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Abstract 24 

Impacts due to climate change, population growth and intensive agriculture continue to be a major 25 

concern worldwide. Sustainable agriculture with coherent land management strategies is essential 26 

to mitigate against adverse environmental impacts. For the Chinese Loess Plateau (CLP), much 27 

research has focused on implementing soil-plant-atmosphere models to inform mitigation 28 

initiatives such as large-scale vegetation restoration programs. However, model choice typically 29 

depends on measurement availability and specific research questions, where many modeling 30 

approaches are established according to site specific data and parameterized via local information, 31 

making their generalization elsewhere difficult. Furthermore, in most studies only one modeling 32 

approach is selected, and thus its merit is difficult to assess relative to alternatives. Given these 33 

challenges, this review examines the capability of models with different level of complexity to 34 

simulate water fluxes and nutrient transformations for the CLP. Reviewed models were typically 35 

employed under different climate conditions (e.g., snowmelt, soil freezing and thawing) and across 36 

different land-uses (e.g., revegetated areas) which reflects the robustness of some models (e.g., for 37 

description of vegetation grow), but at the same time illustrates model weaknesses that should be 38 

addressed (e.g., water simulations under thawing conditions). On conducting this review, a general 39 

framework for choosing or developing the most appropriate modeling approach is established 40 

given a study site’s climatic and ecological conditions and research aims.  41 
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Introduction 44 

Ensuring sustainable agricultural systems with their complex soil-water-plant interactions is an 45 

on-going challenge (Foley et al., 2011). To achieve sustainable solutions, innovative research 46 

should embrace multi-disciplinary systems and focus on resource-use efficiencies, productivity 47 

and profitability - while at the same time address the dynamics of climate change which 48 

challenge sustainable crop management and biodiversity (Pi et al., 2021). In this respect, the 49 

Earth’s critical zone (CZ) plays a major role in exchanges of water, solutes, energy, gases, solids, 50 

and organisms among the biosphere, hydrosphere, atmosphere, and lithosphere, which in turn 51 

maintains a life-sustaining environment (Chorover et al., 2011; Gordon and Dietrich, 2017; Lin, 52 

2010; Rasmussen et al., 2011). Further, and in order to understand the effect of anthropogenic 53 

and natural changes, such as those driven by change in land use and climatic variability, on CZ 54 

processes, integrated observational (long-term monitoring) and modeling tools are required (Pi et 55 

al., 2021; Tetzlaff et al., 2017). This strategy has been shown to be crucial to improve water 56 

resources management and for environmental sustainability (Tetzlaff et al., 2017). 57 

The inherent complexity of the CZ has led to the establishment of many physically- or process-58 

based model forms (Brilli et al., 2017; Clark et al., 2017; Zhang et al., 2016). These models, in 59 

many cases, were developed according to the requirements of the investigated scientific field, 60 

such as hydrology, ecology and agriculture. The diverse collection of models makes it difficult to 61 

know with any clarity for where and when it is ideal to use a specific model, or a range of 62 

alternative but complementary models. To provide clarity for model choice, this paper reviews 63 

the application, calibration and validation of models which have been employed or developed for 64 

the Chinese Loess Plateau (CLP), and at a variety of spatial scales. The review highlights 65 



 

 

advantages and disadvantages associated with the described models, together with options for 66 

their improvement. Accordingly, a general framework for choosing or developing the most 67 

appropriate modeling approach is established, where multiple models should be employed for 68 

context and objective comparison. Further, the analytical framework bridges ecosystem services 69 

(ES) science (typically conducted through statistical models) with CZ science (typically 70 

conducted through the process-based models that are reviewed), where this coupling ensures 71 

CLP research has clear societal and policy relevance. 72 

 73 

Characteristics of the Loess Plateau 74 

China’s Loess Plateau (100°54´-114°43´E and 33°43´- 41°16´N) is composed of arid, semi-arid 75 

and semi-humid areas and resides in the middle reaches of the Yellow River encircled by 76 

mountains (Figure 1). The main groups of soils formed in loess are silt-loam, loam, silt-clay-77 

loam, sand-loam, silt-clay, and loam-sand soils that are calcareous to the surface (Huang et al., 78 

2010). With an average thickness of 50-200 m, loess soils are highly erodible (Wang et al., 79 

2017). The current ecological state of the region is a result of a combination of factors including 80 

climate, soil type and composition, vegetation coverage, and human activities. 81 

Rainfall in the plateau typically displays high temporal and spatial variability, with main periods 82 

of rainfall from July to September and often in the form of high-intensity rainstorms. Thus, 83 

extreme soil erosion is triggered with an increased sediment transport to the Yellow River (Shi 84 

and Shao, 2000). Average annual precipitation in the region ranges from 150-750 mm, gradually 85 

decreasing from southeast to northwest. Evaporation varies between 1000 to 2000 mm but may 86 



 

 

exceed 3000 mm in some areas. Annual mean temperature ranges between 6 to 10°C from south 87 

to north, while its frost-free period ranges from 185 to 210 days. 88 

 89 

 90 

Figure 1. The Chinese Loess Plateau, shown with geographical 91 

variations in mean annual temperature (MAT, °C) and mean annual 92 

precipitation (MAP, mm), and the three CZ observatories (CZOs). 93 

 94 



 

 

In the CLP, the five main land use types are: forestland (25.69%), grassland (25.44%), cultivated 95 

land (22.48%), unused land (17.07%), orchards (1.88%), and others (7.44%) (National 96 

Development and Reform Commission, 2010). The main crops are wheat (Triticum aestivum L.) 97 

and maize (Zea mays L.), as well as soybeans (Vigna angularis), millet (Panicum miliaceum), 98 

apple orchards, and potatoes (Solanum tuberosum L.) (Chen et al., 2007; Huang & Gallichand, 99 

2006; Wang et al., 2017). The region is one of China’s major producers of winter wheat and 100 

spring maize, where the latter is on a constant yield increase with a high yield of about 12 t/ ha 101 

(Kang et al., 2003; Liu et al., 2010). Maize is grown in warm and humid valleys and flat areas. 102 

Orchard land use varies from apple and kiwi to jujube, pear, grape, and peach fruit crops. The 103 

plateau is the largest producer of kiwi fruit and the second largest producer of apple fruit  in 104 

China (Wang et al., 2017). 105 

 106 

Vegetation restoration programs 107 

To control soil erosion and improve the ecological environment, vegetation re-generation has 108 

been widely applied.  This includes extensive tree planting since the 1970s, integrated soil 109 

erosion controls at the watershed scale in the 1980s and the 1990s (Xin et al., 2008), and the start 110 

of the government-funded ‘Grain for Green’ (or sloping land conversion, GfG) project in 1999 111 

(Lü et al., 2012) that aimed at transforming low-yield slope cropland into grassland/forest (Sun et 112 

al., 2015). Vegetation coverage altered land use patterns, and changes in soil organic carbon 113 

(SOC) contents and water storage have all been improved by the implementation of these 114 

policies (Dang et al., 2014). Chang et al. (2011) indicated that enhanced SOC sequestration was 115 

possible through expanding the coverage of grassland and shrub in the northern CLP, together 116 



 

 

with expanding the coverage of forest in the middle and southern CLP. Yet, the high density 117 

planting of exotic tree species, such as black locust (R. pseudoacacia), Chinese pine (P. 118 

tabulacformis) and pea shrub (C. korshinskii), has been shown to induce soil desiccation and the 119 

formation of a dry soil layer (SMC) (Jia et al., 2017). Thus, the effects of vegetation restoration 120 

on ES are still unclear, yet this is crucial for gauging the performance of the large-scale 121 

ecological restoration programs implemented in this region and in turn, informing policies 122 

towards regional socio-ecological sustainability. 123 

 124 

Monitoring stations 125 

Across the CLP, many spatio-temporal research datasets have been, and continue to be collected, 126 

measuring a wide and impressive variety of processes and elements in the CZ. These datasets 127 

have been used to both parameterize and validate different types of models. Thus, the 128 

performance and value of a given model implementation is often directly dependent on data 129 

availability. Three stations can be identified as ‘first batch’ CZ observatories (CZOs): (i) the 130 

‘Shenmu Erosion and Environment Station’, (ii) the ‘Ansai Comprehensive Experimental Station 131 

of Soil and Water Conservation’, and (iii) the ‘Changwu Agro-ecology Experiment Station’ 132 

(Figure 1). Crucially, each station is located in one of the three main topographical regions of the 133 

plateau representing a gradient in both rainfall and temperature. At each CZO, treatments of 134 

different vegetative covers and soil and water conservation practices, at some combination of the 135 

plot / slope / watershed / catchment scale were established in the 1980s / 1990s. Their long-term 136 



 

 

measurements include plant properties, soil nutrients and water, canopy size, runoff, soil losses / 137 

erosion, water re-distribution in the root zone, and meteorological records. 138 

 139 

Reviewed models 140 

Various process-based models have been parameterized to simulate the relationship between soil 141 

moisture and associated vegetation dynamics for the three main land uses of the CLP – cropland, 142 

shrubland and forestland (Zhang et al., 2016). Here, nine models are reviewed in context of their 143 

conceptual basis and the model equations that describe the relationships between plants, water 144 

and climate (Table 1; Figure 2). Given descriptions are only basic, as many modifications have 145 

been applied over time. Further, some modifications are study-specific and are not always 146 

embedded in a model’s software or described in its user manual. Most models require similar 147 

weather inputs (air temperature, wind speed, global radiation, relative humidity, and 148 

precipitation) and are restricted to daily time step calculations (Table 1). Only the SHAW and 149 

SWCCV models enable calculations at an hourly time step. The main difference between the 150 

nine models is the description of the root water uptake process. Here some models account only 151 

for moisture conditions in the soil as the dominant process, while other models include soil 152 

temperature and stomatal conductance processes (Table 1). Therefore, detailing all model 153 

differences is out of scope for this study, where the reader is referred to Brilli et al. (2017) for 154 

fuller descriptions of carbon (C) and nitrogen (N) cycles, for most of the study models chosen. A 155 

further difference is related to the complexity of the biochemical modeling (‘pools’) component, 156 

which can be expressed by the number of model input parameters (Table 1), and where this 157 

number might change according to the conditions and vegetation types that are of interest. Given 158 



 

 

varying levels of model complexity (for example, by the number of parameters) and different 159 

(study-specific) validation datasets, comparing prediction accuracy across the study models 160 

cannot be objectively reported. Furthermore, no CLP studies have captured information on 161 

parameter uncertainty and its consequences for model performance (i.e., via a useful estimate of 162 

prediction error). This omission is discussed; addressing it is seen as good practice for future 163 

CLP model work. In the following sections, models are reviewed in terms of: (a) plant and soil 164 

water interactions; (b) plant and soil nutrient interactions; and (c) plant, soil water and soil 165 

nutrient interactions. 166 

   167 



 

 

 Table 1. Description of the nine soil-plant-atmosphere models that were 
used for the inter-comparison. 

  

Model name Dominant processes 
simulated 

Approach to 
root water 
uptake 

Approach to 
nutrient uptake 

Approach 
to soil 
water flow  

Time 
step 

Number of 
input 

parameters 

EPIC 

(Environmental 
Policy 
Integrated 
Climate) 

Simulations based on 
a set of mathematical 
formulations to 
describe the physico-
chemical processes 
that occur in soil and 
water under 
agricultural 
management 
(Williams, 1995). 

Function of root 
depth, soil water 
content, and an 
empirical water 
extraction 
distribution 
parameter. 

Nutrient 
uptake is 
controlled 
either by plant 
demand or by 
the soil 
nutrient 
concentration. 

Tipping 
bucket 

Daily 22 

SHAW 

(Simultaneous 
Heat and Water 
Transfer) 

Simulates soil heat, 
water, and solute 
transfer. The model 
includes the effects 
of plant cover, dead 
plant residue, 
snowmelt, soil 
freezing and thawing 
(Flerchinger and 
Pierson, 1991).  

Defined as a 
pressure head 
approach, 
assuming 
continuity in 
water potential 
throughout the 
plants (soil, 
xylem of plant, 
and the leaves 
of canopy).   

Passive uptake 
– the 
extraction of 
nutrients by 
the roots 
depends on the 
concentration 
of the nutrient 
in the soil.  

Richard's 
equation 

Daily 
or 
hourly 

10  

 

Biome-BGC Ecosystem process 
model that simulates 
storage and flux of C, 

Based on the 
stomatal 
conductance.  

Nutrient 
uptake is 
controlled 

Tipping 
bucket and 

Daily 34 



 

 

(Bio-
Geochemical 
Cycles) 

N and water (White 
et al., 2000). 

either by plant 
demand or by 
the soil 
nutrient 
concentration. 

Richard's 
equation 

AquaCrop Crop growth model 
that simulates the 
yield response of 
herbaceous crops to 
water. Specifically, 
the model is suited to 
conditions where 
water is a key 
limiting factor in 
crop production 
(Hsiao et al., 2009; 
Raes et al., 2009; 
Steduto et al., 2009). 

Linear root 
water uptake 
(Water 
extraction 
patterns follow 
by default the 
standard 40% 
,30% ,20% and 
10%).  

Nutrient 
uptake is 
controlled 
either by plant 
demand or by 
the soil 
nutrient 
concentration. 

Tipping 
bucket 

Daily 29 

CoupModel Simulation of water 
flow, heat transfer, 
solution transport 
(e.g., chloride) and 
representation of N 
and C cycles 
(Jansson, 2012). 

Defined as a 
pressure head 
approach, based 
on the response 
functions for 
water content 
and soil 
temperature. 

Empirical 
relationships 
that are related 
to crop 
demand and 
the nutrient 
state or source 
(e.g., inorganic 
or organic).  

Richard's 
equation 

Daily 23 



 

 

DSSAT-CSM Simulates crop 
growth, development 
and yield as a 
function of the soil-
plant-atmosphere 
dynamics for over 42 
crops (Jones et al., 
2003). Also includes 
CERES-Wheat. 

Uses SPAM (a 
separate 
module): 
resolves energy 
balance 
processes for 
soil evaporation, 
transpiration, 
and root water 
extraction. 

Nutrient 
uptake is 
controlled 
either by plant 
demand or by 
the soil 
nutrient 
concentration. 

Tipping 
bucket 

Daily 23 

WAVES Simulates the 
processes of water, 
energy, and solute 
movement among the 
atmosphere, 
vegetation, and soil 
(Zhang and Dawes, 
1998). 

Described 
according to a 
weighting 
function which 
depends on the 
rooting density 
and availability 
of soil moisture. 

Empirical 
relationships 

Richard's 
equation 

Daily 32 

APSIM Simulates 
biophysical processes 
(including soil 
processes such as 
water balance, N and 
Phosphorus (P) 
transformations, soil 
pH and erosion) in 
farming systems of 
grain and fibre crops 

Various 
modules, but all 
plant species 
use similar 
physiological 
principles.  Root 
water uptake is 
described by an 
extraction 
potential, which 

The focus of 
the APSIM is 
on cropping 
systems rather 
than individual 
crops. No 
detailed root 
uptake 
process.  

Tipping 
bucket and 
Richard's 
equation 

Daily 21 



 

 

grown in temperate 
and tropical areas 
(Keating et al., 
2003). 

depends on soil 
and crop factors 
(e.g., Meinke et 
al., 1993). 

SWCCV Simulations based on 
the concept of an 
equilibrium 
adjustment of 
vegetation growth to 
soil water dynamics 
and biogeochemical 
processes (Xia and 
Shao, 2008). 

Described 
according to a 
weighting 
function which 
depends on the 
rooting density 
and availability 
of soil moisture. 

Active nutrient 
uptake, which 
is controlled 
by the 
Michaelis–
Menten 
function 

Tipping 
bucket 

Yearly, 
daily or 
hourly 

31 

 168 

 169 

 170 

Figure 2. A concept map showing the key processes that were modeled and the reviewed models. 171 



 

 

Modeling plant and soil water interactions 172 

Context and background 173 

In water-limited arid and semi-arid regions, soil moisture and erosion are major factors which 174 

limit plant growth and crop productivity (Wang et al., 2013b). During water stress conditions, the 175 

ability of the ecosystem to respond depends on the amount of water stored in the soil profile and 176 

the plant’s ability to extract it (Jipp et al., 1998). From a regional perspective, land use and 177 

topography might also effect soil moisture and provide a useful context (Qiu et al., 2001).  178 

During the government-funded re-vegetation campaigns, fast-growing tree and shrub species 179 

were planted in the CLP. Initial growth was often promising, but the soil water quickly depleted, 180 

affecting late-stage growth (Chen et al., 2010). Huang et al. (2001) observed a decrease in soil 181 

water following planting of apple trees, compared with winter wheat, which could be attributed 182 

to the higher evapotranspiration (ET) rate of the former. Similar phenomenon, in which soil 183 

water storage declined, was observed at the top 100cm of the soil under different plant types 184 

such as grassland, shrub, and forest in the semi-arid hilly area of the CLP (Chen et al., 2010; Jia 185 

et al., 2017). This is mainly because the soil water was not able to be fully replenished.    186 

From an agriculture perspective, winter wheat monoculture covers 56% of arable land use in the 187 

plateau. Therefore, adequate water mass balance assessments for this crop are highly necessary. 188 

In areas of the CLP where the total annual rainfall is just under 600mm, water availability is a 189 

primary limiting factor for grain yield. Furthermore, winter wheat is sown in mid-September and 190 

harvested in early July of the following year, which does not coincide with the rainy season. Soil 191 

water storage has a critical role in mitigating the effect of inter-annual variation of precipitation 192 

on crop growth. To maximize soil water storage, different approaches are implemented such as 193 



 

 

to keep the soil fallow during the rainy season (summer) or by limited irrigation practices 194 

(Huang et al., 2003; Kang et al., 2002). Maize is another core crop whose growing season of 195 

April to September does not match the rainy season (i.e., June to September which provides 50-196 

60% of the annual total rainfall). Shortage of rain water at the early growth stage together with 197 

erratic rainfall at later growth stages can reduce maize yield (Zhang et al., 2014). In this respect, 198 

conservation tillage together with other field management practices, such as mulching with 199 

plastic film, have been extensively applied to improve water use efficiency and thereby stabilize 200 

high yields. 201 

 202 

Model implementation and review 203 

Huang et al. (2006) applied the EPIC model for simulating winter wheat and maize at the 204 

Changwu Agro-ecological Experimental Station for a 20-year field experiment. The model 205 

performed relatively well in predicting soil water content (SWC) and ET due to ‘accurate’ input 206 

values for three key hydrological processes - precipitation, percolation, and runoff. However, 207 

runoff (as a component of soil water balance) created computation errors, that affected modeling 208 

of subsequent processes, such as yield and contaminant transport. Results were, therefore, only 209 

valid for situations where runoff measurements were fully controlled, such as those for terraces 210 

with border dykes. Wang and Li (2010) extended the study of Huang et al. (2006) and evaluated 211 

EPIC for winter wheat, spring maize, alfalfa, North China milkvetch and small-leaf carmona 212 

(Cameraria microphylla). EPIC performed well for predicting SWC, yields of winter wheat and 213 

spring maize, and dry forage of alfalfa and milkvetch. However, the predictions for small-leaf 214 

carmona were poor. A different investigation in the Changwu site, involved the application of the 215 



 

 

SHAW model to an apple orchard to investigate the effect on soil-water content (Huang & 216 

Gallichand, 2006). The study reported apple trees do deplete water eventually, but in this case no 217 

specific model sensitivity was reported. 218 

Using the SWCCV model, Jia et al. (2019) indicated that an optimal plant coverage or biomass is 219 

important for regional water balance, soil protection and vegetation sustainability. Further, a 220 

modified Biome-BGC model has been used to simulate the long-term dynamics of actual ET 221 

(AET), net primary productivity (NPP) and leaf area index (LAI) for alfalfa, pea shrub, sea 222 

buckthorn (Hippophae rhamnoides) and black locust (Jia et al., 2019; Zhang et al., 2015). 223 

Generally, the modified Biome-BGC performed well in terms of simulating AET dynamics for 224 

the four grass, shrub and tree species. As NPP and LAI are linearly related with AET, Biome-225 

BGC is thus similarly suited to simulating NPP and LAI for the same species. The optimal plant 226 

coverage (expressed as the maximum LAI) and the optimal SWCCV (expressed as NPP) for 227 

different precipitation regions were also quantified to provide a re-vegetation standard index, 228 

where this index enables future re-vegetation activities to be objectively guided to ensure a 229 

sustainable eco-hydrological environment.  230 

The AquaCrop model has been used to simulate both plant (above ground biomass, grain yield, 231 

and canopy cover (CC) and SWC characteristics (Zhang et al., 2013). Simulations were 232 

performed for winter wheat yield under rainfed conditions, where the model performed well for 233 

yield and CC, but not so well for biomass and SWC. The AquaCrop model was sensitive to 234 

snowfall, which affected model’s performance considerably across key crop development stages. 235 

Essentially, it was more important to define when the snow began to melt rather than when it 236 

fell. An additional example for improper description of the winter conditions in the CLP is the 237 

application of the CERES-Wheat model which is embedded in DSSAT-CSM (Zheng et al., 238 



 

 

2017). This model has been applied to facilitate the development of optimal water management 239 

practices. Although, simulations for above-ground biomass, LAI, and grain yield were adequate, 240 

the model could not properly account for frosting conditions during winter. This resulted in 241 

recommending impractical optimized planting dates. Furthermore, the model did not perform 242 

well for simulating winter wheat biomass within water stress conditions. 243 

The descriptions given illustrate that the establishment of a modeling tool for a specific process, 244 

under specific environmental conditions, can neglect critical processes. For example, while SWC 245 

is typically predicted well by a range of models, there can be errors in runoff assessments due to 246 

poor boundary condition definition (i.e., structural error). Further, since it is virtually impossible 247 

to construct a ‘super’ model that would include all processes and associated nuances, a modeling 248 

framework, using multiple models, is recommended. For example, Huang et al. (2006) (EPIC), 249 

Huang and Gallichand (2006) (SHAW) and Jia et al. (2019) (SWCCV) each reported good levels 250 

of SWC prediction accuracy, despite implementing different water flow models. Furthermore, 251 

given that the soil physical parameters in the above mentioned studies were attained from 252 

different sources, SWC prediction can be considered robust. Nevertheles, only concurrent 253 

implementations of EPIC, SHAW and SWCC would provide objectivity to this premise. For 254 

clarity, the water flow model for EPIC requires the wilting point, field capacity, saturated SWC, 255 

and saturated hydraulic conductivity parameters to be estimated from default empirical 256 

equations. For SHAW, the Brooks and Corey (1966) hydraulic functions (four parameters) are 257 

required, while for SWCCV, the van Genuchten (1980) hydraulic functions (five parameters) is 258 

implemented. Parameters for both hydraulic functions of SHAW and SWCCV can be estimated 259 



 

 

according to measured retention and unstaturated hydraulic curves or attained by pedo-transfer 260 

functions (e.g., Schaap et al. 2001).  261 

 262 

Modeling plant and soil nutrient interactions 263 

Context and background 264 

Due to natural drought conditions, intensive human disturbance, and severe soil erosion, the CLP 265 

region has the lowest SOC density (SOCD) in China (Yu et al., 2007). Yet, SOC is a key 266 

indicator of soil quality and overall soil productivity because of its influence on cation exchange 267 

capacity, aggregation, and water retention. Increasing organic C content in the plateau is possible 268 

through the re-forestation of degraded soils and ecosystems. Soil C sequestration is vital as it 269 

enhances soil fertility while reducing carbon dioxide (CO2) emissions (Han et al., 2016). SOCD 270 

tends to be highest in hilly plateau soils (i.e., areas of high elevation and low temperature) and 271 

valley soils (i.e., areas of low elevation and high precipitation). High levels of fine soil particle 272 

contents also tend to coincide with high SOCD values. SOCD tends to be higher under cropland 273 

than under forest or grassland at the regional-scale of the entire plateau (Liu et al., 2011). 274 

Cultivation processes, such as land levelling and terracing, fertilization, tillage, and crop-residue 275 

management, tend to increase SOC accumulation in all areas of the plateau, where irrigation 276 

mitigates against shortages in rainfall (Liu et al., 2011). Note that there are cases where cropland 277 

soils can have lower SOC contents compared to those under forest and grassland (Chen et al., 278 



 

 

2007; Dang et al., 2014; Gong et al., 2006; Li et al., 2005; Wang et al., 2001). This occurs in 279 

areas that are characterized with relatively homogeneous environments.  280 

Additional vital soil properties for soil productivity and quality are soil total N (STN) and soil 281 

total P (STP) (Comber et al., 2018; Wang et al., 2009; Zhao et al., 2015). Reduction of STN and 282 

STP can decrease soil nutrient supply, porosity and soil structure, where the loss of STN and 283 

STP by soil erosion, leaching, or rainfall scouring exacerbates the situation (Wang et al., 2009). 284 

Soils data from a variety of land use types (cropland, grassland, shrubland, woodland, wasteland 285 

and abandoned land) have been investigated where significant differences were observed for soil 286 

organic matter (SOM), STN, and nitrate nitrogen (NON) (Gong et al., 2006). Similarly, the 287 

spatial homogeneity for STN and STP can change significantly with land use and will broadly 288 

decrease in this order: cropland > grassland > shrubland (Wang et al., 2009). Ultimately, the 289 

numerous studies concerning vegetation restoration in the CLP displayed the positive effect of 290 

vegetation restoration by improving soil quality as stocks of SOC, STN and STP increase with 291 

re-vegetational age (Jia et al., 2012). 292 

 293 

Model implementation and review 294 

It has been suggested that water use efficiency (WUE) and meeting plant N requirements could 295 

be improved by plastic film mulching (particularly with black film), together with a controlled 296 

fertilizer release for maize, thereby increasing grain yield in the region (Liu et al., 2016). In this 297 

respect, mulching and fallow cropping, as part of conventional management practices, and their 298 

effect on the water balance and WUE in winter wheat have been evaluated using the CoupModel 299 

(Zhang et al., 2007a,b). Model simulations indicated that mulching increased soil water storage, 300 



 

 

increased wheat transpiration but decreased soil evaporation, thus a higher wheat yield and 301 

improved WUE was achieved. Furthermore, water was found to reach deeper horizons resulting 302 

in extensive deep percolation in a wet year (Zhang et al., 2007a,b). However, the CoupModel 303 

model showed weaker performance when the soil was frozen or partially frozen.  304 

N use efficiency is similarly important for sustainable agriculture in arid and semi-arid areas. 305 

Zhang et al. (2016) showed a winter wheat sown with a green manure legume crop was able to 306 

fix atmospheric N2 and thereby improve the soil N pool. Cultivation of the green manure in the 307 

summer was viewed as a better option than bare fallow. However, simulations from CoupModel 308 

indicated that growing green manure in the fallow period without considering optimal harvest 309 

times (ca. 30 days before sowing the winter wheat) reduced soil water storage and lowered wheat 310 

yields (Zhang et al., 2007a,b). For the North China Plain, the APSIM model has been used to 311 

analyze the crop yield and resource use efficiency of wheat-maize systems (Chen et al., 312 

2010a,b,c). For example, APSIM was applied to a alfalfa (lucerne)–wheat rotation system in 313 

order to establish best management practice (Chen et al., 2008). The benefits of integrating 314 

alfalfa with annual cropping included that of reduced runoff and improved soil water storage 315 

(provided a ‘just-in-time’ removal date prior to sowing winter wheat is achieved). Furthermore, 316 

alfalfa has been shown to improve the WUE and soil fertility in cropping systems. However, the 317 

APSIM model was less successful in simulating the variability of the deep soil water content 318 

(Chen et al., 2008). This was attributed to not accounting for the root water uptake from deeper 319 

parts of the CZ. Note that there is a degree of uncertainty concerning the benefits of alfalfa to 320 

crop yield, due to the extraction of water from deeper soil layers and the development of 321 



 

 

desiccated layers ( Li & Huang, 2008). Thus, future simulations with the APSIM model would 322 

have to include a better description of the deep percolation in the CZ.   323 

SOM enhances soil chemical and physical characteristics, it is both a nutrient sink and source 324 

and it promotes biological activity – thus SOM is a key component of the soil resource base 325 

(Craswell and Lefroy, 2001). Fluctuations in the amount, quality and turnover rate of SOM, due 326 

to changes in soil management practice, can influence the soil’s physical, chemical and 327 

biological properties (Haynes, 2000; Jiang et al., 2006). The DSSAT-CSM model has been used 328 

to simulate spring maize and winter wheat, providing tolerable levels accuracy for simulations of 329 

topsoil SOC and soil organic N (SON) under regular fertilizer application conditions (Li et al., 330 

2015). DSSAT-CSM can similarly be used to investigate the effects of climate change on crop 331 

yields and simulate soil nitrate accumulation and leaching under different fertilizer treatments, 332 

rainfall conditions, and management practices. Note that the DSSAT-CSM model showed 333 

sensitivity to N stress, which effected the model performances. 334 

Again, as before, different models use different parameters to simulate the same process, where 335 

implementations of multiple models for the same study would provide some objectivity to 336 

simulation accuracy. For example, to describe winter wheat growth using CoupModel, 12 337 

parameters were used (Zhang et al., 2007a). Five of these parameters were calibrated (fraction of 338 

carbon in leaf reallocated to grain; fraction of carbon in stem reallocated to grain; fraction of 339 

carbon in root reallocated to grain; radiation use efficiency and specific leaf area), while the 340 

remaining seven parameters were measured and or attained from the literature. In contrast, in 341 

DSSAT-CSM, seven parameters were calibrated for winter wheat growth (optimum vernalizing 342 

temperature; photoperiod response; grain filling; kernel number per unit canopy weight at 343 

anthesis; standard kernel size under optimum conditions; standard, non-stressed mature tiller). 344 



 

 

The calibrated parameters of both DSSAT-CSM and CoupModel are site-specific and cannot be 345 

generalized. 346 

Land use type is a key factor to account for, as associated levels of variation in STN and STP 347 

directly influence the accuracy of the model’s simulations for soil nutrient status and nutrient 348 

movement (Wang et al., 2009). Further, the effect of land uses on soil properties should be 349 

expressed by their different behaviors and patterns at various spatial scales. Thus, a key 350 

challenge is to apply the DSSAT-CSM model or any other model in this respect, over different 351 

spatial scales. While plot scale models tend to be more complex and informative, as spatial (or 352 

temporal) scales increase, the applied models are inherently oversimplified, while the value of 353 

implementing a plot scale model over an area larger than 1 km2 is debatable. Further work is 354 

required in this respect, noting that problematic scale issues are inherent to any CZ or ES 355 

analysis, whether mathematical or statistical (Comber and Harris, 2022). 356 

 357 

Modeling plant, soil water, and soil nutrient interactions 358 

Context and background 359 

In soil-plant-atmosphere systems, plants with their roots provide pathways to transfer water from 360 

the soil to the atmosphere. Deep roots re-distribute deep soil water to shallower topsoil layers 361 

when the leaf stomata close, which enhances plant water transport efficiency (Lee et al., 2005). 362 

For shallow soil layers, which are generally within the root zone, the distributional pattern of the 363 

SWC is dependent on land use and topography (e.g., slope gradient and aspect), while 364 

infiltration, evaporation, and percolation should not be neglected (Qiu et al., 2001; Xuechun 365 



 

 

Wang et al., 2013a,b). For each land use type, roots are distributed differently depending on the 366 

specific vegetation, which brings about different water uptake and transpiration and hence 367 

different soil-water distributions. The soil-water cycle in the soil–plant–atmosphere system is 368 

significantly affected by land use, where WUE varies with root density in the different soil layers 369 

(Qiu et al., 2001; Wang et al., 2013a,b). 370 

 371 

Model implementations and review 372 

For simulating such processes, the WAVES model has been compared with a simple to 373 

implement modified statistical-dynamic model (Huang et al., 2001) based on the Eagleson 374 

statistical-dynamic water balance model (Eagleson, 1978) . The modifications accounted for 375 

seasonal variations of precipitation and soil moisture and their influence on plant transpiration 376 

resulting in different computations for soil water properties and water flow. Simulations from the 377 

modified model accurately predicted the mean water balance components and the dynamic 378 

processes of the mean soil moisture for a specific wheat-fertility-productivity condition (Huang 379 

et al., 2001). 380 

The production of annual crop biomass can be directly proportional to the quantity of radiation 381 

intercepted, the amount of water transpired, and the makeup of the nutrients taken up (Gregory et 382 

al., 1997). Precipitation, being the major source of available water for dryland crops, needs to be 383 

used efficiently to sustain yields and to avoid stored soil water depletion. Availability of soil 384 

water directly influences nutrient loss and the rate of mineralization of N from SOM (Gregory et 385 

al., 1997). This may result in increased residual N accumulation in the soil after crop harvest, 386 

which can degrade environmental quality through increased N leaching into the groundwater and 387 



 

 

emissions of greenhouse gases, such as N2O. On the other hand, soils enriched with N through 388 

manures and fertilizers can increase crop yields in the presence of abundant soil water that may 389 

then result in increased soil-water depletion (Wang et al., 2013a,b). The core task of the CERES-390 

Wheat model was to solve such yield-related problems with respect to determining the main 391 

factors that influence yield and to concurrently determine the optimum irrigation and fertilizer 392 

management practices, accordingly. The model was applied across the whole Guanzhong region 393 

of the Shaanxi province of the CLP, where it simulated the interaction of N, water, and climatic 394 

factors in order to evaluate their contributions to wheat yield and associated management 395 

strategies (Ji et al., 2014). Note, in a different study, that both CERES-Wheat and DSSAT-CSM 396 

inaccurately simulated winter wheat biomass under stressed conditions (Zheng et al., 2017). 397 

The influence of vegetative restoration on deep soil–water storage has been the focus of many 398 

CLP studies (Chen et al., 2008; Jia et al., 2019; Wang et al., 2013c). Despite reducing soil 399 

erosion and water losses, artificial plantings can lead to the formation of dry soil layers which 400 

can significantly restrict land productivity (Chen et al., 2008). Fu et al. (2012) tested the SHAW 401 

model in a shrubland environment for two shrub species (Caragana korshinkii Kom and Salix 402 

psammophila) and observed that increased plant coverage was associated with reduced water 403 

storage in the upper soil layers. Water content differed vertically across the soil profile due to 404 

differences in root water uptake between the two species; generally, denser shrub coverage 405 

increased the degree of soil desiccation. The SHAW model showed a poor performance during 406 

the freeze–thaw cycles, since its assumed soil hydraulic properties were inaccurate for a frozen 407 

soil. The EPIC model has been applied to forage-crop rotation systems: alfalfa/potato/winter-408 

wheat and was found to reliably capture monthly SWC and the vertical distribution of soil water 409 

(Wang et al., 2011; Wang et al., 2013c). The model’s simulation accuracy strongly depended on 410 



 

 

input parameters such as seasonal rainfall, solar radiation, soil characteristics, and user-defined 411 

ET and soil moisture equations (Wang et al., 2011). The EPIC model has proved to be an 412 

effective tool to predict soil desiccation, however. Wang et al. (2012) highlighted a decrease in 413 

SWC due to the long-term cultivation of a grain crop after alfalfa. Here, the appropriate stand 414 

age of alfalfa would be 8–10 years and the appropriate cultivation years for following a grain 415 

cropping system would be 16–18 years. Cultivating shallow root crops, such as potato and 416 

soybean, has also been recommended to recover soil desiccation after alfalfa (Wang et al., 2012). 417 

SWC plays a crucial role in biological and hydrological processes including above and below 418 

ground runoff, flooding, solute transportation, soil erosion, plant growth and land-air 419 

interactions. Hydrological, ecological and climatic modeling can help understand variation in 420 

SWC down the soil profile, which is critical to water management and associated planting 421 

strategies (Mendham et al., 2011; Wang et al., 2013a,b,c). 422 

EPIC has also been applied to an artificial black locust forest to evaluate biomass and soil 423 

desiccation effects; and to an apple orchard (Malus pumila), where water and nutrients were re-424 

affirmed as the most important factors that influence yield. Fertilization can also be 425 

advantageous in improving WUE and yields of dryland orchards, but conversely, may increase 426 

water consumption through transpiration causing soil desiccation because of the deteriorated soil 427 

condition (Peng et al., 2017). 428 

 429 

Ecosystem research, critical zone processes and a modeling framework 430 

Few studies world-wide have fully incorporated ES in the assessment of basin-scale ecological 431 

restoration projects where their incorporation could open up opportunities for enhancing benefits 432 



 

 

to human livelihood and generating public support (Trabucchi et al., 2012). The prevailing 433 

quantification methods for ES are usually based on statistical analyses (Fu et al., 2018; Hu et al., 434 

2017; Liu et al., 2019). These ignore system dynamics, and associated uncertainty and feedbacks 435 

because of a lack of the mechanistic understandings of the processes involved (i.e. that obtained 436 

through physically-based models) (Nicholson et al., 2009). Thus, there is a great urgency to 437 

bridge ES science with CZ science through process-based models, to provide research that has 438 

clear societal and policy relevance, and with outputs that allow management approaches at 439 

different landscape scales to be modified through interventions (Field et al., 2015; Lü et al., 440 

2012; Luo et al., 2019). As described throughout this review, a more comprehensive modeling 441 

framework that would account for most dominant spatio-temporal CZ processes is necessary.  442 

Particular attention should be given to non-uniqueness or equifinality, where very different 443 

model structures and/or parameter sets are able to describe some observed behaviors with similar 444 

model response (Beven, 2006; Beven and Binley, 2014). It has been acknowledge recently that 445 

data-driven models suffer from similar phenomenon (Schmidt et al., 2020). This concept of 446 

equifinality makes it difficult to define objectively model acceptability. Various methods and 447 

techniques have been proposed to identify the ‘best’ model such as the Generalized Likelihood 448 

Uncertainty Estimation  methodology (Beven and Binley, 1992), the use of the Information 449 

Theory to discriminate models (Pachepsky et al., 2006), and a frequency based performance 450 

measure (Teegavarapu et al., 2022). Other methods, such as the Diagnostic Efficiency (DE) 451 

(Schwemmle et al., 2021), offers the capability to disaggregate the different sources of errors 452 

(i.e., the model parameters, the model structure, and/or the input data). By using model 453 

ensembles for simulating the same process (e.g., Hassall et al. 2022), one can determine the main 454 

error source of the different models. Preceding to the models’ training stage, sensitivity analyses 455 



 

 

can provide information regarding which parameters and processes are the most important for 456 

specific modeled conditions or systems. Sensitivity evaluations can help reduce model 457 

complexity and improve efficiency. Local and global sensitivity analyses are possible, where the 458 

former is a ‘one at a time’ approach, while the latter considers multiple parameters at the same 459 

time (Link et al., 2018; Naves et al., 2020). The local form does not account for interactions 460 

between parameters, while the global form does, and as such is computationally intensive which 461 

can make it prohibitive in its use. 462 

The use of ensemble of model projections to estimate prediction uncertainty, comparable to the 463 

suggested approach above, is a common practice in fields such as climate research (Déqué et al., 464 

2007; Reto et al., 2010; Strobach and Bel, 2020) and ecosystem research (Schwalm et al., 2010). 465 

This method enables the user to change and test different factors that can affect model 466 

uncertainty, such as initial condition, model parameters, spatial/temporal resolution. The 467 

simulated results are often considered to provide equal-weighted averages. Thus, it is assumed 468 

that the biases of an individual model are partly canceled by averaging all predictions (Reto et 469 

al., 2010). This approach might be utilized in soil modeling practices to determine the influence 470 

of each model parameter, its uncertainty and its structure on the simulated outputs (e.g., Brown 471 

and Heuvelink, 2005; Krishnan and Aggarwal, 2018; Shan et al., 2021). Furthermore, most soil 472 

models, as models in other fields (Reto et al., 2010; Strobach and Bel, 2020), are established 473 

according to current and recent past conditions (Jasper et al., 2006). Besides the urgent need to 474 

calculate uncertainties of models’ predictions, there are uncertainties regarding future conditions: 475 

a model calibrated under historic conditions may have questionable validity under future 476 

scenarios if the model states differ substantially from those in the calibration period. This 477 



 

 

challenges, for example, future projections of different ecological systems that might be effected 478 

by climate change (McMahon et al., 2009).  479 

A modeling framework, which can be directly used as a model-based decision support tool 480 

(DST), has in part, been developed for the CLP (Hu et al., 2015). This DST provides a platform 481 

to explore different management scenarios and to optimally plan them. The DST has four 482 

modules: (a) a module for scenario development, (b) the integrated ES model base, (c) the ES 483 

trade-off tool, and (d) the multi-objective spatial optimization module based on the fast, non-484 

dominated sorting genetic algorithm-II (NSGA-II). With this DST, scenario testing and optimal 485 

decision-making analyses can be performed, considering climate (precipitation and temperature), 486 

land cover (vegetation, built-up areas, croplands, etc.) and socioeconomic (population and 487 

economic growth) factors. Via different scenarios, the ESs of soil and water and their optimal 488 

combinations can be simulated. In turn, adaptive management policy recommendations for 489 

vegetation restoration, soil and water resource use, and the payment for ESs for regional 490 

sustainability can be derived based on the utility of various trade-off analyses and multi-criteria 491 

optimizations. The DST, as with any DST, has the capability to be upgraded and refined. For 492 

example, through hybrid modelling strategies where process-based models are combined with 493 

statistical and/or machine learning models (Kuhnert, 2014), say to better characterize extreme 494 

events (Curceau et al., 2020; 2022). 495 

 496 

Conclusions 497 

In this review, a multitude of Loess Plateau studies were summarized in order to illustrate the 498 

disadvantages and advantages related to the specific process-based modelling approach taken. 499 



 

 

Each study’s model performance was typically bound under different climate, land use, and 500 

temporal and spatial scales. Models were categorized in terms of: (i) plant and soil water 501 

interactions; (ii) plant and soil nutrient interactions; and (iii) plant, soil water and soil nutrient 502 

interactions. In each category, a clear deficiency existed in that research studies typically 503 

selected only one modelling approach for analyzing the dominant soil-plant processes. Using 504 

only one modeling approach might mislead, say through the indication of only one or the wrong 505 

dominant process; and as such, multiple models should be employed for context and comparison. 506 

In this respect, the establishment of a modelling framework that includes several models to 507 

describe the same process might more accurately highlight prevailing factors, where the use of 508 

model ensembles is also possible. The capacity to conduct a sensitivity analysis with respect to 509 

model parameter uncertainty should also be included. 510 

Such a framework has, in part, been established, where some of the process-based models 511 

described (typically associated with critical zone science) are coupled with analytical tools 512 

(typically associated ecosystem services) that together provide both societal and policy relevance 513 

to Loess plateau research. For future studies, the reporting of a given model’s suitability and its 514 

relative accuracy to alternatives should be promoted, where a common set of model accuracy 515 

diagnostics are used to aid comparison across studies and processes. Answers to questions of 516 

why a given model was adopted, how well was it calibrated and how well was it validated are 517 



 

 

crucial to ensure informed management or policy decisions, especially when they involve 518 

substantive financial investments. 519 
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