
Citation: Au-Yong, S.; Firlak, M.;

Draper, E.R.; Municoy, S.; Ashton,

M.D.; Akien, G.R.; Halcovitch, N.R.;

Baldock, S.J.; Martin-Hirsch, P.;

Desimone, M.F.; et al.

Electrochemically Enhanced Delivery

of Pemetrexed from Electroactive

Hydrogels. Polymers 2022, 14, 4953.

https://doi.org/10.3390/

polym14224953

Academic Editor: Alberto Romero

García

Received: 19 September 2022

Accepted: 7 November 2022

Published: 16 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Electrochemically Enhanced Delivery of Pemetrexed from
Electroactive Hydrogels
Sophie Au-Yong 1,†, Melike Firlak 1,2,† , Emily R. Draper 3, Sofia Municoy 4 , Mark D. Ashton 1,
Geoffrey R. Akien 1, Nathan R. Halcovitch 1 , Sara J. Baldock 1, Pierre Martin-Hirsch 5, Martin F. Desimone 4

and John G. Hardy 1,6,*

1 Department of Chemistry, Faraday Building, Lancaster University, Lancaster LA1 4YB, UK
2 Department of Chemistry, Gebze Technical University, Gebze 41400, Turkey
3 School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK
4 Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica,

Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET), Universidad de Buenos Aires,
Junín 956, Piso 3◦ (1113), Buenos Aires 1113, Argentina

5 Lancashire Teaching Hospitals NHS Trust, Royal Preston Hospital, Sharoe Green Lane, Preston PR2 9HT, UK
6 Materials Science Institute, Lancaster University, Lancaster LA1 4YB, UK
* Correspondence: j.g.hardy@lancaster.ac.uk
† These authors contributed equally to this work.

Abstract: Electroactive hydrogels based on derivatives of polyethyleneglycol (PEG), chitosan and
polypyrrole were prepared via a combination of photopolymerization and oxidative chemical poly-
merization, and optionally doped with anions (e.g., lignin, drugs, etc.). The products were analyzed
with a variety of techniques, including: FT-IR, UV-Vis, 1H NMR (solution state), 13C NMR (solid
state), XRD, TGA, SEM, swelling ratios and rheology. The conductive gels swell ca. 8 times less than
the non-conductive gels due to the presence of the interpenetrating network (IPN) of polypyrrole and
lignin. A rheological study showed that the non-conductive gels are soft (G′ 0.35 kPa, G′ ′ 0.02 kPa)
with properties analogous to brain tissue, whereas the conductive gels are significantly stronger (G′

30 kPa, G′ ′ 19 kPa) analogous to breast tissue due to the presence of the IPN of polypyrrole and lignin.
The potential of these biomaterials to be used for biomedical applications was validated in vitro by
cell culture studies (assessing adhesion and proliferation of fibroblasts) and drug delivery studies
(electrochemically loading the FDA-approved chemotherapeutic pemetrexed and measuring passive
and stimulated release); indeed, the application of electrical stimulus enhanced the release of PEM
from gels by ca. 10–15% relative to the passive release control experiment for each application of
electrical stimulation over a short period analogous to the duration of stimulation applied for elec-
trochemotherapy. It is foreseeable that such materials could be integrated in electrochemotherapeutic
medical devices, e.g., electrode arrays or plates currently used in the clinic.

Keywords: hydrogels; stimuli-responsive; biomedical engineering; drug delivery

1. Introduction

Biologically active compounds have been used for several thousand years to prolong
and improve life (e.g., pain relief, vaccines, etc.) [1,2]. It is important to note that the
biological activity of drugs can be reduced before they reach the desired cells due to
degradation via enzymes and low absorption rates, and polymeric matrices can enhance
the delivery of such compounds. Drug delivery via needles/tablets/etc. tends to result
in burst release profiles and undesired side effects due to the delivery of the bioactive to
otherwise healthy cells/organs/tissues [3], and systems capable of precisely controlling the
delivery of compounds offer opportunities for innovation in healthcare systems worldwide
(e.g., improving patient compliance, minimizing unwanted side effects, etc.) [3,4]. Stimuli-
responsive drug delivery systems that can trigger the release of their payloads upon
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exposure to bio-/physico-chemical cues (e.g., enzymes [5], light [6], pH [7], temperature [8]),
are capable of releasing a controlled amount of drug when desired.

Electrically triggered release systems offer a high degree of control of quantity/rate
of release, potential for integration in existing medical devices (e.g., electrodes for sens-
ing/stimulation, implants, etc.) and with instrumentation capable of controlling the deliv-
ery systems [9]. Such delivery systems can be easily miniaturized, and controlled/powered
remotely [9,10], or indeed using sacrificial power sources [11], in various materials mor-
phologies [12]. Polypyrrole (PPy) is one of the most widely investigated conducting
polymers applied to drug delivery matrices due to its biocompatibility, low voltage ac-
tuation and ease of synthesis [13]. A variety of other conducting polymers (including
polyaniline (PANI) and poly(3,4-ethylenedioxythiophene) (PEDOT)) have been investi-
gated for their application in the development of controlled drug delivery systems [14,15].
The drug/biomolecule loading and release process depends on electrostatic interactions be-
tween the electroactive polymer and charged molecules which can be tuned by modulating
the applied voltage and time of the electric stimulation, with potential for incorporation of
low and high molecular weight drugs [10].

Polymer-based hydrogels are popular for biomedical applications, particularly in the
development of tissue scaffolds and drug delivery systems because the polymer networks
are swollen with water [16,17] facilitating transport of nutrients/waste from tissue scaffolds
and bioactive payloads for drug delivery systems [18,19]. The appeal is also driven by the
variety of polymers available (particularly PEG [20,21]) methods for the preparation of 3D
hydrogels (e.g., chemical/photochemical/in situ crosslinking) and ease with which it is
possible to tailor the properties (e.g., pore size distribution, swelling ability, mechanical
properties, etc.) of the resulting hydrogels to meet the requirements of specific biomedical
applications [22,23].

Polysaccharides are a class of abundant biopolymers [24,25] that are degradable (e.g.,
enzymatically/hydrolytically) [26], non-immunogenic [27], and a variety of polysaccharide-
based biomaterials have been clinically translated [28–30]. Chitosan (CS) is one example
of a polysaccharide, which is a partially deacetylated derivative of chitin, which displays
amines [31] that can be used to facilitate crosslinking, either in situ or to attach other poly-
merizable species to (e.g., methacrylates) [32]. CS has been widely used in the development
of hydrogel-based biomaterials [33–35]. Lignins are another class of abundant biopolymers
that display antibiotic and anti-fungal activity [36,37], which motivates their inclusion
in biomaterials.

Conducting polymers are a class of stimuli-responsive polymers that have potential for
use in biomedical applications (e.g., neural electrodes, drug delivery systems, etc.) [38,39]
and technical applications (e.g., diodes, sensors, transistors, etc.) [40–42], and are therefore
interesting for integration in gels. Conducting polymers (e.g., polyaniline (PANI), polypyr-
role (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT)) have been implanted in vivo
for long periods of time with minimal inflammatory response (analogous to FDA-approved
poly(lactic-co-glycolic acid), PLGA) [43], which can be integrated into existing medical
devices [44,45], and it is possible to generate degradable versions of them [46]. Doping
conducting polymers with high molecular weight may tune the mechanical properties of
the materials [47,48] or indeed cell responses to the surfaces of the biomaterials [49]. Con-
ducting polymer-based drug delivery systems respond to electrical stimuli and function by
mechanisms including actuation, charge passage, redox switching, etc. [50] enabling precise
spatiotemporal control of the amount of drugs of various molecular weights [51–55].

Conducting polymer-based electrode coatings enable delivery of drugs in the prox-
imity of the site at which the electrodes are implanted, which is potentially impactful for
electrochemotherapy which functions by electroporation of the cancerous tissue shortly
after injection of anticancer drugs such as bleomycin or cisplatin [56–60]. Electrochemother-
apy functions through a variety of mechanisms, including: the cytotoxic effect of the
chemotherapeutic which is enhanced by electroporation; vasoconstriction of tumor blood
vessel for several hours due to sympathetic nerve stimulation which reduces drug washout
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from the tumor; vascular disruption due to cytotoxicity towards the endothelial cells of
tumor blood vessels; the immune response to immunogenic cell death and enhanced tumor
antigen expression [61–63]. Electrochemotherapy has been used to enhance the delivery
of a variety of drugs [59,60,64–68], and has been observed to be a swift, safe and effective
treatment method for cancers that tends to enhance the quality of life of patients [69–73].

Here, we describe the development of electroactive hydrogels composed of PEG, CS,
PPy and lignin (serving as both a reinforcing agent and dopant for PPy) that were produced
via a combination of photopolymerization and oxidative chemical polymerization; the PPy
in the hydrogels was doped with anions (e.g., lignins, drugs). The materials were analyzed
by a variety of techniques including: FT-IR, UV-Vis, 1H NMR (solution state), 13C NMR
(solid state), SEM, XRD, TGA, swelling ratios and rheology. In silico and in vitro methods
were employed to validate the potential application of the materials for biomedical appli-
cations, exemplified by drug delivery studies for the FDA-approved chemotherapeutic
pemetrexed (PEM). Such hydrogels could be used as coatings for medical devices, for ex-
ample, as coatings for electrodes used for electrochemotherapy for cancer treatment [74,75],
wherein triggered release of an anticancer drug directly into the cancerous tissue would
potentially be more effective and diminish unwanted side effects enhancing the patient’s
quality of life.

2. Materials and Methods

Unless otherwise noted, all chemicals and consumables were purchased from either
Sigma Aldrich (St. Louis, MO, USA) or Thermo Fisher (Waltham, MA, USA), of analytical
grade, and used without further purification/modification.

2.1. Synthesis
2.1.1. Preparation of Polymerizable CS Derivatives

CS (2 g, medium molecular weight, estimated 75–85% deacetylation) was added to
water (200 mL), to which pyrrole-2-carboxylic acid (1 g, 9 mmol) and methacrylic acid
(0.76 mL, 0.78 g, 9 mmol) was added, and the mixture was stirred vigorously until the CS
dissolved. N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC, 3.8 g,
19.8 mmol) and N-hydroxysuccinimide (NHS, 2.8 g, 19.8 mmol) were added to the solution
by stirring for 24 h at room temperature in the dark. The modified CS was purified by
dialysis (MWCO 3500) against deionized (DI) water for 3 days (changing the water at least
4 times per day), followed by lyphophilization for 4 days. The pink/purple solid product
was isolated in a quantitative yield (2.1 g). This was combined with other components to
prepare hydrogels using the formulations in Table 1.

Table 1. Formulations used for the preparation of non-conductive and conductive gels.

Component Non-Conductive Gels Conductive Gels

Water 1 mL 1 mL
PEGDA 50 mg 50 mg

Modified CS derivative 4.5 mg 4.5 mg
Lignin N/A 100 mg
Pyrrole N/A 200 µL

2.1.2. Preparation of Non-Conductive Hydrogels

A solution of modified CS in DI water (0.45 wt%) was stirred until homogenous. The
photoinitiator 2-hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone (Irgacure-2959)
was added at 0.1 wt% to the solution of CS derivative; and PEG-diacrylate (PEGDA,
Mn 2000) was added at 5 wt%. This mixture was stirred in the dark for ca. 2 h until
homogenous. Silicone isolators (molds) produced by Grace Bio-Labs (Sigma Aldrich)
(9 mm in diameter × 0.8 mm in depth) were placed onto clean glass slides. 75 µL of gel
precursor solution was added to each well and irradiated for 1 h under a Mega LV202E
UV exposure unit (with 2 × 8 W bulbs, output from ~300–460 nm, peak at 365 nm), and
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the reaction mixture was left in the molds overnight. The hydrogels were left in DI water
for 24 h to remove unreacted monomers and low molecular weight contaminants with
periodic changes of water (typically 3 to 4 times per day), after which they were transferred
to fresh water for another 24 h.

2.1.3. Preparation of Conductive Hydrogels

A solution of modified CS in DI water (0.45 wt%) was stirred until homogenous. The
photoinitiator 2-hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone (Irgacure-2959)
was added at 0.1 wt% to the solution of CS derivative; and PEG-diacrylate (PEGDA,
Mn 2000) was added at 5 wt%. Pyrrole (200 µL, 4.3 mmol per mL of PEGDA-modified CS)
was purified by passage through an alumina column added to 1 mL of PEGDA-modified
CS with lignin (lignin alkali, low sulfonate content, 100 mg/mL), and this mixture was
stirred in the dark for ca. 2 h until homogenous. Silicone isolators (molds) produced by
Grace Bio-Labs (Sigma Aldrich) (9 mm in diameter × 0.8 mm in depth) were placed onto
clean glass slides. 75 µL of gel precursor solution was added to each well and irradiated for
1 h under a Mega LV202E UV exposure unit (with 2 × 8W bulbs, output from ~300–460 nm,
peak at 365 nm), and the reaction mixture was left in the molds overnight. Ferric chloride
(FeCl3, 1 wt%) was dissolved in water and the gels were left to incubate for 24 h, after which
the supernatant was decanted and the samples were washed thoroughly with DI water
until the water became clear and colorless (typically 72 h to remove unreacted monomers
and low molecular weight contaminants with periodic changes of water, typically 3 to
4 times per day), after which they were transferred to fresh water for another 24 h.

2.2. Characterization
2.2.1. UV-Vis Spectroscopy

UV-vis spectra were recorded using a Thermo Scientific NanoDrop 2000. CS was
dissolved in an aqueous solution of acetic acid (1% v/v) whereas the other samples were in
DI water.

2.2.2. Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy

An Agilent Technologies Infrared Spectrometer was used to record spectra in ATR
mode in the range of 4000–500 cm−1. The data was exported to the software supplied by
the manufacturer (ResPro) and the baseline was corrected.

2.2.3. Solution State 1H NMR Spectroscopy
1H NMR spectra were recorded with a Bruker AVANCE III 400 (NanoBay) equipped

with a 5 mm 1H-X broadband observe (BBO, 109Ag-19F) RT probe, and (3-trimethylsilyl)pro-
pionic-2,2,3,3-d4 sodium salt was added as a reference in all samples. 5 mm NMR tubes
(Norell standard series 5) were used for all samples. 1 mg of CS medium MW was dissolved
in 1 mL of 2% DCl v/v (35 wt% in D2O) in D2O solution and heated to ~70 ◦C for an
hour or until complete dissolution. For modified CS, the same procedure was followed
however heating was not necessary. Acetic acid was dissolved in D2O at a concentration
of (5 mg/mL). Pyrrole-2-carboxylic acid was dissolved in DMSO-d6 at a concentration of
(5 mg/mL). The spectra of methacrylic acid was acquired in both D2O and DMSO-d6.

2.2.4. Solid State 13C NMR Spectroscopy

A Bruker AVANCE III HD 700 WB was used to record 13C NMR spectra via cross-
polarization/magic angle spinning.

2.2.5. Scanning Electron Microscopy (SEM)

Prior to imaging the samples were lyophilized (FreeZone benchtop freeze dryer,
Labconco™, Fisher Scientific, Loughborough, UK), then sputter coated with a 10 nm
layer of gold using a Quorum 150R ES. A JEOL JSM-7800F field emission SEM (JEOL,
Welwyn Garden City, UK) operating at 10–15 kV was used to obtain SEM images.
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2.2.6. Conductivity Determination

The conductance of dried gels were measured in accordance with protocol IPC-TM-650,
number 2.5.17.2 described by the Institute for Interconnecting and Packaging Electronic
Circuits. Dried gels supported on glass slides were examined by chronoamperometry using
a Keithley 2612B source meter (Tektronix, Beaverton, OR, USA). Chronoamperometric
measurements were made with a two-point probe system (copper alligator clips), by
connecting counter and reference electrodes together. Briefly, two thin strips of adhesive-
backed copper tape (Ted Pella, Inc., Redding, CA, USA) were attached to the dried gels,
parallel to one another, separated by a distance of 0.5 cm. The working and counter
electrodes were clipped on the strips of copper tape, and the current measured for 30 s
during a potential step experiment at 10 V. The electrodes were moved to different positions
after each measurement, and the current passed was recorded at three different positions.
The resistance (R, Ω) of the gels was determined by measurements of voltage (V) and
current (I) in accordance with Equation (1):

R = V/I (1)

The resistivity (Ω cm−1) of the dried gels was determined in accordance with Equation (2):

ρ = Rwt/L (2)

In which: w corresponds to the width of the gel in cm (ca. 0.5 cm, determined on a
sample-by-sample basis using digital calipers, Scienceware® Digi-Max™ slide calipers);
t corresponds to the thickness of the dried gel in cm (as determined via profilometry);
and L corresponds to the length of the gel in cm (ca. 0.5 cm, determined on a sample by
sample basis using digital calipers). The conductivity (S cm−1) of the gels was determined
in accordance with Equation (3):

σ = 1/ρ (3)

2.2.7. X-ray Diffraction (XRD)

XRD patterns were recorded using a Rigaku SmartLab powder diffractometer with a
2θ scattering range of 5 to 40◦ and a resolution of 0.1◦.

2.2.8. Thermogravimetric Analysis (TGA)

Thermal stability of vacuum dried hydrogels (ca. 4–5 mg) were observed with a
NETZSCH STA 449 F3 Jupiter thermal analyser. Temperatures observed were from 25 to
550 ◦C with a heating rate of 10 ◦C/min. The reference pan used was alumina.

2.2.9. Swelling Studies

The swelling ratio of the hydrogels was determined by recording the initial mass its
dry state and the mass after swelling in PBS for 24 h (after removal of excess water by
wicking with filter paper) at room temperature, and calculated using Equation (4), where
mt is the mass at the time t and m0 represents the initial mass.

Swelling Ratio (%) =
(mt −m0)

m0
× 100 (4)

2.2.10. Rheological Characterization

The rheological properties of the gels were assessed using an Anton Paar Physica
MCR 302 rheometer fitted with a parallel plate with a diameter of 12.484 mm. Strain
sweep experiments were employed with a constant frequency of 10 rad/s. Frequency
sweeps were performed at 0.5% strain for non-conductive hydrogels and at 0.1% for
conductive hydrogels.
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2.3. In Silico and In Vitro Validation
2.3.1. In Silico Toxicity Screening Studies

In silico toxicity screening was carried out using Derek Nexus and Sarah Nexus (Derek
Nexus: v. 6.0.1, Nexus: 2.2.2; Sarah Nexus: v. 3.0.0, Sarah Model: 2.0) supplied by Lhasa
Limited, Leeds, UK. The SMILES code for Irgacure-2959 is C(COC1=CC=C(C=C1)C(C(C)(C)
O)=O)O; for a simplified PEG-diacrylate it is C=CC(OCCOC(C=C)=O)=O; and for the modi-
fied CS derivative it is O7[C@@H](O[C@@H]5C(O[C@@H](O[C@@H]1C(O[C@H](C(C1O)N)
O[C@@H]4C(O[C@@H](O[C@@H]2C(O[C@H](C(C2O)N)O[C@@H]3C(O[C@@H](O)C(C3
O)N)CO)CO)C(C4O)NC(C(C)=C)=O)CO)CO)C(C5O)NC(C6=CC=CN6)=O)CO)C(C([C@@
H](C7CO)O)O)N.

2.3.2. In Vitro Cell Culture Studies

The NIH3T3 fibroblast cell line was cultured in Dulbecco’s Modified Eagle’s Medium
(DMEM) with 10% fetal calf serum, 1% penicillin–streptomycin and 0.25 µg/mL Fungizone,
under an atmosphere of 5% CO2 at 37 ◦C. Cells were harvested using a trypsin–EDTA
solution and the number of viable cells was counted with a Neubauer camera after staining
with trypan blue. Fibroblast cells (1 × 104 cells per well) were added on top of each
material or to the wells of 24-well plate (in case of control cells), with 0.5 mL of cell culture
medium and kept in a humidified 5% CO2 atmosphere at 37 ◦C. The cell metabolic activity
was measured by the colorimetric 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium
bromide (MTT) assay after 1–7 days. Briefly, cell culture medium was removed and a
solution of MTT in PBS 1X (5 mg/mL) was added to the cells and incubated at 37 ◦C for 4 h.
Then, the MTT solution was discarded, samples were washed with PBS 1X and absolute
ethanol was added. Finally, absorbance of the purple solution was measured at 570 nm
and results were expressed as mean ± SD from triplicate experiments. For cell imaging,
cells grown for 24 h were first fixed using 2.5% glutaraldehyde. After 20 min, samples were
washed three times with PBS 1X and 0.1% Triton X-100 in PBS 1X containing 1% BSA was
added to permeabilize the cells for 30 min. Samples were then washed with PBS 1X and
300 µL of Alexa 488 phalloidin were added for staining. Cells were incubated at 37 ◦C
and protected from light for 30 min. After this, samples were washed with PBS 1X and
the phalloidin-stained cells were finally examined by fluorescence microscopy using a 20X
objective on an inverted microscope (Confocal—Zeiss—AxioObserver Z1 LSM710) [76–78].

2.3.3. In Vitro Drug Loading

Conductive hydrogels were electrochemically loaded with pemetrexed using an aque-
ous solution of 4 mL of 1 mM pemetrexed disodium 2.5 hydrate as the electrolyte bath. The
hydrogels were secured on glassy carbon electrodes by the electrode lid with a hole cut out
at the top (Figure S1). A 3 electrode cell was composed of a Ag/AgCl reference electrode,
platinum mesh counter electrode and a glassy carbon electrode with the hydrogel. For
30 min a potential of 0.6 V was applied via chronoamperometry. 10 µL of the solution
after drug loading was diluted down 4 times with distilled water and the concentration of
PEM assessed via UV-Vis measurements at 225 nm (λmax of PEM) from which the loading
efficiency is assessed and the difference in the concentration of PEM before/after used to
assign “100%” loading.

2.3.4. In Vitro Drug Delivery Studies

UV spectroscopy confirmed that there was no release of the gel constituents from the
unloaded gels (e.g., lignin, modified CS, PPy) over the course of the experiments.

For stimulated drug release, the drug was released at a potential of −0.6 V in 4 mL of
PBS for 30 s every 10 min 3 times. At each time interval, 10 µL of the solution was frozen
for storage prior to UV-Vis spectroscopy.

Passive release of the drug was carried out by placing the electrodes with hydrogels in
4 mL PBS and 10 µL samples were taken every 11 min in line with the sampling frequency
for the samples that were electrically stimulated.
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At each time interval, 10 µL of the solution was frozen for storage prior to UV-Vis
spectroscopy. The concentration of PEM assessed via UV-Vis measurements at 225 nm
(λmax of PEM).

3. Results and Discussion
3.1. CS Modification and Characterization

Methacrylic acid and pyrrole-2-carboxylic acid were conjugated to the amines dis-
played on the backbone of CS (a white/off-white solid in the dry state) using water
soluble carbodiimide (EDC/NHS) chemistry, after dialysis and lyophilization this yielded
a pink/purple solid (Scheme 1).
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Scheme 1. Chemical modification of CS (conjugation of methacrylate and pyrrole moieties via
EDC/NHS chemistry).

The UV-vis spectra of the starting materials and product are displayed in Figure 1;
clear differences between the spectra can be identified, while CS has a maxima of 218 nm
(owing to N-acetylglucosamine (GluNAc) and glucosamine (GlcN)), the modified CS has
a broad peak at around 195 nm with two peaks at ~200 and 255 nm that are not present
in the CS starting material which are attributed to the methacrylate and pyrrole moieties
conjugated to the CS.

The FTIR spectra for the CS starting material and the modified CS are shown in
Figure 2. CS shows a broad peak at 3354 cm−1 which corresponds to -OH stretching
overlapping with -NH2 symmetric and asymmetric stretching bands; peaks occurring at
1649, 1527 cm−1 correspond to the amide I (C=O stretch) and amide II (N-H bend, C-N
stretch) vibrations, respectively; the absorbance at 1566 cm−1 corresponds to the N-H bend
of an amine group (i.e., deacetylated from chitin); multiple low intensity peaks at 1419, 1373,
1321 cm−1 are ascribed to C-H bending; the peak at 1149 cm−1 is characteristic of C-O-C
ether bonds present in the backbone of CS; the sharp absorbances at 1020, 1057 cm−1 are
C-O stretches in the alcohol groups. The spectrum of the modified CS shows increases in the
intensity of the amide I, amide II peaks, and those ascribed to C-H bending and stretching
confirming modification with methacrylate/pyrrole units. The spectrum for the conductive
samples were very broad due to experimental limitations of the technique, including:
optical contact between the sample and ATR apparatus, anomalous dispersion [79–81], and
the fact they are broad band absorbers which resulted in broad spectra as we have observed
in previous studies [82].
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Solution state 1H NMR spectra for the CS starting material and the modified CS
derivative in DCl/D2O are shown in Figure 3. The small peak at around 2.03 ppm is
ascribed to the methyl group (-CH3) attached to the N-alkylated GlcN residue. At 3.10 ppm
a singlet represents H2, multiplet signals from 3.5 to 4 ppm are assigned to H3, H4, H5
and H6 of GlN. From the literature, typically the spectra would show a small peak around
4.28 ppm due to H1 of both GlN and the acetylated form [83,84]. Comparison of the
peak integrals from H2-H6 (~3 to 4 ppm) which represent 6 protons to the integral of
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the peak at 2.03 ppm which represents 3 protons enables estimation of the degree of
acetylation of the CS (the partially deacetylated derivative of chitin) which was ca. 12%
in this study, i.e., the unmodified CS used is around 88% deacetylated (similar to the
supplier’s estimate of 75–85% deacetylation). The spectra for modified CS shows new
chemical shifts corresponding to the new functional groups installed. The peak at 1.9 ppm
is characteristic of the methyl group attached to the methacrylate (confirmed by the NMR
spectra of methacrylic acid showing a peak at 1.9 ppm). Signals from ~5 to 6.5 ppm are
assigned to the two protons connected to the double bond. A multiplet of peaks with low
intensity can be seen between 7.9 and 8.1 ppm which are ascribed to pyrrole attached to the
backbone of CS (albeit very difficult to integrate in comparison to methacrylate moieties).
Two-dimensional 1H—1H COSY NMR links methacrylate olefins (5.5–6 ppm) to the methyl
at 1.9 ppm (Figure 4).
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Solid State 13C NMR CP-MAS spectra were recorded. The spectrum of unmodified
CS starting material is shown in Figure 5, and the chemical shifts in accordance with the
literature [85–93]. The modified CS exhibits similar chemical shifts to CS, signals at 105, 83,
75, 61 and 58 ppm correspond to C1, C4, C3, C6, C2 (Figure 5); the peaks in both spectra
corresponding to C=O and CH3 (due to partial deacetylation and amide) appear at 174 and
24 ppm, respectively; the conjugation of pyrrole was confirmed by peaks for the α-carbon
and β-carbon at ca. 125 and 109–105 ppm [94–97], and previous research by Forsyth et al.
explains the low frequency shoulder on the peak at 123 ppm exists due to β-carbons being
partially oxidized as opposed to pure pyrrole [94–97]; the conjugation of methacrylate was
confirmed by peaks 19 ppm (CH3), 37 ppm (C-C tertiary carbons pendant to the polymer
chain) and 140 ppm (C=C) in line with the literature [98]. The peak for the carbonyls (C=O)
pendant on the polymer chain for the unmodified CS (ca. 175 ppm) was significantly
broader after conjugation of the methacrylate and pyrrole derivatives (ca. 170–180 ppm)
owing to the multitude of different amide environments generated by the conjugation
reaction in line with the literature [99,100].
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3.2. Hydrogel Preparation and Characterization

Non-conductive hydrogels composed of PEG and CS were prepared by photopoly-
merization of PEGDA and the modified CS derivative in an aqueous solution of the
photoinitiator Irgacure-2959, followed by washing. Conductive hydrogels composed of
PEG, CS, PPy and lignin were prepared by photopolymerization of PEGDA, the modified
CS derivative, pyrrole and lignin in an aqueous solution of the photoinitiator Irgacure-2959,
followed by exposure of the gels to FeCl3 to polymerize the pyrrole (followed by extensive
washing to remove low molecular weight species), yielding PPy doped with anionic lignin
and chloride distributed throughout the gels an interpenetrating polymer network; the
resultant self-supporting gels were black colored due to the presence of the PPy and lignin.
SEM images (Figure S2) of the surfaces of non-conductive hydrogels are smooth on the µm
scale by comparison with the conductive hydrogels due to the particles of lignin-doped
PPy embedded within the conductive gels (the PPy particles were also observed to be dis-
tributed throughout the gel matrix as a sample spanning interpenetrating network of PPy
in cross-sectional images). The conductance of dried gels was observed to be of the order of
2.65 × 10−9 S/cm for the dried CS-PEG gels, and 8.88 × 10−7 S/cm for the PPy containing
gels, similar, albeit somewhat lower than analogous PPy-containing materials [74,101,102],
which is likely due to the high content of PEG and lignin in these materials.
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The FTIR spectra for the non-conductive and conductive gels are shown in Figure 2.
For the non-conductive gels, in addition to the peaks associated with the modified CS, the
peaks associated with PEG (the major component of the non-conductive gels) are notable,
with a strong band between 2960–2770 cm−1 from C-H stretching in alkanes/ethers, a
peak at ca. 1740 cm−1 corresponding to the C=O stretch of the ester bonds that attach the
methacrylates to the termini of the PEG chains, and the very strong peak at 1149 cm−1

is characteristic of C-O-C ether bonds present in the backbone of PEG. The spectrum of
conductive gels is different from the non-conductive gels, and all peaks are notably broader
which is representative of the complex nature of the interpenetrating network of different
polymeric species (PEG, CS, PPy and lignin). XRD patterns of the non-conductive gels
and conductive gels suggested they were amorphous, confirmed by the peak at 2θ ≈ 23◦

for the non-conductive gels and at 2θ ≈ 25◦ for the conductive gels (Figure S3). TGA
of dried gels (Figure S4) confirmed the presence of traces of water in the gels (mass loss
between 45–180 ◦C). The non-conductive hydrogels began to degrade at ca. 200◦C, and the
majority of mass occurred between 200 ◦C and 380 ◦C in line with the literature [103]; by
comparison, the conductive hydrogels degraded between 260 ◦C and 500 ◦C in line with
the literature [104], implying the interpenetrating network enhances thermal stability. The
TGA profiles suggest the compositions of the conductive gels to be ca. 30% PEG/CS and
70% PPy/lignin.

In principle this may enable, sterilization by steam in an autoclave at 121 ◦C for 20 min,
although there may be consequences for the mechanical/electrical properties of the hydro-
gels [105] and optimization of sterilization will be dependent upon the specific application
of the hydrogels. The swell ratios of the non-conductive gels were ca. 1029± 327% whereas
for the conductive gels it was ca. 123 ± 25%, suggesting that the interpenetrating network
of anionic lignins and cationic CS/PPy in the conductive gels serve to further crosslink
the gels.

The rheological properties of the hydrogels were characterized by both dynamic strain
sweep testing (performed at a constant frequency of 1Hz (10 rad/s)) and frequency sweep
testing (performed at 0.5% strain for non-conductive hydrogels and at 0.1% for conductive
hydrogels) to assess the storage modulus (G′—elastic) and loss modulus (G′ ′—viscous)
of the hydrogels (Table 2 and Figure 6). When G′ is higher than G′ ′ it suggests that the
gel is highly structured and the material behaves in a solid-like fashion; the point where
both moduli intersect signifies the breaking point of the hydrogels and is known as the
critical strain level or gel point; as strain increases past the critical strain level, the network
bonds start to break and the moduli both start to decline (when G′ drops below G′ ′ the gel
is more liquid-like) [106]. The properties for the non-conductive and conductive gels are
summarized in Table 2.

Table 2. Rheological properties of the non-conductive and conductive gels.

Variable Non-Conductive Gels (Wet) Conductive Gels (Dry) Conductive Gels (Wet)

G′ 350 Pa 650 Pa 30,000 Pa
G′ ′ 22 Pa 54 Pa 19,000 Pa

Yield point 15% 7% 0.8%
Flow point 95% 140% 4%

The non-conductive gels are soft (G′ 0.35 kPa, G′ ′ 0.02 kPa), with properties analogous
to brain tissue; the conductive gels in the dry state are approximately twice as strong as
the non-conductive hydrogels, and in the wet state the conductive gels are significantly
stronger (G′ 30 kPa, G′ ′ 19 kPa) analogous to breast tissue [107]. The differences in mechan-
ical properties are likely due to intermolecular interactions between the interpenetrating
network of anionic lignins and cationic CS/PPy in the conductive gels.



Polymers 2022, 14, 4953 12 of 19Polymers 2022, 14, x FOR PEER REVIEW 13 of 20 
 

 

 
Figure 6. Rheology data. (A) strain sweep: non-conductive hydrogels (wet). (B) Frequency sweep: 
non-conductive hydrogels (wet). (C) strain sweep: conductive hydrogels (dry). (D) Frequency 
sweep: non-conductive hydrogels (dry). (E) strain sweep: conductive hydrogels (wet). (F) Frequency 
sweep: conductive hydrogels (wet). 

  

Figure 6. Rheology data. (A) strain sweep: non-conductive hydrogels (wet). (B) Frequency sweep:
non-conductive hydrogels (wet). (C) strain sweep: conductive hydrogels (dry). (D) Frequency sweep:
non-conductive hydrogels (dry). (E) strain sweep: conductive hydrogels (wet). (F) Frequency sweep:
conductive hydrogels (wet).

3.3. In Silico and In Vitro Validation

We have previously examined the safety data sheets for (FeCl3, pyrrole and polpyrrole)
which report FeCl3 to be a corrosive irritant that is toxic to aquatic life, and pyrrole is
corrosive and could be toxic if swallowed (necessitating thorough washing to remove the
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FeCl3 and pyrrole), however, PPy and PSS are nontoxic; and employed in silico toxicity
screening (Derek Nexus and Sarah Nexus) which demonstrated they were non-sensitizers of
skin and non-mutagenic [101,108,109]. Here, we extend this approach to assessing the safety
of the other components in the gels. The safety data sheets for unmodified CS and lignin
suggest they are non-hazardous, whereas the PEG-diacrylate is a skin irritant/sensitizer
and can cause serious eye damage, and the Irgacure-2959 may be toxic (LD50 Oral—Rat >
2000 mg/kg; LD50 Dermal—Rat [male and female] > 5000 mg/kg) [100,101], necessitating
thorough washing to remove them after gel formation. Derek Nexus predicts that: Irgacure-
2959 is non-mutagenic in vitro in bacterium (supported by Sarah Nexus) and a non-skin
sensitizer in mammals; the modified CS is non-mutagenic in vitro in bacterium (supported
by Sarah Nexus) and a plausible skin sensitizer and irritant in mammals (however, these are
similar to unmodified CS, i.e., not due to the new functional groups attached), however, the
new functional groups do render the modified CS derivative plausibly neurotoxic due to
the acrylamide present after methacrylation [108–115]; the PEG-diacrylate is non-mutagenic
in vitro in bacterium (supported by Sarah Nexus) and a plausible skin sensitizer and irritant
in mammals, a plausible irritant of eyes/respiratory tracts in mammals, plausibly causes
chromosome damage in vitro in mammals and unclear if it is carcinogenic in mammals.
Clearly, as noted above the safety data sheets and in silico toxicity screening emphasize the
necessity for thorough washing of the gels after production to remove any low molecular
weight contaminants.

In vitro studies to assess the adhesion and proliferation of NIH3T3 fibroblasts on the
hydrogels were conducted, using the standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylte
trazolium bromide (MTT) assay was used to study cell adhesion and proliferation over
the period of one week compared to the cells on tissue culture plastic, assessed at 1, 2, 3,
4 and 7 days. NIH3T3 fibroblasts adhered and proliferated on the non-conductive and
conductive gels (no discernable differences between the data for the types of gel), albeit
slightly less effectively on the gels than on the tissue culture plastic control (Figure 7).
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We studied the release of PEM from PEM-doped hydrogels into phosphate-buffered
saline (PBS) in the absence/presence of electrical stimuli via UV spectroscopy (Figure 8)
over the period of 30 min, a duration chosen as it is used in treatment of cancer via elec-
trochemotherapy [59,60,66]. Passive release of PEM was observed from all hydrogels,
however, this amounted to less than 5% over the course of the experiment, and the applica-
tion of an electrical stimulus was observed to trigger the delivery of PEM from the gels,
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with an increase of ca. 10–15% relative to the passive release control experiment for each
application of electrical stimulation. This triggered release of PEM over the 30 min duration
would be potentially useful for surgical procedures which may benefit from localized
delivery of anticancer drugs, for example integration of these hydrogels as coatings on
electrodes used for electrochemotherapy [74,75].
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The conductive hydrogels described herein are straightforward to prepare, with 1 syn-
thetic step for the modified CS derivative, and a simple gel preparation protocol involving a
photopolymerization step, followed by an oxidative polymerization step, followed by wash-
ing to remove non-crosslinked components. We foresee that the gel formulations and the
protocols described could be adapted for 3D printing of bespoke 3D structures [116–118]
with mechanical properties suitable for integration within a variety of soft human tis-
sues [107]. It would be possible to incorporate and release a variety of different bioactive
molecules with wide ranging molecular weights (including low molecular weight pharma-
ceuticals and high molecular weight biologics) depending on the specific tissue in which
the biomaterials would be integrated [119,120]. The opportunity to precisely control the
delivery of a payload is potentially very impactful where the chronobiology of the condition
being treated is important [121,122].

4. Conclusions

The electroactive hydrogels described herein were prepared by a simple methodology,
were robust enough to be handleable, and it is foreseeable they could be integrated into
medical devices for the delivery of clinically relevant drugs. Such smart drug delivery
systems represent a significant opportunity for patient-specific treatments in the future.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/polym14224953/s1, Figure S1: Side view (left) and top view (right) of set up
for securing hydrogels on glassy carbon electrodes for drug delivery studies; Figure S2: SEM images
(×1000 magnification). Top) non-conductive gels. Bottom) conductive gels. Scale bars represent
10 µm; Figure S3: X-ray diffractograms. Non-conductive gels (grey line); conductive gels (black line);
Figure S4: TGA thermograms. Non-conductive hydrogels (grey); conductive hydrogels (black).
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