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Abstract

Position and velocity measurements from freely-drifting surface buoys, known as

drifters, provide a unique observational dataset for measuring ocean surface flow.

The most immediate value of such observations is to aggregate data across drifters

to determine the currents and the mean flow at given spatial locations. However,

with more sophisticated models and statistical estimation techniques we can capture

additional flow components from drifter data, as we shall demonstrate in this the-

sis. First, we shall demonstrate how data from closely-deployed collections of drifters

can be jointly modelled to extract and identify mesoscale flow components—such as

strain, vorticity, and divergence—as well as submesoscale components such as diffusiv-

ity, and background components such as inertial oscillations. We apply our methods

to the LatMix deployment of drifters in the Sargasso Sea in 2011. Identification of

so many flow components is made possible by considering the relative motions of the

drifters with respect to each other, rather than in isolation. In the proceeding two

chapters we shall build on these findings and provide evidence, both from simulation

results and from analytically derived statistical properties, to demonstrate how the

identification and estimation of flow components is expected to statistically behave
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as both the sampling features (e.g. number of drifters and length of deployment) and

the underlying flow field changes. Finally, we perform a separate analysis on Global

Drifter Program data, where drifters are too far apart to be modelled relatively, and

we instead perform a mean-flow and diffusivity separation using a novel estimator for

estimating large-scale diffusivity which we propose from the spectral analysis of time

series. A central goal of this thesis is to quantify the statistical error of parameter

estimates of flow components, both in terms of bias and variance, and to then tune

estimation methods to reduce these errors as much as possible.
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Chapter 1

Introduction

Knowledge of the ocean and its circulation has a number of practical applications.

The ocean’s currents move heat across the globe, regulating the climate and weather

patterns (Rhines and Häkkinen, 2003). One quantity that is of particular importance

and interest to oceanographers is the diffusivity (Taylor, 1922), this is the rate at

which particles spread out over time in a fluid. Observing and measuring horizontal

or lateral diffusivity at the surface can be performed using position observations from

free-floating buoys known as drifters, which are designed to mimic the motion of a

fluid parcel or particle at the surface. When multiple drifters are deployed in a cluster,

they can be further used to obtain estimates of the mesoscale parts of the flow, such as

strain and vorticity, as we shall show in this thesis. Strain causes particles to stretch

along the axis aligned with the strain angle, and compress against the axis that is

orthogonal to the strain angle, whereas vorticity causes particles to rotate.

Splitting the flow into a mean flow, as well as mesoscale components and diffusivity

creates a more coherent picture of ocean flow at the surface. Knowledge of diffusivity,
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strain and vorticity helps us to understand, for example, the impact area of an oil

spill, or aid in search and rescue missions (Lumpkin et al., 2017). We can also gain

insight into the dispersion of ocean life (Lumpkin and Pazos, 2007), or discover how

plastics dropped into the ocean will spread (La Daana et al., 2017; Hardesty et al.,

2017).

Diffusivity, strain and vorticity in the ocean can be separated and estimated using

observations from “Lagrangian” instruments such as drifters (Koszalka et al., 2011).

Lagrangian instruments freely drift in the ocean and are hence usually modelled using

a moving or “Lagrangian” frame of reference. Each individual particle trajectory is

in large part unpredictable, usually following a complex and meandering path (La-

Casce, 2008). Therefore multiple instruments and observations are usually required

to understand a flow field. Commonly used Lagrangian instruments are floats and

drifters; they are designed to move with the currents and cover large regions of the

ocean. Drifters track the surface currents, they consist of a transmitter which sits

on the ocean surface and is tracked by satellites, and often have a subsurface drogue

(Niiler et al., 1995) which causes the transmitter to drift with the currents under the

surface, at the depth of the drogue which is typically of the order of 5–50 metres.

Floats track the currents below the surface, meaning they cannot be tracked by satel-

lite while at depth, but they either triangulate their position under water using sound

sources or, more commonly, periodically resurface to measure position and transmit

data. This thesis is focused on statistical methodology for surface drifter data, but

many of our techniques and findings could be applied to float data too after some

basic modifications.



CHAPTER 1. INTRODUCTION 3

The Global Drifter Program (GDP) is a global array of drifters which collect infor-

mation about the surface currents of the ocean. It is part of the National Oceanic and

Atmospheric Administration’s (NOAA) Global Ocean Observing System and Global

Climate Observing System. The GDP aims to provide data on surface velocities, sea

surface temperatures, and pressure, amongst other things, that is used for weather

forecasting, research, and calibration of satellite observations. The GDP maintains

over 1,000 drifters globally at any given point in time, which has all together collected

over 100 million individual velocity observations over 40 years covering most of the

World’s oceans (Elipot et al., 2016).

Diffusivity cannot be measured directly by individual Lagrangian instruments, it

must instead be inferred from multiple position or velocity observations. There are a

number of ways that diffusivity can be estimated from Lagrangian instruments, and

there have been a number of different studies into measuring the diffusivity in different

parts of the ocean (e.g. Zhurbas and Oh, 2004; Buehler and Holmes-Cerfon, 2009;

Cronin et al., 2015; Sallée et al., 2008; LaCasce and Bower, 2000), however different

estimators yield markedly different values for the diffusivity. In this thesis we focus

on understanding the error of diffusivity estimates (as well as the error of other flow

parameter estimates), which motivates us to propose new diffusivity estimators which

may have lower error under certain assumptions and conditions. By “error” we mean

both contributions from bias and variance, and in this thesis we shall generally work

with the notion of mean squared error of parameter estimates and trying to minimise

this.

Mesoscale parts of a flow can be estimated from clusters of drifters that are de-
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ployed together, for example as part of smaller experiments than the full scope of the

Global Drifter Program. An example of one such experiment is the LatMix (or Lateral

Mixing) Campaign which was carried out in the Sargasso Sea (part of the North At-

lantic Ocean) in Summer 2011 (Sundermeyer et al., 2020). There were deployments

in two sites, one exhibiting weak straining, and the other with moderate straining

(Shcherbina et al., 2015). Nine drifters were deployed at each site and each experi-

ment was run for six days, with position observations recorded every 30 minutes. The

LatMix experiment had the aim to determine what drives isopycnal (horizontal) mix-

ing and stirring at the submesoscale (smaller than mesoscale). In this thesis we use

the drifter trajectories from the LatMix experiment to split the flow into background,

mesoscale, and submesoscale components, providing estimates of strain, vorticity and

submesoscale diffusivity. We use the LatMix drifter trajectories as the foundation

for our analysis of the errors of parameter estimates, which enables us to build a

more general model and comment on the prospective optimal initial configuration of

drifters based on the anticipated error of parameter estimates, to help guide future

drifter deployments and statistical analyses.

This thesis will take a statistical approach to approximate the error of estimat-

ing mesoscale flow components and diffusivity from drifter position observations.

Throughout this thesis we develop estimators for diffusivity and mesoscale compo-

nents, and use simulation and analytical techniques to analyse the errors. We apply

these estimators on drifter observations from the LatMix experiment and the Global

Drifter Program, as well as synthetically generated trajectories using stochastic La-

grangian models. Our main aim throughout this thesis is to quantify and reduce the
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errors of our estimates, to ensure correct scientific conclusions can be drawn from

observed surface drifter positions and velocities.

1.1 Structure of Thesis

This thesis is structured as follows. Chapter 2 introduces some of the oceanographic

concepts that will be used throughout this thesis. These include providing an overview

of different instruments that are used to collect data, as well as definitions of diffusivity

and mesoscale flow features (e.g. strain and vorticity) which specify the modelling

components and parameters that will feature repeatedly throughout this thesis. We

also introduce some methods to estimate these parameters from existing literature.

We highlight some weaknesses of the different methods, and use these weaknesses to

provide motivation for the following chapters in the thesis.

Drifters deployed in close proximity collectively provide a unique observational

data set with which to separate mesoscale and submesoscale flows. In Chapter 3 we

provide a principled approach for doing so by fitting observed velocities to a local Tay-

lor expansion of the velocity flow field. We demonstrate how to estimate mesoscale

and submesoscale quantities that evolve slowly over time, as well as their associated

statistical uncertainty. We show that in practice the mesoscale component of our

model can explain much first and second-moment variability in drifter velocities, es-

pecially at low frequencies. This results in much lower and more meaningful measures

of submesoscale diffusivity, which would otherwise be contaminated by unresolved

mesoscale flow. We quantify these effects theoretically via computing Lagrangian
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frequency spectra, and demonstrate the usefulness of our methodology through simu-

lations as well as with real observations from the LatMix deployment of drifters. The

outcome of this method is a full Lagrangian decomposition of each drifter trajectory

into three components that represent the background, mesoscale, and submesoscale

flow.

In Chapter 4 we generalise the findings of Chapter 3, and provide an insight into

how different drifter deployment configurations impact upon the errors of mesoscale

and submesoscale parameter estimates. This allows us to make recommendations on

how many, for how long, and in what configuration drifters should be deployed, de-

pending on what we wish to learn from an observational experiment. This chapter uses

simulations of particle trajectories to obtain error estimates, by comparing parameter

estimates with the true value that was used to simulate the particle trajectories. We

show that the optimal deployment “morphology” is dependent upon the number and

combination of mesoscale parameters (strain, vorticity, and/or divergence) that we

wish to estimate. If only one parameter is being estimated, then we will show that it

is optimal to deploy drifters along a straight line, which in the case of strain is aligned

with the strain angle. However, if more than one parameter is being estimated, or it

is not known a priori which mesoscale features are present, then it is usually (but not

always) optimal to deploy drifters with an isotropic configuration in two dimensions

at the surface. We compare our results and recommendations with others made in

the literature to establish general principles.

In Chapter 5 we derive the error of parameter estimates analytically in a strain-

only setting and use these errors to comment on the scaling behaviour as different
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parameters change, such as the number and temporal length of the drifter observa-

tions. This enables us to reinforce the simulation results found in Chapter 4, as well

as quantify the error and approximate the full distribution of various parameter es-

timates. In this chapter we use method-of-moments to derive estimators for strain

rate, strain angle and diffusivity, and by fitting distributions to these estimators we

are able to calculate the root mean square error (RMSE) of different estimators. We

will show that increasing the distance from the centre of mass of the initial position,

in the axis aligned with the strain angle, reduces the error of strain rate estimates.

However, changing this distance in the orthogonal axis has no effect on the error. This

is not the case for diffusivity estimates, where we show that there is a more complex

relationship between the initial positions and the error.

In Chapter 6 we focus on drifters deployed in isolation, and as such develop a new

diffusivity estimator for single drifters, and apply this estimator to trajectories from

the Global Drifter Program. We compare this estimator to the standard periodogram-

based estimator to show that our new estimator has a lower variance, and a reduced

error overall. We prove this by fitting chi-squared distributions to the different dif-

fusivity estimators, by assuming drifter velocities are normally-distributed. The new

estimator works by splitting a time series into multiple segments, and then smoothing

over the segments, with the number of segments chosen as a trade-off between bias

and variance to optimally reduce the error.

Finally, in Chapter 7 we make concluding remarks and point to interesting areas

of outstanding further work and future directions that are motivated by the research

performed in this thesis.



Chapter 2

Background and Motivation

2.1 Introduction

The ocean plays a major role in regulating the weather and climate across the globe

(Rhines and Häkkinen, 2003). Its circulation transports heat between the tropics and

the poles, balancing the temperatures around the world. Ocean currents impact the

weather patterns worldwide, while transporting organisms and sediments around the

water. These currents are generated from a number of forces which are acting on the

water such as the rotation of the Earth, the wind and the gravitation of the moon

(Seager, 2006). Studies of the ocean have a number of practical applications. For

example, knowledge of the currents allows ships to take the most fuel efficient path

across the ocean, track pollution such as an oil or sewage spill, or aid in search and

rescue operations (Lumpkin et al., 2017). These studies can help with building models

of the climate and weather which can be used in predicting severe weather events such

as hurricanes.

8
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Lumpkin and Pazos (2007) provide a summary of some early methods of measuring

ocean quantities. In the early 17th century drift bottles were used to map surface

currents. The bottles would usually carry a note containing the location and time

of their launch (Sverdrup et al., 1942), and were weighed down so that they were

submerged almost completely. They have been used to map currents in the North Sea

(Fulton, 1897; Tait, 1930) and the northwest Pacific Ocean. Another early method

used to study ocean surface circulation uses measurements taken from the drift of

ships (Lumpkin and Pazos, 2007). The current can be found by finding the difference

between the absolute and relative motion of a ship with no sailing force. However, a

ship has forces acting upon it from both the currents and wind, and it is difficult to

separate the two forces.

Methods for tracking currents have advanced in more recent years beyond sending

a message in a bottle. Modern oceanography has allowed us to develop an increas-

ingly accurate picture of the properties of the ocean. However knowledge of ocean

circulation is not complete and depends on assumptions about its internal dynamics

which are used to estimate ocean currents (Rossby, 2007).

There are a number of instruments used to gather data that is used to model

the ocean. These can be either Lagrangian or Eulerian; Lagrangian instruments

freely drift in the ocean and are hence usually modelled using a moving frame of

reference, whereas Eulerian instruments are spatially fixed in position and so have

a fixed reference frame. Throughout this thesis we consider data from Lagrangian

instruments, and not from Eulerian sources. Lagrangian instruments are used to

gather a large variety of data about the ocean (including e.g. temperature), but this
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thesis will only consider the recorded positions and velocities of the instruments.

Drifter positions can be used to build knowledge of the ocean’s circulation. Through-

out this thesis, we are interested in the estimation of mean flow, as well as mesoscale

and submesoscale parts of the flow. Mesoscale flow refers to features that spread from

ten to hundreds of kilometres across the ocean, whereas the submesoscale part of the

flow is typically between 100m-10km. Large scale winds and tides drive ocean flows at

O(1000km) which through turbulent interactions drive mesoscale and submesoscale

eventually dissipating at the smallest scales. The combination of flows at all these

scales simultaneously acting on a particle placed in the ocean will determine where

it will end up. It isn’t possible to perfectly estimate all these different contributions

to the flow, and so a deterministic model would not be able to accurately predict the

path this particle could take through the ocean. We will therefore use concepts from

the field of statistics to build simplified stochastic models for the different parts of

the flow.

This background chapter will introduce some of the major concepts that will be

explored in more depth throughout this thesis. Specifically, Section 2.2 will introduce

the type of data that will be used throughout the rest of the thesis—particle positions

from Lagrangian instruments known as drifters. We also give an overview of a few

drifter deployments. Section 2.3 introduces the concepts of mesoscale flow and diffu-

sivity, which will be investigated in depth throughout the thesis. In Section 2.4 we

will give an overview of methodologies in the literature for estimating diffusivity, and

discuss some of their limitations. Section 2.5 reviews some existing methodology for

separating mesoscale and submesoscale flow components as well as introducing the



CHAPTER 2. BACKGROUND AND MOTIVATION 11

Lateral Mixing and Coherent Turbulence (LatMix) experiment, from which we will

use drifter velocity observations through this thesis. Finally, Section 2.6 provides the

motivation for introducing our own estimators for flow component parameters that

we shall introduce in the proceeding chapters.

2.2 Oceanographic Instruments

There are two ways to model the flow of a fluid, the first of these is the Eulerian

method, where we have a fixed frame of reference. This method describes the velocity

field as a function of both location and time, and is the preferred method for many

applications in fluid dynamics (Rossby, 2007). In practice, Eulerian data from the

ocean are collected using a number of spatially fixed in situ instruments (such as

a network of moored buoys) or from remotely sensed data such as satellite images.

The spatiotemporal resolution of the data is determined both by the rate of temporal

sampling of the instruments, and by the spatial distance between measurement points

(e.g. the distance between buoys or the resolution of satellite imagery).

The other way to model a fluid is the Lagrangian method, where we use a moving

frame of reference. A fluid particle or parcel is followed by the observer, which can be

specified by a velocity field as a function of time. Here the spatiotemporal information

comes from the recorded position of each particle over time. In practice, the data

comes from floats or drifters (see Section 2.2.1 for more details) and the spatiotemporal

resolution of the data comes from the number of instruments that are being tracked, as

well as their temporal sampling rate. This method tells us about how particles move
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in a fluid, and is particularly useful in the problem of determining the horizontal

structure of ocean currents, as we shall discuss. Lagrangian data can map out the

structure of a fluid flow with a high level of detail, with even a single trajectory being

able to provide a good insight into the underlying fluid dynamics.

Fluid flows are often turbulent, and therefore non deterministic. This means

each individual particle trajectory is unpredictable, following a complex path, and so

statistical methods can often work better to provide a description of the path than a

physical deterministic system. We now introduce a couple of Lagrangian instruments

that are used in oceanography, which will be relevant to the particle trajectories we

will explore throughout this thesis.

2.2.1 Lagrangian Instruments

Floats and drifters are the two main classifications of Lagrangian instruments which

are used to study the ocean. Over their lifetime they can cover large distances, and

so these free-drifting instruments provide a more cost effective method of providing

coverage of the ocean than Eulerian instruments which have fixed locations (Sykulski

et al., 2016).

Floats

Floats are one type of Lagrangian instrument typically used in ocean studies. They

move with the currents and can often travel large distances, providing data from just a

single instrument across many spatial locations. Floats are used to track the currents

below the surface. Argo floats are the most commonly used type of float. They move
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horizontally through the ocean at a set depth of around 1000 metres, and periodically

return to the ocean surface to transmit data to a satellite. This includes the position

of the float as well as depth profiles of other quantities of interest such as temperature

and conductivity, from which salinity and density can be computed. This resurfacing

occurs at regular intervals (often between 7-10 days), or the float can remain below

the surface for years collecting data. Therefore the velocities that are obtained have

a low spatiotemporal resolution as position data is only obtained for each float at a

minimum of every 7 days when the float surfaces. Another type of float is a RAFOS

float, which is able to measure underwater velocities while submerged using acoustic

tracking, therefore providing a much better temporal sampling rate.

Throughout this thesis we will not directly work with particle trajectories from

floats, however the methods described in the thesis could be applied to float data with

some modification. We instead focus our analysis to trajectories that are obtained

from drifters.

Drifters

Drifters are the modern equivalent of a message in a bottle. They move freely over the

surface of the ocean, tracking the surface currents. Drifters consist of a transmitter

which sits on the ocean surface and is tracked by satellites. Drifters often have a

subsurface drogue (Sybrandy and Niiler, 1991; Niiler et al., 1995) which causes the

transmitter to drift with the currents at a distance between 5-50m under the surface,

at the depth of the drogue. The drogue helps the drifter to move with the currents

as it is less influenced by winds. Figure 2.2.1 (Lumpkin and Pazos, 2007) shows what
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a drifter looks like. One type of drogue is known as a ‘holey-sock’ as they are made

from nylon cloth and consist of between 4-7 pairs of holes, with each consecutive pair

rotated 90 degrees from the previous opposing pair.

There are two main sizes of drifters, the original Surface Velocity Program (SVP)

drifter which has a subsurface float, and a larger drogue which has 7 pairs of holes.

The newer drifters are smaller and have no subsurface float and have only 4 or 5 pairs

of holes in the drogue. SVP drifters can transmit position data for approximately 400

days in the ocean before they cease transmission, but some have managed to keep

transmitting positions for up to 10 years.

Drifters were previously tracked using Doppler ranging by the Argos satellite sys-

tem (Niller et al., 1987), and provided locations up to 14 times each day (Ohlmann

et al., 2005) with an accuracy of the order of a few hundred metres. Modern drifters

can be tracked by the global positioning system (GPS), and have a higher spatial and

temporal resolution, giving the location up to every 30 minutes with accuracy of the

order of a few meters (Elipot et al., 2016). The data are recorded internally, and are

transmitted more infrequently.

Drifters are a quasi-Lagrangian instrument, they are drogued to a certain depth,

and hence are only able to move in two dimensions. The potential density of a particle

in the ocean is not constant at a given depth, and therefore the potential density each

drifter observes will change as the drifter moves through the ocean. Throughout this

thesis, we make no attempt to quantify the effect of the differing potential densities on

the different parameters that we will estimate, and the results should be interpreted

accordingly.
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Figure 2.2.1: An illustration of a SVP drifter. Taken from https://www.adp.noaa.

gov/Students/LetsDissectaDrifter.aspx (Lumpkin and Pazos, 2007).

https://www.adp.noaa.gov/Students/LetsDissectaDrifter.aspx
https://www.adp.noaa.gov/Students/LetsDissectaDrifter.aspx
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2.2.2 Drifter Deployments

There have been a large number of drifter deployments, each with their own goals.

The largest drifter array is the Global Drifter Program which provides data across the

globe. Many smaller deployments have also taken place, each focusing on a smaller

region, usually providing higher resolution data in space and time. We are only

interested in the spatial and temporal position and velocity data through this thesis,

but oceanographers use other drifter data (e.g. sea surface temperature, pressure,

etc) and apply the information to a range of applications. Drifters can be used to

learn about the circulation of the ocean, mapping out its currents, to its biology and

learning about ocean life.

In this thesis we will explore results from both large-scale deployments such as

the Global Drifter Program, and also from smaller-scale deployments where multi-

ple drifters are deployed in the same region of the ocean approximately at the same

time. These smaller-scale deployments provide insight into smaller features and re-

gions of the ocean, known as the submesoscale and mesoscale, whereas global de-

ployments provide understanding of large scale ocean currents and circulation. We

will introduce submesoscale and mesoscale flow in more detail in Section 2.3. Exam-

ples of smaller deployments include the Grand Lagrangian Deployment (GLAD, Gulf

of Mexico), Lateral Mixing and Coherent Turbulence Campaign (LatMix, Sargasso

Sea), Lagrangian Submesoscale Experiment (LASER, Gulf of Mexico), and Coherent

Lagrangian Pathways from the Surface Ocean to Interior (CALYPSO, Alboran Sea).

Through this thesis we will focus on data from the Global Drifter Program and from
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the LatMix campaign, but note that the methodology discussed can be applied to

other drifter and float data sets.

2.2.3 The Global Drifter Program

The World Climate Research Program recognised in 1982 that a global array of drifters

would be extremely useful for research in oceanography and the climate. The first

Surface Velocity Program (SVP) drifters were deployed in 1979, and the modern

set of SVP drifters includes all drifters deployed between 1979-1993. Large-scale

deployments of the first modern SVP drifters took place in 1988 with the aim of

mapping the surface circulation of the tropical Pacific Ocean.

The array of SVP drifters is today known as the Global Drifter Program (GDP),

which is part of the National Oceanic and Atmospheric Administration’s (NOAA)

Global Ocean Observing System and Global Climate Observing System. It is a scien-

tific project of the Data Buoy Cooperation Panel of the World Meteorological Organ-

isational and International Oceanographic Commission. The GDP aims to provide

data on operations, surface velocities, sea surface temperatures, and pressure that is

used for weather forecasting, research and calibration of satellite observations. The

GDP maintains over 1,000 drifters globally at any point in time and almost 20,000

drifters have been deployed in total over its history. There are two interpolated prod-

ucts (one hour resolution and six hour resolution) which together cumulatively yield

several hundred million position and velocity measurements. The positions of all

active drifters on 23rd May 2022 is displayed in Figure 2.2.2.

In March 2014 the GDP announced that they were transitioning their array of
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Figure 2.2.2: Position of drifters on 23rd May 2022 as taken from https://www.aoml.

noaa.gov/phod/gdp/

drifters from Argos to Iridium transmissions (Lumpkin et al., 2017) in order to reduce

costs. Iridium drifters include GPS and provide their positions hourly. The transition

to Iridium is now complete (Elipot et al., 2022).

2.2.4 The LatMix Campaign

The LatMix campaign included two separate field experiments. We are interested

in the first campaign which took place in the summer of 2011 in the Sargasso Sea,

a region of the Atlantic Ocean with no land boundaries—it is instead bounded by

currents. The campaign aimed to help build understanding of mixing at scales of 0.1–

10km, also known as the sumbesoscale. A combination of drifters, floats, dye releases

and ships were used as part of the campaign (Shcherbina et al., 2015; Sundermeyer

https://www.aoml.noaa.gov/phod/gdp/
https://www.aoml.noaa.gov/phod/gdp/
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et al., 2020).

Observations were made at two overlapping sites, which were characterised as

being weak and moderate straining. The experiment took place from the 1st–20th

June, in an area of good water clarity which was relatively close to the shore, chosen

for its relatively weak mesoscale field. The study in the region of weak strain (known

as site 1) was carried out between the 2nd–10th June, with the dye and nine drifters

being released on the 4th June. The study of the moderate straining site (known as

site 2) took place between the 12–20th June, with the dye and nine drifters being

released on the 13th June.

2.3 Ocean Circulation and Diffusivity

The primary application of floats and drifters is to measure the currents of the ocean.

The large-scale mean currents move drifters across the globe, and have a large impact

on the path a drifter will take. While these instruments generally follow the large-scale

currents, many different physical effects will act upon a drifter as it moves through

the ocean, such as wind, tides, eddies and fronts, amongst others. Through this

thesis we are primarily interested in estimating the effects smaller than the large-scale

currents, such as mesoscale features which we will decompose into strain, vorticity and

divergence. Drifter motion is generally considered to be stochastic, meaning that the

particles will also spread randomly from a given location, and the rate of this spread

is known as the diffusivity, which we also study.

Knowledge of how particles move through the ocean allows us to gain a better
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understanding of, for example, how an oil spill will spread in the water (Lumpkin

et al., 2017), and the impact that it will cause. Knowledge of the ocean’s currents and

circulation can also be used to gain insight into the spreading of radioactive materials

that are released into the water, or how ocean life such as fish larvae and plankton

(Lumpkin and Pazos, 2007) will disperse. Another application is in aeroplane crashes

in the ocean, as knowledge of the currents and circulation can be used to predict

where debris came from or can aid recovery missions (e.g. Trinanes et al., 2016).

2.3.1 Mesoscale Flow

Movement of particles through the ocean is caused by processes at various scales. At

the largest scale, the background flow encompasses large scale currents and inertial

oscillations. At the other extreme is the microscale O(0.01-1m), where stirring is at

a molecular scale (Shcherbina et al., 2015), and at the submesoscale O(0.1-10km)

mixing is due to such diffusivity.

When drifters are deployed close together, their positions can be used to estimate

mesoscale parts of the flow. Mesoscale flow O(10-100km) is smaller than background

flow which encompasses large scale currents and inertial oscillations, but is larger than

submesoscale flow, the effects of which are often parameterised as a submesoscale

diffusivity. The mesoscale describes effects between ten to a few hundred kilometers,

for which it is useful to characterise in terms of strain, divergence and vorticity.

Strain in two dimensions refers to the stretching of the flow along one axis, and the

compression along the other axis. It is broken down to normal and shear strain which

refer to strain in different directions. A positive normal strain refers to stretching in
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Figure 2.3.1: Velocity fields of divergence, vorticity, normal strain and shear strain

(in order left to right).

the x-axis whereas a negative normal strain refers to stretching in the y-axis. Shear

strain is equivalent to rotating the normal strain anticlockwise by 45 degrees. Strain is

often characterised by strain rate and strain angle instead of normal and shear strain,

which are based on the concept of radial and angular coordinates in polar coordinates.

Vorticity refers to the rotation of the flow, which can be either clockwise or anti-

clockwise. Finally, divergence describes a flow that separates from a point (or ‘di-

verges’), the opposite of which is convergence where different flows come together.

Divergence could be considered to be similar to diffusivity as it causes particles to

spread further apart from one another, however divergence causes correlated and de-

terministic spreading of particles whereas diffusivity refers to the uncorrelated and

stochastic spread. Figure 2.3.1 displays simulated velocity fields for each of diver-

gence, vorticity, normal and shear strain.

2.3.2 Diffusivity

Drifters remain at a constant depth near the surface of the water, and so they work

well in measuring how particles at the surface disperse. The drifters are constrained to



CHAPTER 2. BACKGROUND AND MOTIVATION 22

move only in 2-dimensions, and so provide horizontal measurements of the dispersion,

which can be thought of as the mean square separation from either a fixed starting

point (absolute dispersion) or another particle (relative dispersion) (LaCasce and

Bower, 2000). Oceanographers are interested in finding the diffusivity in different

parts of the ocean, which is found by taking the time derivative of the dispersion—

concepts which we shall explain mathematically shortly. Therefore the dispersion

provides information about the separation of particles in space, and diffusivity is the

rate in time at which this separation occurs.

Diffusivity is typically measured in units of metres squared per second. The size

of diffusivity estimates from drifters can vary from O(0.1)m2/s up to O(104)m2/s

depending on the region of the ocean, and how exactly diffusivity is estimated, and

therefore different diffusivity estimates should be interpreted carefully. When diffu-

sivity is estimated from clustered drifters, then background flow such as currents and

mesoscale flow such as strain and vorticity can be estimated and removed from the

drifter positions and velocities. Diffusivity estimates will therefore be much lower,

as more of the flow has been explained by these other effects. When diffusivity is

estimated from single drifters however, it might only be possible to remove the mean

flow (or even this might not be known), as mesoscale flow cannot be easily estimated

from single drifters. The size of the diffusivity estimates therefore depend on whether

mean flow and/or mesoscale features have been estimated and removed from drifter

data, with the diffusivity estimates generally being lower as more features are esti-

mated and removed. We therefore can think of diffusivity as a way to describe the

part of the flow that can’t otherwise be explained.
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We work with isotropic diffusivities, which are diffusivities at a set depth (at the

depth of the drifter drogue) that are assumed to be the same in every direction (where

the depth z is constant). Diffusivity can also be measured at a certain potential

density, called an isopycnal diffusivity, which is often the case when diffusivity is

estimated from dye release experiments. Because we are working with drifters that

follow a consistent depth, we are unable to estimate the isopycnal nor diapycnal

diffusivity, the latter of which is the diffusivity in the z axis.

Throughout this thesis we focus primarily on two definitions of diffusivity, sub-

mesoscale diffusivity and large-scale diffusivity. Submesoscale diffusivity can be mea-

sured from clustered drifters, and predicts the stochastic behaviour of the flow after

we have removed background and mesoscale parts of the flow. An experiment de-

signed to estimate submesoscale diffusivities will typically last only a few days and

cover a small region of the ocean. Large-scale diffusivities are much larger than sub-

mesoscale diffusivities as they are caused by larger eddies and turbulent flow. They

can be estimated from single drifters, and so frequently only the background mean

flow is removed before estimation. To estimate large-scale diffusivities, a drifter ex-

periment must cover larger regions over longer timescales in order to capture these

larger eddies. The size of diffusivity estimates will depend both on which and how

many other parts of the flow have been successfully resolved before estimating the

diffusivity, and on the size of the eddies that cause the diffusivity. Because diffusivity

is estimated from the residual after estimating other parts of the flow, our diffusivity

estimates might also contain other unresolved effects such as internal waves. When

providing estimates for diffusivity, it is important to state clearly what assumptions
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are made and which parameters have been estimated prior to estimating diffusivity,

as this affects the interpretation of the diffusivity estimate.

2.4 Existing Diffusivity Estimation Methodology

In this section we will introduce some existing methodology for estimating diffusivity,

which we use to provide motivation for developing our own estimators in this thesis

(both in Chapter 3 for submesoscale diffusivity and Chapter 6 for large-scale diffusiv-

ity). Current estimation methods provide vastly varying diffusivity estimates, which

is in part due to the differing ways that diffusivity is defined.

The estimation of ocean circulation using Lagrangian observations has been stud-

ied increasingly in recent years. One of the earliest applications of diffusion to ocean

dynamics was by Taylor (1922), with their equation for diffusivity forming the basis

for many studies into diffusivity, including our work in Chapter 6. It defines diffu-

sivity from a single particle to be proportional to the time derivative of the square

of the displacement of a particle from its initial position. This definition has been

summarised in review papers by LaCasce (2008) and Van Sebille et al. (2018), as well

as in application papers such as Sallée et al. (2008) who estimate the diffusivity in

the Southern Ocean.

To now define diffusivity more formally using the Taylor (1922) definition, consider

the probability density function (pdf) Q(x, t) which is the probability that a particle

is in position x(t) at time t. This pdf is defined independently of the starting position

and time and so holds for a flow which is both spatially homogeneous and stationary,
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meaning that the probability is invariant to shifts in position or time. The first

moment of Q gives the mean displacement E[x̃(t)] =
∫
x̃(t)Q(x̃, t)dx̃, and the second

moment gives the dispersion E[x̃(t)2] =
∫
x̃(t)2Q(x̃, t)dx̃, where x̃(t) = x(t)−E[x(t)]

is the position with the centre of mass removed at time t. The time derivative of the

dispersion gives the absolute diffusivity

κ(t) =
1

2

d

dt
E[x̃(t)2]. (2.4.1)

This definition is equivalent to the integral of the velocity covariance (LaCasce, 2008;

Zhurbas and Oh, 2003; Davis, 1991), which is frequently used to estimate diffusivity

from single particles (e.g. Koszalka and LaCasce, 2010). The equivalence is shown in

LaCasce (2008, Equation 10).

In an inhomogeneous (spatially-dependent) setting, diffusivity can be defined in

terms of its dependence on position x as well as t, following the definition of Davis

(1991) who defines the single particle diffusivity tensor as

κ{jk}(x, t) = −
〈
ṽ{j}(t0|x, t0)d̃{k}(t0 − t|x, t0)

〉
, (2.4.2)

where ṽ{j} = v{j}−E(v{j}), d̃{k} = d{k}−E(d{k}) are the differences of the velocity and

displacement from their means respectively, t0 is some fixed time, and the notation

a(t|x, t0) is the value of a at time t of a particle which passed through x at time

t0. The angle brackets refer to calculating an average over multiple particles, and j

and k refer to dimensions such that diffusivity can vary in different directions and

we can also compute a “cross-diffusivity” between dimensions when diffusivity is not

expected to be independent in each dimension. Note that the definition in Equation
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(2.4.2) computes backwards in time from t0 such that diffusivity is computed from

velocities and displacements prior to arriving at x at t = t0.

In the rest of this section we will introduce different methods of estimating diffu-

sivity from the literature which derive from Equations (2.4.1) and (2.4.2).

2.4.1 Clustering Drifter Trajectories

Diffusivity is not constant across the ocean, so in practice the ocean is typically split

into spatial bins in which it is assumed that diffusivity is constant. The size of these

bins is an area of interest to oceanographers, as the bins need to be large enough

that the estimates are statistically significant and larger than the eddies containing

the most energy, but small enough that estimates can be reasonably assumed to be

constant across the bins. When diffusivity is estimated from residual velocities after

mean flow has been removed, the bins also need to be small enough to resolve the

mean flow. Mean velocity is often estimated by simply taking the average of all veloc-

ity observations in a spatial bin. Diffusivity, on the other hand, is estimated (whether

directly or indirectly) as an autocorrelation between multiple observations (see Equa-

tion (2.4.1) and surrounding discussion), and so the same velocity observations yield

fewer diffusivity observations which can then be averaged to obtain a diffusivity esti-

mate for the bin. It could therefore be beneficial to estimate mean flow and diffusivity

using different bin sizes. A variety of different bin sizes have been explored in the

literature, for example Zhurbas and Oh (2004) and Swenson and Niiler (1996) use

bins of size 5◦ × 5◦ to estimate diffusivity, but use bins that are 2◦ × 2◦ to estimate

the average velocities.
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Different regions of the ocean have different numbers of velocity observations from

drifters. For example drifters near (but not on) the equator are faster moving and are

more densely populated, resulting in a high number of velocity observations. There-

fore, splitting the ocean into equally sized bins will result in some bins having more

observations than others. Koszalka and LaCasce (2010); Koszalka et al. (2011) ex-

plore the use of different bin sizes in estimating the mean flow of simulated particle

trajectories, and observe than bins that are 1◦ × 0.5◦ are able to recover the major

structures in the surface current. Bins of 2◦ × 1◦ are able to show where currents are

weaker or stronger, but lose the higher resolution structures, and when bins of 4◦×2◦

are used the currents are difficult to observe.

Koszalka and LaCasce (2010); Koszalka et al. (2011) propose a method to choose

the bin size where instead of the bin size being fixed, they fix the number of drifters

in a bin. The drifters are organised into bins via clustering. This ensures that the

standard error of the estimates are determined just by the velocities and physical

and measurement uncertainty and not by the number of drifters in a bin. They also

apply clustering to diffusivity estimation. They take time series of fixed lengths and

calculate the velocity autocorrelation for each time series, allocating the position to

be the midpoint of the trajectory. They then cluster the positions, and average the

autocorrelation in each cluster. Diffusivity is then estimated as the integral of the

average autocorrelation.

The clustering algorithm used by Koszalka and LaCasce (2010); Koszalka et al.

(2011) is k-means clustering, which assigns all velocity observations into k clusters,

C = C1, C2, · · · , Ck, such that the sum of the squared distance between cluster mem-
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bers, xj, and the centre of the cluster, ci is minimised,

min
k∑
i=1

∑
xj∈Ci

|xj − ci|2. (2.4.3)

The clustering is an iterative process as whenever the clusters change, so do the

centres. In each iteration, each data point is assigned to the nearest cluster centre,

and then the cluster centres are recalculated using the new cluster members. This

process is repeated until the cluster assignments do not change. For the clustering,

only the number of clusters, k, needs to be pre-specified. If there are a desired number

of observations in a cluster, then k is chosen as the total number of observations

divided by the desired number of observations in a cluster.

The clustering algorithm is applied to simulated drifter trajectories in Koszalka

and LaCasce (2010), and to trajectories in the Nordic seas in Koszalka et al. (2011).

2.4.2 Principal Component Analysis

An alternative method to estimate diffusivity is described in Zhurbas and Oh (2003).

It uses principal component analysis, which in two-dimensions can be thought of as

drawing an ellipse around the data where each orthogonal axis of the ellipse represents

a principal component (such that there are just two components in total for two-

dimensional data). These axes are found by calculating the covariance matrix and then

finding the eigenvalues and eigenvectors of the covariance matrix. The eigenvectors are

normalised to become unit vectors, representing the principal (major) and secondary

(minor) axes of the ellipse.
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Zhurbas and Oh (2003) use the minor principal component of both the diffusivity

tensor by Davis (1991), as given in Equation (2.4.2), and half the growth rate of the

single particle dispersion, as given in Equation (2.4.1) to estimate diffusivity. In more

detail, they first estimate diffusivity along each of the principal components from the

diffusivity tensor defined by Davis (1991). They then separate the diffusivity tensor

into the symmetric and anti-symmetric parts, denoted κS{jk} and κA{jk} respectively, by

κS{xy} = κS{yx} =
κ{xy} + κ{yx}

2
, κS{xx} = κ{xx}, κS{yy} = κ{yy}, (2.4.4)

κA{xy} = −κA{yx} =
κ{xy} − κ{yx}

2
, κA{xx} = κA{yy} = 0. (2.4.5)

The symmetric part, κS{xy} is decomposed into its principal axis, with major principal

component κ1, and minor principal component κ2, such that κ1 > κ2 > 0.

Zhurbas and Oh (2003) also define diffusivity to be half the growth rate of the

single particle dispersion s{jk} which is defined as

s{jk}(t|x) =
〈
d′{j}(t0 + t|x, t0)d′{k}(t0 + t|x, t0)

〉
. (2.4.6)

They decompose s{jk} into the principal axis components, s1 ≥ s2 ≥ 0, and obtain

diffusivity estimates by taking time derivatives,

κ∗1 =
1

2

∂s1

∂t
, κ∗2 =

1

2

∂s2

∂t
, (2.4.7)

where κ∗1 and κ∗2 are the diffusivity estimates along the principal components, and the

∗ refers to the estimates coming from the growth rate of the dispersion.

Diffusivity will usually increase for short timescales t > 0 and asymptote to a

constant value, usually before 30 days (Oh et al., 2000). The long term diffusivities
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for the minor principal components are therefore estimated via

κ2(∞) = max
0<t<30days

[κ2(t)], κ∗2(∞) = max
0<t<30days

[κ∗2(t)]. (2.4.8)

Finally, they estimate diffusivity as the average between long-term diffusivity of

the minor principal component estimated by each method,

κ =
κ2(∞) + κ∗2(∞)

2
. (2.4.9)

Therefore, Zhurbas and Oh (2003) estimate the diffusivity using just the minor prin-

cipal component. They apply their method to observed drifter velocities in the Pacific

and Atlantic Oceans to produce maps of diffusivity estimates.

2.4.3 Fitting a Parametric Model to Drifter Velocities

Estimating diffusivity from either the half growth rate of the dispersion as in Equation

(2.4.1) or from the diffusivity tensor given in Equation (2.4.2) require observations

over long times for the diffusivity to converge to the long-term diffusivity. This isn’t

always possible as a drifter will move to another part of the ocean, where the diffusivity

and mean flow are likely to be different.

Griffa et al. (1995) propose a method of estimating diffusivity which doesn’t nec-

essarily require a long time series. They fit a parametric model to the velocity ob-

servations, and therefore they assume that the velocity autocovariance will have a

known shape, which can then be used to estimate diffusivity. Drifter velocities are

often broken down into a mean flow estimate and a diffusivity estimate, and so it is

intuitive to model a drifters position using the mean flow E[u] and turbulent velocity
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u′′. Griffa et al. (1995) define their parametric model as

dx = udt = (E[u] + u′′)dt (2.4.10)

du′′ = Θu′′dt+ σI
√

2ΘdW, (2.4.11)

where dx is the displacement of a particle during time dt, u is the velocity, Θ =

1/tturbulent where tturbulent is the turbulent time scale, σI is the standard deviation of

the turbulent velocity, and dW is an increment from a Wiener process (also known

as a Brownian motion). The stochastic differential equation of Equation (2.4.11) is

known as an Ornstein-Uhlenbeck process, and has also been used by other authors

to model Lagrangian velocities (e.g. Lilly et al., 2017). The timescale T refers to the

time that this process is able to remember its initial turbulent velocity, as at each

time step the process will gradually lose memory of this initial velocity.

Diffusivity is often estimated as the integral of the autocovariance, and the auto-

correlation corresponding to Equation (2.4.11) is

R(τ) =
1

σ2
I

〈u(t)u(t+ τ)〉 = e−Θτ . (2.4.12)

From the autocorrelation, the autocovariance can be calculated as σ2
IR(τ), and the

diffusivity can be estimated.

The diffusivity of an Ornstein-Uhlenbeck process is therefore

κ(t) =

∫ t

0

σ2
Ie
−Θτdτ =

σ2
I

Θ

(
1− e−Θt

)
. (2.4.13)

2.4.4 Discussion

The three diffusivity estimators introduced above are all based on either Taylor (1922)

or Davis (1991), as are many other Lagrangian diffusivity estimators used in the
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literature. Each of the three estimators will yield different estimates of diffusivity,

as they are all built on different assumptions and try to minimise the error in a

different way. Koszalka and LaCasce (2010) aim to control the error by restricting

the number of drifters in each spatial bin to be spatially constant. Zhurbas and Oh

(2003) propose an estimator which assumes spatially anisotropic flow, and estimate

an isotropic diffusivity from the minor principal component. Finally, Griffa et al.

(1995) estimate diffusivity using a parametric approach, and so the error comes from

the error from fitting the model, as well as from any model misspecification in the

assumptions made. Each of the different estimators therefore has its own strengths

and weaknesses.

Clustering the drifters can lead to a higher spatial resolution of estimates for mean

flow and diffusivity on average, compared with binning the observations geographi-

cally. It also ensures statistical significance of their estimates (under assumptions of

stationarity within each bin), as the number of drifters in a cluster could be chosen.

However, the amount of data available is not consistent across the ocean, and so the

spatial size of a cluster could vary dramatically across the globe. In regions of the

ocean where drifter observations are sparse, clustering observations will result in a

poor spatial resolution as the clusters in these areas must cover larger spatial areas

before they reach the required number of cluster members. In addition it may not be

reasonable to assume stationarity and constant diffusivity levels for such large bins.

Zhurbas and Oh (2003) assume that any discrepancies between κx and κy are due

to the mean flow, and that the diffusivity itself is isotropic. This assumption suggests

that any differences between the minor and major principal components of diffusivity
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are due to mean flow, and not differences in the diffusivity in different directions. In

the case where this assumption is correct, and diffusivity is isotropic, then estimating

diffusivity from the minor principal component will smooth out the variance from

estimating the mean flow. However, in the case where the assumption is untrue, and

diffusivity varies in the different axes, then estimating diffusivity from just the minor

component will result in an underestimate of the diffusivity. The diffusivity may also

be underestimated if the estimates have not reached the long-term diffusivity within

30 days, as this is the maximum number of days the long-term diffusivity is estimated

from.

Estimating diffusivity from a parametric model means that diffusivity is estimated

from a theoretical form of the autocovariance, rather than an estimated empirical au-

tocovariance from observations or simulations. This means, regardless of the length of

the time series, the diffusivity estimates will always represent the long-term diffusiv-

ity associated with the model. With infinite length data, the diffusivity estimate will

have zero error for trajectories exactly fitting the parametric model, however no model

is able to perfectly describe the complex nature of ocean circulation, and statistical

error will always remain with finite data. There will therefore be error associated with

fitting a model to the drifters, which will result in the diffusivity estimates having an

error determined by how good a fit the parametric model is and how much data there

is and how noisily it is observed. This approach to estimating diffusivity requires the

model parameters to be estimated, as well as a suitable model be chosen to fit the

drifter velocities. If the model were not to be a good fit to the trajectories, then this

would result in diffusivity estimates with high errors.
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The different estimators will all give different diffusivity estimates, even if they

were applied to drifter trajectories in the same part of the ocean. This is due to the

differences in the way that each method estimates diffusivity and the assumptions

they are built on. Diffusivity will vary both spatially and temporally, but is generally

assumed to be consistent at a given scale within a given spatiotemporal region. This

highlights the need for more robust ways to estimate diffusivity, and in Chapters 3

and 6 we propose new diffusivity estimators for submesoscale and large-scale flow

respectively, with the aim of trying to reduce and quantify sources of error from data

sparsity and other flow components that are present.

2.5 Mesoscale and Submesoscale Flow Estimation

In this section we will introduce some existing methodologies for estimating mesoscale

flow and submesoscale diffusivity. We also look at the LatMix experiment in more

depth, including some of the estimates of strain rate and diffusivity from this study

found in the literature. We use this to provide motivation for developing our own

methodology, and applying it to the LatMix drifter observations later in this thesis.

Mesoscale flow is often estimated using tracer release experiments, as well as ob-

servations from Lagrangian instruments such as drifters. Drifters are drogued to a

certain depth, and can therefore only move in two dimensions. Dye is not constrained

to a set depth and will move in three dimensions, usually following the potential

density. Therefore, drifters estimate statistics at a given depth, and tracers estimate

statistics along an isopycnal. This will result in differing estimates from Lagrangian



CHAPTER 2. BACKGROUND AND MOTIVATION 35

instruments and dye releases.

2.5.1 Mesoscale Flow Estimation

Okubo and Ebbesmeyer (1976) provide a method to estimate the mesoscale flow

components which involves taking a Taylor series of the drifter velocities around the

“centre of mass” (i.e. the average location of the drifter positions), and then using

least squares regression to estimate strain, vorticity and divergence.

Specifically, they approximate the drifter velocities to be decomposed as

 uk(t)

vk(t)

 =

 E[u(t)]

E[v(t)]

+
1

2

 ux(t) uy(t)

vx(t) vy(t)


 x̃k(t)

ỹk(t)

+

 usm
k (t)

vsm
k (t)

 , (2.5.1)

where {uk(t), vk(t)} are the drifter velocities at time t for drifter k ∈ {1, 2, · · · , K},

{E[u(t)], E[v(t)]} are the drifter velocities at the location of the centre of mass at time

t, {ux(t), uy(t), vx(t), vy(t)} are velocity gradients found by taking the partial deriva-

tive in x or y, and {usm
k (t), vsm

k (t)} are the residual velocities. Finally, {x̃k(t), ỹk(t)}

are the positions of drifter k at time t after removing the “centre of mass”, which is

the the average position of the drifters at time t. The Taylor series can be written in

matrix notation at each time point t as

U = RA+ E, V = RB + F, (2.5.2)

where the matrices are defined as follows:
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U =



u1(t)

u2(t)

.

.

uK(t)


, V =



v1(t)

v2(t)

.

.

vK(t)


, R =



1 x̃1(t) ỹ1(t)

1 x̃2(t) ỹ2(t))

. . .

. . .

1 x̃K(t) ỹK(t)


,

A =


E[u(t)]

ux(t)

uy(t)

 , B =


E[v(t)]

vx(t)

vy(t)

 , E =



usm
1 (t)

usm
2 (t)

.

.

usm
K (t)


, F =



vsm
1 (t)

vsm
2 (t)

.

.

vsm
K (t)


. (2.5.3)

Okubo and Ebbesmeyer (1976) use least squares regression to approximate A and

B as

A = (R′R)−1R′U,

B = (R′R)−1R′V, (2.5.4)

and then estimate the residual velocities as

E = [1−R(R′R)−1R′]U = U −RA,

F = [1−R(R′R)−1R′]V = V −RV. (2.5.5)

The mesoscale flow components can be estimated from the velocity gradients as

Divergence: δ(t) = ux(t) + vy(t), Vorticity: ζ(t) = vx(t)− uy(t),

Normal strain: σn(t) = ux(t)− vy(t), Shear strain: σs(t) = vx(t) + uy(t). (2.5.6)
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2.5.2 Submesoscale Diffusivity Estimation

Isopycnal diffusivity is often estimated from a tracer using the advection-diffusion

equation (e.g. Sundermeyer et al., 2020)

∂γ

∂t
+ σx

∂γ

∂x
− σy∂γ

∂y
= κ∇2γ, (2.5.7)

where γ is the dye concentration, σ is the non-divergent strain rate, and κ is the

isopycnal diffusivity which is isotropic. It is assumed that the axes are aligned with

the principal axis of the strain tensor, with x corresponding to the principal axis and

y corresponding to the minor axis. To obtain second moments of the tracer in x and

y, they multiply the advection-diffusion equation from Equation (2.5.7) by x2 and y2

respectively to obtain

dm2
xx

dt
− 2σm2

xx = 2κ, (2.5.8)

dm2
yy

dt
+ 2σm2

yy = 2κ, (2.5.9)

where m2
xx and m2

yy are the second moments in x and y respectively. The second

term of each equation has a different sign corresponding to stretching or convergence

of the tracer patch in the major and minor axis respectively. The strain causes the

second moment in the major (x) axis to grow exponentially, while diffusion grows

linearly, whereas in the minor (y) axis the strain causes the tracer patch to converge,

counteracting the diffusion causing the patch to grow.

To estimate diffusivity, the variances m2
xx and m2

yy and their rate of change with

time can be calculated from the tracer patch, and all that is left is two equations and

two unknowns, which the equations can be solved to find.
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An alternative way to estimate diffusivity and strain rate jointly is to assume that

after a time of 1/σ, the strain rate dominates the diffusion in the x axis, but in the

y axis, the strain rate and diffusion balance out to a steady streak width, simplifying

Equations (2.5.8) and (2.5.9) to

dm2
xx

dt
− 2γm2

xx = 0, (2.5.10)

γm2
yy = κ. (2.5.11)

Therefore the strain rate can be estimated from the growth rate of the second moment

in x, and diffusivity can then be estimate using the estimated strain rate as well as

the second moment in y.

2.5.3 Earlier Work Separating Mesoscale and Submesoscale

Components

Sundermeyer and Price (1998) compare statistics estimated from floats and tracer

releases from the North Atlantic Tracer Release Experiment (NATRE). The aim of

Sundermeyer and Price (1998) is to gain a better understanding of what causes mixing

and stirring in the ocean. It is thought (Sundermeyer et al., 2020) that submesoscale

processes transfer energy between the mesoscale and the microscale, which are the

smallest scales. Sundermeyer and Price (1998) define mixing processes to be those

which can be modelled by diffusion, being small-scale processes which cannot be re-

solved, and they define stirring to be larger scale events that can be resolved, such

as streaking and folding of a tracer. Estimating the dispersion of a purely diffusive

process has been more thoroughly studied, whereas estimating dispersion in the pres-
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ence of strain is more complex and is therefore less well understood. Throughout this

thesis we aim to develop a better understanding of techniques to estimate mesoscale

and submesoscale flow, and the properties of the resulting estimates.

When a tracer is released it can be modelled in three distinct phases (Garrett,

1983). In the first phase, the tracer patch is much smaller than the straining eddies,

and so the growth is modelled as a diffusive process. In the second phase, the tracer

patch is large enough to be acted upon by the strain and is advected into long thin

streaks which grow in length exponentially with time. When the patch enters its

final stage, it is larger than the mesoscale eddies, with the streaks wrapping around

each other due to stirring from the eddies. The patch becomes more homogeneous,

and therefore can again be modelled as a diffusive process. Therefore, in order to

estimate the mesoscale effects, the tracer must be in its second phase, where it is

approximately the size of the mesoscale processes that are being estimated. The single

particle diffusivity estimators that were discussed in Section 2.4 would be suitable for

a tracer in the third phase of evolution.

Sundermeyer and Price (1998) used both tracer patch release experiments and

float trajectories from NATRE to compare the statistics estimated from each. They

also aimed to determine whether the three stage tracer model is consistent with ob-

served dispersion rates from the NATRE experiment, and understanding the biases

of following Garrett (1983) to estimate the strain rate, streak width, and small scale

diffusivity.

They found that estimates from floats and the tracer closely agreed. The dispersion

rates they found were consistent with an exponential growth phase, then a reduced
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growth phase, and finally a linear regime, which was consistent with the three phase

model by Garrett (1983). Estimating the small-scale diffusivity as in Garrett (1983),

lead to the requirement of dividing estimates by a factor of 2 to obtain unbiased

estimates. They believe that this bias is due to unidentified horizontal mixing at

scales of 1-10km. This motivated the study of submesoscale processes, which was

addressed in the LatMix Field Campaign.

2.5.4 Findings from the LatMix Experiment

The Lateral Mixing (LatMix) Experiment (Sundermeyer, 2017; Sundermeyer et al.,

2020; Shcherbina et al., 2015) was carried out to gain a better understanding of stirring

and mixing at the submesoscale. Shcherbina et al. (2015) provide an overview of the

campaign, which included floats and tracer releases, and a suite of other observations,

as well as providing an overview of ongoing research by many different authors using

data from the many different sources.

It was hypothesised (Shcherbina et al., 2015) that stirring and mixing at the

submesoscale could be due to any (or none) of the following:

• internal wave shear dispersion,

• stirring from vortical modes caused in internal waves breaking,

• straining of tracer fields to smaller scales by mesoscale processes,

• high Rossby number subinertial submesoscale motions.

Testing the above hypotheses required observations from a tracer with different levels
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of mesoscale straining, and hence there were two major field campaigns with instru-

ments deployed in areas with different straining levels. Throughout this thesis, we

only look at the first of these two campaigns, which took place in the Sargasso Sea

in summer 2011 with two separate experiments, one at a region with low straining

[∼ 10−6/s or ∼ 0.01fc, where fc = 7.7× 10−5rad/s is the Coriolis frequency at 32◦N],

and the other at a region with moderate straining flow [∼ 10−5/s or ∼ 0.1fc]. In

each site, three research vessels carried out an initial survey, and then dye was re-

leased, accompanied by a Lagrangian float within the patch (Shcherbina et al., 2015).

Drifters and Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats were

also deployed to surround the dye patch. The vessels carried out surveys in the area

at the centre of the dye, with four Slocum gliders and one SeaGlider supplementing

these surveys. There were also eight smaller dye releases which were each tracked for

about a day by towed instruments, and four of these were tracked for the first 6 hours

by airborne lidar. Throughout this thesis, we are interested in estimation techniques

for position observations obtained from the drifters, although some of our techniques

might be applied to some of the other data as well.

The study at the site of weak straining (Site 1) took place between 2nd June until

the 10th June 2011. On the 4th June the dye was released along a 1.4km streak with

nine drifters drogued at 30m also released with their initial positions forming a cross

shape centred on the dye streak. Over a period of six days, the instruments travelled

30km in the direction south-southeast, with the drifters being stretched along the

northwest-southeast axis, and relatively little rotation. The dye stretched into an

ellipse that was 12km ×5km. Shcherbina et al. (2015) provide estimates for the
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diffusivity, with an isopycnal diffusivity of 1m2/s estimated from the dye patch and a

lateral diffusivity of 0.2m2/s estimated from the drifters. They note that the difference

between these diffusivities is likely to be due to the difference between dye following

an isopycnal and drifters being drogued at a set height. Therefore the drifters cannot

accurately estimate diffusivity at a consistent potential density.

Sundermeyer et al. (2020) estimated the strain rate to be 3× 10−6/s from the dye

and 0.1−2×10−5/s from the drifters. They produced three different estimates for the

isopycnal diffusivity at Site 1 as they found that the streak width did not approach

steady state during the 6 days of the experiment. They therefore estimated diffusivity

from both Equations (2.5.8) and (2.5.9), as well as Equation (2.5.11). Their estimates

ranged from 0.4m2/s up to 0.7m2/s from dye, and 2.8m2/s from drifters. They note

that deciding which estimate is the most correct depends on which assumptions are

assumed to be true.

The moderate straining study (Site 2) took place between 12th June until the

20th June 2011. Dye was released on the 13th June, this time along a 2km line.

Drifters were deployed with the dye, and again had initial positions in the shape of a

cross. This site showed much stronger stretching, elongating to over 50km long, with

width approximately 3-5km (Sundermeyer et al., 2020). Shcherbina et al. (2015) state

that despite the stronger straining of the dye, the isopycnal diffusivity estimate was

approximately the same as that in the weak-straining site, with estimates of 1m2/s.

Sundermeyer et al. (2020) estimate the strain rate to be 1.7 × 10−5/s for days

0-2, decreasing to be 2.5 × 10−6/s in days 2-4 from dye, and estimates ranging from

3 × 10−5/s early in the evolution and 5 × 10−5/s in later days from drifters. They
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again found that the second moment in the minor axis did not approach steady

state, however they note that this is unsurprising due to the changing strain rate

estimates. They again calculate different estimate for diffusivity, in this case ranging

from 1.9m2/s to 4m2/s.

Despite the difference in the estimates for strain rate at each site, the isopycnal

diffusivity estimates are remarkably similar between the two sites. Neither Shcherbina

et al. (2015) nor Sundermeyer et al. (2020) were able to rule out any of the four

hypotheses of what lead to stirring and mixing at the submesoscale, and suggested

that all four factors could possibly contribute, and no one process currently stands

out to be driving dispersion. Therefore, understanding mixing and stirring at the

submesoscale is still an area for ongoing research.

2.5.5 Discussion

Mesoscale and submesoscale flow can be estimated from many different Lagrangian

instruments. In this section we have focused on estimation from dye releases and from

drifters. The two methods are expected to give differing estimates due to differences

in the way the data is collected. A tracer is free to move in all three axes, and will

typically move through regions of constant potential density, known as following an

isopycnal. On the other hand, drifters are drogued to a certain depth, and can only

collect measurements at this depth. This means that if the density changes as a

drifter moves through the ocean then the density at which the drifter is measuring

will change. Sundermeyer et al. (2020) found a slight variation in their estimates of

strain rate and diffusivity depending on whether they were estimating from drifter or



CHAPTER 2. BACKGROUND AND MOTIVATION 44

dye positions. Therefore we note that regardless of the instrument used to obtain an

estimate, any parameter estimates are expected to vary at a different depth/density

to that followed by the drifters/dye during the experiment.

The method for estimating strain, divergence and vorticity by Okubo and Ebbesmeyer

(1976) provides an estimate for each parameter at every sampled time point, with the

spatial gradients also being allowed to vary at every point in time. This could po-

tentially result in estimates which are noisy and not statistically significant, as the

model doesn’t allow any smooth changes to ensure the error is sufficiently small to

ensure significance. Furthermore, Okubo and Ebbesmeyer (1976) take a Taylor series

around the centre of mass, meaning that information is lost from the mean velocities

which have been removed, this could also increase the error of the estimates. We note

however, that the method uses least squares regression which minimises the residual

velocities, and so this method attempts to describe as much of the flow as possible as

being either mean flow or mesoscale flow, resulting in the submesoscale diffusivities

describing the unexplained part of the flow.

An alternative method to estimate strain rate is described in Sundermeyer et al.

(2020), where strain rate and diffusivity are estimated simultaneously. This method

draws similarities to the principal component analysis for estimating diffusivity dis-

cussed in Section 2.4.2, as both methods require the principal axis to be found, and

diffusivity is then found primarily from the behaviour of the minor axis. This method

is defined for a tracer, however drifters can be expected to behave similarly in their

spreading, albeit with a less clear ellipse to determine the axes. This method is only

able to estimate strain rate and diffusivity, and in the presence of vorticity and/or
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divergence, the estimates are likely to be less accurate as the effects of vorticity/-

divergence will be captured in the estimates of strain rate and diffusivity. Vorticity

is unlikely to make significant changes to the second moments, however the ellipse

will be rotated and the principal axis will move with the vorticity. Therefore, if the

principal axis is able to follow the vorticity then the estimates should be largely un-

affected, but if a single fixed principal axis is used then the estimates will inevitably

be biased. Divergence could alias as either strain rate and/or diffusivity, and is likely

to result in biased estimates if ignored. Therefore, the Sundermeyer et al. (2020)

method should be used for strain only fields, or must be carefully modified to account

for other mesoscale effects.

Shcherbina et al. (2015) and Sundermeyer et al. (2020) quote varying estimates

for strain rate and divergence in each site of the LatMix experiment. It is not known

which of these estimates more accurately describes the complex nature of the ocean

dynamics in the Sargasso Sea at this point in time, and so the mesoscale and subme-

soscale processes driving the drifters in the LatMix experiment are still unknown. This

highlights the requirement for more research into the estimation of both mesoscale

and submesoscale flow, as well as more understanding of the properties and errors

associated with each parameter estimate.

2.6 Conclusion

Throughout this chapter we have introduced some of the basic definitions from oceanog-

raphy which will feature throughout this thesis. We introduced Lagrangian instru-
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ments, with an emphasis on drifters which will be used to provide positions that will

be used to gain an understanding of ocean dynamics. We are particularly interested

in the estimation of mesoscale and submesoscale flow, as well as submesoscale and

large-scale diffusivities. We have introduced some methodology used in the literature

to estimate these processes, as well as discussing their limitations. We now will fur-

ther discuss some of those methods and their limitations to motivate the work carried

out in this thesis.

Okubo and Ebbesmeyer (1976) provide a relatively straightforward method for

splitting drifter velocities into a background flow, as well as mesoscale and subme-

soscale components. In Chapter 3 we will develop a new way to estimate strain,

vorticity and divergence, based on the method by Okubo and Ebbesmeyer (1976),

but with some important modifications. Our model addresses the shortfalls of their

method which we discussed in Section 2.5.5. Specifically, we will assume that the

mesoscale processes are slowly changing in time, and we therefore will estimate each

parameter over a given time window, instead of independently at each sampled time

point. We will show how to choose this smoothing window to ensure that the es-

timates are less noisy and statistically significant. The window length can also be

changed to reduce the variance of the estimates if the true parameters are known

to remain constant over the experiment, for example in LatMix site 1, we saw from

Sundermeyer et al. (2020) that the strain rate is approximately constant, and so our

method is able to provide a single estimate for the strain rate across the entire time

period. We will show that our estimator produces similar estimates to Sundermeyer

et al. (2020) when applied to LatMix drifter trajectories, including the decreasing
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strain rate in Site 2.

Fitting a parametric model to drifter trajectories, as in Griffa et al. (1995), may in

practice result in large biases and errors for any resulting parameter estimates. This is

because the ocean is complex, and no model is able to capture all the different ocean

dynamics. However, parametric models can be used to provide useful summaries and

a general idea of the magnitude and associated error of parameter estimates. This is

because a parametric model allows us to develop estimators with known theoretical

properties which are precise assuming the assumptions of the model are satisfied by

the data. Such theoretical properties can be used to aid decision making in the design

of drifter release experiments; for example in Chapter 5 we will fit an Ornstein-

Uhlenbeck model to derive estimators for strain and diffusivity. We can use these

estimators and their properties to draw conclusions about how drifters should be best

deployed (in what number and in what configuration) to reduce the anticipated error

of different resulting parameter estimates from the study. In Chapter 6 we use a

parametric model to fine-tune our estimator to each individual drifter track to reduce

the expected error of diffusivity estimates. By using a parametric model we obtain

a closed form expression for the error (both bias and variance) allowing us to tune

the tuning parameters of the estimator, however we do not explicitly use the model

in the final estimation process, and therefore we do not directly encounter the error

associated with a poorly fitting parametric model.

The diffusivity definition of Taylor (1922) will form the basis of our diffusivity es-

timation in Chapter 6, where we provide a new diffusivity estimator which attempts

to reduce the error when compared with the standard estimator using the integral of
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the autocovariance. Estimating diffusivity across the ocean in practice requires us to

make decisions on how to split up the ocean into regions of approximately constant

diffusivity. Koszalka and LaCasce (2010) use clustering to increase the resolution of

their estimates, as well as controlling statistical significance from sample size. How-

ever, in areas with poor spatial coverage, some of their clusters could be large and in

these regions they cannot predict how diffusivity changes with space which is a disad-

vantage. In Chapter 6 we introduce a method to estimate diffusivity that attempts to

reduce the variance of diffusivity estimates from single drifters, and hence can produce

meaningful estimates when aggregated across all drifters. This means that we can at-

tempt to improve diffusivity estimates with a constant resolution across the globe,

with a goal of ensuring reliable estimates even in regions with low data volumes.

This thesis builds upon some of the methods we have introduced in this chapter,

with an emphasis on estimating parameters of flow components and their associated

error. The goal of the subsequent chapters is to improve these methods and reduce

statistical and physical sources of uncertainty and error to obtain flow estimates that

are less biased and noisy and more statistically significant.



Chapter 3

Separating Mesoscale and

Submesoscale Flows from

Clustered Drifter Trajectories

The contents of this chapter is published in Oscroft S, Sykulski AM, Early JJ. Sepa-

rating Mesoscale and Submesoscale Flows from Clustered Drifter Trajectories. Fluids.

2021; 6(1):14.

3.1 Introduction

Recent field experiments targeting submesoscale motions (100m–10km) include the

deployment of dozens to hundreds of GPS tracked surface drifters in close proxim-

ity, e.g., ‘LatMix’ (Shcherbina et al., 2015), ‘GLAD’ (Poje et al., 2014), ‘LASER’

(Gonçalves et al., 2019) and ‘CALYPSO’ (Mahadevan et al., 2020). These deploy-

49
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ments are designed to sample a narrow spatiotemporal window, but with high enough

data density to resolve submesoscale motions. However, even when submesoscale

motions are resolved, separating those motions from the larger, often more energetic

mesoscale motions remains a significant challenge.

One approach to disentangling the submesoscales from the mesoscales with high

resolution drifter data is to use the results from turbulence theory. For example,

Poje et al. (2014) showed results using two-particle statistics consistent with local

dispersion at submesoscales. Beron-Vera and LaCasce (2016) found ambiguous re-

sults until inertial oscillations were filtered from the trajectories. This suggests, not

surprisingly, that realistic flow fields contain a combination of flow features that can

be linearly separated in some contexts. In a detailed modelling study, Pearson et al.

(2019) showed that, even with some filtering, these Lagrangian statistics are far more

sensitive than similar Eulerian measures, and called into question the interpretation

of previous studies that use variations of two-particle statistics.

An alternative approach is to parameterise the energetic mesoscale flow features

from the Lagrangian trajectories, in order to disentangle them from the unparame-

terised, possibly submesoscale, flows. The notion of accounting for, or parameterising,

the mesoscale strain in order to measure the submesoscale diffusivity, appears to orig-

inate with tracer release experiments (Sundermeyer and Price, 1998; Sundermeyer

and Ledwell, 2001), and is based on ideas introduced in Garrett (1983). The basic

idea is that one axis of the tracer grows exponentially with a rate proportional to the

strain rate, σ, while the other axis reaches a steady state balanced by the compress-

ing effect of σ and the elongating effect of diffusivity, κ. In the dye experiments, the
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mesoscale strain rate is determined by measuring the rate of elongation of the patch,

which is then used to deduce the diffusivity. The key idea to this approach is that

the mesoscale strain rate is parameterised, in order to separate its effect from the

submesoscale motions.

This manuscript extends the idea of parameterising mesoscale features, in order

to disentangle submesoscale flow, to a more principled and robust framework appro-

priate for Lagrangian particles. Our work is complementary to, but distinct from,

the recent works of Gonçalves et al. (2019); Lodise et al. (2020) who developed a

method for projecting clustered drifter trajectories to reconstruct local Eulerian ve-

locity fields using Gaussian Process regression. The goal of our work is to disentangle

the trajectories in a Lagrangian sense, and explicitly separate each drifter trajectory

into background, mesoscale and submesoscale components—where each decomposed

drifter can then be analysed further within the Lagrangian framework. A key benefit

is that our Lagrangian separation allows for the explicit estimation of submesoscale

diffusivity, as we shall show.

The structure of this Chapter is as follows. In Section 3.2 we first introduce a

conceptual Lagrangian flow model, and then show how this can be parameterised

using a local Taylor expansion. Then in Section 3.3 we show how these parameters

can be estimated from clustered drifter deployments. We pay particular focus to

building a hierarchy of models, where each layer in the hierarchy adds extra parameters

(e.g. strain/vorticity/divergence) that represent additional flow features. We provide

novel methodology for selecting between hierarchies based on the evidence from the

data. In Section 3.4 we go further and incorporate nonstationary flow features, by
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allowing mesoscale parameters to slowly evolve over time. We provide methodology for

estimating this evolution using splines, and then we provide techniques for quantifying

the uncertainty of all parameter estimates using the bootstrap. We detail how this

quantification of uncertainty provides the ideal mechanism from which to select the

key parameter of the temporal window length. Throughout Sections 3.3 and 3.4 we

perform detailed simulation analyses to provide further insight and motivation. Then

in Section 3.5 we test and perform our novel methodologies on data collected from

drifters in the LatMix deployment, which reveals new insights and discovers previously

hidden mesoscale and submesoscale structures. Discussion and conclusions can be

found in Section 3.6. We also perform a sensitivity analysis against the number of

drifters, as well as the configuration of the initial deployment, in Chapter 4. Code to

replicate all results and figures in this Chapter is available at https://github.com/

JeffreyEarly/GLOceanKit.

Overall, the principle contribution of this Chapter is a general framework for

analysing Lagrangian data from clustered drifter deployments. Specifically, this method-

ology provides a tool to detect for the presence of various mesoscale flow features and

separate those features from the submesoscale flow—while allowing such features to

evolve over time—together with providing quantified statistical uncertainty of output.

3.2 Modelling Framework

The primary conceptual model used throughout this manuscript is that the total

velocity of a Lagrangian particle utotal can be decomposed into three components,

https://github.com/JeffreyEarly/GLOceanKit
https://github.com/JeffreyEarly/GLOceanKit
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utotal = ubg + umeso + usm, (3.2.1)

where ubg is a large scale background flow, umeso is the mesoscale flow (> 10 km, > 10

days) and usm is the submesoscale flow (100m–10km, 1 hr–10 days). The background

flow is assumed to be spatially homogeneous in some local region around the drifters,

and thus includes motions such as inertial oscillations and large scale currents. The

terminology used here is appropriate for a range of oceanographic contexts, but ar-

guably the separation into mesoscale and submesoscale are more precisely related to

non-local and local dynamics, respectively. We thus use the term mesoscale to de-

scribe structures that behave non-locally across the drifters, and are therefore the

smoothly varying fluid structures that will be parameterised, such as the constant

strain rate used in the tracer release experiments (Sundermeyer and Ledwell, 2001).

The submesoscale currents are simply the residual motion, not captured by the back-

ground or mesoscale flow. If any statistically significant submesoscale signal remains,

its energy spectrum will likely be shallower than the mesoscale portion and therefore

be consistent with local dynamics. In practice, the scales captured by these three

types of motion will vary depending on the deployment details and the limitations of

the data, as much as the actual physical processes themselves, as we shall show. The

proposed methodology therefore ultimately remains agnostic to the scales and physi-

cal processes governing the motions, but instead focuses on the statistical significance

of the model.

Surface drifter motion is constrained to a fixed depth near the ocean surface, where
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the two-dimensional positions are measured in geographic coordinates longitude and

latitude. For the work here it is necessary to use map coordinates {x(t), y(t)} with a

projection that locally preserves area and shape. Following Early and Sykulski (2020)

we use the transverse Mercator projection with central meridian placed between the

minimum and maximum longitude of the drifter experiment and add a false northing

and easting to shift the origin to the southwest corner. The total velocity utotal of a

drifter is then two-dimensional and assumed to represent the velocity at the depth of

the drifter drogue. The work here will also be generally applicable to clustered de-

ployments of RAFOS floats with minor modification, but we will use the terminology

of drifters throughout the manuscript.

3.2.1 A local Taylor expansion

One of the simplest models for separating flow components is to perform a local Taylor

expansion of the velocity field. Suppose we have observations from K clustered drifters

at time t, where the position of drifter k (1 ≤ k ≤ K) in x and y orthogonal directions

is given by {xk(t), yk(t)}, measured in metres, and the corresponding velocity is given

by d
dt
{xk(t), yk(t)}, measured in metres per second. We then take a Taylor series

expansion of the velocity field evaluated at the position of drifter k, such that we

model its velocity as
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d

dt

xk(t)
yk(t)


︸ ︷︷ ︸

utotal

=

ubg(t)

vbg(t)


︸ ︷︷ ︸

ubg

+

u0 + a1t

v0 + b1t

+
1

2

σn + δ σs − ζ

σs + ζ δ − σn


xk(t)− x0

yk(t)− y0


︸ ︷︷ ︸

umeso

+

usm
k (t)

vsm
k (t)


︸ ︷︷ ︸

usm

,

(3.2.2)

where

• {xk(t), yk(t)} are observations from drifter k at time t,

• {ubg(t), vbg(t)} is the spatially homogeneous time-varying background flow,

• {u0, v0, a1, b1, σn, σs, ζ, δ} are the model parameters for the mesoscale flow,

• {x0, y0} is the expansion location and has no consequence to the model, other

than redefining {u0, v0},

• {usm
k (t), vsm

k (t)} are the residual ‘submesoscale’ velocities for each drifter, as-

sumed to be zero-mean in time, but also zero-mean in space across drifters.

Equation (3.2.2) therefore separates background, mesoscale, and submesoscale fea-

tures in the data, following the conceptual model of Equation (3.2.1). We will show

in Section 3.3.1 how the eight mesoscale parameters can be simultaneously estimated,

and in Section 3.3.2 how the flown can be decomposed into background, mesoscale

and submesoscale components.

We write Equation (3.2.2) in terms of velocities instead of positions, even though

the raw data usually measure positions of drifters. This is because we will be using

time series techniques to fit the drifter trajectories to the model. Time series analysis
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techniques often assume that the data are stationary, hence the use of velocities is

desirable as they are more stationary than positions.

Equation (3.2.2) is similar to that given by Okubo and Ebbesmeyer (1976) which

we gave in Equation (2.5.1), except with the addition of the (u0 + a1t, v0 + b1t)
T

term which comes from taking a more complete Taylor expansion. The terms u0

and v0 allow us to redefine the expansion point without changing the other model

parameters, and a1 and b1 allow a small linear increase in the mesoscale component.

In Equation (3.2.2) we rewrite the strain tensor of Equation (2.5.1) in terms of our

mesoscale parameters.

The mesoscale parameters are simply re-definitions of the standard spatial gradi-

ents: the divergence is δ = ux + vy, the vorticity is ζ = vx − uy, the normal strain

rate is σn = ux − vy, and the shear strain rate is σs = vx + uy. The normal and shear

strain rates can be combined to a scalar value for the strain rate σ =
√
σ2
n + σ2

s and

rotation angle θ = arctan [σs/σn]/2, where σn = σ cos(2θ), σs = σ sin(2θ).

These mesoscale parameters can be rewritten to make the spatial gradients the

subject and then directly plugged into Equation (2.5.1). Therefore, for u0 = a1 = v0 =

b1 = 0, Equations (2.5.1) and (3.2.2) are equivalent. We choose to write Equation

(3.2.2) in terms of the mesoscale parameters as these are what we wish to use the

model to estimate. The spatial gradients have no physical meaning in our model,

except for their relationship to the mesoscale parameters.

For the moment, the eight mesoscale parameters are assumed to be sufficiently

slowly varying that we can treat them as constant over some time window, although we

will relax this restriction later. In practice, the mesoscale component of the model will
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capture any coherent feature that has constant spatial gradient across the cluster of

drifters, whether that is a large scale more permanent feature like a Western boundary

current or a transient mesoscale eddy—or nothing at all. The spatially homogeneous

time-varying ‘background’ flow will capture inertial and tidal oscillations, but may also

erroneously include parts of a time or spatially varying mesoscale flow. Finally, the

residual ‘submesoscale’ velocity will include any velocity contributions not captured

by the other components.

The model of Equation (3.2.2) was applied to drifter observations in Okubo and

Ebbesmeyer (1976) to obtain estimates of the spatial gradient parameters, but with

two key differences from the approach taken here. First, the spatial gradients were

allowed to vary at each observational time point, without any constraints on the

rate of fluctuation. Second, the expansion point {x0, y0} was chosen to be the time-

varying centre-of-mass of the cluster of drifters. The consequence of this choice is

quite significant and is worth considering in more detail. Defining the centre-of-mass

(or first moment) as mx(t) ≡ 1
K

∑K
k=1 xk(t) and my(t) ≡ 1

K

∑K
k=1 yk(t), it follows from

Equation (3.2.2) that the centre-of-mass velocity includes contributions from both the

homogeneous background as well as the spatial gradients such that

d

dt

mx(t)

my(t)

 =

ubg(t)

vbg(t)

+

u0 + a1t

v0 + b1t

+
1

2

σn + δ σs − ζ

σs + ζ δ − σn


mx(t)− x0

my(t)− y0

 , (3.2.3)

where no submesoscale is assumed to be present as we have defined 1
K

∑K
k=1 u

sm
k (t) = 0.

That the mesoscale spatial gradients have a (potentially) significant impact on the

velocity of the centre-of-mass is evident in the top row of simulated drifter trajectories
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shown in Figure 3.2.1, where the entire cluster of drifters is advected by the linear

flow. Now if the expansion point is taken to be the centre-of-mass, {x0(t), y0(t)} =

{mx(t),my(t)}, then Equation (3.2.3) reduces the background velocity to the sam-

ple mean velocity, such that ubg(t) ≈ d
dt
mx(t). As a result, after subtracting Equa-

tion (3.2.3) from (3.2.2), the velocities of the individual particles in the centre-of-mass

frame,

d

dt

xk(t)−mx(t)

yk(t)−my(t)

 =
1

2

σn + δ σs − ζ

σs + ζ δ − σn


xk(t)−mx(t)

yk(t)−my(t)

+

usm
k (t)

vsm
k (t)

 , (3.2.4)

only depend on the spatial gradients and submesoscale flow. In some sense, the dif-

ference between Equation (3.2.2) and Equation (3.2.4) is quite remarkable: simply

by changing to centre-of-mass coordinates, the potentially complicated form of the

background flow, {ubg, vbg}, is eliminated, along with all the velocity variance associ-

ated with mesoscale advection of the centre-of-mass from Equation (3.2.3). With this

choice of reference frame, the spatial gradients in the model now only characterise

the spreading of particles, i.e. the second moment, as shown in the second row of

Figure 3.2.1, along with any spreading caused by the submesoscale process.

3.2.2 Diffusivity

A key measure with which we evaluate our techniques is to measure the diffusivity

of observed and modelled velocities. We define the submesoscale diffusivity for each

drifter k as in Equation (21) of LaCasce (2008), such that
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Figure 3.2.1: Simulation of 9 drifters from Equation (3.2.2) over 6.25 days, with

starting positions, number of drifters, and experiment length taken to match LatMix

Site 1. In each panel the submesoscale velocities {usm
k (t), vsm

k (t)} follow a Wiener

increment process with diffusivity equal to 0.1 m2/s. The top row shows drifter

positions, and the bottom row shows positions with respect to centre-of-mass at each

time step. From left to right we include the following model components. Left:

diffusivity only. Centre left: strain and diffusivity. Centre right: strain, vorticity,

and diffusivity (strain dominated). Right: strain, vorticity, and diffusivity (vorticity

dominated). In each plot where a parameter is present, it has been set as σ =

7 × 10−6/s, θ = 30◦, ζ = 6 × 10−6/s (centre right), and ζ = 8 × 10−6/s (right). We

have set u0 = v0 = a1 = b1 = ubg = vbg = 0. The trajectories are simulated using

the Euler-Maruyama scheme (Kloeden and Platen, 2013) and we include quivers in

all plots representing the underlying velocity field.
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κsm
k,x(t) =

1

2

d

dt
xsm
k (t)2 =

∫ t

0

usm
k (t)usm

k (τ)dτ, (3.2.5a)

κsm
k,y(t) =

1

2

d

dt
ysm
k (t)2 =

∫ t

0

vsm
k (t)vsm

k (τ)dτ, (3.2.5b)

where xsm
k (t) is calculated from the residual velocities, usm

k (t), such that xsm
k (t) =∫ t

0
usm
k (t)dt, and similarly for ysm

k (t). As in Equation (10) of LaCasce (2008), a joint

diffusivity measure across all drifters could be defined by averaging the positions/ve-

locities before applying the derivatives/integrals in Equations (3.2.5a) and (3.2.5b);

however, we initially choose to calculate diffusivity separately for each drifter k to

reflect the fact that drifters are spatially spread in a clustered deployment, and hence

their diffusivity values may depend on spatial scale within a spatially inhomogeneous

flow field.

In general, it is also useful to consider the isotropic diffusivity as this is rotationally

invariant, and as such, does not depend on our choice of coordinate system. The

isotropic submesoscale diffusivity for drifter k is defined as

κsm
k,z(t) =

1

4

d

dt
|zsm
k (t)|2 =

1

2

∫ t

0

wsm
k (t)wsm

k (τ)dτ, (3.2.6)

where zsm
k (t) = xsm

k (t)+iysm
k (t), wsm

k (t) = usm
k (t)+ivsm

k (t), and i ≡
√
−1. The isotropic

diffusivity is the average of κsm
k,x(t) and κsm

k,y(t) such that κsm
k,z(t) = 1

2
{κsm

k,x(t) + κsm
k,y(t)}.

The diffusivity is also related to the power spectral density of complex velocity

wk(t) where

S(ω) ≡ 1

T

∣∣∣∣∫ T

0

wk(t)e
−iωtdt

∣∣∣∣2 . (3.2.7)
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S(ω) is known as the Lagrangian frequency spectrum and is related the isotropic

diffusivity in Equation (3.2.6) with

κk,z(T ) =
1

4
S(0), (3.2.8)

as shown in Lilly et al. (2017). Formally, diffusivity requires the process to be sta-

tionary and is defined in the limit as T → ∞, but in practice we are always limited

to finite observation times. The total variance of a complex particle velocity is con-

served with the Lagrangian frequency spectrum, 1
T

∫
wk(t)

2dt =
∫
S(ω)dω, and in this

sense it will be useful to think of how the model components in Equation (3.2.2) each

describe the distribution of variance in the frequency spectrum.

Equations (3.2.5), (3.2.6) and (3.2.7) are theoretical constructs as they require

submesoscale velocities to be observed continuously in time. In practice, drifter ob-

servations are only observed at discrete time points. In Section 3.3 we will discuss how

to estimate submesoscale diffusivity from clustered drifter data using our modelling

and estimation approach.

We note that diffusivities could also be calculated directly from raw velocities

{ d
dt
xk(t),

d
dt
yk(t)}, or from centre-of-mass velocities that have only had the background

removed and still contain mesoscale flow contribution (as in Equation (3.2.4)), and

such values of diffusivity will in general be much larger than the submesoscale dif-

fusivities. This highlights the scale-dependent nature of diffusivity, as well as the

challenges in comparing different measurements of diffusivity.
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3.2.3 Model solutions

The mesoscale component of Equation (3.2.2) is a linear ordinary differential equation

with tractable analytical solutions (e.g. Haynes, 2001; Lilly, 2018). However, the

submesoscale component of Equation (3.2.2) is assumed unknown, and may represent

a range of different phenomena. Thus, for our simulation analyses that follow in this

chapter we generate the submesoscale process stochastically using trajectory paths

defined by

d

dt

xk(t)
yk(t)

 =

u0

v0

+
1

2

σn + δ σs − ζ

σs + ζ δ − σn


xk(t)− x0

yk(t)− y0

+
√

2κdWt, (3.2.9)

where the function dW represents an increment of a two-dimensional Wiener process

(a random walk in the discrete-time limit) that forms the submesoscale component.

The Lagrangian frequency spectrum of the submesoscale process is therefore simply

that of a white noise process:

S(ω) = 4κ. (3.2.10)

The frequency spectrum of internal waves (perhaps the best known submesoscale pro-

cess) will have either more or less contribution to the total variance, depending on the

frequency. We thus consider a white noise velocity process to be a reasonably agnos-

tic choice. Notably absent from Equation (3.2.9) is the spatially homogeneous back-

ground flow. In practice this contains a significant amount of power from inertial and

tidal oscillations, but does not significantly impact the estimation of mesoscale quan-

tities as we shall show. The particle trajectories shown in Figure 3.2.1 are sampled
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from Equation (3.2.9), where each column contains different choices for the mesoscale

parameters, but the submesoscale diffusivity κ is held constant (the first column has

no mesoscale and hence the particles follow a random walk).

In the absence of the stochastic submesoscale white noise process, the Lagrangian

trajectories from Equation (3.2.9) are purely deterministic and thus their Lagrangian

frequency spectra can be computed exactly, as we shall now show. For the following

analytical solutions we set δ = 0, but make no such assumption in the estimation

procedure that follows. To integrate Equation (3.2.9) with κ = 0, note that simply

re-positioning a particle’s initial location can be used to redefine {u0, v0}. Specifically,

if the initial position of the particle is given by {x(0), y(0)} with nonzero {u0, v0}, the

{u0, v0} can be set to zero, so long as the initial position is set to {x(0)−xu, y(0)−yu}

where

xu
yu

 =
2

s2

 σn σs − ζ

σs + ζ −σn


u0

v0

 , (3.2.11)

and the Okubo-Weiss parameter is defined by s2 ≡ σ2−ζ2. Thus, without loss of gen-

erality, we can simply take {u0, v0} and the expansion point to be zero. The complex

path z(t) = x(t) + iy(t) with initial position given by {x(0), y(0)} = {r cosα, r sinα}

is therefore

z(t) =


r
s
eiα
(
s cosh

(
st
2

)
+
(
σei2(θ−α) + iζ

)
sinh

(
st
2

))
if σ2 > ζ2

r
s̄
eiα
(
s̄ cos

(
s̄t
2

)
+
(
σei2(θ−α) + iζ

)
sin
(
s̄t
2

))
if σ2 < ζ2

(3.2.12)

and the associated velocity w(t) = u(t) + iv(t) is given by
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w(t) =


r
2
eiα
(
s sinh

(
st
2

)
+
(
σei2(θ−α) + iζ

)
cosh

(
st
2

))
if σ2 > ζ2

r
2
eiα
(
−s̄ sin

(
s̄t
2

)
+
(
σei2(θ−α) + iζ

)
cos
(
s̄t
2

))
if σ2 < ζ2

(3.2.13)

where we have defined the complementary Okubo-Weiss parameter by s̄2 ≡ ζ2 − σ2.

The mean-square distance of a particle from the origin is given by

1

T

∫ T

0

|z(t)|2 dt =


2r2

Ts3
sinh

(
sT
2

) [
σA cosh

(
sT
2

)
+ sB sinh

(
sT
2

)]
− r2

s2
ζC if σ2 > ζ2

2r2

T s̄3
sin
(
s̄T
2

) [
−σA cos

(
s̄T
2

)
+ s̄B sin

(
s̄T
2

)]
+ r2

T s̄2
ζC if σ2 < ζ2

(3.2.14)

and total velocity variance,

1

T

∫ T

0

|w(t)|2 dt =


r2

2sT
sinh

(
s
2
T
) [
σA cosh

(
s
2
T
)

+ sB sinh
(
s
2
T
)]

+ r2ζC
4

if σ2 > ζ2

r2

2s̄T
sin
(
s̄
2
T
) [
σA cos

(
s̄
2
T
)
− s̄B sin

(
s̄
2
T
)]

+ r2ζC
4

if σ2 < ζ2

(3.2.15)

where

A = σ + ζ sin 2 (θ − α) , B = σ cos 2 (θ − α) , C = ζ + σ sin 2(θ − α), (3.2.16)

and T is the length of time that has passed since the particle has moved from its

initial position.

The Lagrangian frequency spectrum of a particle in a linear velocity field can now

be computed using Equations (3.2.13) and (3.2.7) which yields
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S(ω) =


r2

T
sinh2

(
sT
4

) [σA cosh( s2T)+sB sinh( s2T)−ζC
ω2+ s2

4

+ s2C(ω+ζ/2)(
ω2+ s2

4

)2

]
if σ2 > ζ2

r2

T
sin2

(
s̄T
4

) [−σA cos s̄T
2

+s̄B sin s̄T
2

+ζC

ω2− s̄2
4

+ s̄2C(ω+ζ/2)(
ω2− s̄2

4

)2

]
if σ2 < ζ2

(3.2.17)

where the Lagrangian frequency spectra of complex-valued velocities are permitted to

be asymmetric in ω (see Sykulski et al. (2016)), which will occur in Equation (3.2.17)

when ζ 6= 0. Asymmetric spectra arise when the rotary spectra are unequal and

there is a preferred direction of spin (Sykulski et al., 2017b). With no strain and

after sufficiently long observation time (T >> 1/ζ), Equation (3.2.17) becomes a

single frequency delta function, reflecting the rotation of a particle from the vorticity.

However, for the cases considered here, observation times are at most O(1/s, 1/s̄), and

often much less. The result is a spectrum that is generally very red (S(ω) ∼ ω−2),

with total power increasing in observation time T .

The Lagrangian frequency spectrum in Equation (3.2.17) would appear to indicate

that particles advected by a linear velocity field have a non-zero diffusivity, following

the definition of Equation (3.2.8). However, while it is true that the linear velocity

field causes particles to disperse, increasing their second moment with T , this spread-

ing is entirely deterministic with correlations between particles spatially and across

time, and thus does not formally meet the requirement that diffusivity results from

a stationary random velocity process. From the perspective of trying to isolate and

estimate the diffusivity of submesoscale processes (which may be stationary at these

scales), the linear velocity field may be viewed as contaminating the lowest frequen-

cies in the spectrum, providing erroneously high values of diffusivity if not removed
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Figure 3.2.2: The one-sided frequency spectrum for a particle integrated with Equa-

tion (3.2.9) is shown in black. The particle is initially placed at {x(0), y(0)} =

{1 km, 1 km} and integrated for 5 days in a strain-only model with simulation pa-

rameters set to κ = 0.1 m2/s and σ = 1 × 10−5/s. The theoretical spectrum of the

mesoscale process, Equation (3.2.17), is shown in blue, and the theoretical spectrum

of the white noise process, Equation (3.2.10), is shown in red.

correctly.

Figure 3.2.2 shows the one-sided Lagrangian frequency spectrum of a single par-

ticle simulated using Equation (3.2.9). The Lagrangian frequency spectrum thus has

two distinguishing parts: the white noise submesoscale process given by Equation

(3.2.10) and the deterministic red process given by Equation (3.2.17). In Figure 3.2.2

the observed particle spectrum is very nearly the linear addition of the theoretical

Lagrangian frequency spectra of the mesoscale and submesoscale models of Equa-

tions (3.2.10) and (3.2.17) respectively. In terms of Figure 3.2.2, the objective of the

methodology is to remove the deterministic contribution of the mesoscale flow (in
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blue), in order to study the submesoscale process that remains.

3.3 Estimation and Hierarchical Modelling

The spreading of particles in the ocean can be categorised into three distinct stages

of diffusivity according to the size of the drifter separation (or the tracer patch)

relative to the size of mesoscale features (Sundermeyer and Price, 1998). At the

smallest spatial scales, the mesoscale features may be so weak that the submesoscale

processes dominate across all resolved scales and therefore completely control the

spreading (e.g., when the mesoscale spectrum in Figure 3.2.2 is below the submesoscale

spectrum). At the other extreme, where drifters are separated by distances that

exceed the size of mesoscale features such as with the Global Drifter Program, the

motions between any two drifters are uncorrelated and there are no common features

to parameterise. We are interested in the middle stage, where the spread of the

drifters is within the size of the mesoscale features. The upper bound of separation

is dictated by the requirement that the spatial gradients in Equation (3.2.2) must

be similar between drifters, while the lower bound is simply determined by lack of

statistical significance of the mesoscale parameters. We place no upper bound on the

number of drifters required, however there should be at least two drifters to remove

the background part of the flow. The drifters should be sampled frequently enough

that there is enough data to obtain estimates which are statistically significant whilst

keeping the spread of the drifters within the mesoscale. Further discussion of how to

ensure significance of results will be given in Section 3.4 and Chapter 4.
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3.3.1 Parameter estimation

Estimates for the mesoscale parameters in Equation (3.2.2) from observations will

be obtained using least squares regression, by minimising the sum of the squared

residuals representing the non-mesoscale flow, as we shall now show. This approach

therefore fits as much of the data to the mesoscale part of the model as possible. To

perform the fits, we make the important step of decomposing the K drifter velocities

into K drifter velocities relative to the centre-of-mass, plus a centre-of-mass veloc-

ity, as represented in Equations (3.2.3) and (3.2.4) respectively. In other words the

summation of Equations (3.2.3) and (3.2.4) recovers Equation (3.2.2). When put into

matrix-vector notation for observations these models can be jointly written as

U = XA+ ε, (3.3.1)

where we have defined

U =
d

dt



x̃k(tn)

ỹk(tn)

mx(tn)

my(tn)


︸ ︷︷ ︸

2(K+1)N×1

, ε =



usm
k (tn)

vsm
k (tn)

ubg(tn)

vbg(tn)


︸ ︷︷ ︸
2(K+1)N×1

, (3.3.2)

and
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X =
1

2



0KN 0KN 0KN 0KN x̃k(tn) ỹk(tn) −ỹk(tn) x̃k(tn)

0KN 0KN 0KN 0KN −ỹk(tn) x̃k(tn) x̃k(tn) ỹk(tn)

2 · 1N 0N 2tn 0N m̄x(tn) m̄y(tn) −m̄y(tn) m̄x(tn)

0N 2 · 1N 0N 2tn −m̄y(tn) m̄x(tn) m̄x(tn) m̄y(tn)


︸ ︷︷ ︸

2(K+1)N×p

, A =



u0

v0

a1

b1

σn

σs

ζ

δ


︸ ︷︷ ︸
p×1

.

(3.3.3)

In this notation, x̃k(tn) ≡ xk(tn) − mx(tn), ỹk(tn) ≡ yk(tn) − my(tn) are length

KN column vectors of the N observations at times t1 ≤ tn ≤ tN from each of the K

drifters in a chosen time window of width W = tN−t1. Similarly m̄x(tn) ≡ mx(tn)−x0,

m̄y(tn) ≡ my(tn) − y0 are length N column vectors of the moving centre-of-mass at

times t1 ≤ tn ≤ tN . The particular ordering of the observations within each vector in

Equations (3.3.2) and (3.3.3) does not matter, so long as it is consistent, and in fact,

there is no restriction that the drifter observations occur at the same time, despite

our choice of notation. We have defined 0KN and 1KN to be KN × 1 column vectors

of zeros and ones, respectively. Under each matrix we have given its size, where p

is the number of parameters, and in this case p = 8. The vector A contains model

parameters which are estimated using the least squares solution
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A = (X ′X)−1X ′U. (3.3.4)

By combining Equations (3.3.1) and (3.3.4) the residual submesoscale and background

velocities can be estimated by taking

ε = [1−X(X ′X)−1X ′]U. (3.3.5)

The least-squares solution is equivalent to the optimal maximum likelihood so-

lution when the residuals are Gaussian and independent and identically distributed.

In general, weighted least squares solutions should be used if residuals are correlated

or have unequal variance, and although this will likely be the case here, weighted-

least squares requires prior knowledge of the distributional structure of the residuals

which we do not wish to assume is known. Overall, we found the (non-weighted)

least squares solution of Equations (3.3.4)–(3.3.5) to be robust in simulation exper-

iments and real data analysis, and to perform better than performing least squares

directly on the representation of Equation (3.2.2) on raw velocities for each drifter

without removing centre-of-mass. This is due to the fact that the K drifter velocities

in centre-of-mass coordinates, with the addition of the centre-of-mass velocity, can be

thought of as a collection of K + 1 drifters that are more independent of each other

than the K drifters in fixed-reference frame coordinates. This leads to errors that are

more uncorrelated over drifters yielding better least squares parameter fits.
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3.3.2 Flow decomposition

Once the parameters have been estimated using Equation (3.3.4), the constituent

parts of the conceptual model of Equation (3.2.1) can be computed. The mesoscale

contribution to each drifter is computed using

umeso
k (tn)

vmeso
k (tn)

 ≡
u0 + a1t

v0 + b1t

+
1

2

σn + δ σs − ζ

σs + ζ δ − σn


xk(tn)− x0

yk(tn)− y0

 . (3.3.6)

The background is assumed to be spatially homogeneous, and thus can be recovered

from the residuals by averaging across drifters at each time,

ubg(tn)

vbg(tn)

 ≡ 1

K

K∑
k=1

 d

dt

xk(tn)

yk(tn)

−
umeso

k (tn)

vmeso
k (tn)


 . (3.3.7)

Finally, the submesoscale contribution to each drifter is all that remains,

usm
k (tn)

vsm
k (tn)

 ≡ d

dt

xk(tn)

yk(tn)

−
umeso

k (tn)

vmeso
k (tn)

−
ubg(tn)

vbg(tn)

 . (3.3.8)

This accomplishes the conceptual decomposition of velocities proposed in Equa-

tion (3.2.1). We emphasise that the fits of Equations (3.3.1)–(3.3.5) could be per-

formed without the centre-of-mass velocity by removing the bottom 2 rows of U ,

ε and X in Equations (3.3.2) and (3.3.3). This is in effect only fitting observa-

tions to the second-moment model of Equation (3.2.4), as also proposed in Okubo

and Ebbesmeyer (1976). While this fit still obtains estimates of mesoscale quanti-

ties {σ, θ, ζ, δ}, and disentangles the submesoscale {usm(t), vsm(t)}, the first-moment
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mesoscale parameters {u0, a1, v0, b1} and the background {ubg, vbg} can no longer be

estimated directly (unless fitted a posteriori). This means a full decomposition of the

flow as performed in Equations (3.3.6)–(3.3.8) is not directly accomplished using the

K drifters in centre-of-mass frame only. We shall refer to this reduced technique as

the second-moment fitting method. In contrast, we refer to the full estimation

technique from Equations (3.3.1)–(3.3.8) as the first and second-moment fitting

method.

Regardless of the fitting method, we estimate the isotropic submesoscale diffusivity

κsm
k,z(t), defined in Equation (3.2.6), by measuring the implied square displacement of

the submesoscale velocities within the window. This yields

κ̂sm
k,z(tn) =

∆

4N

∣∣∣∣∣
tN∑
t=t1

usm
k (t) + ivsm

k (t)

∣∣∣∣∣
2

, (3.3.9)

where ∆ is the sampling interval of drifter observations measured in seconds. Equa-

tion (3.3.9) is equivalent to taking 1/4 of the periodogram of the velocities—or the

absolute square of the Fourier Transform—at frequency zero. This is consistent with

the fact that the theoretical diffusivity of a stationary complex-valued process is de-

termined by 1/4 of the zero-frequency of the Lagrangian frequency spectrum as per

Equation (3.2.8).

The above equations produce estimates of the background, mesoscale and subme-

soscale parts of the flow over some choice of temporal window length W = tN − t1. A

small value of W results in a reduced number of data points in the regression causing

potentially noisy parameter estimates. Conversely, a large value of W incorporates
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more distant observations in time and smooths over this noise, but may lead to poor

estimates if the underlying mesoscale parameters are evolving over time. This is the

classic bias-variance trade-off in statistical estimation. In Section 3.4 we address the

issue of choosing an appropriate window length, and we introduce a principled estima-

tion method using splines that allow parameters to evolve slowly over time, resulting

in smoother less-variable estimates.

3.3.3 Hierarchical modelling

The Taylor series model of Equation (3.2.2) specifies 8 mesoscale parameters which are

collectively denoted {u0, v0, a1, b1, σ, θ, ζ, δ}, and these can be estimated from clustered

drifter data using the machinery of Section 3.3.1. However, not every clustered set of

drifters will necessarily experience all of these effects (as we illustrated in Figure 3.2.1),

or the data might not give statistically significant estimates of some of the parameters

even if they are truly present. Alternatively, we might already know the true values of

some of the parameters and so we do not wish to estimate these. Motivated by this,

we now introduce a simple method of removing certain parameters from the model,

by either setting them to be zero or a pre-specified fixed value, and then estimating

only the remaining unspecified parameters. If we were to instead set parameters to

zero (or fixed values) after estimation, we would sub-optimally lose part of the data

contained in the removed estimate.

To remove a parameter from the model, one simply removes the parameter from

the vector A in Equation (3.3.3) and the corresponding column from the matrix X.

In a similar vein, multiple parameters can be removed by repeating this procedure.
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Ultimately, depending on the number of parameters removed, the matrix X will be

sized 2(K+1)N×p, and the column vector A, will be sized p×1, where p is the number

of free parameters that remain in the model. If p = 8, as presented in Equation (3.3.2),

then this represents the full mesoscale solution. If any parameter values are known

a priori then they should be inserted as fixed values into A and then multiplied by

the corresponding respective columns from X and then subtracted from the vector U ,

before proceeding with the least squares minimisation of Equation (3.3.4) to estimate

remaining parameters.

We now consider the special case of only estimating the mesoscale quantities

{σ, θ, ζ, δ} using the second-moment fitting method discussed in Section 3.3.2. If we

estimate all quantities in {σ, θ, ζ, δ} then p = 4. In contrast, if we remove all mesoscale

parameters such that {σ, θ, ζ, δ} = {0, 0, 0, 0}, then p = 0, and only submesoscale ve-

locities remain in the centre-of-mass frame of Equation (3.2.4). If 0 < p < 4, this

represents scenarios where some mesoscale components from {σ, θ, ζ, δ} are present,

and some are not, and we display this schematically in Figure 3.3.1. We consider

strain rate and strain angle (or equivalently shear and normal strain rates) to be ei-

ther jointly present or both missing. Overall, there are therefore eight possible models

we might consider, shown explicitly in Figure 3.3.1. Regardless of the choice of model,

the remaining non-zero parameters are estimated using Equation (3.3.4) as before.

Figure 3.3.1 also shows that the eight models exist in a hierarchy. The simplest

model, the null hypothesis shown at the top of Figure 3.3.1, corresponds to velocities in

a centre-of-mass frame that are submesoscale only. There are three direct descendants

of this model in the hierarchy, the addition of vorticity or divergence, each of which
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Figure 3.3.1: Hierarchy of mesoscale models using the second-moment fitting method

where p indicates the number of parameters. A model with increased complexity is

used only if it explains significantly more variance than the lower complexity model.

Models with fewer parameters are favoured when a choice must be made.

requires one more parameter, or strain, which requires two additional parameters. The

central philosophy is that a descendent in the hierarchy should only be used if

it shows meaningful improvement in some relevant error metric, essentially

disproving the null hypothesis. Because adding parameters will always produce at

most the same residual (which may itself be the error metric), this approach avoids

using too many degrees-of-freedom and producing meaningless or noisy parameter

estimates.

It is worth noting that estimating all four mesoscale parameters {σ, θ, ζ, δ} at

each time point (as is often done in the literature) would benefit from this conceptual

approach. With K drifters there are 2K position observations at a given time point,

from which 4 parameters must be estimated at each time point. For modestly sized

drifter deployments, this computation runs the risk of producing estimates with no
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statistical significance.

In general, when selecting between the model hierarchies for all 8 mesoscale pa-

rameters {u0, v0, a1, b1, σ, θ, ζ, δ} then we are faced with an increased complexity of

selecting between reduced permutations of the full specification. Motivated by this,

in Section 3.4.3 we will introduce methodology for estimating time-varying parame-

ters using splines, which allows for a natural mechanism from which to build a full

hierarchy of first and second-moment candidate models, as we shall show.

3.3.4 Selecting between hierarchies

We have provided a mixed background-mesoscale-submesoscale modelling framework

in Equation (3.2.2) and a corresponding estimation framework in Section 3.3.1. Then

in Section 3.3.3 we discussed how to estimate parameters using different hierarchies of

mesoscale components in the overall model. The appropriateness of a chosen model

in the hierarchy, for a given set of observational drifter data, can be evaluated by

estimating the error resulting from the fitted model at a given point in time. We

argue there is more than one meaningful way in which error can be computed—and

in this section we shall define two such ways that prove to be very useful in terms of

model evaluation.

Fraction of Variance Unexplained (FVU)

The first method is perhaps the most intuitive. Here we calculate how much vari-

ance remains in the ‘unexplained’ residual submesoscale velocities found in Equa-

tion (3.3.8). This value in itself, however, is not a meaningful quantity unless it is
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presented in reference to some other quantity. Therefore, to provide a normalised and

meaningful metric we introduce the notion of the Fraction of Variance Unexplained

(FVU), which is defined as

FVU =

∑tN
tn=t1

∑K
k=1 {usm

k (tn)2 + vsm
k (tn)2}∑tN

tn=t1

∑K
k=1

{[
d
dt

(xk(tn)−mx(tn))
]2

+
[
d
dt

(yk(tn)−my(tn))
]2} , (3.3.10)

and hence quantifies the proportion of the variability remaining in the submesoscale

model, as compared to velocities that have only had the centre-of-mass removed (and

will hence still contain second-moment mesoscale effects present in Equation (3.2.4)).

The FVU will therefore in general be some value between zero and one. An FVU value

close to one occurs when there is little to no mesoscale component estimated from the

data. In contrast, an FVU value equal to zero means the mesoscale model successfully

explains all variability in the data after the background is removed, and there is no

residual submesoscale process left behind. For mixed mesoscale and submesoscale

flow the FVU will be somewhere between zero and one, and this will vary dependent

on the magnitude and number of mesoscale components present in the model fit.

In Figure 3.3.2, in the left column we display FVU values obtained from our

simulation setup shown in Figure 3.2.1. Specifically, we generate 100 replicated sim-

ulations of each of the four model scenarios shown in Figure 3.2.1—diffusivity only,

strain+diffusivity, strain+vorticity+diffusivity (strain dominated), strain+vorticity+

diffusivity (vorticity dominated)—where the stochasticity between replicates occurs

from simulating submesoscale velocities from a Gaussian white noise process as in

Equation (3.2.9). Again, as in LatMix Site 1, we simulate nine drifters within each
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simulation with matching initial positions, but this time we just simulate half-hourly

records for one day. We use the procedures described in Section 3.3.3 to fit four hi-

erarchies of models to each simulation within each scenario. Note that we perform a

global fit by setting the window length W to be the full length of the observations

(one day). The FVU values are calculated from Equation (3.3.10) and the resulting

spread of values across simulations are shown by box and whisker plots in Figure 3.3.2.

We also provide the spread of observed FVU values in an oracle case where the true

mesoscale parameters are known.

In the figure we have also indicated the estimated theoretical FVU value obtained

by combining the mesoscale variance obtained from Equation (3.2.15) for each drifter

k (let us denote this σ2
wmeso(k)) with the submesoscale variance of a white noise process

given from the spectral form of Equation (3.2.10) yielding σ2
wsm = 4κ(1−1/K), which

is the same for each drifter, where the (1 − 1/K) rescaling is required to account

for moving to a centre-of-mass reference frame. We can then obtain an estimated

theoretical FVU value, which we denote F̃VU, by taking

F̃VU =
σ2
wsm{

1
K

∑K
k=1 σ

2
wmeso(k)

}
+ σ2

wsm

. (3.3.11)

This an estimated theoretical FVU, rather than an exact solution, because we have

ignored the co-dependence between the mesoscale and submesoscale processes and

assumed these variances aggregate separately. The results however indicate remark-

able agreement between theoretical and observed quantities for FVU over all scenarios

(except when insufficient mesoscale parameters are proposed in the candidate model),
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Figure 3.3.2: FVU (left column) and FDU (right column) for candidate models fit-

ted to trajectories generated from the four model scenarios from Figure 3.2.1. Each

subplot here is for a different true model scenario (the y-axis), and each box and

whisker within a subplot provides the spread of FVU/FDU values from a fitted can-

didate model (the x-axis). The final box and whisker in each subplot is using the

true mesoscale parameter values. The spread of results is over 100 repeated simu-

lations using 9 drifters sampled every 30 minutes for one day. The estimated theo-

retical FVU, obtained from Equation (3.3.11), and the estimated theoretical FDU,

obtained from Equation (3.3.13), are overlaid by a red horizontal line in each sub-

plot. Parameters are estimated using the second-moment fitting method, where re-

sults using the first and second-moment fitting method yield near identical results as

u0 = v0 = a1 = b1 = ubg = vbg = 0 in these simulations.
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suggesting Equation (3.3.11) is an accurate approximation for the spatial and tempo-

ral scale of the simulation performed.

Overall, the key finding of Figure 3.3.2 (left column) is that the FVU helps identify

the correct model in all true model scenarios considered, and correctly estimates how

much of the variance is explained by the mesoscale and submesoscale components in

agreement with the theory. The addition of a mesoscale parameter which is truly

present significantly reduces the FVU, but adding further unnecessary mesoscale pa-

rameters (such as the divergence which is not present in any of the scenarios) does

not significantly reduce FVU. This diagnostic tool therefore shows utility as a method

for detecting the presence of mesoscale effects on drifter velocities, and for selecting

between mesoscale model hierarchies. We shall scrutinise this further when we apply

our procedures to LatMix data in Section 3.5.

Fraction of Diffusivity Unexplained (FDU)

The FVU is a measure of how much of the variability of the data remains in the

submesoscale residuals. However, we argue this is not the only metric with which

to ultimately select from a model hierarchy. First of all, as the residual velocities

are being directly minimised (along with the background) in the least squares fits

of Equations (3.3.1)–(3.3.5), the more complex models will generally have a lower

FVU than nested simpler models with fewer or no mesoscale components (as seen

in Figure 3.3.2). This may lead to over-fitting models unless parameter penalisation

methods are introduced. Secondly, mesoscale processes are primarily low frequency

processes with decaying Lagrangian velocity frequency spectra, as we showed in Fig-
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ure 3.2.2. Submesoscale processes, on the other hand, will likely have Lagrangian

velocity frequency spectra that are spread across frequencies and concentrated away

from frequency zero. For example, white noise submesoscale residuals will have a flat

spectrum, and an internal wave process, represented by the Garrett-Munk spectrum

for instance, will have significant energy at the inertial frequency f0, but very small

energy at frequency zero.

For these reasons, we now motivate a second metric with which to evaluate different

model hierarchies. Specifically, we measure the diffusivity of the residual process for

each drifter, and compare this with the implied total diffusivity of each drifter when

no mesoscale is removed. In other words, we compare the variability of the aggregated

and submesoscale-only components in terms of their respective diffusivities, with a

view that submesoscale diffusivity should be much lower than total diffusivity when

even a mild mesoscale component is present (as mesoscale energy is dominant at low

frequencies in the velocity spectra). To quantify this effect we introduce the notion

of the Fraction of Diffusivity Unexplained (FDU), which we define by

FDU =

∑tN
tn=t1

∑K
k=1 κ̂

sm
k,z(tn)∑tN

tn=t1

∑K
k=1 κ̂

c.o.m.
k,z (tn)

, (3.3.12)

where κ̂sm
k,z(tn) has already been defined in Equation (3.3.9). κ̂c.o.m.

k,z (tn) is the diffusivity

for drifter k with only centre-of-mass removed, which is defined by replacing usm
k (t)

with d
dt

(xk(tn)−mx(tn)) and vsm
k (t) with d

dt
(yk(tn)−my(tn)) in Equation (3.3.9).

The FDU measures how much diffusivity is present in the submesoscale residual after

removing the mesoscale, as compared to the diffusivity that is observed relative to
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the centre-of-mass when no mesoscale has been explicitly removed. An FDU value of

zero means that the submesoscale process has no observed diffusivity, and an FDU of

one will occur when either no mesoscale is present, or the mesoscale does not create

any diffusive-type behaviour on the particles.

We display observed FDU values across our simulations in the right column of

Figure 3.3.2, mirroring the simulation setup used for FVU described in Section 3.3.4.

The estimated theoretical FDU values are overlaid by a red horizontal value from

computing

F̃DU =
κsm
z{

1
K

∑K
k=1 κ

meso
k,z

}
+ κsm

z

, (3.3.13)

where the expected submesoscale diffusivity for all drifters is κsm
z = κ(1−1/K) where

again the (1 − 1/K) rescaling is required to account for moving to a centre-of-mass

reference frame. We obtain κmeso
k,z by taking 1/4 of the zero-frequency value from Equa-

tion (3.2.17) (as per the definition of Equation (3.2.8)). Similarly to Equation (3.3.11),

Equation (3.3.13) is an estimated theoretical FDU because we are assuming indepen-

dent dispersion caused by the mesoscale and submesoscale. Nevertheless, Figure 3.3.2

indicates consistent agreement between observed and theoretical FDU values (when

the correct model is fitted), highlighting the accuracy of this approximation.

The main finding of the FDU analysis in Figure 3.3.2 is that the mesoscale explains

significantly more of the total diffusivity than the total variance. This is as expected

because of the low-frequency nature of mesoscale processes (see Figure 3.2.2) and

highlights the usefulness of computing FDU values to test for mesoscale presence. In
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all cases we can see that FDU analysis reveals the correct generating mesoscale model

even better than FVU does. We shall further use this diagnostic method of assessing

model fits with LatMix data in Section 3.5.

3.4 Uncertainty Quantification and Capturing Tem-

poral Evolution

3.4.1 Uncertainty Quantification

We now provide a method for estimating the uncertainty of parameter estimates when

applied to observational datasets. In a simulation setting, uncertainty estimates can

be obtained by repeating experiments several times stochastically or with different

initial conditions, but this cannot be done in the real world where clustered drifter

deployments are scarcely repeated in the same region of the ocean, and will likely be

measuring different mesoscale and submesoscale features each time.

Instead, we resort to the bootstrap, which resamples the observed data in such a

way as to provide a population of different datasets with which to measure uncertainty.

Specifically, the bootstrap is implemented by taking a random sample ofK trajectories

from the K drifters with replacement, such that the same trajectories may be selected

multiple times as if they were different drifters. Then the mesoscale parameters are

estimated for this random sample of trajectories. Let us denote any one of these

parameter estimates as p̂b. The process is then repeated B times, every time randomly

resampling a set of K trajectories with replacement, such that we obtain B parameter
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estimates {p̂1, . . . , p̂B}. These replicated bootstraps can be used to form quantiles

which then provide confidence intervals for the parameter of interest, often set to

values such as 90% or 95%. Alternatively, we can also estimate the standard error

of p̂, the parameter estimate for p, by measuring the sample standard deviation of p̂b

given by

SEB(p̂) =

[
1

B − 1

B∑
i=1

{
p̂(i)− p̂(·)

}2

]1/2

, (3.4.1)

where p̂(·) = 1
B

∑B
i=1 p̂(i).

In Figure 3.4.1 we show a histogram of bootstrap parameter estimates for {σ, θ, ζ},

with a red vertical line at the true value, and a blue vertical line showing the average

bootstrap estimate. The purpose of this simulation is simply to show that bootstrap

parameter estimates are centred at their true values and symmetrically distributed,

despite the fact that drifter trajectories are sampled with replacement. We found

this to be a consistent feature across different true parameter values and simulation

settings.

Next we establish that the bootstrap estimate for the standard error of param-

eter estimates, given in Equation (3.4.1), agrees with standard errors of parameter

estimates observed from repeated simulations. In Table 3.4.1 we compare simulated

and bootstrap standard errors for two experiments: the strain-only and the strain-

dominated simulations of Figure 3.2.1. The standard errors from simulations are

across 100 repeated simulations, but the bootstrap standard error approximation is

just from 1 simulation of drifters each time (as we would have with real data). Despite
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Figure 3.4.1: Histogram of bootstrap parameter estimates for strain rate, strain angle,

and vorticity, over 100 repeated simulations where B = 100 for each simulation, thus

obtaining 10,000 total bootstrapped parameter values. The trajectories are generated

as in Figure 3.2.1 in the strain-dominated model for 1 day, and the parameters are

estimated using the second-moment fitting method. Any bootstrap estimates outside

the range of the x-axis are placed in the limiting visible bar in the histogram on each

side. The red vertical line is the true parameter value, and the blue vertical line is

the average bootstrap estimate.
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σ (s−1)× 106 θ (◦) ζ(s−1)× 106

Strain-only Simulation

Simulated 1.17 6.68 N/A

Bootstrap 1.32± 0.365 6.29± 2.47 N/A

Strain-dominated Simulation

Simulated 1.22 6.78 1.61

Bootstrap 1.55± 0.459 8.08± 3.43 1.94± 0.572

Table 3.4.1: Observed standard errors from simulation, and average bootstrap stan-

dard error estimates from Equation (3.4.1) (where B = 100), over 100 repeated simu-

lations, for both the strain-only and strain-dominated simulations of Figure 3.2.1 over

1 day. We also provide the standard deviation of bootstrap standard error estimates

across the 100 simulations, as indicated after the ± symbol.

this, the average bootstrap standard error estimate is very close to the standard error

from repeated simulations (with the standard deviation of the bootstrap standard

error accounting for any difference). Notice also that the bootstrap standard error

estimates are usually conservative, which is better than the converse, and correctly

increase when more parameters need to be estimated. This demonstrates the accuracy

of Equation (3.4.1) in estimating the standard error of parameter estimates obtained

from Equation (3.3.4). We will make use of the bootstrap in the analysis of LatMix

data in Section 3.5.
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3.4.2 Time-evolving parameters using rolling windows

To estimate the temporal evolution of mesoscale features across a drifter deployment

we allow the mesoscale parameters to evolve over time. In this section we first intro-

duce a simple method for doing so where we use a rolling time window of width W

and estimate the parameters {u0(tn), v0(tn), a1(tn), b1(tn), δ(tn), ζ(tn), σn(tn), σs(tn)}

in Equation (3.3.3) over time using velocity observations contained in the interval

[ d
dt
xk(tn− W

2
), d
dt
xk(tn+ W

2
)] and [ d

dt
yk(tn− W

2
), d
dt
yk(tn+ W

2
)] using the same approach

outlined in Section 3.3.1, repeated at every observation time-step tn in the experiment.

In general, the window width parameter W should be chosen to be large enough

to ensure we have reduced variance and statistically significant estimates of each

mesoscale parameter, but not so large that resolution is lost from over-smoothing.

To examine this effect we display simulated trajectories in Figure 3.4.2 which exactly

follows the strain-only simulation from Figure 3.2.1, except that the strain rate pa-

rameter now decreases linearly by a factor of 10 across the length of the 6.25 day

simulation, and we have increased κ to 0.5m2/s. We then use the second-moment

fitting method with the strain-only model over rolling windows with 3 choices of W

(6-hours, 1-day, or 3-days). In Figure 3.4.3 we display the time-varying strain rate

estimate over time from the data in Figure 3.4.2, alongside the standard error of this

estimate over time (obtained over 100 repeated simulations). With this increased

diffusivity, the inherent trade-off with the rolling-window method becomes apparent.

Long window lengths provide low uncertainty, but the parameter estimates are only

provided in the temporal centre of the experiment (and would be biased if extended
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Figure 3.4.2: Simulation of 9 drifters using the identical configuration of Figure 3.2.1

(strain only) except that the strain rate changes linearly across time from σ = 1 ×

10−5/s to σ = 1× 10−6/s and κ = 0.5m2/s. The left panel displays drifter positions.

The right panel displays drifter positions with respect to their centre-of-mass. The

quiver arrows indicate the velocity field at the beginning of the simulation.

outwards). Short windows, on the other hand, provide variable estimates with large

standard errors that exceed half the parameter value, as we see on the right panel—

meaning such estimates cannot be statistically distinguished from zero in a “ two

sigma” sense. A daily window length is perhaps the most appropriate balance here.

Motivated by these challenges, we shall shortly provide a more principled approach

to generating smoothly-evolving parameter estimates using splines in Section 3.4.3.

Before doing so, we present results of a large simulation analysis which we will use

to guide our window length selection choices in the LatMix experiment. Specifically,

in Figure 3.4.4 we plot a heatmap of standard errors in strain rate estimation, over

a grid of values of true constant strain rate, σ, and estimation window length, W .

We repeat the analysis for a low diffusivity κ = 0.1 m2/s and high diffusivity setting

κ = 1 m2/s. Otherwise the settings are the LatMix-type settings used in Figure 3.2.1,

using 9 drifter trajectories with matching starting locations. The standard errors are
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Figure 3.4.3: The left panel shows rolling-time window estimates of the varying strain

rate from the data presented in Figure 3.4.2 over 3 choices of window lengths using

the second-moment fitting method. The right panel shows the standard error of these

time-varying estimates over 100 repeated simulations, plotted against the true value

of σ/2.

in units of the true strain rate, and we have marked with a red line the point at which

the standard error is approximately equal to half the true strain rate. The way in

which this plot should be interpreted is that for a given strain rate (and diffusivity),

the window length should be at least as long as the red line marking the point at

which estimates become statistically significant. For example, higher diffusivities, or

lower strain rates, will require longer windows with which to estimate the parameters

significantly. We focus on strain in these simulations, as this was found to be the most

pronounced mesoscale effect in the LatMix analysis that follows, but this analysis

could be repeated with other mesoscale parameters to inform window length selection

for other drifter deployments. In Chapter 4 we perform a sensitivity analysis of these

results for varying numbers of drifters and initial deployment configurations, to help

generalise our findings to wider settings.
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Figure 3.4.4: Estimated standard errors for the strain rate (in the units of the true

strain rate) across a dense grid of fixed strain rate values σ and window lengths W

in a strain-only simulation mirroring the setup in Figure 3.2.1. In the left panel we

have set κ = 0.1 m2/s and in the right κ = 1 m2/s. The strain rate estimates are

obtained using the second-moment fitting method of a strain-only model, and the

standard errors are obtained over 100 repeated simulations. The standard errors in

the heatmap are upper-bounded by 0.9 for representation purposes. We draw a red

line where the standard error is approximated to be half the true parameter value for

each value of the strain rate.
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3.4.3 Slowly-evolving parameters using splines

To generalise the idea of time windowing to estimate the mesoscale parameters, we

represent the parameters as coefficients as a finite sum of B-splines,

σ(t) =
M∑
m=1

σ̂mBm(t), (3.4.2)

where M is the total number splines over the experiment window and σ̂m are the M

coefficients. A B-spline (or basis spline) of degree D is a local piecewise polynomial

that maintains nonzero continuity across D knot points placed at times τi. These

knot points define the extent of the B-splines, and therefore let us choose an effective

window length for parameter fluctuations. The lowest degree (D = 0) splines are

boxcar functions between the knot points, and are thus identical to non-overlapping

windows in Section 3.4.2. At degree D = 1, B-splines are triangle functions that span

two knot points, thus providing continuity in time as well as a piecewise first derivative.

This generalises to higher degrees, where a B-spline of degree D has D non-zero

derivatives, as reviewed in Early and Sykulski (2020). The key benefit to this approach

is that we can allow for time variation in the parameters while simultaneously choosing

an effective window length—all while adding only a few coefficients to the model.

To extend the estimation method presented in Section 3.3.1, we now require M

coefficients for each of the p parameters, resulting in pM total coefficients to estimate.

Rewriting vector A from Equation (3.3.3) we have that
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A =



um0

vm0

σmn

σms

ζm

δm


︸ ︷︷ ︸
pM×1

, (3.4.3)

where each coefficient, e.g. um0 , is a column vector of the M B-spline coefficients

(we will shortly discuss why a1 and b1 can be dropped here). The data matrix X

correspondingly expands from p to pM columns,

X =
1

2



0KN 0KN x̃k(tn)Bm(tn) ỹk(tn)Bm(tn) −ỹk(tn)Bm(tn) x̃k(tn)Bm(tn)

0KN 0KN −ỹk(tn)Bm(tn) x̃k(tn)Bm(tn) x̃k(tn)Bm(tn) ỹk(tn)Bm(tn)

2Bm(tn) 0N m̄x(tn)Bm(tn) m̄y(tn)Bm(tn) −m̄y(tn)Bm(tn) m̄x(tn)Bm(tn)

0N 2Bm(tn) −m̄y(tn)Bm(tn) m̄x(tn)Bm(tn) m̄x(tn)Bm(tn) m̄y(tn)Bm(tn)


︸ ︷︷ ︸

2(K+1)N×pM

,

(3.4.4)

where each column is repeated for each of the M B-splines. Note that, because the

B-splines are local functions, the resulting matrix may be relatively sparse.

Parameter estimation is as before, but Equation (3.3.6) for the mesoscale flow is

replaced by,
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p First and second-moment fitting method model hierarchy

4M

5M

6M

2M

3M
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Figure 3.4.5: Hierarchy of first and second-moment mesoscale models where p indi-

cates the number of parameters. A model with increased complexity is used only if

it explains significantly more variance than the lower complexity model. Models with

fewer parameters are favoured when a choice must be made.

umeso
k (tn)

vmeso
k (tn)

 ≡ M∑
m=1

um0 Bm(tn)

vm0 B
m(tn)

+
1

2

σmn + δm σms − ζm

σms + ζm δm − σmn


(xk(tn)− x0)Bm(tn)

(yk(tn)− y0)Bm(tn)

 .
(3.4.5)

The background flow and submesoscale flow are still recovered using Equations (3.3.7)

and (3.3.8), respectively.

One of the advantages of using B-splines is that the model hierarchy is simplified.

Figure 3.4.5 shows the complete model hierarchy that includes the first and second-

moment fitting method, unlike Figure 3.3.1 which only showed the hierarchy for the

second-moment fitting method. The key simplification is that with B-splines we can

drop (a1, b1) from X when going from Equation (3.3.3) to (3.4.4), since time depen-

dence is encoded in the B-spline estimates for (u0, v0). Choosing the appropriate model
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from Figure 3.4.5 proceeds exactly as in Section 3.3.3, but with the additional caveat

that one must choose the spline degree D and the number of splines M . With the re-

striction that the spline degree D < M , a reasonable upper bound is D = 3, the cubic

spline. The number of splinesM can be chosen by assuming a minimum window length

(as discussed in Section 3.4.2), treating the centre of each window as a data point, and

then applying the formula for the canonical interpolating spline in Early and Sykulski

(2020). To compute this explicitly, assume a time series of length T , with minimum

window length W , then this results in a total of M = max(bT/W c, 1) evenly sized

windows of minimum length. Now apply Equations (7) and (8) in Early and Sykulski

(2020) using pseudo points at {t1, t1 + T/M(j − 1/2), tN} where j = 2, . . . ,M − 1.

When the drifters are evenly sampled in time, this will result in M splines that each

have support from the same number of data points, and each data point will intersect

D + 1 splines. As a result, there is really only one parameter to adjust: the effective

window length or, alternatively, the number of splines M . Because setting M = 1

exactly reproduces the approach in Section 3.3.1 using fixed parameters, the freedom

for parameters to vary over time can be systematically increased by increasing M .

Quantifying uncertainty with spline solutions requires a modification to the ap-

proach in Section 3.4.1. This is because the resulting bootstrapped parameter esti-

mates are no longer pointwise estimates of each parameter, but rather time-varying

global solutions. This means that computing the mean of each mesoscale parameter

at each instant in time will not, in general, result in a valid solution since each solution

is a global fit to the data. As a result, rather than considering a mean value from

bootstrap solutions, as in Figure 3.4.1, we must establish the most likely bootstrap
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solution. Applying the bootstrap B times results in B continuous time varying model

solutions of the parameters. Thus, we compute the most likely solution (of the B

solutions) from an estimated joint probability distribution function (PDF). Specifi-

cally, for each estimated parameter in the model, we use a kernel density estimator

to estimate a PDF from the bootstrap replicates for each parameter at each point

in time using the methodology in Botev et al. (2010). For example, at time tn we

estimate a one-dimensional PDF P̂ζ(tn, ζ̂) using the B bootstrap parameter estimates

for ζ and a two-dimensional PDF P̂σn,σs(tn, σ̂n
b(tn), σ̂s

b(tn)) for σn, σs. The likelihood

of each path is then found with

L(σ̂n
b, σ̂s

b, ζ̂b) =
N∏
n=1

P̂σn,σs(tn, σ̂n
b(tn), σ̂s

b(tn)) · P̂ζ(tn, ζ̂b(tn)), (3.4.6)

where, in practice, we include probabilities from all estimated parameters. The most

likely solution is that with maximum L, where confidence intervals are similarly cal-

culated by including the Y percent of the B most likely solutions.

3.5 Application to the LatMix Experiment

The lateral mixing (LatMix) field campaign of 2011 (Shcherbina et al., 2015; Sun-

dermeyer et al., 2020) deployed drifters and dye with the aim of understanding what

causes mixing at the submesoscale, and how this varies both spatially and temporally.

The experiment consisted of two drifter deployments in the Sargasso Sea, where the

drifters were deployed in a cluster. The first deployment, which we refer to as ‘Site

1’, consisted of 9 drifters tracked for 6.1 days in an area of low strain, and the second
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deployment, ‘Site 2’, consisted of 8 drifters tracked for 6.3 days in an area of moderate

strain. There has been a large amount of interest and research from the experiment,

e.g. Shcherbina et al. (2013).

In Figure 3.5.1 we plot the drifter trajectories for each site both in terms of

their {x, y} positions, but also with respect to the time-varying centre-of-mass across

drifters. The effect of the mesoscale, especially strain, can already be seen visually by

inspecting this plot, both in the absolute and centre-of-mass reference frames. There

are also possible signs of divergence in Site 1 (the drifters spreading in a non-random

way), and vorticity in Site 2. We will now inspect this in more rigorous statistical

detail using the methodology of this Chapter.

3.5.1 Fixed mesoscale parameter estimates

We first fit fixed (i.e. non-time-varying) mesoscale parameters to Equation (3.2.4)

at each site using the second-moment fitting method described in Section 3.3. We

present the results in the top half of Table 3.5.1 using several model hierarchies. For

each model hierarchy we present the estimated mesoscale quantities, and the resulting

submesoscale diffusivity. We also present FVU and FDU values (Equations (3.3.10)

and (3.3.12) respectively) to assess model fit, where we remind the reader that lower

values correspond to model fits with reduced error. To select the best model we use

the conceptual approach illustrated earlier in Figure 3.3.1.

For Site 1 we see reasonable evidence for adding the parameters {σ, θ} ahead of

vorticity ζ or divergence δ, as this creates the lowest FDU values thereby creating

low submesoscale diffusivities of κ ≈ 0.2m2/s, as reported in Shcherbina et al. (2015).
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Figure 3.5.1: LatMix trajectories of Site 1 (9 drifters) and Site 2 (8 drifters). Top

row are the positions in {xk(t), yk(t)}, bottom row are relative to centre-of-mass

{x̃k(t), ỹk(t)} = {xk(t) − 1
K

∑K
k=1 xk(t), yk(t) −

1
K

∑K
k=1 yk(t)}. The black and red

star in the top row of plots indicate the respective starting and ending centre-of-mass

positions. {0, 0} in the {x, y} components corresponds to {−73.0234, 31.7424} degrees

longitude-latitude for Site 1 and {−73.6776, 32.2349} degrees longitude-latitude for

Site 2.
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Next, we follow the hierarchy and consider adding vorticity or divergence to the strain.

Here we see little evidence for vorticity, but some for divergence, with a marginal

reduction in the FDU value for the latter. Finally, just for completion, we show the

full hierarchy. While this full hierarchy will always yield the lowest FVU compared

to all simpler models (as this is the objective function being minimised)—the FVU

value does not appear to drop significantly, and the FDU value has in fact increased,

suggesting this to be an overfitted choice if we are only selecting among fixed mesoscale

parameters.

For Site 2 we see mixed evidence for either initially adding divergence or strain,

but the vorticity-only fit performs poorly and in fact adds diffusivity as compared to

raw centre-of-mass velocities. As divergence is only one parameter (vs two for strain),

we would normally proceed this way down the hierarchy using Figure 3.3.1. However,

as we shall see when we account for time-variation in the mesoscale parameters, there

will be more evidence for a strain-only model than a divergence-only model, therefore

for comparison we follow this route down the hierarchy. When considering adding

vorticity or divergence, then now there is interestingly more evidence for vorticity,

with reduced FVU and FDU values. Overall however, we note that diffusivity values

are much larger at Site 2 using fixed parameters, with κ ≈ 2m2/s. This is likely due

to the presence of time-varying mesoscale features not being account for, as we shall

now explore.
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Fixed estimates (Site 1)

model σ (f0) θ (◦) ζ (f0) δ (f0) κ (m2/s) FVU FDU

{ζ} 0 0 -0.000137 0 0.974 1.000 1.001

{δ} 0 0 0 0.0493 0.361 0.983 0.371

{σ, θ} 0.0591 -27.8 0 0 0.188 0.976 0.193

{σ, θ, ζ} 0.0785 -15.3 -0.0443 0 0.229 0.971 0.235

{σ, θ, δ} 0.0489 -25.6 0 0.0137 0.174 0.976 0.179

{σ, θ, ζ, δ} 0.0711 -12.2 -0.0443 0.0137 0.216 0.971 0.221

Fixed estimates (Site 2)

model σ (f0) θ (◦) ζ (f0) δ (f0) κ (m2/s) FVU FDU

{ζ} 0 0 0.00613 0 4.011 0.999 1.000

{δ} 0 0 0 0.0125 1.886 0.997 0.470

{σ, θ} 0.0131 -67.0 0 0 1.906 0.996 0.475

{σ, θ, ζ} 0.0642 78.0 0.0650 0 1.950 0.985 0.486

{σ, θ, δ} 0.0107 -67.9 0 0.00258 1.874 0.996 0.467

{σ, θ, ζ, δ} 0.0637 77.0 0.0650 0.00258 1.919 0.985 0.478

Table 3.5.1: LatMix submesoscale diffusivity estimates and associated FVU and FDU,

estimated over candidate models in the hierarchy at each site using fixed parameter

estimates. For fixed estimates we also show the mesoscale parameter estimates (scaled

by the inertial frequency, f0). The fixed method uses the second-moment fitting

methods.
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Rolling estimates (Site 1) Rolling estimates (Site 2)

model κ (m2/s) FVU FDU κ (m2/s) FVU FDU

{ζ} 0.995 0.992 1.022 2.924 0.872 0.729

{δ} 0.325 0.974 0.334 2.341 0.838 0.584

{σ, θ} 0.183 0.961 0.188 1.680 0.710 0.419

{σ, θ, ζ} 0.282 0.937 0.290 0.825 0.675 0.206

{σ, θ, δ} 0.147 0.966 0.151 1.753 0.704 0.437

{σ, θ, ζ, δ} 0.248 0.941 0.255 0.722 0.669 0.180

Spline estimates (Site 1) Spline estimates (Site 2)

model κ (m2/s) FVU FDU κ (m2/s) FVU FDU

{ζ} 1.742 1.025 1.791 3.059 0.973 0.697

{δ} 0.342 0.983 0.352 3.438 0.831 0.783

{σ, θ} 0.178 0.976 0.183 2.118 0.837 0.483

{σ, θ, ζ} 1.433 0.997 1.473 1.041 0.808 0.237

{σ, θ, δ} 0.159 0.974 0.163 2.501 0.783 0.570

{σ, θ, ζ, δ} 1.446 0.996 1.487 1.466 0.770 0.334

Table 3.5.2: LatMix submesoscale diffusivity estimates and associated FVU and FDU,

estimated over candidate models in the hierarchy at each site using either rolling

window, or spline parameter estimates. The rolling-window method uses the second-

moment fitting methods, whereas the spline method uses the first and second-moment

fitting method.
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3.5.2 Time-evolving parameters using rolling windows

We now apply the rolling-window estimates using the second-moment fitting method,

as discussed in Section 3.4.2. To pick a suitable window length W , we see from

Table 3.5.1 that diffusivity scales as order 0.1 − 1 m2/s, and the strain rate when

converted to days is approximately 1/3 days. Therefore, using Figure 3.4.4 as a guide

we choose a window length of W = 1 day (corresponding to 49 observations over 30-

minute sampling intervals for each drifter). This choice also coincides approximately

with the inertial and diurnal periods meaning inertial oscillations and tides will be

relatively close to zero mean within the window, thus being closer to satisfying the

zero-mean assumption of the average submesoscale residuals across drifters made in

Equations (3.2.2)–(3.2.4).

Within Table 3.5.2 we provide the estimated submesoscale diffusivity, and FVU

and FDU error metrics, using rolling one-day windowed mesoscale parameter esti-

mates for each hierarchy. As expected, the FVU decreases everywhere (as more pa-

rameters are being fitted) in comparison to the fixed-parameter fits. The FDU values,

on the other hand, decrease in some but not all cases, providing mixed evidence for

time-variation. We notice the reductions in FVU and FDU are most pronounced

for Site 2, indicating this is the site most likely to have a time-evolving mesoscale.

Overall, there is now evidence for a time-varying strain-vorticity model. Including

divergence is now a less favourable choice than with the earlier analysis with fixed

estimates.

In Figure 3.5.2 we display some examples of the time-varying parameter estimates
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Figure 3.5.2: Fixed (red) and time-varying (blue) parameter estimates, where the

latter are generated with a one-day rolling window using the second-moment fit-

ting method. Top-Left: strain rate estimates with the strain-only model (Site 1).

Top-Right: strain rate estimates with the strain-only model (Site 2). Bottom-Left:

strain rate estimates with the strain-vorticity model (Site 2). Bottom-Right: vortic-

ity estimates with the strain-vorticity model (Site 2). 100 bootstrapped time-varying

trajectories are shown in grey in each subplot.
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using this approach. In the top panels we show the strain rate over time at each

respective site using a strain-only model, where the evidence for temporal evolution

at Site 2 is clear. We overlay bootstrap trajectories of these time series (as well as

the fixed parameter estimates from Table 3.5.1) which indicates this variation appears

significant at Site 2, but largely not at Site 1. Also, the low values for strain rate

of ≈ 0.01f0 in the fixed-parameter estimate appears to be a misfit due to model

misspecification from not allowing time-variation. The values for the strain rate are

now larger at Site 2 than at Site 1 when allowing time evolution, as expected. In

the bottom panels we show the time-varying strain rate and vorticity estimates using

a strain-vorticity model. Again there is evidence for time-variation which we will

explore further with spline fitting.

Although the parameter estimates obtained using rolling windows are overfitted

and not slowly varying, these fits however provide an extremely useful lower bound, in

terms of interpreting estimated submesoscale diffusivities and FVU/FDU values. This

will help guide the implementation for modelling time-variation more smoothly using

significantly fewer parameters in the spline methodology that follows. In contrast, the

fixed parameter estimates provide a useful upper bound on diffusivities and FVU/FDU

values, as this approach is the most parsimonious.

3.5.3 Slowly-evolving parameters using splines

We continue our analysis of the LatMix data by fitting time-evolving mesoscale pa-

rameters using the splines approach defined in Section 3.4.3. We will use the full first

and second-moment fitting method allowing us to make a complete decomposition of
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the flow at both sites into background, mesoscale, and submesoscale components.

First, in Figure 3.5.3 we compare estimates of strain rate between the second-

moment and the first and second-moment fitting methods during the first two days

of the LatMix Site 1 experiment. This particular window has relatively low strain

rates that may not be distinguishable from zero, as seen in the top-left panel of

Figure 3.5.2. Using the bootstrap estimates and a kernel density estimator, the left

panel of Figure 3.5.3 shows the distribution of strain rates using the second-moment

fitting method. While the peak of the distribution is consistent with the strain rate

estimated over the entire six day experiment, the 90% contour of the distribution

includes an enormous range of strain rates, including zero. In contrast, by including

the first-moment as part of the fitting method, the right-panel of Figure 3.5.3 shows

a narrower range of strain rates that do not include zero. Thus, at least in this

example, the combined first and second-moment fitting method provides more robust

estimation than the second-moment fitting method by including extra information in

the fit.

In Figure 3.5.4 we display the time-evolving parameter estimates at Sites 1 and

2 using a strain-only and strain-vorticity model respectively. We overlay confidence

intervals obtained using the bootstrap procedure outlined in Section 3.4.3. The time

evolution of the strain-vorticity parameters is clear at Site 2, where all 3 mesoscale

parameters {σ, θ, ζ} are seen to change in a smooth fashion across the 6 days. In

contrast, at Site 1, evidence of time variability for the strain rate is less clear, as

the estimate of constant strain rate (dashed-line) fits entirely within the confidence

intervals. Figure 3.5.4 also shows estimates of {u0, v0}, but their particular values
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Figure 3.5.3: Distribution of strain rate parameters estimated for the first two days

of the LatMix experiment at Site 1. Contours indicate the percentage of samples

enclosed. The left panel shows estimated strain rate parameters using only the second-

moment fitting method, where the right panel shows estimates using the first and

second-moment fitting method.

are not directly interpretable, as they depend on the location of the expansion point,

{x0, y0}. Instead, from Equation (3.2.3), it can be seen that they contribute to the

mesoscale description of the flow at the location of the centre-of-mass.

We include the submesoscale diffusivity estimates, as well as FVU and FDU values,

in the bottom portion of Table 3.5.2, along with comparison values from a hierarchy

of models at each site. What we observe is quite remarkable: we can achieve FVU

and FDU values that are very close to the rolling window estimates, despite using

significantly fewer parameters to describe the evolution of the mesoscale velocity field.

The evidence from Table 3.5.2 continues to support the choice of a strain model at

Site 1 (with minor evidence for the additional presence of divergence), and a strain-

vorticity model at Site 2. The estimated submesoscale diffusivities after performing

the fits are around κ = 0.2 m2/s at Site 1 and κ = 1.0 m2/s at Site 2, nearly an
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Figure 3.5.4: Parameters of the spline based strain model fits to Site 1 (left panel) and

strain-vorticity model fits to Site 2 (right panel) using the first and second-moment

fitting method. The most likely solution is highlighted, with 90% and 68% most

likely solutions shown in grey and dark grey, respectively. The models are fit using

four degrees of freedom per parameter with the splines shown in the bottom row.

order-of-magnitude difference.

Finally, we complete our analysis of the LatMix data by using the spline fits of

Figure 3.5.4 to decompose the flow into the three components of our conceptual model

of Equation (3.2.1)—background, mesoscale, and submesoscale—and then integrate

over time to construct an implied set of drifter trajectories for each component. This

is displayed in Figures 3.5.5 and 3.5.6 for Site 1 and Site 2 respectively. We have also

included the mesoscale component in centre-of-mass coordinates. We observe that the

mesoscale components meander in the fixed reference frame and follow the observed



CHAPTER 3. SEPARATING MESOSCALE AND SUBMESOSCALE FLOWS 107

0 5 10 15

km

5

10

15

20

25

30

35

k
m

meso

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

km

-1.5

-1

-0.5

0

0.5

1

1.5

2

k
m

meso (centre-of-mass)

-1

-0.5

0

0.5

k
m

bg

-1 -0.5 0 0.5 1

km

-1

-0.5

0

0.5

k
m

sm

Figure 3.5.5: Decomposition of the flow at LatMix Site 1 using the strain-only model

fitted with splines using the first and second-moment fitting method. The left panel

shows the the mesoscale solution in the fixed coordinate reference frame (compare to

the upper-left panel of Figure 3.5.1). The centre panel shows the same solution in the

centre-of-mass frame (compare to the lower-left panel of Figure 3.5.1). The top-right

and bottom-right panels show the path-integrated background and submesoscale flow,

respectively.

particle paths explaining most of their displacement and explain some of the spreading

in the centre-of-mass frame. This can be seen by directly comparing Figures 3.5.5

and 3.5.6 with Figure 3.5.1. The submesoscale components are random-walk like and

broadly resemble a diffusive process. The background components contain inertial

oscillations and tides which create looping trajectories with roughly daily periodicity.

Figure 3.5.7 shows the Lagrangian spectra of the background flow, the mean

(across drifters) of the mesoscale flow, and the mean (across drifters) of the subme-

soscale flow, for Sites 1 and 2 respectively. A number of features standout in Figure

3.5.7. The Coriolis frequency is almost exactly the diurnal frequency at this latitude,
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Figure 3.5.6: Same as Figure 3.5.5, but for LatMix Site 2 using the strain-vorticity

model. The mesoscale solution in fixed frame can be compared to the upper-right

panel of Figure 3.5.1), and the mesoscale solution in centre-of-mass frame can be

compared to the lower-right panel of Figure 3.5.1

and this has the effect of creating a relatively substantial peak of energy on the anti-

cyclonic side of the spectrum of the background flow at Site 1, with no corresponding

peak on the cyclonic side. This means that the oscillation is anticyclonic and nearly

circular. Furthermore, the semi-diurnal tide appears primarily on the cyclonic side,

although with some energy on the anticyclonic side. The background flow at Site 2

shows significantly more power, especially at lower frequencies and also has a strong

inertial signal. The mesoscale flow at Site 2 is much stronger than Site 1, as expected.

If the drifters were governed by the stochastic model given with Equation (3.2.9),

then removing the effects of the strain in centre-of-mass coordinates would reveal a

submesoscale signal given by increments of the Wiener process. The Lagrangian power

spectrum would show a (flat) white noise process. However, Figure 3.5.7 shows that

the submesoscale spectra from both Site 1 and 2 have significantly more structure.
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Figure 3.5.7: The top and bottom panels show the power spectra of the decomposed

flow for Sites 1 and 2, respectively. The spectra shown are the spatially homogeneous

background flow ubg (black), the average of the mesoscale component of the flow umeso

(blue), and the average of the submesoscale component usm (magenta). Anticyclonic

oscillations are indicated by negative frequencies and cyclonic oscillations by posi-

tive frequencies. The vertical lines indicate the semi-diurnal tidal frequency and the

inertial frequency on the positive and negative side, respectively.
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The spectra are characterised by low power at sub-inertial frequencies, roughly an

order of magnitude more power on the anticyclonic side than the cyclonic side at near

inertial frequencies, and a decay of power at higher frequencies.

3.6 Discussion and Conclusion

The separation in Equation (3.2.1) is a compelling conceptual model, based on the

ideas of non-local spreading in turbulence theory—but is the separation actually doing

something useful in practice? This idea can be tested by considering the cross-terms

in the total energy of the model, as was done in Lelong et al. (2020). Specifically, the

cross terms in the kinetic energy equation,

u2
total = u2

bg + u2
meso + u2

sm + 2 (ubgumeso + umesousm + ubgusm) , (3.6.1)

should remain small if this is truly an orthogonal linear decomposition. To assess this

quantity we compute the coherence between the complex submesoscale signal and

the complex mesoscale signal in the centre-of-mass frame, as shown in Figure 3.6.1.

The results show remarkably low coherence (O(0.1)) at Site 1, across all frequencies,

suggesting no relation between the two signals. In contrast, Site 2 does show more

coherence between the two signals, likely reflecting the challenges of the separation in

time-varying conditions. Despite this, the average coherence across frequency bands

is ≈ 0.2, suggesting the decomposition is successfully separating two mostly distinct

signals. The validity of this separation can be made precise using the methodology

that unambiguously separates waves and geostrophic motions at each instant in time
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Figure 3.6.1: Coherence between the mesoscale signal in the centre-of-mass frame

and the submesoscale signal at Site 1 and Site 2, using the disentangled velocities

corresponding to the trajectories shown in Figures 3.5.5 and 3.5.6 respectively.

in an Eulerian reference frame (Early et al., 2021).

One of the key strengths of this methodology is how few parameters are needed

to estimate the mesoscale parameters and perform the decomposition. For example,

at Site 1 there are N = 294 observations of position from K = 9 drifters, resulting

in 2NK degrees-of-freedom. The second-moment fitting method uses 2N degrees-of-

freedom to remove the centre-of-mass. Using a single window across the entire time

series to estimate the 2 parameters in the strain model, such as Site 1 which is well

described by a single set of strain rate parameters across the entire window, leaves

2N(K−1)−2 degrees-of-freedom to describe the submesoscale flow. In contrast, daily

rolling windows with NW = 49 points (corresponding to one day) that estimate strain

rate parameters at each of the N − NW time points, leaves only 2N(K − 2) + 2NW

degrees-of-freedom to describe the submesoscale flow. As is evident in Figure 3.5.2,

these extra degrees of freedom capture time-variability in the parameters that may not
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be appropriate. Finally, the spline fits require estimating M coefficients per mesoscale

parameter, and thus the spline based time-varying fits leave 2N(K−1)−2M degrees-

of-freedom to describe the submesoscale flow using the second-moment fits. With

M = 4 sufficient to capture any time variability at Sites 1 and 2, this approach uses

remarkably few parameters to perform this estimation. The benefit of which is that

the decomposed submesoscale trajectory will contain rich statistical information with

which to do further Lagrangian analysis.

As discussed in the introduction, we view this works as complementary to that

of Gonçalves et al. (2019); Lodise et al. (2020) who recently developed a method for

projecting clustered drifter trajectories to local Eulerian velocity fields using Gaus-

sian Process regression. The ultimate goal of Lodise et al. (2020) was to compute

horizontal velocity gradients with which to better understand vertical transport. The

method was applied to the CALYPSO an LASER drifter deployments. Applying our

method to these datasets is a natural avenue for further investigation. More broadly

speaking, what our method provides to complement Gonçalves et al. (2019); Lodise

et al. (2020), is not the Eulerian velocity field, but rather the Lagrangian decom-

position of the trajectories into various components. This allows us to extract the

specific submesoscale component from the trajectory for further analysis within the

Lagrangian setting. This allows for the estimation of submesoscale diffusivity, which

is not a topic covered in Gonçalves et al. (2019); Lodise et al. (2020). However, there

is certainly scope to merge and compare our methodologies, particular because the

constructed Eulerian velocity field can be directly compared with the mesoscale pa-

rameters we estimate locally over time (and hence space) using our slowly-evolving
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spline fits. Again, this is certainly a topic that warrants further investigation. We

also see potential for our work to naturally follow-on from the recent methodology

developed in Vieira et al. (2020) who identify clusters of drifter trajectories that share

coherent structures. For example, such clustering could be used to divide larger de-

ployments into smaller clusters, after which our method can then be applied to each

cluster to separate flow components within coherent structures.



Chapter 4

Sensitivity Analysis of the Drifter

Deployment Configuration

4.1 Introduction

In this chapter we shall build on Chapter 3 by investigating the sensitivity of the

simulation results with respect to the number of drifters in the cluster, as well as the

cluster morphology (i.e. the spatial distribution of the initial deployment configura-

tion). Our simulation results in Chapter 3 were using 9 drifters configured to start as

at Latmix Site 1—and we used these results to motivate and help interpret our real

data analysis of the Latmix data. In other drifter deployments however, the number

of drifters, the number and duration of position observations, and the deployment

configuration will all potentially vary, and we now investigate what impact this may

have through simulation studies.

This chapter is structured as follows. In Section 4.2 we investigate how the num-

114
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ber of drifters in the deployment impacts upon the error of the mesoscale parameter

estimates. We show how the error scales inversely with the number of drifters. Section

4.3 performs a similar analysis to Section 4.2, but changing the number of observa-

tion time points in the experiment for each drifter. The number of time points can

be changed by either observing the drifters more frequently, or by allowing the de-

ployment to run for longer at the same temporal sampling rate. We investigate both

these possibilities and how they affect the error of the parameter estimates. Section

4.4 looks at varying the initial configuration of the drifter deployment. There are

many different ways that the initial deployment configuration could be changed, but

we limit this analysis to the following: (a) changing the average initial distance of the

drifters from the centre of mass, (b) rotating the initial deployment relative to the

strain angle, and (c) changing the eccentricity of the deployment configuration. This

final analysis (c) shall consist of deploying drifters in an ellipse, varying how eccentric

this ellipse is, and then looking at the errors for each eccentricity averaged over dif-

ferent possible angles that the ellipse could be aligned with. In our simulations, one

or more mesoscale parameters could be estimated (and the others assumed known),

and so we repeat this analysis for different combinations of known and unknown pa-

rameters. In Section 4.5 we conclude our analysis from this chapter and discuss the

optimal drifter deployments based on our simulation studies.

4.1.1 Simulation Set-Up

In this section, we will introduce the simulation set-up that will be used throughout

this chapter, and comment on how this affects the validity of our results.
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We base our simulations upon the LatMix experiment at Site 1. Therefore, if a

parameter is present in the model, it is chosen to be the value that was used in Figure

3.2.1. Specifically, the parameters are set as σ = 7× 10−6/s, θ = 30◦, ζ = 6× 10−6/s,

and ζ = 8×10−6/s. The simulations last for one day, with sampling rate ∆ = 30 min-

utes. The submesoscale diffusivity will follow an isotropic 2D Wiener process with the

isotropic diffusivity equal to 0.1m2/s. Standard errors of parameter estimates will be

calculated by estimating parameters over 100 repeated simulations. Initial positions

will be chosen iostropically (unless otherwise stated) where the expected distance to

the centre of mass is chosen to match that in Site 1 of the LatMix experiment.

We assume throughout this chapter that the stochastic noise (i.e. the Wiener

component) of each drifter observation is independent across time and across drifters.

This would likely only be true in real drifters if the observations occur with sufficiently

large length and time scales.

The simulated particle trajectories contain only the parameters that we are esti-

mating. This would not be the case when we estimate using real drifter trajectories.

For example, we commented in Chapter 3 that there was evidence of internal waves in

the region covered by the LatMix experiment, and we do not include internal waves

in our simulations. Therefore, any results given in this chapter can only be used as a

guide, and are not fully representative of the errors from a real drifter deployment.

The scaling behaviours found in this chapter are expected to be the same as that

from drifter deployments such as LatMix, as the scaling behaviours are unchanged

by the inclusion of additional mesoscale parameters, or the value of each simulated

parameter. Therefore the results in this chapter are designed to be useful in choosing
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how to deploy clustered drifter arrays. In Chapter 5 we expand upon the results given

in this chapter, where the results can be found for other values of the mesoscale and

submesoscale parameters.

4.2 Varying the Number of Drifters

First we vary the number of drifters, denoted K, where we keep the same notation as

Chapter 3. Throughout this section we will also use the model and inference procedure

introduced in Chapter 3 to estimate mesoscale parameters, unless stated otherwise

and parameters will be estimated as fixed quantities across this entire window.

In Figure 4.2.1 we report the relative standard error of mesoscale parameters

(strain rate, strain angle and vorticity) in the strain-dominated simulation of Fig-

ure 3.2.1. The initial drifter positions are sampled isotropically with expected dis-

tance to centre-of-mass fixed over all experiments to be identical to Latmix Site 1.

Relative standard error is computed for each parameter by dividing the observed sam-

ple standard error by the true parameter value. We have included a reference line

that scales as 1/
√
K which is the asymptotic limit we expect to see standard errors

reduce by from asymptotic theory when observations are independent. For this sim-

ulation environment we see that this scaling behaviour is approximately correct for

K > 5. We emphasise that in practice this scaling behaviour will not apply to real

deployments. Here we have simulated drifters that experience independent subme-

soscale errors across drifters, which is an idealised scenario. In reality an increasing

number of densely packed co-located drifters will experience correlated motions thus
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eventually limiting the amount of new information that can be gained by adding more

drifters to a cluster. Nevertheless, the simple rule from the observed scaling behaviour

is that one must have approximately four times as many drifters to reduce the stan-

dard error by a factor of two. At least three drifters are needed before the parameter

estimates become statistically significant. However, the SE decreases rapidly (faster

than the rate of 1/
√
K) until we have around six drifters before the decrease in the

SE begins to slow, and so one could argue that it is better to have at least around six

drifters to reduce the SE significantly, at least in this simulation scenario.

4.3 Varying the Number of Observation Time Points

We now vary the number of observed time points for the drifter positions in the

simulation. This can be done by (a) increasing the simulation time T whilst keeping

the sampling time between observations ∆ constant, or (b) decreasing ∆ while keeping

T constant.

In Figure 4.3.1 we display the relative standard error for strain only and vorticity

only models in scenario (a), along with a reference line of 1/
√
T . Drifters were sim-

ulated as in the strain only model of Figure 3.2.1, replacing strain with vorticity of

6× 10−6/s for the vorticity only model. The relative standard error follows the 1/
√
T

relationship for the case where we only have vorticity. For the strain-only simulation

this relationship is followed for shorter simulations, however if we allow the simulation

to run longer then we see a faster decrease in reducing the standard error.

The difference in the two simulations is due to the nature of each mesoscale feature
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Figure 4.2.1: Relative standard error of stain rate, strain angle and vorticity for a

varying number of drifters K, averaged over over 100 repeated simulations for each

K. The simulation setup is as in Figure 3.2.1 in the strain-dominated model with

trajectories simulated for 1 day. The initial drifter positions are sampled isotropically

with expected distance to centre-of-mass fixed over all experiments to be identical to

Latmix Site 1. Relative standard error is computed by dividing the observed sample

standard error by the true parameter value. Therefore in this experiment we require

approximately 3 drifters in the cluster before the standard errors are approximately

half the true parameter value (and hence significantly non-zero).
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in a linear velocity field with zero mean flow: vorticity causes drifters to orbit the

centre of mass, whereas strain will move drifters further from the centre of mass

with time. The strain rate is set to be constant throughout the simulation, resulting

in the velocity increasing exponentially as time increases. Diffusivity is also set to

be constant, and so the increased velocity results in a larger signal to noise ratio,

and thus a faster reduction in standard error. In the case of vorticity only, the

average speed of the drifters is constant and so the expected standard error is simply

inversely proportional to the square root of the number of observation time points

from asymptotic theory.

We now consider scenario (b): the effect on the relative standard error of increasing

the number of time points by reducing the time between observations ∆. We require

the length of simulation T to be 1/σ or 1/ζ in order to reliably estimate strain or

vorticity respectively, which corresponds to T ≈ 5/3 days for strain (σ = 7× 10−6/s)

and almost two days for vorticity (ζ = 6 × 10−6/s). Therefore, in Figure 4.3.2,

which displays the relative standard errors, we set the length of the simulation to be

constant at T = 2 days, and otherwise the drifters are simulated as in Figure 4.3.1.

When ∆ = 2 days (at the left extreme) we have just two observations—one at the

start of the simulation and one at the end. In the deterministic setting, these would

correspond to almost the same point for vorticity-only particle trajectories (with the

variation due to the cycle period being just less than two days). Both plots of Figure

4.3.2 show a significant but small decrease in the standard error as we decrease ∆,

thus increasing the number of observation time points.

For the examples shown in Figures 4.3.1 and Figure 4.3.2, increasing the number
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Figure 4.3.1: Relative standard error of stain rate (left) and vorticity (right) for 9

drifters and a varying simulation length T from 0 to 6 days (in increments of 30

minutes), plotted on a log scale. For each value of T the results are averaged over

100 repeated simulations. The x-axes are plotted in units of 1/σ and 1/ζ respectively.

The initial drifter positions are set to be identical to Latmix Site 1, and the time

between observations is ∆ = 30 minutes. Relative standard error is computed as in

Figure 4.2.1. The left and right panels show relative standard errors for strain only

(σ = 7× 10−6/s) and vorticity only (ζ = 6× 10−6/s) models respectively.
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of observation time points by decreasing ∆ does not appear to have as significant an

impact to the standard error as adding to the total length of the simulation. This is

because infilling between observations does not provide as much information about the

mesoscale effects as collecting data over a longer time window. Therefore, to reduce

the standard error, it is better to increase the total length of the simulation than to

decrease the time between observations. This finding is of course idealised because (a)

the assumption we have made of spatially and temporally fixed mesoscale parameters

is of course unrealistic, and (b) the sampling rate of drifter observation cannot always

be controlled or altered. In reality, the velocity field will only be locally stationary,

therefore there may be some practical time limit for which mesoscale parameters might

be stationary. For more discussion of this please see the earlier work in Chapter 3 on

optimal window length selection for estimating mesoscale parameters for the LatMix

drifters.

4.4 Varying the Initial Configuration

We can also vary the initial cluster morphology in our simulated environment—where

by cluster morphology we refer to the initial spatial configuration of the drifter deploy-

ment at first measurement. In Figure 4.4.1 we consider two classes of configurations.

First, we consider deployments where the drifters are initially configured to be ei-

ther closer or further apart than in Latmix Site 1, as shown in Figure 4.4.1 (left).

Specifically, the red drifters are twice as far from the centre-of-mass as Latmix Site 1

drifters (in blue), and the green drifters are half this distance. We repeat the same
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Figure 4.3.2: Relative standard error of stain rate (left) and vorticity (right) for

drifters simulated as in Figure 4.3.1, plotted on a log scale, except varying the time

between observations ∆ on a decreasing scale (from ∆ = 2 days to 2 minutes in

increments of 2 minutes, using only values of ∆ which exactly divide into T ) whilst

keeping the length of the simulation fixed to T = 2 days. Again the x-axes are plotted

in units of 1/σ and 1/ζ respectively where σ = 7× 10−6/s and ζ = 6× 10−6/s.
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analysis as Figure 3.4.4 over different true strain rates to find the required window

lengths (the segment of the time series over which we will estimate the parameters, see

Section 3.4.2) in the left panel of Figure 4.4.2. We observe that drifters initialised fur-

ther apart require shorter window lengths to obtain significant strain rate estimates,

and conversely require longer window lengths when initialised closer together. This

phenomenon is easily understood in this idealised simulation scenario where spac-

ing drifters farther provides richer information on mesoscale features as distances to

centre-of-mass are increased. In practice the flow field is not spatially homogeneous,

so as with the number of drifters (Section 4.2) and length of simulation (Section 4.3),

here there will be a practical limit as to how far apart drifters should be initially

placed to ensure they are sampling the same homogeneous background flow field.

In the right panel of Figure 4.4.1 we contrast Latmix Site 1 configurations (in blue

dots) versus two other deployment configurations: one that is parallel to the true strain

angle (red dots), and another that is orthogonal to the true strain angle (green dots).

For each colour, the average distance to centre-of-mass is held constant to 0.6km. To

see how this affects parameter estimation we repeat the analysis of Figure 3.4.4 to find

the required window length to get significant estimates of the strain rate over a range

of true strain rate values—these are displayed for each configuration in the right panel

of Figure 4.4.2. We see that the required window length is significantly reduced when

the configuration is aligned parallel to the strain angle (red drifters), and conversely

the required window length is increased when this is orthogonal (green drifters). The

results with the Latmix configuration, which is more isotropic, are sandwiched in

between.
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Figure 4.4.1: Different cluster morphologies (deployment configurations) we shall con-

sider. In the left panel we again consider 9 drifters deployed as at Latmix Site 1 (blue

dots), together with 9 drifters deployed with the same morphologies but with the

respective distances to the centre-of-mass either doubled or halved (red and green

dots respectively). In the right panel we consider 9 drifters deployed as at Latmix

Site 1 (blue dots), but this time the red and green dots are drifters deployed parallel

and orthogonal to the strain angle (red and green dots respectively) but with the

same average distance to centre-of-mass as the blue dots. In both panels the velocity

field is as in the strain-only simulation of Figure 3.2.1, and the positions are given in

centre-of-mass coordinates.
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Figure 4.4.2: Required window lengths to obtain significant strain rate estimates for

different drifter configurations. The lines in the left/right panels correspond to the

drifter configurations considered in the left/right panels of Figure 4.4.1 respectively,

with the colours matching the corresponding configurations. Each line corresponds

to the level where the standard error of the strain rate estimate is approximately half

the true strain rate value. These lines are found as in Figure 3.4.4 over 100 repeated

simulations over a grid of true strain rates and window lengths.
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This analysis shows that in a strain-only field (with no vorticity or divergence),

then the optimal morphology is to align drifters along the expected strain angle—but

more investigation is needed to understand how the optimal configuration may change

in the presence of vorticity and/or divergence, as well as background and submesoscale

effects. For example, Ohlmann et al. (2017) showed that an isotropic configuration

has the lowest error for estimating divergence, whereas configurations along a straight

line, such as those in Figure 4.4.1, have the largest errors. This is in contrast to our

results for a strain-only field, where the LatMix configuration is the most isotropic yet

has higher error than aligning drifters along the strain angle. Therefore, the optimal

morphology appears to be dependent upon the mesoscale features present in the

data, and unless these are known a priori then the best model-agnostic morphology is

likely to be an isotropic cluster. Motivated by this, for the remainder of this section

we will setup a new simulation environment to more thoroughly explore how the

optimal morphology changes when we estimate different combinations of mesoscale

parameters.

4.4.1 Simulation Set-Up

We shall consider how varying the eccentricity of the initial deployment configuration

impacts upon the standard error of the resulting parameter estimates. Eccentricity,

e is a measure of how circular an ellipse is, with e = 0 being a perfect circle and

e = 1 a straight line. Therefore the red and green simulations of Figure 4.4.1 have

deployment eccentricity equal to one.

We shall simulate the initial position of K drifters from a bivariate normal dis-
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tribution with some arbitrary mean, standard deviation σx and σy (in X and Y

components), and zero covariance. We shall set σx and σy such that the average ex-

pected distance from the centre of mass is the same as that in the Latmix experiment

at Site 1. In the isotropic case (σI = σx = σy) the expected distance to centre of mass

is calculated from the simulated drifters as

cmd = E

[
1

K

K∑
k=1

√
X2
k + Y 2

k

]
= σIE

√(Xk

σI

)2

+

(
Yk
σI

)2
 . (4.4.1)

Defining Z =

√(
Xk
σI

)2

+
(
Yk
σI

)2

then this exactly follows a chi distribution with 2

degrees of freedom (Z ∼ χ2) which has mean
√

2Γ
(

3
2

)
. The expected distance can

therefore be written as

cmd = σI
√

2Γ

(
3

2

)
, (4.4.2)

and hence the standard deviation of the normal distribution can be set to be

σI =
cmd√
2Γ
(

3
2

) , (4.4.3)

such that we can insert the cmd value from Latmix Site 1 to set σI in the isotropic

case. For the general anisotropic case, we shall simulate initial particle positions from

Xk
iid∼ N(0, σ2

x), (4.4.4)

Yk
iid∼ N(0, σ2

y), (4.4.5)

where σx = σI/ρ, σy = ρσI , and ρ is a re-scaling factor such that ρ > 1. The re-scaling

factor is related to the eccentricity of the deployment by e =
√

1− (1/ρ)4 from the

properties of an ellipse. This gives randomly distributed anisotropic particles within

an ellipse with the major axis aligned along the y axis.
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Figure 4.4.3: Initial positions of 500 drifters simulated from Equations (4.4.4) and

(4.4.5). The average distance to the centre of mass is set to be the same as that in

LatMix Site 1. These positions have eccentricity of (from left to right) 0, 0.75, 0.9

and 0.99 and the angle of the drifters is −30◦ in each plot.

A rotation matrix can then be applied to the positions so that they can be aligned

with or against the mesoscale features that are simulated in the data. Unless other-

wise specified, the particle trajectories will be rotated randomly by sampling from a

uniform distribution and multiplying the value by 360. This will result in a uniformly

random angle between 0 to 360 degrees. Figure 4.4.3 displays 500 simulated particle

initial positions from Equations (4.4.4) and (4.4.5) with different eccentricities.

Throughout this section, we will simulate particle trajectories with a sampling rate

of 30 minutes for one day using nine drifters, motivated by the LatMix experiment.

Fixed (non time-varying) mesoscale parameters will be estimated over the entire time

series, and the submesoscale diffusivity is set as 0.1m2/s for all simulations. Hence the

particle trajectories are simulated similarly to the simulations we performed earlier in

Section 4.3.
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4.4.2 Single Parameter Estimation

First, we explore changing the deployment eccentricity for particle trajectories sim-

ulated using only one mesoscale effect: strain, divergence or vorticity. We display

the relative standard error of mesoscale parameter estimates over 10,000 simulations

in Figure 4.4.4 for varying eccentricities. The standard error for each parameter is

calculated by estimating only the parameter for the mesoscale feature that is present,

with all other mesoscale parameters set to zero. For the strain only model (left panel,

σ = 7 × 10−6/s) we simulate particle trajectories for three different cases—the angle

of the deployment ellipse aligned parallel to the strain angle, aligned orthogonal to

the strain angle, and a random angle for each simulation. The corresponding stan-

dard errors are shown with the red, green, and blue curves respectively. We have

also added horizontal dashed lines displaying the standard error for the deployments

from Figure 4.4.1 (right). Note that the horizontal green and red dashed lines refer to

the standard error of equally spaced particles, whereas the values of the solid curves

at e = 1 correspond to randomly placed drifters along a line, we therefore do not

expect these to be identical. The Latmix configuration (blue dashed line) appears to

have a higher standard error than if the drifters were deployed randomly (with the

same fixed distance to centre of mass), however this result does not consistently hold

across all scenarios (as we shall shortly see). Furthermore, if the drifters are deployed

randomly or parallel to the strain angle then on average it is better to deploy the

drifters along a straight line with e = 1 than it is to use an isotropic deployment.

In contrast, if the drifters are aligned orthogonally to the strain angle then a more
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isotropic arrangement is preferable, and so the alignment of the drifters in relation

to the strain angle determines the optimal configuration. Overall, aligning drifters

parallel to the strain angle achieves optimal results here in the sense of minimising

standard error.

For the divergence only (centre panel, δ = 3.8× 10−6/s) and vorticity only (right

panel, ζ = 6×10−6/s) simulations, we plot only the blue continuous line as there is no

strain angle to align the drifters with or against. For these simulations, the standard

error decreases for higher eccentricities in all cases, suggesting that it would be better

to deploy drifters with e = 1, i.e. along a straight line. The Latmix deployment (blue

dashed line) was better than an isotropic configuration where e = 0, however it is more

optimal to position drifters along a single line for higher eccentricities when e > 0.8.

Therefore, on average the optimal deployment morphology appears to be along a

straight line for trajectories simulated with only a single mesoscale parameter, unless

the trajectories are simulated using strain-only mesoscale and the initial configuration

is aligned orthogonally to the strain angle.

Real-world data from drifter deployments will be much more complex than the

above simulations which have assumed that there is no mean flow and only a single

mesoscale parameter present. For example, Site 2 of the Latmix experiment showed

that there was likely to be both strain and vorticity present, as well as other back-

ground effects. In Chapter 3 we presented parameter estimates from a strain-only

model (assuming the vorticity to be zero) and from a strain-vorticity model. We

therefore next consider a scenario where we simulate drifters from a strain-vorticity

model, but estimate only strain rate, whilst assuming the vorticity to be zero. We now
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Figure 4.4.4: Standard error standardised by the parameter value over 10,000

simulations for different deployment eccentricity values for strain only (left panel,

σ = 7 × 10−6/s), divergence only (centre panel, δ = 3.8 × 10−6/s) and vorticity only

(right panel, ζ = 6×10−6/s) models. Particle positions are observed every 30 minutes

for one day with diffusivity set at 0.1 m2/s. Only the mesoscale parameters present

in the data are estimated in each configuration. The continuous lines in each panel

correspond to the average standard error for different deployment eccentricity values

for drifters deployed perpendicular to the strain angle (green), aligned with the strain

angle (red) and with a random angle (blue). The blue dashed lines correspond to

drifters deployed with Latmix Site 1 initial positions. The green and red dashed lines

correspond to equally spaced drifters deployed along a straight line that is aligned

perpendicular to and parallel to the strain angle respectively. The red and green solid

and dashed lines are only present in the left panel where strain is present.
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Figure 4.4.5: Standard error standardised by the parameter value of strain rate es-

timates over different deployment eccentricities. The drifter trajectories are simu-

lated as in Figure 4.4.4 except using a strain-vorticity model with σ = 7 × 10−6

and ζ = 6 × 10−6. The solid and dashed lines in each panel correspond to different

deployment morphologies as in Figure 4.4.4.

obtain the standard errors as shown in Figure 4.4.5. It again appears to be optimal

to deploy drifters along a single line, however the presence of vorticity now means

that the angle of the deployment relative to the strain angle is less important as the

drifters will be rotated by the vorticity. Therefore, deploying drifters in a line that is

orthogonal to the strain angle (see green continuous line) results in a lower relative

standard error than isotropic positions. However, the standard error is further min-

imised by aligning the drifters in a line that is parallel to the strain angle (red line)

or simply any random angle (blue line).

So far, we have only studied the standard error when a single mesoscale parameter

is estimated, and our results show the opposite to those in Ohlmann et al. (2017).

Specifically, we showed that drifters deployed along a straight line have a lower stan-
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dard error for most scenarios we showed, whereas Ohlmann et al. (2017) showed that

drifters with an isotropic initial configuration will have lower standard errors. How-

ever, in the next section we will show that when more than one mesoscale parameter

is estimated, the optimal drifter configuration will change.

4.4.3 Multiple Parameter Estimation

We now explore estimating different combinations of mesoscale parameters and how

the number of estimated parameters affects the standard error of those estimates.

First we estimate any two of strain, divergence and vorticity from drifter trajectories

simulated using a correctly specified model with only those mesoscale features present.

It is seen in Figure 4.4.6 that when more than one mesoscale parameter is estimated,

e = 0 now minimises the standard error for some combinations of parameters —

specifically when we estimate strain rate, strain angle and divergence {σ, θ, δ} or

strain rate, strain angle and vorticity {σ, θ, ζ}. However, if divergence and vorticity

are estimated together {δ, ζ}, without any strain, then e = 1 minimises the standard

error, although the range of the standard error across deployment eccentricities is

small, meaning this result is unlikely to be practically significant.

These results show that when strain rate is estimated along with one other mesoscale

parameter, then we are unable to disentangle their effects easily when the drifters are

deployed in a single straight line. This can be easily understood for drifters in a

strain-divergence field deployed in a straight line (aligned with the strain angle), as

then it is difficult to determine whether the spreading motion along the strain angle

is due to strain or divergence. Similarly, when we estimate strain and vorticity in a
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strain-vorticity field, then placing the particles in a line does not exploit the spatial

variability along different slices of the velocity field, making disentangling the effects

all the more challenging. However, for the divergence-vorticity trajectories, the ve-

locity field is rotationally invariant across space, as the divergence causes the drifters

to spread or converge, whereas the vorticity causes the circular motion, and so these

are much more easily separated regardless of spatial configuration. This explains why

the standard error in the right panels is more or less similar across all eccentricities

and orientations.

The standard errors when all mesoscale parameters are jointly estimated are

shown in Figure 4.4.7. Each parameter was simulated in the drifter trajectories with

σ = 7× 10−6, ζ = 6× 10−6, and δ = 3.8× 10−6. Lower eccentricities have lower stan-

dard errors for each of the parameters, meaning that if all mesoscale parameters are

present and being estimated then it is more optimal to deploy drifters in an isotropic

configuration rather than anything eccentric. We note that the Latmix drifter con-

figuration (blue dashed line) results in even lower standard errors than fully isotropic

positions, as was also the case in Figure 4.4.6, suggesting that randomly deployed

drifters might not fully minimise the error under expectation. The red and green

dashed lines, corresponding to drifters deployed equally spaced along a straight line,

have the highest standard errors for divergence, but not for vorticity or strain. This

makes sense for strain since aligning the drifters with the strain angle (green dashed

line) will decrease the standard error for strain rate (but not for the other parame-

ters we are jointly estimating). Drifters along a single line can only estimate spatial

gradients in a single dimension, and hence only a single parameter can be reliably
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Figure 4.4.6: Standard errors standardised by the parameter value of mesoscale pa-

rameter estimates for varying eccentricities for strain-vorticity (left column), strain-

divergence (centre column) and divergence-vorticity (right column) models. Within

each model (or column) two parameters are estimated as indicated by the y-axis label.

The drifter trajectories are simulated as in Figure 4.4.4, aside from the mesoscale pa-

rameters present in the model which vary in each column. Each solid or dashed line in

each panel corresponds to a different deployment morphology as in Figure 4.4.4. The

red and green solid and dashed lines are only present in the left and centre columns

where strain is present.
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Figure 4.4.7: Standard errors standardised by parameter value of parameter estimates

for varying eccentricities when all mesoscale parameters are simulated and then es-

timated. The drifter trajectories are simulated as in Figure 4.4.4, aside from the

mesoscale parameters present in the model (σ = 7×10−6, ζ = 6×10−6, δ = 3.8×10−6).

Each straight or dashed line in each panel corresponds to a different deployment mor-

phology as in Figure 4.4.4.

estimated whilst minimising the standard error. To estimate multiple parameters we

require drifter observations in more than one spatial dimension, and hence a lower

deployment eccentricity is beneficial (i.e. a more isotropic configuration). However,

note that in Figure 4.4.7 any e < 0.6 achieves close to the minimal standard error for

all mesoscale parameter estimates, suggesting mild eccentricity at deployment does

not have a significant effect and only more extreme eccentricities should be avoided.

Finally, we investigate the error of estimating a mesoscale feature parameter which

isn’t truly present in the model, thus allowing for a proper comparison with a sim-

ilar study by Ohlmann et al. (2017). We repeat the experiment of Ohlmann et al.

(2017) and simulate drifters that follow a random walk, i.e. they have no mesoscale

component and zero mean flow, and then we estimate all mesoscale parameters. The

standard errors of the divergence estimates (measured against a true value of 0) are
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Figure 4.4.8: Standard error of divergence estimates from drifter trajectories simulated

with no mesoscale component (i.e. σ = ζ = δ = 0) but all mesoscale parameters are

estimated. Drifter trajectories are simulated as in Figure 4.4.4 and the straight and

dashed lines in each panel refer to the same deployment morphologies as in this Figure.

shown in Figure 4.4.8 (note that we do not standardise the standard error by param-

eter value here since the mesoscale parameters are all set to zero) and are in complete

agreement with Ohlmann et al. (2017): it is more optimal to deploy drifters in an

isotropic configuration than in a straight line. These results are the same as when

all mesoscale parameters were present in the simulation (Figure 4.4.7), meaning that

it is the number and type of parameters estimated rather than the parameters truly

present which affects the optimal morphology.

To conclude, this analysis suggests that the optimal morphology is dependent on

the number of mesoscale parameters being estimated and which specific parameters

they are. In other words, it is the mesoscale parameters being estimated that deter-

mines the optimal morphology, rather than the parameters that are actually present
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in the drifter trajectories. Therefore we do not require prior knowledge of mesoscale

features present in the ocean to choose the optimal morphology, we just need to de-

termine what we want to learn from the experiment. If we are only interested in

estimating a single mesoscale parameter, then it is generally optimal to deploy the

drifters along a straight line. If we wish to estimate more than one mesoscale pa-

rameter then the optimal morphology is determined by which parameters are desired,

however in most cases it is better to deploy the drifters in an isotropic initial configu-

ration. If we have no prior knowledge whatsoever of what parameters are present, and

we wish to learn which mesoscale features are present in the particle trajectories, then

it would be safer to choose a morphology with low deployment eccentricity. However,

reducing the deployment eccentricity below around 0.6-0.7 doesn’t appear to signifi-

cantly reduce the standard error when multiple mesoscale parameters are estimated,

whereas for a single mesoscale parameter increasing the deployment eccentricity above

0.4 does significantly reduce the standard error. Therefore, with no prior knowledge

of the data or model to be used, a deployment eccentricity between 0.4-0.7 will be

relatively close to optimal most of the time.

4.5 Discussion and Conclusions

It will always be beneficial to deploy more drifters and to observe them for longer,

however this additional data will have diminishing returns. Therefore, what we really

want to know, is how much data is enough? In Section 4.2 we showed that we need

at least three drifters before our parameter estimates become statistically significant
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from zero. The relative standard error initially decreases more quickly, and after five

drifters it scales as O( 1√
K

). Therefore, we would recommend at least five drifters in

such a setting. Similarly, in Section 4.3 we showed that in terms of the simulation

time length T , then the relative standard error generally scales as O( 1√
T

). In the

case of strain-only data, the relative standard error then decreases more quickly when

T > 1/σ, but this is not the case for the vorticity-only data, where we do not see

any faster decrease in the error once T > 1/ζ. For both strain-only and vorticity-only

experiments, we found the experiment should run for at least T ≈ 0.1σ or t ≈ 0.1ζ

for the estimated parameters to be significantly different from zero. In terms of the

sampling rate ∆, we found quickly diminishing returns when reducing this, and in

any case this option is seldom available in practice due to the GPS technology used

and the limited battery-life of drifters.

The optimal deployment configuration of drifters is determined based on what

we wish to learn from an experiment. If we are only interested in estimating a single

mesoscale parameter, the optimal configuration is different than if we wish to estimate

a combination of mesoscale parameters. Specifically, it is generally optimal to deploy

drifters along a single straight line if we only wish to estimate one mesoscale parameter.

If more than one parameter is to be estimated then the optimal configuration is

determined by which parameters are to be estimated, as we discussed in Section 4.4.

If we do not have any prior knowledge of the expected parameter values before the

experiment then a deployment configuration with low eccentricity (i.e. more circular)

should be used.

The results in this chapter are simulation-derived and based on an idealised model,
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and the complexity of real-world data could change the results. We have explored the

scaling for only certain parameter values. Motivated by this, in Chapter 5 we will

explore these results further via analytically-derived expressions for the error.



Chapter 5

Analytical Derivations of the

Errors of Parameter Estimates

5.1 Introduction

Diffusivity can be estimated by taking the time derivative of the relative dispersion

(LaCasce, 2008), where the dispersion is the second moment of the particle positions in

centre of mass coordinates after the initial positions are removed. The second moment

of particle positions grows exponentially with time for a fixed strain rate (Sundermeyer

et al., 2020)—a relationship which allows us to estimate the strain rate, assuming that

it is constant in time. In this chapter we will define method-of-moment estimators for

both diffusivity and strain rate, and use these estimators to provide theoretical errors

for these parameter estimates, which we use to advise how drifters are deployed. We

will introduce three possible estimators for diffusivity in centre of mass coordinates

for a diffusivity-only model, as well as a method to estimate diffusivity in a strain-

142
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diffusivity model. We also introduce a method-of-moment estimator for the strain

rate. Our estimator is similar to that by Sundermeyer et al. (2020), however they

estimate strain rate using the second moment in only the major axis which is aligned

with the strain angle, whereas we derive an estimator using the second moments in

both the major and minor axis. Similarly, they estimate diffusivity using just the

second moment in the minor direction whereas we will derive an estimator using the

second moments in both axes.

The optimal deployment morphologies in the previous chapter depended on the

values of the parameters chosen for our simulations. The results might not hold

if any of the strain rate, strain angle, vorticity, divergence, diffusivity, number of

observations, time between observations, or number of drifters are changed. These

results gave a good intuition into how many, how long, and in what configuration

drifters should be deployed, however repeating the simulations for different parameter

values would be time consuming.

In this chapter we will instead approximate the theoretical distribution of errors

for the least squares parameter estimates from our model from Chapter 3 (Equa-

tion (3.2.2)) by calculating the distribution of the second moment of the positions.

This approximation will be done using method-of-moments estimation, which is sim-

pler than the least squares estimation used in the simulations of Chapter 4, but allows

(near) exact distributions to be derived as we shall show. We shall do this approxima-

tion for the simple case of a strain-only model, but note that the general method can

be expanded to more complex mesoscale models. This chapter will help to mathemat-

ically reveal and explain the results of the number of drifters required (as found in



CHAPTER 5. ANALYTICAL DERIVATIONS OF ERRORS 144

Section 4.2), the number of observations (see Section 4.3) and the initial configuration

of the drifters (as in Section 4.4), and allow the results to be expanded to different

parameter values to those used in the previous chapter.

Sundermeyer et al. (2020) estimate the strain rate using second moments as

dmx̃x̃

dt
− σmx̃x̃ = 0, (5.1.1)

where x̃k = xk −mx is the position of drifter k with the first moment removed and

will be defined fully in Section 5.2. Equation (5.1.1) can be solved to find that

mx̃x̃ = mx̃x̃(0)eσt, (5.1.2)

and hence the strain rate is estimated as

σ̂ =
1

t
[log(mx̃x̃)− log(mx̃x̃(0))] . (5.1.3)

They estimate diffusivity from second moments as

κ̂ =
σ

2
mỹỹ. (5.1.4)

In this Chapter we will introduce a method-of-moments estimator for strain rate

and diffusivity which will give estimates with lower RMSE than the estimator from

Sundermeyer et al. (2020). Specifically, in Section 5.2 we derive the second moments

of particles in a strain only field. We calculate the expected second moment and its

variance in each of the x and y directions, and we also derive the cross second mo-

ment. Section 5.3 introduces three different ways to estimate diffusivity from second

moments when there are no mesoscale components present in the particle trajectories.

We calculate the error of each diffusivity estimator and show that the optimal variant
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is to remove the initial positions from drifter positions before estimating diffusivity.

This produces a biased diffusivity estimator, however correcting for this bias (another

variant which we try) increases the error due to increased variance as we shall show.

In Section 5.4 we show how to rotate the particle trajectories to align the x axis with

the strain rate, and derive an estimator for strain rate in this rotated reference frame.

We estimate the error of this estimator and use this to provide scaling behaviour

which can be used to reinforce the results from Chapter 4 about the optimal drifter

deployment. In Section 5.5 we derive an estimator for diffusivity when the strain

rate is not zero, and use this estimator to show how our diffusivity estimates scale

with different parameters. Finally, in Section 5.6 we summarise our results from this

Chapter and provide a discussion as to the expected errors of parameter estimates

with respect to mesoscale features present as well as the deployment configuration.

5.2 Second Moment Calculation

Throughout this chapter, we will consider the more simple case of a strain only field.

The results we present throughout this chapter only hold when the strain rate is

aligned with the x axis, which is not usually the case in real or simulated particle

trajectories (unless θ has been set to be zero). Therefore, for these results to hold, we

must align the axis with the strain rate by applying a rotation matrix to the positions.

We will show how to carry out this rotation in Section 5.4.1.

To determine the optimal drifter deployment, we wish to derive analytical ex-

pressions for the error of strain rate and diffusivity using method-of-moments, which
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can be used to calculate the errors. To derive these expressions we must first calcu-

late the moments of the solution to the stochastic differential equation (SDE) from

Equation (3.2.9).

Drifter Positions

The SDEs for xk(t) and yk(t) in a strain-only field are

dxk(t) =
1

2
σxk(t)dt+

√
2κdWt, (5.2.1)

dyk(t) = −1

2
σyk(t)dt+

√
2κdWt, (5.2.2)

where the subscript k denotes drifter k = 1, 2, · · · , K.

Both Equations 5.2.1 and (5.2.2) can be modelled using an Ornstein-Uhlenbeck

(OU) process. In general, the OU process is defined as

dxt = −β(xt − α)dt+ σ2
IdWt, (5.2.3)

where β is the growth-rate, α is the asymptotic mean, and σ2
I is the noise variance.

The solution to an OU process follows a normal distribution, where the distribution

of xt given initial position x0 is

xt|x0 ∼ N

(
α + (x0 − α)e−βt,

σ2
I (1− e−2βt)

2β

)
. (5.2.4)

Hence, by replacing α, β, and σ2
I in Equation (5.2.3) with their values in Equations

(5.2.1) and (5.2.2), we set α = 0, β = ±σ/2, and σ2
I =
√

2κ. The drifter positions in

Equations (5.2.1) and (5.2.2) are therefore distributed as

xk(t) ∼ N

(
xk(0)e

tσ
2 ,

2κ

σ
(etσ − 1)

)
, (5.2.5)

yk(t) ∼ N

(
yk(0)e−

tσ
2 ,

2κ

σ
(1− e−tσ)

)
, (5.2.6)



CHAPTER 5. ANALYTICAL DERIVATIONS OF ERRORS 147

and hence can be written as

xk(t) = xk(0)e
tσ
2 +

√
2κ

σ
(etσ − 1)Xk, (5.2.7)

yk(t) = yk(0)e−
tσ
2 +

√
2κ

σ
(1− e−tσ)Yk, (5.2.8)

where Xk and Yk each follow a unit normal distribution.

We can approximate the drifter positions for small t by taking a Taylor expansion

around t = 0 to obtain

xk(t) ≈ xk(0)

(
1 +

tσ

2

)
+
√

2κtXk, (5.2.9)

yk(t) ≈ yk(0)

(
1− tσ

2

)
+
√

2κtYk. (5.2.10)

At small times, the deterministic component of the drifter positions will grow

linearly in time with respect to σ in the x direction whilst decreasing linearly in time

with respect to σ in the y direction. On the other hand, the stochastic component will

grow at a rate proportional to the square root of time with respect to κ in terms of the

standard deviation in both the x and y directions. This means that for small t, the

effect of the submesoscale diffusivity will be larger than the effect of the strain in both

the x and y directions, and this effect will be more prolonged if κ is large with respect

to σ—which will be the case for examples with values found for the Latmix experiment

(κ ∼ 0.1m2/s and σ ∼ 10−6/s). Hence the drifters will initially spread diffusively in x

and y in an isotropic fashion at a rate determined solely by κ. For larger values of t,

however, the strain will eventually contribute significantly more than the diffusivity

to how the drifters will spread in the x direction, as the exponentially growing terms

in Equation (5.2.7) take over. Conversely in the y-direction the exponential terms
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vanish in Equation (5.2.8) for large t and the drifters are simply spread around 0 with

variance proportional to κ/σ.

Second Moments of xk(t) and yk(t)

To determine the optimal drifter morphology, we are interested in the properties of

the parameters estimated in Chapter 3, where we estimated using centre of mass

coordinates. Therefore, we will calculate the positions of the drifters in centre of mass

coordinates. This is found by removing the first moment from xk(t) and yk(t). The

moments are defined as

mxnym =
1

K

K∑
k=1

xnky
m
k . (5.2.11)

The first moment of x(t) is found from Equation (5.2.11) by setting n = 1 and

m = 0, and similarly the first moment of y(t) is found by setting n = 0 and m = 1.

The first moments are therefore distributed as

mx(t) = mx(0)e
tσ
2 +

√
2κ

σ
(etσ − 1)

1

K

K∑
k=1

Xk, (5.2.12)

my(t) = my(0)e−
tσ
2 +

√
2κ

σ
(1− e−tσ)

1

K

K∑
k=1

Yk, (5.2.13)

where mx(0) and my(0) are the values of the first moments at time zero in x and y

respectively. Defining x̃k(t) = xk(t)−mx(t) and ỹk(t) = yk(t)−my(t), the positions

with centre of mass removed are found by subtracting Equation (5.2.12) from 5.2.7

(and equivalently Equation (5.2.13) from 5.2.8), and hence are written as

x̃k(t) = x̃k(0)e
tσ
2 +

√
2κ

σ
(etσ − 1)Xk −

√
2κ

σ
(etσ − 1)

1

K

K∑
k=1

Xk, (5.2.14)

ỹk(t) = ỹk(0)e
tσ
2 +

√
2κ

σ
(1− e−tσ)Yk −

√
2κ

σ
(1− e−tσ)

1

K

K∑
k=1

Yk, (5.2.15)
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where we have defined x̃k(0) = xk(0)−mx(0) and ỹk(0) = yk(0)−my(0).

By separating terms for drifter k from those from all the other drifters, and com-

bining the variance for drifter k with the variance for all drifters except for k, it can

be shown that Equations 5.2.14 and 5.2.15 follow Gaussian distributions

x̃k(t) = x̃k(0)e
tσ
2 +

√
2κ

σ
(etσ − 1)

(
1− 1

K

)
X ′k, (5.2.16)

ỹk(t) = ỹk(0)e
−tσ

2 +

√
2κ

σ
(1− e−tσ)

(
1− 1

K

)
Y ′k , (5.2.17)

where X ′k ∼ N(0, 1) and Y ′k ∼ N(0, 1).

The distribution of the second moments of x̃ and ỹ are of real interest to us, as

we will later use them to obtain diffusivity and strain rate estimators, from which we

can derive theoretical errors. We calculate the distribution of the second moment of

x̃k(t) from Equation (5.2.14), this is found using Equation (5.2.11) with n = 2 and

m = 0. Similarly the second moment of ỹk(0) is found from Equation (5.2.11) with

n = 0 and m = 2. Finally, the cross second moment in x̃ and ỹ is found by setting

n = m = 1 in Equation (5.2.11). The second moments are distributed as

mx̃x̃(t) =
1

K

2κ

σ
(etσ − 1)

K∑
k=1

 x̃k(0)e
tσ
2√

2κ
σ

(etσ − 1)
+Xk −

1

K

K∑
k=1

Xk

2

(5.2.18)

mỹỹ(t) =
1

K

2κ

σ
(1− e−tσ)

K∑
k=1

 ỹk(0)e−
tσ
2√

2κ
σ

(1− e−tσ)
+ Yk −

1

K

K∑
k=1

Yk

2

. (5.2.19)

mx̃ỹ(t) =
1

K

2κ

σ

(etσ − 1)

etσ/2

K∑
k=1


 x̃k(0)e

tσ
2√

2κ
σ

(etσ − 1)
+Xk −

1

K

K∑
k=1

Xk


×

 ỹk(0)e−
tσ
2√

2κ
σ

(1− e−tσ)
+ Yk −

1

K

K∑
k=1

Yk

 . (5.2.20)

The second moments in x̃ and ỹ can be written in terms of a noncentral chi squared
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distribution. This distribution is found by pulling out the
√

2κ/σ(etσ − 1) term in

Equation 5.2.18 and the
√

2κ/σ(1− e−tσ) term in Equation 5.2.19 and then applying

Cochran’s theorem. Cochran’s theorem states that
∑K

i=1(Xi − 1
K

∑K
i=1Xi)

2 ∼ χ2
K−1

when Xi are i.i.d standard normal variables. As the Xi in Equations 5.2.18 and 5.2.19

have mean µk 6= 0, our result will be a noncentral chi square distribution, where the

non-zero mean is due to the x̃k(0)e
tσ
2 and ỹk(0)e−

tσ
2 terms in Equations 5.2.18 and

5.2.19 respectively. The second moments can therefore be written as

mx̃x̃(t) =
1

K

2κ

σ
(etσ − 1)zx̃, (5.2.21)

mỹỹ(t) =
1

K

2κ

σ
(1− e−tσ)zỹ, (5.2.22)

where zx̃ ∼ χ2
K−1(λx̃), zỹ ∼ χ2

K−1(λỹ) follow noncentral chi-squared distributions

with noncentrality parameters found by λ =
∑K

k=1 µ
2
k. The noncentrality parameters

are therefore

λx̃ =
σetσK

2κ(etσ − 1)
mx̃x̃(0), (5.2.23)

λỹ =
σe−tσK

2κ(1− e−tσ)
mỹỹ(0). (5.2.24)

The noncentral chi-squared distribution χ2
K−1(λ) has K−1 degrees of freedom, despite

there being K drifters. This is due to Cochran’s theorem, and can be understood

because we subtracted the first moment before calculating the second moment, which

removed one degree of freedom.

The noncentral chi-squared distribution has expectation K − 1 + λ and variance
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2(K − 1 + 2λ). Therefore, the second moments mx̃x̃ and mỹỹ have expectations

E[mx̃x̃(t)] = mx̃x̃(0)etσ +
2κ

σK
(etσ − 1)(K − 1), (5.2.25)

E[mỹỹ(t)] = mỹỹ(0)e−tσ − 2κ

σK
(e−tσ − 1)(K − 1), (5.2.26)

and variance

var(mx̃x̃(t)) =
2κ

σK
(etσ − 1)2

[
2κ

σ
(etσ − 1)

(
1− 1

K

)
+ etσmx̃x̃(0)

]
, (5.2.27)

var(mỹỹ(t)) =
2κ

σK
(1− e−tσ)2

[
2κ

σ
(1− e−tσ)

(
1− 1

K

)
+ e−tσmỹỹ(0)

]
. (5.2.28)

The cross second moment can be written in terms of a single Gaussian distribution.

To derive this distribution we first write mx̃ỹ as

mx̃ỹ(t) = mx̃ỹ(0) +

√
1

K

2κ

σ

(
1− 1

K

)
[(etσ − 1)mx̃x̃(0) + (1− e−tσ)mỹỹ(0)]X

+
1

K

2κ

σ

(etσ − 1)

etσ/2

K∑
k=1

[
Xk −

1

K

K∑
k=1

Xk

][
Yk −

1

K

K∑
k=1

Yk

]
, (5.2.29)

where X ∼ N(0, 1).

The final term of Equation (5.2.29) is the product of two normal distributions, and

has K − 1 degrees of freedom due to the summation of K normal distributions, each

with the sample mean removed. The variance is therefore the product of the variance

of each distribution in X and Y summed K − 1 times, and therefore the cross second

moment can be written as

mx̃ỹ(t) = mx̃ỹ(0) +

√
1

K

2κ

σ

(
1− 1

K

)
[(etσ − 1)mx̃x̃(0) + (1− e−tσ)mỹỹ(0)]X

+

(
1− 1

K

)
2κ

σ

(etσ − 1)

etσ/2
Y, (5.2.30)
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where Y ∼ N(0, 1). Combining normal distributions, the cross second moment can

be written as

mx̃ỹ(t) = mx̃ỹ(0)+√
1

K

2κ

σ

(
1− 1

K

)
[(etσ − 1)mx̃x̃(0) + (1− e−tσ)mỹỹ(0)] +

(
1− 1

K

)2(
2κ

σ

)2
(etσ − 1)2

etσ
Z,

(5.2.31)

where Z ∼ N(0, 1).

A histogram displaying the distribution of each mx̃x̃, mỹỹ and mx̃ỹ is displayed

in Figure 5.2.1 for 10,000 simulations of nine drifters in a strain-diffusivity field with

σ = 7×10−6/s and κ = 0.1m2/s. The simulated particles trajectories were configured

to have initial positions the same as in LatMix site one, were of length one day and

their positions were sampled every thirty minutes. The red curves correspond to the

chi-square distributions in Equations (5.2.21) and (5.2.22), and the green curve with

the normal distribution in Equation (5.2.31) which confirm we have derived the exact

distribution in each case. The distribution for the second moment of x(t) looks to

approximately follow a normal distribution, however the second moment for y(t) is

skewed towards lower values. These figures therefore show the stretching in x and

compression in y due to the strain.

The limiting cases of Equations (5.2.21), (5.2.22), and (5.2.31) as κ → 0 are

mx̃x̃(t)→ mx̃x̃(0)etσ, mỹỹ(t)→ mỹỹ(0)e−tσ, and mx̃ỹ(t)→ mx̃ỹ(0), meaning that when

diffusivity is zero then there is no random walk component and the second moments

are fully deterministic. Similarly as t → 0, mx̃x̃(t) → mx̃x̃(0), mỹỹ(t) → mỹỹ(0), and

mx̃ỹ(t)→ mx̃ỹ(0), that is to say that the second moment at time zero is just the initial
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Figure 5.2.1: Histogram of second moments (in x-direction (aligned with strain) on

left plot, in y-direction on centre plot, and the xy on the right plot) from 10,000

simulations of nine drifter trajectories (simulated for one day and sampled every

30 minutes) in a strain-diffusivity field, with σ = 7 × 10−6/s and κ = 0.1m2/s.

The red curve corresponds to a chi-squared distribution with K-1 degrees of freedom

and noncentrality parameters as in Equations 5.2.23 and 5.2.24. The green curve

corresponds to a normal distribution, as given in Equation (5.2.31).

second moment, as would be expected.

Second moments after removing initial positions

We will show in Section 5.3 different ways to estimate diffusivity from second moments

when the strain rate is zero. When the diffusivity is estimated from the second

moments mx̃x̃ and mỹỹ, we will show that the diffusivity estimate can sometimes be

negative. This happens if the average distance to the centre of mass is large but the

diffusivity is small then the second moment at the final time could be less than the

initial second moment, which would result in negative diffusivity estimates.

To remedy this, we would need to increase the number of drifters or increase the

length of the simulation. However this could be costly, and in some cases might
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not be practical. Alternatively we could therefore remove the initial positions be-

fore calculating the second moment, which we will show in Section 5.3 will lead to

guaranteed non-negative diffusivity values. To do this, define x̃′(t) = x̃(t)− x̃(0) and

ỹ′(t) = ỹ(t)− ỹ(0). The second moments are then distributed as

mx̃′x̃′(t) =
1

K

K∑
k=1

[
x̃k(0)(e

tσ
2 − 1) +

√
2κ

σ
(etσ − 1)Xk −

√
2κ

σ
(etσ − 1)

1

K

K∑
k=1

Xk

]2

(5.2.32)

=
1

K

2κ

σ
(etσ − 1)zx̃′ , (5.2.33)

mỹ′ỹ′(t) =
1

K

K∑
k=1

[
ỹk(0)(e−

tσ
2 − 1) +

√
2κ

σ
(1− e−tσ)Yk −

√
2κ

σ
(1− e−tσ)

1

K

K∑
k=1

Yk

]2

(5.2.34)

=
1

K

2κ

σ
(1− e−tσ)zỹ′ , (5.2.35)

where zx̃′ and zỹ′ follow noncentral chi-square distributions (shown in Figure 5.2.2)

with K − 1 degrees of freedom and noncentrality parameters

λx̃′ =
σ(e

tσ
2 − 1)2K

2κ(etσ − 1)
mx̃x̃(0), (5.2.36)

λỹ′ =
σ(e−

tσ
2 − 1)2K

2κ(1− e−tσ)
mỹỹ(0). (5.2.37)

We note that Equations (5.2.33) and (5.2.35) are almost identical to Equations

(5.2.21) and (5.2.22), the only change is to the noncentrality parameters, which are

the part of the distributions which contain the initial positions (within the second

moment at time zero).

In Figure 5.2.2 we display the distribution of second moments after removing the

initial positions for the data in Figure 5.2.1. The second moments of yk(t) appear
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Figure 5.2.2: Histogram of re-centred second moments using the same simulation

setup as Figure 5.2.1. The red curve corresponds to a chi-squared distribution with

K degrees of freedom and noncentrality parameters as in Equations 5.2.36 and 5.2.37.

to be more normal than those in Figure 5.2.1, and the mode is further from zero in

Figure 5.2.2. The mean of mỹ′ỹ′ is smaller than that of mỹỹ due to the long tail at

the upper end of the distribution in Figure 5.2.1. Due to the skewness of mỹỹ, if

we were to sample repeatedly from the distribution, we would obtain many samples

which are close to zero. We will show in Section 5.3 that this can result in negative

diffusivity estimates. One way that diffusivity can be estimated from second moments

is as the change in second moment with time. This requires subtracting the second

moment at time zero from the second moment at time t, and so if the second moment

at time t is less than that at time zero the diffusivity estimate will be negative. This

is undesirable since diffusivity should be positive.

In Section 5.3 we will derive the distribution and errors for diffusivity estimates

before and after removing the initial positions. We will initially do this for the simple

case where σ = 0, and so we estimate the second moments of x(t) and y(t) where we

have set the strain rate to be zero.
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5.2.1 Diffusivity-Only Second Moment

We now calculate the second moment for particle trajectories with no mesoscale com-

ponent. We do this for the second moments of x̃k(t) and ỹk(t) and the second mo-

ments of x̃′k(t) and ỹ′k(t). These expressions are not immediate from Equations 5.2.21,

(5.2.22), (5.2.33) and (5.2.35) as setting σ = 0 returns 0/0 values in numerous places

and therefore we must resort to expansions to resolve the correct values.

We begin with the second moments of x̃k(t) and ỹk(t). We take a first-order Taylor

series expansion of etσ (≈ 1+tσ) and e−tσ (≈ 1−tσ) to approximate Equations (5.2.21)

and (5.2.22) with strain rate set to zero as

mx̃x̃,σ=0 =
2κt

K
zx̃,σ=0, (5.2.38)

mỹỹ,σ=0 =
2κt

K
zỹ,σ=0, (5.2.39)

where zx̃,σ=0 and zỹ,σ=0 follow noncentral chi-square distributions with K − 1 degrees

of freedom. We also take a Taylor expansion of etσ in the noncentrality parameters,

which we approximate as

λx̃,σ=0 =
K

2κt
mx̃x̃(0), (5.2.40)

λỹ,σ=0 =
K

2κt
mỹỹ(0), (5.2.41)

when the strain rate has been set to zero.

Now, we find the second moments of x̃′k(t) and ỹ′k(t). This is again done by taking

a Taylor expansion of etσ, hence we obtain second moments with the strain rate set



CHAPTER 5. ANALYTICAL DERIVATIONS OF ERRORS 157

to zero

mx̃′x̃′,σ=0 =
2κt

K
zx̃′,σ=0, (5.2.42)

mỹ′ỹ′,σ=0 =
2κt

K
zỹ′,σ=0, (5.2.43)

where zx̃′,σ=0 and zỹ′,σ=0 are central chi-square distributions with K − 1 degrees of

freedom, mean K − 1 and variance 2(K − 1). Note that we have a central chi-square

distribution and so λx̃′ = λỹ′ = 0. This means that the second moments of x̃′ and ỹ′

do not depend on the second moments at time zero, and hence do not depend on the

initial positions. The second moments only depend on the number of drifters, time

length of the particle trajectories, and the value of the diffusivity.

The only difference between Equations (5.2.38) and (5.2.42) and between Equa-

tions (5.2.39) and (5.2.43) is the noncentrality parameters being nonzero when the

initial positions are not removed. Therefore the second moments of x̃ and ỹ depend

on the initial positions, while second moments of x̃′ and ỹ′ do not.

Removing the initial positions before calculating the second moments will reduce

the probability of the diffusivity estimates being negative, compared with estimating

diffusivity from second moments where the initial positions have not been removed,

as we shall show. Specifically, in the next section we will show that this is because

the variance of the diffusivity estimates calculated from mx̃′x̃′ and mỹ′ỹ′ is lower than

that from mx̃x̃ and mỹỹ, but both estimates have the same bias.
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5.3 Diffusivity Estimation and Errors (no strain)

The second moments of x(t) and y(t) can be used to obtain estimates of the diffusivity.

We calculate the distribution of this diffusivity estimate (when σ = 0) from Equations

(5.2.38), (5.2.39), (5.2.42) and (5.2.43). There are three different ways in which we

could estimate diffusivity in centre of mass coordinates: we could use the observed

positions, x̃, ỹ, we could re-centre the positions to start at the origin, x̃′, ỹ′, or we

could re-centre the positions and unbias the estimate. We now show the expectation,

variance and mean squared error (MSE) for each method.

Throughout this section we define the mean squared distance of the drifters to the

origin in the initial deployment to be

d2
0 =

1

K

K∑
k=1

[
(x̃k(0))2 + (ỹk(0))2

]
(5.3.1)

= mx̃x̃(0) +mỹỹ(0). (5.3.2)

5.3.1 Centre of Mass Coordinates (Observed)

Calculating the diffusivity using the observed positions, after removing the centre of

mass, gives a diffusivity estimate with distribution given by

κ̂obs(t) =
mx̃x̃,σ=0(t) +mỹỹ,σ=0(t)−mx̃x̃,σ=0(0)−mỹỹ,σ=0(0)

4t
=

1

2K
κz − d2

0

4t
, (5.3.3)

where z ∼ χ2
2K−2(λx̃,σ=0 +λỹ,σ=0) and has mean 2K−2 +λx̃,σ=0 +λỹ,σ=0 and variance

2(2K − 2 + 2[λx̃,σ=0 + λỹ,σ=0)]. Hence the expectation and variance of the diffusivity
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estimate are

E(κ̂obs(t)) =
1

2K
κ

(
2K − 2 +

Kd2
0

2κt

)
− d2

0

4t
(5.3.4)

=

(
1− 1

K

)
κ, (5.3.5)

var(κ̂obs(t)) =

[
1

2K
κ

]2

2

(
2K − 2 + 2

2Kd2
0

κt

)
(5.3.6)

=
κ2

K

(
1− 1

K

)
+

κ

2Kt
d2

0. (5.3.7)

The bias of this diffusivity estimate is [E(κ̂obs(t)) − κ] = −κ/K which → 0 as

K → ∞, meaning that estimating diffusivity from the second moment is only an

unbiased estimator asymptotically as the number of drifters approaches infinity.

For fixed K and t, the variance of the diffusivity estimate scales as O(d2
0). The

distance from the centre of mass, d2
0, only exists in one term, and so the variance has

a lower bound (for fixed K) which is found by setting d2
0 to zero. In contrast, K is

in both terms, and as the number of drifters increases, the standard deviation tends

towards zero as O(1/
√
K), consistent with the law of large numbers.

The mean squared error of the estimate is equal to the variance plus the bias

squared. Hence,

MSE(κ̂obs(t)) =
κ2

K

(
1− 1

K

)
+

κ

2Kt
d2

0 +
(
− κ

K

)2

(5.3.8)

=
κ2

K
+

κ

2Kt
d2

0. (5.3.9)

The root mean squared error (RMSE) therefore scales with d0, and goes to a constant

nonzero value as d0 goes to zero. As the number of drifters increases, the estimate

approaches the true value at O(1/
√
K). For small t the MSE due to the initial

positions could be large if the drifters are not deployed close together. Hence, we will
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now show a re-centred diffusivity estimate where we will remove the initial conditions

before estimating the diffusivity.

5.3.2 Centre of Mass Coordinates (Re-Centred)

If the diffusivity is instead estimated after removing initial positions in centre of mass

coordinates, then its distribution follows

κ̂re-centred(t) =
mx̃′x̃′,σ=0(t) +mỹ′ỹ′,σ=0(t)

4t
=

κ

2K
z′, (5.3.10)

where z′ ∼ χ2
2K−2 has mean 2K − 2 and variance 2(2K − 2), hence the expectation

and variance are

E(κ̂re-centred(t)) =

(
1− 1

K

)
κ (5.3.11)

var(κ̂re-centred(t)) =
[ κ

2K

]2

(4K − 4) =
κ2

K

(
1− 1

K

)
. (5.3.12)

Therefore, estimating diffusivity with or without removing initial positions have

the same expectation and bias, that is the bias is again − κ
K

. However, the variance of

estimating diffusivity with or without removing initial positions is different, as there

is an additional variance not present in Equation (5.3.12) attributed to the initial

positions. Specifically, the variance of the re-centred estimate is equivalent to setting

d0 to zero for the previous diffusivity estimate in Equation (5.3.7). Therefore the

variance of the re-centred estimates will always be less than or equal to that of the

observed estimates.

Using the observed positions can result in an incorrect negative diffusivity esti-

mate, as can be seen in Figure 5.3.1. The left panel shows the histogram of estimates
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Figure 5.3.1: Histogram of diffusivity estimates calculated from the second moment,

where the true diffusivity was κ = 0.1m2/s and σ = 0. Otherwise the same simulation

setup is used as in Figure 5.2.1. The red curve corresponds to the theoretical distribu-

tion of the estimates, from Equations (5.3.3), (5.3.10) and (5.3.14). The red vertical

line displays the sample mean, and is hence the mean of the blue histogram. The left

panel displays estimates from observed particle trajectories, the centre panel displays

estimates from the re-centred trajectories, and the right panel shows the de-biased

estimates from the re-centred particle trajectories.

for the observed data (with theoretical distribution overlaid to show agreement), which

has a larger variance than the centre panel which displays a histogram of the estimates

from the re-centred data (again with theoretical distribution overlaid). Note that the

theoretical expectation (and bias) for each of the left and centre plots is the same, as

derived in Equations (5.3.5) and (5.3.11).

The rate in which the variance in Equation (5.3.12) decreases is no longer affected

by the initial positions and so neither is the rate at which the diffusivity estimate

approaches the true diffusivity. The variance approaches zero at the same rate as

with the observed positions when we increase the number of drifters (O(1/
√
K)).
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The mean squared error is simply

MSE(κ̂re-centred(t)) =
κ2

K
. (5.3.13)

Similarly to the variance, the MSE is the same as for the observed positions, but

without the part attributed to d2
0. Hence, the same MSE could be obtained using

observed positions if all drifters were deployed at the origin. The reduction in the

MSE comes from a reduction in the variance, as the estimate is still biased by the

same amount. We will now consider an unbiased estimate of the diffusivity to see how

the error changes.

5.3.3 Centre of Mass Coordinates (Re-Centred and Unbi-

ased)

We have seen that removing the initial positions decreases the variance of the diffu-

sivity estimate, but has no effect on the bias. Since we know the bias of the re-centred

estimator we could de-bias the estimates. The debiased diffusivity estimate would be

defined and hence distributed as

κ̂unbiased(t) =
mx̃′x̃′,σ=0 +mỹ′ỹ′,σ=0

4t

(
1− 1

K

)−1

=
κ

2K

(
1− 1

K

)−1

z′. (5.3.14)

This estimator isn’t biased, and the expected value is the true diffusivity, κ which

can be verified by observing that

E(κ̂unbiased(t)) =
κ

2K

(
1− 1

K

)−1

(2K − 2) = κ, (5.3.15)

where recall that z′ is a chi-squared distribution with 2K − 2 degrees of freedom, and
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hence mean equal to 2K − 2. The variance is

var(κ̂unbiased(t)) =
( κ

2K

)2

2(2K − 2) =
κ2

K
(
1− 1

K

) =
κ2

K − 1
. (5.3.16)

The MSE is simply equal to the variance as the bias is zero, that is MSE(κ̂unbiased(t)) =

κ2

K−1
. Hence, the bias correction actually results in a slightly larger MSE than for the

re-centred estimator. This is analogous to the general choice of choosing between bi-

ased and un-biased estimators of variance and (auto-)covariance in classical statistics.

Typically the biased estimator is preferred as it has a lower variance and MSE.

The de-biased estimates for diffusivity are displayed in the right panel of Fig-

ure 5.3.1. We can see that while the expectation of the de-biased estimator is almost

equal to the true diffusivity, the variance is larger than that for the re-centred es-

timates. The observed positions produced the diffusivity estimator with both the

highest bias and variance, and should therefore not be used.

5.3.4 Summary

We introduced three different possible estimators for diffusivity. As a summary, the

bias, variance and MSE for each estimator is displayed in Table 5.3.1. The estimator

κ̂obs(t) has the highest variance and MSE. The estimator κ̂unbiased(t) has the lowest

bias of zero, however it has a larger variance than κ̂re-centred(t) as removing the bias

caused the variance to increase for κ̂unbiased(t). Overall, κ̂re-centred(t) has the lowest

MSE, and we therefore suggest that the re-centred estimate of diffusivity is preferable

for this reason.

We can use Table 5.3.1 to reinforce the results from Chapter 4 relating to the
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Estimator Expectation Variance Bias MSE

κ̂obs(t)
(
1− 1

K

)
κ κ2

K

(
1− 1

K

)
+ κ

2Kt
d2

0 −κ/K κ2

K
+ κ

2Kt
d2

0

κ̂re-centred(t)
(
1− 1

K

)
κ κ2

K

(
1− 1

K

)
−κ/K κ2

K

κ̂unbiased(t) κ κ2

K−1
0 κ2

K−1

Table 5.3.1: A table displaying the expectation, variance, bias and MSE of each

estimator from Sections 5.3.1, 5.3.2 and 5.3.3. The ‘best’ in each column is given in

red text, where ‘best’ is determined by that with the expectation closest to the true

value and the lowest value for each of the variance, bias and MSE.

deployment of drifters, however we note that those results were for the error of the

strain rate estimates, whereas the results in Table 5.3.1 only apply to diffusivity. The

MSE all three diffusivity estimators are O( 1
K

), meaning that the RMSE is O( 1√
K

), as

was the case in Section 4.2 for the strain rate. Similarly, the RMSE of κ̂obs(t) scales

as 1√
t
, and we showed in Section 4.3 that the strain rate error was O( 1√

t
). The RMSE

of κ̂obs(t) cannot go to zero however, as there is a term that does not depend on time,

so as t → ∞ the RMSE would approach a constant value, assuming κ and K are

constant. We note that the MSE κ̂re-centred(t) and κ̂unbiased(t) do not depend on time,

and hence do not display the same result as in Section 4.3, meaning that increasing

the number of time points will not decrease the error of the estimators. Therefore, it

is more efficient to reduce the error of diffusivity estimates by choosing an estimator

with lower error (i.e. using the re-centred estimator), as opposed to needing to collect

more data — at least in the case of diffusivity estimation via method-of-moments.
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We have seen that the errors for diffusivity and strain rate appear to behave in

the same way as we change the number of drifters or the number of observed time

points. However, they do not appear behave in the same way when the distance to the

centre of mass is changed. In Section 4.4 we showed that the error of the strain rate

estimates decreased as drifters were placed further from the centre of mass, which

is equivalent to increasing d2
0. The RMSE of κ̂obs(t) on the other hand is O(d0),

meaning that the error increases as the distance to the centre of mass increases.

This suggests that the optimal morphology is not only dependent on which mesoscale

parameters are being estimated, but also on whether we are interested in the diffusivity

estimates. We note that the results for strain rate are based on simulation and the

least squares estimator, whereas the diffusivity results are derived from method-of-

moments estimation. Therefore, to investigate further we now provide a distribution

for the method-of-moments estimator for the strain rate.

5.4 Strain Rate and Angle Estimation

In the previous section we derived the distributions and errors for method-of-moments

estimators of diffusivity when the true strain rate is zero. We now derive the distri-

bution for an estimator of the strain rate in a strain-diffusive field estimated from

the observed second moments of x(t) and y(t). We use this distribution to quantify

the error of strain rate estimates, and look at the scaling behaviour of the analytical

expression of the error. The scaling behaviour is used to comment on how drifters

should be deployed to reduce the error of strain rate estimates.
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Throughout this section we will assume that the particle positions are given in a

rotated coordinate frame where x is aligned with the stretching caused by the strain

and y is perpendicular to this and aligned with where the positions are compressed

by the strain. Typically drifter trajectories will (at least initially) not generally be

aligned with the strain angle, and so this must be estimated first, as we shall now

describe.

5.4.1 Strain Angle Estimation

We derive an expression for the strain angle using second moments. The drifter

positions can then be rotated such that they are aligned with the strain angle.

The strain angle can be estimated from the second moments of the raw (unrotated)

particle positions, which we denote as mr
x̃x̃(t), m

r
ỹỹ(t), and mr

x̃ỹ(t). When the drifter

positions are given in a reference frame that is aligned with the strain angle the

expected cross second moment doesn’t change with time, that is mx̃ỹ(t) = mx̃ỹ(0).

We note that the cross second moment in Equation (5.2.31) had expectation mx̃ỹ(0) as

we would expect as this was derived in a rotated reference frame (with strain aligned

along the x-axis), however it had a non-zero variance due to the non-deterministic

nature of drifter trajectories.

We therefore wish to find the value for θ such that mx̃ỹ(t)−mx̃ỹ(0) = 0. We look

at the rotation of ∆mx̃ỹ = mx̃ỹ(t)−mx̃ỹ(0) to find

∆mx̃ỹ = − cos θ sin θ∆mr
x̃x̃ + cos θ sin θ∆mr

ỹỹ +
(
cos2 θ − sin2 θ

)
∆mr

x̃ỹ, (5.4.1)

where ∆mx̃x̃ = mx̃x̃(t) − mx̃x̃(0) and ∆mỹỹ = mỹỹ(t) − mỹỹ(0). We set ∆mx̃ỹ = 0,
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and rewrite Equation (5.4.1) as

0 = −1

2
sin 2θ∆mr

x̃x̃ +
1

2
sin 2θ∆mr

ỹỹ + cos 2θ∆mr
x̃ỹ, (5.4.2)

Therefore, the strain angle is given by

tan 2θ =
2∆mr

x̃ỹ

∆mr
x̃x̃ −∆mr

x̃x̃

. (5.4.3)

The second moments can be rotated by θ to align with the strain angle, and for

the remainder of the chapter we will assume that this rotation has taken place. We

do not comment on the error of the strain angle estimates, nor do we investigate how

this error will affect further estimates through the rest of this chapter. We leave these

as areas for future work.

5.4.2 Strain Rate Estimation

We now assume that the particle positions have been correctly rotated by the strain

angle and derive an estimator for the strain rate in this rotated coordinate system.

We will use this estimator to calculate an approximation to the errors, which will be

used to comment on the optimal drifter deployment morphology.

As diffusivity is calculated from the residual flow, Equations (5.3.3), (5.3.10), and

(5.3.14) can be used when the strain rate is not zero, if strain rate has first been

estimated and subtracted from the drifter positions. Strain rate therefore needs to

be estimated without prior knowledge of the diffusivity, and so diffusivity needs to

be eliminated from the equations to be able to estimate strain rate. To eliminate

diffusivity, we divide the expected second moment of x̃k(t) by the expected second
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moment of ỹk(t) from Equations (5.2.25) and (5.2.26). This gives us a statistic which

is distributed as

E[mx̃x̃(t)]−mx̃x̃(0)etσ

E[mỹỹ(t)]−mỹỹ(0)e−tσ
= − (etσ − 1)

(e−tσ − 1)
. (5.4.4)

We multiply out to obtain

(E[mx̃x̃(t)]−mx̃x̃(0)etσ)(e−tσ − 1) = −(E[mỹỹ(t)]−mỹỹ(0)e−tσ)(etσ − 1). (5.4.5)

Multiplying out the brackets, and collecting terms,

E[mx̃x̃(t)](e
−tσ − 1)−mx̃x̃(0)(1− etσ) = −E[mỹỹ(t)](e

tσ − 1) +mỹỹ(0)(1− e−tσ),

(5.4.6)

{E[mx̃x̃(t)] +mỹỹ(0)} (e−tσ − 1) = −{E[mỹỹ(t)] +mx̃x̃(0)} (etσ − 1). (5.4.7)

Hence,

E[mx̃x̃(t)] +mỹỹ(0)

E[mỹỹ(t)] +mx̃x̃(0)
= − (etσ − 1)

(e−tσ − 1)
= etσ. (5.4.8)

Therefore, the strain rate can be estimated from observed second moments as

σ̂ =
1

t
log(mx̃x̃(t) +mỹỹ(0))− 1

t
log(mỹỹ(t) +mx̃x̃(0)). (5.4.9)

In Figure 5.4.1 we show in a histogram a collection of strain rate estimates over

100,000 repeated simulations using the method of Chapter 3. The red curve, on the

other hand, corresponds to a kernel density estimate of the estimates obtained using

Equation (5.4.9) over the same 100,000 repeat simulations, where the true strain rate

was set to be 7 × 10−6 and is highlighted with the yellow vertical line. We see that

Equation (5.4.9) appears to be a reasonable estimate for the strain rate (and have
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Figure 5.4.1: Histogram of strain estimates using least squares regression from Chap-

ter 3 over 100,000 repeated simulations, using the same simulation setup as in Fig-

ure 5.2.1. The red curve corresponds to a kernel density estimate from the same

simulations from Equation (5.4.9), the green curve corresponds to a normal approxi-

mation with parameters given in Equations (5.4.13) and (5.4.14), and the yellow line

shows the true strain rate of 7× 10−6/s.
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a similar distribution to the least squares method of Chapter 3), and because it has

been derived under expectation it should produce unbiased estimates.

Recall that in Equations (5.2.21) and (5.2.22) we showed that the second moments

mx̃x̃(t) and mỹỹ(t) both followed exact chi-squared distributions under the assump-

tions of our strain-diffusive model. The distribution of σ̂ in Equation (5.4.9) therefore

follows an addition of two independent non-central log chi-squared distributions. This

probability density has no known analytical form and must be computed numerically

(see Pav (2015) for more details on the log chi-squared distribution). However a nu-

merical form will not reveal scaling behaviours with respect to different parameters.

There instead we proceed by approximating this density via a normal distribution as

we shall now show.

5.4.3 Normal Approximation of Strain Rate Estimator

We can analyse the distribution of the method-of-moments estimator for the strain

rate, given in Equation (5.4.9), to better understand its scaling behaviour with re-

spect to different parameters of the drifter deployment. However, we cannot directly

obtain the expectation and variance of the estimator from Equation (5.4.9) as this

is not analytically solvable and instead would have to be computed numerically for

given parameter values. We will therefore instead approximate the distribution of the

estimator in Equation (5.4.9) with a normal distribution to obtain a theoretical form

for the error as a function of different parameter values.

The log of a chi-squared distribution approaches a normal distribution faster with

K than a chi-squared distribution. Initially it therefore appears to be better to write
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Equation (5.4.9) as a sum of two log chi-squared distributions before approximating

as a normal distribution. At first glance, we know that mx̃x̃(t) and mỹỹ(t) follow

noncentral chi-square distributions, and that mx̃x̃(0) and mỹỹ(0) are constants. How-

ever, we cannot combine mx̃x̃(t) with mỹỹ(0), or mỹỹ(t) with mx̃x̃(0), to form a single

chi-square distribution. This is because the constant term would need to be added to

the mean, but the mean of the noncentral chi-square distribution is determined by the

noncentrality parameter, which is the sum of the degrees of freedom and the squared

means of the squared random variables which were summed to form the chi-square

distribution. Since mỹỹ(0) and mx̃x̃(0) are not the mean of any of the squared random

variables, then it cannot be added to the mean of the chi-squared distribution, and

we cannot combine the terms to form a chi-squared distribution.

We therefore will approximate the second moments inside Equation (5.4.9) as nor-

mal distributions before taking the log and summing. To do this, we use the expec-

tation and variance of mx̃x̃(t) and mỹỹ(t) from Equations (5.2.25), (5.2.26), (5.2.27),

and (5.2.28). Taking a normal approximation, we approximate Equation (5.4.9) as

σ̂t ≈ log
[√

var(mx̃x̃(t))X + E(mx̃x̃(t)) +mỹỹ(0)
]

− log

[√
var(mỹỹ(t))Y + E(mỹỹ(t)) +mx̃x̃(0)

]
, (5.4.10)

where X ∼ N(0, 1) and Y ∼ N(0, 1). To take the log and combine both terms into

a single distribution, we will take a Taylor expansion. To do this we must first write
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Equation (5.4.10) as

σ̂t ≈ log

[ √
var(mx̃x̃(t))

E(mx̃x̃(t)) +mỹỹ(0)
X + 1

]
+ log[E(mx̃x̃(t)) +mỹỹ(0)]

− log

[ √
var(mỹỹ(t))

E(mỹỹ(t)) +mx̃x̃(0)
Y + 1

]
− log[E(mỹỹ(t)) +mx̃x̃(0)]. (5.4.11)

Taking a Taylor expansion, we get

σ̂t ≈
√

var(mx̃x̃(t))

E(mx̃x̃(t)) +mỹỹ(0)
X + log[E(mx̃x̃(t)) +mỹỹ(0)]

−
√

var(mỹỹ(t))

E(mỹỹ(t)) +mx̃x̃(0)
Y − log[E(mỹỹ(t)) +mx̃x̃(0)]. (5.4.12)

Hence we find that

E(σ̂) ≈ 1

t
log

[
E(mx̃x̃(t)) +mỹỹ(0)

E(mỹỹ(t)) +mx̃x̃(0)

]
, (5.4.13)

var(σ̂) ≈ 1

t2

[
var(mx̃x̃(t))

{E(mx̃x̃(t)) +mỹỹ(0)}2
+

var(mỹỹ(t))

{E(mỹỹ(t)) +mx̃x̃(0)}2

]
. (5.4.14)

The expectation of σ̂ is approximated to be simply σ, suggesting an unbiased

estimator. This is because the expectation in Equation (5.4.13) is equivalent to that

found in Equation (5.4.8) which was used to form an estimator for σ.

Finally, we take a normal approximation of the distribution of the σ̂ in Equation

(5.4.9) to assume that the strain rate estimates are distributed as

σ̂Norm ∼ N (σ, var(σ̂)) , (5.4.15)

where the σ̂Norm denotes the normal approximation of the strain rate.

The normal approximation for the strain rate distribution is shown in the green

curve of Figure 5.4.1, and appears to be a good fit to the histogram, for the chosen

parameter values which were motivated by observations and settings from the LatMix
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experiment. However, strain and diffusivity vary across the ocean, if they didn’t then

estimating them would be a much simpler problem! We therefore require the strain

rate estimates from Equation (5.4.9) as well as the normal approximation for their

distribution in Equation (5.4.15) to be a good estimate in terms of bias and variance

for different possible strain rate and diffusivity values. To show that Equations (5.4.9)

and (5.4.15) are approximately valid for different parameter values, we will now look

at the way that these equations were derived and any possible limitations that may

cause.

5.4.4 Limitations of Normal Approximation to Method-of-

Moments Strain Rate Estimator

We made approximations when we derived the distributional form of Equation (5.4.15),

and so for any parameter values where these approximations might not hold, the nor-

mal approximation could be unreliable. In this section we discuss the assumptions we

made and how they affect the normal approximation from Equation (5.4.15).

The normal approximation assumes that the strain rate estimates themselves are

normally distributed, and this is the case when the degrees of freedom in the chi-

squared distribution (of the second moments) is large. Therefore, when we have a

small number of drifters, the normal approximation in Equation (5.4.15) may no longer

be suitable. In Figure 5.4.2 we repeat the simulations from Figure 5.4.1, but reduce

the number of drifters from nine to three. We see that the normal approximation

gives approximately the same distribution of estimates as the kernel density estimate
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Figure 5.4.2: As in Figure 5.4.1, but reducing the number of drifters to K = 3.

of Equation (5.4.9), and so is a good approximation. The expected strain rate from

the normal approximation is equal to the true strain rate, as would be expected from

Equation (5.4.9). We note that the estimates from the least squares estimate from

Chapter 3, appear to have a slightly different distribution to those from Equation

(5.4.9) and the normal approximation. This is likely to be due to a difference between

the definition of the estimates—the least squares estimates of the strain rate are

defined to be strictly positive, whereas estimates from Equation (5.4.9) can be either

positive or negative. A negative strain rate is equivalent to rotating the angle of a

positive strain rate by 90 degrees, and then the negative estimates in Figure 5.4.2

could be mirrored at σ = 0. Further simulations (not shown) indicate that negative

strain rates are seen for K ≤ 3 in Figure 5.4.2, for K > 3 however the least squares

and method-of-moment estimators appear to be increasingly equivalent. These results

may vary as model parameters vary from those in our simulations.
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Approximating the distribution of Equation (5.4.9) as a normal distribution in

Equation (5.4.15) required us to take a Taylor approximation in Equation (5.4.12).

The expectation and variance of the normal approximation to the strain rate estimates

are therefore only likely to hold close to the expansion points which were x̃ = 0 and

ỹ = 0. In Equation (5.4.12) we took a Taylor expansion of

log

[ √
var(mx̃x̃(t))

E(mx̃x̃(t)) +mỹỹ(0)
X + 1

]
and log

[ √
var(mỹỹ(t))

E(mỹỹ(t)) +mx̃x̃(0)
Y + 1

]

(5.4.16)

to get

√
var(mx̃x̃(t))

E(mx̃x̃(t)) +mỹỹ(0)
X and

√
var(mỹỹ(t))

E(mỹỹ(t)) +mx̃x̃(0)
Y. (5.4.17)

The Taylor expansion breaks down when these terms become large, and as X and

Y are normal distributions with O(1) values, the Taylor expansion will break down

when

√
var(mx̃x̃(t))

E(mx̃x̃(t)) +mỹỹ(0)
=

2κ
σK

(etσ − 1)

√
2
(
K − 1 + 2 σK

2κ(1−e−tσ)
mx̃x̃(0)

)
2κ
σK

(etσ − 1)
(
K − 1 + σK

2κ(1−e−tσ)
mx̃x̃(0)

)
+mỹỹ(0)

(5.4.18)

and

√
var(mỹỹ(t))

E(mỹỹ(t)) +mx̃x̃(0)
=

2κ
σK

(1− e−tσ)

√
2
(
K − 1 + 2 σK

2κ(etσ−1)
mỹỹ(0)

)
2κ
σK

(1− e−tσ)
(
K − 1 + σK

2κ(etσ−1)
mỹỹ(0)

)
+mx̃x̃(0)

(5.4.19)

are large.

Equations (5.4.18) and (5.4.19) will never become larger than 1 for any choice of

parameters where K > 3, as we will now show. We will rewrite Equations (5.4.18)

and (5.4.19) in terms of dimensionless parameters for the time scale t̄ and the length
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scales x̄ and ȳ, which we define as follows

t̄ = σt, x̄ =
x̃√

(2κ)/σ
, ȳ =

ỹ√
(2κ)/σ

. (5.4.20)

We note that changing the value of t is synonymous with changing σ in the time scale

as e(2t)σ ≡ et(2σ). The length scale is chosen such that if mȳȳ(0) = 1, then the initial

positions are in equilibrium such that the strain and diffusivity are acting to keep

mȳȳ(t) constant at (2κ)/σ.

Substituting the dimensionless variables, Equation (5.4.18) is written as

√
var(mx̃x̃(t))

E(mx̃x̃(t)) +mỹỹ(0)
=

1
K

(et̄ − 1)

√
2
(
K − 1 + 2K

(1−e−t̄)mx̄x̄(0)
)

1
K

(et̄ − 1)
(
K − 1 + K

(1−e−t̄)mx̄x̄(0)
)

+mȳȳ(0)
(5.4.21)

and Equation (5.4.19) as

√
var(mỹỹ(t))

E(mỹỹ(t)) +mx̃x̃(0)
=

1
K

(1− e−t̄)
√

2
(
K − 1 + 2K

(et̄−1)
mȳȳ(0)

)
1
K

(1− e−t̄)
(
K − 1 + K

(et̄−1)
mȳȳ(0)

)
+mx̄x̄(0)

. (5.4.22)

To show that Equations (5.4.21) and (5.4.22) never become large enough for the

Taylor expansion to break down, we start by looking at the limit as K → ∞. We

write Equations (5.4.21) and (5.4.22) as

√
var(mx̃x̃(t))

E(mx̃x̃(t)) +mỹỹ(0)
=

(et̄ − 1) 1√
K

√
2
(

1− 1
K

+ 2
(1−e−t̄)mx̄x̄(0)

)
(et̄ − 1)

(
1− 1

K
+ 1

(1−e−t̄)mx̄x̄(0)
)

+mȳȳ(0)
(5.4.23)

and

√
var(mỹỹ(t))

E(mỹỹ(t)) +mx̃x̃(0)
=

(1− e−t̄) 1√
K

√
2
(

1− 1
K

+ 2
(et̄−1)

mȳȳ(0)
)

(1− e−t̄)
(

1− 1
K

+ 1
(et̄−1)

mȳȳ(0)
)

+mx̄x̄(0)
. (5.4.24)

Hence both Equations (5.4.18) and (5.4.19) are O(1/
√
K).
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Looking at the scaling as we change the initial positions of the drifters, Equa-

tion (5.4.18) scales as O(1/mȳȳ(0)) and O(1/
√
mx̄x̄(0)). Equation (5.4.19) scales as

O(1/
√
mȳȳ(0)) and O(1/mx̄x̄(0)).

Finally we look at how Equations (5.4.18) and (5.4.19) scale as we change the

timescale, t̄. As t̄→∞, Equation (5.4.21) becomes

√
var(mx̃x̃(t))

E(mx̃x̃(t)) +mỹỹ(0)
→
−
√

2 (K − 1 + 2Kmx̄x̄(0))

− (K − 1 +Kmx̄x̄(0))
(5.4.25)

and Equation (5.4.22) approaches

√
var(mỹỹ(t))

E(mỹỹ(t)) +mx̃x̃(0)
→

√
2 (K − 1)

K − 1 +Kmx̄x̄(0)
. (5.4.26)

Neither Equation (5.4.21) nor Equation (5.4.22) contain mȳȳ(0) as t̄ → ∞, and so

in the long time limit, the initial positions in y have no effect on the Taylor series

expansion. Both Equations (5.4.25) and (5.4.26) remain small (< 1) for all K ≥ 3,

and we require at least 3 drifters to obtain statistically significant estimates, as we

showed in simulation in Section 4.2.

We have shown that Equations (5.4.18) and (5.4.19) never become large, and the

Taylor series expansion will not break down forK ≥ 3. Equations (5.4.13) and (5.4.14)

can therefore be used to obtain good estimates for the expectation and variance of

estimates of the strain rate from Equation (5.4.9). The expectation and variance can

then be used to obtain an approximation of the error and the scaling behaviour of the

estimates as we shall now explore.
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5.4.5 Comparison with scaling behaviour of least-squares es-

timator

In Chapter 4 we studied the error of strain rate estimates using the least-squares es-

timator from Chapter 3, and the effect on these errors that different parameters had

under simulation. We now repeat some of this investigation but using the theoreti-

cal normal approximation to the method-of-moments estimator in Equation (5.4.15),

rather than simulated estimates from least-squares.

The method-of-moments strain rate estimator is unbiased, therefore the MSE is

equal to the variance. We can write the MSE for the method-of-moment estimator in

Equation (5.4.15) as

MSE(σ̂Norm) =
1

t2

{
var(mx̃x̃(t))

{E(mx̃x̃(t)) +mỹỹ(0)}2
+

var(mỹỹ(t))

{E(mỹỹ(t)) +mx̃x̃(0)}2

}
. (5.4.27)

This is simply 1/t2 times the sum of the square of Equations (5.4.18) and (5.4.19),

which we studied the scaling behaviour of in Section 5.4.4. To study the scaling

behaviour of Equation (5.4.27), we write the error as a single fraction rearranging

Equation (5.4.8) to get

E(mx̃x̃(t)) +mỹỹ(0) = etσ [E(mỹỹ(t)) +mx̃x̃(0)] . (5.4.28)

The variance (and equivalently the MSE) of σ̂ can therefore be written as

t2var(σ̂) ≈e
−2tσvar(mx̃x̃(t)) + var(mỹỹ(t))

[E(mỹỹ(t)) +mx̃x̃(0)]2
. (5.4.29)

Substituting var(mx̃x̃(t)), var(mỹỹ(t)) and E(mỹỹ(t)) from Equations (5.2.27),
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(5.2.28) and (5.2.26), the variance becomes

var(σ̂) ≈ 4

t2
1

K

2κ
σ

(1− e−tσ)(
1− 1

K

)
2κ
σ

(1− e−tσ) +mx̃x̃(0) + e−σtmỹỹ(0)
. (5.4.30)

The variance can be written in terms of the dimensionless variables, t̄, x̄, and ȳ as

defined in Equation (5.4.20). Dividing by σ2, the variance becomes

var(σ̂)

σ2
≈ 4

t̄2
1

K

1(
1− 1

K

)
+ mx̄x̄(0)

1−e−t̄ + mȳȳ(0)

et̄−1

. (5.4.31)

The dimensionless variance can be used to obtain scaling behaviour which can be

compared with the scaling behaviour for the least squares estimator from Chapter 4.

We start by considering the scaling behaviour as the number of drifters changes.

Equation (5.4.31) scales as O(1/K), and therefore the RMSE scales as O(1/
√
K).

This is the same result as observed under simulation in Section 4.2.

Now we consider the scaling behaviour as we change the initial positions of the

drifters. Equation (5.4.31) is O(1/mx̄x̄(0)) and O(1/mȳȳ(0)). In Section 4.4 we

didn’t demonstrate the precise scaling behaviour with the initial positions, however

we showed that increasing the distance from the centre of mass decreased the error,

which is consistent with the result for Equation (5.4.31).

Finally, we look at the scaling behaviour as we change the number of time points

by increasing the length of the experiment. Equation (5.4.31) is O(1/t̄2) for large t.

In the limit t→∞, the variance approaches

var(σ̂)

σ2
≈ 4

t̄2
1

K

1(
1− 1

K

)
+mx̄x̄(0)

. (5.4.32)

Therefore, for large time scales, the error depends only upon the starting positions in

x (but not y), and is minimised by increasing the value of mx̄x̄(0) to be as large as

possible.



CHAPTER 5. ANALYTICAL DERIVATIONS OF ERRORS 180

The behaviour of a cluster of drifters can change over time, and the optimal

deployment configuration depends of the phase of the experiment in which we wish

to estimate the parameters. Sundermeyer and Price (1998) model mixing over three

different phases based on the size of a tracer patch. The small-time phase is used

when the tracer is smaller than the mesoscale, the intermediate-time phase when the

tracer is the size of the mesoscale, and the long-time limit where the trace is bigger

than the mesoscale. We will look at the scaling at each of these phases, and have

already shown the scaling behaviour at the long time limit. To consider the small

time limit, we will take a Taylor expansion at t̄ = 0, to obtain

var(σ̂)

σ2
≈ 4

t̄

1

K

1

t̄
(
1− 1

K

)
+mx̄x̄(0) +mȳȳ(0)

. (5.4.33)

In the small-time limit, the variance scales as O(1/t̄). This is because t̄ << 1, and

so the contribution of t̄(1 − 1/K) to the denominator of Equation (5.4.33) is much

less than that of mx̄x̄(0) and mȳȳ(0), and hence t̄
(
1− 1

K

)
+ mx̄x̄(0) + mȳȳ(0) scales

as O(1). Therefore the scaling behaviour with the number of time points changes

depending on the value of t̄. In the small-time limit, changing mx̄x̄(0) has the same

effect on the error as changing mȳȳ(0). To minimise the error we want both mx̄x̄(0)

and mȳȳ(0) to be as big as possible. Hence the optimal morphology for the small-time

limit is different than that of the long-time limit where only the value of mx̄x̄(0) had

an effect on the error.

To look at the intermediate time limit, we require t̄ ≈ 1. We set t̄ = 1 in Equation

(5.4.31), to get

var(σ̂)

σ2
≈ 4

t̄2
1

K

1(
1− 1

K

)
+ mx̄x̄(0)e

e−1
+ mȳȳ(0)

e−1

. (5.4.34)
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In the medium-time limit, there is a shift towards increasing mx̄x̄(0) having a greater

effect on the error than increasing mȳȳ(0). As t̄ increases, then mx̄x̄(0) will have

increasingly more effect in decreasing the error than mȳȳ(0). Therefore, it is optimal to

align the drifters with the strain angle (and hence along mx̄x̄(0)) in order to minimise

the error of the strain estimates, consistent with the findings of Chapter 4.

We note that the above results about the initial positions assume that we have

prior knowledge of the strain angle. We require mx̄x̄(0) (and mȳȳ(0) depending on

the phase of the experiment) to be as large as possible to minimise the error, however

the drifters need to be deployed close enough together such that the strain rate is

approximately constant. Therefore, there will be a practical upper limit on the size of

mx̄x̄(0) and mȳȳ(0), and this limit will likely vary for different parts of the ocean and at

different times. The optimal initial configuration for a strain-only experiment will be

to deploy drifters aligned with the strain angle where mx̄x̄(0) is as large as possible, but

still ensuring the strain rate experienced across the drifters is approximately constant.

This will provide strain rate estimates with the lowest possible error. However the

above analysis only accounts for the error of the strain rate estimates, and as we

showed in Section 4.4, if we wanted to estimate other mesoscale parameters, then the

optimal morphology and experimental setup might be different. This analysis did not

consider the error of estimating diffusivity, and so in the next section we will look at

the error of estimating diffusivity when the strain rate is non-zero.
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5.5 Diffusivity Estimation (with strain)

We provide a diffusivity estimator using method-of-moments where the strain rate is

non-zero. This differs from the estimators in Section 5.3 which required the strain

rate (and other mesoscale parameters) to be zero. We use this estimator to determine

the scaling behaviour, which we use to discuss how to deploy drifters to reduce the

error of the diffusivity estimates.

The diffusivity can be estimated by adding the expected second moments in x̃ and

ỹ from Equations (5.2.25) and (5.2.26) to obtain

4κ

σK
(K − 1) =

E[mx̃x̃(t)]−mx̃x̃(0)etσ

etσ − 1
− E[mỹỹ(t)]−mỹỹ(0)e−tσ

e−tσ − 1
. (5.5.1)

Substituting etσ from Equation (5.4.8) and changing expectations for observed second

moments, the method of moments diffusivity estimator is

κ̂ =
σK

2(K − 1)

[
mx̃x̃(t)mỹỹ(t)−mx̃x̃(0)mỹỹ(0)

mx̃x̃(t)−mỹỹ(t)−mx̃x̃(0) +mỹỹ(0)

]
. (5.5.2)

The expected value of κ̂ is κ. This is because the diffusivity estimator was derived

under expectation. Therefore, estimating diffusivity using method-of-moments in the

presence of strain provides better estimates in terms of bias than when the strain rate

is zero. In Section 5.3 the diffusivity estimator which had the lowest MSE was biased

and had expectation (1− 1/K)κ.

Because the estimator is unbiased, the MSE of κ̂ is equal to the variance, which we

now compute. Equation (5.5.2) is a product of distributions, and it is not straightfor-

ward to calculate the variance of Equation (5.5.2) in its current form. We will instead

work with the log of the diffusivity to obtain an approximation.
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5.5.1 Lognormal Approximation of Diffusivity Estimator

To obtain an estimate of the variance of Equation (5.5.2), we want to estimate the

diffusivity as a single distribution. It is easier to find the distribution of log(κ̂), which

we write as

log(κ̂) = log

(
σK

2(K − 1)

)
+ log [mx̃x̃(t)mỹỹ(t)−mx̃x̃(0)mỹỹ(0)]

− log [mx̃x̃(t)−mỹỹ(t)−mx̃x̃(0) +mỹỹ(0)] . (5.5.3)

We wish to approximate Equation (5.5.2) with a single distribution. We therefore

approximate the distributions of each of the second moments with a normal distribu-

tion,

mx̃x̃(t) = µx̃ + σx̃X, (5.5.4)

mỹỹ(t) = µỹ + σỹY, (5.5.5)

where we have defined µx̃ = E(mx̃x̃(t)), µỹ = E(mỹỹ(t)), σ
2
x̃ = var(mx̃x̃(t)), and

σ2
ỹ = var(mỹỹ(t)) to be the expectation and variances of the second moments, as

defined in Equations (5.2.25), (5.2.26), (5.2.27), and (5.2.28).

To calculate the diffusivity as a single distribution, we look at each term of Equa-

tion (5.5.3) separately, starting with the second term which we can write as

log [mx̃x̃(t)mỹỹ(t)−mx̃x̃(0)mỹỹ(0)]

= log[σx̃σỹXY + σx̃µỹX + σỹµx̃Y + µx̃µỹ −mx̃x̃(0)mỹỹ(0)] (5.5.6)

= log[µx̃µỹ −mx̃x̃(0)mỹỹ(0)] + log

[
σx̃σỹXY + σx̃µỹX + σỹµx̃Y

µx̃µỹ −mx̃x̃(0)mỹỹ(0)
+ 1

]
. (5.5.7)
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Taking a Taylor series expansion, we can approximate this term as

log [mx̃x̃(t)mỹỹ(t)−mx̃x̃(0)mỹỹ(0)]

≈ log[µx̃µỹ −mx̃x̃(0)mỹỹ(0)] +
σx̃σỹXY + σx̃µỹX + σỹµx̃Y

µx̃µỹ −mx̃x̃(0)mỹỹ(0)
. (5.5.8)

The third term of Equation (5.5.3) can be written as

log [mx̃x̃(t)−mỹỹ(t)−mx̃x̃(0) +mỹỹ(0)]

= log[σx̃X − σỹY + µx̃ − µỹ −mx̃x̃(0) +mỹỹ(0)] (5.5.9)

= log[µx̃ − µỹ −mx̃x̃(0) +mỹỹ(0)] + log

[
σx̃X − σỹY

µx̃ − µỹ −mx̃x̃(0) +mỹỹ(0)
+ 1

]
.

(5.5.10)

We approximate this term using a Taylor series expansion to be

log [mx̃x̃(t)−mỹỹ(t)−mx̃x̃(0) +mỹỹ(0)]

≈ log[µx̃ − µỹ −mx̃x̃(0) +mỹỹ(0)] +
σx̃X − σỹY

µx̃ − µỹ −mx̃x̃(0) +mỹỹ(0)
. (5.5.11)

We can now combine all the terms in Equation (5.5.3) as a single distribution.

We can approximate the distribution of XY to be unit normal, as each of X and Y

are unit normal, and so the product will have zero mean, and variance one. While

this product doesn’t exactly follow a normal distribution, it’s a close approximation.

Therefore, we can estimate

log(κ̂) ≈ log

[
σK

2(K − 1)

µx̃µỹ −mx̃x̃(0)mỹỹ(0)

µx̃ − µỹ −mx̃x̃(0) +mỹỹ(0)

]
+

√
σ2
x̃σ

2
ỹ + σ2

x̃µ
2
ỹ + σ2

ỹµ
2
x̃

[µx̃µỹ −mx̃x̃(0)mỹỹ(0)]2
+

σ2
x̃ + σ2

ỹ

[µx̃ − µỹ −mx̃x̃(0) +mỹỹ(0)]2
X ′, (5.5.12)

where X ′ ∼ N(0, 1).
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Using the fact that the expectation of κ̂ in Equation (5.5.2) is κ, the log term

on the right of Equation (5.5.12) is equal to log(κ). We can take the expectation of

Equation (5.5.2) to write

(σK)(µ̄x̃µ̄ỹ −mx̃x̃(0)mỹỹ(0)) = 2κ(K − 1) [µ̄x̃ − µ̄ỹ −mx̃x̃(0) +mỹỹ(0)] , (5.5.13)

and hence the terms inside the square root of Equation (5.5.12) can be combined into

a single fraction, giving

log(κ̂) ≈ log(κ) +

√√√√σ2
x̃σ

2
ỹ + σ2

x̃µ
2
ỹ + σ2

ỹµ
2
x̃ +

(
2κ(K−1)
σK

)2

(σ2
x̃ + σ2

ỹ)

[µx̃µỹ −mx̃x̃(0)mỹỹ(0)]2
X ′. (5.5.14)

Hence κ̂ ∼ lognormal(log(κ), var[log(κ̂)]), where

var[log(κ̂)] =
σ2
x̃σ

2
ỹ + σ2

x̃µ
2
ỹ + σ2

ỹµ
2
x̃ +

(
2κ(K−1)
σK

)2

(σ2
x̃ + σ2

ỹ)

[µx̃µỹ −mx̃x̃(0)mỹỹ(0)]2
. (5.5.15)

A lognormal(a,b2) distribution has expectation ea+b2/2 and variance [eb
2 − 1](e2a+b).

The approximation in Equation (5.5.14) has expectation E(κ̂) = κevar[log(κ̂)]/2. There-

fore, the lognormal distribution produces biased estimates, except when log(κ̂) = 0,

and in this case we would just get the true diffusivity every time. Both the expectation

and the variance of κ̂ are minimised by minimising var[log(κ̂)].

We can use var[log(κ̂)] to place error bars around estimates of κ. We do this by

calculating the quantiles from the lognormal distribution. Writing Equation (5.5.14)

as log(κ̂) = log(κ) + var [log(κ̂)]X ′, the quantiles of the distribution can be calculated

as q = exp[log(κ̂) +
√

2var [log(κ̂)] erf−1(2p − 1)]. The value of
√

2 erf−1(2p − 1) is

equivalent to the quantile of a normal distribution with zero mean. Therefore, a 90%

confidence interval is found by [exp{−1.64var [log(κ̂)]}κ, exp{1.64var [log(κ̂)]}κ], and a
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95% confidence interval is found by [exp{−1.96var [log(κ̂)]}κ, exp{1.96var [log(κ̂)]}κ].

The exact confidence interval will depend on the values of var [log(κ̂)] and κ. This

means that we can be 90% confident that an estimate of κ from Equation (5.5.2) is

approximately (with the approximation coming from the assumptions made to fit the

lognormal distribution) no bigger than exp{1.64var [log(κ̂)]} times κ, and we can be

95% confident that the estimate isn’t bigger than exp{1.96var [log(κ̂)]} times the size

of κ.

5.5.2 Scaling Behaviour of Lognormal Approximation

We now wish to use the distribution of diffusivity estimates in Equation (5.5.14) to

determine how in an idealised setting drifters should be deployed to reduce the error

of the estimates. To know the best way to deploy drifters, we want to look at how

the number of drifters, the length of the experiment, and the initial positions affect

the error. We look at the scaling behaviour of var[log(κ̂)], as this also tells us about

how var(κ̂) scales.

We write var[log(κ̂)] in Equation (5.5.15) in terms of the dimensionless variables

as given in Equation (5.4.20). To do this we define dimensionless expectation and
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variances in x̃ and ỹ to be

µ̄x̃ =
µx̃

2κ/σ
= mx̄x̄(0)et̄ + (et̄ − 1)

(
1− 1

K

)
, (5.5.16)

µ̄ỹ =
µỹ

2κ/σ
= mȳȳ(0)e−t̄ − (e−t̄ − 1)

(
1− 1

K

)
, (5.5.17)

σ̄2
x̃ =

σ2
x̃

(2κ/σ)2 =
2

K
(et̄ − 1)

[
(et̄ − 1)

(
1− 1

K

)
+mx̄x̄(0)et̄

]
=

2

K
(et̄ − 1)µ̄x̃,

(5.5.18)

σ̄2
ỹ =

σ2
ỹ

(2κ/σ)2 =
2

K
(1− e−t̄)

[
(1− e−t̄)

(
1− 1

K

)
+mȳȳ(0)e−t̄

]
=

2

K
(1− e−t̄)µ̄ỹ.

(5.5.19)

The variance of log(κ̂) in dimensionless variables can therefore be written as

var[log(κ̂)] =
σ̄2
x̃σ̄

2
ỹ + σ̄2

x̃µ̄
2
ỹ + σ̄2

ỹµ̄
2
x̃ +

(
K−1
K

)2
(σ̄2

x̃ + σ̄2
ỹ)

[µ̄x̃µ̄ỹ −mx̄x̄(0)mȳȳ(0)]2
. (5.5.20)

We start by looking at the scaling behaviour of Equation (5.5.20) with the number

of drifters, K. We see from Equations (5.5.16)–(5.5.19) that µ̄x and µ̄y are O(1) and

that σ̄2
x and σ̄2

y are O(1/K). Therefore Equation (5.5.20) is also O(1/K), and the

RMSE scales as O(1/
√
K). This is the same scaling behaviour that we observed for

the strain rate, and so both strain rate and diffusivity can be considered together

when choosing the number of drifters in a deployment.

Now we look at the scaling of var[log(κ̂)] as we change t̄. As t̄→∞, µ̄y → (1−1/K)

and σ̄2
y → (2/K)(1−1/K), meaning that there is no dependence on the initial positions

in y in the long-time limit. This same scaling does not happen for µ̄x or σ̄x, as these

approach∞ at rate mx̄x̄(0). This means that for large time scales, var[log(κ̂)] depends

only on the initial positions in x̄ and not the initial positions in ȳ, and that it will

decrease to a non-zero value at rate 1 with mx̄x̄.
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Figure 5.5.1: The scaling of var[log(κ̂)] in Equation (5.5.20) with t̄ (blue line) when

σ = 7 × 10−6, κ = 0.1/s and the time between observations is 30 minutes. The red

line is a reference line of 1/t̄, which is the scaling in the small-time limit.

To look at the scaling behaviour in the small-time limit, we take a Taylor expansion

of µ̄x, µ̄y, σ̄
2
x, and σ̄2

y around t̄ = 0 to obtain

µ̄x̃ ≈ mx̄x̄(0)(1 + t̄) + t̄

(
1− 1

K

)
, (5.5.21)

µ̄ỹ ≈ mȳȳ(0)(1− t̄) + t̄

(
1− 1

K

)
, (5.5.22)

σ̄2
x̃ ≈

2t̄

K

[
t̄

(
1− 1

K

)
+mx̄x̄(0)(1 + t̄)

]
, (5.5.23)

σ̄2
ỹ ≈

2t̄

K

[
t̄

(
1− 1

K

)
+mȳȳ(0)(1− t̄)

]
. (5.5.24)

Substituting only the highest order term in t̄ for each of Equations (5.5.21)–(5.5.24),

we get that var[log(κ̂)] is O(1/t̄), and hence the RMSE is O(1/
√
t̄). This is again the

same result as for the strain rate, and so changing the time the experiment runs for

has the same effect on estimating strain rate and diffusivity.

Finally, we look at the scaling of var[log(κ̂)] as we change the initial positions.

Figure 5.5.2 shows var[log(κ̂)] for different values of mx̄x̄(0) and mȳȳ(0), at t̄ = 0.6, 2
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Figure 5.5.2: The value of var[log(κ̂)] for different values of mx̄x̄(0) and mȳȳ(0), at

t̄ = 0.6, 2, and 3. The coloured dots refer to the initial positions from the LatMix

experiment, transformed into dimensionless variables using the values for σ and κ

from Chapter 3, rotated by σ. The color of the dots correspond as follows: red - Site

1 initial positions, yellow - Site 2 initial positions scaled by the strain estimate for the

first three days of the experiment, green - the positions at the start of day 3 at Site

2, scaled by the strain estimate for the final three days. Each dot is only displayed

for times less than t̄ for that site (see Table 5.5.1).
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and 3.5. The colour corresponds to the value of var[log(κ̂)], which changes for different

initial positions, as well as changing with time. For lower time points, either a large

value of mx̄x̄(0) and a small value of mȳȳ(0), or a small value of mx̄x̄(0) and a large

value of mȳȳ(0) minimises var[log(κ̂)]. As time increases, this relationship gradually

evolves until changing the value of mȳȳ(0) has minimal impact on var[log(κ̂)], but

increasing mx̄x̄(0) will reduce var[log(κ̂)]. Therefore, to reduce the variance of the

estimates, the bottom right corner of these plots is the most optimal across the three

timescales we plotted. Specifically, that corresponds to a large value of mx̄x̄(0), and

a small value of mȳȳ(0). Therefore, to minimise the variance of estimating diffusivity,

it is the most optimal to deploy drifters spread apart along the axis aligned with the

strain angle, and to minimise their spread in the axis orthogonal to the strain angle.

The coloured dots in Figure 5.5.2 correspond to the initial positions of the LatMix

experiment. Because we are working in dimensionless variables, the points have been

scaled by our estimates for σ and κ from Chapter 3. The strain rate wasn’t constant

in time at Site 2, and therefore we have two points corresponding to splitting the time

series in half. Therefore, the red dot corresponds to the initial positions at Site 1,

scaled by 2κ/σ. The yellow dot corresponds to the initial positions at Site 2, scaled

by the strain rate for days 0–3, and the green dot corresponds to the positions of the

drifters at the start of day 3, scaled by the strain rate estimate for days 3–6. The initial

positions have been rotated by the strain angle estimate for each site from Chapter

3. The estimates used for σ, θ, and κ are those displayed in Table 3.5.1, where each

parameter was estimated over the entire 6 day experiment, with the exception of the

strain rate at Site 2, which is taken from Figure 3.5.2. The values of σ, θ, and κ that
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κ (m2/s) σ (/s) T (days) L (m) TE/T mx̄x̄(0) mȳȳ(0) var[log(κ̂)]

Site 1

(days 0–6)

0.19 4.5×10−6 2.6 290 2.33 2.4 3.6 0.48

Site 2

(days 0–3)

1.9 1.5×10−5 0.77 490 3.9 0.59 1.6 0.59

Site 2

(days 3–6)

1.90 2.3×10−6 5.03 1280 0.60 12.9 0.26 0.38

Table 5.5.1: A table of the value of var[log(κ̂)] for each site of the Latmix experiment

(splitting Site 2 in half corresponding to different strain rates) for the values of κ and

σ that are given in the table, and their corresponding dimensionless initial positions,

mx̄x̄ and mȳȳ. Also given are the time scales T, defined as 1/σ, the length scale L,

defined as
√

2κ/σ, and the experiment length in non-dimensional time units TE/T.



CHAPTER 5. ANALYTICAL DERIVATIONS OF ERRORS 192

were used to calculate the initial positions in Figure 5.5.2 are shown in Table 5.5.1.

The table also displays the time scale T, which is equivalent to 1/σ, the length scale

L, defined as
√

2κ/σ, the experiment length in dimensionless units TE/T, equal to the

length of the experiment divided by T, the non dimensional initial positions mx̄x̄(0)

and mȳȳ(0), and the value of var[log(κ̂)] at the final time point of each experiment

(TE/T). Note that TE/T is equivalent to the value of t̄ at the end of the experiment

(either 3 or 6 days). Each point is only displayed on the figure for values of t̄ which

are relevant, if the experiment time TE/T is less than the value of t̄ then that point

is not shown in the figure.

Of the three points corresponding to the LatMix experiment, the one with the

lowest variance is the green dot – which represents the second half of the experiment

at Site 2. The values used for mx̃x̃(0) and mỹỹ(0) are the position of the drifter at the

start of day 3, and therefore these positions were the result of the drifters movement

through days 0-3 and are not the initial deployment positions. The initial deployment

positions (scaled by the value of strain for the first three days) are shown in the yellow

dot. Therefore, the drifter has moved itself into a morphology where the variance of

estimating κ has reduced when compared with the initial drifter morphology. This is

due to the effects of the strain on the drifters, stretching them along the x axis, and

compressing them along the y axis. Our parameter estimates for the LatMix campaign

in Chapter 3 could potentially have been improved if the drifters had been deployed

along the axis aligned with the strain angle, and more compressed in the orthogonal

axis. In the case of Site 2, this could have resulted with diffusivity estimates where

var[log(κ̂)] was reduced by a factor of two, and in Site 1 var[log(κ̂)] could be reduced
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by up to a factor of three. These factors correspond to choosing a drifter deployment

with mx̄x̄(0) = 10 and mȳȳ(0) = 0.1, which is in the area of the figure where var[log(κ̂)]

is minimised all three values of t̄.

5.6 Discussion and Conclusions

In this chapter we have showed that the scaling behaviour for the distribution of strain

rate estimates, as we change the number of drifters and length of simulation, are

the same analytically using method-of-moments as found in simulations using least

squares from Chapter 4. The results in Chapter 4 about the optimal deployment

configuration were confirmed theoretically in Section 5.4 and reinforced in Section 5.5

as they minimise the error for both strain rate and diffusivity estimates.

In Section 5.3 we gave method-of-moment estimators for diffusivity. We considered

three different diffusivity estimators in the absence of strain and found that remov-

ing the initial positions before calculating the second moments gave the diffusivity

estimates with the lowest error. These estimates were biased, however performing a

bias correction increased the resulting RMSE. The error of the re-centred diffusivity

estimator scales as O(1/
√
K), and isn’t changed by increasing the length of the sim-

ulation or by changing the initial deployment positions of the drifters. Therefore, to

decrease the error of the diffusivity estimates in the absence of strain, more drifters

must be deployed.

In Section 5.4 we introduced a method-of-moments estimator of the strain rate

in a strain-diffusive flow. The strain rate estimator from Sundermeyer et al. (2020)
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in Equation (5.1.3) is equivalent to setting mỹỹ(t) and mỹỹ(0) to zero in Equation

(5.4.9). Hence Sundermeyer et al. (2020) estimate strain similarly to our proposed

method, however they only use drifter position from the major axis, whereas we use

both the major and minor axes.

The scaling behaviour of Equation (5.1.3) from Sundermeyer et al. (2020) is the

same as our strain rate estimator in Equation (5.4.9) (setting mỹỹ(0) = 0 in d2
0),

however the mean and variance are not the same. This can be seen in Figure 5.6.1

which repeats Figure 5.4.1, where we have added a kernel density estimate of the

distribution of estimates from Equation (5.1.3) from the same 100,000 Monte Carlo

simulations. The curve corresponding to Sundermeyer et al. (2020) (Equation (5.1.3))

is more variable than that corresponding to Equation (5.4.9), and the mean appears to

be more than the true strain rate, meaning that Equation (5.1.3) appears to produce

more biased estimates than Equation (5.4.9). Hence, the inclusion of the second

moment in y, as well as the second moment in x in Equation (5.4.9) will reduce the

RMSE of the estimates. Therefore, a cheaper way to reduce the error of the estimates

is not increasing the number of drifters or running the experiment for longer, it is

rather to include more of the available data in the estimation procedure! For the case

of strain rate estimation, if drifter trajectories are available in two dimensions, then

both dimensions should be used in the estimator if possible, and so we propose the

strain rate should be estimated using our estimator of Equation (5.4.9).

In Section 5.5 we derived an estimator for diffusivity when strain is present, but has

first been estimated. We gave an analytical equation for the error of these diffusivity

estimates, however we did not consider how the error of the strain rate estimates from



CHAPTER 5. ANALYTICAL DERIVATIONS OF ERRORS 195

Figure 5.6.1: As in Figure 5.4.1, with an additional curve (purple) corresponding

to the distribution of estimates from the method by Sundermeyer et al. (2020) in

Equation (5.1.3).

Section 5.4 would affect the error of diffusivity estimates (joint estimation and study-

ing their correlated errors is reserved for future work). We showed that changing the

initial drifter deployment positions has different impacts upon the scaling behaviour

of the error of our estimates depending on the phase of the experiment, but the overall

best deployment morphology was to align the drifters with the strain angle, consistent

with the simulation findings of Chapter 4. For small time scales, increasing the value

of t̄ decreases the error, but this is only up to a point, as the error will asymptote to

a constant value with t̄. We note that we cannot change the value of σ in practice,

and so the only way to increase t̄ is to let the experiment run for longer. Therefore,

to reduce the error of the diffusivity estimates either more drifters are needed, the

drifters should be deployed aligned with the strain angle, or the experiment needs to
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run for longer.

Overall, increasing the number of drifters is the most consistent way to decrease the

error, as this is the only parameter that decreases the error across all three estimators

(strain rate and diffusivity with/without strain). Increasing t̄ reduces the error for the

diffusivity estimator with strain, but only for small values of t̄, for longer deployments

then the length of the experiment doesn’t impact the error. However, increasing the

experiment length and the number of drifters can be costly, and therefore it is impor-

tant for oceanographers to deploy these drifters in an optimal configuration. We have

showed both analytically in this chapter, as well as in simulation studies in Chapter

4, that deploying drifters further apart will decrease the error of strain rate estimates

(assuming the strain rate is constant over this distance). For large timescales, the

initial positions in ỹ (the axis aligned orthogonal to the strain) don’t affect the error,

and hence the most optimal way to deploy drifters in a strain-diffusivity field is to

align them with the axis aligned with the strain angle, spread across this axis.

The results throughout this chapter are based on an idealised linear strain-diffusivity

model with Gaussian white-noise forcing. Specifically, we assume that drifter posi-

tions follow an Ornstein-Uhlenbeck process, and are normally distributed. We don’t

include other terms in our model, such as vorticity or divergence, and so the impact

of other features must be negligible, or have already been separated, for these results

to be applicable. We assume a scale separation between different parts of our model,

specifically we assume that diffusivity is a submesoscale process, and that the strain is

mesoscale. If we were to observe, for example, mesoscale diffusivity it is possible that

this diffusivity could alias into the mesoscale components of the model. The work in
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this chapter is applicable to small scale drifter deployments that are used to measure

mesoscale strain and submesoscale diffusivity.

An area for future work would be to extend these results to a strain-divergence-

vorticity model, as well as to more complex models with nonlinear mesoscale effects

and/or non-white noise forcing terms. This chapter and Chapter 4 use only simulation

results and analytical data, and so another area for further work would be to analyse

these results using other real-world data in addition to Latmix such as, for example,

GLAD drifters.



Chapter 6

Estimating diffusivity from

non-clustered Drifters

6.1 Introduction

Throughout this thesis we have considered position data from clustered drifters in a

small region of the ocean. Drifter deployments can also happen on a larger scale with

drifters spread through the ocean. In the Global Drifter Program data we often have

single drifters in a region at a given time, rather than clusters of drifters. We require

drifters to be clustered in order to realistically estimate mesoscale flow, however we

can still estimate diffusivity from single drifters, as we shall show in this chapter where

we investigate how to reduce the error of such estimates.

In Chapters 3–5 diffusivity was estimated from the residual velocity after remov-

ing the mesoscale flow. As a result, diffusivity summarised the submesoscale part of

the flow. Diffusivity from global drifters can be estimated either directly from the

198
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displacement of particle trajectories, or the mean flow can be removed before diffu-

sivity is estimated. How we estimate diffusivity changes how we interpret what it is

telling us. Submesoscale diffusivity as estimated in Chapter 3 will be much smaller

(∼ 0.1m2/s) than large-scale diffusivity where we have not removed the mesoscale

part of the flow (as large as ∼ 104m2/s). Diffusivity can therefore be thought of as a

parameterisation of the unknown part of the flow that hasn’t been explained by mean

flow, submesoscale strain and vorticity, etc.

This chapter focuses on estimating diffusivity using particle trajectories from the

Global Drifter Program. The Global Drifter Program provides information on the

oceans across the globe, with observations over 40 years. It can therefore be used

to provide an insight into how diffusivity changes across both space and time. We

cannot exactly estimate diffusivity for every point in the ocean continuously. Instead

oceanographers usually split the ocean into a number of boxes, assuming diffusivity

to be approximately constant in each box. The size of the spatial bin determines both

the resolution and the error of the estimates—smaller bins provide a higher resolution

but the variance is increased as less data is available inside each bin, whereas larger

bins are more biased as they smooth over larger areas, but the variance will typically

be lower. This leads to an idea of finding an optimal balance between the bias and

the variance, to minimise overall error, which will be discussed in detail throughout

this chapter.

In this chapter we first introduce a core method for estimating diffusivity based

on Taylor (1922) which uses the periodogram at frequency zero. We show that this

method to estimate diffusivity has large errors—larger than the actual size of the
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diffusivity that we are estimating—and that these errors are due to large variances.

We therefore present a new method of estimating diffusivity which involves splitting

a longer time series into many new smaller time series and calculating diffusivity

as the smoothed average over these chunks—motivated by the notion of Bartlett or

Welch-type smoothed periodogram estimates from the field of time series analysis.

This reduces the variance but increases the bias of the estimates, hence introducing a

trade-off between bias and variance which requires us to optimally choose the number

of chunks that we split the time series into.

In Section 6.2 we introduce the definition of diffusivity, and compare a number

of different single-drifter estimators. We introduce two simple time series processes

that we could use to model the particle velocities, a white noise process, or an AR(1)

process. We then derive a distribution for the periodogram-based estimator for drifters

following either a white noise or AR(1) process, and calculate the bias and variance

for each of these distributions. In Section 6.3 we propose a new way to estimate

diffusivity which involves splitting a time series into a number of smaller chunks and

estimating diffusivity as the average across all chunks. In Section 6.4 we demonstrate

how to choose the number of chunks to minimise the error. We do this by fitting a

parametric model to drifter trajectories and deriving theoretical forms for the bias

and variance. In Section 6.5 we apply our new estimator to particle trajectories in

a simulation environment where we compare it to the periodogram-based estimator

against the known diffusivity. We show that our estimator is able to reduce the error

of the estimates. We then apply our estimator to global drifter program drifters in

Section 6.6. Finally in Section 6.7 we draw some conclusions and comment on some
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areas for future work.

6.2 Benchmark methods for single particle diffu-

sivity estimation

In this section we will introduce three different single particle diffusivity estimators

and use these to provide motivation for developing a new estimator with a lower

error. We will show that increasing the length of the time series used doesn’t reduce

the errors of these estimators to zero, and instead we need a large number of drifters

to reduce the error which are not always available in practice.

6.2.1 Definition of Single Particle Diffusivity

In this section we will give a formal definition of diffusivity, which will be used in

Section 6.2.2 to introduce different diffusivity estimators. We will show that diffusivity

can be defined using the autocovariance function and the spectral density, and that

both definitions are equivalent.

In Section 5.3 we estimated diffusivity by taking the time derivative of the particle

second moments. The second moment is equivalent to the absolute dispersion when

calculated using a single particle, and diffusivity is defined as the time derivative of

the absolute dispersion. For single particles, diffusivity can be thought of as being an

absolute diffusivity, as it tells us about the position of a particle relative to its original

position. On the other hand, when diffusivity is calculated from multiple particles,

we are usually calculating a relative diffusivity, which tells us about the position of
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particles relative to each other.

In this section we will build our theory and methodology for one-dimensional

velocities and diffusivity (in the x/u direction for positions and velocities respectively).

The same principles apply by extension in the y/v directions, and later when we apply

to real data we shall average the diffusivity estimates in each direction to obtain one

isotropic diffusivity estimate (though they could of course be estimated and reported

separately). LaCasce (2008) defines the diffusivity in one dimension at time t as

κ(t) =

∫ t

0

E[u(t)u(τ)]dτ, (6.2.1)

where u(·) is the velocity of a particle and E[u(·)] denotes the expectation or average

velocity over multiple particles. When the flow is stationary and zero mean, this

equation is analogous to the integral of the velocity autocovariance. Specifically, for

a stationary and zero mean flow, the expected velocity is the same at all time points,

and we can write E[u(t)] = E[u(t− τ)] = 0. Hence the autocovariance can be written

as γ(τ) = E[u(t)u(t − τ)] − E[u(t)]E[u(t − τ)] = E[u(t)u(t − τ)]. Therefore, after a

change of variables, Equation 6.2.1 may be written as

κ(t) =

∫ t

0

γ(τ)dτ. (6.2.2)

After long times, the diffusivity will approach the long-term diffusivity, which we

define to be

κ∞ =

∫ ∞
0

γ(τ)dτ. (6.2.3)

The diffusivity can be written in terms of the power spectrum, as we showed in

Equation (3.2.8). For a stationary time series, the power spectral density given in
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Equation (3.2.7) is equivalent to

S(f) =

∫ ∞
−∞

γ(τ)e−i2πfτdτ. (6.2.4)

Hence, the diffusivity can be written in terms of the power spectrum by setting the

frequency to be zero in Equation (6.2.4). As the autocovariance is symmetric (γ(τ) =

γ(−τ)), the diffusivity can therefore be written as

κ∞ =
1

2
S(f = 0). (6.2.5)

We have shown that Equation (6.2.5) is equivalent to Equation (6.2.3) and the diffusiv-

ity can be defined using the autocovariance or the spectral density at frequency zero.

In order to estimate diffusivity we therefore require estimators for the autocovariance

and/or the spectral density, which we will introduce in the next section.

6.2.2 Estimating Single Particle Diffusivity

The equations defining diffusivity in Section 6.2.1 are defined for continuous time,

whereas drifters are observed at discrete time points. Suppose we wish to estimate

diffusivity from a sampled drifter trajectory with N velocity observations u1, . . . , uN ,

recorded at positions x1, . . . , xN , where ∆ is the regular time interval between suc-

cessive observations (which will be 1 hour or 6 hours for the global drifter program

depending on which data product we use). To be able to estimate diffusivity, we must

first estimate either the autocovariance or the power spectrum that were defined in

Section 6.2.1.
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Autocovariance Estimation

The autocovariance can be estimated in two ways from observations, producing biased

or unbiased estimates. The unbiased estimator is

γ̂(u)
τ =

1

N − |τ |

N−|τ |∑
t=1

(ut − E[ut])(ut+|τ | − E[ut+|τ |]), (6.2.6)

for τ = 0, . . . , N − 1, where E[u(·)] is the expected velocity at time (·), and the

superscript (u) refers to this being the unbiased estimator. The biased estimator for

the autocovariance is typically preferred

γ̂(b)
τ =

1

N

N−|τ |∑
t=1

(ut − E[ut])(ut+|τ | − E[ut+|τ |]), (6.2.7)

as this often reduces the root mean square error (RMSE) of the estimator (Percival

et al., 1993). Here the superscript (b) refers to this being the biased estimator for

autocovariance. In Section 4.4 the biased diffusivity estimator was preferred over the

unbiased diffusivity estimator as it resulted in a lower error overall. The same applies

to estimating the autocovariance from drifter observations as we shall show later.

Spectral Density Estimation

The spectral density is defined for continuous data. When we have velocity observa-

tions sampled at discrete time points, the spectral density needs to be estimated. One

way in which the spectral density can be estimated is using the periodogram, which

is defined as (Percival et al., 1993)

Ŝ(P )(f) =
∆

N

∣∣∣∣∣
N∑
i=1

uie
−i2πf∆

∣∣∣∣∣
2

, (6.2.8)
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where the notation Ŝ(P )(f) refers to this being the periodogram estimator for spectral

density.

Diffusivity Estimation

The diffusivity at time t = N∆ can be approximated by taking the value of Ŝ(P )(f)

at frequency zero using all N observations:

κ̂(P )(t) =
∆

2N

∣∣∣∣∣
N∑
i=1

ui

∣∣∣∣∣
2

. (6.2.9)

The superscript (P ) in the left hand side of Equation (6.2.9) denotes that this is the

periodogram-based estimate of diffusivity, and we use this notation to distinguish this

estimate of diffusivity from others that will be introduced later in this section. This is

a discrete time approximation to the true time-dependent diffusivity given in Equation

(6.2.1), and if t is large, can be used to approximate the long-term diffusivity, κ∞,

given in Equation (6.2.5).

This estimator is equivalent to the re-centred diffusivity estimator in Equation

(5.3.10), but for a single particle, as we will now show. The observed velocity ui at

time index i ∈ {1, ..., N}, is equivalent to (xi− xi−1)/∆. After summing all velocities

u1, u2, · · · , uN in Equation (6.2.9), we are therefore just left with (xN −x0)/∆, where

x0 denotes the initial position at time t = 0 (which can be found from the data by

taking x0 = x1 − u1∆). The diffusivity estimator can therefore be written as

κ̂(P )(t) =
1

2N∆
|xN − x0|2 =

1

2t
|xN − x0|2. (6.2.10)

Hence the diffusivity depends only on the initial and final positions x0 and xN , and

not the path taken to get there. We are only working with diffusivity in a single
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dimension, hence we have a 1/2 scaling for diffusivity, whereas in Chapter 5 diffusivity

was estimated in two dimensions and so the scaling was 1/4. The different scaling can

be understood by taking the two-dimensional diffusivity to be the average diffusivity

over each dimension. Therefore, the only difference between Equations (6.2.10) and

(5.3.10) is that (6.2.10) is defined for a single drifter and so the re-centred second

moment is just |xN − x0|2. Hence the estimator can be interpreted as being the

squared displacement of a particle from its starting position divided by time, which

is why the units are m2/s. This means that diffusivity provides us with an area in

which we could expect to find a particle at each time point after its deployment. It is

clear to see from Equation (6.2.9) that κ̂(P )(t) is in the correct units of m2/s as ut is

assumed to be given in SI units of metres (m) per second (s), as is ∆ which is given

in seconds (s).

We can also estimate diffusivity directly from Equation (6.2.1) using a Riemann

approximation to the integral. We will use the trapezium rule which approximates the

integral of a function f(x) between x0 and xn, such that x0 < x1 < · · · < xn−1 < xn,

to be∫ xn

x0

f(x)dx =
1

2
h[f(x0) + f(xn) + 2{f(x1) + f(x2) + ...+ f(xn−1)}], (6.2.11)

where h is the step size. Hence, the Riemann approximation to Equation (6.2.1) for

a single drifter time series is

κ̂(R)(t) = ∆uN

[
N∑
τ=1

uτ −
1

2
(u1 + uN)

]
. (6.2.12)

Here the superscript (R) refers to this estimator being a Riemann approximation. This

estimator can be written in terms of xt, as we did with the periodogram estimator in
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Equation (6.2.10). The Riemann diffusivity estimator is equivalent to

κ̂(R)(t) =
(xN − xN−1)

2∆
(xN + xN−1 − x1 − x0), (6.2.13)

which is quite different from the periodogram estimator in Equation (6.2.10).

The diffusivity can also be approximated from Equation (6.2.2), using either the

biased or unbiased estimate of the covariance. Taking a Riemann approximation of

Equation (6.2.2) gives us the diffusivity estimator

κ̂(γ)(t) = ∆

[
N−1∑
τ=0

γ̂τ −
1

2
(γ̂0 + γ̂t)

]
, (6.2.14)

where the superscript (γ) refers to this being an estimator which uses the sample

autocovariance. It can be shown that when the biased estimator is used for the

autocovariance, then this estimator is equivalent to the periodogram-based estimator

given in Equation (6.2.9) when the mean flow is zero. This equivalence is shown

analytically using the relation(
n∑
i=1

αi

)2

= 2
n∑
k=0

n−k∑
j=1

αjαj+k −
n∑
i=1

α2
i . (6.2.15)

From the above relation and the diffusivity estimators in Equations (6.2.9) and (6.2.14),

setting E(ut) = 0, we get that

∆

2
Ŝ(P )(f = 0) =

∆

2N

(
N∑
t=1

ut

)2

=
∆

N

t∑
τ=0

N−τ∑
t=1

utui−τ −
∆

2N

N−τ∑
t=1

u2
t , (6.2.16)

where Ŝ(P )(f) is the periodogram, as defined in Equation (6.2.8). This is equivalent

to

∆

2
Ŝ(P )(f = 0) = ∆

t∑
τ=0

γ̂(P )
τ − ∆

2
γ̂

(P )
0 . (6.2.17)
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Hence, this gives us the relation

κ̂(P )(t) = κ̂(γ)(t) +
∆

2
γ̂

(P )
t , (6.2.18)

and the only difference between the two estimators is ∆
2
γ

(P )
t which converges to zero

for large T . Therefore we can assume these estimators to be equal when mean flow has

been removed. This only holds for the biased estimator, not the unbiassed estimator

and hence leaves us with three different ways in which diffusivity could be estimated

(not including those from second moments in Section 4.4). Specifically, the estima-

tors are κ̂(P )(t), κ̂(R)(t) and κ̂(γ)(t) when κ̂(γ)(t) uses the unbiased autocovariance

estimator.

6.2.3 Diffusivity of White Noise and AR(1) Velocity Pro-

cesses

Throughout the remainder of this chapter we will use two discrete-time statistical

processes to model particle trajectory velocities. These will be used to analyse the

error of the diffusivity estimates. The first of these processes is a Gaussian white noise

process which is perhaps the simplest way to model particle velocities. The second is

an AR(1) process.

In this section we will introduce a white noise and an AR(1) velocity process

and derive their theoretical diffusivities. We then compare diffusivity estimates via

simulation for the three estimators that were introduced in the previous section against

the theoretical diffusivity.
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Diffusivity of a White Noise Velocity Process

A Gaussian discrete-time white noise velocity process is defined as

ut
iid∼ N(0, σ2

I ), (6.2.19)

where ut is the drifter velocity at index time t, and σ2
I is the variance of the process.

A white noise process has Cov (ut, ut+τ ) = 0, and is therefore a stationary process

with autocovariance

γτ =


σ2
I , if τ = 0,

0, if τ 6= 0.

(6.2.20)

The spectrum of a discrete-time white noise process is calculated from the discrete-

time equivalent of Equation (6.2.4) to be

S(f) = ∆
∞∑

τ=−∞

γτe
−i2πfτ = ∆γ0 = ∆σ2

I . (6.2.21)

Hence the spectrum of a discrete-time white noise process is flat and is proportional

to its variance at all lags.

The diffusivity of a white noise velocity process is calculated using its autocovari-

ance, as defined in Equation (6.2.20). Using the same concept as Equation (6.2.14)

for discrete-time processes, the diffusivity of a white noise process is therefore

κ(t) =
t∑

τ=0

γτ −
1

2
(γ0 + γt) =

∆σ2
I

2
. (6.2.22)

For white noise velocities, the diffusivity immediately converges to its long-time limit,

i.e. κ(t) = κ∞, which is consistent with applying the definition of Equation (6.2.5) to

Equation (6.2.21) to obtain half the spectral density at frequency zero as the long-term

diffusivity.



CHAPTER 6. DIFFUSIVITY FROM NON-CLUSTERED DRIFTERS 210

Diffusivity of an AR(1) Velocity Process

The second model we use for drifter velocities is an AR(1) process, where each velocity

is expressed as a linear combination of its previous sampled velocity plus a white

noise term. An AR(1) process is a discrete-time analogue of the Ornstein-Uhlenbeck

process, the latter of which has been proposed by oceanographers to model Lagrangian

particle flow (Griffa et al., 1995; Lilly et al., 2017; Berloff and McWilliams, 2002;

Veneziani et al., 2004). The AR(1) process can be defined as

ut = φut−1 + εt, (6.2.23)

where εt
iid∼ N(0, σ2

I ) is a white noise signal, and φ is the autoregressive parameter

which acts as a damping parameter if |φ| < 1.

The process is zero mean so the autocovariance is calculated as γ = E(utut−τ ).

Calculating the variance first, we get that

γ0 = E(u2
t ) = E([φut−1 + εt]

2) = φ2γ0 + σ2
I . (6.2.24)

And so the variance of an AR(1) process is

γ0 =
σ2
I

1− φ2
. (6.2.25)

We can calculate the autocovariance of an AR(1) process at lag τ as

γτ = E(XtXt−τ ) = E(φXt−1Xt−τ + εtXt−τ )

= φγτ−1 = φτγ0. (6.2.26)

The autocovariance of an AR(1) process is therefore

γτ = φτ
σ2
I

1− φ2
, (6.2.27)
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when |φ| < 1 such that the process is stationary.

The spectrum of an AR(1) process is calculated as

S(f) = ∆
∞∑

τ=−∞

φτ
σ2
I

1− φ2
e−i2πfτ =

∆σ2
I

1− 2φ cos(2πf) + φ2
. (6.2.28)

We now calculate the diffusivity of an AR(1) process from its autocovariance as defined

in Equation (6.2.27). Using Equation (6.2.14), the diffusivity of an AR(1) process is

therefore calculated as

κt =
t∑

τ=0

γτ −
1

2
(γ0 + γt)

= ∆
t∑

τ=0

φτ
σ2
I

1− φ2
− ∆

2

[
σ2
I

1− φ2
+ φt

σ2
I

1− φ2

]

=
∆σ2

I

1− φ2

[
φt+1 − 1

φ− 1
− 1

2

(
1 + φt

)]
. (6.2.29)

For an AR(1) process the diffusivity converges to a fixed value as t→∞,

κ∞ =
∆σ2

I

1− φ2

[
1

1− φ
− 1

2

]
=

∆σ2
I

2(1− φ)2
, (6.2.30)

which again we can see is equivalent to half the value of the spectral density at

frequency zero in Equation (6.2.28). We note that this only holds when |φ| < 1, as

this is when the process is stationary.

For an AR(1) process the diffusivity changes over time, and is not immediately the

long-term diffusivity. This would generally be the case for other time series models

other than white noise, as well as what is expected to be seen in the ocean.

Comparison of Diffusivity Estimators

The different diffusivity estimators introduced in Section 6.2.2 do not all give the

same estimate of the diffusivity even though they are all based on the same original
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definition from Equation (6.2.1). We will compare the error of the three estimators

for particle trajectories generated from a white noise process and an AR(1) process.

To estimate the error of each diffusivity estimator from Section 6.2.2 we simulated

5000 time series each from a Gaussian white noise process and an AR(1) process with

damping parameter φ = 0.7 where N = 100, σI = 1,∆ = 1s. The true value of the

diffusivity in the white noise and AR(1) cases are therefore 0.5m2/s and 5.55m2/s

respectively. We then estimated the diffusivity from each estimator from the time

series, and used these to calculate the bias, standard deviation, and RMSE which

were then normalised by the true diffusivity. In Table 6.2.1 we can see that κ̂(P ) has

the lowest RMSE for both the white noise and AR(1) processes. The absolute value

of the bias isn’t lowest for κ̂(P ) for the white noise process, however the standard devi-

ation of this estimator is consistently the lowest across both processes. The superior

performance of κ̂(P ) is expected as κ̂(γ) uses an unbiased (and hence highly variable)

autocovariance estimate, and κ̂(R) uses a Riemann approximation that weights heav-

ily on the final velocity (uN) rather than spread information across all velocities (see

Equation (6.2.13)). Based on this, we shall assume κ̂(P ) to be generally better than

κ̂(γ) and κ̂(R) in terms of error, but recognise that for different time series models this

might not necessarily be true. Overall, we note already that standard deviations are

greater than 1 meaning estimated diffusivities have larger standard deviations than

their true value, motivating the need for a new and less variable estimator.

For the remainder of this chapter, we will now focus on the periodogram-based

estimator for diffusivity and understanding its properties.
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White Noise AR(1)

Estimate Bias SD RMSE Bias SD RMSE

κ̂(γ) -0.0045 3.7307 3.7438 0.1087 3.1377 3.1414

κ̂(R) 0.0124 13.3736 13.3976 0.0348 5.7915 5.5959

κ̂(P ) 0.0246 1.4607 1.4613 -0.0232 1.4360 1.4388

Table 6.2.1: Average bias, standard deviation and root mean square error (calculated

from 5000 repeated simulations) for three different diffusivity estimators, for particles

with velocities following a Gaussian white noise process and AR(1) process. All results

normalised by the true diffusivity. The choice of parameters was σI = 1, φ = 0.7,

∆ = 1, and N = 100.

6.2.4 Distribution of Diffusivity Estimates

We wish to derive a analytical form for the error of estimates from κ̂(P ). We shall do

this for particle trajectories with velocities that follow either a white noise or AR(1)

processes. This will enable us to determine the scaling behaviour of the estimator,

similar to the ideas developed in Chapter 5. Note that both these processes are an

over-simplification of velocities from drifters, and the results are therefore not directly

indicative of the error from real ocean drifter paths—instead we shall use our results

to guide construction of a new estimation technique.
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White Noise Velocity Process

The diffusivity estimator, κ̂(P ), of a Gaussian white noise velocity process given in

Equation (6.2.19), can be written in terms of a chi-squared distribution, as we now

show. The sum of N i.i.d. normal variables is distributed as
∑N

t=1 ut ∼ N(0, Nσ2
I ).

Hence the diffusivity estimator in Equation (6.2.9) can be written as

κ̂(P )(t) =
∆

2N

∣∣∣∣∣
N∑
t=1

ut

∣∣∣∣∣
2

=
∆σ2

I

2
Z2, (6.2.31)

where Z ∼ N(0, 1). Since Z2 ∼ χ2
1, we get that

2

∆σ2
I

κ̂(P )(t) ∼ χ2
1. (6.2.32)

Therefore the diffusivity estimator of a single white noise process follows a re-

scaled χ2
1 distribution, which is shown in Figure 6.2.1. The estimate has expectation

and variance given by

E
[
κ̂(P )(t)

]
=

∆σ2
I

2
= κ(t) (6.2.33)

var
[
κ̂(P )(t)

]
=

∆2σ4
I

2
= 2κ(t)2. (6.2.34)

The periodogram diffusivity estimator applied to a white noise velocity process

produces unbiased estimates. However, the variance does not depend on the length

of the time series, N , and so adding additional data points does not improve the

estimate. Furthermore, the RMSE of the estimate is

RMSE
[
κ̂(P )(t)

]
=

∆σ2
I√

2
=
√

2κ(t). (6.2.35)
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Figure 6.2.1: Distribution of κ̂(P )(t) for a white noise velocity process. The histogram

shows the density found by simulating 5000 white noise processes, with σI = 1, ∆ = 1,

of length N = 1000, and finding the diffusivity of each individual time series. The

red curve shows the PDF of the re-scaled chi-squared distribution given in Equation

(6.2.32).
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The RMSE is larger than the value that we are estimating, this means that we

would get a smaller RMSE by simply estimating the diffusivity to be zero and get-

ting an RMSE of κ(t). The periodogram-based estimator is therefore clearly a poor

estimator of diffusivity for white noise velocities, despite being the best of the three

proposed in Section 6.2.2. The high error is solely due to the variance of the estimator,

and in Section 6.3 we will propose an estimator which reduces this variance.

AR(1) Velocity Process

We can show that the diffusivity estimates of an AR(1) velocity process also follow a

chi-squared distribution. We start by writing the AR(1) process as

ut = φut−1 + εt = φtu0 +
t∑

n=1

φt−nεn. (6.2.36)

The expectation and variance of an AR(1) process are

E(ut) = 0, var(ut) =
σ2
I

1− φ2
. (6.2.37)

To derive the distribution of the diffusivity estimator, we write the sum of velocities

from Equation (6.2.36) up to N observations as

N∑
t=1

ut =
φ(φN − 1)

φ− 1
u0 +

N∑
k=1

φN+1−k − 1

φ− 1
εk, (6.2.38)

and calculate the variance of the sum of velocities to be

var

(
N∑
t=1

ut

)
=
φ2(φN − 1)2

(φ− 1)2

σ2
I

1− φ2
+

N∑
k=1

(
φN+1−k − 1

φ− 1

)2

σ2
I (6.2.39)

=
2σ2

Iφ(φN − 1) +N(1− φ2)

(φ− 1)2(1− φ2)
. (6.2.40)
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Defining Z =
∑N
t=1 ut√

var(
∑N
t=1 ut)

∼ N(0, 1), the diffusivity can be written as as

κ̂(P )(t) =
∆

2N

∣∣∣∣∣
N∑
t=1

ut

∣∣∣∣∣
2

=
∆

2N
var

(
N∑
t=1

ut

)
Z2. (6.2.41)

As was the case for a white noise process, the diffusivity follows a chi-squared distri-

bution, and is distributed as

2N(φ− 1)2(1− φ2)

∆σ2
I [2φ(φN − 1) +N(1− φ2)]

κ̂(P )(t) ∼ χ2
1. (6.2.42)

A histogram of the diffusivity of an AR(1) velocity process is shown in Figure 6.2.2

for different choices of the damping parameter, φ. We see that the damping parameter

vastly changes the distribution, and therefore will change the error of estimates. The

expectation and variance of the estimator are

E
[
κ̂(P )(t)

]
=

∆σ2
I [2φ(φN − 1) +N(1− φ2)]

2N(φ− 1)2(1− φ2)
(6.2.43)

var
[
κ̂(P )(t)

]
=

∆2σ4
I [2φ(φN − 1) +N(1− φ2)]2

2N2(φ− 1)4(1− φ2)2
. (6.2.44)

For an AR(1) process, the diffusivity estimator is biased, unlike for a white noise

process. Specifically, the bias of estimating κ∞ by κ̂(t) is

Bias
[
κ̂(P )(t)

]
=

∆σ2
Iφ(φN − 1)

N(φ− 1)2(1− φ2)
. (6.2.45)

The bias is O( 1
N

). However, a large number of observations could be required to

make the bias of the estimator sufficiently small. This is not necessarily realistic for

modelling the ocean because as a drifter moves though the ocean it will leave the area

for which we are estimating the diffusivity, meaning that the number of observations

within a region are finite. The RMSE follows from combining the variance and bias
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Figure 6.2.2: Distribution of the periodogram-based estimator of the diffusivity of

an AR(1) velocity process, as given in Equation (6.2.42). The histogram shows the

density found by simulating 200,000 AR(1) processes of length N = 10 where σI = 1,

and finding the diffusivity of each individual time series. The four plots correspond

to different values of φ, where φ is chosen to be one of −0.7, 0.7, 0.9 and 0.99. The

red curve shows the PDF of the scaled chi-squared distribution.
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Figure 6.2.3: Normalised bias (left), standard deviation (centre) and RMSE (right)

of the periodogram-based diffusivity estimator with AR(1) velocities for φ = [−1, 1].

For each plot we have set σI = 1, ∆ = 1 and considered all values of φ for which the

process is stationary, and for N = 1, 2, . . . , 100. The plots have been normalised by

the long-term diffusivity of an AR(1) process.

from Equations (6.2.44) and (6.2.45)

RMSE
[
κ̂(P )(t)

]
=

∆σ2
I

√
φ2(φN − 1)2 +

[
φ(φN − 1) + N

2
(1− φ2)

]2
N(φ− 1)2(1− φ2)

. (6.2.46)

In the limit as N → ∞ the RMSE goes to ∆σ2
I/
√

2(φ − 1)2 =
√

2κ∞. This means

that the error doesn’t go to zero with increased observations. As was the case for the

white noise process, the RMSE would be lower if we were to estimate the diffusivity

to simply be zero when we only have data from a single time series.

Figure 6.2.3 shows the bias, standard deviation and RMSE of the diffusivity es-

timator for an AR(1) velocity process, normalised by κ∞, for different damping pa-

rameters and different numbers of observations. For all values of φ and N the RMSE

will approach
√

2κ∞, as expected from Equation (6.2.46). This corresponds to the

normalised RMSE being
√

2, which can be seen in the Figure for each different damp-

ing parameter whenever N is sufficiently large. Hence for an AR(1) process, in order
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to improve the estimator we seek to reduce both bias and variance, but primarily

variance since for large N the bias vanishes, but the variance remains.

6.2.5 Combining Multiple Drifter Time Series

The goal of this chapter is to reduce the RMSE in order to improve diffusivity es-

timates. However, as we saw in the last section, for both Gaussian white noise and

AR(1) processes the RMSE of the diffusivity is greater than the diffusivity itself. The

variance in the estimates is not improved by increasing N for either Gaussian white

noise or AR(1) processes. Thus we need to consider other approaches to reducing

variance.

One way in which we can reduce variance, and hence reduce the RMSE, is to

calculate diffusivity using trajectories from multiple drifters. The Global Drifter Pro-

gram has a large number of drifters, and so there is typically information from more

than one drifter in each part of the ocean, although not necessarily at the same time.

In this section we look at the theoretical properties of averaging diffusivity estimates

over multiple drifters.

We write the diffusivity estimate calculated by averaging over multiple drifters as

κ̂
(P )
M (t) =

1

M

M∑
j=1

κ̂
(P )
j (t), (6.2.47)

where κ̂
(P )
j (t) are diffusivity estimates from individual drifter time series as in Equation

(6.2.9), M is the total number of time series and j is an index representing individual

time series.

We show how averaging over multiple drifters, as in Equation (6.2.47), improves
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the diffusivity estimates of the white noise and AR(1) processes. We will repeat the

derivations in Section 6.2.4 to calculate the bias, variance and RMSE for the diffusivity

estimates for each process.

White Noise Velocity Process

First we consider the white noise velocity process. We showed in Equation (6.2.32)

that the diffusivity estimates follow a chi-squared distribution with one degree of

freedom. If we take M independent time series of length N , and average the diffusivity

estimates of each time series, we show that the periodogram-based estimate at time

t = N∆ follows a χ2
M distribution. We have from Equation (6.2.32) that the diffusivity

of a single particle following a white noise process is distributed as 2
∆σ2

I
κ̂

(P )
j (t) ∼ χ2

1.

The average diffusivity over M particles can be found by writing zm ∼ χ2
1 and applying

Equation (6.2.47),

κ̂
(P )
M (t) =

∆

M

M∑
m=1

σ2
I

2
zm =

∆

M

σ2
I

2
znm, (6.2.48)

where znm ∼ χ2
M . Therefore the diffusivity is distributed as

2M

∆σ2
I

κ̂
(P )
M (t) ∼ χ2

M . (6.2.49)

Hence the estimate follows a chi-squared distribution with M degrees of freedom, as

shown in Figure 6.2.4. The figure shows the distribution of the estimates for different

values of M . As M →∞ the distribution will converge towards a normal distribution

centred around the true diffusivity value by the central limit theorem.
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Figure 6.2.4: Histogram of diffusivity estimates using periodogram estimator, for a

white noise velocity process with M = 2, 5, 20 and 100. Here we simulated 200,000

white noise processes of length N = 2, where σI = 1, ∆ = 1, such that κ∞ = 0.5.

The the red line corresponds to a chi-squared distribution from Equation (6.2.49).
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The expectation and variance are,

E
[
κ̂

(P )
M (t)

]
=

∆σ2
I

2
= κ(t) (6.2.50)

var
[
κ̂

(P )
M (t)

]
=

∆2σ4
I

2M
=

2κ(t)2

M
. (6.2.51)

Hence, the estimates are unbiased, and for M → ∞ the variance goes to zero. The

RMSE of the estimate is

RMSE
[
κ̂

(P )
M (t)

]
=

∆σ2
I√

2M
=

√
2κ(t)√
M

. (6.2.52)

When M ≥ 3, then RMSE[κ̂
(P )
M (t)] < κ∞, meaning that at least three time series are

needed before the periodogram-based estimator yields meaningful estimates of the

long-term diffusivity.

AR(1) Velocity Process

We show that the diffusivity estimate of an AR(1) velocity process also follows a chi-

squared distribution with M degrees of freedom. We calculate the diffusivity from

Equation (6.2.47) to be

κ̂
(P )
M (t) =

1

M

M∑
m=1

∆2φ(φN − 1) +N(1− φ2)

2N(φ− 1)2(1− φ2)
z2
m, (6.2.53)

=
∆

M

2φ(φN − 1) +N(1− φ2)

2N(φ− 1)2(1− φ2)
znm, (6.2.54)

where z2
m ∼ χ2

1 and znm ∼ χ2
M . Therefore the diffusivity of an AR(1) process is

distributed as

2NM(φ− 1)2(1− φ2)

∆[2φ(φN − 1) +N(1− φ2)]
κ̂

(P )
M (t) ∼ χ2

M . (6.2.55)
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Figure 6.2.5: Histogram of diffusivity estimates using periodogram estimator, for

AR(1) velocity process with φ = 0.7 and M = 2, 10, 50, 100. Here we sampled 200,000

AR(1) processes of length N = 10 with σI = 1, ∆ = 1, such that κ∞ = 5.55. The red

curve corresponds to the distribution of Equation (6.2.55).
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Diffusivity estimates of an AR(1) process averaged over M drifters are shown in

Figure 6.2.5 for different choices of M . As was the case for the white noise process, as

M →∞ the distribution of the diffusivity estimates approaches a normal distribution

centred around the true value.

The expectation and variance of the diffusivity estimates are

E
[
κ̂

(P )
M (t)

]
=

∆σ2
I [2φ(φN − 1) +N(1− φ2)]

2N(φ− 1)2(1− φ2)
(6.2.56)

Var
[
κ̂

(P )
M (t)

]
=

∆2σ4
I [2φ(φN − 1) +N(1− φ2)]2

2MN2(φ− 1)4(1− φ2)2
. (6.2.57)

The bias is the same as when the diffusivity was calculated from a single time

series, and so averaging over multiple time series will not reduce the bias. However

the variance depends on the number of time series, M , and so as we average the

diffusivity estimates from multiple drifters, the variance decreases as expected. The

RMSE is

RMSE
[
κ̂

(P )
M (t)

]
= ∆

√
2σ4

IMφ2(φN − 1)2 + σ4
I [2φ(φN − 1) +N(1− φ2)]2

2MN2(φ− 1)4(1− φ2)2
. (6.2.58)

Figure 6.2.6 shows the bias, standard deviation and RMSE of the estimator, nor-

malised by the long-term diffusivity, for different values of N and M . We see that as

we increase N the bias will tend towards 0, similarly as we increase M the variance

will approach 0. Hence, in order for the RMSE decrease to 0, we require large values

for both N and M . In practice this is not realistic, we cannot obtain long time se-

ries from a single drifter, as the drifter moves freely around the ocean into different

regions, and so the data must be split into different parts of the ocean. Similarly, we

cannot have always have a large number of drifters in a given region.
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Figure 6.2.6: Normalised bias, variance and RMSE of periodogram-based estimator

for φ = 0.7. For each plot we have set σI = 1 and ∆ = 1, such that κ∞ = 5.55,

and then considered a range of values for N and M . The colour on each plot shows

the value relating to its title, for example on the left hand plot the colour is the bias.

The plots have been normalised by the long-term diffusivity, and capped at 0.75 for

visualisation purposes.

This means that while theoretically averaging over M time series can give a good

estimate, in practice we require techniques that work with a given small and finite

set of drifter data. This motivates finding a better way to estimate diffusivity in the

ocean with a fixed sample size.

6.3 Reducing Variance from a Single Time Series

In Section 6.2 we showed that the error of diffusivity estimates for a white noise

velocity process cannot be reduced when estimated from a single drifter by changing

the length of the observed time series N . For an AR(1) velocity process, the error

of the diffusivity estimates asymptote to a constant value as N is increased, and

therefore cannot be reduced to zero. When the diffusivity is found as an average
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from multiple time series, at least three time series are required before the estimates

become statistically significant, which isn’t possible in all regions of the ocean.

In this section we introduce a method of estimating diffusivity which minimises

the RMSE when estimating from a single time series. By minimising the RMSE for

just one drifter we can find a method that works when we only have one time series,

but can be expanded to multiple drifters if applicable to further improve the estimate.

In Section 6.2.4 we showed that the diffusivity estimate from a single time series

has a high RMSE due to the variance. For the white noise velocity process, the error

is completely due to variance as the estimator is unbiased, and the RMSE doesn’t

depend on the length of the time series, as it is a constant value irrespective of N .

When averaging over M time series, the RMSE reduces as M increases.

Similarly for the AR(1) velocity process, for large N diffusivity estimates become

unbiased, and so the RMSE of the long-term diffusivity is mostly due to the large

variance, which approaches a constant non-zero value as N → ∞. However, as the

estimator is biased for smaller N , both bias and variance should be considered when

constructing a new method for estimating the diffusivity.

We propose a new way to estimate the diffusivity which involves splitting a single

time series into smaller chunks, and treating each chunk as a new time series. We then

estimate the diffusivity separately for each segment and then average these estimates

to obtain a new estimator. This method can be thought of as calculating the rate of

squared displacement gradually over sections over the time series and averaging them

to get the rate of dispersion of the overall time series. Hence we are finding local

diffusivity along segments of the time series, and then averaging these to find the
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overall diffusivity over a larger spatial distance. This method smooths out the effects

of areas which have unusually high or low diffusivity compared with the areas of the

ocean around them, and so physical effects such as tides should have less impact on

the estimated diffusivity.

This idea is related to the concept of smoothing spectral density estimates, using

techniques such as Welch’s overlapped segment averaging (WOSA) (Percival et al.,

1993). This method reduces variance, in the same way as we showed in Section 6.2.5

that averaging diffusivity estimates over a greater number of time series will reduce

the variance. However, we note that diffusivity estimates calculated as an average

over chunks from a single time series will have a higher bias than if we were just to

calculate diffusivity from the full time series. This is because we are now working

with time series of a shorter length, and we showed in Section 6.2 shorter time series

yield a higher bias.

We will derive the distribution of diffusivity estimates from a single time series

chunked into smaller sections for a white noise and AR(1) velocity process respectively,

and use these to derive an expression for the error. We will show that the error can

be reduced from a single time series by applying this method.

6.3.1 Illustration: Variance Reduction of Diffusivity Esti-

mates from a White Noise Velocity Process

We begin by looking at the simple case of a white noise velocity process, and split

the time series into multiple segments. To illustrate the core idea, we start with the
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extreme and simplified case of splitting the time series into N chunks each of size 1.

For a white noise velocity process, estimating diffusivity as an average of chunks

of length 1 is equivalent to estimating the diffusivity to be half the sample variance,

which we write as

κ̂
(CP )
N (t) =

∆

2N

N∑
i=1

|ui|2, (6.3.1)

where κ̂
(CP )
m (t) denotes the periodogram-based estimate of a time series of length N

which has been chunked into m new time series, where in the case of Equation (6.3.1),

the number of chunks m has been set to equal to the number of observations in the

original time series N .

This can be written in terms of the chi-squared distribution. We let Ui = ui/s ∼

N(0, 1). This gives

κ̂
(CP )
N (t) =

∆

2N

N∑
i=1

|sUi|2 =
∆σ2

I

2N
Z2, (6.3.2)

where Z2 =
∑N

i=1 U
2
i ∼ χ2

N . Hence the estimate is distributed as

2N

∆σ2
I

κ̂
(CP )
N (t) ∼ χ2

N . (6.3.3)

This distribution can be seen in Figure 6.3.1. We see that this distribution is less

variable than the distribution shown in Figure 6.2.1, where the diffusivity was esti-

mated across the full length of the time series, with the estimates distributed evenly

around the true diffusivity of 0.5m2/s.

The expectation and variance of the diffusivity estimate where we have split the
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Figure 6.3.1: Diffusivity estimate of a white noise velocity process found by splitting

a time series into N chunks of length 1. The histogram has been found by simulating

10,000 time series of length N = 1, 000 with σI = 1, and ∆ = 1s, such that κ∞ = 0.5,

and finding the average diffusivity estimate of each time series of length 1. The red

curve represents the pdf of the chi-squared distribution given in Equation (6.3.3).

time series into N chunks of length 1 are

E
[
κ̂

(CP )
N (t)

]
=

∆σ2
I

2
= κ(t) (6.3.4)

var
[
κ̂

(CP )
N (t)

]
=

∆2σ4
I

2N
. (6.3.5)

As with the periodogram-based diffusivity estimator for a white noise velocity

process, this estimator is unbiased. However, the distribution of the estimate is now

dependent on the length of the time series, and so the variance of the estimate will

decrease as N increases.

From the expectation and variance we can calculate the RMSE to be

RMSE
[
κ̂

(CP )
N (t)

]
=

∆σ2
I√

2N
=

√
2

N
κ∞. (6.3.6)

After splitting the time series into chunks, the error now depends on the length of the



CHAPTER 6. DIFFUSIVITY FROM NON-CLUSTERED DRIFTERS 231

time series, and hence the RMSE can be reduced from a single time series, unlike the

error for diffusivity estimates from the periodogram estimator in Section 6.2.4.

6.3.2 Average Chunked Periodogram Estimator

The idea of partitioning a single time series into multiple segments can be generalised

into different chunk sizes, as well as different time series processes, as we shall now

describe. Specifically, we partition a time series into m non-overlapping chunks of

length n = bN/mc. The diffusivity for each new smaller time series is then estimated,

and averaged of the m segments. This estimator will in general increase bias com-

pared with the periodogram-based estimator because the length of the time series is

decreased, however it will also decrease the variance as we now have multiple time

series to average over.

We initially define the Average Chunked Periodogram (ACP) diffusivity estimator

to be

κ̂(CP )
m (t) =

1

m

m∑
j=1

κ̂
(P )
j (t), (6.3.7)

where κ̂
(P )
j (t), j = 1, . . . ,mi are diffusivity estimates from each time series chunk as

defined in Equation (6.2.9).

We note that depending on the values of N and m it might not be possible to

split a time series into equal sized chunks using all the data. This could mean that

some data are not used, which seems wasteful. If this is the case we can introduce

two different chunk lengths—either length bN/mc or bN/mc+1. Specifically, we take

m1 = N − nm chunks of size n1 = n+ 1, and m2 = m−N + nm of size n2 = n. We
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have that m1 +m2 = m and m1n1 +m2n2 = N , and no data are wasted.

Then the ACP diffusivity estimator is fully defined as

κ̂(CP )
m (t) =

1

m

[
m1∑
j=1

κ̂
(P )
n1,j

(t) +

m2∑
j=1

κ̂
(P )
n2,j

(t)

]
, (6.3.8)

where κ̂
(P )
ni,j

(t), i = 1, 2, j = 1, . . . ,mi are diffusivity estimates from each time series

chunk where the first m1 chunks are length n1 and the second m2 chunks are length

n2. Note that setting m = N recovers the diffusivity estimator of Equation (6.3.1)

proposed for white noise velocities, and that if all chunks are of the same size then

m1 = m2 = m and Equation (6.3.7) is recovered.

6.3.3 ACP Estimates from an AR(1) Velocity Process

We now apply the ACP estimator to an AR(1) velocity process and show how splitting

an AR(1) time series into chunks affects the RMSE of the diffusivity estimates. For

this process it is not as straightforward as the white noise process to deduce the

optimal number of chunks into which to split the time series to minimise the RMSE,

and how this is done will be shown in Section 6.4.

From Equation (6.2.42) diffusivity estimates for each chunk from an AR(1) velocity

process follow

κ̂
(P )
ni,j

(t) =
∆σ2

I [2φ(φni − 1) + ni(1− φ2)]

2ni(φ− 1)2(1− φ2)
z2, (6.3.9)

for j = 1, . . . ,m and z2 ∼ χ2
1. Combining Equations (6.3.8) and (6.3.9), the AR(1)
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ACP diffusivity estimator approximately follows

κ̂(CP )
m (t) ≈ ∆σ2

I

m

[
2φ(φn1 − 1) + n1(1− φ2)

2n1(φ− 1)2(1− φ2)
zm1 +

2φ(φn2 − 1) + n2(1− φ2)

2n2(φ− 1)2(1− φ2)
zm2

]
,

(6.3.10)

where zmi ∼ χ2
mi
. Equation (6.3.10) is an approximation of the diffusivity distribution

as we have assumed that the κ̂
(P )
ni,j

(t) terms in Equation (6.3.9) are independent. This

is only approximately true, and the accuracy of this approximation is discussed at the

end of this section.

We calculate the expected value of the ACP estimator to be

E
[
κ̂(CP )
m (t)

]
≈

∆σ2
I

m1 +m2

[
m1n2[2φ(φn1 − 1) + n1(1− φ2)] +m2n1[2φ(φn2 − 1) + n2(1− φ2)]

2n1n2(φ− 1)2(1− φ2)

]
.

(6.3.11)

The bias can be calculated from the expectation to be

bias
[
κ̂(CP )
m (t)

]
≈ ∆σ2

I [m1n2φ(φn1 − 1) +m2n1φ(φn2 − 1)]

(m1 +m2)n1n2(φ− 1)2(1− φ2)
. (6.3.12)

The bias is dependent on both the number of chunks and the length of these chunks.

For the case when m1 = m2 then all chunks are the same length and the bias reduces

to the form given earlier in Equation (6.2.45) when we had just a single time series.

Hence the bias is largely unaffected by the number of chunks, and is instead reduced

by increasing the length of each chunk. This means that to reduce bias we would need

to minimise the number of chunks.
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The variance is

var
[
κ̂(CP )
m (t)

]
≈

∆2σ4
I

(m1 +m2)2

{
m1n

2
2 [2φ(φn1 − 1) + n1(1− φ2)]

2
+m2n

2
1 [2φ(φn2 − 1) + n2(1− φ2)]

2

2n2
1n

2
2(φ− 1)4(1− φ2)2

}
.

(6.3.13)

The variance also depends on both the number and length of chunks. However the

variance is minimised by increasing the number of chunks. Hence we observe a trade-

off between the bias and variance to minimise the RMSE.

The RMSE can be calculated as

RMSE
[
κ̂(CP )
m (t)

]
≈
√

bias
[
κ̂

(CP )
m (t)

]2

+ var
[
κ̂

(CP )
m (t)

]
. (6.3.14)

The RMSE is minimised by increasing both the number of chunks n1, n2, and the

length of these chunks m1,m2. The number and length of the chunks are not inde-

pendent of one another, and cannot both be simultaneously be increased. We therefore

need to find the optimal length of a chunk which balances the bias and variance to

find the overall minimised RMSE.

This error is only an approximation to the true error as we assumed in Equation

(6.3.10) that the chunks are independent, which is not the case since they were formed

from a single time series following an AR(1) process where the velocity at time t

depends on the velocity at time t−1. We therefore need to verify that this assumption

is appropriate and show that the effect that this dependence has on the error is small.
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Figure 6.3.2: The analytical RMSE where independence is assumed, and simulated

RMSE where chunks are dependent, both normalised by κ, for an AR(1) process with

φ = 0.7, σI = 1, ∆ = 1, and N = 1000. Values are shown for a range of chunk

numbers m ranging from 1 to 1000.

Dependence Between Chunks

We have assumed up to now that chunks are independent of one another, and so

we note that the RMSE given in Equation (6.3.14) is only approximate. To con-

sider whether this assumption is appropriate, we simulate 1000 time series of length

1000 from an AR(1) velocity process with damping parameter φ = 0.7, and compare

the RMSE of computing Equation (6.3.8) with the analytical expression of Equation

(6.3.14), as shown in Figure 6.3.2 for a range of values for m (the number of chunks).

We see that the simulated and analytical errors are almost identical for all values of

m, meaning that the assumption, at first glance, is reasonable.

To further test this assumption, we found the simulated and analytical RMSE for

φ ∈ [−0.9, 0.9] in steps of 0.1, and produced a histogram of the difference, as shown in

Figure 6.3.3. We see that the histogram shows the difference to be extremely small.
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Figure 6.3.3: A histogram displaying the difference in the RMSE of the analytical

RMSE where independence is assumed, and simulated RMSE where chunks are de-

pendent. The error is calculated from 1000 simulated AR(1) processes with N = 1000

for φ between −0.9 and 0.9 in intervals of 0.1 for all possible values od m, with σI = 1

and ∆ = 1.

The average difference between the RMSE from simulations and the analytic approx-

imations is only 0.0284% of the value of the true diffusivity. The apparent small

difference between the simulations and analytical expressions is promising. Analyti-

cally bounding the error induced by this approximation is left for future work.

6.4 Window length selection for ACP Estimator

The window length (or equivalently the number of chunks) of the ACP estimator will

need to be chosen to minimise the RMSE of the resulting estimate. We discussed in

Section 6.3.3 that minimising the RMSE will result in a trade-off between the bias

and variance as they cannot be simultaneously minimised—reducing the bias increases
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the variance and vice versa. In fact this trade-off can be observed in the experiment

performed in Figure 6.3.2 for an AR(1) velocity process where for N = 1000 it appears

a value of m around 50 is optimal (such that corresponding window lengths are around

20). The choice of the window length is process dependent, and in this section we

discuss how the chunk length can be chosen.

To emphasise an important distinction when we refer to “chunking”—a drifter will

move through different regions of the ocean during its lifetime, and therefore will need

to be partitioned into segments where the currents and diffusivity can be assumed to

be approximately stationary. We assume this pre-processing step has occurred, and

through this chapter we assume that all time series have been split into stationary

segments. Choosing the window length in this section instead refers to splitting these

stationary segments into chunks that the diffusivity estimates are averaged in the

ACP diffusivity estimator to reduce error.

To determine this optimal window length, a closed form expression for the error is

required. This is because the bias in Equation (6.3.12) cannot be estimated directly

from the data since we do not know the true diffusivity. We therefore turn to para-

metric stochastic models to calculate the RMSE. One such model that could be used

is an AR(1) velocity process, and this is the model that we will use. We note that

other models could also be used, and an analytical form for the error would need to

be found.
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6.4.1 Using an AR(1) process as a rough approximation to

low frequency motion

An AR(1) process can be used to approximate ocean drifter velocities. Matérn and

Ornstein-Uhlenbeck processes have also been used to model velocities by, for example,

Lilly et al. (2017), and are a good fit for low frequencies below the frequencies of tides

and inertial oscillations. We choose to use the AR(1) process as it is the discrete-

time analogue of an Ornstein-Uhlenbeck processes, and no information is lost in the

discretisation as drifter velocities are regularly sampled in any case, so fitting to a

discrete-time stochastic process has intuitive appeal and benefits.

An Ornsterin-Uhlenbeck process (or equivalently an AR(1) process) provides a

good fit to ocean velocity observations at low frequencies, as has been shown in

Sykulski et al. (2017a). Higher frequencies do not fit to an Ornstein-Uhlenbeck or

AR(1) processes due to physical effects such as tides, wind and inertial oscillations,

however the ACP diffusivity estimator only uses frequency zero, and so we do not

require a good fit for higher frequencies since they are not directly used. Therefore, an

AR(1) process is a reasonable approximation to ocean velocities at low frequency, and

can be used for tuning the window length of our diffusivity estimator. We emphasise

that the final estimator of diffusivity is ultimately non-parametric, it is only the

window length choice where we use a parametric model to select its value.
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6.4.2 Optimal window length for an AR(1) Velocity Process

We use an AR(1) velocity process to approximate the optimal window length for the

ACP estimator. The optimal window lengths n1, n2 are chosen to minimise the RMSE

from Equation (6.3.14), which takes the form

RMSE
[
κ̂(CP )
m (t)

]
≈

∆σ2
I

(m1 +m2)n2
1n

2
2(φ− 1)4(1− φ2)2

[
{[m1n2φ(φn1 − 1) +m2n1φ(φn2 − 1)]}2 +

0.5
{
m1n

2
2

[
2φ(φn1 − 1) + n1(1− φ2)

]2
+m2n

2
1

[
2φ(φn2 − 1) + n2(1− φ2)

]2}]1/2

.

(6.4.1)

Figure 6.4.1 shows the RMSE of the ACP estimator of an AR(1) process of length

1000 for φ = −0.7, 0.7, 0.9 and 0.99 and σI = 1, for different values of m (the number

of chunks). Note that here we plot over m and not N , to see the performance of our

estimator for different chunk lengths for a fixed value of N . The blue lines correspond

to splitting the time series into chunks which all have the same length, and discarding

any remaining observations. The red curves correspond to using all drifter velocity

observations, and splitting the time series into chunks of lengths n1 and n2. The

jumping in the blue lines is due to splitting the drifter velocities into equal chunks as

some observations are lost if m doesn’t divide N exactly. The red curves are much

more smooth than the blue lines, and generally have lower RMSE, and hence the

RMSE is better minimised if all observations are used in the estimation process as

expected.

For each value of φ there is a clear global minimum on the plot, and so we can
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Figure 6.4.1: RMSE for φ = −0.7, 0.7, 0.9 and 0.99 plotted against the number of

chunks, m, from a time series of length N = 1000, with ∆ = 1, using either equal

chunk sizes, or chunks of different sizes where every drifter velocity observation is

used.
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choose a value of m for which the error is minimised. The RMSE when m = 1

is equivalent to the periodogram-based estimate using just one time series that we

considered in the previous section in Equation (6.2.9). For positive values of φ it is

the least optimal to set m = 1, and so even if we did not chose the value of m which

minimises the RMSE it is still optimal to chunk the drifter velocities into multiple

time series as opposed to obtaining the periodogram-based estimate directly from the

time series.

The RMSE is a tradeoff between the bias and the variance, as shown in Figure

6.4.2, which shows the bias, variance and RMSE of an AR(1) velocity process of

length 1000 with φ = 0.7 split into m equal chunks. As the time series is divided into

a greater number of chunks, the variance reduces as we are averaging over more time

series, however the bias will increase since each time series will not be as long. The

value of m which minimises the RMSE should be chosen to optimally balance the bias

and variance.

We can approximate the optimal number of chunks for any AR(1) process with

σI = 1 for |φ| < 1 and for all N using Equations (6.3.12)-(6.3.14). Figure 6.4.3

shows the optimal value of m which we denote mopt normalised by the length of the

time series. If we were to take the mean value of mopt over all N ≤ 1000 and all φ

in intervals of 0.01 from -0.99 to 0.99, we get that it is optimal to have m ≈ N/5.

However this takes into account more extreme values, such as where N is small, and

φ is close to zero. Omitting these values, it appears from inspection that the optimal

choice of mopt is around N/20.

For φ = 0, which is equivalent to a white noise process, we get that mopt = N
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Figure 6.4.2: Bias variance trade-off demonstrated by plotting bias, variance and

RMSE for φ = −0.7, 0.7, 0.9 and 0.99, ∆ = 1, and σI = 1, plotted against the number

of chunks, m, from a time series of length N = 1000, comparing using equal chunks,

or chunks of different sizes where every drifter velocity observation is used.
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Figure 6.4.3: The normalised optimal number of chunks mopt/t for φ ∈ (−1, 1) for a

time series of length t ∈ (1, 1000) and σI = 1.
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which is equivalent to chunking the time series into N new time series of length 1, as

discussed in Section 6.3.1.

We note that the optimal value of m in Figure (6.4.3) assumes that the white

noise signal in the AR(1) process has variance σI = 1, but this only affects the scaling

behaviour of the RMSE (see Equation 6.4.1) and hence does not affect the optimal

choice of m, therefore the key variables one has to know are φ (the autocorrelation at

lag-1 between subsequent velocity observations spaced ∆ apart) and the time series

length N .

Relationship to decorrelation time

The optimal chunk length, nopt = N/mopt, is related to the concept of decorrelation

time, which we denote tdecorr, and we define as the time taken for the autocorrelation

of the velocity process to become less than 1/e. The autocorrelation is defined as

R(τ) =
γτ
γ0

. (6.4.2)

From Equations (6.2.25) and (6.2.27) which define the variance and autocovariance

of an AR(1) process respectively, the autocorrelation of an AR(1) process is simply

R(τ) = φτ . (6.4.3)

The decorrelation time for an AR(1) process is therefore the time when

φτ < 1/e. (6.4.4)
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For a stationary AR(1) process with positive damping parameter (0 < φ < 1), the

decorrelation time is therefore

τ > − 1

log(φ)
, (6.4.5)

where the log refers to the natural logarithm. The decorrelation time doesn’t hold

when the damping parameter is zero or negative due to the nature of the logarithm,

but in general we expect drifter velocities to exhibit positive autocorrelation.

Repeating Figure 6.4.3 but plotting the optimal chunk length multiplied by ∆, and

scaled by the decorrelation time, nopt∆/tdecorr, produces a plot which is approximately

flat colour for values of t greater than 300s. Therefore, for time series with t > 300,

the optimal chunk length is approximately proportional to the decorrelation time. For

the particle trajectories simulated in Figure 6.4.3, the median optimal chunk length

is 13tdecorr/∆.

6.5 Application of ACP Diffusivity Estimator to

drifters

The ACP estimator can be applied to large scale particle trajectories such as the

Global Drifter Program. In order to apply the estimator, a number of choices must

be made. These choices include: the value of the AR(1) damping parameter φ to tune

the number of chunks, the initial length of the time series N , the width of spatial bins,

whether or not to allow drifter velocities from neighbouring bins, and if a trajectory

passes through multiple bins then which bin should the estimate be placed in, or
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should the estimate belong to all bins?

We leave the choice of damping parameter, the initial length of the time series

and the width of spatial bins to the practitioner, and as an area of future research to

establish their optimal tuning. As noted in Chapter 2, Zhurbas and Oh (2004) and

Koszalka et al. (2011) use varying bin sizes. In Section 6.6 we will explore different

initial time series lengths and bin sizes, but make no attempt to choose these optimally.

We choose to place our diffusivity estimates within the spatial bin corresponding to

the position of the drifter halfway through the time series. We place the diffusivity

estimate just in that single bin but allow the velocity observations from outside the

spatial bin to contribute towards the estimate.

An alternative way we could have assigned trajectories to bins would be to split the

drifter trajectories into time series that are contained solely within each spatial bin,

regardless of the number of observations. Faster moving drifters, for example those

close to the equator or on the boundary currents, move through bins more quickly

resulting in shorter time series. We chose to instead estimate with fixed length time

series so that the estimates are more comparable in terms of the variance from a single

time series, but acknowledge that this may cause biases. Some parts of the ocean are

more densely populated with drifters, and so in these areas the diffusivity estimates

are expected to have lower variances as estimates are averaged over multiple drifters.

The chunk length could therefore take the number of drifters in the spatial grid into

consideration, and use this number as the number of time series, rather than just the

number of time series from an individual drifter. This type of ‘optimal tuning’ is left

for future work.
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6.5.1 Mean Flow Estimation

One factor which affects diffusivity estimates is the differing mean flow across the

ocean. Because we are not working with clustered drifters, as we did in Chapters 3–5,

only the mean flow can be removed, and not mesoscale features such as strain and

vorticity, although some mesoscale features will be captured as part of the mean flow.

To estimate diffusivity without mean flow, we can’t simply calculate the mean

across each time series and remove that to estimate diffusivity, as this will trivially

always return a diffusivity of zero. This is because of the way we estimate diffusivity

in Equation (6.2.9), as we now show. If we remove the mean velocity across the time

series, then the diffusivity estimator becomes

κ̂(P )(t) =
∆

2N

∣∣∣∣∣
N∑
i=1

(
ui −

1

N

N∑
j=1

uj

)∣∣∣∣∣
2

. (6.5.1)

Expanding out gives

κ̂(P )(t) =
∆

2N

∣∣∣∣∣
(

N∑
i=1

ui −
N∑
j=1

uj

)∣∣∣∣∣
2

= 0. (6.5.2)

This happens due to the way diffusivity is calculated, as we’re calculating the square

of the sample mean. Therefore, we require an alternative method to estimate mean

flow.

To estimate the mean flow, we take an average of all velocity observations within

a spatial grid. This mean is subtracted from the velocity of each individual drifter,

where the mean removed corresponds to the spatial position of the drifter at each

time point and can therefore change throughout the time series. The diffusivity can

then be estimated in the same way as in Section 6.3.2.
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This method for estimating mean flow uses all observations in time, and does not

account for temporal variations to the background velocity at a given spatial location.

An example where the mean flow varies over time is the Gulf Stream whose position

and amplitude oscillates in time (Zhai et al., 2008). Therefore our mean flow estimates

mix spatial and temporal scales. Possible alternatives would be to provide mean flow

estimates that vary seasonally or by decade. The choice of the time period over which

to estimate the mean flow would introduce another trade-off between the bias and

variance of mean flow estimates and is left to further work.

6.5.2 Comparison of ACP Diffusivity Estimator with Peri-

odogram Estimator via Box Simulations

We have previously shown theoretically that the ACP estimator will reduce the error

of diffusivity estimates by reducing the variance. We will now demonstrate this error

reduction via an idealised simulation environment, where the mean flow and diffusivity

are known quantities. We will consider the simple case of white noise velocities with

constant mean flow and diffusivity. We then look at a more complicated flow made

up from trigonometric functions, but with a homogeneous diffusivity.

Throughout the simulations, we will simulate 10,000 particles across a box with

dimensions defined to be 100km×100km. The drifters are equally spaced at the start

of the simulation, arranged in a grid shape, with a particle positioned every 1km. We

will take hourly observations, equivalent to setting ∆ = 3600s. The box is doubly

periodic, and so when a particle reaches the boundary of the box, it will wrap around
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Figure 6.5.1: Mean flow velocity field with ut = vt = 1m/s.

as if it were on a torus. Away from the poles the box can be thought of as a simplified

representation of the globe.

White Noise Positions with Constant Mean Flow

We begin with the simple case of particles where the velocities follow a two-dimensional

white noise process with additional mean flow, and hence the positions follow a two-

dimensional random walk with drift. The simulation lasts for t = 500 hours with the

observation interval set to ∆ = 1 hour such that N = 50. The mean flow velocity is

set to ut = vt = 1m/s (shown in Figure 6.5.1), and the diffusivity is set to 1000m2/s

in each x and y direction (with zero correlation or cross-diffusivity).

We estimate the mean flow in each direction, using the method described in Section

6.5.1, on a spatial grid of resolution 1km×1km. Figure 6.5.2 shows box plots mean

flow estimates aggregated across the 100km×100km box, with each box and whisker

covering 20km in either x or y, and all 100km in the other direction. The reason for

separating into 20km regions will become apparent in experiments that follow where
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Figure 6.5.2: Box plot of mean flow estimates from particles simulated with mean

flow as in Figure 6.5.1, where diffusivity is set as 1000m2/s. The velocity observations

were organised into 1km×1km grids based on their positions, and the mean calculated

for each grid. Each box plot corresponds to aggregating across 20km grids in either

x (left panels) or y (right panels), with the red horizontal line corresponding to the

mean.

the mean flow is inhomogeneous. The simulations revealed that if we were to estimate

mean flow in 1km×1km grids following Section 6.5.1, the average bias would be zero,

and standard deviation 0.033m/s. Therefore for the simple case of trajectories with

constant mean flow and white noise velocities, this method for estimating the mean

flow performs well.

We now subtract the estimated mean flow from each grid from the velocity, and

estimate diffusivity using the periodogram estimator from Equation (6.2.9) and our

proposed ACP estimator from Equation (6.3.7), where we have chosen a chunk length

of 50 hours (corresponding to 10 chunks containing 50 observations each). We report

the two dimensional diffusivity, taken as the average of the diffusivity in the x and y
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Figure 6.5.3: Histogram of diffusivity estimate for each spatial grid, for particles

simulated as in Figure 6.5.2 using the periodogram diffusivity estimator (left) and

ACP estimator (right). The red vertical line corresponds to the mean diffusivity

estimate.

directions (Lilly et al., 2017). Figure 6.5.3 shows histograms of the periodogram and

ACP diffusivity estimates, where each diffusivity estimate corresponds to a particular

1km×1km grid-point. The periodogram and ACP estimates have mean 1003m2/s and

996m2/s respectively, and standard deviations 518m2/s and 334m2/s. Therefore, the

bias of each estimate is almost negligible whereas the variance is completely dominat-

ing the RMSE. Specifically the periodogram estimates have RMSE 518m2/s, and the

ACP estimates have RMSE 334m2/s.

For the simple case of particles with velocities following a white noise process, the

ACP estimator was able to reduce the error of diffusivity estimates compared with

estimating with the periodogram estimator. While the bias was greater with the ACP

estimator, this increase is very small and so the significant decrease in variance was

able to reduce the overall RMSE. We note that drifters in the ocean follow a much
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Figure 6.5.4: Mean flow velocity field from Equation (6.5.3).

more complicated path than that which can be described by a white noise velocity

process with constant mean flow, and so we shall now apply both estimators to more

complicated simulated trajectories.

Stream function Mean Flow

We now use our simulation environment to test the ACP estimator on more compli-

cated particle trajectories. We will use a stream function (Lamb, 1924) to define the

velocity field, choosing a periodic function so that the boundaries are divergence free.

We define the stream function

ψ(x, y) = U cos

(
2πx

DX

)
cos

(
2πy

DY

)
, (6.5.3)

where DX = DY = 100km define the size of the box in x and y, and we set U =

10, 000m/σ2
I , meaning that the velocity in each direction will be ∼ 0.1m/s. The

stream function is shown in Figure 6.5.4.
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We can calculate the velocities in each direction as

u = −ψy = U
2π

DY

cos

(
2πx

DX

)
sin

(
2πy

DY

)
(6.5.4)

v = ψx = −U 2π

DX

sin

(
2πx

DX

)
cos

(
2πy

DY

)
. (6.5.5)

The stochastic velocities again follow a two-dimensional white noise process with

the diffusivity is set as 200m2/s in each x and y direction (with no correlation), and

N = 1000hours. For this simulation, while the observed time between observations is

still ∆ = 1 hour, due to the complexity of the stream function, we simulate positions

every 30 seconds to update the positions based on intermediate positions rather than

just the previous recorded position. If we were not to do this, then drifters will not

follow the stream lines, and this results in regions of convergence/divergence, which

should be otherwise infeasible due to the definition of a stream function which is

always divergence free.

Figure 6.5.5 displays box plots of mean flow estimates (compare with Figure 6.5.2

for a constant mean flow), calculated by taking the mean of all velocity estimates

in a 1km×1km grid. We can see in Figure 6.5.4 that the mean flow changes across

space, and these changes can be seen in the estimates in Figure 6.5.5. While the mean

of each box is approximately the same, the interquartile range varies between boxes

reflecting the changing magnitude of velocities in different regions.

As in the previous section, we remove the mean flow from the particle velocities

and calculate diffusivity using the periodogram and ACP estimators, obtaining an

estimate for each spatial grid and a chunk length of 50 hours. Again we report the

two dimensional diffusivity, taken as the average of the diffusivity in the x and y direc-
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Figure 6.5.5: Box plot of mean flow estimates from particles simulated with mean flow

as in Figure 6.5.4, where diffusivity is set as 200m2/s. The mean flow was estimated

in 1km×1km grids. Each box plot corresponds to 20 grids in either x (left panels) or

y (right panels), with the red horizontal line corresponding to the mean.

tions. Figure 6.5.6 shows the a histogram of diffusivity estimates. Despite the more

complicated background flow which changed across space, the diffusivity estimates

are almost unbiased, with each histogram having mean 201m2/s and therefore bias

1m2/s. The periodogram estimates have standard deviation, and RMSE of 68m2/s,

and the ACP estimator has standard deviation and RMSE of 47m2/s. If we were to

scale the RMSE by the true value of the diffusivity then for the ACP estimator we

get 0.235, and for the white noise case the scaled RMSE was 0.334. Similarly for the

periodogram estimator the scaled RMSE is 0.34 for the stream function flow and 0.58

for the white noise. Therefore the scaled RMSE is significantly lower with the ACP

estimator.

We have tested the ACP estimator on two different simulations with varying levels

of complexity, and in both cases it performed better than the periodogram estimator
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Figure 6.5.6: Histogram of diffusivity estimate for each spatial grid, for particles

simulated as in Figure 6.5.4 using the periodogram diffusivity estimator (left) and

ACP estimator (right). The red vertical line corresponds to the mean diffusivity

estimate.

in terms of RMSE, as we expected. Further, the bias of the ACP estimator was

very similar to that of the periodogram estimator, and the decrease in variance was

significant. Changing the chunk length is likely to change the bias and variances

to those we have found, however we have shown that the ACP estimator is able to

produce reasonable diffusivity estimates in a simulation environment.

Further work would be to repeat the work in this section to include time variation

since the ocean circulation changes with time. Including time variation in Equation

(6.5.3) would mimic Rossby waves. If we were to estimate a time varying simulation

as if it were constant in time, then we would expect the moving wave to be weakly

seen in all locations that it has been during the simulation. The structures in the

simulation would be smoothed across the different spatial locations, due to the tem-

poral evolution. Therefore, we would need to include temporal evolution into our
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estimation procedures.

6.6 Diffusivity Estimates using Global Drifter Pro-

gram Drifters

We now apply the ACP estimator to drifter trajectories from the Global Drifter Pro-

gram, which we introduced in more detail in Section 2.2.3. The work presented in

this section is a preliminary analysis as we do not fine-tune the window length of the

ACP estimator, or attempt to incorporate temporal variability into our mean flow or

diffusivity estimates.

The window length of the drifter trajectories should be chosen as outlined in

Section 6.4.2. We suggest that segments are chosen to be at least as long as the

decorrelation timescale. In an AR(1) process the decorrelation time is the time that

there is no significant memory between two time points. As we are using an AR(1)

process to approximate ocean velocities when choosing the chunk lengths, a window

length at least as long as the decorrelation time would contain at least two near-

independent pieces of information. We note however, that Figure 6.4.1 showed the

ACP estimator to have the largest RMSE when we had only a single chunk (equivalent

to the periodogram based estimator), and hence applying the ACP estimator without

optimising the number of chunks should still produce diffusivity estimates with a lower

error than the periodogram diffusivity estimator.

We work with the 6-hourly product (∆ = 6 hours) and split the drifter trajectories

into time series of either 50 or 100 days (N = 200 or 400), and apply the ACP
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estimator with chunks that are 12.5 days, or 50 observations, long (such that the

number of chunks is m=16 or 32). We note that these window lengths have not been

chosen to fully optimise the error, however both are longer than the decorrelation

timescales found in Sundermeyer and Price (1998) (5-10 days). We split the globe

into either 0.5◦ × 0.5◦ bins or 1◦ × 1◦ bins, and assign the diffusivity estimates to

the grid that the drifter was in at the middle of the time window. Once estimates

are found using all of the drifter data, we average the estimates across the grids to

obtain a single diffusivity estimate for each spatial grid. These estimates assume

that diffusivity is constant over time, and does not consider any seasonal patterns or

general trend, but this could be considered in future work.

6.6.1 Mean Velocity Estimates

We begin by estimating the mean velocity, following the method described in Section

6.5.1, using 0.5◦ × 0.5◦ and 1◦ × 1◦ bins. The estimates are shown in Figure 6.6.1.

The spatial resolution doesn’t appear to have significantly improved when estimating

using smaller bins, however the difference in the standard deviation is also small. If

we were to instead use much larger bins we would lose some spatial resolution, such

as the stripes of faster drifters near the equator and boundary currents.

6.6.2 Diffusivity Estimates

We now apply our diffusivity estimator to GDP drifters, as well as the periodogram

estimator for comparison. Figure 6.6.2 shows diffusivity estimates from the peri-
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Figure 6.6.1: Mean flow estimates across the globe using GDP drifters, estimated

following the method from Section 6.5.1 with bins of size 0.5◦× 0.5◦ (left) and 1◦× 1◦

(right).

odogram and ACP estimators using 0.5◦ × 0.5◦ bins. We report the two dimensional

diffusivity, taken as the average of the diffusivity in the x and y directions. We pro-

duce estimates separately from the ACP estimator for each direction, before averaging

as this allows different chunk lengths to be used in each direction if required. The

ACP estimator split the time series into chunks of length 12.5 days, hence the ACP

diffusivity estimates are being estimated from 4 times as many time series as the pe-

riodogram estimator. This results in the standard deviation for the ACP estimates

being approximately half that of the periodogram estimates. It also results in smaller

diffusivity estimates, with the mean estimate across the globe being half that of those

from the periodogram estimates. Figure 6.6.2 shows a notable resulting decrease

in the noise when using the ACP estimator, when compared with the periodogram

estimator, allowing finer scale structures to be resolved.

In Figure 6.6.3 we show the periodogram and ACP estimates when estimating

using 1◦ × 1◦ bins, and an initial time series of 50 days. The means are similar to
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Figure 6.6.2: Diffusivity estimates using the periodogram (left) and ACP (right) esti-

mators plotted on log10 scale, with 0.5◦×0.5◦ bins, and an initial time series of length

100 days. The ACP estimator split the time series into chunks of length 12.5 days.

The colour scale has been capped between 103 and 105.5 for visualisation purposes.

the corresponding plots of Figure 6.6.2, however the standard deviations are lower.

The most noticeable difference is the decreased noisiness of both plots compared

with Figure 6.6.2. The larger bins combined with shorter initial time series combines

more time series per spatial bin allowing the standard deviation to significantly drop,

although some finer structures may be lost from the larger resolution.

The periodogram and ACP diffusivity estimators produce estimates which are

distinctly different. As we do not know what the true diffusivity is in the ocean

we are unable to give a definite answer for which estimates are closer to the truth,

however we can see the standard deviation is much lower for the ACP estimates. For

both estimators the average standard deviation is larger than the mean diffusivity

estimate, and so the decrease in the standard deviation is expected to almost always

outweigh the increased bias on average. Therefore, we expect the ACP estimates to
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Figure 6.6.3: Diffusivity estimates using the periodogram (left) and ACP (right) esti-

mators plotted on log10 scale, with 1◦ × 1◦ bins, and an initial time series of 50 days.

The ACP estimator split the time series into chunks of length 12.5 days. The scale

has been fixed between 103 and 105.5.

have a lower error than those from the periodogram estimator.

Our estimates are larger than those found in the literature, however the estimates

from the ACP estimator are closer to what we would expect. Koszalka et al. (2011)

obtained diffusivity estimates up to approximately 3× 103m2/s, which are lower than

the estimates we show, however we fixed the scale of our plots with a minimum of

103m2/s which is the maximum diffusivity that Koszalka et al. (2011) are reporting.

They estimate diffusivity in the Nordic Seas, which are away from the major currents

where we report our highest estimates.

Zhurbas and Oh (2004) estimate diffusivity to be closer to our estimates, with their

estimates increasing up to 2.8 × 104m2/s, and the majority of their estimates being

approximately 5 × 103m2/s. Our estimates range from 103 − 104m2/s, except at the

major currents where they are larger, and therefore are approximately in agreement
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with Zhurbas and Oh (2004). We would expect to have larger diffusivity estimates

than Zhurbas and Oh (2004) as they estimate diffusivity using the minor principal

component, whereas we estimate diffusivity in both axes aligned with the longitude

and latitude. Our method could be combined with theirs to measure the ACP estima-

tor along the minor principal component, and this avenue of investigation is reserved

for future work.

Another area for further work is to smooth out the mean flow and diffusivity

estimates across the different spatial bins. Our estimation procedures assume that

the mean flow/diffusivity estimate in each bin is independent of that in any other bin,

whereas we would expect adjacent bins to have correlated mean flow/diffusivities.

Therefore, the decorrelation scales could be calculated spatially for each bin and used

to optimally smooth the estimates.

6.6.3 Optimal Chunk Length from Global Drifter Program

Drifters

In the previous section we didn’t optimise the number of chunks before estimating

diffusivity. If we had optimised this number then the estimates would have had an

even lower error. The optimal chunk length depends on the length of the initial time

series that we are using to estimate diffusivity, as well as the autocorrelation structure,

as we have shown before.

Figure 6.6.4 shows an approximation to the optimal number of chunks in each di-

rection for time series of lengths 50 days and 100 days. We approximate the optimal
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Figure 6.6.4: The optimal number of chunks found from GDP drifters in the u (left

column) and v (right column) directions for initial time series of length 50 days (top

row) and 100 days (bottom row), found by fitting an AR(1) process to the drifter

trajectories and minimising the RMSE.
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number of chunks by fitting an AR(1) process to the drifter velocities and then min-

imising the RMSE of the ACP estimator using Equation (6.4.1). The chunk length

for each bin is found by calculating the optimal chunk length for each individual time

series and then taking the average. We choose to use different chunk lengths in the

x and y directions as the fast moving drifters near the equator mean we can estimate

diffusivity with a larger number of shorter chunks in the x direction, but the drifters

are not as quickly moving in the y direction and so fewer longer chunks are needed. We

would expect faster moving drifters to have less memory (once the mean is removed),

and therefore a lower value for φ. From Figure 6.4.3 we know that smaller damping

parameters mean that the optimal number of chunks is higher than for larger values

of φ. The choice to have different numbers of chunks in each direction means that

the variance from the number of drifters will vary in each direction, but that we are

reducing the error overall.

6.7 Conclusion

Diffusivity can be estimated many different ways, and some estimation methods were

introduced earlier in Section 2.4. Many estimation techniques derive from Taylor

(1922), and these methods are in general equivalent to estimating diffusivity as the

integral of the velocity autocorrelation. We have shown that some implementations,

while equivalent to estimating using the periodogram as t→∞, perform worse than

estimating from the periodogram in terms of RMSE. Further to this, we showed that

it would be better to estimate the diffusivity to be zero than to produce an estimate
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from a single drifter using the periodogram estimator.

The large errors that we showed for the periodogram estimator are due to the vari-

ance being large, and therefore we introduced the ACP estimator which was proposed

as a method to estimate diffusivity with reduced variance. This method requires

splitting a time series into many smaller time series and taking the average diffusiv-

ity across the chunks. It introduces a trade-off between the bias and variance of an

estimate, and requires an optimal window length to be chosen to minimise the RMSE.

We use theoretical forms of bias and variance from an AR(1) velocity process

which is fitted to drifter trajectories in order to determine the window length. Unlike

Griffa et al. (1995) we do not use the parametric model to directly estimate diffusivity,

instead we use the model to refine our non-parametric estimator to each unique drifter

trajectory, before then applying the estimator directly to the velocity observations to

estimate diffusivity.

We applied the ACP estimator to simulated trajectories as well as global drifter

program drifters and showed that it performed better in terms of RMSE than the

periodogram estimator. Our estimates of diffusivity are in general higher than those

by Koszalka et al. (2011) and Zhurbas and Oh (2004), but the ACP estimates are

closer to their estimates than those from the periodogram estimator. The meaning

of these estimates can vary depending on how they are calculated, Zhurbas and Oh

(2004) estimate diffusivity using the minor principal component whereas we estimate

a two-dimensional averaged estimate. Therefore, we can compare with them to see

that our estimates are approximately of the right order, however we do not expect to

obtain estimates as low as theirs due to the assumptions made in different estimators.
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There are a number of choices that we needed to make to estimate diffusivity from

the GDP. The first of these decisions was what size spatial bins to split the oceans

into. We used relatively small bins of sizes 0.5◦ × 0.5◦ and 1◦ × 1◦. We chose small

bins (versus other studies in the literature) because the ACP estimator decreases the

variance, and therefore increases the statistical significance of the estimates, allowing

finer resolutions to be realistically resolved. We split each time series into at least 4

chunks, and so based on the result from Section 6.2.4 that we require at least three

time series to ensure statistical significance, then all the estimates from the ACP

estimator should be significant. The same cannot be said for the periodogram based

estimates, as these do not take any measure to ensure the significance of the estimates

other than averaging across multiple drifters (which may not be available). Therefore

for more sparse regions of the ocean the number of chunks in the ACP estimator can

be chosen to ensure that the resulting estimates are significant.

We know that diffusivity is not constant across the ocean, therefore it would

be unrealistic to use the whole historic data from each drifter to choose a window

length. However, how do we choose an initial partition to obtain the optimal window

length for each part of the ocean? Do we wish to only use the part of a trajectory

within a certain bin to estimate diffusivity within that bin, or can observations in

neighbouring bins contribute to the estimate? These are decisions that need to be

made before estimating with the ACP estimator. We chose initial time series of either

100 or 50 days, as this allowed us chunks of length 12.5 days which still allowed the

diffusivity to converge towards the long-term diffusivity. However, optimally choosing

the initial time series length, as well as other tunable decisions, is an area that we
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leave for further work.

Another important piece of further work is fitting the AR(1) velocity process to

drifter trajectories to obtain estimates for the damping parameter. The periodogram

and ACP estimators only use frequency zero, and therefore the process only needs to

fit at the lowest frequencies, rather than to all frequencies. This reduces the impact of

processes such as tides and waves on the choice of the AR(1) parameter. We also note

that an alternative parametric model could be used to determine the chunk length,

so long as the RMSE can be determined. An AR(1) process is more simple than

an oscillatory Ornstein-Uhlenbeck process or a Matérn process, and so these might

capture more features of drifter trajectories and result in a more optimal choice for

the chunk length. The ACP estimator should yield diffusivity estimates with lower

RMSE than the periodogram estimator regardless of the number of chunks chosen

(where just one chunk equal to the entire time series is equivalent to the periodogram

estimator). Therefore while optimising the number of chunks chosen is expected

to further improve the error, the ACP estimator should still be preferred over the

periodogram estimator without optimal tuning.

In Section 6.6 we estimated mean flow and diffusivity using all available trajectories

in the GDP, and therefore we didn’t account for any temporal variation. By neglecting

temporal changes we were able to use all drifters in each spatial grid, as opposed to

just those within a given time window, and therefore we reduced the variance of our

estimates. However, if the temporal changes were significant then we introduced bias

by estimating mean flow and diffusivity as averages across all time points. Choosing

temporal windows to estimate over poses a similar trade-off between bias and variance
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to our ACP estimator, and an optimal choice is likely to further reduce the error of

diffusivity estimates.



Chapter 7

Conclusions and Further Work

7.1 Conclusions

Estimating the path a drifter will take through the ocean requires us to estimate

various different components of the flow. The different components we can feasibly

estimate can be determined by what data is available, i.e. we require clustered drifters

to be able to realistically measure mesoscale flow. What we wish to learn can also aid

the decision of which parameters to estimate, and whether the estimates are expected

to be statistically significant. Throughout this thesis we have introduced methods to

estimate background, mesoscale, and submesoscale flow, with an emphasis on reducing

the error of the estimates.

In Chapter 3 we introduced a way to estimate mesoscale flow components which

involves taking a Taylor series of drifter velocity observations and using least-squares

regression to estimate strain, vorticity and divergence. We used a hierarchy of models

to estimate combinations of parameters depending on which features we believe to be

267
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present in the flow, as well as which parameters we are able to produce statistically

significant estimates for. Our method to estimate the mesoscale features is similar to

that by Okubo and Ebbesmeyer (1976), however their framework only permits estima-

tion of parameters at every observational time point. We instead implemented rolling

windows to estimate each parameter within a time window in which we assume that

parameter to be constant. The use of windows allowed us to improve the significance

of our estimates by reducing the variance, as well as smoothing out physical features

such as internal waves.

We used our estimator to provide estimates for strain rate and submesoscale dif-

fusivity using drifter observations from the LatMix experiment. As was the case in

Shcherbina et al. (2015) and Sundermeyer et al. (2020), we obtained different esti-

mates for the parameters dependent on assumptions made. When we assumed that

there is no vorticity our estimates of the strain rate were different to when we es-

timated both strain and vorticity together. It is therefore important to choose the

model that best fits the data in order to get the most accurate estimates for our

parameters. We proposed two different methods in Chapter 3 to select the hierarchy

that best fits the drifter trajectories and minimises the error.

The error of parameter estimates is determined by many different factors, such

as the sampling rate and the overall length of the observational time window. Not

all of these inputs can be changed after an experiment has taken place and the data

has been collected, as the length of the experiment, the sampling frequency, and the

initial positions of the drifters all affect the error, as well as the number of drifters.

These are all choices that must be made as part of the experimental set up, before
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the deployment takes place.

In Chapter 4 we explored via simulation how each of these choices affects the

errors, with an emphasis on the initial drifter positions. We found it was always more

optimal to run the deployment for longer and use more drifters, but this can be costly

and so it is important to also optimise how these drifters are deployed. We found

that the optimal drifter “morphology” is dependent on the number of parameters

being estimated, as well as which parameters we estimate. If we wish to estimate

only a single mesoscale parameter then it was optimal to deploy drifters in a straight

line (preferably aligned with strain angle), with the only exception to this being the

strain-only model if the drifters are deployed orthogonal to the strain angle, where

instead a more isotropic deployment morphology was preferred. Conversely, when all

mesoscale parameters were being estimated then an isotropic arrangement had the

lowest error, and when any two parameters (from strain/divergence/vorticity) were

estimated then it depended on which combination in terms of which morphology had

the lowest error. It is specifically the parameters being estimated, rather than the

features present in the data that determines the optimal initial drifter arrangement.

Therefore, without any prior knowledge of the mesoscale part of the flow, an isotropic

morphology should be used to minimise expected error of parameter estimates.

In Chapter 5 we extended the analysis of Chapter 4 but used a parametric model to

calculate theoretical errors without having to resort to simulations. This allowed us to

verify the optimal initial drifter morphology for different strain rates and diffusivities

to those used in Chapter 4. This analysis assumed a strain only model and so was less

extensive than Chapter 4, but was useful nevertheless as, for example, many authors



CHAPTER 7. CONCLUSIONS AND FURTHER WORK 270

estimate only strain from the LatMix experiment, and so the results of Chapter 5

would have been applicable to determining a more optimal drifter deployment for the

LatMix experiment, as well as placing error bars on the parameter estimates.

To derive a theoretical form for the error we assumed that drifters followed an

Ornstein-Uhlenbeck process and used method-of-moments to fit a noncentral chi-

squared distribution to the second moment of drifter positions. These second mo-

ments were then used to derive estimators for strain rate and diffusivity. We fitted a

distribution to each estimator which was used to calculate the expected error. The

error of both the strain rate and diffusivity estimates were minimised when the second

moment in the direction aligned with the strain angle was minimised, while changing

the second moment in the direction orthogonal to the strain angle had no effect on

the error. Therefore, it is optimal to deploy drifters spread out along the axis aligned

with the strain, which is consistent with the simulation results from Chapter 4.

Finally, in Chapter 6 we explored the error of estimating large-scale diffusivity on

a global scale. We fitted white noise and AR(1) processes to drifter velocities and

derived the distributions of the diffusivity estimates. We used the distributions to

calculate the expected error of diffusivity estimates from each process and found that

when diffusivity is estimated from a single time series, it would be more optimal to

estimate the diffusivity to be zero than to use the estimate. Specifically, we would

require to average diffusivity estimates from at least three time series for the esti-

mate to becomes statistically significant. This is because the estimates have a larger

standard deviation than the true value of the diffusivity.

We proposed a new method to estimate diffusivity where each time series was



CHAPTER 7. CONCLUSIONS AND FURTHER WORK 271

split into a number of chunks and the diffusivity was calculated as an average of the

diffusivity of each chunk. This decreases the variance of the estimate but increases

the bias, hence introducing a trade off between bias and variance. The number of

chunks that the time series is split into can be chosen by fitting an AR(1) process

to drifter velocities and choosing the number of chunks which minimises the RMSE.

The RMSE is maximised when one single chunk containing the original time series

is chosen, which is equivalent to estimate diffusivity from the periodogram estimator.

Therefore this estimator should always reduce the error, even if the most optimal

number of chunks is not used.

In this thesis we have proposed methods to estimate mesoscale and submesoscale

flow from clustered drifters, as well as a method to estimate large-scale diffusivity from

global drifters. These estimators have all been proposed as a way to estimate flow

parameters while reducing the error of such estimates. We also investigated how these

estimates could be further reduced by deploying drifters in a more optimal morphology

which is determined by which flow parameters we wish to estimate. Reducing the

error of parameter estimates enables us to build a clearer picture of how particles

move through the ocean without having to deploy more drifters, but we note that our

models are more simple than true ocean dynamics, and describing ocean flow remains

an important area of active research.
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7.2 Further Work

In addition to elements of future work identified throughout the thesis, we now focus

on three particular areas that would warrant further investigation building on the

results of this thesis.

One area for further work would be to expand our methods for estimating mesoscale

and submesoscale parameters to allow for their spatial variation. In this thesis we only

allowed for parameters to evolve temporally (see e.g. Section 3.4.3 using splines), but

we always assumed parameters to be fixed spatially in the area covered by a drifter de-

ployment. Our methods for estimating parameters using either least squares regression

(Chapters 3 and 4) or method-of-moments (Chapter 5) therefore made potentially un-

realistic assumptions of spatially fixed mesoscale and submesoscale parameters. This

might result in a bias of the parameter estimates, the size of which is determined

by how much the parameters truly change across the spatial region sampled by the

drifters. Implementing our smoothed time-windowed estimator in Chapter 3 is likely

to increase this bias versus estimating each parameter at every sampled time point,

as the drifters will spread through the time window which could result in the true

parameter values changing through space. One possible way to incorporate spatial

variation into the least squares estimator would be to model Equation (3.2.4) using a

second-order stream function. A stream function is incompressible, and so the model

defines the fluid to be divergence-free (which is not the case in Equation 3.2.4). The

use of a stream function allows the addition of third-order terms which can then be

used to model spatial variation. Preliminary investigation using a simplified version of
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Equation (3.2.4) suggests that the use of a higher order stream function could capture

the variation in strain rate estimates, as well as possibly reducing the size of the error

bars when compared with a lower order stream function.

Another area for further work is to apply the least squares estimator from Chap-

ter 3 and the method-of-moments estimator in Chapter 5 to other regional drifter

programs. Comparing with estimates in the literature for both the least squares and

method-of-moments estimators will provide a better idea of how well the estimators

perform for real data. In Chapter 3 we applied the estimator to drifter trajectories

from the LatMix experiment, but it could be applied to other drifter programs such

as GLAD, LASER, or CALYPSO, amongst others. Similarly, the second-moment es-

timator in Chapter 5 was only tested on simulated particle trajectories, and so further

work would involve testing it on real drifter deployments, such as those listed above.

The final area for future work that we wish to highlight is to develop the large-

scale diffusivity estimator from Chapter 6 to account for other flow features than just

the mean background flow. Our approach has been to estimate diffusivity from the

residual velocities after other flow features have been estimated and subtracted, and

diffusivity hence quantifies the diffusive properties of the unknown part of the drifter

velocities. Therefore estimating and removing more components of the velocities

should reduce the value of diffusivity estimates. Features that could be estimated and

removed involve tides (e.g. Foreman et al., 1995), inertial oscillations (e.g. Sykulski

et al., 2016), and eddies (e.g. Lilly and Pérez-Brunius, 2021; Sallée et al., 2008).

Furthermore, we could estimate different features (including mean flow) seasonally to

reduce any bias to the estimates due to seasonal variations.
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Thacker. Reconstruction of Submesoscale Velocity Field from Surface Drifters.

Journal of Physical Oceanography, 49(4):941–958, 2019. ISSN 0022-3670. doi:

10.1175/jpo-d-18-0025.1.

Annalisa Griffa, Kenneth Owens, Leonid Piterbarg, and Boris Rozovskii. Estimates of

Turbulence Parameters from Lagrangian Data Using a Stochastic Particle Model.

Journal of Marine Research, 53(3):371–401, 1995.

Britta D Hardesty, Joseph Harari, Atsuhiko Isobe, Laurent Lebreton, Nikolai Maxi-

menko, Jim Potemra, Erik Van Sebille, A Dick Vethaak, and Chris Wilcox. Using

Numerical Model Simulations to Improve the Understanding of Micro-Plastic Dis-

tribution and Pathways in the Marine Environment. Frontiers in marine science,

4:30, 2017.

Peter H Haynes. Vertical Shear Plus Horizontal Stretching as a Route to Mixing. In

From Stirring to Mixing in a Stratified Ocean, Proceedings, ‘Aha Huliko’a Hawaiian

Winter Workshop, pages 73—80, Honolulu, HI, University of Hawaii at Manoa,

2001.

P.E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations.

Vol. 23. Springer Science & Business Media, 2013.

I Koszalka, JH LaCasce, M Andersson, KA Orvik, and C Mauritzen. Surface Cir-

culation in the Nordic Seas from Clustered Drifters. Deep Sea Research Part I:

Oceanographic Research Papers, 58(4):468–485, 2011.



BIBLIOGRAPHY 277

Inga Monika Koszalka and Joseph H LaCasce. Lagrangian Analysis by clustering.

Ocean dynamics, 60(4):957–972, 2010.

K Kanhai La Daana, Rick Officer, Olga Lyashevska, Richard C Thompson, and Ian

O’Connor. Microplastic Abundance, Distribution and Composition along a Latitu-

dinal Gradient in the Atlantic Ocean. Marine pollution bulletin, 115(1-2):307–314,

2017.

JH LaCasce and A Bower. Relative Dispersion in the Subsurface North Atlantic.

Journal of marine research, 58(6):863–894, 2000.

JHt LaCasce. Statistics from Lagrangian Observations. Progress in Oceanography, 77

(1):1–29, 2008.

Horace Lamb. Hydrodynamics. University Press, 1924.

M. Pascale Lelong, Yannis Cuypers, and Pascale Bouruet-Aubertot. Near-Inertial

Energy Propagation inside a Mediterranean Anticyclonic Eddy. Journal of Physical

Oceanography, 2020. doi: 10.1175/jpo-d-19-0211.1.

Jonathan M. Lilly. Kinematics of a Fluid Ellipse in a Linear Flow. Fluids, 3(1):16,

2018. doi: 10.3390/fluids3010016.

Jonathan M Lilly and Paula Pérez-Brunius. Extracting Statistically Significant Eddy

Signals from Large Lagrangian Datasets Using Wavelet Ridge Analysis, With Ap-

plication to the Gulf of Mexico. Nonlinear Processes in Geophysics, 28(2):181–212,

2021.



BIBLIOGRAPHY 278

Jonathan M Lilly, Adam M Sykulski, Jeffrey J Early, and Sofia C Olhede. Fractional

Brownian Motion, the Matérn Process, and Stochastic Modeling of Turbulent Dis-

persion. Nonlinear Processes in Geophysics, 24(3):481–514, 2017.
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Andrew C Poje, Tamay M Özgökmen, Bruce L Lipphardt, Brian K Haus, Edward H

Ryan, Angelique C Haza, Gregg A Jacobs, A J H M Reniers, Maria Josefina Olas-

coaga, Guillaume Novelli, Annalisa Griffa, Francisco J Beron-Vera, Shuyi S Chen,

Emanuel Coelho, Patrick J Hogan, Albert D Kirwan, Helga S Huntley, and Arthur J

Mariano. Submesoscale Dispersion in the Vicinity of the Deepwater Horizon Spill.

Proceedings of the National Academy of Sciences of the United States of America,

111(35):12693–12698, 2014. doi: 10.1073/pnas.1402452111.
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