likelihood estimators. The Fisher information matrix is defined

as the negative of the expected value of the Hessian matrix such that

F(θ̂) = −E
[
H(θ̂)

]
, (4.4.2)

where H is the Hessian matrix. Each entry is the second partial derivative of the

debiased Whittle log-likelihood function, i.e., Hij(θ̂) = ∂2ℓDWLE(θ)/∂θi∂θj|θ=θ̂. To

show the mathematical expression for each entry of the Hessian matrix, we start

our process by taking the first and second partial derivatives of the autocovariance
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sequence of FGN, and these are given by

∂sX,τ

∂H
=
σ2
X

2

(
2|τ + 1|2H log |τ + 1| − 4|τ |2H log |τ |+ 2|τ − 1|2H log |τ − 1|

)
, (4.4.3)

∂sX,τ

∂σ2
X

=
1

2

(
|τ + 1|2H − 2|τ |2H + |τ − 1|2H

)
, (4.4.4)

∂2sX,τ

∂H2
=
σ2
X

2

(
4|τ + 1|2H(log |τ + 1|)2 − 8|τ |2H(log |τ |)2

+ 4|τ − 1|2H(log |τ − 1|)2
)
, (4.4.5)

∂2sX,τ

∂(σ2
X)

2
= 0, (4.4.6)

∂2sX,τ

∂H∂σ2
X

=
1

2

(
2|τ + 1|2H log |τ + 1| − 4|τ |2H log |τ |+ 2|τ − 1|2H log |τ − 1|

)
, (4.4.7)

where |τ | ≠ 0, 1. At τ = 0, the autocovariance sequence becomes the variance of the

process or σ2
X , and all its first and second partial derivatives are zero, except that

the first partial derivative with respect to σ2
X is one. At |τ | = 1, the autocovariance

sequence is given by sX,τ=1 = σ2
X(2

2H−1 − 1). Its first and second partial derivatives

with respect to H and H2 are σ2
X(2

2H log 2) and σ2
X(2

2H+1(log 2)2), respectively, while

the second partial derivative with respect to both H and σ2
X is 22H log 2. The first

and second partial derivatives with respect to σ2
X and (σ2

X)
2 can be directly derived

from Equations (4.4.4) and (4.4.6).

Then we calculate the first and second partial derivatives of the expected peri-

odogram as

∂S̄(ω|θ)
∂θi

= 2 · Re

(
n−1∑
τ=0

(
1− τ

n

)
∂sX,τ

∂θi
e−iωτ − ∂sX,0

∂θi

)
, (4.4.8)

∂2S̄(ω|θ)
∂θi∂θj

= 2 · Re

(
n−1∑
τ=0

(
1− τ

n

)
∂2sX,τ

∂θi∂θj
e−iωτ − ∂2sX,0

∂θi∂θj

)
, (4.4.9)
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where θi and θj are elements in θ = {H, σ2
X}. These two equations are used for

the computation of the first and second partial derivatives of the debiased Whittle

log-likelihood function given by

∂ℓDWLE(θ)

∂θi
= −1

2

∑
ω∈Ω

∂

∂θi

{(
log S̄(ω|θ) + I(ω)

S̄(ω|θ)

)}

= −1

2

∑
ω∈Ω

{(
1

S̄(ω|θ)
− I(ω)

S̄2(ω|θ)

)
∂S̄(ω|θ)
∂θi

}
, (4.4.10)

and

∂2ℓDWLE(θ)

∂θi∂θj
= −1

2

∑
ω∈Ω

{(
1

S̄(ω|θ)
− I(ω)

S̄2(ω|θ)

)
∂2S̄(ω|θ)
∂θi∂θj

−
(

1

S̄2(ω|θ)
− 2I(ω)

S̄3(ω|θ)

)(
∂S̄(ω|θ)
∂θi

· ∂S̄(ω|θ)
∂θj

)}
. (4.4.11)

We use Equation (4.4.11) to define the Hessian matrix H for the debiased Whittle

likelihood estimation.

Because the Fisher information matrix F is the negative of the expected value of

the Hessian matrix, each entry of F with the ith row and the jth column given the

set of estimates, θ̂ = {Ĥ, σ̂2
X}, is calculated as

F ij =
1

2

∑
ω∈Ω

{(
1

S̄(ω|θ̂)
− E [I(ω)]

S̄2(ω|θ̂)

)
∂2S̄(ω|θ̂)
∂θ̂i∂θ̂j

−
(

1

S̄2(ω|θ̂)
− 2E [I(ω)]

S̄3(ω|θ̂)

)(
∂S̄(ω|θ̂)
∂θ̂i

· ∂S̄n(ω|θ̂)
∂θ̂j

)}
=

1

2

∑
ω∈Ω

{
1

S̄2(ω|θ̂)
· ∂S̄(ω|θ̂)

∂θ̂i
· ∂S̄(ω|θ̂)

∂θ̂j

}
, (4.4.12)

where θ̂i and θ̂j are elements in θ̂. The simplification of the expression occurs because

E [I(ω)] = S̄(ω|θ̂). Finally, the standard error of estimates is approximately the

square root of each diagonal element of the inverse of this Fisher information matrix

(i = j), as shown in Equation (4.4.1), and the covariance between the parameter

estimates can be approximated by looking at the off-diagonal entries i ̸= j.
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Figure 4.4.1 shows the line plots of standard errors of Ĥ and σ̂2
X with respect to Ĥ

from a single simulated time series of FGN. These are generated by the following order:

(1) assuming that σ̂2
X = 1 and Ĥ is varied between zero and one, (2) substituting these

estimated values into Equation (4.4.12) to find the Fisher information matrix, and

(3) using this matrix to calculate the standard errors of both estimates as given in

Equation (4.4.1). It is reasonable that the standard error of Ĥ is low near its lower

and upper boundaries due to our constrained optimisation, while this measure is

maximised at Ĥ ≈ 0.8. The standard error of σ̂2
X is low and constant at Ĥ ≤ 0.7,

while it greatly jumps to a value close to σ̂2
X when Ĥ approaches one. Thus, the

DWLE may not perform well on the estimation of the sample variance of a simulated

FGN with very high degree of long-range dependence.
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Figure 4.4.1: The line plots of standard errors of estimates from a single simulated

time series of FGN.
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A theoretical 95% confidence interval of estimates of both the Hurst exponent

and the sample variance from simulated FGNs with HT ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and

σ2
T ∈ {0.25, 1, 2} can be drawn by an ellipse as shown in Figure 4.4.2. Parameters

from a set of 1000 time series of simulated FGNs having the same HT and σ2
T were

estimated with the DWLE. We compare the joint distribution of these 1000 pairs of

estimates with their 95% confidence ellipse, and we find that most joint estimates

from each set are inside these ellipses. There is a slight skewness of the distribution

of parameter estimates from the set with HT = 0.9, and this is due to the skewness of

the sample variance estimates from FGNs with very high HT , as previously discussed

in Section 4.2.
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Figure 4.4.2: Points of estimates and their theoretical 95% confidence interval

presented by an ellipse, from each of 1000 simulated time series of FGNs with

HT ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and σ2
T ∈ {0.25, 1, 2}.
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Each confidence ellipse is constructed from the inverse of the Fisher information

matrix, which is equivalent to the covariance matrix of estimates such that

C(θ̂) = F−1(θ̂) =

 Var[Ĥ] Cov[Ĥ, σ̂2
X ]

Cov[Ĥ, σ̂2
X ] Var[σ̂2

X ]

 . (4.4.13)

The lengths of both major and minor axes of this ellipse are given by

lmajor = 2
√
χ2
2,αλ1, (4.4.14)

and

lminor = 2
√
χ2
2,αλ2, (4.4.15)

where λ1 and λ2 are the first and second largest eigenvalues of C(θ̂), and χ2
2,α is

the critical value from the chi-square distribution with two degrees of freedom and

a significance level of α. For a 95% confidence ellipse, the value of α is 1 − 0.95 =

0.05, and thus we can substitute χ2
2,0.05 ≈ 5.99 into Equations (4.4.14) and (4.4.15).

Eigenvalues λ1 and λ2 are given by

λ1 =
C11 + C22 +

√
(C11 − C22)

2 + 4(C12)
2

2
, (4.4.16)

and

λ2 =
C11 + C22 −

√
(C11 − C22)

2 + 4(C12)
2

2
, (4.4.17)

where Cij is an element in the ith row and the jth column of matrix C in Equa-

tion (4.4.13). It is of note that these equations of eigenvalues are valid only when

C12 ̸= 0, which will be the case in practice.

The angle of the major axis of the ellipse in Figure 4.4.2 with respect to the
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positive x-axis, denoted by ψ̂, is calculated as

ψ̂ = arctan

(
λ1 − C11

C12

)
, (4.4.18)

where v = (C12, λ1−C11) is the eigenvector corresponding to the largest eigenvalue or

λ1. According to Equation (4.4.16), it is obvious that λ1−C11 is always non-negative.

If C12 = Cov[Ĥ, σ̂2
X ] > 0, ψ̂ is between 0 and π/2 radians, and this result is shown

when HT > 0.5. If C12 = Cov[Ĥ, σ̂2
X ] < 0, ψ̂ is between −π/2 and 0 radians, and

this result is shown when HT < 0.5. For Gaussian white noise with HT = 0.5, the

theoretical value of C12 is 0. All off-diagonal elements of matrix C are 0, and thus

its eigenvector is either v = (1, 0) or v = (0, 1) depending on whether Var[Ĥ] is

greater than Var[σ̂2
X ]. ψ̂ is derived from the arctangent of the ratio of the magnitude

of the y-component to the magnitude of the x-component of v, so ψ̂ is either 0 or

π/2 radians for Gaussian white noise. In Figure 4.4.3, the 95% confidence interval of

the correlation coefficient between Ĥ and σ̂2
X , from repeated simulation of FGNs with

σ2
T = 1 and HT varied between zero and one, is shown by the shaded region, while

the correlation coefficient derived from the covariance matrix is drawn by the curved

black line. The sign of the correlation coefficient from this line corresponds to that of

the angle ψ̂ of ellipse with the same value of HT shown in Figure 4.4.2.

The length of projection vector of the major axis of the ellipse on either axis of

parameter is directly proportional to the standard error of estimates of such param-

eter. For each column in Figure 4.4.2 with the same HT , the projection vectors of

the major axes of all ellipses on the horizontal axis are equal in length. However,

the lengths of their projection vectors on the vertical axis are different but scaled by
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Figure 4.4.3: A line plot and the shaded region representing the correlation coefficient

between both parameters along with its 95% confidence interval using the DWLE.

σ2
T . Let us compare two different FGNs. The first process provides a set of estimates

as {Ĥ, σ̂2
X} from a set of their true values or {HT , σ

2
T}. The second process has the

same HT but its true value of the sample variance is multiplied by k, i.e., kσ2
T . The

expected periodogram and the first partial derivative of the autocovariance sequence

with respect to the Hurst exponent of the second process is also increased by a factor

of k. By using Equations (4.4.8), (4.4.9), (4.4.12), and (4.4.13), We calculate the

covariance matrix of this process, and it is given by

C(k)(θ̂) =

 Var[Ĥ] k · Cov[Ĥ, σ̂2
X ]

k · Cov[Ĥ, σ̂2
X ] k2 · Var[σ̂2

X ]

 . (4.4.19)

Hence, the standard error of estimated values of the Hurst exponent is unchanged,

while the standard error of estimated values of the sample variance is multiplied by
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k. These are visualised by the lengths of projection vectors, as previously discussed.

Overall, this section has demonstrated that the asymptotic approximation of pa-

rameter estimate uncertainty via the Fisher Information matrix provides a good mech-

anism for reporting parameter uncertainties from the DWLE applied to FGN.

4.5 Application on Log-Volatility Time Series

In this section, we applied the DWLE along with its uncertainty estimation to the log-

volatility time series of financial assets. Gatheral et al. (2018) evaluated the smooth-

ness of these time series from several financial assets. They found that these time

series behave like fractional Brownian motion with the Hurst exponent between 0.08

and 0.2. This means that the log-volatility time series are likely to exhibit rough-

ness as compared with standard Brownian motion. For this reason, they proposed

a new model called the rough fractional stochastic volatility model to fit these time

series. However, in this section we modelled these same time series as exact FBM

processes by fitting FGN to the first-order difference time series and estimated the

local Hurst exponent at each time point of the financial data. By “local” we mean a

time-varying Hurst exponent which is calculated over rolling windows of fixed width.

The data we shall consider here are the log-volatility time series of four stock indices

including S&P 500, FTSE 100, DAX 30, and NIKKEI 225 from the first trading day

of 2011 to the last trading day of 2020, and they are all reported in the Oxford-Man

Institute’s realized library (https://realized.oxford-man.ox.ac.uk). These time series

are presented in Figure 4.5.1. To estimate the local Hurst exponent at each trading
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day, we use a moving window to filter the time series with the DWLE. Specifically,

we use a moving window with length n = 256, which is also the approximate number

of trading days per year. This local Hurst exponent is estimated from the window of

the first-order difference of log-volatility time series from the previous 255 days until

the day of interest. In addition, we estimated the global Hurst exponent from these

10-year time series of financial assets.
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Figure 4.5.1: Log-volatility time series of S&P 500, FTSE 100, DAX 30, and NIKKEI

225 from the first trading day of 2011 to the last trading day of 2020.

The estimated results of the local Hurst exponent and its corresponding 95%

confidence intervals are illustrated in Figure 4.5.2. We also provide the estimate of

the global Hurst exponent for each stock index. Although our observed period of
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time series is different from that in Gatheral et al. (2018), the global Hurst exponent

is still about 0.1, while the local Hurst exponent fluctuates around this value of the

global parameter. The global Hurst exponent from log-volatility time series of S&P

500 is 0.1644, which is slightly higher than that from others in our study and the

same financial indices in different periods from Gatheral et al. (2018) (H = 0.1420).

We also observe that the drastic change of the pattern of the local Hurst exponent of

each plot in this figure is related to the change of the stock price due to some major

events. We list two examples of these as follows: The stock market crash due to the

COVID-19 pandemic increases the fluctuation level of the local Hurst exponent near

the beginning of 2020 for all stock indices. The uncertainty of investors about the

Brexit deal in the beginning of 2018 causes a sudden increase including a single peak

of the local Hurst exponent for the FTSE 100 index.
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Figure 4.5.2: The estimation of the local Hurst exponent and its 95% confidence

interval at each working day of four stock indices from 2011 to 2020 (blue solid line

and grey shaded region), the estimation of the global Hurst exponent from this whole

range of the log-volatility time series (red solid line), and the reference line of H = 0

(orange dashed line).



Chapter 5

Nonparametric Statistics for

High-Frequency Accelerometry

Data from Individuals with

Advanced Dementia

Accelerometry data provides a method for monitoring physical activity over time.

Such data is typically collected from an actigraph device, which is generally worn

on the wrist, for a continuous period of time with minor impact on daily life. The

device contains an accelerometer which measures acceleration of the individual, and

sometimes a light and temperature sensor is also included. Data recorded from such

instruments has been widely used to study the pattern of 24-hour rest-activity rhythm,

also known as circadian rhythm, of humans for almost half a century (Ancoli-Israel

95
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et al., 2003). Of primary interest here is the increased use of actigraphy and ac-

celerometry with people with advanced dementia at the end of life (Kok et al., 2017;

Khan et al., 2018). However, the analysis of such data from this population where

circadian rhythms are significantly dysregulated is challenging, putting into question

the validity of conclusions extracted.

Several measures have been proposed to quantify the circadian rhythm and they

can be broadly classified into two groups: parametric and nonparametric measures.

Cosinor is a traditional parametric method for calculating the amplitude and phase

of the circadian rhythm (Halberg et al., 1967). This procedure fits the observed data

by a regression model of continuous cosine functions with a rhythm-adjusted mean,

where the period is assumed to be known (Cornerllissen, 2014). This model is often

a poor fit to accelerometry data, especially for individuals with weak circadian pat-

terns (Fossion et al., 2017). Alternative methods include singular spectrum analysis

(SSA) which employs periodic components with varied amplitude and phase to fit

the data (Fossion et al., 2017), or the use of multiparameter-extended cosine func-

tions (Krafty et al., 2019). In general, these parametric methods can be very useful for

characterising circadian rhythms, however they are typically model-based and suffer

the usual disadvantages of parametric methods: namely the bias and lack of robust-

ness that results when model assumptions are not met by the application data source

of interest.

Nonparametric measures are model-free and require little to no user expertise to

implement. Two such important and widely-used measures are interdaily stability

(IS) and intradaily variability (IV). These were first proposed in 1990 to study how
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the circadian rhythm changes for patients with aging and Alzheimer’s disease (Witting

et al., 1990). IS measures the strength of the circadian rhythm, while IV measures the

fragmentation of the data by measuring the variation of hour-to-hour data relative

to sample variance. In Witting et al. (1990) and other such early studies, both IS

and IV were calculated from data with an hourly sampling interval due to the lim-

itations of sensor processing in the actigraph device. However, storage capacity has

now been increased and data can be recorded with much higher temporal sampling

intervals (Gonçalves et al., 2014). This is important as IV values change significantly

as a function of the temporal sampling rate, although we note that the rate only has

a very small effect on IS in general. In this chapter, we study the effect of temporal

sampling on IV in detail, and propose an optimal rate, together with a simple method

that ensures no data is thrown away in calculating the statistic.

IS and IV have been used as summary statistics for actigraphy and accelerometry

data from individuals with dementia in several studies. A number of studies have

reported that patients with dementia have significantly lower IS than those without

dementia (Witting et al., 1990; Harper et al., 2001; Satlin et al., 1995; Hatfield et al.,

2004), and this can be associated with cerebral microbleeds (Zuurbier et al., 2015),

occipital periventricular and frontal deep white matter hyperintensities (Oosterman

et al., 2008), and loss of medial temporal lobe volume (Van Someren et al., 2019).

On the other hand, these patients have significantly higher IV (Witting et al., 1990;

Harper et al., 2001; Hatfield et al., 2004; Hooghiemstra et al., 2015) which was posi-

tively correlated with the ratio of phosphorylated tau81 (pTau) to cerebrospinal fluid

amyloid β 42 (Aβ 42) for the biomarker collection assessing preclinical Alzheimer dis-
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ease (Musiek et al., 2018), and medial lobe atrophy (Van Someren et al., 2019). More

broadly, dementia can affect the disruption of circadian rhythm which is linked with

dementia biomarkers (Smagula et al., 2019).

Another nonparametric method is detrended fluctuation analysis (DFA), which

was introduced to study fractal scaling behaviour and determine long-range auto-

correlation in time series data (Peng et al., 1994). With DFA, a scaling exponent is

estimated, and this is related to the well-known Hurst exponent H (proposed by Hurst

(1951)). The Hurst exponent value is between zero and one, and this can be divided

into three cases: (1) 0.5 < H < 1 for persistent time series whose increments have pos-

itive long-term autocorrelation, (2) 0 < H < 0.5 for anti-persistent time series whose

increments have negative long-term autocorrelation, and (3) H = 0.5 for a Brownian

process with uncorrelated “white noise” increments. The DFA scaling exponent (α),

on the other hand, is defined in the range 0 < α < 2 (Ihlen, 2012). Stationary time

series (such as a correlated noise) have α values between zero and one, whereas non-

stationary time series (such as a random walk) have α values between one and two.

The DFA scaling exponent is the same as the Hurst exponent in the stationary case

such that α = H, but in the nonstationary case we have α = H + 1. The boundary

between stationary and nonstationary time series behaves like “pink” noise (or 1/f

noise) with α approximately equal to one. The DFA method has been commonly

applied to time series with monofractal structure which is defined by a single scaling

exponent. However, there might be some temporal fluctuations (multifractal struc-

ture) in the time series and this requires a group of generalised scaling exponents

to explain them. Such fluctuations can be analysed by a method called multifractal
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detrended fluctuation analysis (MFDFA) (Ihlen, 2012; Kantelhardt et al., 2002). We

note that there also exist other procedures for quantifying fractal-type behaviour in

a time series (see e.g. Fernández-Mart́ınez et al. (2019)).

For its part, both DFA (or monofractal DFA) and MFDFA have been widely used

to estimate scaling and Hurst exponents in many research fields. Indeed, a few re-

search studies collected data from patients with dementia and analysed their fractal

scaling behaviours using DFA (Hu et al., 2013, 2016; Huber et al., 2019). Some of

their findings were that the change of DFA scaling exponent could be found from ante-

mortem actigraphy records of some patients with dementia and its degree of change

was negatively correlated with the number of two major circadian neurotransmitters

found in the suprachiasmatic nucleus (Hu et al., 2013), and the timed bright light

therapy reduced the rate of decay of the Hurst exponent over time (Hu et al., 2016).

In this chapter, we will further explore the use of monofractal DFA on accelerome-

try data, including a novel comparison of considering DFA scaling exponents during

daytime and nighttime separately.

Finally, spectral analysis can be used to decompose variability in accelerometry

data across different frequencies of oscillation. The simplest nonparametric estimator

is the periodogram (Percival and Walden, 1993). For people who do not suffer from

dementia or sleep disorders, both methods usually provide that the highest point in

the spectrum generally occurs around the frequency of 1/24 hour-1 (known as the

fundamental frequency), and further peaks occur at harmonic frequencies, which are

positive integer multiples of the fundamental frequency. Harmonic peaks occur as

the circadian rhythm is not perfectly sinusoidal. For individuals with disrupted sleep
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cycles, the spectrum will have relatively low energy at the fundamental and harmonic

frequencies, and relatively high and noisy levels at other frequencies. In this chapter,

we propose a novel nonparametric estimator from the periodogram which calculates

the ratio of variability at fundamental and harmonic frequencies versus the whole

spectrum. We call this method proportion of variance (PoV), and we will analyse

this to our dataset and compare with other methods in order to assess the efficacy of

spectral analysis methods for accelerometry data.

5.1 Materials and Methods

5.1.1 Accelerometry data

The studied dataset contains accelerometry time series from 26 individuals suffering

from advanced dementia. To create a reference group without dementia, we also

studied 14 recordings of accelerometry data from members of the research team and

colleagues that provided this data as part of piloting the use of the actigraph device

for our main study. The 26 individuals with advanced dementia took part in a group

intervention project aimed at improving quality of life when living in care homes (Frog-

gatt et al., 2020). Fifteen of them received the Namaste Care intervention in their

treatment during the period of data collection, while the remaining 11 participants

were allocated to a non-intervention group receiving treatment as usual (see protocol

details in Froggatt et al. (2018)). Although the intervention did not have a significant

effect on accelerometry readings of those with advanced dementia (Froggatt et al.,

2020), we nonetheless compared intervention and non-intervention groups as a useful
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indicator of the performance and stability of our time series metrics. All the partic-

ipants with advanced dementia were recruited from six nursing homes between the

end of 2017 and May 2018. The study end date was 30/11/2018. Being a permanent

resident in a nursing care home, lack of mental capacity, and a FAST score of 6 − 7

reflecting advanced dementia status were part of the inclusion criteria (see full details

in Froggatt et al. (2018)). All 26 participants with advanced dementia and with valid

accelerometry information are part of a larger study detailed in Froggatt et al. (2018),

the demographic details of which are also included in Table A.1.1 in Appendix A for

reference.

The original trial was approved by the Wales Research Ethics Committee 5 Bangor

Research Ethics Committee (reference number 17/WA/0378) on 22 November 2017.

Potential participants were screened by the principal investigator and the senior care

team, and eligible participant’s written consent was provided by a personal consultee.

For those without a personal consultee, the consent was requested to a nominated

consultee following care home procedures. Following this, researchers discussed the

study with consultees and gained assent from residents to take part in the study.

For each participant across the study, the accelerometry data was recorded by a

wrist-worn accelerometer called GENEActiv for a maximum of 28 days. This device

measures acceleration in the unit of gravitational force (g-force). The sampling pe-

riod of recording was set to five seconds such that the length of accelerometry time

series was 17280 per day. Raw data output from each sampling time consists of three

non-negative values representing the magnitudes of projected vectors of acceleration

on three axes in Euclidean space. The Euclidean norm was calculated from these
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magnitudes. Because the accelerometer is affected by the gravitation of Earth, this

effect is removed. Thus, we calculate what is known as the Euclidean norm minus one

(ENMO) (Van Hees et al., 2013), which results in the time series of accelerations used

for implementing our nonparametric time series methods. We emphasise that in the

literature other forms of actigraphy time series are sometimes studied (Ancoli-Israel

et al., 2003) such as time above threshold (total amount of time such that the ac-

celerometry data is above a setting threshold per time interval), zero-crossing method

(total count of movements per time interval by counting the number of times when

the accelerometry data is close to zero), and digital integration (total area under the

curve of accelerometry data per time interval). We chose to run our analysis meth-

ods on ENMO data as this retained the most information from the raw data, but

our methods could also have been applied to the types of actigraphy data described

above. Before statistical analysis was performed, we excluded all data for any day

having at least one missing data. This was done because the methods we present

require complete measurements, and the alternative of using interpolation methods

will perform poorly if there are long consecutive periods with missing data. We apply

four different nonparametric time series methods (implemented in RStudio using R

version 4.0.0) to the ENMO data which we now describe. R software for implement-

ing each method, for any generic accelerometry time series, is publicly available at

www.github.com/suibkitwanchai-k/Accelerometry.
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5.1.2 Interdaily stability (IS)

The first statistical method is interdaily stability (IS), which is a nonparametric mea-

sure for the strength of the circadian rhythm in the accelerometry data. The circadian

rhythm is driven by a circadian clock with approximately 24-hour time period. For

each individual, we define {Xt} as a time series of ENMO data with length N . The

interdaily stability is the ratio of the average square-error of hourly means from the

overall mean to the variance of {Xt}, i.e.,

IS =

24∑
s=1

(Xs −X)2/24

N∑
t=1

(Xt −X)2/N

, (5.1.1)

where Xs is the sample mean of ENMO data during the sth hour of the day (s =

1, 2, ..., 24) and X is the overall sample mean. Equation (5.1.1) calculates IS by aggre-

gating data on an hourly basis in the numerator into 24 bins. The original motivation

for this is that the time series itself is sampled on an hourly interval (Witting et al.,

1990) such that more bins are not possible. However for high frequency data, such as

the 5-second data in our study, the hourly aggregation becomes an arbitrary choice,

and IS could instead be calculated by aggregating over shorter time intervals and

into several more bins. According to Gonçalves et al. (2014), however, the interdaily

stability is insensitive to this choice, and we found the same in our study. Therefore

we keep to the choice of hourly binning in Equation (5.1.1). In contrast, the value of

intradaily variability (IV) depends strongly on the sampling period as we now discuss.
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5.1.3 Intradaily variability (IV)

Intradaily variability (IV) is used to estimate circadian fragmentation in the data. In

our implementation, we ensure all data in the high frequency time series is used, even

if subsampling is applied. Specifically, we let

{Y [j]
k } = {X(k−1)∆+j,k=1,2,...,⌊N/∆⌋} (5.1.2)

be a finite sequence obtained from subsampling the time series of ENMO data {Xt}

with length N by an arbitrary positive integer ∆ not greater than N , and j is the

index of the jth time series data derived from this subsampling (1 ≤ j ≤ ∆). For each

{Y [j]
k }, the intradaily variability is calculated by the ratio of variation in consecutive

time intervals to the total variance, i.e.,

IV[j] =

M∑
k=2

(Y
[j]
k − Y

[j]
k−1)

2/(M − 1)

M∑
k=1

(Y
[j]
k − Y [j])2/M

, (5.1.3)

where M = ⌊N/∆⌋ is the length of {Y [j]
k } and Y [j] is its overall mean. The final IV

value is then the average of all IV values obtained from Equation (5.1.3), i.e.,

IV =

∆∑
j=1

IV[j]

∆
. (5.1.4)

This implementation, which averages across different start points of the time series,

ensures all data is used regardless of the choice of ∆. Note that this procedure was

also proposed in Zhang et al. (2005) for calculating integrated volatility in financial

time series, which is a very similar metric to IV.

In Witting et al. (1990), the subsampling period was set to 60 minutes. However,

for higher frequency time series, it can be adjusted to any other appropriate time (Fos-
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sion et al., 2017; Gonçalves et al., 2014). In the next section we shall investigate in

more detail the relationship between IV and the choice of ∆ for our studied dataset.

We shall show that there is a natural trade-off to be balanced in that overly low values

for ∆ lead to poor estimates due to short-lag autocorrelations, whereas large values

for ∆ fail to capture the differences in fragmentation for individuals with and without

advanced dementia. Another consideration we make is the correlation between IV

and other statistical measures, and whether this metric responds as it should to other

summary statistics for a given subsampling period.

5.1.4 DFA scaling exponent

The Hurst exponent (H) ranges between zero and one, and it is used to measure

the degree of long-range dependence of a time series, which is the rate of decay of

its long-lag autocorrelation. A higher Hurst exponent indicates that the time series

data is more persistent and has higher degree of positive long-term autocorrelation.

Detrended fluctuation analysis (DFA) can be used to estimate H via the DFA scaling

exponent (α) which ranges between zero and two such that α = H for stationary

noise-like behaviour and α = H + 1 for nonstationary random walk-like behaviour.

Here we succinctly summarise the estimation of the DFA scaling exponent for our

data in the following steps (see also Ihlen (2012)):

1. For a time series of ENMO data {Xt} with length N , we construct a new time

series {Zt} which is the cumulative sum of {Xt} with mean centering, i.e.,

Zt =
t∑

u=1

(Xu −X), (5.1.5)
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where 1 ≤ t ≤ N.

2. We divide {Zt} into equally-sized non-overlapping segments with length S (scale

parameter) where S is chosen to vary across a range. According to Ihlen (2012),

a minimum size of S of larger than 10 is considered to be a rule of thumb. For our

accelerometry data, we set S = 2i, where i is varied from 4 to 8 in increments of

0.25. Since our sampling period is 5 seconds, this range of S is therefore between

1.333 and 21.333 minutes. Larger values of S could have been applied to our data

but we found this makes the method more computationally expensive without

significantly changing the estimated exponent. A least squares regression line is

then fitted to the time series data in each segment for each value of S. The local

root-mean-square deviation at segment number K with length S is calculated

as

RMSDS,K =

√√√√√ SK∑
j=S(K−1)+1

(Ẑj − Zj)2

S
, (5.1.6)

where Ẑj is the predicted value from the regression line and 1 ≤ K ≤ ⌊N/S⌋.

3. For each S, the overall root-mean-square deviation (F ) is calculated as

F (S) =

√√√√√ ⌊N/S⌋∑
i=1

RMSD2
S,i

⌊N/S⌋
. (5.1.7)

4. The DFA scaling exponent (α) is estimated by the slope of the linear regression

line between log2(S) (x-axis) and log2(F ) (y-axis).

In our analysis, the DFA scaling exponent is estimated individually for each par-

ticipant across the whole time series. We also calculate separate values for each
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participant from daytime and nighttime readings. This is done to examine whether

there is a difference between daytime and nighttime activity for any given participant,

and to see whether this difference is more pronounced in any of the participant groups,

thus providing more statistical insight from this type of analysis.

5.1.5 Proportion of variance (PoV)

The power spectral density (PSD) or power spectrum describes the distribution of

variability in a time series as a function of frequency. It is equivalent to Fourier

transform of the autocovariance sequence of a stationary time series. The periodogram

is an asymptotically unbiased estimate of the PSD which is defined by

I(f) =
1

N

∣∣∣∣∣
N∑
t=1

(Xt −X)e−i2πft

∣∣∣∣∣
2

, (5.1.8)

where N is the length of ENMO time series {Xt}, X is its overall mean, and f is the

frequency in cycles per second or hertz (Hz). i ≡
√
−1 represents the imaginary unit

and | · | denotes the absolute value. For {Xt} with real-valued data, the periodogram

is real-valued and symmetric, i.e. I(f) = I(−f). In addition, as {Xt} is a discretely

observed time series from sampling, then its periodogram is only defined for positive

and negative frequencies that are less than half of the sampling rate, which is also

called the Nyquist frequency (fn). For our data, which was sampled every 5 seconds

(sampling rate = 1/5 Hz), the Nyquist frequency is therefore equal to fn = 1/10 Hz.

The total area under the spectral line of the periodogram between −fn and fn is

approximately equal to the variance of {Xt}.

The periodogram can be used to assess the strength of circadian rhythm by eval-
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uating its spectral value at the frequency f = 1/24 hour-1 (1/86400 Hz). However,

because the total variance of ENMO data will vary across individuals, directly com-

paring the spectral values of the periodogram at just one frequency will be a noisy and

unreliable measure of circadian strength. Instead, we propose a new method by calcu-

lating the proportion of variance (PoV) explained by the periodogram at or near the

fundamental frequency (also called the first harmonic) of circadian rhythm (f = 1/24

hour-1). Furthermore, because circadian patterns will typically not be perfect sinu-

soids, we also include variability from the three following harmonic frequencies. The

PoV statistic is then obtained by finding the ratio of area under the spectral line

around the frequencies of interest to the total sample variance. Specifically, we use

the range of frequencies between |f | = 1/24.5 hour-1 (1/88200 Hz) and |f | = 1/23.5

hour-1 (1/84600 Hz) along with their positive integer multiples from two to four. In

the simplest case of considering only the fundamental frequency and ignoring higher

orders of harmonics, the PoV value for each individual is calculated as

PoV(F ) =

−1/88200∫
−1/84600

I(f)df +
1/84600∫
1/88200

I(f)df

Var[Xt]
=

2
1/84600∫
1/88200

I(f)df

Var[Xt]
, (5.1.9)

where f is the frequency in hertz and Var[Xt] =
∑N

t=1(Xt − X)2/(N − 1). The su-

perscript “(F )” indicates that this PoV value is calculated only near the fundamental

frequency. The values from negative frequencies are included in the numerator in

Equation (5.1.9) as these contribute to the total variance. Due to the symmetry of

the periodogram, this contribution is equivalent to the corresponding contribution

from positive frequencies which yields the simpler final expression. Therefore PoV(F )

can be interpreted as the proportion of variance in the time series explained by abso-
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lute frequencies between 1/24.5 hour-1 and 1/23.5 hour-1. In the case of considering

the first four harmonic frequencies, the PoV value for each individual is calculated as

PoV(H) =

4∑
k=1

−k/88200∫
−k/84600

I(f)df +
4∑

k=1

k/84600∫
k/88200

I(f)df

Var[Xt]
=

2
4∑

k=1

k/84600∫
k/88200

I(f)df

Var[Xt]
, (5.1.10)

where again f is the frequency in hertz and the steps in the derivation follow the

same pattern as Equation (5.1.9). The superscript “(H)” indicates that this PoV

value is calculated near both the fundamental frequency, which is also called the first

harmonic, and several higher-order harmonics. The number of harmonics used can be

amended if necessary, but we found 4 to be a good value to use in practice.

There are several alternatives to using the periodogram, including smoothed and

multi-tapered approaches. However, these techniques smooth across frequency lead-

ing to a loss in data resolution. Since our statistics in Equations (5.1.9) and (5.1.10)

are already implicitly smoothing across frequencies near the peak frequency (and har-

monics) to account for noise and variability, then we found no such further smoothing

is required.

5.2 Results and Discussion

5.2.1 Accelerometry data

In the left column of Figure 5.2.1, we display three examples of time series of ENMO

data, one from each of the different groups (non-intervention, intervention, and with-

out dementia). The ENMO values from individuals with advanced dementia (non-

intervention and intervention groups) were largely between 0 and 0.2g with occasional
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spikes above this range, and this was consistent with other participants in the study

from these groups. The data from the individual without dementia had higher ENMO

values and its daily circadian pattern was more clearly observed. In the right column

of Figure 5.2.1, we display the 24-hour time average plots of ENMO data from these

three individuals. The average data from the individual without dementia had high

ENMO values with large fluctuation during daytime and low ENMO values with mod-

erate fluctuation during nighttime. The average data from individuals with advanced

dementia, however, had low ENMO values throughout the day and no clear circadian

cycle was present.

5.2.2 Interdaily stability (IS)

We used IS to evaluate the strength of the circadian rhythm in the ENMO data.

The bar chart in Figure 5.2.2 displays IS values from all participants in the study.

All participants without dementia except the 7th and 14th recordings had higher IS

values than all participants with advanced dementia. The corresponding box plot

in Figure 5.2.2 shows that participants in the intervention group had slightly higher

mean IS value than in the non-intervention group, but this was not found to be

significantly different (p-value = 0.413). However, the mean IS value from the group

without dementia was significantly higher than from the combined non-intervention

and intervention group (p-value < 0.001). All p-values in this chapter were calculated

using the nonparametric Mann-Whitney U-test at a 5% significance level. Table A.2.1

in Appendix A presents mean, standard deviation, minimum and maximum values of

all our metrics across all participant groups.
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Figure 5.2.1: Time series plots of ENMO data (left) and their 24-hour time aver-

age plots (right) from three participants from the study: one from each of the non-

intervention group (black), the intervention group (red), and the group of individuals

without dementia (green).

5.2.3 Intradaily variability (IV)

We used IV to assess the circadian fragmentation in the ENMO data. First we at-

tempted to find the appropriate subsampling interval with which to calculate IV in

Equations (5.1.2), (5.1.3), and (5.1.4). To do this, we subsampled the ENMO data

with a sampling period ranging from 5 seconds (∆ = 1) to 60 minutes (∆ = 720),

in intervals of 5 seconds, and calculated IV with each sampling period. Due to the
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Figure 5.2.2: The left panel displays IS values across all participants and the right

panel is a box plot collating these values across the non-intervention group, the inter-

vention group, and the group of individuals without dementia. For each group, the

median and mean of the IS values are presented by a thick line and a point in its own

box, respectively.

high sampling frequency of our data, the conventional subsampling interval, which is

hourly subsampling, was not found to be appropriate. The left plot of Figure 5.2.3

shows the relationship between the average IV value and the subsampling interval for

the three different groups of individuals. IV values increased as a function of subsam-

pling interval for each group, converging to one another as the subsampling interval

approached one hour. This pattern of IV as a function of subsampling interval is gen-

erally consistent with Figures 2, 3, and 5 of Gonçalves et al. (2014), but other more

“U-shaped” relationships are found in Figure 4 of Gonçalves et al. (2014) and Figure

6 of Fossion et al. (2017). We note however that these studies were on a range of sim-
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ulated data, as well as human and animal participants, and used different actigraphy

output by studying the counts per time interval rather than ENMO accelerometry

data. Mathematically though, both types of observed relationships between subsam-

pling interval and IV are possible, and the shape of this relationship will depend on

the autocorrelation characteristics of the data, as well as the recording device used

and the type of accelerometry output studied. In our case, the calculation of IV from

a small sampling period would yield high positive correlation between adjacent sam-

pling values of the time series, and this results in very low values of IV. The initial

rapid rise in IV as the subsampling interval was increased from 5 seconds to higher

multiple values can then be observed. In the right plot of Figure 5.2.3, we display the

same results as the left plot, but this time the IV values from the intervention group

and the group of individuals without dementia are represented as percentages of the

values from the non-intervention group across the subsampling interval. Here we see

that lower subsampling intervals were more effective at separating the groups. This

indicates a clear trade-off in selecting the optimal subsampling interval.

To further study the appropriate choice of subsampling interval for IV, we inves-

tigated the effect of subsampling on the relationship between IV and our three other

statistical measures. In Appendix A, we show plots of the Pearson’s correlation co-

efficients, which were used to determine the linear association between IV and the

other measures (see Figures A.2.1, A.2.2, and A.2.3). Because IV is used to assess the

circadian fragmentation, then the measurement of strength of the circadian rhythm,

as measured by IS or PoV, should have an associated negative correlation. Similarly,

there should be a negative correlation between IV and the DFA scaling exponent,
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Figure 5.2.3: The left panel displays line plots of average IV values against the sub-

sampling interval for the three different groups of individuals; the right panel displays

line plots of the percentage of average IV values from the intervention group and the

group of individuals without dementia, compared with those from the non-intervention

group. The orange dashed line refers to 5 minutes and indicates our recommended

subsampling interval.

as high IV and low DFA exponents are synonymous with rougher more volatile time

series, whereas low IV and high DFA exponents correspond to smoother more mean-

dering time series. The results in the supporting figures indeed revealed such negative

correlations between IV and three other metrics, but only within suitable ranges of

subsampling intervals that were not too high or too low, indicating that IV performed

as expected in this range.

Taking together the evidence from Figures 5.2.3, A.2.1, A.2.2, and A.2.3, we sug-



CHAPTER 5. STATISTICS FOR ACCELEROMETRY DATA 115

gest selecting a subsampling interval in the range from 2 to 10 minutes. We selected

5 minutes when reporting our results that follow, as indicated by the dashed line in

Figure 5.2.3 (although findings were broadly consistent selecting any value in this

range). The range of 2 to 10 minutes partially overlaps with the findings of Gonçalves

et al. (2014), where the most significant difference between groups of participants

with and without dementia occurred when the subsampling rate was between 5 and

45 minutes. As mentioned, discrepancies between findings are likely due to the type

of study being performed, as well as the specific recording device used, and we rec-

ommend such analyses are repeated in future accelerometry studies to ascertain the

most appropriate subsampling rate which is an important choice for IV to perform

meaningfully as a summary statistic.

Using a subsampling interval of 5 minutes, the corresponding IV value was cal-

culated for each individual, as presented in Figure 5.2.4. Participants from both

non-intervention and intervention groups usually had higher IV values than partici-

pants without dementia, as expected. As was the case with IS values, the participants

without dementia had a larger spread of IV values than participants with advanced

dementia. This was likely due to participants without dementia not having similar

living conditions to each other, unlike participants with dementia who all resided in

care homes. The mean IV value from the group of individuals without dementia was

less than that from the combined non-intervention and intervention group (p-value

< 0.001), but there was no significant difference in the mean IV value between these

two groups of individuals with advanced dementia (p-value = 0.357).
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Figure 5.2.4: The left panel displays IV values across all participants, with the same

ordering of individuals as the bar chart representing IS values; the right panel is a box

plot collating IV values across the non-intervention group, the intervention group, and

the group of individuals without dementia. For each group, the median and mean of

the IV values are presented by a thick line and a point in its own box, respectively.

5.2.4 DFA scaling exponent

The DFA scaling exponent (α) from each individual was estimated by the slope of the

linear regression line between scale and overall root-mean-square deviation in log-log

coordinates, as described in the Materials and Methods section. In Figure 5.2.5, the

regression lines from three individuals from the different groups are presented. We

evaluated the coefficient of determination (R2) as a measurement of goodness of fit

and found that approximately 99% of the variability of the data can be explained

by the linear regression model in each case. From this figure, we can see that the

participant without dementia has a higher slope, and hence higher α value, than the
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participants from the non-intervention and intervention groups. We found this figure

to be generally representative of the differences between DFA scaling exponents across

all participant groups.
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Figure 5.2.5: Data points and their linear regression lines for the estimation of

DFA scaling exponents (slopes) from three participants, one from each of the non-

intervention group, the intervention group, and the group of individuals without de-

mentia.

Figure 5.2.6 shows DFA scaling exponents from all participants. The α values from

the group of individuals without dementia were likely to be higher than those from

the other groups (p-value < 0.001). In addition, participants from the intervention

group had significantly higher mean α value than the non-intervention group (p-value

= 0.004). All α values from these two groups with advanced dementia were between

0.7 and 1. This suggests that their corresponding ENMO time series were stationary
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and noise-like but with long-term positive autocorrelations. For participants without

dementia, α values were found to be very close to 1. The time series with these

α values were in the boundary between stationary noise and nonstationary random

walks and it was difficult to classify into either group. This type of time series data is

sometimes called pink noise or 1/f noise. In general, the higher values of α observed

in the group of individuals without dementia are consistent with time series that

exhibited smoother and less jittery trajectories.
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Figure 5.2.6: The left panel displays α values across all participants, with the same

ordering of individuals as the bar chart representing IS values; the right panel is a box

plot collating α values across the non-intervention group, the intervention group, and

the group of individuals without dementia. For each group, the median and mean of

the α values are presented by a thick line and a point in its own box, respectively.

We also calculated separate DFA scaling exponents from daytime and nighttime

readings of the ENMO data. Because each participant had a different sleeping period,
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and there was no available data from the care homes regarding daily schedules, then

setting fixed daytime and nighttime periods a priori was challenging. Instead we took

a data-driven approach. Figure 5.2.7 displays the average EMMO readings throughout

the day, averaged across each participant group and across all participants. In general,

we observed low ENMO values between 11 p.m. and 6 a.m. and as such we used this

seven hour interval as nighttime readings, and ENMO values between 6 a.m. and 11

p.m. as daytime readings.
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Figure 5.2.7: Time series plots of 24-hour ENMO values averaging over all participants

in each of the non-intervention group (black), the intervention group (red), the group

of individuals without dementia (green), and all groups together (purple).

Figure 5.2.8 shows two box plots presenting the summary statistics of separate

DFA scaling exponents from daytime and nighttime readings. The daytime readings
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had a similar distribution of α values to the entire time series analysed in Figure 5.2.6.

The nighttime readings however provided a rather different distribution. Their α

values were more similar across the groups and indeed there was no longer a significant

difference of mean α value between participants in the intervention group and the

group of individuals without dementia (p-value = 0.747). For the non-intervention

and intervention group, there was no significant difference of mean α value between

daytime and nighttime readings (p-values = 0.949 and 0.305). Participants without

dementia, by contrast, had a significant difference of mean α value, with daytime

values being higher (p-value = 0.008). These results suggested that participants with

advanced dementia tended to have similar records of accelerometry throughout the

day, and no significant change of fractal behaviour of data between daytime and

nighttime. However, participants without dementia were likely to have this change

of behaviour such that their accelerometry data could be separately described by two

fractal exponents, one for daytime and one for nighttime.

5.2.5 Proportion of variance (PoV)

In Figure 5.2.9, we display the power spectral density, as estimated by the peri-

odogram, from one participant from each of the non-intervention group, the inter-

vention group, and the group of individuals without dementia, along with their cor-

responding percentage of the total variance at each frequency. The periodogram for

the participant without dementia had its highest peak at a frequency of 1/24 hour-1,

which we call the first harmonic or fundamental frequency, and the next highest peaks

were at the following higher orders of harmonics. These features were found in all
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Figure 5.2.8: The left panel is a box plot collating α values from daytime readings

and the right panel is a box plot collating α values from nighttime readings across the

non-intervention group, the intervention group, and the group of individuals without

dementia. For each group and type of readings, the median and mean of the α values

are presented by a thick line and a point in its own box, respectively.

other participants without dementia. Thus, their ENMO data was roughly periodic

with a time period of approximately 24 hours or one day, corresponding to the time

period of the circadian rhythm.

However, accelerometry data from individuals with advanced dementia was often

distorted and this resulted in a much less clear pattern of circadian rhythm. In par-

ticular, the periodograms showed that the ENMO time series were less periodic, and

the time period of the circadian rhythm was not well represented by the periodogram.

In Figure 5.2.9, the periodogram for the participant in the non-intervention group

did not show a clear and sharp peak at some of the harmonics including the funda-
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Figure 5.2.9: The left panel displays the plots of the power spectral density estimated

by the periodogram for three participants, one from each of the non-intervention

group, the intervention group, and the group of individuals without dementia. The

right panel displays the plots of the percentage of the total variance captured at each

frequency. The range of frequencies for each plot in both panels includes all four

harmonic frequencies used in our study.

mental frequency. Although the highest peak could be observed at the fundamental

frequency for the participant in the intervention group, there were less evident peaks

at higher orders of harmonics and some peaks are located outside these frequencies.
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These characteristics were generally representative of the participants from each re-

spective group, however we note that there was variability across participants with

advanced dementia in terms of the location of dominant peaks in the spectrum—the

idea behind our PoV statistic is to smooth over such noisy characteristics to obtain a

stable metric.

First we used Equation (5.1.9) to calculate PoV(F ), which is the ratio of area under

the spectral line around the fundamental frequency to the total variance of the time

series (multiplied by 2 to include the negative frequency). This was used to indicate

how well the variance was captured by periodic waves with period of 23.5 − 24.5

hours. The plots in Figure 5.2.10 indicate that participants without dementia had

significantly higher PoV(F ) values than participants from the other two groups (p-

value < 0.001). Overall, we see that this metric explained on average 15.161% of the

variance for participants without dementia but typically less than 10% for participants

with advanced dementia. We note that there was no significant difference in the

PoV(F ) values between intervention and non-intervention groups (p-value = 0.217).

To try and explain more of the variability, we then calculated PoV(H) from Equa-

tion (5.1.10) which included all periodogram values around the first four harmonic

frequencies. The results are presented in Figure 5.2.11. Participants without de-

mentia again had significantly higher PoV values than those with advanced dementia

(p-value < 0.001), whereas there was no significant difference between intervention

and non-intervention groups (p-value = 0.384). More variability was captured by this

metric, in particular in the group of individuals without dementia where an average

of 22.418% of the variance was captured.
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Figure 5.2.10: The left panel displays PoV values explained by the periodogram

around the fundamental frequency across all participants, with the same ordering

of individuals as the bar chart representing IS values; the right panel is a box plot

collating these PoV values across the non-intervention group, the intervention group,

and the group of individuals without dementia. For each group, the median and mean

of the PoV(F ) values are presented by a thick line and a point in its own box, respec-

tively.

Our proposed method of the proportion of variance (PoV) conceptually shares

some similarities with the well-known cosinor method in that both methods measure

the strength of periodic waves existing in the data. Indeed, we found that the co-

efficient of determination of the cosinor model (with 24-hour period) applied to our

accelerometry time series was very highly positively correlated with PoV(F ) across all

participants (ρ = 0.977). This correlation was still strong but dropped to 0.901 when

PoV(H) was used.



CHAPTER 5. STATISTICS FOR ACCELEROMETRY DATA 125

Proportion of variance around the first four harmonics
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Figure 5.2.11: The left panel displays PoV values explained by the periodogram

around the first four harmonic frequencies across all participants, with the same or-

dering of individuals as the bar chart representing IS values; the right panel is a box

plot collating these PoV values across the non-intervention group, the intervention

group, and the group of individuals without dementia. For each group, the median

and mean of the PoV(H) values are presented by a thick line and a point in its own

box, respectively.

5.2.6 Comparison of statistical measures

This section explores the relationships of results from all four proposed nonparametric

methods. Scatter plots between all possible pairs of the four statistical measures—

IS, IV (using a subsampling interval of 5 minutes), the DFA scaling exponent or α

(from the whole range of the data), and PoV(H)—are shown in Figure 5.2.12. We

see that the statistics of participants from intervention and non-intervention groups

were largely non-separable by any pair of these measures. However, the statistics of
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participants without dementia were mostly distinct from participants with advanced

dementia. Participants without dementia tended to have higher IS, α, PoV(H), but

lower IV.
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Figure 5.2.12: Scatter plots showing relationships between all possible pairs of the four

statistical measures—IS, IV, the DFA scaling exponent (α), and PoV(H). Participants

from the non-intervention group, the intervention group, and the group of individuals

without dementia, are represented by black, red and green dots respectively.

In Table 5.2.1, we show the Pearson’s correlation coefficients across all participants

for all four measures. IV was negatively associated with all other measures, and all

other pairwise associations were positively correlated. Such associations across groups

were expected given the clear differences between accelerometry time series of par-

ticipants without dementia and those with advanced dementia. Therefore, to explore
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relationships between groups, we also separately summarised the Pearson’s correla-

tion coefficients for participants with and without advanced dementia in Tables 5.2.2

and 5.2.3, respectively. From these tables we can see that the relationships between

all pairs of measures remained the same within these groups, albeit with lower cor-

relations in general. This demonstrates that these statistical measures have power in

separating within group behaviour and are useful statistics that should be considered

when performing larger studies, for example to see if certain treatment interventions

are effective when circadian rhythms are used as primary outcome.

Table 5.2.1: Pearson’s correlation coefficients between pairs of statistical measures for

all participants.

IS IV α PoV(H)

IS −0.775 0.735 0.943

IV −0.775 −0.766 −0.724

α 0.735 −0.766 0.670

PoV(H) 0.943 −0.724 0.670

Table 5.2.2: Pearson’s correlation coefficients between pairs of statistical measures for

participants with advanced dementia (combined non-intervention and intervention

groups).

IS IV α PoV(H)

IS −0.348 0.148 0.983

IV −0.348 −0.600 −0.406

α 0.148 −0.600 0.169

PoV(H) 0.983 −0.406 0.169
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Table 5.2.3: Pearson’s correlation coefficients between pairs of statistical measures for

participants without dementia.

IS IV α PoV(H)

IS −0.434 0.509 0.772

IV −0.434 −0.441 −0.220

α 0.509 −0.441 0.308

PoV(H) 0.772 −0.220 0.308

5.3 Conclusions

This chapter proposes four nonparametric summary statistics (IS, IV, the DFA scaling

exponent, and PoV) for the study of circadian rhythm and other attributes found in

accelerometry data. As a proof-of-concept, we computed each summary statistic on a

dataset containing a mixed group of participants, some with advanced dementia, and

compared these results with data from individuals without dementia. The analysis

shows that these statistics can collectively summarise different features in the data:

both the inter-daily features of the circadian cycle (IS and PoV), as well as the intra-

daily fragmentation and correlation structure (IV and the DFA scaling exponent).

Using these statistics there are clearly different values obtained for participants with-

out dementia and those with advanced dementia, therefore there is a potential for

these nonparametric statistics to be used as primary outcomes related with circadian

rhythms, or as diagnostic benchmarks and thresholds, which would naturally require

more studies and analyses to precisely establish practical clinical guidelines.
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Some of the participants with advanced dementia also received a group interven-

tion during the study. As in the original study (Froggatt et al., 2020), we did not ob-

serve statistically significant differences between the intervention and non-intervention

groups. There was however one exception presented here, where the DFA scaling ex-

ponent values (whether daytime, nighttime, or aggregated across both) did show sig-

nificant difference between non-intervention and intervention groups. Specifically, the

scaling exponent was found to be significantly higher for the intervention group which

indicated a smoother pattern of behaviour in activity over longer time scales, which

was a feature we also found in the group of participants without dementia. Overall,

the fact that participants with and without dementia displayed clear differences to

each other, but participants within the groups with advanced dementia did not, were

both expected results and validated our statistical measures in terms of their efficacy

and reliability in summarising key features of accelerometry data. Ultimately to de-

termine the scope for using these summary statistics in a clinical trial setting requires

much further study.

The accelerometry data we studied is high frequency—sampled every 5 seconds—

and this was typical of modern instruments and studies. We paid careful consideration

as to how statistical methods should be adapted to high frequency sampling. A

key finding is that IV should not be calculated from hourly subsampling, as has

been historically performed in the literature. Hourly subsampling leads to IV values

that are unable to effectively separate groups of participants, and have unexpected

correlations with other summary statistics. Instead, we proposed subsampling every

5 minutes for our studied dataset, which improved the behaviour and increased the
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power of this statistic. We note that subsampling at even higher frequencies eventually

worsened performance due to contamination from high-frequency variability. Finally,

we note that we proposed a simple aggregation method to ensure no data is lost in

the subsampling procedure.

The high frequency nature of the data also allowed us to propose a new metric,

proportion of variance (PoV), which is a nonparametric spectral-based estimate of

circadian strength. As the data is high frequency, there are many frequencies at or

near the circadian frequency which can be smoothed over to obtain a stable estimate

of circadian strength. A key finding is that the inclusion of harmonics, which are

integer multiples of the circadian frequency, increased the proportion of variance ex-

plained by this statistic and led to improved performance. This statistic is therefore a

nonparametric alternative to the parametric cosinor method. We note however that

PoV performs similarly to IS with high correlation in these values across participants,

and it is therefore possible that only one of these metrics is required, which future

studies may reveal.

Finally, the high frequency nature of our data allows for statistics to be calculated

to quantify the memory or long-term autocorrelation structure of the time series.

A variety of established techniques exist to quantify such structure, including the

DFA method used here. What our analysis revealed however, is the potential for

utilising the richness of continuity of accelerometry data to obtain separate daytime

and nighttime DFA scaling exponent values, and how this may yield further insight

as to the difference between individuals who have disrupted sleep cycles and activity

rhythms, and those that do not. In particular, we expect individuals without dementia
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to have significantly higher DFA scaling exponents at daytime than at nighttime, and

this is what our analysis revealed.

In this chapter, we consider three existing nonparametric metrics—IS, IV and the

DFA scaling exponent—for analysing accelerometry data, together with proposing a

novel nonparametric alternative to cosinor analysis based on aggregating information

in the periodogram. We provide guidelines on implementation, and an indication of

their performance on a high frequency dataset from people suffering from advanced

dementia living in care homes. Limitations of our data analysis include having a

relatively small number of participants, and that the without dementia group data

comes from individuals from the research group with younger ages than those with

advanced dementia living in care homes. Different demographic variables such as age

will affect the interpretation of statistical results from accelerometry data and hence,

at this point, we cannot conclude that the difference of statistical measures between

participants in our case study is solely due to the condition of having advanced de-

mentia or not. Therefore care should be taken in terms of generalising findings from

our data analysis, and the performance and robustness of proposed summary statistics

should be rechecked in future accelerometry analyses. More broadly, high frequency

accelerometry analysis is a relatively recent development in the health sciences, and we

very much encourage continued exploration and refinement of statistical methodology

as the complexity and dimensionality of acquired datasets continue to grow.

There are some possible future works that could be discussed here. In our work,

we excluded all data for any day having at least one missing data, so the data after

this removal have no missing values, and maintain the pattern of daily cycle with 24-
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hour period. However, such removal may result in a loss or degradation of statistical

properties given by several functions such as the autocorrelation. The analysis from

original data with some missing values may provide different results of our nonpara-

metric measures which should be considered. Another future work is to perform the

calculation of the DFA scaling exponent varying with the local temporal fluctuation

of accelerometry time series. This can be performed by the multifractal detrended

fluctuation analysis (MFDFA) (see Ihlen (2012)). Different values of the DFA scaling

exponent varying in time can be derived from each time series using this method, to

further separate differences between groups of individuals.



Chapter 6

The Study of Several Measures to

Detect Fatigue in Sport Sciences

In sports science, fatigue is defined as the decrease or failure in the muscles’ ability

to have their full performance in a game or an exercise due to the change in bio-

chemical substances in the players’ muscles (Edwards, 1983). The study of fatigue

from professional athletes has been greatly increased in the past few decades, in part

thanks to the development of technological and innovation systems to frequently and

accurately detect players’ movements with respect to time, and measure the change

of biochemical compounds in the muscles over time. It is one of the crucial research

topics in professional association football (soccer) as fatigue inevitably has impact on

both individual and team performances in a match, and perhaps is a key factor of the

final result of the game. Statistical analysis has been applied to either physical (Mohr

et al., 2003; Di Salvo et al., 2009; Rampinini et al., 2009) or biochemical (Krustrp

et al., 2006; Bangsbo et al., 2007; Rampinini et al., 2011; Silva et al., 2018) measures

133
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related to fatigue. The main goal in this chapter is to perform detailed statistical

analysis including calculating physical measures such as the rate of change of distance

covered by a player in a match, and the variability of players’ acceleration data. In

particular, we will check the ability of these measures to detect the impact of fatigue

on the performance of footballers in different playing positions.

Fatigue usually occurs during a highly intensified period, and has a huge effect

on footballers’ performance towards the end of the game. Several changes of their

performance have been reported such as the significant decrease of (1) the amount of

high-intensity running and sprinting and (2) the total distance covered at these ranges

of speed from non-substituted players (Reilly, 1997; Mohr et al., 2003, 2005). The

comparison of individual performance from footballers in different playing positions

has also been studied. Reilly (1997) stated that the total distance covered was related

to the energy expenditure which was the highest among midfielders according to their

findings. Mohr et al. (2003) found that the mean of the total distance covered from

defenders was significantly lower than all other outfield players. They also conducted

the research on the measurement of temporary fatigue by dividing a whole period of

the game into a collection of non-overlapping 5-minute periods, and found a substan-

tial decrease of the distance covered at high-intensity running during the 5-minute

period after the peak period with the highest distance covered such that only 88%

of the mean 5-minute distance covered was covered in this period. Akenhead et al.

(2013) further investigated the temporary fatigue by measuring the total distance

covered at high acceleration and high deceleration, and they found similar results in

this 5-minute period after the peak period to those from the high-intensity running
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in Mohr et al. (2003).

The measurement of total distance covered is usually derived from equipment

that can detect the movement patterns of players. The individual video recording

of the players with VHS-format cameras was used in Mohr et al. (2003). However,

this is no longer used in the present day due to its time-consuming nature and tech-

nological advances now available. Several methods have been developed to replace

this old-fashioned approach for tracking players in the field such as semi-automatic

passive multiple-camera systems (MCS) (Bradley et al., 2009; Di Salvo et al., 2009)

and automatic GPS (Akenhead et al., 2013; Oliva-Lozano et al., 2020). A more ad-

vanced system with a specialised GPS receiver, a laser, and a scanner was developed

to generate the three dimensional representations of the location on the surface by

the reflection of ultraviolet or visible light, and this system is known as LIDAR (Light

Detection and Ranging). This is a very new approach for tracking footballers de-

veloped by Sportlight Technology Ltd. (https://www.sportlight.ai), and at the time

of writing there have been no published scientific papers about this system for sport

applications such as football. The high-frequency tracking data from a LIDAR system

can be used to acquire information of distance, speed, and acceleration of each player

in the field at high frequency (around 10 Hz).

Levels of fatigue have been studied in many sports and events. These include

several major leagues of association football, for example, the UEFA Champions

League (Di Salvo et al., 2010), the English Premier league (Bradley et al., 2009;

Di Salvo et al., 2009; Akenhead et al., 2013), the Spanish LaLiga (Oliva-Lozano et al.,

2020), and the Italian Serie A league (Rampinini et al., 2009). Some other sports
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with research evidence on the study of fatigue are rugby (Waldron et al., 2013; Twist

and Highton, 2013), basketball (Lyons et al., 2006; Edwards et al., 2018), and base-

ball (Mullaney et al., 2005). These studies are important to learn how performance

of athletes changes over time and what optimal strategies should be applied to make

the best outcome for both individual and team performances due to fatigue, as well

as their impact on injury.

The details on measures related to fatigue in this chapter are provided as follows.

The first section, Materials and Data, summarises all features of the high-frequency

tracking data from the LIDAR system. All data were collected from footballers of

one English Premier League team during the 2020/2021 season. The details of the

team’s name, match dates, and players’ names are omitted due to data sensitivity

and privacy considerations. Several criteria are set to select suitable data for our

statistical analysis. The second section, Methodology, explains the methods of statis-

tical measures used for studying the impact of fatigue on the performance of players

in different playing positions. First, we measure the total distance covered at high

acceleration and high deceleration, and this is similar to the study in Akenhead et al.

(2013). Next, a new feature of data called the significant turn is introduced. Specifi-

cally, a significant turn is recorded when a player changes their movements from very

high deceleration to very high acceleration in a short amount of time. A new statisti-

cal measure comparing performance of players before and after each significant turn

will be given. Furthermore, the process for constructing a regression model of count

data of significant turns is explained. Lastly, two nonparametric measures including

the intradaily variability (IV) and the scaling exponent (α) from detrended fluctua-
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tion analysis (DFA) are estimated from the acceleration time series of high-frequency

tracking data. Although these measures are common in biomedical sciences, they

will be used to check their effectiveness and potential for acceleration data from foot-

ballers in this chapter. We are not aware of other studies which have attempted such

an analysis. The third section, Results and Discussion, provides the calculation of all

statistical measures given in the Methodology section. The summary statistics and

their comparison between footballers in different playing positions or different periods

of the game will be discussed.

6.1 Materials and Data

All high-frequency tracking data were recorded from LIDAR systems developed by

Sportlight Technology Ltd. They collaborated with an English Premier league team

in a single season to record players’ movements in all matches played at their home

ground. The data were provided with two sets as follows:

The first dataset

1. Timestamps at every 0.1 seconds of the game (sampling period of data).

2. xy-coordinates of positions of players away from the location of the sensor.

3. Angles or directions of movements (in degrees).

4. Smoothed speed (in metres per second or m/s) and smoothed acceleration (in

metres per second squared or m/s2) calculated through a specific low pass filter

bidirectionally.
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The second dataset

1. Dates.

2. Players’ ID numbers.

3. Timestamps when significant turns started to occur.

4. Direction of significant turns (either left or right).

5. Angles of significant turns (in degrees).

6. Peak values of deceleration and acceleration during significant turns.

7. Starting and ending speeds during significant turns.

8. Times between the ending of high deceleration and the starting of high acceler-

ation during significant turns (twisting times).

Because all personal data were confidential and unable to be accessed, players’

names were replaced by the unique ID numbers, which were randomly changed in every

match. Hence, the demographic characteristics of all players are unknown, and this

contributes to some limitations of our data analysis. In addition, no categorical data

of their playing positions were given. However, we estimated these playing positions

by inspecting their average movements in each half of the match. Figure 6.1.1 shows

examples of movements in the first half (black line) and the second half (green line)

from three players. The heat maps for the distribution of their movements only in the

first half are also reported in Figure 6.1.2. According to these two figures, we observe

different high-density locations from these players, and this information could be used
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to predict their playing positions, as labelled above each figure. It is of note that the

location of the sensor is at the origin (0, 0). Because it was set at a high level above

and not exactly in the middle between both ends of the field, the two-dimensional

mapping of the field does not align with both x and y axes. We also calculated the

mean of all coordinates of positions of player in each half. The visualisation of all

means from players in a single match in Figure 6.1.3 could be used to classify their

playing positions.
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Figure 6.1.1: Line plots of movements from three different players in the first half

(black line) and the second half (green line) of a single match with the sampling

period of 0.1 seconds. A red dot in each plot shows the location of the sensor used in

the LIDAR system which was developed by Sportlight Technology Ltd.

As we observed either a 4−4−2 or 4−4−1−1 formation in all matches played by the

team in our study, six different groups of playing positions were assigned including the
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Figure 6.1.2: Heat maps for the distribution of players’ movements in the first half

shown in Figure 6.1.1 (black line).
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Figure 6.1.3: Points of means of positions of all eleven players in the first half (black)

and the second half (green) of a single match with no substitution.
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forwards (FW), the wide midfielders or wingers (WM), the central midfielders (CM),

the full-backs (FB), the centre-backs (CB), and the goalkeeper (GK). Each group

except the goalkeeper consists of two players per time in a single match. Some of the

available datasets from players in different playing positions were excluded from our

statistical analysis, which was performed in RStudio with R version 4.0.0, if they did

not meet one of these following criteria:

1. There was no consecutive missing data for more than one minute of a game.

2. Data were from players who played in the full match with no substitution.

3. Data were from players who played in the same position throughout the match.

4. Data were from players who did not have any serious injury during the match.

For these reasons, we excluded 33 out of 55 datasets of FW, 25 out of 49 datasets of

WM, 10 out of 42 datasets of CM, 5 out of 40 datasets of FB, and 3 out of 39 datasets

of CB. These omitted datasets are useful for further study to assess the impact of

substitutions and injury and how this relates to fatigue, but this is reserved for our

future work. Instead we focus on complete datasets for fair comparison of fatigue

across the game and across playing positions.

6.2 Methodology

In this section, we detail the methodology used to analyse the data. In Section 6.3,

we will report and discuss the results found.
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6.2.1 Distance Covered

We calculated the total distance covered from xy-coordinates of positions of a player

in each half of a match. This was approximated by the summation of all Euclidean

distances derived from each of two consecutive points measured every 0.1 seconds. Ak-

enhead et al. (2013) introduced the study of impact of fatigue on players’ performance

with the calculation of the total distance covered at different ranges of speed and ac-

celeration. In this chapter, we have repeated the analysis from Akenhead et al. (2013)

using our dataset. The ranges of speeds and accelerations we considered include

• High speed (HS: ≥ 5.8 m/s)

• Sprint (SP: ≥ 6.7 m/s)

• Total acceleration (TACC: ≥ 1 m/s2)

• Low acceleration (LACC: between 1 and 2 m/s2)

• Moderate acceleration (MACC: between 2 and 3 m/s2)

• High acceleration (HACC: > 3 m/s2)

• Total deceleration (TDEC: ≤ −1 m/s2)

• Low deceleration (LDEC: between −2 and −1 m/s2)

• Moderate deceleration (MDEC: between −3 and −2 m/s2)

• High deceleration (HDEC: < −3 m/s2)
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We calculated the summary statistics (mean and standard deviation) of the total

distance covered from all players in both halves and the full match excluding injury

time at each range of speed and acceleration. In addition, these results at high

acceleration in magnitude (a combined range of HACC and HDEC) from outfield players

in different playing positions were analysed. The comparison of the total distance

covered from players at each range of speed and acceleration between both halves was

conducted using a paired t-test with a significance level of 0.05. This test could be

performed as the total distance covered is likely to be normally distributed with p-

value greater than 0.05, according to the Shapiro-Wilk test. Such significance results

were also reported in Akenhead et al. (2013).

The total distance covered at the combined range of HACC and HDEC was further

investigated in non-overlapping six 15-minute periods of the game. The means of the

total distance covered between each pair of groups of players were compared using

the one-way ANOVA with the Tukey-Kramer post-hoc test, which is a robust method

under the scenario of unequal sizes of samples and large number of groups of samples

with no specific planned comparison. This test with a significance level of 0.05 was

implemented in R using the TukeyHSD() function.

Lastly, we calculated the total distance covered at high acceleration in magnitude

in four defined periods according to Akenhead et al. (2013). One of these periods

was the 5-minute peak period or 5PEAK, which is the period when a player had their

highest total distance covered at HACC or HDEC in a single match. The others include

5-minute period before (5PRE), 5-minute period after (5POST), and 10-minute period

after (10POST) the peak period. The relative percentage of the total distance covered
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in each period to the overall mean in the half when the peak period occurred was

calculated and compared. Unlike Akenhead et al. (2013), this overall mean excludes

the total distance covered during the peak period or 5PEAK, which we argue is a fairer

comparison to detect fatigue using a relative measure, as we shall discuss further.

6.2.2 Significant Turns

We seek to analyse the impact that significant turns have on fatigue. Therefore,

for this chapter, we introduced a new statistical measure which is the ratio of the

distance covered at high acceleration in magnitude to the total distance, calculated

both before and after a significant turn. Professional footballers normally try to

reduce their risk of fatigue by avoiding having high acceleration or high deceleration

of their movements unless necessary. Alternatively, a player may simply be fatigued

by a significant turn and other events in the game and their high-intensity output

levels drop in the proceeding period of time. Either way, after each significant turn,

we might expect our measure (the ratio of the distance covered at high acceleration in

magnitude to the total distance) to decrease as players are fatigued or seek to avoid

further fatigue. The duration of each period before or after the significant turn was

set to one minute. If the time difference between two significant turns is less than

one minute, the time duration of the period after the first turn and the period before

the second turn was set to that time difference instead. In Appendix B, we provide a

discussion on changing the duration of the period before and after the significant turn

from between one second to two minutes. The comparison of this measure between

the periods before and after was conducted using the one-sided paired t-test with a
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significance level of 0.05. Furthermore, the summary statistics of this measure were

calculated from all and each group of outfield players.

The total number of significant turns from each player was counted and compared

to others with different playing positions. This was also conducted in both halves

and the full match as we also performed with the total distance covered. We found

that the expected number of significant turns could be predicted by a regression

model using the total distance covered and the position as its explanatory variables

(covariates). The total number of significant turns could be treated as count data,

and the most common model for this type of data is the Poisson regression model.

Therefore we used a generalised linear regression model having the logarithm as its

canonical function. The Poisson distribution for this model is given by

fY (y) =
λy exp (−λ)

y!

= exp (y log λ− λ− log(y!)), (6.2.1)

which is a member of the exponential family. The realisation of a non-negative count

Y is a response variable y of the total number of significant turns, and E(Y |X) =

Var(Y |X) = λ, where X is a vector of explanatory variables of the model. The

canonical link g(λ) = log λ is used as the linear predictor of the model such that

log λ = β0 +
∑n

i=1 βiXi, where {Xi}ni=1 ∈ X is a set of n explanatory variables and

{βi}ni=0 ∈ B is a set of n + 1 model parameters. Because the position is a factor

variable, it is worth checking whether there is a different relationship between the total

number of significant turns and the total distance covered at each level of position.

This relationship is known as an interaction resulting in the multiplicative effects of



CHAPTER 6. STUDY OF MEASURES TO DETECT FATIGUE 146

explanatory variables in the model. The chi-square difference test was used for the

model selection among three purposed quasi-Poisson regression models, which take

an account of the over-dispersion problem due to a huge difference between the mean

and the variance of count data, as follows:

• Model I: log λ = β0 + β1D +
∑4

i=1 βi+1Gi +
∑4

i=1 βi+5DGi,

• Model II: log λ = β0 + β1D +
∑4

i=1 βi+1Gi,

• Model III: log λ = β0 + β1D,

whereD is the continuous variable of the total distance covered, andGi is the indicator

function for the ith group of outfield player, where the first group is “CM”, the second

group is “FB”, the third group is “FW”, and the fourth group is “WM”. The base

level such that Gi = 0 for all i = 1, 2, 3, 4 represents the group of “CB”.

6.2.3 Nonparametric Measures

In the previous chapter, we reported several nonparametric measures for accelerometry

data where a circadian rhythm was presented. Although the circadian pattern does

not exist in the acceleration data of footballers within a 90-minute game, some of these

measures (the ones not related to measuring the circadian rhythm) were selected to

study the variability and long-memory behaviour of the footballers’ acceleration data

including intradaily variability (IV) and the scaling exponent (α) from DFA.

Intradaily variability (IV) was used to measure the degree of fluctuation or vari-

ability of data. The subsampling period for the calculation of IV was set to one second
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so that it could capture the variation of acceleration in every second. Let {Xt}Nt=1 be

the subsampled data. The IV was derived from the ratio of variation in consecutive

times over the subsampling interval to the total variation of the data, i.e.,

IV =

∑N
t=2(Xt −Xt−1)

2/(N − 1)∑N
t=1(Xt − X̄)2/N

. (6.2.2)

Furthermore, if {Xt} is stationary Gaussian white noise, its expected value of IV is

given by

E(IV) =
E(X2

t )− 2E(XtXt−1) + E(X2
t−1)

E(X2
t )− E(Xt)2

= 2. (6.2.3)

This reference value of 2 will help us to interpret the fractional behaviour of the time

series and its potential relationship with FGN. Therefore, if H = 0.5 then IV = 2 as

established in Equation (6.2.3). However, if H > 0.5 then there is a positive lag-1

autocorrelation and IV < 2. Conversely if H < 0.5 then there is a negative lag-1

autocorrelation and IV > 2.

Detrended fluctuation analysis (DFA) is another nonparametric method for the

measurement of the degree of fluctuation or variability of data by using its scaling

exponent (α). This was derived from the relationship of F (S) ∝ Sα, where F (S) is

the root-mean-square deviation from fitting a linear line to a segment of data with

length S. More details on the estimation of α was already given in Section 5.1.4 of

Chapter 5. A lower value of α indicates that the fluctuation is likely to be larger and

more spikey. The time series is considered to be stationary if α < 1, or nonstationary

if α > 1. The scaling exponent is related to the Hurst exponent by H = α for

stationary data and H = α− 1 for nonstationary data.
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6.2.4 Comparison between Statistical Measures

The comparison between two nonparametric measures, IV and α, was conducted to

ensure that their correlation results agreed with what we observed from the statistical

analysis of accelerometry data in the previous chapter. In addition, we provided

a comparison of these results between each nonparameteric measure and the total

number of significant turns in the full match.

6.3 Results and Discussion

6.3.1 Distance Covered

Table 6.3.1 reports the mean and standard deviation of the total distance covered at

each observed range of speed and acceleration from all outfield players in both halves

and the full match. The means of the total distance covered in the second half are

significantly lower than the first half at all ranges. This finding might be attributed

to the energy reduction of players resulting in the increasing impact of tiredness or

fatigue on players’ performance, and is consistent with the findings of Reilly (1997);

Mohr et al. (2005); Akenhead et al. (2013).

Next, Table 6.3.2 reports the mean and standard deviation of the total distance

covered at high acceleration and high deceleration from each group of outfield players

(by playing position) in both halves and the full match. The number of players in each

group is different due to our criteria for the data selection. According to the paired

t-test, their playing position is likely to have an effect on their total distance covered
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Table 6.3.1: The mean and standard deviation (mean ± SD) of the total distance

covered in metres at each range of speed and acceleration from all 149 datasets of

outfield players in both halves and the full match.

Range First half Second half Full match

All 5429.34± 501.22 5319.99± 427.61 10749.33± 848.25

HS 338.78± 123.46 308.12± 108.91 646.90± 204.30

SP 126.76± 68.73 111.80± 60.11 238.56± 107.42

TACC 806.85± 141.93 753.30± 124.02 1560.15± 230.57

LACC 559.02± 95.12 523.18± 82.53 1082.20± 154.01

MACC 174.71± 36.98 162.55± 32.97 337.26± 59.51

HACC 73.12± 20.59 67.56± 22.30 140.68± 34.67

TDEC 707.29± 135.64 648.06± 115.87 1355.35± 219.86

LDEC 485.20± 88.16 445.77± 73.83 930.97± 133.41

MDEC 136.75± 33.60 123.93± 27.33 260.68± 54.70

HDEC 85.34± 25.23 78.36± 25.78 163.70± 46.87

HACC & HDEC 158.46± 42.59 145.92± 43.10 304.38± 75.83



CHAPTER 6. STUDY OF MEASURES TO DETECT FATIGUE 150

throughout the game. In the full match, the wide and central midfielders have the

highest means. This is likely due to their responsibility to control the balance between

offensive and defensive plays requiring more distance covered than other players. The

centre-backs, on the other hand, have the lowest mean as their main role is to primarily

defend in the centre area in front of the goalkeeper. This area of players’ movements

is likely to be smaller in size than of other playing positions in the field.

Table 6.3.2: The mean and standard deviation (mean ± SD) of the total distance

covered in metres from each group of outfield players at acceleration greater than 3

m/s2 in magnitude in both halves and the full match.

Position (number of players) First half Second half Full match

FW (n = 22) 153.23± 41.22 135.82± 40.40 289.05± 71.34

WM (n = 24) 189.42± 34.61 165.05± 51.57 354.47± 69.23

CM (n = 32) 195.82± 22.80 185.01± 23.85 380.83± 31.17

FB (n = 35) 145.48± 33.77 138.52± 29.95 284.00± 49.75

CB (n = 36) 120.44± 26.25 111.77± 28.07 232.21± 43.19

A regular period of 90 minutes in a match was divided into six non-overlapping

15-minute periods: P1 (1st to 15th minute), P2 (16th to 30th minute), P3 (31st to 45th

minute), P4 (46th to 60th minute), P5 (61st to 75th minute), and P6 (76th to 90th

minute). Note that data from injury time periods (after the 45th minute in the first
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half and after the 90th minute in the second half) were not included in this analysis

to keep comparisons simple across matches, but could be of interest in further work.

The distribution of total distance covered at the combined range of HACC and HDEC

from each group of outfield players in these six periods is illustrated in Figure 6.3.1.

The highest mean for each position is in one of three 15-minute periods in the first

half (P1–P3), while the lowest mean is always in the last 15-minute period (P6). The

one-way ANOVA with Tukey-Kramer post-hoc test was performed to check whether

there is a significant difference of the means between each pair of playing positions

in the same 15-minute period, and the results are presented in Table 6.3.3. There

is no statistical evidence that the central midfielders and the wide midfielders have

different means of their total distance covered in all six 15-minute periods despite

slightly higher values being observed from the central midfielders in most periods.

Another pair with no significant difference in all periods is the forwards and the full-

backs. The centre-backs, however, have the lowest means of the total distance covered

in all these periods, and this difference is in general significantly different with other

outfield players.

The means of the relative percentage of the total distance covered from all and each

group of outfield players at HACC and HDEC in four defined periods are presented by

line plots in Figure 6.3.2. Both plots show very similar results such that their means

in the peak period are approximately 40% higher than the overall mean, whereas the

means in all other periods are close to the overall mean. During the 5POST, players

were likely to fully recover from temporary fatigue occurred in a short amount of time

immediately after the peak period. Furthermore, there is no significant difference
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Figure 6.3.1: The box-and-Whisker plots of the total distance covered from all groups

of outfield players at acceleration greater than 3 m/s2 in magnitude in six 15-minute

periods (P1–P6). A black thick line and a red dot in each box represent the median

and the mean of the distance covered in that particular period, respectively.
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Table 6.3.3: Results from the significant difference test of the means of the total

distance covered at HACC and HDEC between each pair of playing positions in six 15-

minute periods (P1 to P6). “*” indicates significant difference, while “/” indicates no

significant difference.

Position FW WM CM FB CB

FW

WM **//*/

CM /**/** //////

FB ////// **//*/ *****

CB *//*// ****** ***** //*/*/

of the means between these defined periods excluding the peak period. This is in

contrast to the findings by Akenhead et al. (2013), who found significant decreases of

the mean before and after peak periods. One of the possible reasons for this is the

different ways for calculating the overall mean of the distance between Akenhead et al.

(2013) and our study, as given in Section 6.2.1. Akenhead et al. (2013) calculated this

mean over the whole match, so we can expect that the mean from periods outside

the peak period are significantly lower than the overall mean. On the other hand, we

have removed the peak period from the calculation of the overall mean for a more

meaningful measure. Even accounting for this difference, this only partly explained
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the difference in results and the remaining differences could be simply due to different

players and matches being analysed, or simply an insufficient data volume in both

studies. We leave this open for future research and discussion, but we will move on

to now explore significant turns to see if these have more effect on temporary fatigue

than peak periods of acceleration and deceleration.
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Figure 6.3.2: Line plots of the means of the relative percentage of the total distance

covered in four defined periods from all and each group of outfield players at ac-

celeration greater than 3 m/s2 (upper panel) and less than −3 m/s2 (lower panel).

Both plots show the results from all outfield players (black), the forwards (blue), the

wide midfielders (green), the central midfielders (orange), the full-backs (red), and

the centre-backs (violet).
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6.3.2 Significant Turns

Table 6.3.4 reports the mean and standard deviation of the ratio of the distance

covered at high acceleration in magnitude, to the total distance, before and after

significant turns from all and each group of outfield players (reported as percentages).

The mean percentages decrease by 10% of their mean value in all cases, and this could

be explained by the existence of fatigue or the avoidance of high energy output after

significant turns. The wide and central midfielders have higher means than other

groups of players in both periods before and after significant turns, while the centre-

backs have the lowest means. This result is the same as what we derived from the

means of the total distance covered in Table 6.3.2. However, our key new finding is

that the mean before significant turns is significantly greater than after significant

turns for each case of position as its p-value from the one-sided paired t-test is less

than 0.05. Therefore significant turns appear to be a better predictor of temporary

fatigue than peak periods of accelerations and deceleration as studied by Akenhead

et al. (2013). This validates using significant turns as an interesting metric to monitor

players’ performance and fatigue.

Next, we calculated the summary statistics of this measure during significant turns

(rather than before and after). The mean and standard deviation from all outfield

players are 48.20% and 6.13%, respectively. Table 6.3.5 reports these summary statis-

tics from each group of players, and their means are all around 45% to 55%, which are

much higher than those before and after the significant turns. The one-way ANOVA

with Tukey-Kramer post-hoc test was used to test the means between each pair of
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Table 6.3.4: The mean and standard deviation (mean ± SD) in percentages of the

ratio of the distance covered at high acceleration in magnitude, to the total distance,

before and after significant turns, from all and each group of outfield players. P-values

from the one-sided paired t-test of this measure before and after significant turns are

also reported.

Position (number of players) Before (%) After (%) P-value

All (n = 149) 4.25± 1.36 3.89± 1.36 < 0.001

FW (n = 22) 4.01± 1.40 3.60± 1.44 0.002

WM (n = 24) 4.89± 1.50 4.45± 1.53 < 0.001

CM (n = 32) 4.83± 0.96 4.42± 0.88 < 0.001

FB (n = 35) 4.12± 1.24 3.84± 1.28 0.004

CB (n = 36) 3.57± 1.32 3.28± 1.34 0.013

groups, however no significant difference was found in most pairs. This analysis con-

firms just how much energy is expended during periods of significant turns (over 10

times as much distance covered is under high acceleration in magnitude). The hy-

pothesis is that this energy expenditure is responsible for the drop-off in the distance

covered at high acceleration in magnitude seen after significant turns reported in

Table 6.3.4—and this is something that can be studied further in future work.
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Table 6.3.5: The mean and standard deviation (mean ± SD) in percentages of the

ratio of the distance covered at high acceleration in magnitude to the total distance

during significant turns from each group of outfield players.

Position FW WM CM FB CB

During (%) 45.58± 8.13 50.99± 5.97 49.14± 3.46 48.86± 5.88 46.50± 6.07

Table 6.3.6 reports the total number of significant turns from players in different

playing positions. The wide and central midfielders have higher mean than the oth-

ers due to their playing roles in the field. The means between both halves are not

significantly different in all cases of playing positions, according to the paired t-test.

Then we performed a regression analysis of the total number of significant turns

in a professional match from players in different playing positions. We proposed three

regression models in Section 6.2.2. The chi-square difference test with a significance

level of 0.05 was used to test whether the more complex model with higher number

of explanatory variables is significantly better to explain the expected number of

significant turns than the simpler model with less number of explanatory variables.

The test showed that models with the factor of playing positions (Models I and II)

were significantly better than the model without this factor (Model III) (p-values

< 0.001), however the multiplicative effects or interaction terms in Model I do not

significantly improve the fit of the expected turns (p-value = 0.450). Thus, Model II

is likely to be the best choice for modelling the expected number of significant turns.
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Table 6.3.6: The mean and standard deviation (mean ± SD) of the total number of

significant turns from all and each group of outfield players in both halves and the

full match.

Position (number of players) First half Second half Full match

All (n = 149) 11.19± 5.40 10.72± 6.09 21.91± 10.21

FW (n = 22) 8.14± 4.12 7.27± 4.93 15.41± 8.23

WM (n = 24) 12.54± 5.06 12.79± 6.09 25.33± 9.82

CM (n = 32) 17.44± 4.52 17.25± 5.44 34.69± 6.81

FB (n = 35) 9.43± 3.58 7.80± 3.96 17.23± 5.40

CB (n = 36) 8.31± 3.35 8.47± 3.68 16.78± 5.86

We used Model II to predict the expected number of significant turns from the dis-

tance covered and the groups of players. The Pearson correlation coefficient between

these two explanatory variables is approximately 0.27, so that the multicollinearity

does not exist in this model. The base level was set as the group of centre-backs (CB)

due to their first alphabetical position. The model parameters were then estimated.

We found that the model parameter of the distance covered is significantly different

from zero. Furthermore, all groups except the forwards (FW) have no significant

difference of their model parameters. These results were also reported when the base
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level was set as other groups of outfield players. Thus, we could merge four groups of

these players except the forwards into a single level of factor. A final generalised lin-

ear regression model of the expected number of significant turns was given by Model:

log λ = β0+β1D+β21(Group = “FW”), where all model parameters are significantly

different from zero with p-values less than 0.05.

The estimated values and standard errors of all model parameters are presented

in Table 6.3.7. The model can be expressed as log λ = −1.07 + (3.87 × 10−4)D −

(4.07×10−1)1(Group = “FW”). Here we provide an example of how to interpret this

model. If a player runs 10 kilometres in a full match, and he is a centre-back player,

his expected number of significant turns is equal to exp(−1.07 + 3.87) = exp(2.80) =

16.44. This is also the expected number for all other players except the forwards with

the same distance covered. For the forwards, their expected number of significant

turns is equal to exp(−1.07+3.87−0.407) = exp(2.393) = 10.95. One possible reason

for the difference of the expected number of significant turns between forwards and

all other outfield players is the team’s playing style, especially if focusing on more

defending than attacking strategies in most matches. The graphical representation

of the quasi-Poisson regression model for our significant turns data is illustrated in

Figure 6.3.3. The regression line of the expected number of significant turns for the

forwards and its 95% confidence interval are clearly lower than those for other groups

of outfield players when the distance covered is between 8 and 14 kilometres, which

is the normal observed range for all outfield players playing in the full match. This

model therefore provides a simple way of linking expected number of significant turns

with player position and total distance covered. Further analyses could explore the
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impact this relationship (and deviations that players show away from this relationship)

might have on performance and injury. For example, it could be investigated whether

a higher than expected number of significant turns is a contributing factor to player

injury or long-term fatigue across a season.

Table 6.3.7: The estimated values and standard errors of model parameters of the

generalised linear model with the quasi-Poisson regression (Model II) for the prediction

of the expected number of significant turns.

Model parameter Estimated value Standard error

β0 (Constant) −1.07 2.84× 10−1

β1 (Distance covered) 3.87× 10−4 2.56× 10−5

β2 (Position: FW) −4.07× 10−1 7.47× 10−2

6.3.3 Nonparametric Measures

Table 6.3.8 reports the summaries of IV values from the acceleration time series data

from all and each group of outfield players in both halves and the full match. Most

acceleration data have their IV values close to two, meaning that they are likely to

behave like Gaussian white noise. However, the mean of IV values from the forwards

is significantly lower than other groups of players in the full match. So, the forwards

are likely to have less fluctuation of their acceleration time series data in every second



CHAPTER 6. STUDY OF MEASURES TO DETECT FATIGUE 161

Figure 6.3.3: The generalised linear model with the quasi-Poisson regression of the

expected number of significant turns (y-axis) with respect to the distance covered

in the full match (x-axis) and the groups of players. The data from forwards are

presented with blue circles, and their regression line along with its 95% confidence

interval (±1.96×standard error) are presented with solid and dotted blue lines, re-

spectively. The data from other groups of outfield players are presented with different

colours of squares depending on their playing positions, and their regression line (as

one joint group) along with its 95% confidence interval are presented with solid and

dotted black lines, respectively.

than other players. The central midfielders, on the other hand, have significantly

higher IV values than all other playing positions, and hence they are likely to have

larger fluctuation of their data per second. We also observed that IV values from

acceleration data are positively correlated with the total number of significant turns
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in the match, and this is reasonable as these turns are triggered from the rapid change

of acceleration over a short period of time. In addition to the comparison of IV values

between groups of players, we performed the paired t-test with the significance level

of 0.05 to check whether there is a difference of the means of IV values between both

halves. Although the means in the first half are higher than the second half, there

is no significant difference between them in all groups except the centre-backs (with

p-value = 0.045).

Table 6.3.8: The mean and standard deviation of IV values from the acceleration time

series data from all and each group of outfield players during the first half, the second

half, and the full match excluding the additional times.

Position (number of players) First half Second half Full match

All (n = 149) 2.05± 0.09 2.02± 0.09 2.04± 0.08

FW (n = 22) 1.95± 0.08 1.93± 0.07 1.94± 0.07

WM (n = 24) 2.05± 0.06 2.01± 0.11 2.04± 0.08

CM (n = 32) 2.12± 0.05 2.10± 0.07 2.11± 0.05

FB (n = 35) 2.01± 0.08 1.98± 0.07 2.00± 0.06

CB (n = 36) 2.07± 0.07 2.04± 0.06 2.06± 0.05

Table 6.3.9 reports the summaries of the DFA scaling exponents (α) from the ac-
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celeration time series data from all and each group of outfield players in both halves

and the full match. The forwards have the highest mean of α, while the central

midfielders have the lowest mean of α in the full match. No significant difference of

the means is found for all outfield players between the first half and the second half.

Because α < 1, all acceleration data from football players are stationary according

to this analysis, meaning that their statistical properties do not change over time. In

addition, we observe that α > 0.5 meaning there is some evidence of long memory

in the time series. Several normality tests including the graphical representations of

histogram and quantile-quantile (Q-Q) plot, and the Shapiro-Wilk test were applied

to all data, however they provided clear evidence of non-normally distributed accel-

eration data in most cases. This explains why we see some inconsistency between

Table 6.3.8 (where IV values of 2 are consistent with white noise) and Table 6.3.9

(where here we see evidence of persistence and long memory as α > 0.5 which is

consistent with H > 0.5). What is consistent between the results however is the

fractional behaviour, where a lower α is consistent with a higher IV for time series

that are more spikey and volatile (and vice versa for smoother time series). Therefore

again we observe that the central midfielders have the most fragmented and spikey

accelerations, and the forwards the least. Therefore we have found utility in the non-

parametric methods used traditionally for accelerometry data in a medical setting to

also be used for sports tracking data such as in this chapter - in particular IV and

DFA reveal interesting structures that separate player behaviour, and we believe this

warrants further investigation and usage in future.



CHAPTER 6. STUDY OF MEASURES TO DETECT FATIGUE 164

Table 6.3.9: The mean and standard deviation of the scaling exponents (α) from the

acceleration time series data from all and each group of outfield players during the

first half, the second half, and the full match excluding the additional times.

Position (number of players) First half Second half Full match

All (n = 149) 0.66± 0.03 0.67± 0.04 0.66± 0.03

FW (n = 22) 0.69± 0.03 0.70± 0.03 0.69± 0.02

WM (n = 24) 0.66± 0.03 0.68± 0.04 0.67± 0.03

CM (n = 32) 0.63± 0.02 0.65± 0.02 0.64± 0.02

FB (n = 35) 0.67± 0.04 0.68± 0.03 0.68± 0.02

CB (n = 36) 0.64± 0.03 0.66± 0.02 0.65± 0.02

6.3.4 Comparison of Nonparametric Measures

Since both IV and DFA scaling exponent (α) are used to measure the degree of fluc-

tuation of time series data, it is expected that their estimated values are strongly

correlated, as we just discussed. In addition to these, the total number of significant

turns is considered due to its positive correlation with IV. Table 6.3.10 reports the

Pearson correlation coefficients (ρ) from each pair of all these variables derived from

the full match. The results from both halves are close to the full match, so we will
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not report them here. According to this table, IV is strongly negatively correlated

with α for all cases of position, and such linear relationship agrees with the finding

from our previous work on the acceleration data from patients with and without ad-

vanced dementia (Suibkitwanchai et al., 2020). The correlation coefficients between

the total number of significant turns and both nonparametric measures of the degree

of fluctuation also represent moderate to strong correlation, where stronger values are

found from the relationship with IV. It is interesting that the wide midfielders have

the strongest correlation coefficients, while the full-backs have the weakest correlation

coefficients for both pairs of the total number of significant turns and nonparametric

measures. Figure 6.3.4 shows how all three variables including IV, DFA scaling expo-

nent (α), and the total number of significant turns in a full match are related by using

the scatter plots with different colour of points depending on playing positions. It is

clear that both nonparametric measures from IV and DFA have very strong negative

linear relationship. The forwards (blue circle dots) are likely to have low IV but high

DFA scaling exponents, while the central midfielders (orange square dots) are likely

to have high IV but low DFA scaling exponents, as already discussed. The measures

from other playing positions look inseparable although their points approximately lie

on a line with negative slope. The points between the total number of significant turns

and both measures of the degree of fluctuation are more dispersed with moderate to

strong linear relationship.
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Table 6.3.10: The Pearson correlation coefficients (ρ) for all and each group of outfield

players from each pair of three different variables: IV, DFA scaling exponent (α), and

the total number of significant turns in a full match.

ρ All FW WM CM FB CB

(IV, α) −0.96 −0.96 −0.94 −0.89 −0.95 −0.93

(IV, turns) 0.72 0.66 0.90 0.62 0.51 0.60

(α, turns) −0.64 −0.62 −0.81 −0.55 −0.43 −0.59

Figure 6.3.4: The scatter plots showing the relationship of measures from each pair

of three variables: IV, DFA scaling exponent (α), and the total number of significant

turns in a full match. The different colours of points represent the different groups of

outfield players including the forwards (blue), the wide midfielders (green), the central

midfielders (orange), the full-backs (red), and the centre-backs (violet). The shapes of

points for different players correspond to those in the regression plot of Figure 6.3.3.



Chapter 7

Conclusions

We summarise all contributions that have been discussed in this thesis. Future work

and several suggestions of further research are also made.

7.1 Contributions

This thesis consists of several works regarding the estimation of parameters of models

for time series with long memory, and nonparametric statistical measures related to

long memory and fluctuations from high-frequency data of two applications. Our

parametric models are different types of fractional processes including FGN, FBM,

and the FD process. These processes exhibit their long-memory behaviour for different

ranges of their controlling parameters, and the key controlling parameter is (or can

be related to) the Hurst exponent, as we detailed in Chapter 2.

In Chapter 3, we provided several parametric estimation methods including the

WLE and the DWLE. This debiased method was proposed by Sykulski et al. (2019)

167
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to reduce the bias of estimates while maintaining the same rate of consistency, and

the same computational cost, as the regular Whittle likelihood. They applied this

estimator to Gaussian and non-Gaussian processes with short-memory time series.

In this thesis, however, we explored the use of such an estimator to both short and

long-memory time series. We explicitly detailed how these estimators should be im-

plemented for processes such as FGN, FBM and the FD process.

In Chapter 4, we performed a detailed simulation analysis and estimated the Hurst

exponent along with the sample variance of FGN, which is a stationary process. We

found that the DWLE provides very close parameter estimates to the WLE. However,

if this process exhibits long-memory behaviour with the Hurst exponent greater than

0.5, the measurement errors including the MAE and the RMSD of estimates from

the DWLE are the lowest among all estimation methods considered. In addition,

another advantage of this estimator is its requirement of less average computational

time than the WLE, which has much higher time especially when the approximated

aliased spectrum is used. The DWLE, on the other hand, bypasses the need to use

the power spectral density function by using the autocovariance instead to fit the

process, which is especially advantageous in the case of FGN. The estimates from the

DWLE are likely to be
√
n-consistent (or converge at a rate of 1/

√
n) according to

the linear regression plot from simulated FGNs with selected true values of the Hurst

exponent and lengths n. However, this convergence rate from the simulation holds

for any value of the Hurst exponent between zero and one. The approximation of the

standard error of estimates, and the use of the local Hurst exponent to describe the

change of the fractional behaviour over time of real-world financial data, were also



CHAPTER 7. CONCLUSIONS 169

explored in this chapter.

We also studied the estimation from other fractional processes in Chapter 4. First,

we tried to model FGN with the FD process. However, the relationship between the

estimates of long-memory parameters from both processes does not agree with its

theoretical concept, where the difference is exactly equal to 0.5. The misspecification

of the model seems to have an effect on the estimation of these parameters, with

the misspecification effect most exacerbated as the Hurst parameter goes towards

its extremes of zero or one. We also compared the estimates derived from directly

fitting FBM to the data, to those from fitting FGN to the first-order difference of

such data. The DWLE with tapering provides the least bias among all estimation

methods from directly fitting FBM, which is similar to the result from fitting FGN to

the differenced data. However, its very high cost for the computation of the expected

periodogram makes the direct method less practical than first-order differencing and

fitting FGN. Thus, we learnt from this chapter that (1) it is better to estimate long-

memory parameters from FGN than FBM when considering both measurement errors

and computational time, (2) the DWLE is effective in reducing the bias of long-

memory parameters, (3) model misspecification can make for very poor estimation of

long-memory parameters, and (4) the tapering technique can improve the accuracy

of estimates especially for a process with high dynamic range of its spectrum.

Next, we performed some detailed application analyses in Chapters 5 and 6. Para-

metric models were not feasible to fit the structures of data from both chapters, so

instead we focused on nonparametric measures including those that captured long-

memory and fractional behaviours in time series.
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In Chapter 5, we focused on the time series of accelerometry data from patients

with advanced dementia. We refer the reader to Section 5.3 for a detailed conclusion.

In summary, the key finding was that fractional and long-memory properties of the

time series of individuals could effectively be separated between those with and with-

out advanced dementia by several nonparametric measures. These included the use

of IV and the scaling exponent from DFA as nonparametric summary statistics. We

devoted some time in this chapter to study the optimal ways in which IV should be

subsampled to optimally tune this statistic in practice. In addition, we also looked at

the daily “circadian” rhythm of the time series, and explored two other measures, IS

and PoV, to quantify the strength of this cycle. Both measures could also be used to

separate individuals with and without advanced dementia.

In Chapter 6, we analysed the high-frequency tracking data from footballers dur-

ing professional matches. We followed the analysis from Akenhead et al. (2013) by

studying the distance covered at different ranges of speed and acceleration, and in

different periods of the match. Due to temporary fatigue, the substantial decrease

of the distance covered at high acceleration in magnitude during the 5-minute period

after the peak period was observed from both Akenhead et al. (2013) and our analysis.

However, we improved this measure and showed that in fact there is no significant

difference of such measure between before and after peak periods, unlike Akenhead

et al. (2013).

In Chapter 6, we also introduced a new measure of fatigue by comparing the rate

of the distance covered at high acceleration in magnitude before and after “significant

turns”, which are events of sudden change from high deceleration to high acceleration
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in a short amount of time. The application of this measure from significant turns is

likely to outperform that from the peak period of distance covered in Akenhead et al.

(2013), in terms of identifying periods of fatigue. This is due to evidence of significant

decreases of the measure from before to after significant turns for every playing posi-

tion of outfield player. Another analysis from significant turns was to fit their count

data with the quasi-Poisson regression model. All outfield players except the forwards

shared the same model, which predicted the number of significant turns from their

distance covered in the full match. Lastly, we implemented two nonparametric mea-

sures including IV and the scaling exponent from DFA on acceleration data of players.

A comparison of these results indicated that the data is unlikely to be Gaussian due

to inconsistencies in values obtained, thus justifying not implementing Gaussian para-

metric models like FGN and instead focusing on nonparametric measures. However,

we found a strong negative correlation between these two measures like Suibkitwan-

chai et al. (2020), and several playing positions of players were separable from the use

of these measures.

7.2 Future Works

7.2.1 Theoretic Properties of the Debiased Whittle Likeli-

hood Estimator for Long-Memory Processes

In Figure 4.2.5, we showed the linear relationship between standard deviation of the

estimated Hurst exponent and the length of time series of FGN in log-log space. We
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suggested that the estimate of the Hurst exponent with the DWLE is
√
n-consistent

according to the slope of linear regression lines from this figure, and these lines repre-

sent the results from simulated FGN with HT ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. In Section 4.2

of this figure, we also stated that we currently have no completed mathematical proof

for this consistency of estimates of fractional process with long-memory behaviour.

However, we have done some parts of this proof by following the proof for short-

memory time series in the Supplementary Material of Sykulski et al. (2019). This

Supplementary Material consists of several theorems and lemmas required to prove

consistency and establish convergence rates. Some assumptions made for these theo-

rems and lemmas are not satisfied by time series with long-memory, for example, an

assumption is made that the power spectral density function is bounded both above

and below some constants for all ranges of frequencies less than or equal to the Nyquist

frequency. For long memory, the power spectral density function is unbounded at the

zero frequency (see Equation (2.3.6)), therefore we cannot make immediate use of

the theory developed in Sykulski et al. (2019) for this case. We have adjusted some

of these theorems and lemmas to fit with time series with long-memory behaviour.

One of these is extending Lemma 8 in the Supplementary Material of Sykulski et al.

(2019) about the variance of linear combinations of values of the periodogram, I(ω),

but this time extended to a discrete-time FGN given by X = {Xt}nt=1. Since the

spectrum of long-memory time series approaches infinity at the zero frequency, the

upper boundary of spectrum is not defined. Thus, we seek a new approach for the
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upper boundary of this variance, and this is given by

Var
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where Ω is a finite set of discrete Fourier frequencies, i.e., Ω ≡ {ωj}nj=1 for each

ωj = 2π(j − ⌈n/2⌉)/n, and amax is the upper bound of an(ω) for all ω ∈ Ω, which is

a deterministic function.

We seek to expand this equation, to express it in terms of the autocovariance

sequence or sτ . We will use Isserlis’ Theorem and bound the behaviour of sτ by

substituting sτ ≤ kτ 2(H−1), where k is a constant and τ is a positive integer. This

condition of the autocovariance sequence is derived from its asymptotic property from

Equation (2.6.3). The summation in the final term of Equation (7.2.1) is expanded

as follows:
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where C = a2max/n
2. For very large n, the above series converges when 4(1 − H)
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is greater than one, i.e., H < 0.75. Hence, we can show that the variance of linear

combinations of values of the periodogram in Equation (7.2.1) scales as O(1/n) when

0 < H < 0.75. Although the p-series diverges when 0.75 ≤ H < 1, we can approx-

imate it and show that the variance at large n instead scales as O(1/n4(1−H)) when

0.75 ≤ H < 1 (See Appendix C).

This result suggests a different approach should be applied to long-memory time

series of FGN with 0.5 < H < 0.75, and 0.75 ≤ H < 1 for proving the consistency

and the rate of convergence. The different establishment of the central limit theo-

rem between these two ranges of H was also mentioned in some research papers such

as Yajima (1985) and Lobato and Robinson (1996). We have adjusted several other

small lemmas to fit with time series with long-memory behaviour, however most of

them are similar to what were explained for short-memory time series in the Sup-

plementary Material of Sykulski et al. (2019). Overall, we leave the final complete

proof of consistency and the convergence rate to future work. Although Sykulski

et al. (2019) provided different big O expressions for Lemma 8, the convergence rate

of parameter estimates should be mathematically the same which is
√
n-consistent.

This has been evidenced from our results from simulated FGNs, and is also consistent

with the established convergence rates of the WLE for long-memory time series (Fox

and Taqqu, 1986).

7.2.2 Methods and Models for Long-Memory Processes

In this thesis, we provided several methods for the estimation of parameters of frac-

tional processes which can exhibit either short or long-memory behaviour. There
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exist other estimators apart from those in Chapter 3 that could be used to estimate

long-memory parameters. Several examples of these are nonparametric estimators

such as the aggregated variance estimator (Beran, 1994), the absolute moments esti-

mator (Taqqu et al., 1995), and the wavelet estimator (Bardet et al., 2000). However,

if a model is correctly specified, these nonparametric estimators will not be the best

choice for fractional processes since there is a high possibility that their bias and

variance are greater than those from parametric estimators provided in Chapter 3.

On the other hand, non-parametric estimates will in general be more robust to mis-

specified models, and may be more robust to extremes, outliers, and non-Gaussian or

non-stationary behaviour. Comparing estimation results from nonparametric estima-

tors will be conducted in future work, as well as comparisons of robustness against

parametric methods.

We fitted several fractional processes including FGN, FBM, and the FD process for

modelling a finite time series, and estimated their long-memory parameters in this the-

sis. However, there are several other models that can be used to model time series with

long memory. Because the FD process is equivalent to the ARFIMA(0, d, 0) process,

it will often be the case that the generalisation of this process, the ARFIMA(p, d, q)

process, can explain long-memory behaviour of time series with some specific values

of p, d, and q. Another process is the fractionally integrated generalised autoregres-

sive conditionally heteroskedastic (FIGARCH) process, which was proposed by Baillie

et al. (1996). This process is often used as a long-memory model for volatility in fi-

nance. It would be of interest to see how our estimation methods can be applied to the

generalised ARFIMA(p, d, q) process and the FIGARCH process, and how accurate
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the estimates of their parameters are obtained. Such analyses will be performed in

future work.

7.2.3 Stationarity vs. Nonstationarity

In this thesis, we estimated the Hurst exponent of FBM and financial data by either

directly fitting FBM to the time series data or fitting FGN to its first-order difference.

This means that we assumed such data to be nonstationary with fractional behaviour,

where simulated FBMs were generated by the simulation procedure explained in Sec-

tion 4.1. However, for any given real-world time series, we do not know whether or

not it is stationary, despite the fact that most real-world time series will usually have

some nonstationary behaviour present. The stationarity of time series data can be

checked by several methods. One possible way is to apply DFA to this time series

and calculate its scaling exponent. In Chapter 5, we provided the details that this

scaling exponent is between 0 and 1 for a stationary time series, whereas it is between

1 and 2 for a nonstationary time series. Another method is to use the slope from the

LPRE. In Chapter 3, we explained that this slope is likely to be between −1 and 1

for a stationary time series, and between −3 and −1 for a nonstationary time series.

However, for 1/f noise, the slope is −1 and is hence on the boundary, and therefore

there is a possibility that both the scaling exponent and the LPRE can misclassify

the stationarity property of time series. We have tried possible solutions including (1)

the comparison of log-likelihood values (see Equation (3.2.1) for the WLE, and Equa-

tion (3.3.1) for the DWLE) between fitting FGN with H close to one and FBM with H

close to zero, and (2) the use of the augmented Dickey–Fuller (ADF) test (the adap-
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tation from a test in Dickey and Fuller (1979), which was originally used for checking

the stationarity of AR processes). However, both solutions cannot fully resolve the

problem especially for 1/f noise with nonstationary time series. This “boundary” is-

sue at the limit between stationarity and nonstationarity has been studied elsewhere

in the time series community in the context of ARFIMA models when d is close to

0.5 (Griffin et al., 2011). We will further investigate this problem in future work.

7.2.4 Future Works on Fatigue Analysis

In Chapter 6, we studied the impact of fatigue on footballers’ performance by calculat-

ing some measures including the distance covered at high acceleration in magnitude,

and the total number of significant turns from different groups of players. Because

the most important outcome in a football match is the final result such as win, draw,

or lose, we may use our measures on fatigue analysis to try to predict this result. A

possible model for this prediction is the multinomial logistic regression calculating the

probability of each outcome, which is a categorical dependent variable, from a set of

covariates such as the total number of significant turns and the distance covered at

high acceleration in magnitude of all outfield players in the full match. We may also

consider these measures between the first half and the second half or between groups

of players as different covariates.

All our data were from home games. However, the company we worked with may

commence recording these data from away games in the future, or from other teams

and stadia. If this is the case, we may possibly compare our measures between home

and away games, and between various teams and types of matches, and this will be
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left for further analysis in our future works once such data becomes available.



Appendix A

Supplementary for Chapter 5

A.1 Demographic details of participants

Table A.1.1: Demographic information of all participants from Froggatt et al. (2018).

The 26 participants from which we have valid accelerometry data are from this study.

Characteristic Non-intervention Intervention
Sex, n (%)

Male 9 (64.3) 8 (44.4)
Female 5 (35.7) 10 (55.6)

Age (years), mean±SD 84.7± 6.4 79.0± 10.5
Marital status, n (%)

Married 11 (78.6) 7 (38.9)
Single 0 3 (16.7)

Widowed 3 (21.4) 8 (44.4)
Ethnicity, n (%)

Black African Caribbean 0 1 (5.6)
White 14 (100.0) 17 (94.4)

Dementia diagnosis, n (%)
Alzheimer’s disease 7 (50.0) 7 (38.9)
Vascular dementia 1 (7.1) 5 (27.8)

Dementia with Lewy bodies 2 (14.3) 0
Unspecified dementia 4 (28.6) 6 (33.3)

Length of stay (years), mean±SD 2.9± 2.6 2.1± 1.4
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A.2 Nonparametric results

A.2.1 Summary statistics

Table A.2.1: Mean, standard deviation (SD), minimum and maximum values of all

statistical measures used in Chapter 5 for different groups of participants. The de-

mentia group refers to the combined non-intervention and intervention groups.

Statistical measures Groups Mean SD Min. Max.

IS

Non-intervention 0.029 0.019 0.003 0.063

Intervention 0.039 0.025 0.005 0.082

Dementia 0.035 0.023 0.003 0.082

Without Dementia 0.147 0.054 0.062 0.257

IV

Non-intervention 1.605 0.137 1.424 1.856

Intervention 1.519 0.186 1.036 1.775

Dementia 1.555 0.169 1.036 1.856

Without Dementia 1.028 0.301 0.376 1.487

α (overall)

Non-intervention 0.816 0.057 0.722 0.946

Intervention 0.878 0.050 0.808 0.965

Dementia 0.852 0.061 0.722 0.965

Without Dementia 1.005 0.098 0.843 1.174

α (daytime)

Non-intervention 0.820 0.066 0.717 0.983

Intervention 0.875 0.053 0.792 0.962

Dementia 0.852 0.064 0.717 0.983

Without Dementia 1.006 0.097 0.842 1.175

α (nighttime)

Non-intervention 0.806 0.067 0.710 0.891

Intervention 0.897 0.053 0.825 1.004

Dementia 0.859 0.074 0.710 1.004

Without Dementia 0.905 0.083 0.741 1.043

PoV(F )

Non-intervention 0.027 0.031 0.001 0.101

Intervention 0.049 0.046 0.002 0.138

Dementia 0.040 0.041 0.001 0.138

Without Dementia 0.152 0.065 0.077 0.305

PoV(H)

Non-intervention 0.055 0.036 0.007 0.122

Intervention 0.078 0.052 0.012 0.167

Dementia 0.068 0.047 0.007 0.167

Without Dementia 0.224 0.071 0.108 0.338
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A.2.2 Correlation between statistical measures

Correlation between IV and IS
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Figure A.2.1: Line plots showing Pearson’s correlation coefficients between IV and

IS for the ENMO data with subsampling interval for calculating IV varied from 5

seconds to 60 minutes. The non-intervention group, the intervention group, the group

of individuals without dementia, and the overall group are presented by black, red,

green, and purple lines, respectively. The orange dashed line refers to 5 minutes and

indicates our recommended subsampling interval for calculating IV.
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Correlation between IV and DFA scaling exponent
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Figure A.2.2: Line plots showing Pearson’s correlation coefficients between IV and the

DFA scaling exponent for the ENMO data with subsampling interval for calculating

IV varied from 5 seconds to 60 minutes. The non-intervention group, the intervention

group, the group of individuals without dementia, and the overall group are presented

by black, red, green, and purple lines, respectively. The orange dashed line refers to

5 minutes and indicates our recommended subsampling interval for calculating IV.



APPENDIX A. SUPPLEMENTARY FOR CHAPTER 5 183

Correlation between IV and PoV(H)
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Figure A.2.3: Line plots showing Pearson’s correlation coefficients between IV and

PoV around the first four harmonic frequencies for the ENMO data with subsampling

interval for calculating IV varied from 5 seconds to 60 minutes. The non-intervention

group, the intervention group, the group of individuals without dementia, and the

overall group are presented by black, red, green, and purple lines, respectively. The

orange dashed line refers to 5 minutes and indicates our recommended subsampling

interval for calculating IV.
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Supplementary for Chapter 6

B.1 Ratio of the distance covered at high acceler-

ation in magnitude v.s. Time period

The upper panel of Figure B.1.1 illustrates the mean of the ratio of the distance

covered at high acceleration in magnitude to the total distance in one second to two

minutes after significant turns from all and each group of players. Not much difference

between all lines from these players is observed. There is a large decrease in the first

20 seconds and an almost constant relationship after that. The difference between

the means before and after significant turns is also visualised in the lower panel of

Figure B.1.1. The mean after is lower than before significant turns in the first few

seconds, but they are approximately equal later. The selection of one minute as the

time duration for our statistical analysis of this measure was appropriate due to its

stability at one minute as shown in the figure.
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Figure B.1.1: The upper panel shows line plots of the means in percentages of the

ratio of the distance covered at high acceleration in magnitude to the total distance

in one second to two minutes after significant turns, while the lower panel shows

line plots of the difference between the means before and after significant turns in

one second to two minutes. These line plots include the forwards (blue), the wide

midfielders (green), the central midfielders (orange), the full-backs (red), the centre-

backs (violet), and all these players (black). A brown dashed line is used as the

zero-reference line.
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Supplementary for Chapter 7

C.1 Time complexity of the variance of linear com-

binations of periodogram for FGN with a high

value of the Hurst exponent

The p-series in Equation (7.2.2) diverges when 0.75 ≤ H < 1. However, for very

large n, this can be approximated by an asymptotic expansion with the use of Euler-

Maclaurin formula as

n−1∑
τ=1

1

τ p
≈ ζ(p)− 1

(p− 1)(n− 1)p−1
+

1

2(n− 1)p

−
∞∑
i=1

B2i

(2i)!

[
(p+ 2i− 2)!

(p− 1)!(n− 1)p+2i−1

]
, (C.1.1)
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where p = 4(1−H) which is between zero and one, and Bi is the i
th Bernoulli number.

The Riemann zeta function ζ(p) is the infinite sum of 1/kp, and it can be shown that

ζ(p) =
∞∑
k=1

1

kp

=
1

1p
+

1

2p
+

1

3p
+

1

4p
+

1

5p
+ . . .

=
∞∑
k=1

(−1)k+1

kp
+

1

2p−1
ζ(p)

(1− 21−p)ζ(p) =
∞∑
k=1

(−1)k+1

kp

ζ(p) =
1

1− 21−p

∞∑
k=1

(−1)k+1

kp
. (C.1.2)

This function is independent of n and its alternating series is convergent because the

sequence decreases in absolute value which is asymptotic to zero as k → ∞. Hence,

this can be replaced by a constant. Then we expand the summation with Bernoulli

number in Equation (C.1.1), i.e.,

n−1∑
τ=1

1

τ p
≈ ζ(p)− 1

(p− 1)(n− 1)p−1
+

1

2(n− 1)p

− B2

2!

[
p!

(p− 1)!(n− 1)p+1

]
− B4

4!

[
(p+ 2)!

(p− 1)!(n− 1)p+3

]
− . . .

n−1∑
τ=1

1

τ p
≈ ζ(p)− 1

(p− 1)(n− 1)p−1
+

1

2(n− 1)p

− p

12(n− 1)p+1
+
p(p+ 1)(p+ 2)

720(n− 1)p+3
− . . . (C.1.3)

The first three terms with no Bernoulli number and the first two terms of the sequence

with Bernoulli number are enough for the approximation of the p-series with good

precision. This is because all other terms are very close to zero. In addition, since the

alternating sequence with Bernoulli number decreases in absolute value as its order

goes high, the p-series can be upper bounded by all terms shown in Equation (C.1.3)
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such that

n−1∑
τ=1

1

τ p
≤ ζ(p)− 1

(p− 1)(n− 1)p−1
+

1

2(n− 1)p

− p

12(n− 1)p+1
+
p(p+ 1)(p+ 2)

720(n− 1)p+3
. (C.1.4)

Substituting this upper boundary into Equation (7.2.2), it follows that

a2max

n2
Var

[
1

n

n∑
i=1

x2i

]
≤ 4a2max

n

{
s20 + k2

[
ζ(p)− 1

(p− 1)(n− 1)p−1

+
1

2(n− 1)p
− p

12(n− 1)p+1
+
p(p+ 1)(p+ 2)

720(n− 1)p+3

]}
. (C.1.5)

Because p is between zero and one, the term 4C/(n(p− 1)(n− 1)p−1) has the slowest

decay comparing to the others. Thus, we can conclude that the variance of linear

combinations of values of the periodogram is O(1/np) or O(1/n4(1−H)) when 0.75 ≤

H < 1.
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