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Abstract

Waves in the ocean can be as dangerous as they are impressive. In order to study

the behaviour of such waves, buoys are commonly deployed to collect recordings of

the ocean surface over time. This results in large quantities of high-frequency mul-

tivariate time series data. The statistical analysis of such data is of great importance

in a variety of engineering and scientific contexts, from the design of coastal flood

defences to offshore structures.

We develop methodology for analysing such buoy data, investigating two key ques-

tions. Firstly, how should we perform parameter inference for models of the fre-

quency domain behaviour of the surface, given recorded buoy data? Secondly, how

can we detect statistically significant non-linearities present in these time series?

For parameter inference, we find that pseudo-likelihood approaches greatly outper-

form state-of-the-art methodologies. As a result, not only can we obtain more reli-

able parameter estimates, but we can also perform inference for more complicated

models, allowing for a more intricate description of the waves. Due to the improved

performance of such estimates, we are able to see the evolution of these parameters

throughout storm events, using recorded buoy data from both California and the

North Sea.

For detecting non-linearities, we develop a robust testing procedure by evaluating
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the bispectrum of the observed time series against the bispectrum of bootstrap sim-

ulated Gaussian processes with similar characteristics. We explore the performance

of this technique in simulation studies, and apply the approach to buoy data from

California.
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Introduction

Waves in the ocean rank amongst the most impressive of natural phenomena. For

all of recorded history, the ocean (and its waves) have played an important role in

many aspects of human activity from coastal fishing and trade to exploration and

discovery. Risk to human life and infrastructure has always been a central concern

of man’s interaction with the ocean’s surface. From the design of coastal flood de-

fences (Committee on Climate Change, 2018) to the design of ships and electricity

generators from offshore wind and wave installations (Tucker and Pitt, 2001), ocean

waves have a major impact on many design and safety assessments.

Ocean waves come in a variety of forms, from short capillary waves generated by

pressure differences over the ocean’s surface, to tides generated by the gravity of

celestial bodies (Holthuijsen, 2007). In this thesis, we will focus on wind-generated

surface-gravity waves, which are waves generated by the wind, whose restoring

force is gravity. Wind-generated surface-gravity waves in turn can be separated into

two types: wind-sea waves and swell waves. Wind-sea waves are generated lo-

cally, by the wind blowing over the surface of the ocean. In contrast, swell waves

were once wind-sea waves, but have propagated away from the site of their gen-

eration, and are now observed elsewhere. Typically, swell waves are longer (lower

frequency) than wind-sea waves, and tend to be more regular (with energy that is

more focused in both frequency and direction).
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Such waves can be recorded in a number of different ways, from in-situ devices such

as buoys to remote sensing such as plane mounted radar (Hwang et al., 1998), or

even satellites (Douglas and Cheney, 1990). The two most common in-situ measure-

ment techniques are wave staffs and buoys (see Holthuijsen, 2007, for an overview

of other kinds of recording devices). In some circumstances, wave staffs can be used

to obtain Eulerian measurements of the surface of the water over both space and

time, e.g. in small lakes (Donelan et al., 1985; Young et al., 1996) or wave tanks (For-

ristall, 2015; Schubert et al., 2020). Such setups would be ideal in theory, but, in

deeper water, are not possible in practice.3 In contrast, buoys in the water provide

recordings of their Lagrangian motion. Whilst some buoys only record their vertical

displacement, many record other aspects of their motion. Such measurements can

provide information about the directional characteristics of the waves. For exam-

ple, a heave-pitch-roll buoy records its vertical displacement (heave) and its rotation

about its horizontal axes (pitch and roll), see e.g. Longuet-Higgins et al. (1963). More

modern buoys, such as a Datawell Waverider MkIII buoy (Datawell, 2006), record

their displacement in three orthogonal directions (vertical, Northwards and East-

wards). Summary statistics of these time series, such as significant wave height and

peak period, are of great importance, especially their extremes (e.g. Forristall, 2004;

Wadsworth and Tawn, 2012; Northrop et al., 2017; Tawn et al., 2018; Shooter et al.,

2022).4 However, the focus of this thesis is on the buoy displacement time series

themselves, a higher resolution phenomenon.

Typically, such time series are analysed in the frequency domain. Heuristically, the

recorded time series is treated as a linear combination of regular waves of differ-

ing frequencies with random amplitudes and phases (Longuet-Higgins, 1957). Un-

3At least not with existing technology.
4Such studies are typically performed on hindcast predictions of significant wave height, gen-

erated from physical models, as opposed to from the time series directly. But such hindcasts are
inherently predicting a description of the aforementioned time series.
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der linear wave theory5, these amplitudes and phases are independent of one an-

other, and the process is Gaussian. In some sense, the spectral density function can

be thought of as describing the variance of these amplitudes.6 Similarly, the ocean

surface is viewed as a linear combination of regular waves with differing frequen-

cies and directions, whose amplitudes have a variance specified by the frequency-

direction spectrum. The specific shape of these spectra provide an important de-

scription of the behaviour of such waves. For example, Figure I shows the spectral

density function of a process where both wind-sea and swell waves are present. The

presence of two components is clear to see in the frequency domain, but would be

much less clear in the time domain (e.g. from looking at autocovariance). In sum-

mary, we are interested in the spectral density function, a decomposition of vari-

ability in frequency; and the frequency-direction spectrum, a decomposition of vari-

ability in both frequency and direction. These concepts are defined formally in Sec-

tions 1.1 and 1.2 respectively.

Figure I: Illustration of the spectral density function of a process with both swell and
wind-sea.

Often, parametric models are proposed for the shape of the spectral density func-

tion and frequency-direction spectrum (one of the most popular models being the

JONSWAP spectrum proposed by Hasselmann et al., 1973). The parameters of these

5Linear wave theory arises from linearising the equations and boundary conditions that describe
the motion of water waves (see Holthuijsen, 2007, for example). The solutions to such equations are
often referred to as Airy waves (Airy, 1845).

6This is expressed more formally in Chapter 1.
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models are then estimated from recorded time series. However, it is known that esti-

mates of these parameters can be unreliable (Ewans and McConochie, 2018). There-

fore, in Part I of this thesis, we focus on improving the estimation of such parameters.

In particular, we show how, using pseudo-likelihood approaches to directly model

the time series, we can get major improvements in both bias and variance of the pa-

rameter estimators. Both for parameters of the spectral density function, and of the

frequency-direction spectrum.

Whilst Part I focuses on the linear properties of ocean waves, deviations from linear-

ity are also of interest (e.g. Ewans et al., 2021). From the perspective of the time series

analysis of ocean waves, this means deviations from Gaussianity. In the frequency

domain, this corresponds to the amplitudes (and phases) being uncorrelated7 at dif-

ferent frequencies, but not necessarily independent. This dependence can be de-

scribed by higher-order joint cumulants, determined by the higher-order spectra of

the process.

To explore such non-linearities, many authors look for peaks in the higher-order

spectra (which would be identically zero in the case of a Gaussian process). Whilst

many studies have looked into this problem in the context of ocean waves, both in

the third-order case (e.g. Hasselmann, 1962; Elgar and Guza, 1985; Cherneva and

Soares, 2007) and fourth-order case (e.g. Chandran et al., 1994; Elgar et al., 1995;

Ewans et al., 2021), they only consider univariate processes, with significance levels

based on often-unrealisable asymptotics. Therefore, in Part II of this thesis, we focus

on higher-order spectra, and their application to ocean wave time series. In partic-

ular, we discuss the normalisation problem (see Kim and Powers, 1979; Hinich and

Wolinsky, 2005), and local significance testing for bispectra (the third-order spectral

density function). The bispectrum (and indeed spectra of higher order) are impor-

7Note that this is only true in the stationary case.



INTRODUCTION XXVIII
a

tant in a wide range of applications, including plasma physics (Greb and Rusbridge,

1988; Riggs et al., 2021); seismology (Haubrich, 1965); medicine (He and Thomson,

2010) and of course ocean waves. Therefore, we hope that the methodology devel-

oped in Chapter 6 will be applicable beyond time series of ocean waves.



Thesis outline

There are two main themes in this thesis, and therefore it is presented in two parts.

Part I concerns parametric modelling of ocean wave spectra and is comprised of

Chapters 1, 2 and 3, with concluding remarks given in Chapter 4. Part II focuses on

higher-order spectra, and is comprised of Chapters 5 and 6, with conclusions given

in Chapter 7.

Outline for Part I

In Chapter 1, we review background theory on frequency domain time series anal-

ysis and spectral modelling of ocean wind-generated surface-gravity waves (hence-

forth “ocean waves”). In particular, we give definitions and introduce notation for

fundamental quantities including the spectral density function and the frequency-

direction spectrum. We introduce a variety of parametric models used to describe

the spectral density function and the frequency-direction spectrum for ocean waves.

We discuss non-parametric and parametric techniques used in the oceanography lit-

erature, and briefly review simulation of (Gaussian) ocean wave time series.

Chapter 2 considers the univariate problem of estimating the parameters of a given

model for the spectral density function from ocean wave time series. We discuss

techniques used in the oceanographic and statistical literature. We demonstrate,

through numerical simulation, that the debiased Whittle likelihood outperforms

XXIX
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competitors, such as least squares fitting, in terms of bias and variance of the recov-

ered parameters. We also discuss uncertainty quantification of parameter estimates,

and provide an algorithm for speeding up the approach of Sykulski et al. (2019). We

perform an example analysis for data recorded at Humboldt Bay offshore California,

to illustrate practical concerns that arise when applying the methodology.

Chapter 3 considers estimating the parameters of models for the frequency-direction

spectrum, which decomposes spatiotemporal variability by both frequency and di-

rection. We focus on modelling anchored buoy data, in the form of high frequency

multivariate time series. State-of-the-art methods for estimating the parameters of

such models do not make use of the full spatiotemporal content of the buoy ob-

servations due to various historical unnecessary assumptions and smoothing steps.

We explain how the multivariate debiased Whittle likelihood is used to estimate

jointly all model parameters directly from the recorded time series. When applied to

North Sea buoy data, debiased Whittle likelihood inference reveals a smooth evolu-

tion of model parameters over time. Finally, we discuss challenging practical issues

including model misspecification, and provide guidelines for future application of

the method.

Outline for Part II

Chapter 5 introduces higher-order spectra, providing definitions and basic proper-

ties, and discussing a variety of estimation techniques. We also give a detailed dis-

cussion of different commonly used normalisations for the bispectrum, reiterating

the concerns of Hinich and Wolinsky (2005), and then describe a broad class of nor-

malistions motivated by invariance to certain linear operations. Finally, we discuss

global tests for Gaussianity and linearity proposed in the literature.
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Chapter 6 considers testing for bispectral non-linearities8 locally (at specific frequen-

cies). We discuss the approach of Schulte (2016), propose an improvement based on

circulant embedding, and an extension to the multivariate case. We investigate the

performance of different approaches in simulation studies, quantifying power and

false detection rate. We then apply these methods to buoy data from Humboldt Bay

offshore California.

8In the oceanographic sense.



“It was like looking at the ocean: some days, you could

tell what mood it was in. Most days, though, it was

unreadable, mysterious.”

— RICK RIORDAN, THE LIGHTNING THIEF

Part I

Parametric modelling of ocean wave

spectra

1



Chapter 1

Spectral time series analysis and ocean

waves

The frequency domain analysis of time series revolves around the spectral density

function. Heuristically, this describes the contribution to the variance1 of the pro-

cess from regular sinusoids of different frequencies. In the theory of ocean waves,

this is extended to the idea of a frequency-direction spectrum, which decomposes

the variance not only over frequency, but also over direction. In this chapter, we

shall formally introduce these quantities, and discuss some aspects of the paramet-

ric second-order2 modelling of ocean wave time series. Note that Chapters 2 and 3

are standalone, but in this chapter we provide more detailed background.

This chapter is structured as follows. We begin in Section 1.1 with a discussion of the

spectral density function and the multivariate generalisation, which will be required

for describing multivariate time series. We then give a detailed description of the fre-

quency direction spectra in Section 1.2. Existing parametric techniques are discussed

1Or, from the physical perspective, energy.
2In the time series sense.

2
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in Section 1.3. Then in Section 1.4 we cover simulation of Gaussian processes, which

is required for the simulation studies in Chapters 2 and 3. In this thesis, time is typi-

cally measured in seconds, space in metres and angular frequency in rad/s.

1.1 The spectral density function

In this section, we define some of the fundamental quantities of this thesis, includ-

ing the spectral density function and its multivariate counterpart, the spectral den-

sity matrix function. Additionally, we discuss some non-parametric estimation tech-

niques for the spectral density function in Section 1.1.3, though this is less impor-

tant for understanding Chapters 2 and 3 than the definitions in Sections 1.1.1 and

1.1.2.

1.1.1 The univariate case

Consider a continuous-time stochastic process X = {X(t)}t∈R. The process X is said

to be second-order stationary if, for all t, τ ∈ R,

1. E [X(t)] = E [X(0)],

2. cov (X(t + τ), X(t)) = cov (X(τ), X(0)),

3. var (X(t)) < ∞.

In other words, the first and second order cumulants of X exist and are invariant to

time shifts. Typically, we will assume without loss of generality that processes we

deal with are mean-zero, that is E [X(t)] = 0 for all t ∈ R.

Let X∆ = {X(t)}t∈∆Z be the stochastic process which arises from sampling X reg-

ularly with a sampling interval of ∆ seconds, where ∆A = {∆a | a ∈ A} for some
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set A. Note that if the process X is second-order stationary, then clearly X∆ is also

second-order stationary.

The autocovariance function of a stationary continuous-time process X is defined

as cX(τ) = cov (X(τ), X(0)) for all τ ∈ R. The autocovariance sequence3 of the

sampled discrete-time process X∆ is c(∆)X (τ) = cov (X(τ), X(0)) and is only defined

for τ ∈ ∆Z. By definition, c(∆)X (τ) = cX(τ), for all τ ∈ ∆Z. Provided that the

autocovariance of the process is absolutely integrable (absolutely summable in the

discrete-time case), the spectral density function (sometimes referred to as the fre-

quency spectrum) of a process is defined as the Fourier transform of its autocovari-

ance.4 More specifically, the spectral density function of X is fX : R → R and of X∆

is f (∆)X : [−π/∆, π/∆] → R such that

fX(ω) =
1

2π

∫ ∞

−∞
cX(τ)e−iτωdτ,

f (∆)X (ω) =
∆

2π ∑
τ∈∆Z

c(∆)X (τ)e−iτω,

where i =
√
−1. We will often refer to f (∆)X as the aliased spectral density function,

because we have the relation

f (∆)X (ω) = ∑
k∈Z

fX(ω + 2πk/∆).

In other words, fX(ω + 2πk/∆) for all k ∈ Z contributes to f (∆)X at frequency ω,

so from a discrete-time process, we can only tell that the contribution to variance is

from frequencies ω mod 2π/∆. Essentially, the true density at a given frequency in

R has been assigned an “alias” in the interval [−π/∆, π/∆]. Therefore the phenom-

ena is known as aliasing, and we say the spectral density function of X∆ has been

3The unusual notation for a sequence is used to avoid overwhelming subscripts later in this thesis.
4The spectral density function can be defined in more general settings, but this is sufficient for our

purpose. See Cramer and Leadbetter (1967), for example.
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aliased.

Cramer and Leadbetter (1967) show that for a mean-zero stationary process X, it is

possible to find an associated process ζX such that

X(t) =
∫

R
eitωdζX(ω).

The process ζX is often referred to as the spectral or amplitude process associated

with X. This is related to the spectral density function by

E [dζX(ω1)dζX(ω2)] = δ(ω1 + ω2) fX(ω1)dω1dω2 (1.1.1)

where δ is the Dirac delta function (Brillinger, 1974).

In other words, the process ζX has orthogonal increments and a variance determined

by the spectral density function. It is this representation that gives rise to the com-

mon interpretation that a stationary stochastic process can be represented as a linear

combination of multiple uncorrelated sinusoids, with variance determined by the

spectral density function. A spectral representation can also be found for a discrete-

time process. In particular, for t ∈ ∆Z,

X(t) =
∫ π/∆

−π/∆
eitωdζ

(∆)
X (ω),

where the relation to the aliased spectral density function is analogous to (1.1.1).

1.1.2 The multivariate case

Let X = {X(t)}t∈R be a d-dimensional real-valued stochastic process. Such a process

is said to be second-order stationary if, for all t, τ ∈ R,
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1. E [X(t)] = E [X(0)],

2. cov (X(t + τ), X(t)) = cov (X(τ), X(0)),

3. tr( var (X(t))) < ∞.

Again, X will be said to be mean zero if E [X(t)] = 0 for all t ∈ R. As in the

univariate case, let the discretely sampled process be X∆ = {X(t)}t∈∆Z.

The autocovariance function of X is cX : R → Rd×d and the autocovariance sequence

of X∆ is c(∆)X : ∆Z → Rd×d such that

cX(τ) = cov (X(τ), X(0)) ,

c(∆)X (τ) = cov (X(τ), X(0)) .

Assuming that cX is absolutely integrable and c(∆)X is absolutely summable, the spec-

tral density matrix functions of the processes X and X∆ are f X : R → Cd×d and

f (∆)X : [−π/∆, π/∆] → Cd×d where

f X(ω) =
1

2π

∫ ∞

−∞
cX(τ)e−iτωdτ,

f (∆)X (ω) =
∆

2π ∑
τ∈∆Z

c(∆)X (τ)e−iτω.

Unlike in the univariate case, the spectral density matrix function can be complex

valued (though the diagonals are real valued). In the univariate case, the spectral

density function is real valued because the autocovariance function is symmetric

about zero. This is not true in the multivariate case, where autocovariance is Hermi-

tian symmetric, i.e. cX(τ) = cX(−τ)H, where zH denotes the conjugate transpose of

a matrix z.

The autocovariance of a multivariate process is a matrix valued function (or se-
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quence). The functions formed from the elements of these matrices are referred to as

autocovariance when they are on the diagonal, and cross-covariance when they are

off the diagonal. In other words, we often write

cX(τ) =
[
cXiXj(τ)

]
1≤i,j≤d

where cXiXi(τ) = cXi(τ) is the autocovariance of the univariate process Xi and

cXiXj(τ) = cov
(
Xi(τ), Xj(0)

)
is the cross-covariance between processes Xi and Xj.

Similarly, the spectral density matrix function can be regarded as a matrix of func-

tions

f X(ω) =
[

fXiXj(ω)
]

1≤i,j≤d

where fXiXi(ω) = fXi(ω) is the spectral density function of Xi and fXiXj(ω) is the

Fourier transform of the cross-covariance between Xi and Xj, referred to as the cross-

spectral density function.

The coherency between Xi and Xj is defined analogously to correlation:

rXiXj(ω) =
fXiXj(ω)√

fXi(ω) fXj(ω)
,

defined to be zero when the denominator is zero (the numerator is bounded above

by the denominator, so is also zero in this case). The coherence and group delay are

defined to be the absolute value and argument of the coherency respectively. All of

these quantities are defined analogously for discrete-time processes.
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1.1.3 Non-parametric estimation

In this section, we introduce estimators for the spectral density matrix function in the

multivariate case. Consider a regularly sampled d-dimensional times series, denoted

X(0), X(∆), . . . , X([n − 1]∆), of some finite length n. The discrete Fourier transform

of this time series is J(n) : [−π/∆, π/∆] → Cd such that

J(n)(ω) =
n−1

∑
t=0

X(t∆)e−it∆ω

and the periodogram is I(n) : [−π/∆, π/∆] → Cd×d such that

I(n)(ω) =
∆

2πn
J(n)(ω)H J(n)(ω),

where zH denotes the conjugate transpose of a vector (or matrix) z. For finite sam-

ples, the periodogram is a biased estimator of the spectral density function (Percival

and Walden, 1993). In particular, for ω ∈ [−π/∆, π/∆], the expected value is given

by

E
[

I(n)(ω)
]
= [Fn ∗ f (∆)X ](ω)

where ∗ denotes the convolution operator, and Fn is the Fejér kernel

Fn(ω) =
∆

2πn

(
sin(ωn/2)
sin(ω/2)

)2

.

This can result in substantial bias in small samples. Therefore, it is common to apply

a taper (a concept introduced by Blackman and Tukey, 1958). The tapered discrete
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Fourier transform of the series is

J(n)v (ω) =
n

∑
t=1

v(t)X(t∆)e−it∆ω

where v is the taper. The tapered periodogram is then

I(n)v (ω) =
∆

2π
J(n)v (ω)H J(n)v (ω).

Here it is assumed that the taper is normalised so that ∑n
t=1 v(t)2 = 1. For the tapered

periodogram the bias is different (Percival and Walden, 1993), with the expected

periodogram at ω ∈ [−π/∆, π/∆] given by

E
[

I(n)v (ω)
]
= [Vn ∗ f (∆)X ](ω)

where Vn(ω) = ∆
2π |Vn(ω)|2 and

Vn(ω) =
n

∑
t=1

v(t)e−it∆ω.

Typically tapers reduce the bias of the periodogram at the cost of increasing narrow-

band correlation, i.e. correlation between frequencies that are similar (Percival and

Walden, 1993). Whilst tapering the periodogram reduces bias, both the regular and

tapered periodograms are inconsistent. As such, some form of smoothing is required

to achieve consistency.

Welch’s overlapped segment averaging method (Welch, 1967) is commonly used in

many practical applications, including oceanography (e.g. Ewans and McConochie,

2018). Welch’s method splits the data into segments of length nl with an overlap

of nl − ns points (shifting by the window by ns each time), computes tapered pe-

riodograms and then averages across all of the segments. A total of B = ⌊(n −
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nl)/ns⌋+ 1 blocks are used. In particular, the estimate of the spectral density func-

tion takes the form

f̂
(nl ,B,ns)
v (ω) =

1
B

B−1

∑
b=0

I(bns :bns+nl−1)
v (ω)

where

I(r:s)
v (ω) =

∆
2π

J(r:s)
v (ω)H J(r:s)

v (ω)

is the periodogram of the bth segment and

J(r:s)
v (ω) =

s−r

∑
t=0

v(t)X([t + r]∆)e−it∆ω

is the discrete Fourier transform of the bth segment with taper v.

Multitapering, introduced by Thomson (1982), computes an average of multiple pe-

riodograms with different tapers. In particular, the basic version of a multitaper

estimate using K tapers is

f̂
(n)
K (ω) =

1
K

K

∑
j=1

I(n)vj (ω)

where the tapers vj are orthogonal, i.e. ∑n
t=1 vj(t)vk(t) = 0 when j ̸= k. A com-

mon choice of taper is the discrete prolate spheroidal sequence (dpss) introduced by

Slepian (1978). Typically, more sophisticated weightings are used, details of which

can be found in Percival and Walden (1993), for example.

Welch’s method and multitapering are consistent estimators (under the appropriate

conditions), but this is by no means a complete list of available consistent estimation

techniques. Many more can be found in Brillinger (1974); Percival (1992); Brockwell
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and Davis (2006) and many other references.

1.2 The frequency-direction spectrum

In this section, we provide a formal definition for the frequency-direction spectrum,

discuss its relation to other processes of interest, and introduce techniques for non-

parametric estimation. The discussion of non-parametric estimation is important

for understanding the existing parametric techniques described in Section 1.3.3, but

Chapter 3 could be read without this discussion.

1.2.1 Definition

The frequency-direction spectrum gives a description not only of the behaviour of

the waves over frequency but also over direction. Fundamentally, it is not a de-

scription of a time series as we have been discussing previously, but a descrip-

tion of a spatio-temporal stochastic random field. Denote such a random field by

η = {η(t, x, y)}t,x,y∈R. Then assuming the random field is stationary (homogeneous)

and mean-zero, we can write the covariance function

cη(τ, l1, l2) = E [η(τ, l1, l2)η(0, 0, 0)] .

Assuming that c(τ, l1, l2) is absolutely integrable, can write

cη(τ, l1, l2) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
fη(ω, k1, k2)e−i(ωτ+k1l1+k2l2)dωdk1dk2

=
∫ 2π

0

∫ ∞

0

∫ ∞

−∞
k fη(ω, k cos ϕ, k sin ϕ)e−i(ωτ+k cos ϕl1+k sin ϕl2)dωdkdϕ

=
∫ 2π

0

∫ ∞

0

∫ ∞

−∞
f̃η(ω, k, ϕ)e−i(ωτ+k cos ϕl1+k sin ϕl2)dωdkdϕ.
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We call fη(ω, k1, k2) the frequency-wavevector spectral density function of η and

f̃η(ω, k, ϕ) = k fη(ω, k cos ϕ, k sin ϕ) the frequency-wavenumber-direction spectral

density function of η, incorporating a change of variable from Cartesian to polar

coordinates.

Under linear wave theory (Holthuijsen, 2007), there is a dispersion relation between

frequency and wavenumber

ω2 = kg tanh(kh)

(where h is the water depth) so that the spectral-density is only supported on a subset

of the spectral domain (Barstow et al., 2005). Therefore, we have

f̃η(ω, k, ϕ) = Sη(ω, ϕ)δ(ω2 − kg tanh(kh)),

where Sη : R × [0, 2π] → R is the frequency-direction spectral density function, or

simply the frequency-direction spectrum. In other words,

cη(τ, l1, l2) =
∫ 2π

0

∫ ∞

0

∫ ∞

−∞
f̃ (ω, k, ϕ)e−i(ωτ+k cos(ϕ)l1+k sin(ϕ)l2)dωdkdϕ,

=
∫ 2π

0

∫ ∞

−∞
Sη(ω, ϕ)e−i(ωτ+κ(ω) cos(ϕ)l1+κ(ω) sin(ϕ)l2)dωdϕ,

where κ(ω) satisfies κ(ω) tanh(κ(ω)h) = ω2. From now on, we will use the simpler

notation S = Sη for the frequency-direction spectrum, dropping the subscript.

Note that in this definition, ϕ is the direction the wave is travelling from. Some

authors use the direction the wave is travelling towards (e.g. Barstow et al., 2005).

“Direction from” is the same convention used for wind, whilst “direction towards”

is the same convention as currents. Since we compare with wind data, we use the

convention direction from. Aside from some implementation details, it does not mat-
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ter which definition is used. Heuristically, we can interpret the frequency-direction

spectrum as a measure of the contribution to the variance from waves of a given

frequency travelling from a given direction.

Let Z(t) = η(t, x, y) for all t ∈ R at a fixed location5 x, y ∈ R. We have cZ(τ) =

cη(τ, 0, 0), and therefore

∫ ∞

−∞
fZ(ω)dω = cZ(τ) = cη(τ, 0, 0) =

∫ ∞

−∞

∫ 2π

0
S(ω, ϕ)e−iωτdϕdω.

Because the fZ and S are continuous, we have

fZ(ω) =
∫ 2π

0
S(ω, ϕ)e−iωτdϕ, (1.2.1)

for all ω ∈ R. The relation in (1.2.1) gives rise to the standard decomposition of the

frequency-direction spectrum as

S(ω, ϕ) = fZ(ω)D(ω, ϕ)

where D(ω, ϕ) is known as the spreading function, and fZ is often referred to as the

marginal spectral density function. From (1.2.1), we have

∫ 2π

0
D(ω, ϕ)dϕ = 1.

Therefore, for fixed frequency, the function D(ω, ·) : [0, 2π] → R at some fixed

ω ∈ R is essentially a probability density function with support on [0, 2π]. From a

physical perspective, we expect D(ω, ·) to be 2π-periodic and continuous. Wrapped

distributions provide a convenient class of functions which can be used to model

D(ω, ·), see Section 1.3.2.

5The specific location does not matter as the process is stationary.
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In the same way that the frequency-direction spectrum describes the contribution to

the variance from waves of a given frequency and direction, the marginal spectral

density function describes the total contribution to variance from waves of a given

frequency over all directions. The spreading function can be interpreted as describ-

ing the contribution to the variance from waves of a given frequency and direction,

relative to the contribution of all waves with that frequency.

1.2.2 Relation to other processes of interest

Under linear wave theory (see Holthuijsen, 2007, for example), many processes of

interest (say X) can be related to the frequency-direction spectrum via a transfer

function G as

f X(ω) =
∫ 2π

0
G(ω, ϕ)G(ω, ϕ)HS(ω, ϕ)dϕ. (1.2.2)

For the displacement of a particle in deep water G(ω, ϕ) = [1, i cos ϕ, i sin ϕ]T (Isobe

et al., 1984). A table of different processes and their transfer functions can be found

in Benoit et al. (1997).

As in Chapter 3, we write Z = {Z(t)}t∈∆Z, X = {X(t)}t∈∆Z and Y = {Y(t)}t∈∆Z,

for the vertical, northwards and eastwards displacements of the particle respectively.

Additionally, we will write P = {P(t) = [Z(t), X(t), Y(t)]T}t∈R to be the multivari-

ate process describing constituted by the full three-dimensional motion of the parti-

cle. Of course, a buoy is not a particle in the water, but it is assumed to approximately

behave as such (see Section 3.4.1 for an example of when it does not).
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1.2.3 Non-parametric estimation

In an ideal world, we would estimate the frequency-direction spectrum from a record

of the spatio-temporal process η. However, recording such processes in deep water

is not (currently) possible in practice. Therefore, we record other related processes

(which are typically multivariate time series, such as the displacement of a buoy) and

use those to attempt to estimate the frequency-direction spectrum. Before we discuss

some non-parametric estimation techniques, it should be noted that this problem is

hard. Without the assistance of a model, such estimates can be unreliable.

Estimating the frequency-direction spectrum is equivalent to estimating both the

marginal spectral density function and the spreading function. We have already

discussed estimating the former from a time series in Section 1.1.3. However, esti-

mating the spreading function is challenging. Assuming that D(ω, ·) is 2π-periodic,

we can write it as a Fourier series, i.e.

D(ω, ϕ) =
1
π

(
1
2
+

∞

∑
j=1

aj(ω) cos(jϕ) + bj(ω) sin(jϕ)

)
, (1.2.3)

for ϕ ∈ [0, 2π]. We can see from (1.2.2) that for displacement buoys

a1(ω) =
I( fXZ(ω))

fZZ(ω)
, b1(ω) =

I( fYZ(ω))

fZZ(ω)
,

a2(ω) =
fXX(ω)− fYY(ω)

fZZ(ω)
, b2(ω) =

2 fXY(ω)

fZZ(ω)
.

where I(z) denotes the imaginary part of a complex number z. In the case that

fZZ(ω) = 0, these quantities are defined to be zero. Unfortunately, we cannot di-

rectly recover the remaining coefficients. Therefore, to obtain the remaining Fourier

coefficients, we must make some assumption about their behaviour. The two most

common techniques are the Maximum Likelihood method6 (Isobe et al., 1984; Capon

6Not to be confused with maximum likelihood inference.
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et al., 1967) and Maximum Entropy method (Lygre and Krogstad, 1986) (referred to

as MLM and MEM respectively). Note that we are not yet estimating the spreading

function. Rather, we are attempting to invert the relation given in (1.2.2), which is in

general not invertible.

We shall begin by defining the MLM spreading function, which we denote DMLM.

The MLM spreading function is constructed to be a linear combination of the spectral

density matrix function (Isobe et al., 1984; Benoit et al., 1997), i.e.

DMLM(ω, ϕ) =
1

f (ω)
α(ω, ϕ)H f X(ω)α(ω, ϕ)

where α(ω, ϕ) is a vector of weights. To choose these weights, Isobe et al. (1984) first

write

DMLM(ω, ϕ) =
∫ 2π

0
D(ω, ϕ)W(ω, ψ, ϕ)dψ , (1.2.4)

where

W(ω, ψ, ϕ) = |α(ω, ϕ)HG(ω, ψ)|2

plays the role of a window function. From (1.2.4) it can be seen that the closer

W(ω, ϕ, ψ) is to δ(ψ − ϕ), the closer the MLM spreading function, DMLM, will be

to the actual spreading function, D. Therefore, the weighting should be chosen such

that this is achieved as closely as possible (Benoit et al., 1997). The optimal choice

of weighting function then leads to the following estimate of the spreading function

(Isobe et al., 1984)

DMLM(ω, ϕ) =
κ

G(ω, ϕ)H{ f X(ω)}−1G(ω, ϕ)
,
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where κ is a normalising constant. The MLM spreading function can be estimated

from an observed buoy record by first estimating the spectral density matrix func-

tion, and then applying the above, replacing the spectral density with an estimate.

MLM estimates are widely used in the literature and are relatively easy and quick to

implement.

The MEM spreading function is another widely used transformation of the spread-

ing function, which can also be estimated from buoy measurements. The approach

attempts to maximise the entropy of the spreading function such that the first K

Fourier coefficients of the spreading function match those derived directly from f X .

More formally, DMLM(ω, ϕ) is defined to satisfy

max −
∫ 2π

0
log(DMEM(ω, ϕ))dϕ,

s.t.
∫ 2π

0
DMEM(ω, ϕ)e−ijϕdϕ = cj(ω) for |j| < K,

for ω ∈ R and ϕ ∈ [0, 2π]. Where cj(ω) = aj(ω) + ibj(ω) for j > 0, cj(ω) =

aj(ω)− ibj(ω) for j < 0 and c0(ω) = 1. For the case of a displacement buoy we have

K = 2 and Lygre and Krogstad (1986) show that

DMEM(ω, ϕ) =
1

2π

1 − F1(ω)c1(ω)− F2(ω)c2(ω)

|1 − F1(ω)e−iϕ − F2(ω)e−i2ϕ|2
,

where z denotes the conjugate of a complex number z and

F1(ω) =
c1(ω)− c2(ω)c1(ω)

1 − |c1(ω)|2 ,

F2(ω) = c2(ω)− c1(ω)F1(ω).

Notice that DMEM is merely a transformation of the spectral density matrix function

(which itself is a transformation of the frequency-direction spectrum, under the as-
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sumption of linear wave theory). The MEM estimate can be obtained from observed

buoy data by estimating the spectral density matrix function.

It is useful at this stage to note that there are actually two different objects referred

to as MLM estimates.7 The first is the transformation of the spreading function (a

property of the stochastic random field), which we refer to as the MLM spreading

function.8 The second is the estimate of the MLM spreading function (there is pos-

sibly a third meaning if you also include the estimator). We make this distinction

as it is important to note that applying these methods to observed buoy data will

not produce estimates of the spreading function, but rather will produce estimates

of the MLM spreading function, essentially resulting in bias. Unlike in the estima-

tion of the marginal spectral density function, this bias is independent of the sample

size.

In both the MLM and MEM cases, the corresponding MLM (or MEM) frequency-

direction spectrum can be obtained by multiplying by the marginal spectral density

function (or by an estimate of it). Again it should be stressed that this is not the

same as the actual frequency-direction spectrum of the stochastic field: the MLM and

MEM frequency-direction spectrum are other properties of the stochastic process

that are related to, but not the same as, the frequency-direction spectrum.

1.3 Parametric models for ocean wave spectra

Chapters 2 and 3 focus on the parametric estimation of ocean wave spectra. To pre-

pare the ground for these chapters, here we introduce some of the models which

have been proposed for such spectra. In this section, we begin by reviewing some

7This also applies to MEM, but we state it for MLM only for brevity.
8Probably the name maximum likelihood spreading function is more natural than maximum like-

lihood method spreading function, but we use the latter as the acronym MLM is in keeping with the
oceanography literature.
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of the popular parametric models used to describe the (marginal) spectral density

function of ocean wave time series (in Section 1.3.1). We then discuss models for the

spreading function in Section 1.3.2. Whilst we discuss more than one model, each of

Sections 1.3.1 and 1.3.2 ends with descriptions of the model we use in Chapters 2 and

3. We then describe the existing parametric estimation techniques in Section 1.3.3. In

this section, we present models for wind-sea waves. Models for swell waves can be

found in Olagnon et al. (2013) for the marginal spectral density function and Ewans

(2002) for the spreading function, for example. Though in this thesis we focus on

wind-sea waves specifically, the techniques we develop can be applied to models for

swell waves, or models for more complex situations where mixtures of wind-sea and

swell waves are present, e.g. by using additive models such as those suggested by

van Zutphen et al. (2008).

1.3.1 Models for the marginal spectral density function

One of the earliest proposed parametric forms for the spectral density function of

wind-sea waves is the Pierson-Moskowitz spectrum (Pierson and Moskowitz, 1964).

In what follows, we will describe the spectral density functions for non-negative

frequencies, noting that they are all zero at the zero frequency and are symmetric

about zero.9

The Pierson-Moskowitz spectrum has a single parameter ωp, and takes the form

fPM(ω; ωp) =
1
2

αω−5 exp
{
−5

4

(ωp

ω

)4
}

.

for ω > 0, where α = αcg2 and αc = 8.1 × 10−3 is known as the Phillips constant

(Phillips, 1958).

9Furthermore, we state the models in the two-sided form, hence the factor of one half.
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Following a large study of ocean wave spectra recorded in the North Sea, Has-

selmann et al. (1973) proposed a modification known as the JONSWAP spectrum

(named after an acronym of Joint North Sea Wave Project). They propose modify-

ing the Pierson-Moskowitz spectrum to have an enhanced peak by multiplying by a

Gaussian kernel centred on the peak frequency. In particular, they propose a model

of the form

f J(ω; ωp) =
1
2

αω−5 exp
{
−5

4

(ωp

ω

)4
}

γδ(ω;ωp).

where

δ(ω; ωp) = exp

{
(ω − ωp)2

2σ(ω; ωp)2ω2
p

}

and σ(ω; ωp) = 0.07 + 0.021ω>ωp . (Note that δ here is not the Dirac delta function

used elsewhere in this work). Typically α is the same as in the Pierson-Moskowitz

spectrum and γ = 3.3.

Mackay (2016) expresses the JONSWAP function in a more general form as

fG(ω; θ) =
1
2

αω−r exp

{
− r

4

(
ω

ωp

)−4
}

γδ(ω;θ), (1.3.1)

where

δ(ω; θ) = exp

{
− 1

2σ(ω; θ)2

(
ω

ωp
− 1
)2
}

,

and σ(ω; θ) = 0.07 + 0.021ω>ωp . Now θ = [α, ωp, γ, r]T is a vector of parameters,

where α is a scaling parameter, ωp is the peak frequency, γ is the peak enhancement

factor and r is the tail decay index.10 Without the peak enhancement term, (1.3.1) is

10This expression in (1.3.1) is actually slightly less general than the form in Mackay (2016), but
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essentially just a scaled Gamma probability density function.

1.3.2 Models for the spreading function

A wide variety of models for the spreading function have been proposed in the liter-

ature. We will briefly discuss some of the more popular models, but when applying

our methodology in Chapter 3 we use the bimodal model proposed Ewans (1998)

due to its flexibility. More complete summaries of available models can be found in

Ewans (1998) and Barstow et al. (2005) for example.

One of the oldest models, proposed by Longuet-Higgins et al. (1963), is the so called

cos-2s model

D(ω, ϕ) =
Γ(s(ω) + 1)

2
√

πΓ(s(ω) + 1/2)
cos2s(ω)

(
ϕ − ϕm1(ω)

2

)
,

where the functions ϕm1(ω) and s(ω) are usually written as functions of summary

statistics of the process (e.g. mean direction, peak frequency, spreading etc). See

Mitsuyasu et al. (1975); Hasselmann et al. (1980) for example.

Donelan et al. (1985) present evidence that the cos-2s spreading functions described

above tend to overestimate the energy in the peak direction. In response to this they

propose using a truncated sech2 distribution

D(ω, ϕ) =
β(ω)

2tanh(πβ(ω))
sech2(β(ω) · {ϕ − ϕ1(ω)}) , (1.3.2)

where again β(ω) is some fairly complicated function of peak frequency (with a

slightly modified form proposed by Banner, 1990). It should be noted that the spread-

ing function given by (1.3.2) is not 2π-periodic, though this is easily fixed by using a

we use this 4 parameter form as the other parameters are of less interest and make estimation more
difficult.
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wrapped sech2 instead (Barstow et al., 2005).

Young et al. (1995) demonstrate the spreading functions of ocean wave records are

likely to be bimodal at high frequencies, something that the parametric models above

do not describe. To handle this, Ewans (1998) suggests a bimodal spreading function

based on a wrapped bimodal Gaussian:

D(ω, ϕ) =
1√

8πσ(ω)

∞

∑
k=−∞

2

∑
j=1

exp

{
−1

2

(
ϕ − ϕmj(ω)− 2πk

σ(ω)

)2}
,

where σ(ω) is the standard deviation of the Gaussians (called angular width by

Ewans, 1998) and ϕm1(ω), ϕm2(ω) are the peak directions.

Typically, the angular width and peak direction functions are themselves parame-

terised. Ewans (1998) gives a parameterisation with fixed values based on observed

buoy data, with a single location parameter to determine the mean direction. We

shall use a less restrictive description by adding parameters for the shape of the

spreading function. A similar parametrisation was used by van Zutphen et al. (2008),

but we use slightly fewer parameters as some of the parameters in van Zutphen

et al. (2008) have little effect on the frequency-direction spectrum.11 In particular, we

write

ϕm1(ω; θ) = ϕm + ϕs(ω; θ)/2,

ϕm2(ω; θ) = ϕm − ϕs(ω; θ)/2,

ϕs(ω; θ) =


β exp(−νωp/|ω|) for |ω| > ωp,

β exp(−ν) otherwise,

σ(ω; θ) = σl −
σr

3

(
4
(

ωp

|ω|

)2

−
(

ωp

|ω|

)8
)

.

11van Zutphen et al. (2008) parameterise the exponents in σ(ω; θ) in addition to the parameters we
use.
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where ωp is the peak frequency, as in the JONSWAP spectrum (1.3.1). This adds

an additional 5 parameters, namely ϕm, β, ν, σl, σr to the parameters already required

for the marginal spectral density function. We prefer this model to the cos-2s and

sech2 models as it is able to account for potential bimodal behaviour in the spreading

function (though unimodal behaviour can be obtained when β = 0).

1.3.3 Parametric estimation of ocean wave spectra

When estimating the parameters of frequency-direction spectra, a two stage ap-

proach is usually taken. Firstly, the parameters of the spectral density function of

the vertical displacement are estimated using least squares and then the parameters

of the spreading function are estimated separately. We discuss the least squares es-

timation in detail in Chapter 2, and so we will focus on estimation of parameters of

the spreading function in this section. Such estimation is usually performed in one

of two ways: a moments-matching approach (Ewans, 1998, for example); or by pro-

ducing a non-parametric estimate of the spreading function, then fitting using least

squares, as in van Zutphen et al. (2008).

Least squares fitting to estimates of the spreading function

A commonly used technique involves fitting the model spreading function to a non-

parametric estimate of the spreading function using least squares. In other words,

given D̂(ω, ϕ), an estimate of the spreading function (see Section 1.2.3), the parame-

ters, θ, are obtained by solving

argmin
θ

∑
ω∈Ω

∑
ϕ∈Φ

(
D(ω, ϕ; θ)− D̂(ω, ϕ)

)2 ,

where Ω ⊆ [−π/∆, π/∆] and Φ ⊆ [0, 2π] are finite sets of frequencies and direc-

tions respectively. This approach essentially assumes that the estimator used for
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the spreading function is unbiased, normally distributed, homoscedastic and that, at

different pairs of frequency and direction estimates are uncorrelated. However, in

practice, none of these are satisfied. In particular, correlation across frequency and

direction is high for both MLM and MEM estimates, and bias is substantial. As a

result, estimation of anything other than location parameters using this technique

performs poorly, as we will see in Chapter 3.

Moments-matching approach

Early approaches to fitting parametric spreading functions to data from buoys, such

as Mitsuyasu et al. (1975), match the Fourier coefficients estimated from the buoy to

the theoretical Fourier coefficients from the model (under the relevant transfer func-

tion). Begin by estimating the properties of the spreading function at each frequency,

e.g. ϕm1(ω). Importantly, these are different from the model parameters we eventu-

ally wish to estimate. Then use regression to estimate the parameters of the model

for the behaviour of the spreading function over frequency. In our case, following

Ewans (1998), at each frequency we estimate θ(ω) = [ϕm1(ω), ϕm2(ω), σ(ω)]T us-

ing

θ̂(ω) = argmin
θ(ω)

|c1(ω; θ(ω))− ĉ1(ω)|2 + |c2(ω; θ(ω))− ĉ2(ω)|2

where, cj(ω; θ(ω)) = aj(ω; θ(ω)) + ibj(ω; θ(ω)) and ĉj(ω) is an estimate for cj(ω)

obtained by plugging estimates for the relevant cross-spectral density functions into

(1.2.3). These are estimated for ω in some finite set Ω ⊆ [−π/∆, π/∆], yielding

ϕ̂m1(ω), ϕ̂m2(ω), and σ̂(ω).
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The parameters of interest θ = [ϕm, β, ν, σl, σr]T are then estimated by

θ̂ = argmin
θ

∑
ω∈Ω

[(
ϕm1(ω; θ)− ϕ̂m1(ω)

)2
+
(
ϕm2(ω; θ)− ϕ̂m2(ω)

)2

+
(
σ(ω; θ)− σ̂(ω)

)2
]
.

Recall that the other parameters, α, ωp, γ, r, are estimated marginally prior to this.

Such a technique is usually not applied to a single sea state, but instead is applied

to multiple sea states with the view to fixing the parameters of the spreading func-

tion (except the mean direction). As we show in Chapter 3, this approach performs

poorly in application to a single sea state. However, it should be remembered that

this technique can still be useful for getting a general idea of the shape different as-

pects of the spreading function can take, as in Ewans (1998), but it is not useful for

estimating the parameters of a single sea state.

1.4 Simulating Gaussian processes

At various points in this thesis, it will be useful to be able to simulate processes with

a given spectral density function, in order to test methodology via Monte Carlo ex-

periments. In this section, we review some of the common simulation approaches

from the oceanography literature, discuss some of their draw backs, and detail exact

methods which can be used instead. In particular, we wish to simulate a Gaussian

process with known spectral density function (or equivalently autocovariance) at a

regular sampling interval of ∆, for n observations. In other words, we want to gen-

erate a realisation of X(0), X(∆), . . . , X([n − 1]∆) where the process X is a Gaussian

process.
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1.4.1 Random phase methods

The most common approach to simulating Gaussian ocean wave time series is an

approximate frequency domain technique, due to Thompson (1973) and Tucker et al.

(1984). Choose some m ≥ n, and for 0 ≤ k ≤ ⌊m/2⌋ draw independent

Rk ∼ Rayleigh( f (∆)X (2πk/∆m)
1/2

),

Uk ∼ Unif(0, 2π),

and form

Zk =


Rk for k = 0 or k = m/2,

RkeiUk /
√

2 for 1 ≤ k ≤ ⌊m/2⌋ − 1,

Zm−k otherwise.

Note that the k = m/2 case only applies if m is even. We then take the inverse

discrete Fourier transform of Zk to form a realisation of the Gaussian process. In

other words,

X̃(t) =

√
2π

m∆

m−1

∑
k=0

Zk exp{itk/∆m}

for t = ∆, . . . , n∆. Using an FFT we can quickly obtain a time series of m observations

spaced equally with a sampling interval of ∆ between them, and simply discard

observations beyond the nth. Adopting the terminology of Mérigaud and Ringwood

(2018), we shall refer to this approach as the random amplitude scheme (RAS).

Since we require n observations spaced at an interval of ∆, Tucker et al. (1984) set

m = n. Unfortunately, even asymptotically this does not actually simulate from the

process of interest. There are three main issues that arise. Firstly, as pointed out by
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Mérigaud and Ringwood (2018), the resultant process will be periodic with period

n∆, meaning that X̃(0) = X̃(n∆) and so the correlation between the process at the

first time point and at the second time point, is the same as the correlation between

the process at the first time point and at the last time point, i.e.

cov (X(0), X([n − 1]∆)) = cov (X(n∆), X([n − 1]∆))

= cov (X(0), X(∆)) .

Clearly this should not be the case. Secondly, the expectation of the periodogram of

X̃ is equal to the spectral density function at the Fourier frequencies (Percival, 1992).

Furthermore, the periodogram of X̃ is exponentially distributed. In other words, the

periodogram of X̃ has a finite sample distribution equal to the asymptotic distribu-

tion of the periodogram of a process with the desired spectral density function. The

third issue is a somewhat related one, which is that the periodogram ordinates at the

Fourier frequencies are, by construction, uncorrelated. Thus the finite joint distribu-

tion of the periodogram at all of the Fourier frequencies is exactly the asymptotic joint

distribution of the periodogram of the process we wanted to simulate from.

As a result, if we are using such a simulation method to analyse the performance

of techniques that make approximations based on the asymptotic distribution of the

periodogram (which we will be doing), then we will see much better performance on

series simulated in this manner than series simulated with the correct finite sample

properties. This in turn would result in overconfidence in the performance of our

estimates.

Deterministic amplitude scheme

A commonly used modification of RAS is the deterministic amplitude scheme (DAS).

As the name suggests, this approach is identical to RAS, except that the ampli-
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tudes are fixed to be equal to the spectral density function, i.e. replacing Rk by

R̃k = f (∆)X (2πk/∆m)1/2. Note that this is not equivalent to setting the amplitudes to

their expectation, as E [Rk] =
√

π/2 f (∆)X (2πk/∆m)1/2, but rather it fixes the power

(amplitude squared) to its expectation.

Not only do we now have periodograms with completely the wrong distribution (a

point mass at the spectral density function), but the resultant process is only asymp-

totically Gaussian (asymptotically in m). Clearly RAS is preferable over DAS, but

neither are especially satisfactory. Of course, simulating stationary Gaussian pro-

cesses (or any Gaussian process for that matter) can be done exactly12, as we discuss

in the next section. This should be preferred over both RAS and DAS for the afore-

mentioned reasons.

1.4.2 Exact method

We begin by discussing an approach to simulate exactly from the Gaussian time

series using standard multivariate Gaussian theory. Say we wish to simulate an n-

dimensional Gaussian random variable with mean µ ∈ Rn and covariance matrix

Σ ∈ Rn×n. Note that, if L ∈ Rn×n is such that LLT = Σ (L is a matrix square root of

Σ) and Z ∼ N (0, In), then setting Xn = µ + LZ we have Xn ∼ N (µ, Σ). Therefore

we can simulate from a mean-zero stationary Gaussian process by performing the

following steps:

1. Construct the covariance matrix Σ = [cX([r − s]∆)]1≤r,s≤n.

2. Find a matrix square root L of Σ, e.g. using a Cholesky decomposition.

3. Draw W from a N (0, In).

12Of course, in practice the simulation is only exact up to the quality of random number generators
and floating point operations.
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4. Compute Xn = LW .

Here [ars]1≤r,s≤n denotes the matrix with elements ars and cX(τ) is the autocovari-

ance of the process we wish to simulate from. Thus we can simulate exactly from a

Gaussian time series, though it is slow compared to RAS (since finding a Choleksy

square root in general requires O(n3) operations). However, when we have a sta-

tionary process this can be improved to O(n log(n)) operations, using circulant em-

bedding (Davies and Harte, 1987; Wood and Chan, 1994). This is presented in more

detail in Section C.1. The exact approach is easily extended to the multivariate case,

as is circulant embedding (Helgason et al., 2011).

1.5 Conclusion

In this chapter, we introduced many of the key ideas used throughout Part I of this

thesis. In particular, Chapter 2 focuses on univariate parameter estimation of the

spectral density function, introduced in Section 1.1, for the corresponding paramet-

ric models described in Section 1.3.1. The extension to frequency-direction spec-

trum described in Section 1.2 and the models from Section 1.3.2 are utilised in Chap-

ter 3, where we discuss the estimating the parameters of models for the frequency-

direction spectrum from buoy data. Additionally, we summarised the differences

between some approximate simulation techniques commonly used in the oceanog-

raphy literature, giving reasons why exact techniques should be preferred over the

techniques currently employed, especially in the context of this thesis.



Chapter 2

Estimating the parameters of ocean

wave spectra

The content of this chapter is a published paper (Grainger et al., 2021), with the

exception of Section 2.7, where we now analyse data recorded at Humboldt Bay,

California. In the original work we considered much older data from New Zealand,

recorded for 20 minutes at the start of each 3 hour period. The Humboldt Bay data

is recorded continuously (at 1.28Hz), and provides an interesting new analysis. The

rest of the content is the same, with small notational changes made for consistency

with other thesis chapters. We motivate the chapter in Section 2.1, and describe the

structure of the chapter at the end of Section 2.1. For simplicity, we will often drop

the some of the subscripts introduced in Chapter 1. For example, we will often write

f and f∆ as opposed to fX and f (∆)X respectively. Note that when we refer to X in this

chapter, this is the same process Z in Chapter 3, the vertical displacement (not to be

confused with the horizontal displacement).

30
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2.1 Introduction

Due to the random nature of wind-generated surface-gravity waves, it is common to

treat them as stochastic processes. There is particular interest in the spectral density

function of such wave processes. For this reason, it is important that we are able

to construct good spectral density estimators. Using such an estimator, estimates of

the spectral density function can be obtained from observed wave records. Broadly

speaking, there are two approaches for obtaining such an estimator: non-parametric

and parametric. The most basic non-parametric spectral density estimator is the pe-

riodogram — the Fourier transform of the sample autocovariance. However, the

periodogram is a noisy estimator. Therefore many less noisy estimators have been

developed (see Section 1.1.3). The second approach is to use a parametric spectral

density estimator. Here we assume that the spectral density function follows a para-

metric form, meaning that the inference task becomes estimation of the parameters

of this form. In general, parametric estimators are often preferable because they re-

sult in smoother estimates and more concise representations of the spectral density

function—and the parameters themselves provide physical interpretation of the na-

ture of the wave process.

Many such parametric forms have been developed in the oceanography literature.

Phillips (1958) gave theoretical arguments for the tail behaviour of the spectral den-

sity function for wind-generated wave processes. Based on this, Pierson and Mosk-

owitz (1964) established a parametric form that characterised the spectral density

function of a fully developed sea, describing both the spectral tail and peak be-

haviour. This was later extended by Hasselmann et al. (1973), so that the parametric

form could encompass a wider variety of spectral density functions, including those

associated with fetch limited wave processes. This widely used parametric form is

usually known as the JONSWAP spectral form. It should be noted that we use JON-
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SWAP to refer to the original formulation given by Hasselmann et al. (1973), with a

tail decay of O(ω−5) as ω → ∞ (where ω denotes angular frequency).

Despite general acceptance of the JONSWAP spectral form amongst practitioners,

there is debate concerning the values of the tail decay index and peak enhancement

factor. Arguments for an ω−5 tail decay, made by Phillips (1958), were called into

question by Toba (1973) and later by Phillips (1985), who argued that an ω−4 tail

had a stronger theoretical basis. Experimental work such as Hasselmann et al. (1973)

and Battjes et al. (1987) found evidence for both ω−4 and ω−5 tail decays, while

Hwang et al. (2017) could not find evidence for either, further suggesting that the

tail decay index should be treated as a free parameter. In addition, there is a large

literature speculating on other tail behaviours, such as the occurrence of a transition

frequency from ω−4 to ω−5 (Forristall, 1981; Ewans and Kibblewhite, 1986; Babanin,

2010, for example). It is also common to fix the peak enhancement factor to 3.3; how-

ever, there is little evidence for using precisely this value. In this work, we adopt a

more general version of the JONSWAP spectral form, which treats both the tail decay

index and peak enhancement factor as free parameters (though our methods also ap-

ply to the special cases mentioned, in terms of estimating the remaining parameters

of interest).1 Many authors (Rodrı́guez and Soares, 1999; Ewans and McConochie,

2018, for example) have found that both the tail decay index and peak enhancement

factor are hard to estimate accurately, using current techniques. However, both of

these parameters are important for determining the properties of a given sea state.

Our contention is that current techniques are not sufficiently accurate or precise to

allow strong statements to be made concerning the true values of the tail decay in-

dex or peak enhancement factor, from typical data sets. Indeed, in Section 2.5 we

demonstrate with simulated half hour records that estimates for the tail decay (us-

1To avoid potential confusion, it should be noted that we are interested in estimating the param-
eters of assumed parametric forms for the spectral density function (such as the generalised JON-
SWAP) and not spectral parameters of a sea state such as significant wave height (Hs).
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ing current estimation techniques) range from O(ω−3) to O(ω−6), when the true tail

decay is known to be O(ω−4) as ω → ∞. Because there is too much variability in

the estimates, it is impossible to determine from such half hour data if the true tail

decay is O(ω−4) or O(ω−5) as ω → ∞. In this work we present an alternative tech-

nique that is capable of obtaining these parameters more accurately and precisely,

and show in simulated data that this technique can distinguish O(ω−4) and O(ω−5)

high-frequency tail decays, even from short records.

The standard approach for estimating parameters of a stochastic model from data

is by using maximum likelihood inference. When an analytical form for the likeli-

hood function is known, such parameters can be optimally estimated using maxi-

mum likelihood (Pawitan, 2001). For finite sample sizes, maximum likelihood infer-

ence typically results in estimators with smaller RMSE compared to alternative tech-

niques, such as method of moments or least squares. However, in the case of wind-

generated wave processes, the exact probability distribution is unknown. Though it

is possible to make the simplifying assumption that the wave process is Gaussian,

for many sea states this assumption will not be reasonable. For this reason, it has

become common for oceanographers to use a non-parametric estimator of the spec-

tral density function, and obtain parameters by fitting a parametric form in the least

squares sense. However, such least squares estimators will in general be sub-optimal

when compared to full maximum likelihood (Constable, 1988).

We therefore turn to frequency domain likelihoods, which are widely used in both

time series analysis and spatial statistics (Nordman and Lahiri, 2006; Fuentes, 2007,

for example). The canonical approach is to use an approximation to maximum likeli-

hood known as the Whittle likelihood (Whittle, 1953b). The Whittle likelihood can be

computed quickly using Fast Fourier Transforms and does not require Gaussianity

(Dzhaparidze and Yaglom, 1983). However, the Whittle likelihood has been shown
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to produce biased estimates for small sample sizes (Dahlhaus, 1988; Velasco and

Robinson, 2000). Sykulski et al. (2019) developed a debiased version of the Whit-

tle likelihood that corrects for this bias, without sacrificing the computational speed

or making extra distributional assumptions. In Section 2.3.4, we will provide some

intuition as to why we would expect the debiased Whittle likelihood to perform bet-

ter than least squares, both in terms of accuracy (bias) and precision (variance). Then

in Section 2.5, we evidence this claim using numerical simulations.

The contributions of this chapter are as follows. Firstly, we introduce the debiased

Whittle likelihood estimator for use on wind-generated wave processes (Section 2.3).

Secondly, we detail practical concerns regarding the implementation of the estima-

tion procedure for wind-generated ocean wave processes (Section 2.4), with accom-

panying MATLAB code provided on GitHub (Grainger, 2021).2 This includes an

important generalisation of the Sykulski et al. (2019) procedure to allow parameters

to be fitted directly to the proposed spectral form without having to posit an analyt-

ical form for the time-domain theoretical autocovariance sequence—as required in

Sykulski et al. (2019), but unavailable for ocean wave spectral forms. Thirdly, we

present a novel reformulation of the variance of the debiased Whittle likelihood es-

timator which can be used to quantify the uncertainty of parameter estimates (Sec-

tion 2.6). Finally, we perform a detailed simulation and field data study compar-

ing the performance of different parametric spectral density estimators for wind-

generated wave processes (Section 2.5 and Section 2.7).

2Note that this toolbox has been superseded by the Julia packages WhittleLikelihoodInference.jl
(Grainger, 2022c) and OceanWaveSpectralFitting.jl (Grainger, 2022b).
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2.2 Background

So far we have used the word “wave” loosely to describe the shifting nature of the

sea surface. In truth, we are actually interested in modelling the displacement of

the sea surface from the resting surface. Of course, in reality this is a 3-dimensional

phenomena, but in this chapter we shall consider the vertical displacement of the

surface over time at a specific location in space. We can think of the displacement

at a given time as being a random variable with some distribution. Therefore we can

describe the displacement over time by a stochastic process, an indexed family of ran-

dom variables, which we shall denote X = {X(t)}t∈R. Note that this is a family

of random variables indexed over continuous time, as the actual physical process is

constantly changing. However, since we cannot actually record data continuously

in time, we must instead settle for recording the process at discrete points in time.

We assume that the data are being sampled regularly and denote the sampling in-

terval ∆ and the process that arises from sampling X every ∆ seconds we shall call

X∆ = {X(t)}t∈∆Z.

For the duration of a given record, observations of the sea surface are usually as-

sumed to be from an underlying process X that is second-order stationary. This means

X satisfies all of the following conditions:

1. E [X(t)] = E [X(0)],

2. E
[
|X(t)|2

]
< ∞,

3. E [X(t)X(s)] = E [X(t − s)X(0)],

for all t, s ∈ R. However, the sea surface is not actually stationary: it evolves over

time. One way to circumvent this is to notice that whilst the conditions at sea do

evolve over time, they do so relatively slowly if we sample frequently. Therefore, we
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treat the sea surface as being stationary over short time intervals, sometimes known

as sea states. This is essentially the same approach as locally stationary modelling in

time series analysis (Dahlhaus, 2012). Ideally we would make this sea state as short

as possible. However, we must balance this with another fundamental statement:

the more observations we have, the more confident we can be in our inferences. The

question of the correct time interval to use will not be covered here; though, it is use-

ful to keep in mind that improving the precision of parameter estimates will mean

that we could use shorter sea states in our analysis. This would allow us to track the

evolution of certain meteorological processes, such as tropical cyclones, at a higher

precision and resolution. To summarise, the underlying wind-generated wave pro-

cess is not second-order stationary; however, for short enough time windows, this is

a widely used working assumption that allows some inference to be made about the

process in question.

The analysis of second-order stationary stochastic processes usually involves two

important characteristics: the autocovariance and the spectral density function. The au-

tocovariance of a process at a given lag τ, is just the covariance of a process with itself

τ time-steps later. More formally, the autocovariance is c(τ) = cov (X(τ), X(0)).

For our purposes, we assume that E [X(t)] = 0 for all t ∈ R; noting that if this is

not the case, then by first centring the data by subtracting its sample mean we can

obtain a process with the desired property. Therefore, the autocovariance simplifies

to c(τ) = E [X(τ)X(0)]. The spectral density function is a frequency domain ana-

logue of the autocovariance, which for the stochastic processes X and X∆ we shall

denote f (ω) and f∆(ω) respectively. For the discrete time process, assuming that

∑τ∈∆Z |c(τ)| < ∞,

f∆(ω) =
∆

2π ∑
τ∈∆Z

c(τ)e−iτω,
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for ω ∈ [−π/∆, π/∆], where π/∆ is the Nyquist frequency and is the highest observ-

able frequency of the sampled process. Similarly for the continuous time process,

assuming
∫ ∞
−∞ |c(τ)|dτ < ∞,

f (ω) =
1

2π

∫ ∞

−∞
c(τ)e−iτωdτ, (2.2.1)

for ω ∈ R.3 Similarly, the inverse relations are

c(τ) =
∫ π/∆

−π/∆
f∆(ω)eiτωdω, (2.2.2)

for τ ∈ ∆Z and

c(τ) =
∫ ∞

−∞
f (ω)eiτωdω, (2.2.3)

for τ ∈ R. The spectral density of the discrete time process, f∆(ω), can be thought

of as an aliased version of the continuous time spectral density function f (ω). More

formally, we have the following relation:

f∆(ω) = ∑
k∈Z

f
(

ω +
2πk

∆

)
, (2.2.4)

for ω ∈ [−π/∆, π/∆] (Percival and Walden, 1993, Chapter 4). In Section 2.5, we

demonstrate that aliasing can cause bias in parameter estimation, which is why it is

important to define both f (ω) and f∆(ω) and understand their relationship.

2.2.1 Non-parametric spectral density estimators

Though our purpose is the analysis of parametric spectral density estimators, it is

also pertinent to define some of the non-parametric spectral density estimators that

3Note that we are working with angular frequency here, and for all examples in this thesis this is
measured in units of rad s−1.
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are used throughout this chapter. There are two important properties that should

be considered when choosing an estimator. The first of these is bias, which is the

expectation of the estimator minus the true value. Ideally we would want to choose

an estimator that is unbiased, i.e. has a bias of zero. This is often not possible, but

the weaker condition of asymptotically unbiased is often achievable. An estimator

is said to be asymptotically unbiased if, as the number of observations increases, the

bias tends to zero. The second important property is consistency. For an estimator to

be consistent it must converge in probability to the true parameter as the number of

observations tends to infinity. More formally, denote the true parameter by θ0 and

an estimator from a series of n observations by θ̂n. Then θ̂n is a consistent estimator

if, for all ϵ > 0, P
(
∥θ̂n − θ0∥ > ϵ

)
→ 0 as n → ∞.

The most basic non-parametric estimator for the spectral density function of a dis-

crete time process is the periodogram. Let X∆,n = {X(0), X(∆), . . . , X(∆[n − 1])} be a

series of n consecutive random variables from X∆, then the periodogram is defined

as

I(ω) =
∆

2πn

∣∣∣∣∣n−1

∑
t=0

X(∆t)e−it∆ω

∣∣∣∣∣
2

,

for ω ∈ R. In practice, the periodogram is typically only evaluated at the Fourier fre-

quencies ω = 2π j/∆n using the FFT procedure, where j = −⌈n/2⌉+ 1, . . . , ⌊n/2⌋.

For convenience, we shall write Ωn,∆ for the set of these frequencies. It should also

be noted that the periodogram is an estimator for the spectral density of the dis-

crete time process f∆(ω), not the spectral density of the continuous time process

f (ω). The periodogram can be shown to be an asymptotically unbiased estimator

for f∆(ω), but the periodogram is not consistent.

For this reason, modified versions of the periodogram, which are consistent, are usu-

ally used as an alternative to the periodogram. One such modified periodogram,
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suggested by Welch (1967), splits the series into smaller segments, applies a taper,

calculates the periodogram of each segment and then averages these modified peri-

odograms at each frequency. In practice, Welch’s method results in an estimate that

is less noisy than a standard periodogram, but has lost resolution in frequency and

may be more biased. A subset of such methods is known as Bartlett’s method (Bartlett,

1948). This approach uses non-overlapping segments with no window function. In

other words, Bartlett’s estimator is

f̂B(ω) =
∆

2πBnl

B−1

∑
b=0

∣∣∣∣∣bnl+nl−1

∑
t=bnl

X(∆t)e−it∆ω

∣∣∣∣∣
2

,

where B is the number of segments and nl is the number of observations in each

segment (with Bnl ≤ n).

2.2.2 Models for the spectral density function

When describing the sea surface, models are often expressed in terms of the spec-

tral density function. Many different spectral density functions have been devel-

oped for ocean waves, perhaps most notably the JONSWAP spectrum, developed

by Hasselmann et al. (1973). We shall consider a more general model, which en-

compasses many of the other waves models that have been developed. Following

Mackay (2016), we use the following parametrisation:

SG(ω; θ) = αω−r exp

{
−r

s

(
ω

ωp

)−s
}

γδ(ω;θ), (2.2.5)

where

δ(ω; θ) = exp

{
− 1

2σ(ω; θ)2

(
ω

ωp
− 1
)2
}

,
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and

σ(ω; θ) =


σ1 for ω ≤ ωp ,

σ2 for ω > ωp ,

for ω > 0; where α, ωp, s > 0, γ ≥ 1, r > 14 and θ denotes the vector of parameters.

Typically, and for the remainder of this chapter, σ1, σ2 and s are set to 0.07, 0.09, and

4 respectively (Mackay, 2016). In this case, the parameter vector is θ = [α, ωp, γ, r]T.

Also let Θ denote the parameter space — the set of possible values that θ can take.

Then for this general model, the parameter space is Θ = (0, ∞)× (0, ∞)× [1, ∞)×

(1, ∞) ⊆ R4. Note that (2.2.5) is a one sided spectral density, and is not defined

at ω = 0. We shall work with the two sided version as this fits in with the way

we have defined the spectral density function, the way techniques are described in

the statistical literature, and the way Fast Fourier Transforms are implemented on a

computer. Therefore, we define fG : R × Θ → [0, ∞),

fG(ω; θ) =


SG(ω; θ)/2 for ω > 0,

0 for ω = 0,

SG(−ω; θ)/2 for ω < 0.

(2.2.6)

We shall refer to the function defined by (2.2.6) as the generalised JONSWAP spec-

tral form. In this formulation, α is measured in units of m2 s1−r radr−1, ωp in rad s−1

and γ and r are dimensionless. For convenience, we omit the units in future refer-

ences.
4Mackay (2016) gives the condition that r > 0. However, for the spectral density to be integrable

(such that the stochastic process has finite variance), we require that r > 1.



CHAPTER 2. ESTIMATING THE PARAMETERS OF OCEAN WAVE SPECTRA 41
a

2.3 Fitting parametric spectral density functions

The process of fitting a parametric spectral density function to observations can be

thought of as estimating the parameters of a statistical model, which we denote θ.

The techniques discussed in this section are applicable to a broad class of spectral

density functions. As such, we consider the general case and shall write f (ω; θ) for

the spectral density function of the continuous time process, given some choice of

parameters θ. We shall also write f∆(ω; θ) and c(τ; θ) for the spectral density func-

tion of the discrete time process and the autocovariance function respectively. For

convenience, we shall sometimes refer to the spectral density function of the contin-

uous time process as the spectral density function, and the spectral density function

of the discrete time process as the aliased spectral density function. We also write

Σθ for the covariance matrix of the multivariate random variable corresponding to n

consecutive random variables from X∆. We now describe each of the fitting methods

discussed in this chapter.

2.3.1 Least squares

Current approaches to estimating parameters of spectral density functions used in

the ocean waves literature, such as the approaches described by Ewans and Mc-

Conochie (2018), usually involves two key steps. Firstly, a non-parametric estimator

of the spectral density function is constructed. Secondly, a curve fitting algorithm is

used so that the corresponding parametric form is a good fit for the observed data.

Typically this involves minimising the square distance between the parametric form

and non-parametric spectral density estimator. Therefore, we shall refer to such ap-

proaches as least squares fitting techniques.

For the purpose of this section, we let f̂ (ω) denote a general non-parametric spectral

density estimator (this could be the periodogram, I(ω), Bartlett estimator, f̂B(ω),
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or some other non-parametric spectral density estimator). The second part of this

fitting routine involves fitting the parametric form to the obtained non-parametric

estimator. Typically, this is done by minimising the Euclidean distance between the

non-parametric estimator and the parametric spectral density function. We therefore

must minimise the objective function given by

ℓLS (θ | X∆,n) = ∑
ω∈Ω

(
f (ω; θ)− f̂ (ω)

)2
, (2.3.1)

where Ω ⊆ Ωn,∆ (the choice of Ω is discussed in Section 2.4.1). In other words, the

least squares estimator for θ is defined as θ̂LS = argminθ∈Θ ℓLS (θ | X∆,n). This ap-

proach could be adapted to account for aliasing by replacing f (ω; θ) with f∆(ω; θ),

the aliased spectral density function; however, such a modified approach is not cur-

rently used in the ocean waves literature and therefore we shall use the form given

by (2.3.1) in our simulation study.

Part of the reason that least squares performs poorly is that the variance of a spectral

estimate will be different at different frequencies. This means that low density areas

of the spectral density function (such as the high frequency tail) tend to be under-

weighted. For this reason, log transforms are often used in least squares objective

functions, especially in the statistics literature (Bloomfield, 1973). Because standard

least squares is widely used in the ocean waves literature, we present a compari-

son of standard least square in this chapter. However, in simulations not shown in

this chapter, log least squares still does not perform as well as the debiased Whit-

tle likelihood. Whilst log least squares does provide better estimates of the spectral

tail decay index than standard least squares, some of the other parameter estimates

have increased bias when compared to standard least squares. Plots of these log least

squares simulations are available on GitHub (Grainger, 2021).
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2.3.2 Maximum likelihood

Maximum likelihood inference treats the sea surface data as observations of a ran-

dom variable with a given distribution. The parameters for this distribution are cho-

sen by maximising the probability of observing the data given that the underlying

distribution has certain parameters. For the moment, let the sea surface observations

be multivariate Gaussian with expectation zero and an unknown covariance matrix

Σθ. The log-likelihood function for observations of such a process is

ℓML (θ | X∆,n) =
1
2

(
−n log(2π)− log |Σθ| − XT

∆,nΣ−1
θ X∆,n

)
, (2.3.2)

where XT
∆,n denotes the transpose of X∆,n and |Σθ| denotes the determinant of Σθ.

The maximum likelihood estimator is obtained by maximising the log-likelihood

function. More formally, the maximum likelihood estimator of θ is given by θ̂ML =

argmaxθ∈Θ ℓML (θ | X∆,n). Provided that the underlying random variable is actually

multivariate Gaussian, this technique will provide asymptotically optimal estimates

of θ, in the sense that they converge at an optimal rate, see Pawitan (2001), Chapter

8.5, for more details.

This approach can be computationally expensive because evaluating the objective

function given by (2.3.2) requires the inversion of an n × n matrix. Also, if we want

to model a distribution that is not Gaussian, then a different log-likelihood function

must be used. This may take significantly longer to compute, or may not even be

tractable. As previously discussed, wave processes will not typically be precisely

Gaussian. However, in Section 2.5 we shall compare fitting techniques on simulated

Gaussian processes in the first instance. In this case, full maximum likelihood pro-

vides a useful benchmark to compare the performance of other estimators to the

optimal choice of estimator.
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2.3.3 Spectral likelihood

To avoid some of the problems associated with maximum likelihood estimation we

can use approximations to the likelihood, known as pseudo- or quasi-likelihoods, to

gain some of the accuracy and precision of maximum likelihood, while keeping com-

putational costs (and distributional assumptions) low. One such quasi-likelihood5 is

known as the Whittle likelihood (Whittle, 1953b). The Whittle likelihood has been

used in a wide range of applications due to its computational efficiency and fairly

free distributional assumptions (in particular, we no longer need to assume that

the underlying process is Gaussian). In its discretised form, the Whittle likelihood

is

ℓW (θ | X∆,n) = − ∑
ω∈Ω

{
log ( f (ω; θ)) +

I(ω)

f (ω; θ)

}
, (2.3.3)

where I(ω) denotes the periodogram ordinate at angular frequency ω. The corre-

sponding estimator is again obtained by maximising this spectral likelihood, which

we shall denote by θ̂W = argmaxθ∈Θ ℓW (θ | X∆,n). This estimator also does not ac-

count for aliasing. However, by replacing f (ω; θ) with f∆(ω; θ) in (2.3.3), we obtain

an estimator that does account for aliasing. We shall refer to this as the aliased Whit-

tle likelihood, though it should be noted that some authors refer to this as simply the

Whittle likelihood.

Though this aliased approach accounts for some of the bias in the Whittle likeli-

hood, other forms of bias introduced through phenomena such as blurring6 are still

present (Percival and Walden, 1993, chapter 6). Sykulski et al. (2019) introduced the

debiased Whittle likelihood to deal with both aliasing and blurring simultaneously.

5These likelihoods are usually referred to as quasi-likelihoods. However, we also use the term
spectral likelihood as it integrates nicely with current terminology used in the literature, as well as
giving an intuitive sense of what a spectral likelihood does.

6Blurring results from sampling for a finite duration in time, which corresponds to convolution
with the Fejér kernel in the frequency domain.
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The debiased Whittle likelihood is

ℓDW (θ | X∆,n) = − ∑
ω∈Ω

{
log
(

f̄n(ω; θ)
)
+

I(ω)

f̄n(ω; θ)

}
,

where f̄n(ω; θ) = E [I(ω); θ] is the expected periodogram. As noted by Sykulski et al.

(2019), the expected periodogram can be calculated in O(n log n) time by using the

relation:

E [I(ω); θ] =
∆

2π

n−1

∑
τ=−n+1

(
1 − |τ|

n

)
c(τ; θ)e−iτ∆ω. (2.3.4)

The resulting estimator can then be expressed as θ̂DW = argmaxθ∈Θ ℓDW (θ | X∆,n) .

Despite being constructed from the periodogram, an inconsistent estimator of the

spectral density function, the debiased Whittle likelihood is a consistent estimator of

the parameters for the parametric model. The debiased Whittle likelihood is able to

address the deficiencies in the periodogram without introducing bias, by accounting

for the finite sample properties of the periodogram. Sykulski et al. (2019) also show

that, under certain conditions, the debiased Whittle estimator converges optimally.

These condition are discussed further in Appendix A.3.

2.3.4 Comparison

In Section 2.5, we perform a simulation study to compare each of the estimators that

we have discussed. However, we can also try to build some intuition as to why

certain approaches are likely to be more effective than others. To achieve this we

shall consider the conditions under which each technique would be equivalent to

full maximum likelihood for a finite sample, then evaluate how likely it is that said

assumptions are satisfied. Note that this is not (and nor is it intended to be) a formal

proof; results related to the convergence of debiased Whittle estimators and their
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proofs can be found in Sykulski et al. (2019). Rather, this is a sketch of what is going

on under the hood that causes the debiased Whittle likelihood to outperform least

squares based techniques.

Maximum likelihood inference works by making probabilistic statements about the

distribution of data and then using this to work out the value of the parameters

for which the data are most likely. The part of this process of interest to us here is

making such distributional statements. For this comparison, we shall think of the

non-parametric spectral density estimates as “the data”, and shall consider what

their distribution would need to be for least squares or the Whittle likelihood to be

the optimum likelihood function for this data.7

Then, for the least squares approach to yield the same parameter estimates as the

optimum likelihood function, we would need the non-parametric spectral density

estimator used in the fitting routine, f̂ (ω), to satisfy the following four assumptions.

Firstly, at each frequency, the non-parametric estimator must be Gaussian. In gen-

eral, this is not true for non-parametric spectral density estimators, though it is true

asymptotically for some of them (e.g. Bartlett’s method). Secondly, the expecta-

tion of the non-parametric estimator must be equal to the spectral density function

at a given frequency. This is not actually true for non-parametric spectral density

estimators, as these are constructed to estimate the aliased spectral density func-

tion, not the spectral density function of the continuous time process. Though this

aliasing could be accounted for by modifying the spectral form used in the fitting

routine, such modification is not standard practice and many non-parametric spec-

tral density estimators are still biased. Thirdly, the variance of the non-parametric

spectral density estimator must be the same for each frequency. This is not the case

for non-parametric spectral density estimators in general, as the variance at a given

7This differs from full maximum likelihood on the time series as we have lost the phase informa-
tion in calculating a spectral density estimate.
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frequency depends on the spectral density function at that frequency (Brockwell and

Davis, 2006). Though weighted least squares approaches, such as the approach pro-

posed by Chiu (1988), do begin to address the problem of assumption three, they are

not widely used and still make the first and second assumptions. Fourthly, the non-

parametric estimators at any two different frequencies must be uncorrelated. This

assumption is discussed further in Section 2.3.5.

For the Whittle likelihood to yield the same parameter estimates as the optimum

likelihood function, we would need the following three assumptions on the peri-

odogram to hold. Firstly, we would require the periodogram to be exponentially dis-

tributed at each Fourier frequency.8 Secondly, we would require that the expectation

of the periodogram is equal to the spectral density function at a given frequency (and

consequently that the variance is the square of the spectral density function). Thirdly,

the periodogram at any two different frequencies must be uncorrelated. At fixed fre-

quencies, the first assumption is true asymptotically for linear processes (Brockwell

and Davis, 2006) and for some classes of non-linear processes (Shao and Wu, 2007).

At first glance, this may seem to be similar to the asymptotic normality of Bartlett

modified periodograms that are often used in least squares. However, it should be

noted that in the case of the periodogram, this asymptotic result is in terms of the

number of observations; whereas for Bartlett modified periodograms, this result is

in terms of the number of segments that are used, which is much smaller. When it

comes to the second assumption, the periodogram is an asymptotically unbiased es-

timator of the aliased spectral density function. For this reason, the aliased version

of the Whittle likelihood should be used over the standard version. Again it may

seem that this is also true for Bartlett modified periodograms, as Bartlett’s method

averages periodograms and each periodogram is an asymptotically unbiased esti-

8A slightly different assumption is made about the zero and Nyquist frequency, though in practice
they are often omitted.
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mator of the aliased spectral density function. Therefore if we were to adjust for this

aliasing, least squares would be justified. However, each of these component peri-

odograms are calculated from small segments of the full record, so it is difficult to

invoke asymptotic results. Indeed, this creates somewhat of a catch-22 for Bartlett

least squares: to get asymptotic normality we must average many periodograms; but

this results in using shorter segments for each periodogram, introducing bias (and

vice versa). The debiased Whittle likelihood (Sykulski et al., 2019) bypasses the sec-

ond assumption (made by the Whittle likelihood) altogether, as it uses the theoretical

expectation of the periodogram in place of the spectral density function. This means

that even for small sample sizes the debiased Whittle likelihood produces estimates

with very small to no bias. The final assumption, the assumption of independence

between frequencies, is required by both least squares and spectral likelihoods; how-

ever, the Whittle likelihood is also in a strong position when it comes to satisfying

this assumption. This is because asymptotically the periodogram is uncorrelated at

different frequencies, and we are using the longest periodogram possible, given the

length of the data. Of course, least squares techniques could be used on the raw

periodogram, meaning that the second and last assumptions are just as likely to be

satisfied as when using spectral likelihoods, but in this case, the asymptotic normal-

ity required for least squares will not be satisfied (nor in general will the constant

variance assumption).

When it comes to the final assumption for both least squares and spectral likelihood

techniques, there are some practical concerns that should be considered. In partic-

ular, when the aliased spectral density has high dynamic range, the frequencies are

often correlated. As we shall shortly show, in the case of wind-generated waves,

this issue does not present itself for 1Hz data. Although, for higher sampling fre-

quencies, such as 4Hz data, the periodogram is often highly correlated. To solve this

problem we can turn to differencing, a technique that is well established for reducing
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correlations in the periodogram (Velasco and Robinson, 2000).

2.3.5 Differencing

If the periodogram is highly correlated across frequencies, spectral likelihoods will

perform poorly when compared to full maximum likelihood (Velasco and Robinson,

2000). Differencing can sometimes provide a convenient mechanism for removing

such correlations. Define the differenced process as W(t) = X(t + ∆) − X(t). We

briefly switch notation and let cX(τ) and fX(ω) denote the autocovariance and spec-

tral density function of X at τ and ω respectively, and likewise cW(τ) and fW(ω) for

the differenced process W. First notice that

cW(τ) = E [W(τ)W(0)]

= E [X(τ + ∆)X(∆)− X(τ + ∆)X(0)− X(τ)X(∆) + X(τ)X(0)]

= 2cX(τ)− cX(τ + ∆)− cX(τ − ∆),

by stationarity. Then from (2.2.1) we can see that

fW(ω) =
∫ ∞

−∞
(2cX(τ)− cX(τ + ∆)− cX(τ − ∆)) e−iτωdτ

= 2 fX(ω)− eiω∆ fX(ω)− e−iω∆ fX(ω)

= 2(1 − cos(ω∆)) fX(ω)

= 4 sin2
(

ω∆
2

)
fX(ω). (2.3.5)

Therefore, differencing can be easily incorporated into the fitting techniques that

have been discussed in this chapter, by simply replacing X with the differenced pro-

cess W and fX with fW using the relation given by (2.3.5). Consider the correlation

matrix of the periodogram: the matrix with i, jth element defined to be the corre-

lation between the periodogram at the ith and jth Fourier frequencies. Figure 2.3.1
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shows a plot of the correlation matrix for the periodogram of a wind-generated wave

process, estimated from 1000 realisations of the process in question. We can see that

for data recorded at a 1Hz sampling rate there is little correlation in the periodogram;

however, this is not the case for 4Hz data. We can also see that the periodogram of the

differenced process is almost completely uncorrelated, even for the 4Hz data.9 From

the signal processing perspective, this has reduced the dynamic range of the spec-

trum as we are multiplying the spectral density function by something that is close

to zero for angular frequencies that are small, but is close to one near the Nyquist,

down-weighting the peak far more than the tail.

2.4 Practical concerns for implementation with the gen-

eralised JONSWAP

In Section 2.3, we described some techniques that can be used to estimate model

parameters. When implementing these techniques for ocean wave models, there

are some practical concerns that must be addressed. Firstly, we need not use all

of the Fourier frequencies when fitting the model. Indeed, it may be preferable to

remove some frequencies that are contaminated by some other process or by obser-

vational noise. Secondly, there is no known analytical form for the autocovariance

corresponding to many of the spectral density functions used when modelling ocean

waves. Therefore, numerical techniques for estimating the autocovariance play an

important role in many of the fitting procedures discussed in Section 2.3. In partic-

ular, it is necessary for both the debiased Whittle likelihood and for full maximum

likelihood.
9It should be noted that the region of high correlation in the bottom left corner of each of the

correlation matrices is part of the reason for removing such frequencies from the objective function
when performing fits, as discussed further in Section 2.4.1.
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(a) No differencing and ∆ = 1. (b) Differencing and ∆ = 1.

(c) No differencing and ∆ = 1/4. (d) Differencing and ∆ = 1/4.

Figure 2.3.1: Image plots of the correlation matrix of the periodogram of a wind-
generated wave process for different values of ∆ and the corresponding images for
the differenced process, for a generalised JONSWAP with parameters α = 0.7, ωp =
0.7, γ = 3.3 and r = 5.
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2.4.1 Frequency selection

Many of the estimators defined in Section 2.3 involve minimising or maximising

objective functions, which are expressed as the sum over some set of frequencies

Ω ⊆ Ωn,∆. The most simple choice for this set Ω is just the set of Fourier frequencies

Ωn,∆. At first glance, this would seem like the most sensible choice (as omitting

frequencies is essentially the same as throwing away data-points). However, there

are many different circumstances in which it is preferable to remove some of the

frequencies from the fit.

One practical reason for removing certain frequencies is that for very low frequen-

cies, the generalised JONSWAP spectra is zero to machine precision. This often intro-

duces numerical instabilities, especially for objective functions that involve dividing

by the spectral density function (such as the Whittle likelihood). As can be seen in

Figure 2.3.1, there is also a region of high correlation in the low frequencies, which

provides an additional motivation for removing such frequencies. An alternative

method to reducing correlations in the periodogram is to use tapered versions of

the spectral density estimate in the Whittle likelihood (Dahlhaus, 1988), but in sim-

ulations (available on GitHub) we found omitting frequencies from the fit to be a

better solution than tapering in terms of the resulting bias and variance of parame-

ter estimates. Another reason for removing certain frequencies from the fit is that it

can help to remove noise processes that are present in a record. For example, wave

records often contain a low-frequency swell component, but we are interested in the

parameters of the wind-sea component. By removing frequencies in which the swell

is dominant, we are better able to model the wind-sea component of a sea state. On

top of this, there is an added technical concern when using the Whittle and debi-

ased Whittle likelihoods. The zero and Nyquist frequencies must be omitted (or a

modified version of the summand must used for those frequencies). This is because
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these methods are based on the asymptotic distribution of the periodogram, which

is different at the Nyquist and zero frequency than it is at other frequencies.

Fitting the model in this way can be thought of as fitting a semi-parametric model

(as some of the frequencies are being modelled using a parametric model, and the

remaining frequencies by some non-parametric model such as the periodogram). It

is worth noting that this approach can actually be applied to full maximum like-

lihood as well. This can be achieved by transforming both the observations and

autocovariance of the model into the frequency domain, applying a band pass filter,

and then transforming back. While this is possible in theory, it is fiddly in prac-

tice and is no longer exact. This demonstrates another major advantage of spectral

likelihoods: it is far easier to filter out undesired frequencies from the model fit.

However, the choice of frequencies to be used in the fit should be made prior to the

objective function being optimised. Otherwise the number of degrees of freedom

could be changing throughout the optimisation routine, which would likely result

in additional bias.

2.4.2 Numerical estimation of the autocovariance

To calculate both the multivariate Gaussian likelihood and debiased Whittle likeli-

hood we require the autocovariance of the process given a certain parameter choice

(in (2.3.2) for the multivariate Gaussian likelihood and (2.3.4) for the debiased Whit-

tle likelihood). For the generalised JONSWAP spectra, there is no analytical form

for this autocovariance. As such, the autocovariance must be approximated numer-

ically. Firstly, recall that the autocovariance is the Fourier transform of the spectral

density function, as defined in (2.2.3), and we wish to obtain the autocovariance at

lags 0, ∆, . . . , (n − 1)∆. The first problem we encounter is that this integral is over

the entire real line. Clearly, we cannot approximate such an integral numerically
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and must instead settle for integrating up to some finite frequency, such that the

spectral density function beyond that frequency is sufficiently small. In particular, it

is convenient to choose a multiple of the Nyquist frequency, as the integral will be

approximated using a Fast Fourier Transform, so the desired lags can be extracted

by sub-sampling if a multiple of the Nyquist is used in the integration. Therefore,

based on equation (2.2.3), we can construct the approximate autocovariance

ĉ(τ) =
∫ Lπ/∆

−Lπ/∆
f (ω)eiτωdω, (2.4.1)

for L ∈ N = {1, 2, 3, . . .}.

Alternatively, we could consider the relation given in equation (2.2.2), between the

autocovariance and the discrete time spectral density function. In this case, we

would first need to approximate the spectral density function for the discrete time

process. To do this, we use a truncated version of the relation given by equation

(2.2.4), between the spectral density of the continuous and discrete time processes.

Consider the approximation of the aliased spectral density function given by

f̃∆(ω) =
K

∑
k=−K

f
(

ω +
2πk

∆

)
,

for K ∈ N0 = {0, 1, 2, . . .}. Then we can construct the alternative approximation to

the autocovariance given by

c̃(τ) =
∫ π/∆

−π/∆
f̃∆(ω)eiτωdω. (2.4.2)
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Notice that we may write

c̃(τ) =
∫ π/∆

−π/∆

K

∑
k=−K

f
(

ω +
2πk

∆

)
eiτωdω

=
K

∑
k=−K

∫ π/∆

−π/∆
f
(

ω +
2πk

∆

)
eiτωdω

=
K

∑
k=−K

∫ (2k+1)π/∆

(2k−1)π/∆
f (ω) eiτωdω

=
∫ (2K+1)π/∆

(−2K−1)π/∆
f (ω) eiτωdω. (2.4.3)

From (2.4.3) we can see that, if L = 2K + 1, then ĉ(τ) and c̃(τ) are equivalent. In

practice, these integrals must be approximated numerically. To do this, we consider

a Riemann approximation with bins of width 2π/m∆. By choosing m to be some

integer bigger than 2n, we can obtain the desired lags by performing a Fast Fourier

Transform and then sub-sampling appropriately.

We can now see that the approximation based on ĉ(τ) (in (2.4.1)) can be computed in

O(Lm log Lm) time. However, computing the second approximation, based on c̃(τ)

(in (2.4.2)), requires first computing f̃ (ω) at m frequencies (taking O(Lm) operations)

and then performing a Fourier transform on m frequencies, requiring O(m log m) op-

erations. In other words, the first approach requires O(m(L log L + L log m)) opera-

tions, whereas the second only requires O(m(L+ log m)) operations. For this reason,

we use the latter approach when approximating the autocovariance: first approxi-

mating the aliased spectral density, then approximating the autocovariance.

The choice of K (or equivalently L) depends on the tail behaviour of the spectral

density function in question. In practice, we choose K so that for frequencies beyond

(2K + 1)π/∆, the spectral density is below some threshold (e.g. 10−6 m2 s rad−1),

though K should really be chosen so that it scales with n, for convergence results to

still apply. The choice of m is based on the required accuracy of the integral approx-
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imation and should be tuned accordingly. For the generalised JONSWAP, we have

found that m = max{8192, 2n} is a good choice.

2.5 Simulation study

Though it is possible to make theoretical statements about the asymptotic behaviour

of different estimators, from a practical perspective, their finite sample behaviour is

of primary interest. To investigate this, we perform a simulation study to assess the

performance of the estimators described in Section 2.3. In this simulation study, we

compare six different fitting techniques based on these estimators. The first, which

we call least squares, uses the curve fitting approach with the periodogram. The

second approach is similar, but uses Bartlett’s method to estimate the spectral den-

sity function, which we refer to as Bartlett least squares. The window size is chosen

so that we have a spectral resolution of 0.2π, i.e. the window size is 100/∆.10 For

1.28Hz data, this corresponds to a window size of 128. The third and fourth ap-

proaches are the Whittle and aliased Whittle likelihoods respectively. The final two

approaches are the debiased Whittle likelihood and full time domain maximum like-

lihood.

2.5.1 Method

To investigate the effectiveness of different fitting approaches we simulate a linear

wave record with a known parametric spectral density function and then re-estimate

the parameters from the simulated record. By repeatedly performing this process,

we can assess the bias and variance of each of the estimators discussed in Section

2.3. For the purposes of the simulation study we let X∆,n be a random variable with

a multivariate normal distribution resulting from sub-sampling the continuous-time

10Clearly for some values of ∆ this would not be an integer; however, for the values of ∆ that we
choose it is.
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mean-zero stationary Gaussian process X, where X has spectral density function

fG(ω; θ), defined by (2.2.6). We then simulate a realisation of X∆,n using the cir-

culant embedding method described by Davies and Harte (1987) (and for complex

valued processes by Percival (2006)). We choose to use circulant embedding over the

typical approaches for simulating Gaussian processes often used in the ocean waves

literature, such as the method due to Tucker et al. (1984), as these methods only ap-

proximately simulate a Gaussian process with the given spectral density function,

whereas circulant embedding is exact (up to the quality of the approximation of the

autocovariance that is used). Furthermore, many techniques, such as the method

proposed by Tucker et al. (1984), or the more recent modification due to Mérigaud

and Ringwood (2018) do not account for aliasing when simulating the process. Since

we are explicitly interested in the effect that aliasing has on recovered parameters, it

is important that we simulate something that is as close as we can get to a Gaussian

process with the desired aliased spectral density function. Circulant embedding gen-

erates time series with all of the sampling effects discussed by Tucker et al. (1984),

but also includes additional finite sampling effects such as aliasing and correlations

between spectral estimates at different frequencies. Such effects should be present

in generated time series, but are not in time series generated using the method sug-

gested by Tucker et al. (1984). More details can be found in Davies and Harte (1987);

Dietrich and Newsam (1997); Wood and Chan (1994).

To perform the fitting we first choose one of the objective functions described in

Section 2.3 and optimise this using the fmincon function in MATLAB (with maximi-

sation done by minimising the negative of the objective function). An initial guess

for the fitting procedure needs to be provided for each of the parameters. For ωp, we

use the frequency corresponding to the largest value of the periodogram. For r, we

use a basic linear regression coefficient between the log spectral density and log pe-

riodogram over the tail frequencies (where the tail is chosen to be all frequencies that
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are closer to the Nyquist than the peak). We choose to initialise γ by setting it equal

to 3. This is because choosing γ heuristically is not easy, and γ = 3 is close to the

value commonly assumed by many oceanographers. In practice, the initial choice of

γ does not seem to have a huge impact on the final fitted values; however, the opti-

misation could also be run with multiple starting values of γ and the best estimate

could then be selected. Once these parameters are initialised, α is initialised so that

the area under the initial parametric spectral density function matches the area un-

der the periodogram. In simulations, we find that the inference is not sensitive to the

initial guess (provided it is sensible). In practice we are often fitting models to mul-

tiple consecutive sea states. In this case, it can be more efficient to use the parameter

estimates for the previous sea state as initial values when optimising.

2.5.2 A canonical sea state

We shall begin by considering how each of the estimators perform for one choice of

true parameters, before showing that the results are robust to the true parameters.

In particular, we begin by considering a spectral density function of the form de-

scribed in Section 2.2.2, with σ1 = 0.07, σ2 = 0.09 and s = 4 treated as known, and

with α = 0.7, ωp = 0.7, γ = 3.3 and r = 4 treated as unknown parameters to be

estimated. The reason for choosing these parameters is that α = 0.7 roughly corre-

sponds to the scaling present when using Phillip’s constant in a JONSWAP spectra,

ωp = 0.7 is a reasonable choice for peak frequency, γ = 3.3 is commonly assumed

to be the peak enhancement factor, and r = 4 is one of the suggested values for

the tail decay index. Half hour records sampled at 1.28Hz (a standard time interval

and sampling frequency for wave records) were simulated and the parameters were

estimated using each of the six estimation methods described above. The resulting

estimates across 1000 repeated simulations are summarised in Figure 2.5.1, along-

side the time taken to perform the optimisation. For comparison, the true value of
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each parameter is given by a horizontal red dashed line.

Perhaps the most striking feature of Figure 2.5.1 is the difference in the variability in

estimates of the tail parameter, r, when comparing least squares type techniques to

likelihood based techniques. Least squares techniques recover parameter estimates

ranging from well beyond three to five, making it very difficult to make any state-

ments about the true value of the tail decay. However, we can see that statistical

techniques such as the debiased Whittle likelihood are able to recover the original

tail parameter to within a few decimal places. Therefore, by using the debiased

Whittle likelihood, practitioners would be able to distinguish between ω−4 and ω−5

spectral tails in observed records. Though it should be noted that this assumes the

wind-sea had a spectral density that is well described by a generalised JONSWAP

and so we cannot provide model free estimates of the tail decay. In particular, a dif-

ferent model would be required for a transition in tail decays over frequency, such as

the effect discussed by Babanin (2010); however, the debiased Whittle likelihood is

generic and could be applied to other models provided they satisfied certain condi-

tions (see Appendix A.3). We can also see that the debiased Whittle likelihood offers

an improvement in estimates of γ, performing almost as well as full maximum like-

lihood.

It is also interesting that bias can be seen in both the Whittle and aliased Whittle like-

lihood estimates, but that this bias is not present in the debiased Whittle likelihood

estimates. This verifies that the debiased Whittle likelihood is indeed accounting

for some of the bias present in standard Whittle likelihood, and demonstrates why

debiased Whittle likelihood is necessary over the aliased Whittle likelihood, which

can still be seen to be biased for some parameters. In the analysis of Figure 2.5.1

full maximum likelihood provides the best estimates, in terms of root mean square

error. However, this comes at significant computational cost, whilst giving limited
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improvement in bias and variance when compared to the debiased Whittle likeli-

hood.

Often, during optimisation, parameters may trade off against one-another. Therefore

it is also important to look at the joint behaviour of parameter estimates. Figure 2.5.2

shows a scatter plot of the debiased Whittle likelihood estimates from Figure 2.5.1.

We can see that there is very strong correlation between the estimates of α and r,

and some negative correlation between α and γ. This likely occurs because γ and r

change the area under the spectral density function, so α is likely to be adjusted to

compensate. Though it would be possible to reparameterise to try and avoid this, it

does not seem to have a significant impact on the resulting estimates and is therefore

not necessary.

In practice, longer sea states are often used to estimate model parameters. There-

fore, we also compare some of the methods for 3 hour records. Figure 2.5.3 shows

the comparison of least squares, Bartlett least squares and debiased Whittle likeli-

hood estimates for these 3 hour records. The variance in the first two estimators has

indeed decreased when compared to the estimates from half hour records shown

in Figure 2.5.1. However, by comparing the debiased Whittle likelihood estimates in

Figure 2.5.1 to the least squares estimates in Figure 2.5.3, we can see that the debiased

Whittle likelihood used on a half hour record yields better estimates than the least

squares based estimates performed on 3 hour records. The longer record reduces the

variance of the least squares and Bartlett least squares techniques enough to allow

us to see another interesting feature, namely that there is significant bias present in

the Bartlett least squares estimates that is not present in the standard least squares

estimates. This demonstrates that non-parametric smoothing can have unexpected

consequences when used to fit a parametric spectral density function.

In essence, by using the debiased Whittle likelihood, we can obtain more accurate
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Figure 2.5.1: Boxplots of parameter estimates and time taken for six different fitting
routines with true parameters denoted by the dashed red lines. Each row displays
the results for a given fitting technique, as well as the log of the time taken to perform
the optimisation, recorded in seconds. The fitting was performed on simulations of
1.28Hz observations recorded for half an hour (2304 observations). The process was
repeated 1000 times.
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and precise parameter estimates, whilst simultaneously reducing the length of the

record required to obtain the estimates. This improvement is especially noticeable

(and important) for the peak enhancement factor, γ, and tail decay index, r. In prac-

tice, this has two important consequences. Firstly, we can reduce the amount of time

for which the surface is assumed to be stationary. This means that we can fit station-

ary models to weather systems that evolve very quickly, such as tropical cyclones.

Secondly, we can obtain parameter estimates at more frequent time intervals. This

higher parameter resolution means that we gain a more detailed insight into how

certain parameters evolve throughout the course of a meteorological event.

Figure 2.5.2: Scatter plot of the debiased Whittle estimates obtained from half hour
records shown in Figure 2.5.1.
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Figure 2.5.3: Boxplots of 1000 parameter estimates using three different fitting rou-
tines on the same simulations using the same true parameters as Figure 2.5.1 and
same sampling interval but simulating 3 hour records.

2.5.3 Robustness of results

In Section 2.5.2 we have demonstrated that the debiased Whittle likelihood can pro-

duce parameter estimates that are both more accurate and more precise than those

produced by least squares techniques, without making huge sacrifices in terms of

computational time. However, it is also important to check that these results extend

to different choices of the true parameter.

In Table 2.5.1, we present the results of a simulation study comparing least squares,

Bartlett least squares and the debiased Whittle likelihood over 24 different choices of
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true parameter. For each choice of true parameter, we calculated the percentage bias,

standard deviation (SD) and root mean square error (RMSE) of the estimates (relative

to the true parameter). We then averaged over all the choices of true parameter,

yielding an average percent bias, SD and RMSE for each parameter. The parameter

choices used to perform these simulations were all the combinations of α = 0.7;

ωp = 0.7, 0.9, 1.2; γ = 1, 2, 3.3, 5; and r = 4, 5. Boxplots for each set of parameter

choices are available on GitHub (Grainger, 2021). We can see from Table 2.5.1 that

there are substantial reductions in both the bias and standard deviation of all the

estimated parameters.

Bias (%) SD (%) RMSE (%)
LS BLS DW LS BLS DW LS BLS DW

α 4.70 10.88 0.80 34.64 30.69 9.13 35.46 33.49 9.19
ωp 0.08 0.11 0.06 1.73 1.85 0.77 1.74 1.86 0.77
γ 15.88 10.20 2.98 43.29 29.27 18.00 46.39 31.75 18.71
r 3.89 5.60 0.18 17.57 15.76 2.09 18.35 17.44 2.11

average 6.14 6.70 1.01 24.31 19.39 7.50 25.49 21.13 7.69

Table 2.5.1: Average percentage bias, standard deviation and root mean squared
error across 24 different parameter choices calculated from 1000 repetitions per
parameter choice for least squares (LS), Bartlett least squares (BLS) and debiased
Whittle likelihood (DW). Parameter choices were all the combinations of α = 0.7;
ωp = 0.7, 0.9, 1.2; γ = 1, 2, 3.3, 5 and r = 4, 5. Simulated records were half an hour
long and sampled at 1.28Hz. The bottom row shows the average of these quantities
over all the parameters in the model.

True parameters on the boundary of the parameter space can cause problems when

performing parametric estimation. As such, we shall further discuss the results for

the special case when γ = 1. The fitted parameters for half hour simulated records

with true parameter values α = 0.7, ωp = 0.7, γ = 1 and r = 5, using the least

squares, Bartlett least squares and debiased Whittle likelihood techniques can be

seen in Figure 2.5.4. This is an interesting case because not only does the true pa-

rameter lie on the boundary of the parameter space, but this value of γ corresponds

to a Pierson-Moskowitz spectrum, for a fully developed sea. This means that such
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a value of γ could occur in nature, and as such it is important that we can model

this case. The problem is that the theoretical guarantees for an approach such as the

debiased Whittle likelihood rely on the assumption that the true parameter does not

lie on the boundary of the parameter space. Since this is not the case for γ = 1, there-

fore we must take care when dealing with records for which the true value of γ may

indeed be 1. In particular, we can see from Figure 2.5.4 that the debiased Whittle

likelihood estimates for γ is not normally distributed, a result that is assumed when

constructing the confidence intervals that are described later in Section 2.6. One way

to deal with this problem is to fit both a model with γ = 1 fixed and one with γ as

a free parameter, and then test to see if there is evidence for γ > 1. Such a proce-

dure allows us to circumvent potential issues caused by γ lying on the boundary of

the parameter space. This could be performed by using the procedure developed by

Sykulski et al. (2017), adapted to the 1D case.

2.5.4 Differencing for high sampling frequencies

As we discussed in Section 2.3.5, for wind generated waves observed at a 4Hz sam-

pling rate, the periodogram is highly correlated. As noted in Section 2.3.4, in this

case, we would expect spectral techniques to perform poorly compared to full max-

imum likelihood. Differencing can reduce the correlation in the periodogram, and

therefore can be a powerful tool to remove bias from spectral methods. Figure 2.5.5

shows box plots of estimated parameters for least squares, Bartlett least squares and

debiased Whittle likelihood techniques, both with and without differencing, for both

1Hz and 4Hz data (in this case, 2048 seconds worth of data was simulated per record,

i.e. 2048 observations for the 1Hz simulation and 8192 for the 4Hz simulation). We

can see little benefit from differencing in the 1Hz estimates (Figure 2.5.5a). However,

when it comes to 4Hz data, there is a major benefit to differencing, especially for the

debiased Whittle likelihood. Because there is little difference between the debiased



CHAPTER 2. ESTIMATING THE PARAMETERS OF OCEAN WAVE SPECTRA 66
a

Figure 2.5.4: Boxplots of 1000 parameter estimates using three different fitting rou-
tines with true parameters α = 0.7, ωp = 0.7, γ = 1 and r = 5, estimated from
simulated half hour records sampled at 1.28Hz.

Whittle fits on the original and differenced 1Hz data, we would recommend that dif-

ferencing is used as standard, to protect against the issues seen in Figure 2.5.5b. At

the very least, investigating the correlation matrix of the periodogram should be an

important diagnostic when fitting spectral models.

2.6 Quantifying estimation uncertainty

As with any statistical analysis, it is important to quantify the uncertainty in the pa-

rameter estimates that are obtained using the debiased Whittle likelihood. Sykulski

et al. (2019) developed an approach for quantifying the asymptotic variance of the
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(a) Parameter estimates for 1Hz data. (b) Parameter estimates for 4Hz data.

Figure 2.5.5: Boxplots of 1000 parameter estimates for 1Hz and 4Hz data. LS, BLS,
DW denote least squares, Bartlett least squares and debiased Whittle respectively,
and LSd, BLSd and DWd denote the differenced versions.
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estimator for a single time series. Say that we have p parameters that are written in

a vector θ and are interested in the debiased Whittle likelihood estimator θ̂DW of the

true parameter vector θ. Sykulski et al. (2019) decompose the variance as

var
(
θ̂DW

)
≈ E [H(θ)]−1 var (∇ℓDW(θ))E [H(θ)]−1 , (2.6.1)

where H(θ) denotes the matrix of second derivatives of the log-likelihood function

ℓDW(θ), and ∇ denotes the vector of first derivatives of ℓDW(θ).

Now for the debiased Whittle likelihood, we may write

∂

∂θj
ℓD(θ) = − ∑

ω∈Ω

{(
1

f̄n(ω; θ)
− I(ω)

f̄ 2
n(ω; θ)

)
∂

∂θj
f̄n(ω; θ)

}
,

for j = 1, . . . , p. As will be seen in Appendix A.2, this is required to calculate

var (∇ℓDW(θ)). Furthermore, we may write

E

[
∂2

∂θj∂θk
ℓD(θ)

]
= − ∑

ω∈Ω

{
1

f̄ 2
n(ω; θ)

∂

∂θj
f̄n(ω; θ)

∂

∂θk
f̄n(ω; θ)

}
,

for j, k = 1, . . . , p. Therefore, we require only the first derivative of the expected

periodogram in order to compute both parts of the variance decomposition given by

(2.6.1).

Furthermore, the triangle function (1 − τ/n) and Fourier basis are constant with

respect to θ, so from (2.3.4) we have that

∂

∂θj
f̄n(ω; θ) =

∆
2π

n−1

∑
τ=−n+1

(
1 − |τ|

n

)
∂c(τ; θ)

∂θj
e−iτ∆ω,

for j = 1, . . . , p. In other words, to calculate the derivative of the expected peri-

odogram, we may first calculate the derivative of the autocovariance, then calculate
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the expected periodogram of the process with that derivative as its autocovariance.

In the case of the generalised JONSWAP spectral density function, when an ana-

lytical form for such autocovariance is unavailable, we may instead approximate the

derivative of the autocovariance by first approximating the derivatives of the aliased

spectral density function, and then of the autocovariance.

In Appendix A.1 we show that, for the generalised JONSWAP form, partial deriva-

tives of f∆(ω; θ) can be calculated from the derivatives of the spectral density func-

tion, and that the resulting derivatives are continuous. Therefore, by Leibniz’s rule

∂

∂θj
c(τ; θ) =

π/∆∫
−π/∆

∂

∂θj
f∆(ω; θ)e−iτωdω.

As a result, we may approximate the derivative of the autocovariance from the

derivative of the aliased spectral density function in the same way that we approx-

imated the autocovariance from the aliased spectral density function in Section 2.4.

Therefore, each partial derivative can be computed in the same time it would take

to do one function evaluation, which is faster than using numerical approximations

for the derivative (e.g. finite differencing methods).

In Appendix A.2, we discuss a novel procedure for estimating var (∇ℓDW(θ)) in a

computationally efficient manner. Combining this with the approach for obtaining

derivatives, we can estimate the variance of the debiased Whittle likelihood estima-

tor using (2.6.1). This enables the computation of approximate confidence intervals

for our estimates, by using the asymptotic normality of the estimator and standard

theory for confidence intervals.
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2.7 Humboldt Bay data

In this section, we analyse data recorded as part of the Coastal Data Information

Program (CDIP), to address some of the practical concerns when applying the tech-

niques discussed in this chapter to observed wave records. Data were furnished

by the Coastal Data Information Program, Integrative Oceanography Division, op-

erated by the Scripps Institution of Oceanography, and is freely available on their

website. The data we use were recorded at CDIP station 168, Humboldt Bay North

Spit offshore California (40.8883, -124.3567), with a water depth of 113m. Data were

recorded using a Datawell Waverider MkIII buoy (Datawell, 2006) with a sampling

rate of 1.28Hz. Significant wave height and a spectrogram11 on a decibel scale are

shown in Figure 2.7.1. The vertical dashed lines on the spectrogram delimit the start

and end of the period we analyse, and the dotted lines show the frequency region

we used to fit the wind-sea model.

For the sake of illustration, we shall analyse the behaviour of spectral parameters

throughout a single storm event, from the 24th to the 29th of October, 2014.12 As

can be seen from Figure 2.7.1, from the start of the analysis period a high frequency

component begins to develop and then transitions to lower frequencies, increasing

in magnitude. This is a classic example of a developing wind-sea. We also see the

presence of persistent swell, which dies down as time goes on. Parameters of the

wind-sea component of these bi-modal seas are estimated by first removing con-

taminated frequencies from the objective function, with optimisation proceeding as

previously described, as seen in the top panel of Figure 2.7.1b. Ideally we would

aim to fit a bi-modal model that was designed to also describe the swell component.

11Computed using multitapering half-overlapped 30 minute records, we used nW = 4/∆ and
K = 7 to compute the multitaper estimates.

12Note that this is not intended to make general statements about the behaviour of these param-
eters. Rather, we are illustrating some of the additional practical concerns faced when analysing
recorded wave time series.
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However, such an approach is beyond the scope of this chapter, though we note that

preliminary results for such a procedure are encouraging and are discussed further

in Section 2.8. It was also observed that frequencies beyond 3.8 rad s−1 exhibited a

different behaviour from the rest of the spectral tail. We suspect this may be related

to the physical response of the buoy to the waves, though we do not know exactly

how such behaviour should be modelled. We have seen similar effects in buoy data

from a variety of sources, including in the Maui data analysed by Grainger et al.

(2021), and the North Sea data analysed in Chapter 3. Therefore, we also chose to

omit those frequencies in the spectral fitting procedure when using each of the fit-

ting procedures (see Chapter 3 for more details on this problem). After filtering out

the aforementioned frequencies, a generalised JONSWAP spectral form was fitted

to each of the sea states in turn, using least squares, Bartlett least squares, and the

debiased Whittle likelihood. These estimates are shown in Figure 2.7.1a.

From Figure 2.7.1a, we can see that, especially for the tail decay index, the debi-

ased Whittle estimates seem more stable than both the least squares and Bartlett

least squares estimates. Figure 2.7.1b shows the debiased Whittle likelihood esti-

mates and approximate 95% point-wise confidence intervals, calculated using the

technique described in Section 2.6. It is worth noting that these confidence intervals

are based on the asymptotic distribution of the estimator, in particular, we assume

asymptotic normality of the estimator. This is especially problematic for values near

to or on the boundary of the parameter space, as the confidence interval may include

values outside the boundary, so care should be taken in interpreting the confidence

intervals when γ is close to 1. Such confidence intervals enable us to better un-

derstand and communicate the uncertainty surrounding parameter estimates. This

uncertainty, we argue, should be considered when using these parameters as inputs

for other related models.
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(a) Parameter estimates using least squares,
Bartlett least squares and debiased Whittle
likelihood.

(b) Parameter estimates using debiased
Whittle likelihood with approximate 95%
confidence intervals.

Figure 2.7.1: Plots of Hs, the spectrogram on a decibel scale and the estimated pa-
rameters over time. Note that some of the plots in (a) have not been truncated, but
that upper bounds where set on the optimisation at 10 for γ and 8 for r.

From Figure 2.7.1b we can see the parameters behave broadly as expected through

the storm. We see a steady evolution in peak frequency throughout the growth of

the wind-sea component, alongside increasing values of γ as the storm develops. We

the see that γ falls off slightly before increasing again later in the record. Despite a

few anomalous points, the estimated parameters seem physically reasonable.
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(a) Periodogram and the expected periodogram of the fitted models.

(b) Periodogram and the expected periodogram of the fitted models on a decibel scale.

(c) Q-Q plots of I(ω)/E [I(ω); θ] for parameter vectors θ obtained from each fitting proce-
dure.

Figure 2.7.2: Plot of periodograms and fitted models on normal and decibel scale,
alongside diagnostic Q-Q plots. The times of each record are given at the top of
(a). Colours and line styles are used to denote different fitting techniques in the
same manor as Figure 2.7.1a. The symbols “◦”, “△” and “▽” denote quantiles from
the debiased Whittle likelihood, least squares estimates, and Bartlett least squares
estimates, respectively. Note that the plots in (c) have been truncated in the y axis so
that they have a 1:1 aspect ratio, so some quantiles are not shown.

A useful diagnostic tool for spectral models can be constructed by noticing that (un-

der certain technical conditions) I(ω)/E [I(ω); θ] should be approximately exponen-

tially distributed with mean 1 (Brockwell and Davis, 2006), where I(ω) denotes the

periodogram (this result is specific to the periodogram and is not true in general for

non-parametric spectral density estimators). Therefore, if we calculate this ratio for

a given model at each Fourier frequency, we can then compare the quantiles of these

fractions to the quantiles of an exponential distribution with mean 1 using a Q-Q

plot. Figure 2.7.2a and 2.7.2b show the periodograms and fitted models on both the
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standard scale and the decibel scale respectively, for 4 time periods during the early

development of the storm. Figure 2.7.2c shows the corresponding Q-Q plots, which

demonstrate how well each of the models fits the data. The closer the points on the

Q-Q plot are to the reference line y = x, the better. We can see from Figure 2.7.2c that

the debiased Whittle likelihood consistently outperforms the other techniques.

2.8 Discussion and conclusion

The debiased Whittle likelihood has been shown to yield major improvements in

both the bias and variance of estimated parameters for wind-generated waves. In

particular, the tail decay index can be estimated to much greater levels of accuracy

and precision than when using least squares techniques. Such an improvement will

enable reliable tracking of the tail decay index’s behaviour throughout the course of

meteorological events, allowing oceanographers to gain fresh insights into the be-

haviour of wind-generated waves. We have also demonstrated some improvement

in the estimation of the peak enhancement factor. The debiased Whittle estimator

recovers estimates that are of similar quality to full maximum likelihood, which can

be thought of as optimal. Since information about the peak enhancement factor is

contained in a small region around the peak frequency, it is not surprising that it is

so hard to estimate. Because there is significant variability in estimates of the peak

enhancement factor, it is essential that we can describe uncertainty surrounding pa-

rameter estimates when performing an analysis. For this reason, the development

of computationally efficient techniques for quantifying uncertainty surrounding the

estimated parameters is important. We have shown that the method presented by

Sykulski et al. (2019) for estimating the variance of the debiased Whittle estimator

can be modified so that it can be computed using 2D Fast Fourier Transforms. Com-

bining this with an analytical approach for calculating derivatives, we are able to
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calculate the uncertainty in parameter estimates accurately and quickly. In addition,

differencing can be used so that we can cope with high sampling frequency data,

which tend to be correlated in the frequency domain.

As we discussed previously, when performing simulations we chose to use circulant

embedding (Davies and Harte, 1987) to obtain realisations of Gaussian processes

with the desired covariance matrix. This is different to the standard method used for

simulating linear ocean waves, presented by Tucker et al. (1984) (or to the adapted

version due to Mérigaud and Ringwood (2018), which is preferable). The first differ-

ence is that the standard waves method is only approximate, and does not exactly

simulate a Gaussian process with the desired covariance (equivalently spectral den-

sity). The second is that these methods do not account for the aliasing that we would

expect to be present in a record, essentially treating the spectral density as if it is zero

beyond the Nyquist frequency. Though for many applications this will not matter,

the methods discussed in this chapter will be sensitive to this difference. If the sim-

ulated record does not have the aliasing that should be present, then the parame-

ters estimated using the debiased Whittle likelihood will seem biased (and standard

Whittle will often seem better). This is important because if a method such as Tucker

et al. (1984) was used to perform the simulation study described in this chapter, the

results would be different, as likelihood based estimation will be sensitive to this

problem (which could be thought of as model miss-specification, as we are trying to

fit a model with a non-zero density beyond the Nyquist to a process that has been

simulated with no density above the Nyquist). Least squares is somewhat invariant

to this problem, as it mainly effects frequencies where the spectral density function

is small, and least squares is not heavily influenced by such frequencies.

We have also developed a MATLAB toolbox, implementing the methods discussed

in this chapter. This is available, alongside code to generate the figures in this chap-
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ter and additional supplementary figures, on GitHub (Grainger, 2021). The toolbox

contains code to perform each of the fitting techniques discussed in this chapter on

arbitrary processes, as well as a function implementing the generalised JONSWAP

(including first and second derivatives), which can then be used straight out the

box. On top of this, the user may provide any spectral density function they wish,

provided it satisfies the assumptions in Appendix A.3, and then use the toolbox to

obtain parameter estimates from observations. Alongside this, an implementation

of circulant embedding is provided, enabling exact simulation of a desired Gaus-

sian process. Note that this has now be superseded by the Julia package Whittle-

LikelihoodInference.jl (Grainger, 2022c), which provides not only univariate Whittle

methods, but also multivariate (which we will make use of in Chapter 3). The mod-

els for this paper and more are implemented OceanWaveSpectralFitting.jl (Grainger,

2022b).

Though the debiased Whittle likelihood has been seen to perform well in the es-

timation of wind-seas, we have yet to fully explore its potential when we wish to

describe multi-modal seas (e.g. including one or more swell components). In this

chapter, we were able to describe the wind-sea component of such sea states by first

removing swell with a high pass filter. However, it would be preferable to develop

and fit models that were bi-modal themselves, avoiding the need for partitioning

schemes to determine which frequencies should be filtered. Indeed, such a proce-

dure could be extended to describe seas with any number of components, using

model selection to determine the number of components that are actually present.

Such techniques could also allow for the development of model-based partitioning

schemes, that could to separate overlapping wind-sea and swell components. In the

development of such multi-modal models, it would be important to consider the in-

teractions between different component weather systems. In particular, techniques

such as higher-order spectral analysis could be used to determine if any non-linear
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interactions were present and help characterise them. Such interactions could then

also be parameterised and fitted using similar techniques to those discussed in this

chapter.

Another important aspect of wind-generated waves is their directional characteris-

tics. One approach to describing these is to assume some dispersion relation between

wave-number and frequency, and then look at frequency direction spectra, which

can be estimated, for example, from heave-pitch-roll buoys (Longuet-Higgins et al.,

1963). We discuss this further in Chapter 3.

In summary, we have demonstrated that, by using the debiased Whittle likelihood,

we are able to obtain more accurate and precise estimates of parameters for the wind-

sea component of a wind-generated wave process in O(n log n) time. Using differ-

encing, we are able to overcome correlations in the periodogram that are common

in data sampled at a high frequency. Furthermore, we have described a procedure

which can be used to obtain the variance of such estimates in O(n2 log n) time. To-

gether these developments will improve the tools available to practitioners, both in

terms of fitting models to data and describing the associated uncertainty.



Chapter 3

A multivariate pseudo-likelihood

approach to estimating directional

ocean wave models

The content of this chapter has been submitted for publication as Grainger, J. P.,

Sykulski, A. M., Ewans, K., Hansen, H. F., and Jonathan, P. (2022). A multivariate

pseudo-likelihood approach to estimating directional ocean wave models. With the

exception of some minor notational changes, the content of the chapter is unchanged

from that of the paper. As in Chapter 2, we use slightly simplified notation where

appropriate. Section 3.1 motivates the chapter, ending with an overview of the chap-

ter’s structure.

3.1 Introduction

Applications of multivariate time series and spatiotemporal statistics are ubiquitous,

for example using the affordable and widespread availability of GPS and accelerom-

78
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eter technology to track individuals and objects in three spatial dimensions over

time. Applications include clinical studies of human rest/activity cycles (actigraphy)

(Geraci, 2019), player activity in sports (Tierney et al., 2016), motor vehicle tracking

(telematics) (Verbelen et al., 2018), animal and wildlife tracking (Rivest et al., 2016),

the tracking of large-scale currents and drifting objects in oceanography (Sykulski

et al., 2016; O’Malley et al., 2021), as well as measuring ocean surface waves using

buoys—the final of which is the focus of this chapter. The raw time series obtained

from such devices are high frequency, but often noisy, and current practices throw

away or over-smooth data without utilising their full potential. In this chapter we

present a likelihood-based stochastic modelling approach that can meaningfully ex-

tract and estimate more spatiotemporal features from ocean wave observations than

current methods—but we present our methodology in such a way that it can be

applied more broadly to spatiotemporal data, including handling model misspeci-

fication, anisotropy, high- and low-frequency noise, aliasing, non-stationarity, and

uncertainty quantification.

Wind-generated surface-gravity waves are an important feature of the ocean envi-

ronment. Understanding the behaviour of such waves is of great scientific and en-

gineering interest, with applications ranging from the design of ships and marine

structures to modelling coastal flood risk. As such, large quantities of high frequency

time series data are routinely recorded in order to help improve our understanding

of the waves, generating a variety of statistical challenges. Characterisation of the

wave environment needs to reflect the evolving nature of multiple weather systems,

and the presence of measurement uncertainty.

From a modelling perspective, we typically seek to model the vertical displacement

of the ocean surface over two-dimensional horizontal space and time. The second-

order characteristics of this spatiotemporal process are usually summarised by the
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frequency-direction spectrum, which “is the fundamental quantity of wave mod-

elling and the quantity that allows us to calculate the consequences of interactions

between waves and other matter”(Barstow et al., 2005). Heuristically, the frequency-

direction spectrum quantifies the contribution to the variance of the wave process

from multiple sinusoidal components with different frequencies travelling in differ-

ent directions.1 This description assumes that the wave process is stationary; how-

ever, in reality this is not generally the case. To address this, wave records are usu-

ally partitioned into shorter intervals of time series (referred to as sea states), each of

which can be treated as stationary (Holthuijsen, 2007).

High resolution measurements of the ocean surface in space and time are rarely

available. However, recordings of the vertical displacement of the ocean’s surface

at a single location (e.g. using a wave staff or downward-facing radar) or of the mo-

tions of floating devices (e.g. buoys) are common (Jensen et al., 2011). In particular,

modern buoy measurements provide time series of the buoy’s full three-dimensional

displacement. Such measurements are then used to estimate the frequency-direction

spectrum, though in general this estimation is not trivial to perform.

Existing techniques for parametric estimation of the frequency-direction spectrum

typically use either a method-of-moments or least squares approach. In general,

neither approach is optimal statistically. Furthermore, these techniques rely on non-

parametric estimates of the frequency-direction spectrum, which exhibit substantial

bias. As a result, these approaches perform poorly and can only reliably estimate

simple location parameters such as the peak frequency or mean direction of the ob-

served wave process. We propose using likelihood inference directly on the buoy

data, avoiding both the poor performance of method-of-moments and least squares;

and the issues generated by the non-parametric estimation. Ideally, parametric in-

1See Appendix for a more formal definition.
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ference would be made using maximum likelihood estimation with the full sam-

ple likelihood; however, the full likelihood is expensive to compute. Fortunately,

adoption of the Whittle likelihood (Whittle, 1953a) provides a computationally ef-

ficient alternative to full maximum likelihood inference, which produces consistent

parameter estimates and is optimally convergent. Furthermore, debiased Whittle

likelihood inference (Sykulski et al., 2019) removes the finite sample bias present

in Whittle likelihood inference, without compromising standard error or computa-

tional efficiency.

In Chapter 2, we demonstrated in a univariate setting that debiased Whittle likeli-

hood inference yields significant improvements over competitors, when estimating

parameters of the spectral density function of ocean waves recorded only over time.

The chapter we present here seeks to generalise this methodology to incorporate di-

rectional characteristics of the wavefield. However, this extension is nontrivial, since

the full spatiotemporal process, which constitutes the wavefield, is not recorded,

and hence the spatial debiased Whittle likelihood of Guillaumin et al. (2022) cannot

be applied directly. Instead we describe computationally efficient parametric esti-

mation of a frequency-direction spectrum fitted directly to multivariate time series

buoy data. Using a multivariate extension of the debiased Whittle likelihood we

are able to obtain parameter estimates with lower bias and variance than competi-

tor techniques. Our real-world data analysis reveals robust parameter estimates and

captures their evolution over time during a storm; in contrast, such an analysis using

existing techniques results in estimates that evolve erratically over time.

The structure of this chapter is as follows. Section 3.2 gives some background on

ocean waves, introduces an example data set and then describes a model for the

frequency-direction spectrum of wind-sea waves. Section 3.3 describes the debiased

Whittle likelihood inference, and demonstrates its performance by simulation. In
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Section 3.4, we then apply the debiased Whittle inference to the example data set

introduced in Section 3.2.2, discussing a number of important practicalities of the

analysis. Finally, Section 3.5 provides a discussion and conclusions.

3.2 Background

3.2.1 Ocean waves and frequency-direction spectra

Much of the interest in ocean waves relates to the surface displacement of the water

over space and time, which is treated as a stochastic random field. Usually, the waves

are assumed to be stationary and mean-zero within a given time window (often 30

minutes), referred to as a sea state. The covariance structure of the random field

for this sea state is then described by the frequency-direction spectrum, S(ω, ϕ), the

frequency-domain equivalent of the spatio-temporal autocovariance (see Section 1.2

for more details).

Figure 3.2.1: Example frequency-direction spectra. The left hand panel shows the
frequency-direction spectrum corresponding to a single wind-sea, the middle shows
a wind-sea and single swell and the right shows a wind-sea and two swells. Direc-
tion here is the direction the waves are travelling from. The polar plots have direction
from north (rad) on the angular axis and angular frequency (rad Hz) on the radial
axis.

Examples of frequency-direction spectra are shown in Figure 3.2.1, corresponding

to: left, wind-sea only; middle, wind-sea and swell; and right, wind-sea with two

swells. Heuristically, if we think about the spectral representation of a process as
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decomposing that process into a “sum of sinusoids”, then S(ω, ϕ) can be thought of

as describing the contribution to the variance from a wave of a given angular fre-

quency, ω (measured in rad Hz), travelling from a given direction, ϕ (measured in

radians). For example, the left hand panel of Figure 3.2.1 describes a process where

most of the variance is generated by sinusoids travelling from a southwards direc-

tion (π radians) with angular frequencies around 0.8 rad Hz. In contrast, the right

hand example describes a process with major contributions to the variance from si-

nusoids with three different directions and frequencies. Notice that the direction is

measured clockwise from North in radians and is the direction a wave is travelling

from and not towards.2

Direct characterisation of the wavefield would require measurements of surface dis-

placement over space and time. Outside of laboratory wave tanks (Forristall, 2015;

Schubert et al., 2020), shallow lakes (Young et al., 1996) or coastal regions (Long and

Oltman-Shay, 1991; Eastoe et al., 2013), this is very difficult to achieve with current

technology. However it is relatively straightforward to measure some characteris-

tics of the wavefield, and to use these measurements to infer properties of the latent

spatiotemporal process. For example, we can use measurements of the motion of a

floating buoy to approximate the Lagrangian motion of a particle on the water’s sur-

face, recording time series Z = {Z(t)}t∈∆Z, X = {X(t)}t∈∆Z and Y = {Y(t)}t∈∆Z, of

the vertical, northwards and eastwards displacements of the buoy respectively.

We may also describe the covariance structure of the vector-valued stochastic process

P = {P(t) = [Z(t), X(t), Y(t)]T}t∈R (which is assumed to be stationary and mean-

2Both conventions are used in the literature (Barstow et al., 2005); however, we favour direction
from as it means that the relation to the autocovariance is the same as the one used in the statistics
literature and is the same as the convention for wind direction, making comparisons easier.
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zero) by the spectral density matrix function

f (ω) =


fZZ(ω) fZX(ω) fZY(ω)

fXZ(ω) fXX(ω) fXY(ω)

fYZ(ω) fYX(ω) fYY(ω)

 =
1

2π

∫ ∞

−∞
c(τ)e−iτωdτ,

provided certain technical conditions are satisfied (see Brockwell and Davis, 2006, for

example), where c(τ) = E
[
P(τ)P(0)T]. Under linear wave theory (see Holthuijsen,

2007, for example), there is a transfer function G(ω, ϕ) = [1, i cos ϕ, i sin ϕ]T for ω >

0, which is conjugate symmetric and zero at ω = 0 (Isobe et al., 1984), such that

f (ω) =
∫ 2π

0
G(ω, ϕ)G(ω, ϕ)HS(ω, ϕ)dϕ, (3.2.1)

where AH denotes the conjugate transpose of a matrix A. This directly relates the

frequency-direction spectrum, S(ω, ϕ), to the spectral density matrix function, f (ω),

which is a feature we shall exploit to perform inference. From (3.2.1) we can imme-

diately see that, for all ω ∈ R, f (ω) is non-negative definite for any non-negative

choice of S(ω, ϕ) (and indeed for any choice of G(ω, ϕ), which may be required for

other measurement systems, such as a heave-pitch-roll buoy). Therefore, if we spec-

ify a model for S(ω, ϕ) then we can obtain a model for f (ω). However, the relation

in (3.2.1) is not invertible in general.

Figure 3.2.2 shows an example of the relationship between S(ω, ϕ) and f (ω) for four

different sea states, differing only by mean direction (indicated by the four colours).

The difference in mean direction is obvious in S(ω, ϕ) in the left hand panel, and

can still be identified from f (ω) in the right hand panel, even though f (ω) does not

provide a complete description of S(ω, ϕ).
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Figure 3.2.2: The effect of varying the mean direction of a wind-sea model on both
the frequency-direction spectrum (S(ω, ϕ), left) and the corresponding spectral den-
sity matrix function ( f (ω), right). The elements of f (ω) are shown as a “matrix of
functions”, plotting the real part in the lower triangle and imaginary part in the up-
per triangle. Due to the conjugate symmetry of f (ω), this representation contains all
of the information present.

3.2.2 Example data

For the purpose of illustration, we consider a z, x, y time series recorded using a

Datawell Waverider MkIII buoy (Datawell, 2006) in the southern North Sea, at a

sampling rate of 1.28Hz. This particular five-day period is chosen to provide an

illustration of various physical phenomena often present in the ocean. Within the

period, 30-minute sea states (assumed stationary) range from being straightforward

to being difficult to model, allowing us to explore the practical applicability of the

technique we propose.

Figure 3.2.3 shows a summary of the five-day period in question. The first panel of

Figure 3.2.3 shows significant wave height, Hs = 4
√

var (Z(t)), for each of the sea

states, quantifying the roughness of the ocean’s surface. The second panel shows

wind speed recorded at a nearby platform. The third panel shows a spectrogram
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plotted on the decibel scale, computed using multitapering (Thomson, 1982) with

half overlapped 30-minute windows (with nW = 4/∆ and K = 7 Slepian tapers),

describing the time-frequency characteristics of the record. The fourth panel shows

the mean direction of the waves at different frequencies over time, as defined by

Kuik et al. (1988), again computed using half overlapped 30-minute windows. The

final panel shows the wind direction over time at a nearby platform.

The record is made up of a variety of component weather systems, which are most

easily identified from the mean wave direction (fourth panel). At the start of the

record there are two components present, a high-frequency wind-sea and lower-

frequency swell. These components fade out throughout day 0, as can be seen from

Hs (first panel). A new high-frequency wind-sea develops from the start of day 1,

with a clear change in mean wave direction (fourth panel). Throughout day 1, this

new component increases in magnitude and transitions to lower frequencies (see

third panel), peaking at the start of day 2. Half way through day 2, the wind drops

off and then increases (second panel) and changes direction (fifth panel). In response,

we see another wind-sea component develop with a different direction to the previ-

ous component (fourth panel). Towards the end of day 3, a similar event occurs

(though to a lesser degree) and we again see a change in direction. Meanwhile, the

swell persists in a low frequency band throughout (third and fourth panels), though

it is small in magnitude and narrow-banded in frequency compared to the wind-sea

(as can be seen from the spectrogram).
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Figure 3.2.3: Summary of the storm data, showing significant wave height, wind
speed, a spectrogram on the decibel scale, mean wave direction over time and fre-
quency (direction the waves are travelling from, in radians clockwise from North)
and the wind direction over time (direction the wind is travelling from, in radians
clockwise from North) recorded at a nearby platform. The x-axis labels are at the
start of the day, e.g. day 1 denotes the start of day 1.
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3.2.3 Models for wind-sea

When modelling the frequency-direction spectrum, the spectrum is decomposed

as

S(ω, ϕ) = f (ω)D(ω, ϕ) (3.2.2)

where f (ω) is the marginal spectral density function of the vertical displacement

and D(ω, ϕ) is the so called spreading function. The marginal spectral density func-

tion, f (ω), can be thought of as describing the contribution to the variance from

waves of a given frequency regardless of direction, whereas the spreading func-

tion, D(ω, ϕ), describes the distribution of wave variance for waves of a given fre-

quency over direction. The spreading function satisfies
∫ 2π

0 D(ω, ϕ)dϕ = 1 and

D(ω, 0) = D(ω, 2π) for all ω ∈ R. Figure 3.2.4 shows an example of the decompo-

sition given in (3.2.2) for the model described in the remainder of this section.

Figure 3.2.4: Example of the decomposition of a frequency-direction spectrum,
showing the frequency-direction spectrum (left), marginal spectral density function
(middle) and spreading function (right). Plots are given using Cartesian coordinates
as this makes the arms of the spreading function easier to visualise.

For the purpose of this chapter, we use the JONSWAP spectral density function first

described by Hasselmann et al. (1973), which we denote f (ω; θ), where θ is the vec-

tor of parameters. The JONSWAP spectral density function is widely used for mod-

elling the univariate vertical surface displacement resulting from wind-sea waves.

Based on physical observations, Hasselmann et al. (1973) developed the JONSWAP
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spectral density function with an asymmetric peak and a polynomial decay in the

high frequency tail. There is debate about the rate of this tail decay (e.g. Hassel-

mann et al., 1973; Toba, 1973; Phillips, 1985; Hwang et al., 2017), and so we treat

the tail decay index as a free parameter in our analysis. The form of the JON-

SWAP spectral density function for ocean surface gravity waves can also be mo-

tivated from basic physical considerations. Wind waves are generated by the wind

blowing over the ocean’s surface, through a combination of three physical processes.

Wind field turbulence disturbs the water’s surface, creating high frequency surface

water waves. Then, wind-wave interaction causes these surface waves to grow in

amplitude. Thereafter, wave-wave interactions propagate wave energy from higher

to lower frequencies. This produces a wave spectral density function with a sin-

gle spectral peak and long high-frequency tail, with peak frequency evolving from

higher to lower frequency during an ocean storm of limited duration. In particu-

lar,

f (ω; θ) = αω−r exp

{
− r

4

(
|ω|
ωp

)−4
}

γδ(ω; θ)

where the specific details can be found in Section 1.3.

Various models have been proposed for the directional spreading of wind-sea waves.

A large number of experimental studies (e.g. Young et al., 1995; Ewans, 1998; Wang

and Hwang, 2001) indicate that the spreading function is bimodal with direction,

for frequencies exceeding the peak frequency. This finding is supported by theoreti-

cal arguments involving directional energy transfer through wave-wave interactions

(Banner and Young, 1994; Young et al., 1995; Toffoli et al., 2010). For this reason,

we adopt the bimodal wrapped Gaussian model of Ewans (1998) in this work. At

each frequency, the spreading function over direction is assumed to be a bimodal

wrapped Gaussian with means ϕm1(ω; θ) and ϕm2(ω; θ), but the same standard de-
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viation3 σ(ω; θ). In other words,

D(ω, ϕ; θ) =
1

2σ(ω; θ)
√

2π

∞

∑
k=−∞

2

∑
i=1

exp

{
−1

2

(
ϕ − ϕmi(ω; θ)− 2πk

σ(ω; θ)

)2
}

.

The mean directions are

ϕm1(ω; θ) = ϕm + β exp{−ν · min(ωp/|ω|, 1)}/2

ϕm2(ω; θ) = ϕm − β exp{−ν · min(ωp/|ω|, 1)}/2

and the spreading function is given by

σ(ω; θ) = σl −
σr

3

{
4
(

ωp

|ω|

)2

−
(

ωp

|ω|

)8
}

.

Table 3.2.1 gives a description of the parameters of the model, and their parameter

spaces. A more complete description of the model is given in Section 1.3. Note that

the inference approach described in this chapter is applicable for other models, but

the model described here has been chosen for definiteness.

Parameter Description Parameter space

α scaling parameter (0, ∞)

ωp peak frequency (0, ∞)

γ peak enhancement factor [1, ∞)

r spectral tail decay index (1, ∞)

ϕm mean direction [0, 2π)

β limiting peak separation [0, 2π)

ν peak separation shape [0, ∞)

σl limiting angular width [0, ∞)

σr angular width shape [0, ∞)

Table 3.2.1: Parameter descriptions for the JONSWAP spectrum and bimodal
wrapped Gaussian spreading function.

3The standard deviation is referred to as angular width by Ewans (1998).
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3.3 Modelling process

We aim to jointly estimate all the parameters of Table 3.2.1, both marginal parame-

ters and spreading parameters, given a sample of three-dimensional displacement.

In this section, we describe the proposed inference technique, and demonstrate in

simulations that it yields significant improvements in performance over the existing

least squares and moments-matching approaches, described in Appendix 1.3.3. For

brevity, we shall refer to such techniques as competitor techniques for the remainder

of this chapter. In contrast to competitor techniques, we convert the model for the

frequency-direction spectrum to a model for the spectral density matrix function of

the data we actually observe, and then fit the model directly to the data. This is statis-

tically more appealing as we fully exploit the degrees of freedom in the observational

data, rather than performing unnecessary smoothing transformations before model

fitting, and is the key reason our method performs better.

3.3.1 Model fitting

Due to the quantity of available data, computationally efficient inference techniques

are desirable. For a Gaussian process, full maximum likelihood would require the

inversion of a 3n × 3n matrix. This is expensive when n = 2304 as in our case, espe-

cially given that we have a different time series every half an hour. Furthermore, we

may wish to only model a certain frequency range (see e.g. Section 3.4.1 for our ap-

plication study), which is hard to achieve with full maximum likelihood. Frequency

domain psuedo-likelihoods such as the debiased Whittle likelihood (Sykulski et al.,

2019) provide a nice alternative to full maximum likelihood inference. Debiased

Whittle likelihood inference has been shown to perform well in a variety of applica-

tions, including for planetary topography (Guillaumin et al., 2022), ocean drifters

(Sykulski et al., 2016) and univariate recordings of ocean waves (Grainger et al.,
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2021). For these reasons, we use a multivariate extension of the debiased Whittle

likelihood due to Guillaumin et al. (2022).

Assume we have a sample of length n, the periodogram, In(ω), is defined as

In(ω) = Jn(ω)Jn(ω)H where Jn(ω) =

√
∆

2πn

n−1

∑
t=0

P(t∆)e−it∆ω,

usually evaluated at Ωn = {2π j/n | j ∈ {−⌈n/2⌉ + 1, . . . , ⌊n/2⌋}}, the Fourier

frequencies, using the Fast Fourier Transform (Cooley and Tukey, 1965). The multi-

variate Whittle likelihood (Whittle, 1953a), in its discrete form, is given by

ℓW(θ) = − ∑
ω∈Ω

log | f (ω; θ)|+ tr{In(ω) f (ω; θ)−1)}, (3.3.1)

where Ω ⊆ Ωn and f (ω; θ) denotes a parametric spectral density matrix function

with parameter vector θ. The multivariate Whittle likelihood suffers from finite sam-

ple bias, especially as the dimension grows, so a debiased version may be used to

improve estimates, accounting for sampling effects such as aliasing and blurring.

Aliasing results from regular discrete sampling of a continuous time process. Blur-

ring results from sampling a time series for finite duration. Specifically, the finite

sample results in a convolution in the frequency domain which causes spectral den-

sity estimates to “blur” or “leak” across frequencies. In the case of 1.28Hz wave data

recorded for 30 minutes, the blurring is minor; however, for shorter records this is

not the case, and using the debiased Whittle likelihood is beneficial.

The multivariate debiased Whittle likelihood (Guillaumin et al., 2022) is

ℓD(θ) = − ∑
ω∈Ω

log |E [In(ω); θ]|+ tr{In(ω)E [In(ω); θ]−1}, (3.3.2)
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where the expected periodogram can be efficiently computed using the relation

E [I(ω); θ] =
∆

2π

n−1

∑
τ=−n+1

(1 − |τ|/n)c(τ; θ)e−iω∆τ.

In our case, the autocovariance, c(τ; θ), is not known analytically, and instead must

be approximated numerically from the spectral density matrix function. Since mod-

els are specified for the continuous time process, the most efficient way to approx-

imate the autocovariance is to first approximate the spectral density of the discrete

time process, then approximate the autocovariance (as described in Chapter 2). The

first step requires aliasing the spectral density of the continuous time process by

wrapping in contributions from infinitely many frequencies above the Nyquist fre-

quency, i.e. computing

f ∆(ω) =
∞

∑
k=−∞

f (ω + 2πk/∆). (3.3.3)

To do this numerically, we have to use a truncated version of the sum in (3.3.3). In

practice, the instrument may not respond to waves with frequencies above a cer-

tain threshold, or the data may have been filtered in preprocessing (Datawell, 2006).

Therefore, the recorded process may not be aliased to the same extent as the theoret-

ical sampled process. In our case, we treat the buoys as if no aliasing has occurred

(i.e. retaining only the k = 0 term in (3.3.3)) due to the observed drop-off in the spec-

tral density at the highest frequencies, as can be seen from panel 3 of Figure 3.2.3.

However, we note that this technique is able to account for aliasing, should it be felt

that aliasing is present.

In both (3.3.1) and (3.3.2), summation is over a set Ω. Usually Ω = Ωn; however,

we may wish to remove some frequencies to avoid model misspecification (see Sec-

tion 3.4.1) or because at some frequencies in the periodogram the ordinates can
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be highly correlated for finite samples, which harms Whittle estimation. We then

maximise this likelihood function using numerical methods, detailed further in Ap-

pendix B.3.

3.3.2 Simulation study

We now present a simulation study comparing the debiased Whittle likelihood infer-

ence proposed in Section 3.3.1 with the least squares and moments-matching tech-

niques described in Appendix 1.3.3. We have chosen three different scenarios that

represent possible conditions seen in practice, including cases where certain param-

eters are on the boundary of the parameter space (as this is likely to cause problems

for estimation techniques). The parameters for each scenario are given in Table 3.3.1,

and the corresponding frequency-direction spectra are given in Figure 3.3.1.

α ωp γ r ϕm β ν σl σr

Scenario 1 0.7 0.8 3.3 5 π/2 4 2.7 0.55 0.26
Scenario 2 0.7 1.1 3.3 5 π/2 4 2.7 0.55 0.00
Scenario 3 0.7 1.0 1.0 5 π/2 4 2.7 0.55 0.26

Table 3.3.1: Table showing the parameters for each scenario in the simulation study.

Figure 3.3.1: Frequency-direction spectra for Scenario 1 (left), Scenario 2 (middle)
and Scenario 3 (right), as defined in in Table 3.3.1.

Scenario 1 is a classic example of a fetch-limited wind-sea, with directional shape

parameters fixed to the standard values from Ewans (1998), and γ = 3.3 from Has-

selmann et al. (1973). Scenario 2 is almost identical, except that σr = 0, meaning that
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σ(ω; θ) is constant over frequency. Heuristically, this corresponds to a frequency-

direction spectrum where the width of each arm in the spreading function is con-

stant over frequency (see Figure 3.2.4 for the notion of an arm). This scenario is

included because we often see this parameter tending towards the boundary of the

parameter space in practice (as in Section 3.4.2) and it is useful to explore the effect

of this on other parameter estimates (though we cannot say anything about the im-

pact of model misspecification from this). Finally, Scenario 3 is a Pierson-Moskowitz

spectrum for a fully developed sea (Pierson and Moskowitz, 1964), also using the

standard spreading parameters from Ewans (1998). This is a special case of the JON-

SWAP spectrum with γ = 1, and so is of particular interest as it lies on the boundary

of the parameter space.

We simulate 1000 time series from each of the scenarios and estimate the model

parameters using each of the techniques from Appendix 1.3.3 alongside the debi-

ased Whittle likelihood inference from Section 3.3.1.4 In particular, we use the least

squares technique described in Appendix 1.3.3 with both MLM and MEM based

estimation of frequency-direction spectrum and the moments-matching approach

described in Appendix 1.3.3. Whilst there are three different methods from the ex-

isting literature in our comparison, they all use the same technique to estimate the

parameters of the marginal spectral density function. As such, Figure 3.3.2 consid-

ers the marginal parameters estimated using least squares (the marginal technique

for the competitor techniques), univariate debiased Whittle on only the vertical dis-

placement, and multivariate debiased Whittle on all three time series. Figure 3.3.3

considers the spreading parameters where the least squares technique is now split

into the three directional variants: least squares with MLM, least squares with MEM,

and the moments-matching approach; and the univariate debiased Whittle is not in-

4In scenario 2, for nine of the replications, the least squares with MEM optimisation did not con-
verge. For this reason, in the results for scenario 2 we include only the 991 replications for which the
optimisation of all objective functions converged.
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cluded (as it cannot be used to estimate the spreading parameters).

From Figure 3.3.2, we see a clear improvement in the debiased Whittle when com-

paring to least squares, especially in terms of variance, as has already been reported

Chapter 2. Additionally to the results already seen in Chapter 2, there is also a benefit

to estimating the parameters of the marginal spectral density function from all three

series (as opposed to from the vertical displacement alone). Traditionally, estimat-

ing the marginal parameters has been treated as a separate problem from estimating

the spreading parameters, with only the vertical displacements used to estimate the

marginal parameters. However, this clearly throws away useful information about

the marginal parameters which is present in the x and y time series. Furthermore, in

Scenario 3, debiased Whittle likelihood recovers all of the parameters well, despite

the true value of γ being on the boundary of the parameter space (though clearly the

estimates of γ are not normally distributed).

Similarly, Figure 3.3.3 demonstrates a stark difference between the competitor tech-

niques and debiased Whittle likelihood inference. Other than the mean direction

ϕm, we see substantial bias in all the other parameter estimates from each of the

three existing techniques which is not present in the debiased Whittle likelihood es-

timates. We also see that the debiased Whittle estimates exhibit significantly less

variance across all parameters and scenarios. From Scenario 2, we see that debi-

ased Whittle likelihood inference still performs well when σr is on the boundary of

the parameter space (though again estimates are not normally distributed). Addi-

tionally, when estimating β, we see that least squares with MLM in scenario 1 and

moments-matching in scenarios 2 and 3 the majority of the estimates are on the up-

per boundary of the parameter space, an issue which debiased Whittle likelihood

inference does not have.
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Figure 3.3.2: Boxplots of the parameter estimates from the simulation study for pa-
rameters of the marginal spectral density function, with the true values indicated by
red dashed lines. Marginal parameters estimated using least squares (LS), univariate
debiased Whittle (DW uni) and full multivariate debiased Whittle (DW) are shown.
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Figure 3.3.3: Boxplots of parameter estimates from the simulation study for pa-
rameters of the spreading function, with the true values indicated by red dashed
lines. Spreading parameters estimated using least squares with MLM (LS mlm),
least squares with MEM (LS mem), the moments-matching approach (moment) and
multivariate debiased Whittle (DW) are shown.
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3.4 Modelling the example data set

We now apply debiased Whittle inference for S(ω, ϕ; θ), Table 3.2.1, to the data set

introduced in Section 3.2.2. Both wind-sea and swell are present in our example

record. However, we have chosen to model only the wind-sea as the purpose of

this chapter is to introduce a new inference technique, and this is easiest to illustrate

and scrutinise with a simple wind-sea only model. The debiased Whittle procedure

could naturally be used on a swell-only model (or indeed a joint wind-sea and swell

model) should the swell characteristics be of further interest, but this is reserved for

future work.

Due to issues with the measurement device and other contaminating processes, cer-

tain frequency regions do not reflect the process we are interested in modelling.

Therefore, careful selection of the frequencies included in the objective function must

be performed prior to inference. Selecting these frequencies is difficult, but there are

principled ways to choose them. In particular, the buoy data does not accurately

represent the data which we are interested in modelling at the lowest and highest

frequencies (van Essen et al., 2018). As such, we select a low- and high-frequency

threshold and use only the frequency interval between the thresholds in our analy-

sis, as we shall now detail in Section 3.4.1.

3.4.1 Specification of low- and high-frequency thresholds for infer-

ence

Model misspecification presents a significant challenge for the fitting techniques dis-

cussed in this chapter. Such misspecification can be generated in a variety of ways.

Firstly, other component weather systems that we do not want to (or cannot) model

may be present. Secondly, there may be noise due to the buoy not following the true

motion of a particle on the water’s surface. Finally, the approximations made by lin-
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ear wave theory that justify the transfer function in (3.2.1) may not be valid. All of

the aforementioned problems affect some frequencies more than others. Therefore,

we shall remove frequencies that are heavily contaminated before fitting models to

the data. Because we are using a frequency domain pseudo-likelihood, this is easy to

do, and essentially just involves omitting the appropriate Fourier frequencies from

the likelihood (as discussed in Section 3.3.1).

However, choosing which frequencies to remove is not trivial. One useful guide

comes from (3.2.1), which implies that fZZ(ω) = fXX(ω) + fYY(ω) under linear

wave theory. Motivated by this, we define the error function R(ω) = log( fXX(ω) +

fYY(ω))− log( fZZ(ω)).5 An estimate, R̂(ω), of the error function can be obtained

by first estimating the spectral density functions, then plugging them into the above

formula for R(ω). Clearly we would expect R̂(ω) ≈ 0 for all ω ∈ [0, π/∆], so

deviations from zero may indicate that there is a problem with a certain frequency

range. Figure 3.4.1 shows a plot of R̂(ω) for each half hour period from our example

data set introduced in Section 3.2.2 using multitapering (again with nW = 4/∆ and

K = 7 Slepian tapers).

Figure 3.4.1: Heatmap of R̂(ω) for each half hour period in the example data set,
computed using multitapering.

From Figure 3.4.1, we see a blue band in the very lowest frequency range with a

5Note that this relation is for the deep water case. The finite water depth version is slightly dif-
ferent and given in Appendix B.2. The finite water depth version is used in Figure 3.4.1, though for
simplicity we state the deep water version here. The quantity R(ω) is related to the check ratio often
used in quality control for buoy data (Integrated Ocean Observing System (U.S.), 2019).
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red band sitting in the frequency range just above this, where the absolute value

of the error function is significantly larger than zero. Therefore, in low frequencies

the transfer function mentioned above is not valid, and as a result these frequencies

are removed when fitting the model. Additionally, R̂(ω) is slightly negative in the

highest frequencies. In other words, the spectral density of the X and Y processes

decays more rapidly than that of the Z process in the high frequency tail. This is

possibly because the accelerometers for measuring the horizontal displacement of

the buoy are mounted in a different way to the accelerometer measuring the vertical

displacement, though more investigation is needed to ascertain the source of this

discrepancy. Regardless, it is the general consensus that these instruments are more

reliable for the middle of the frequency range than they are at the highest and lowest

frequencies, and standard quality control of buoy data include checks for excessive

level of low and high frequency spectral density (Christou and Ewans, 2014, for

example).

Additionally, an old wind-sea and a swell are present in the early sea states with the

swell persisting, albeit with little energy, for most of the record. Since models for

such conditions are beyond the scope of this chapter, we only begin modelling when

the new wind-sea has become dominant, and remove frequencies in which the swell

is large or R̂ is sufficiently far from zero. In particular, for each half hour period,

we pick the cutoff frequency to be the largest frequency below the peak frequency

which either has an average R̂ larger than some threshold6 or has a mean direction

sufficiently far from the average of the wind-sea mean direction. For more details,

see the code provided on GitHub (Grainger, 2022a). Additionally, frequencies be-

yond 3.8 rad Hz are also removed due to the observed drop-off in spectral density.

Figure 3.4.2 shows this choice of modelling period and low frequency threshold with

6By average here we mean the average R̂ in some window centred on the frequency in question,
and we use a threshold of 2.
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the modelling period delimited by dashed vertical lines and the threshold shown by

dotted lines, indicating that only frequencies between these lines are included.7

Figure 3.4.2: Spectrogram of the example data set on the decibel scale, with the pe-
riod used in the fitting delimited by solid vertical lines, and the choice of frequency
range over the period of interest shown by the dotted lines.

3.4.2 Parameter estimates

Here we estimate model parameters for S(ω, ϕ; θ) using debiased Whittle inference,

for the frequency intervals specified in Section 3.4.1. Most of the parameters are

initialised from standard values, with the only exceptions being ωp and ϕm which

are initialised by picking the frequency corresponding to the maximum of a non-

parametric estimate of the marginal spectral density function, and the mean direc-

tion corresponding to this frequency respectively.

Figure 3.4.3 shows the parameter estimates, with 95% approximate confidence inter-

vals, calculated using the expected Hessian matrix and assuming parameter estima-

tors are Gaussian distributed. The location parameters ωp (the peak frequency) and

ϕm (the mean direction) behave as expected, following the spectral mode and react-

ing to changes in wind-direction respectively. They also evolve smoothly in time, de-

spite fits being performed independently on non-overlapping sea states. The shape

parameters for the marginal spectral density function (γ and r), clearly have time

7Some of the highest frequencies are also removed from the objective function. This is because
the response of the buoy falls off rapidly at the highest frequency, which is likely a result of the
instrument’s inability to respond to the waves and the use of digital filters during post processing,
details of which can be found in Datawell (2006).
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varying behaviour. The peak enhancement factor, γ, increases as each component

wind-sea evolves, then decreases as the component wind-sea dies out. Similarly,

from the estimates for r, the tail decay becomes less steep between components. It

is likely that this is due to model misspecification, as we really have two wind-seas

present, but are only modelling one of them. Furthermore, the shape parameters

for the directional spreading (β, ν, σl and σr) also show anomalous behaviour during

these overlaps. In particular, we see large values of β (hitting the upper bound of the

parameter space). Large values of β correspond to a wide spreading over direction,

which likely occurs because there is another component present with different di-

rectional properties. However, outside these overlap periods we see stability in the

parameters estimates, which is encouraging. Additionally, some of the estimates of

σr drop off to zero, because the low frequency threshold can make σr unidentifiable

as much of the information about σr resides in frequencies below the peak frequency.

As a result, we have an identifiability-bias trade off as lowering the threshold fre-

quency introduces more of the noise processes, which tends to result in biasing of

β, but raising the threshold makes σr unidentifiable. This is a difficult problem, and

is an important area of further research which we discuss more thoroughly in Sec-

tion 3.5.

In summary, the parameter estimates converge to sensible values in the majority of

sea states where a single wind-sea is present. Furthermore, looking at sea states

where parameter estimates go to boundaries or unrealistic values helps to extract

time periods of interest where the model fails and separate investigation is war-

ranted.
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Figure 3.4.3: Parameter estimates using debiased Whittle likelihood inference over
the period in question with approximate 95% confidence intervals. The two panels
in the second row also include the spectrogram and wind direction for context. In
order left to right then down, the panels show: Ĥs; α̂; ω̂p over the spectrogram on the
decibel scale; ϕ̂m and wind direction; γ̂; β̂ and ν̂; r̂; and σ̂l and σ̂r, with approximate
95% confidence intervals.
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3.5 Discussion and conclusions

This chapter describes estimation of the parameters of frequency-direction spectra

for ocean surface gravity waves from three-dimensional buoy displacement time se-

ries, using debiased Whittle likelihood inference. In simulation studies, debiased

Whittle inference is shown to outperform inference using competitor techniques.

Debiased Whittle inference for a sequence of sea states provides a means to charac-

terise the joint evolution of spectral parameters in time, and allows uncertainties in

parameter estimates to be quantified in a principled manner. The observed smooth

nature of parameter evolution estimated from North Sea data, and the dependencies

evident between parameters, are consistent with physical intuition.

Typically, the wave environment at a location is the product of different physical

drivers, including swell and local wind forcing. In the current work, we focus on sea

states corresponding to wind-sea conditions only, for clarity of description. More

generally, debiased Whittle inference for mixed seas consisting of wind-sea and one

or more swells is possible; in simulation studies of data for mixed seas (not shown),

debiased Whittle inference again performs well. In simulation studies on samples of

30-minute records corresponding to wind-sea conditions, the debiasing procedure

makes a small but marginal improvement over standard multivariate Whittle esti-

mation. However, when fitting the joint wind-sea and swell model to mixed sea

states, or when using shorter records, estimates using standard Whittle inference

exhibit substantially greater bias than those from debiased Whittle inference.

In-situ measurement of the ocean environment is invariably problematic. In the

present study, buoy displacement time series are contaminated by additional low-

frequency processes, leading to spurious low-frequency spectral features not rep-

resented in the assumed parametric spectral form to be estimated. At very high

frequencies, buoy displacement time series are further subject to on-board low-pass
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filtering effects not represented in the assumed spectral form. We adjust the inference

procedure for these sources of model misspecification by only considering a central

band of frequencies in the likelihood, set using low-frequency and high-frequency

thresholds. In general, the low-frequency threshold in particular should be cho-

sen carefully, to achieve a good balance between model misspecification (when the

threshold is too low) and identifiability (when the threshold is set so high that as-

pects of the spectral form cannot be resolved). We have explored extending the spec-

tral form to accommodate an additional low-frequency noise feature, but found that

achieving this reliably required a large number of extra parameters, and resulted

in greater loss of efficiency in estimating the wind-sea (and swell) components of

interest compared to frequency thresholding.

Spectral estimates in the current work are based on data for the ocean’s surface dis-

placement only. In general, it would be advantageous to incorporate the effects of

covariates such as the evolving wind field on the spectral form, particularly for char-

acterisation of mixed seas. For example, the direction associated with a wind-sea

component at a location is dependent on local wind speed and direction, whereas

the characteristics of a swell component do not vary substantially with the local

wind field. These covariate dependencies are often exploited by physical oceanogra-

phers to partition the frequency-direction domain into sub-domains corresponding

to wind-sea and swell components (Hanson and Phillips, 2001, for example).

The spectral characteristics of ocean waves evolve smoothly in time. In this chapter,

as is common practice, we accommodate temporal non-stationarity by partitioning

time series into consecutive 30-minute sea states which are considered stationary for

purposes of spectral inference. Improved bias-variance properties of parameter es-

timates from debiased Whittle inference suggest that spectral estimation using sea

states of shorter duration is feasible for more-rapidly evolving ocean environments;
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initial simulation studies (not shown) support this finding. More generally, simulta-

neous spectral estimation for a sequence of consecutive sea states exploiting smooth

time-varying basis representations for spectral parameters (e.g. using splines), or

adaptive estimation of evolving spectral forms (e.g. using dynamic linear models)

are obvious research avenues.

The methodology for spectral inference described in this chapter is generally ap-

plicable, provided that an appropriate model for the spectral density matrix func-

tion can be obtained by applying a suitable transfer function to the model for the

frequency-direction spectrum. Thus, in addition to three-dimensional buoy dis-

placement time series, debiased Whittle inference is applicable to heave-pitch-roll

buoy data, for example. A collection of useful transfer functions for commonly used

oceanographic devices is given by Benoit et al. (1997). The methodology can be mod-

ified for similar applications involving observations of a process viewed as a linear

time-invariant filter of some latent process of interest. Practical issues encountered

in the current work, relating to time series aliasing, unusual sources of measurement

noise and complex likelihood functions are common across many applications (e.g.

involving accelerometers and GPS tracking). Hence, we hope that the methodology

presented and the ideas it incorporates will prove useful to the practising oceanog-

rapher, ocean engineer and applied statistician.

The environmental data used has been provided by TotalEnergies E&P Danmark A/S, and the
data is the sole property of TotalEnergies E&P Danmark A/S, and it may not be used or reproduced
without the written consent of TotalEnergies E&P Danmark A/S. TotalEnergies E&P Danmark A/S
has not assisted with or had any influence on the use of the data or the subject or content of this
chapter.



Chapter 4

Conclusions of Part I

In Part I of this thesis, we have considered parameter estimation for models of the

frequency domain behaviour of ocean waves. In particular, Chapter 2 considered

parameter estimation in the univariate case, whilst Chapter 3 described parameter

estimation for the frequency direction spectrum.

In Chapter 2, we saw that parameter estimates can be substantially improved by util-

ising pseudo-likelihoods, without losing the computational efficiency of the method-

ology currently in use. We demonstrated such improvement in detailed simulation

studies, and discussed computational and practical aspects of applying the method.

In particular, many of the popular models for the spectral density function of ocean

wave time series do not have analytically known Fourier transforms (autocovari-

ance). As such, techniques such as the debiased Whittle likelihood (or even max-

imum likelihood) require additional approximation steps. However, this can be

achieved with the use of an additional FFT, meaning that we do not increase the

computational cost, which remains O(n log n). Similarly, gradients and Hessians

can also be computed very efficiently with the same technique.

108
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Chapter 3 then discussed similar estimation for the frequency-direction spectrum.

This is not a straightforward generalisation of the problem discussed in Chapter 2 be-

cause we cannot directly record the ocean surface over space. Instead, we record the

multivariate displacement of a buoy on the surface, and then try to estimate the pa-

rameters of the frequency-direction spectrum. At a high-level, existing methodology

transforms the data to be closer to the model. In contrast, we transform the model to

describe the data, avoiding many smoothing steps and extra assumptions. As such,

we see dramatic improvements in both bias and variance over existing techniques for

certain parameters. Consequently, we can estimate the parameters for significantly

more complicated models than was feasible with existing techniques. Resulting in

improved descriptions of the frequency-domain behaviour of ocean waves.

4.1 Further work

In Part I, we only discussed parameter estimation for models of a single wind-sea

component. Whilst preliminary analysis suggests that the methodology developed

in Chapters 2 and 3 could be used in more complicated scenarios, further work

should be undertaken to investigate the performance of parameter estimates in this

case. In particular, the issues with low-frequency noise discussed in Chapter 3 be-

come more problematic in this setting, as the swell often substantially overlaps the

noise in frequency. Models for swell processes are implemented in OceanWaveSpec-

tralFitting.jl (Grainger, 2022b), and the infrastructure for handling additive mod-

els is provided by WhittleLikelihoodInference.jl (Grainger, 2022c), meaning that fit-

ting additive models for joint wind-sea and swell conditions is fairly straightfor-

ward.1

1In the sense that they are already implemented (and gradients, Hessians and memory prealloca-
tion are handled in a sensible way).
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Ideally, we would develop a model for the low-frequency noise, and estimate the

resulting nuisance parameters alongside the parameters of interest. Unfortunately,

this is not as easy as it first sounds. In particular, because we have three dimensions

the number of parameters required for even simple models can be quite large. Com-

bined with the wind-sea parameters already present in the model, and additional

swell parameters, this can make optimisation much harder.

Two more concrete examples of further work are modelling the evolution of param-

eters over time, and applying the methodology we have developed to other kinds

of data, such as data recorded by spatial arrays of wave staffs, in shallow water. We

discuss the former problem in Section 4.1.1 and the latter in Section 4.1.2.

4.1.1 Modelling the behaviour of spectral parameters over time

We aim to model waves in the ocean. Typically, multiple component weather sys-

tems will be present in the ocean. These weather systems gradually appear at the

recording location, persist for some time, and then fade away. To simplify the mod-

elling, we shall have some start and end point between which the component is

treated as present.

Model specification

Imagine that the spectral density function of a particular component weather system

can be represented by some parametric family, such that, at any given time t, the true

process had spectral density function f (·; θ(t)). We aim to model the behaviour of

θ(·) over time. Guillaumin et al. (2017) propose modelling such evolution for ocean

drifters as modulated time series, and show how Whittle likelihood inference can

be used in this context. In particular, such an approach models the time series as a

stationary process multiplied (or modulated) by a deterministic function. However,
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in our setting, it is not obvious that parameter evolution can be expressed in this

manner, as the modulation function must be known a priori, at least its functional

form, which is not usually the case in ocean wave records. Therefore, we suggest

taking a similar approach to that of Oscroft et al. (2020), modelling the time varying

parameters. Note that this is much more complicated in our setting, as component

weather systems come and go. This results in the number of parameters essentially

changing over time.

A rough outline of the proposed methodology is as follows. Say that we consider a

stretch of time during which a number of different weather systems are present. Let

T(j)
1 be the start time and T(j)

2 be the end time of component j. Then the time-varying

parameter function is

θ(j) : [T(j)
1 , T(j)

2 ] → Θ(j) ⊆ Rp(j)
,

where p(j) is the number of components of the model used for the component, and

Θ(j) is the parameter space of that model.

Let θ
(j)
i : [T(j)

1 , T(j)
2 ] → Θ(j)

i , be the ith parameter function (for 1 ≤ i ≤ p(j)), i.e.

for t ∈ [T(j)
1 , T(j)

2 ] we have θ(j)(t) = [θ
(j)
1 (t), . . . , θ

(j)
p(j)(t)]

T. To model θ
(j)
i we use the

following form:

θ
(j)
i (t) = gi

m(j)
i

∑
k=1

b(j)
i,k ϕ

(j)
i,k (t; ξ

(j)
i,k )


where ϕ

(j)
i,k are basis functions, ξ(j) ∈ Ξ(j) are parameters of the basis functions and g

is a bijector (a differentiable bijection with a differentiable inverse). If we are using

splines, ξ
(j)
i,k are the knots. Typically, g will be chosen such that gi : Rp(j) → Θ(j)

i , i.e.

so that we do not need to worry about constraining b(j)
i,k (e.g. to ensure that the peak

enhancement satisfies γ > 1).
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Thus for a given component, we want to estimate:

1. T(j)
1 , T(j)

2

2. m(j)
i

3. b(j)
i,k , ∀k ∈ {1, . . . , m(j)

i }, ∀i ∈ {1 . . . , p(j)}

4. ξ
(j)
i,k , ∀k ∈ {1, . . . , m(j)

i }, ∀i ∈ {1 . . . , p(j)}

for all components j. Clearly we may also want to estimate the number of compo-

nents, but this will be treated as known for now. Indeed, we will start by fixing T(j)
1 ,

T(j)
2 , m(j)

i and ξ
(j)
i,k , which we assume can be determined during preprocessing.

Choice of basis function

One sensible choice of basis function are B-splines. B-splines of order k with knots ξ

form a basis for all splines of order k with knots ξ, and so are a fairly natural choice

(De Boor, 1978). We will assume that ξ is an increasing sequence of unique knots.

The B-spline basis of order k with knots ξ is a basis comprised of |ξ|+ k− 2 B-splines,

i.e. we have mi = |ξ|+ k − 2 when using B-splines.

Inference and priors

At least initially, we propose using a composite likelihood (Varin and Vidoni, 2005,

for example) to estimate the time evolving parameters. In particular, computing the

debiased Whittle likelihood on contiguous windows (perhaps of length 30 minutes)

and summing over all time windows. In simulation experiments, we generated hour

long time series and computed parameters estimates for each half hour section. We

found that the correlation between both the parameter estimates and the debiased

Whittle likelihood at the parameter estimates across the two time periods was fairly
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low, and so this does not seem overly unreasonable. However, a short gap could be

left between time periods in order to reduce the dependence.

For notational simplicity, we drop the superscripts for now. To achieve smoothness

of parameters, we suggest following Lang and Brezger (2004) and using a second-

order random walk prior for the splines parameters (which corresponds to penalis-

ing), i.e. for i ∈ {1, . . . , p}

bi,k − 2bi,k−1 + bi,k−2 ∼ N (0, τ2
i )

for k > 2 and uninformative priors for bi,1 and bi,2. Lang and Brezger (2004) assume

a hierarchical model, so that

τ2
i ∼ IG(ai, bi).

In this case we have

π(β | X) = L(X | β)
p

∏
i=1

π(β
i
| τi)π(τi).

Sampling from the posterior

Lang and Brezger (2004) use a Metropolis-Hastings algorithm to sample from the

posterior distribution. Adaptive variations designed to be self tuning can be use-

ful to improve performance, such as Roberts and Rosenthal (2009). However, we

have many parameters, and so gradient based techniques such as the Metropolis ad-

justed Langevin algorithm (Roberts and Rosenthal, 1998, for example) are likely to

be preferable. In preliminary simulations, they seem to perform much better.

Alternatively, random knot locations can be used as in DiMatteo et al. (2001), who
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use reversible jump MCMC (Green, 1995) to perform parameter inference. This has

the advantage that, in some sense the location of the first and last knot determine the

start and end time of a component weather system, which would therefore not need

to be fixed a priori.

However, it should be noted that the inference procedure described in this section is

very hard, and even short time periods (such as a week) might require hundreds of

knots, and so we have to estimate hundreds (or even thousands) of parameters, as

each model parameter requires its own spline.

4.1.2 Modelling an array of wave staffs

An interesting, albeit less common, experimental setup for monitoring waves is that

of an array of wave staffs. Such a setup was used by Donelan et al. (1985) in their ex-

periments to develop the sech2 spreading function, and Young et al. (1996) who took

measurements at Lake George in Australia. Young et al. (1996) observed bimodal

spreading, which, in part motivated the bimodal wrapped Gaussian spreading func-

tion developed by Ewans (1998). However, the relation to the freuquency-direction

spectrum in this context is somewhat harder to work with.

In particular, consider wave staffs at locations xa = [xa, ya]T and xb = [xb, yb]
T and

write x = xa − xb = [x, y]T for convenience. Recall that η = {η(t, x, y)}t,x,y∈R de-

notes the surface of the ocean over space and time. Let ηa = {η(t, xa, ya)}t∈R and

ηb = {η(t, xb, yb)}t∈R for the time series recorded at locations a and b respectively.

We have from linear wave theory that the cross-spectral density function between ηa

and ηb is

fab(ω) = f (ω)
∫ 2π

0
exp{ik(x cos ϕ + y sin ϕ)}D(ω, ϕ)dϕ
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where ω2 = kg tanh(kh) with h being water depth (Benoit et al., 1997). Integrals of

this form are surprisingly unpleasant, and as far as we are aware are not solvable

analytically.

Therefore, we are in an even more difficult situation than usual: not only must we

approximate the autocovariance from the spectral density function, but we also need

to approximate the spectral density function from the frequency-direction spectrum.

We cannot use the usual trick of writing this as a Fourier transform and using an

FFT. Instead when using quadrature methods, we have to approximate each integral

in turn (for all required frequencies).

However, we can actually do slightly better. In particular, we show in Appendix B.5

that

∫ 2π

0
exp{ik(x cos ϕ + y sin ϕ)}D(ω, ϕ)dϕ =

∞

∑
k=0

k

∑
n=0

anbk−n J1(k, n) (4.1.1)

where

J1(k, n) =
k−n

∑
r=0

i−n · (−1)k+r

2k+1 J2(k, n, r),

such that

J2(k, n, r) =
n

∑
j=0

e−(2j+2r−k)2σ2/2
(

ei(2j+2r−k)µ1 + ei(2j+2r−k)µ2
)

r!(k − n − r)!j!(n − j)!
.

Note that J1(n, k) does not depend on a, b so can be computed once and used for all

pairs of sensors in the array. We found truncating the sum in (4.1.1) to be more effi-

cient than quadrature methods. If we specify a model for S, then the resulting cross-

spectral density functions could be used in the methodology developed in Chapter 3

to perform parameter inference. However, it is still slow, and often unstable. Be-
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cause such data are uncommon, this is unlikely to be an issue for most practitioners,

but approaches similar to this might be useful in some contexts.



“2π is not one.”

— DAVID R. BRILLINGER

Part II

Detecting departures from Gaussianity

in records of ocean waves
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Chapter 5

Higher-order spectra

Higher-order spectra have been used to detect and describe non-linearities in a wide

variety of applications, from seismology (Haubrich, 1965) to plasma physics (Kim

and Powers, 1979) and from neuroscience (He and Thomson, 2010) to oceanography

(Hasselmann, 1962; Elgar and Guza, 1985; Chandran et al., 1994; Elgar et al., 1995;

Cherneva and Soares, 2007; Ewans et al., 2021). In this chapter, we shall introduce

higher-order spectra, and review some of the surrounding literature. We will of-

ten first give definitions in the third-order case and then give the general kth-order

case. We do this because, whilst Chapter 6 only requires the third-order case, there

is growing interest in orders higher than three in the ocean waves literature (Ewans

et al., 2021, for example).

The chapter is structured as follows. Some basic definitions are given in Section 5.1,

and then the definitions of higher-order spectra are given in Section 5.2. Section 5.3

covers different estimates of higher-order spectra. Section 5.4 discusses different

choices of normalisation in the literature. We then discuss existing tests for Gaussian-

ity and linearity based on the third-order spectrum (the bispectrum) in Section 5.5

118
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and give concluding remarks in Section 5.6.

5.1 Background

In this section, we recall definitions for stationarity, Gaussianity and time series linear-

ity. Note that linearity means different things to different communities. In particular,

from the perspective of ocean waves, a linear process often means that the governing

equations of motion are linear (Holthuijsen, 2007, for example).

5.1.1 Stationarity, Gaussianity and linearity

A stochastic process X = {X(t)}t∈T is said to be kth-order stationary if the joint distri-

bution of X(t1), . . . , X(tk) is equal to the joint distribution of X(t1 + τ), . . . , X(tk + τ)

for all t1, . . . , tk ∈ T and τ ∈ T. A stochastic process is said to be strictly stationary

if for all k ∈ N, the process is kth-order stationary. Here the domain of the process

T is R in the case of a continuous-time process or ∆Z in the case of a discrete-time

process sampled evenly every ∆ time points.

A stochastic process X is said to be a Gaussian process if, for any n ∈ N and

t1, . . . , tn ∈ T, the multivariate random variable X(t1), . . . , X(tn) is multivariate Gaus-

sian.

For a discrete-time process, we will say that a process Y is the result of applying a

linear filter to X if

Y(t) = ∑
j∈∆Z

a(j)X(t − j) = [a ∗ X](t)

where a : ∆Z → R is referred to as the impulse response of the filter and its Fourier
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transform h : [−π/∆, π/∆] → C such that

h(ω) = ∑
t∈∆Z

a(t)e−itω

is called the transfer function of the filter (Koopmans, 1995, for example).

A univariate stationary time series is said to be linear if, for all t ∈ ∆Z,

X(t) = ∑
j∈∆Z

a(j)ϵ(t − j) (5.1.1)

where ϵ(t) are i.i.d. (sometimes referred to as a pure white noise process). Such

processes are stationary by construction, and so linear is a stronger condition than

stationary under this definition (Brillinger, 1974). Note that, by Wold’s Theorem

(Wold, 1938), any stationary time series can be written in the form of (5.1.1) where the

noise process {ϵ(t)}t∈∆Z is a white noise process, but not necessarily an i.i.d. process.

Processes for which this noise is not i.i.d. are non-linear. Interestingly, this means that

all of the non-linearity present in a stationary time series is actually present in the

noise of the Wold decomposition.

5.1.2 Cumulants

Consider univariate random variables Y1, . . . , Yk, and assume that all of their mo-

ments exist. The cumulant generating function of Y1, . . . , Yk is defined as the log of

the characteristic function, i.e.

ψ(λ1, . . . , λk) = log E
[
ei ∑k

j=1 λjYj
]

.
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The kth order cumulant is then defined as

C [Y1, . . . , Yk] = (−i)k ∂kψ(λ1, . . . , λk)

∂λ1 . . . ∂λk

∣∣∣∣∣
λj=0, ∀j∈{1,...,k}

.

Cumulants are related to moments as follows (Leonov and Shiryaev, 1959)

C [Y1, . . . , Yk] = ∑
P∈Pk

(−1)|P|−1(|P| − 1)! ∏
A∈P

E

[
∏
j∈A

Yj

]

where Pk is the set of all partitions of {1, . . . , k}. We also have the inverse rela-

tion

E

[
k

∏
j=1

Yj

]
= ∑

P∈Pk

∏
A∈P

C
[
Yj | j ∈ A

]

where

C
[
Yj | j ∈ A

]
= C

[
YA1 , . . . , YA|A|

]
.

For example, consider mean zero random variables Y1, Y2, Y3, Y4, then

C [Y1, Y2] = E [Y1Y2] ,

C [Y1, Y2, Y3] = E [Y1Y2Y3] ,

C [Y1, Y2, Y3, Y4] = E [Y1Y2Y3Y4]− E [Y1Y2]E [Y3Y4]

− E [Y1Y3]E [Y2Y4]

− E [Y1Y4]E [Y2Y3] .
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5.2 Higher-order spectra

In this section, we shall give some basic definitions and properties of higher-order

spectra. Such definitions can be found in Brillinger (1965, 1974); Rosenblatt (1980);

Nikias (1993) for example. We begin in Section 5.2.1 with the third-order case, and

then discuss the general case in Section 5.2.2. Note that the general case is not re-

quired for Chapter 6, and could be skipped on first reading.

Unless specified otherwise, the quantities in this chapter will be defined for the

processes Xa = {Xa(t)}t∈R for a ∈ {1, . . . , d}, which are real-valued continuous-

time mean-zero stochastic processes, and their discrete-time counterparts X(∆)
a =

{Xa(t)}t∈∆Z, arising from sampling Xa every ∆ seconds. We assume further that all

moments (equivalently cumulants) of the process exist.

5.2.1 The third-order case

The continuous-time case

Let a1, a2, a3 ∈ {1, . . . , d}, then the third-order cumulant function between processes

Xa1 , Xa2 and Xa3 is c̃a1a2a3 : R3 → R such that

c̃a1a2a3(t1, t2, t3) = C [Xa1(t1), Xa2(t2), Xa3(t3)] .

Since the processes in question are mean-zero, the cumulant function is equal to the

moment function. Under the additional assumption of stationarity, c̃a1a2a3 is invari-

ant to time shifts, so define the function ca1a2a3 : R2 → R such that

ca1a2a3(τ1, τ2) = c̃a1a2a3(τ1, τ2, 0).
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This contains all of the information present in c̃a1a2a3 as we have for any t ∈ R

ca1a2a3(τ1, τ2) = c̃a1a2a3(τ1, τ2, 0)

= c̃a1a2a3(τ1 + t, τ2 + t, t),

similarly to how the autocovariance can be reduced to be dependent on just one

variable τ in the second-order stationary case.

Assuming that ca1a2a3 is absolutely integrable1, the third-order cumulant spectral

density function fa1a2a3 : R2 → C, is defined as (Brillinger, 1965)

fa1a2a3(ω1, ω2) =
1

(2π)2

∫
R

∫
R

ca1a2a3e−i(τ1ω1+τ2ω2)dτ1dτ2.

The third-order spectral density function is often referred to as the bispectrum, a

name first introduced by J. W. Tukey (Brillinger, 1991).

The discrete-time case

Similar quantities can be defined in the discrete-time case. In particular, the third-

order cumulant sequence2 between processes Xa1 , Xa2 and Xa3 is c̃(∆)a1a2a3 : ∆Z3 → R

such that

c̃(∆)a1a2a3(t1, t2, t3) = C [Xa1(t1), Xa2(t2), Xa3(t3)] .

1The third-order cumulant spectrum can be defined without this assumption, but it is not a func-
tion in the standard sense, see Section 5.2.2 (or Brillinger, 1965) for more details.

2The slightly unusual notation for a sequence is used to avoid overwhelming subscripts, but the
distinction is denoted by the presence of ∆ in the superscript.
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Note that this is equal to the third-order cumulant function on ∆Z3. Under station-

arity, again define the sequence c(∆)a1a2a3 : ∆Z2 → R such that

c(∆)a1a2a3(τ1, τ2) = c̃(∆)a1a2a3(τ1, τ2, 0).

Under the further assumption that c(∆)a1a2a3 is absolutely summable, the aliased third-

order spectral density function is defined to be f (∆)a1a2a3 : [−π/∆, π/∆]2 → C, such

that

f (∆)a1a2a3 =
∆2

(2π)2 ∑
τ1∈∆Z

∑
τ2∈∆Z

c(∆)a1a2a3e−i(τ1ω1+τ2ω2).

Aliasing

For all ω1, ω2 ∈ [−π/∆, π/∆],

f (∆)a1a2a3(ω1, ω2) = ∑
j1∈∆Z

∑
j2∈∆Z

fa1a2a3(ω1 +
2π
∆ j1, ω2 +

2π
∆ j2)

analogously to aliasing in the second order case, assuming certain regularity con-

ditions on fa1a2a3 to allow for an interchange of limits, see Brillinger and Rosenblatt

(1967b).

Symmetry

The bispectrum of a (real-valued) stochastic process has a number of symmetries

(Brillinger and Rosenblatt, 1967b), in particular

f (∆)a1a2a3(ω1, ω2) = f (∆)a1a2a3(−ω1,−ω2),

f (∆)a1a2a3(ω1, ω2) = f (∆)aρ1 aρ2 aρ3
(ωρ1 , ωρ2)
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where z denotes the complex conjugate of z; ρ is any permutation of {1, 2, 3}; and

ω3 = −ω1 − ω2 mod 2π/∆ (usually so that |ω3| < π/∆).3 These are shown in

Figure 5.2.1 (left), which we plot in the full three frequency space, in order to make

the presence of the third frequency more clear. Therefore, we will often only consider

the principle domain

ΩPD = {(ω1, ω2) | 0 ≤ ω1 ≤ ω2 & ω1 + 2ω2 ≤ 2π/∆},

as discussed by Brillinger and Rosenblatt (1967b) in the univariate case and Wong

(1997) in the multivariate case. The principle domain is shown in Figure 5.2.1 (right).

Note that these symmetries are more than just a mathematical curiosity. In particular,

in Chapter 6 we wish to account for multiple testing, and so we must first be careful

to remove any symmetries before testing.

Figure 5.2.1: Symmetries of the bispectrum (left) and principle domain (right). The
principle domain corresponds to the triangles highlighted in the darker blue and red
in the plot of the symmetries (left).

3The symmetries are analogous in the continuous-time case.
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5.2.2 The general case

The continuous-time case

The kth-order cumulant function of Xa1 , . . . , Xak for aj ∈ {1, . . . , d} is defined as

c̃a1...ak : Rk → R such that

c̃a1...ak(t1, . . . , tk) = C [Xa1(t1), . . . , Xak(tk)] .

For a stationary process, write the function ca1...ak : Rk−1 → R, so that

ca1...ak(τ1, . . . , τk−1) = c̃a1...ak(τ1, . . . , τk−1, 0)

which by shift invariance of c̃a1...ak contains all available information. Assuming that

ca1...ak is absolutely integrable, define the kth-order (cumulant) spectral density func-

tion fa1...ak : Rk−1 → C such that

fa1...ak(ω1, . . . , ωk−1) =
1

(2π)k−1

∫
Rk−1

ca1...ak(τ1, . . . , τk−1)e
−i ∑k−1

j=1 τjωjdτ1 . . . dτk−1.

It is convenient at this point to discuss the difference between moments and cumu-

lants, as pointed out by Brillinger (1965).4 Analogously to cumulants, the kth-order

moment function is defined by Brillinger (1965) as m̃a1...ak : Rk → R such that

m̃a1...ak(t1, . . . , tk) = E

[
k

∏
j=1

Xaj(tj)

]

and for stationary processes again write ma1...ak : Rk−1 → R such that

ma1...ak(τ1, . . . , τk−1) = m̃a1...ak(τ1, . . . , τk−1, 0).

4In the third-order case they are equal (when the process is mean-zero).
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The kth-order moment spectral density function ga1...ak with domain Rk−1 is then

ga1...ak(ω1, . . . , ωk−1) =
1

(2π)k−1

∫
Rk−1

ma1...ak(τ1, . . . , τk−1)e
−i ∑k−1

j=1 τjωjdτ1 . . . dτk−1.

Note we do not specify the codomain, as this may not be a function in the usual

sense, and often isn’t (Brillinger, 1965). If the kth-order moment function is abso-

lutely integrable then, as in the case of cumulants, it will be a complex valued func-

tion (Brillinger and Rosenblatt, 1967b). However, for many classes of processes (e.g.

Gaussian processes), this is not true. In particular, it will require a similar treatment

to the Dirac delta function as a measure. Similarly, for now, we relax the previous

assumption of ca1...ak being absolutely integrable. The moment spectra are related to

the cumulant spectra by the following:

fa1...ak(ω1, . . . , ωk−1) = ∑
P∈Pk

(−1)|P|−1(|P| − 1)! ∏
A∈P

g̃A(ωA)δ
(

∑j∈A ωj

)
(5.2.1)

ga1...ak(ω1, . . . , ωk−1) = ∑
P∈Pk

∏
A∈P

f̃A(ωA)δ
(

∑j∈A ωj

)
(5.2.2)

where ωk = −∑k−1
j=1 ωj and

f̃A(ωA) = faA1
...aAr

(ωA1 , . . . , ωAr−1),

g̃A(ωA) = gaA1
...aAr

(ωA1 , . . . , ωAr−1),

where r = |A|.5 Here we write Aj for the jth element of A in order to distinguish

them from aj. Notice that the kth-order cumulant and moment spectral density func-

tions are equal except when ∑j∈A ωj = 0 for any proper subset A of {1,. . . ,k}. The

5The “tilde” notation here is deliberate, because we are using the r frequency version of the rth-
order spectral density function, analogously to the r-lag version of the cumulant function.
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set of such frequencies

{
[ω1, . . . , ωk]

T ∈ Rk | ∑j∈A ωj = 0
}

is referred to as a proper submanifold by Brillinger and Rosenblatt (1967a). Also, the

set

{
[ω1, . . . , ωk]

T ∈ Rk | ∑k
j=1 ωj = 0

}

is referred to as the principle manifold, because the kth-order spectral density function

really describes the density of a measure supported on this manifold (Brillinger and

Rosenblatt, 1967a). We saw an example of this pictorially in Figure 5.2.1 for the third-

order case.

Brillinger (1965) points out that, from (5.2.1) and (5.2.2), at least one of the cumulant

spectral density function or moment spectral density function are not functions in

the usual sense (unless they are equal). Under the assumption that ca1...ak is abso-

lutely integrable, then fa1...ak is a complex-valued function, and the corresponding

moment spectral density function ga1...ak is not. In particular, in the Gaussian case

for k > 2 the cumulant spectral density function is zero everywhere. For odd k, the

moment spectral density function is also zero; however, for even k this is not the

case. For this reason Brillinger (1965) suggests using cumulants over moments in

general, and so we follow this convention, and will refer to the kth-order cumulant

spectral density function as simply the kth-order spectral density function.6

6This discussion holds similarly in the discrete-time case.
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The discrete-time case

As in the continuous-time case the kth-order cumulant sequence is c̃a1...ak : ∆Zk → R

such that

c̃(∆)a1...ak(t1, . . . , tk) = C [Xa1(t1), . . . Xak(tk)] .

Clearly where it is defined, the cumulant sequence is the same as the cumulant func-

tion. In other words, the cumulant sequence is just the domain restriction of the

cumulant function, i.e. c̃(∆)a1...ak = c̃a1...ak |∆Zk .

As in the continuous-time case, for a stationary process we write c(∆)a1...ak : Rk−1 → R

such that

c(∆)a1...ak(τ1, . . . , τk−1) = c̃(∆)a1...ak(τ1, . . . , τk−1, 0).

Assuming that c(∆)a1...ak is absolutely summable, the kth-order (cumulant) spectral den-

sity function f (∆)a1...ak : Rk−1 → C is defined by

f (∆)a1...ak(ω1, . . . , ωk−1) =
∆k−1

(2π)k−1 ∑
τ1∈∆Z

. . . ∑
τk−1∈∆Z

c(∆)a1...ak(τ1, . . . , τk−1)e
−i ∑k−1

j=1 τjωj .

The relation to the amplitude process

By the spectral representation theorem (Cramer and Leadbetter, 1967), for a station-

ary processes Xa, for all t ∈ R

Xa(t) =
∫ ∞

−∞
eitωdζa(ω).
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The process ζa = {ζa(ω)}ω∈R is called the spectral process (or sometimes the ampli-

tude process7) associated with X, and is conjugate symmetric about zero.

Similarly in discrete-time, for any t ∈ ∆Z

Xa(t) =
∫ π/∆

−π/∆
eitωdζ

(∆)
a (ω),

where ζ
(∆)
a = {ζ

(∆)
a (ω)}ω∈R is the spectral process associated with X(∆)

a . These are

related to the kth-order cumulant spectral density function by (Brillinger and Rosen-

blatt, 1967b)

C [dζa1(ω1), . . . , dζak(ωk)] = δ
(

∑k
j=1 ωj

)
fa1...ak(ω1, . . . , ωk−1)dω1 . . . dωk,

in the continuous-time case8 and

C
[
dζ

(∆)
a1 (ω1), . . . , dζ

(∆)
ak (ωk)

]
= δ∆

(
∑k

j=1 ωj

)
f (∆)a1...ak(ω1, . . . , ωk−1)dω1 . . . dωk,

in the discrete-time case, where δ is the Dirac delta function and δ∆ is a periodic

extension of the Dirac delta function satisfying

δ∆(ω) = ∑
j∈Z

δ
(

ω + 2π j
∆

)

for ω1, . . . , ωk ∈ Rk, which we shall refer to as the aliased Dirac delta function. This

yields a helpful heuristic interpretation of the higher-order spectra as describing the

higher-order cumulants of the amplitude/phase of random regular waves which

constitute the time series of interest.
7Really ζa contains both the amplitude and phase.
8Note that this notation is shorthand, and only makes sense under an integral. See Brillinger

(1974), Section 4.6, for example.
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Aliasing

The aliasing seen in the case of k = 2 is also seen for k > 2. In particular, Brillinger

and Rosenblatt (1967b) show that for all ω, λ ∈ [−π/∆, π/∆],

ζ
(∆)
a (ω)− ζ

(∆)
a (λ) = ∑

r∈Z

ζa(ω + 2πr
∆ )− ζa(λ + 2πr

∆ )

and that for ω1, . . . , ωk−1 ∈ [−π/∆, π/∆]

f (∆)a1...ak(ω1, . . . , ωk−1) = ∑
r∈Zk−1

fa1...ak(ω1 +
2πr1

∆ , . . . , ωk−1 +
2πrk−1

∆ ),

under certain regularity conditions (see Brillinger and Rosenblatt, 1967b).

Symmetry

In the case of a real valued process Brillinger and Rosenblatt (1967a) show

fa1...ak(ω1, . . . , ωk−1) = fa1...ak(−ω1, . . . ,−ωk−1).

Additionally, if ρ is any permutation of {1,. . . ,k}, then Brillinger and Rosenblatt

(1967b) show that for ω1, . . . , ωk−1 ∈ R

fa1...ak(ω1, . . . , ωk−1) = faρ1 ...aρk
(ωρ1 , . . . , ωρk−1),

where as usual, we take ωk = −∑k−1
j=1 ωj. The discrete-time symmetries are equiva-

lent.
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5.3 Estimating higher-order spectra

We begin in Section 5.3.1 with a discussion of some of the more popular estimators

for the bispectrum. We will state them in their simplest cases, with the more general

cases covered by the discussion for general k in Section 5.3.2.

5.3.1 The third-order case

As in the second-order case, estimation of the third-order spectral density function

tends to begin with the discrete Fourier transform of the observed series. For a time

series Xa(0), Xa(∆), . . . , Xa([n − 1]∆) of length n, the discrete Fourier transform is

given by

J(n)a (ω) =
n−1

∑
t=0

Xa(t∆)e−it∆ω.

The periodogram

The third-order periodogram is defined to be

I(n)a1a2a3(ω1, ω2) =
∆k−1

(2π)k−1
1
n

J(n)a1 (ω1)J(n)a2 (ω2)J(n)a3 (ω3),

where ω3 = −ω1 −ω2 mod 2π/∆ as usual. The third-order periodogram is asymp-

totically unbiased but not consistent (Brillinger and Rosenblatt, 1967a). In fact, the

variance of the third-order periodogram tends to infinity as n → ∞. In particular, as

shown by (Brillinger and Rosenblatt, 1967a),

var
(

I(n)a1a2a3(ω1, ω2)
)
= n f (∆)a1a1(ω1) f (∆)a2a2(ω2) f (∆)a3a3(ω3) + O(1).

Therefore, some kind of smoothing is required. Here we state some of the most

commonly used estimators in practice. More detailed and general estimators are
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covered in Section 5.3.2.

Segment averaging

The first approach is segment averaging (Hinich and Wolinsky, 2005, for example).

The simplest version of segment averaging breaks up a record into B contiguous

blocks of length nl, and computes the third-order periodogram for each block and

averages them, i.e.

f̂ (nl ,B)
a1a2a3(ω1, ω2) =

1
B

B−1

∑
b=0

I(bnl :b+nl−1)
a1a2a3 (ω1, ω2)

where I(r:s)
a1a2a3 denotes the third-order periodogram computed from the data at time

points r∆, . . . , s∆. A more general case with tapering and overlapping blocks is

stated in Section 5.3.2.

Hinich and Wolinsky (2005) show that as n → ∞

E
[

f̂ (nl ,B)
a1a2a3(ω1, ω2)

]
= I(nl)

a1a2a3(ω1, ω2)

= fa1a2a3(ω1, ω2) + O(1/nl)

and

var
(

f̂ (nl ,B)
a1a2a3(ω1, ω2)

)
=

1
B

var
(

I(nl)
a1a2a3(ω1, ω2)

)
=

nl
B

f (∆)a1a1(ω1) f (∆)a2a2(ω2) f (∆)a3a3(ω3) + O(1).

Therefore, we require nl/B → 0 as n → ∞. Without loss of generality, consider the

case that nlB = n. Then taking nl = n1−c we have B = nc and so nl/B = n1−2c which

tends to zero provided 0.5 < c < 1. It will be convenient to write Cn = Bnl/n ≈ B2
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so that

var
(

f̂ (nl ,B)
a1a2a3(ω1, ω2)

)
=

n
Cn

f (∆)a1a1(ω1) f (∆)a2a2(ω2) f (∆)a3a3(ω3) + O(1),

as n → ∞.

Frequency domain smoothing

Another popular technique is uniform smoothing over neighbouring Fourier fre-

quencies (Hinich, 1982, for example).9 These estimates take the form

f̂ (W,bn,n)
a1a2a3 (ω1, ω2) =

bn

∑
j1=−bn

bn

∑
j2=−bn

Wn

(
ω1 +

2π j1
n∆ , ω2 +

2π j2
n∆

)

where Wn is a uniform smoothing window and bn is an integer determining the

width of the smoothing (e.g. Birkelund and Hanssen, 2009).

Two popular windows are rectangular windows Hinich (1982); Wong (1997) and

hexagonal windows Nikias and Raghuveer (1987); Birkelund and Hanssen (2009).

These take the form

W□
n (ω1, ω2) =


1/Cn if |ω1|, |ω2| ≤ 2πbn/n∆,

0 otherwise,

for rectangular windows and

W9
n (ω1, ω2) =


1/Cn if max{|ω1|, |ω2|, |ω1 + ω2|} ≤ 2πbn/n∆,

0 otherwise,

for hexagonal windows, where in both cases Cn is the number of points in the region

9There are more general variants of frequency domain smoothing, which we state in Section 5.3.2
for the general case.
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used in the average (equal to (2bn + 1)2 in the rectangular case).

In this case, the variance of the estimate is

var
(

f̂ (W,bn,n)
a1a2a3 (ω1, ω2)

)
=

n
Cn

f (∆)a1a1(ω1) f (∆)a2a2(ω2) f (∆)a3a3(ω3) + O(1)

as n → ∞ (Hinich, 1982). If we choose bn = ⌊nc/2⌋ with 0.5 < c < 1 then n/Cn → 0

as n → ∞ as desired. We define the quantity Cn for all of these methods because it

appears in the tests for Gaussianity and linearity described in Section 5.5, and in the

bias correction in Section 6.3.3.

5.3.2 The general case

Brillinger and Rosenblatt (1967a) show that, assuming

∑
τ∈Zk−1

|τjc
(∆)
a1...ak(τ1, . . . , τk−1)| < ∞,

for j ∈ {1, . . . , k − 1}, then for ω1, . . . , ωk ∈ [−π/∆, π/∆]k the joint cumulant of the

discrete Fourier transform is

C
[

J(n)a1 (ω1), . . . , J(n)ak (ωk)
]
=
(2π

∆

)k−1 Dn

(
∆ ∑k

j=1 ωj

)
f (∆)a1...ak(ω1, . . . , ωk−1) + O(1)

as n → ∞, where Dn : R → R is the Dirichlet kernel defined to be

Dn(ω) =
sin(ωn/2)
sin(ω/2)

eiω(n−1)/2.

Importantly, Dn(ω) = n if ω ≡ 0 mod 2π and Dn(ω) = 0 if ω = 2πk/n for

k ̸≡ 0 mod n (Brillinger and Rosenblatt, 1967a). This means that when ω1, . . . , ωk

are Fourier frequencies on the principle manifold but not on any of the proper sub-
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manifolds, we have

E

[
∆k−1

n(2π)k−1

k

∏
j=1

J(n)aj (ωj)

]
= f (∆)a1...ak(ω1, . . . , ωk−1) + O(1/n),

as n → ∞. The behaviour on the proper submanifolds can be substantially differ-

ent, and can cause issues in certain circumstances, see for example the discussion of

Hinich and Wolinsky (2005), which we review in Section 5.4.

Additionally, define the tapered discrete Fourier transform

J(n)a,v (ω) =
n−1

∑
t=0

vn(t)Xa(t∆)e−it∆ω

where v is called a taper (and actually depends on n in general, but we suppress

this for notational convenience). In this more general case, Brillinger (1974) shows

that

C
[

J(n)a1,v1(ω1), . . . , J(n)ak,vk(ωk)
]
=
(2π

∆

)k−1 V (n)
k

(
∆

k

∑
j=1

ωj

)
f (∆)a1...ak(ω1, . . . , ωk−1) + O(1).

as n → ∞, where

V (n)
k (ω) =

n

∑
t=1

k

∏
j=1

vj(t)e−itω.

Notice that we have more than one taper here. This is required for multitapering,

which we describe in this section for the general case (which can of course be used

in the third-order case, but is less commonly used and the description in the general

case is fairly similar to the third-order case).
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The periodogram

Most estimation techniques begin with the kth-order periodogram, defined to be

I(n)a,v (ω1, . . . , ωk−1) =
∆k−1

(2π)k−1V (n)
k (0)

k

∏
j=1

J(n)aj,vj(ωj),

where a = [a1, . . . , ak]
T and v = [v1, . . . , vk]

T. Notice that the tapers do not need to

be the same for each series, though they often are chosen to be the same. In the case

when no taper is used, we shall write Ia.

For the untapered version, Brillinger and Rosenblatt (1967a) show that, off the proper

submanifolds,

E
[

I(n)a (ω1, . . . , ωk−1)
]
= f (∆)a1...ak(ω1, . . . , ωk−1) + O(1/n),

and

n2−k var
(

I(n)a (ω1, . . . , ωk−1)
)
=

k

∏
j=1

fa1...ak(ωj) + O(1/n),

as n → ∞. Thus, for k > 2 the kth-order periodogram is anti-consistent (Thomson,

1989). As such, some form of averaging is required. Typically this comes in one of

three forms: segment averaging, smoothing over frequency, or multitapering.

Segment averaging

Originally proposed for k = 2 with non-overlapped segments, segment averaging

was generalised by Welch (1967) to overlapping segments with tapers. If we use

segments of length nl with a shift of ns, then we have an overlap of nl − ns. The

number of blocks used is B = ⌊(n − nl)/ns⌋+ 1 and the segment averaged estimate
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is

f̂ (nl ,ns,B)
a,v (ω1, . . . , ωk−1) =

1
B

B−1

∑
b=0

I(bns :bns+nl−1)
v (ω1, . . . , ωk−1)

where

I(r:s)
a,v (ω1, . . . , ωk−1) =

∆k−1

(2π)k−1V (nl)
k (0)

k

∏
j=1

J(r:s)
aj,vj (ωj)

is the kth-order periodogram of a segment from observation r to observation s and

J(r:s)
a,v (ω) =

s−r

∑
t=0

v(t)Xa([t + r]∆)e−it∆ω

is the discrete Fourier transform of the segment with taper v. Note that the taper

used here is for a series of length nl not n.

For segment averaging with no taper, (Hinich and Wolinsky, 2005) show that asymp-

totically, as n → ∞,

E
[

f̂ (nl ,ns,B)
a (ω1, . . . , ωk−1)

]
= f (∆)a1...ak(ω1, . . . , ωk−1) + O(1/nl)

and for segment averaging with no overlap

n2−k
l B var

(
f̂ (nl ,0,B)
a (ω1, . . . , ωk−1)

)
=

k

∏
j=1

f (∆)ajaj (ωj) + O(1/nl).

Frequency domain smoothing

Frequency domain smoothing works takes a weighted average of the periodogram

over nearby frequencies (essentially as a convolution). This can either be discrete-

frequency (Brillinger and Rosenblatt, 1967a) or continuous-frequency (Lii and Rosen-
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blatt, 1990). In the continuous-frequency case,

f (W,n)
a (ω) =

∫
[−π/∆,π/∆]k−1

Wn(ω − λ)Ia(λ)dλ

=
∆

2π ∑
τ∈∆Zk−1

wn(τ)ĉ(τ)

where Wn(ω) = W(ω/bn)/(bn)k−1 and wn(τ) = w(bnτ) and ĉ(τ) is the sample

kth-order cumulant function at lag τ, which is the Fourier transform of the kth-order

periodogram.

When bn → 0 and bk−1
n n → ∞ as n → ∞, such estimates have been shown to be con-

sistent and asymptotically normal under certain assumptions (Brillinger and Rosen-

blatt, 1967a; Lii and Rosenblatt, 1990). Approaches of this type are often referred to

as indirect (Nikias, 1993).

Multitapering

Multitapering was first introduced for estimating the second-order spectral density

function by Thomson (1982). Thomson (1989) introduced mutitapering for bispectra,

which was further investigated by Birkelund and Hanssen (1999); He and Thomson

(2009). Birkelund et al. (2003) developed multitapering in the general case for arbi-

trary order spectral density functions. Multitapering averages over a collection of

tapered spectral estimates with different tapers. Say that we have a collection of K

orthogonal tapers v1, . . . , vK and let M denote the set of all k-tuples with elements in

{1, . . . , K}, i.e.

M = {1, . . . , K}k.
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The multitaper estimate is

f (M,n)
a1...ak (ω1, . . . , ωk−1) =

1
U ∑

m∈M
P(m)

k

∏
j=1

J(n)vmj
(ωj)

where P(m) = A(m)∑n
t=1 ∏k

j=1 vmj(t) and U = ∑m∈M P(m)2A(m). Additionally,

A(m) = ∏k
j=1 amj where the values of aj are weightings, often chosen based on the

eigenvalues of the respective tapers. In the case of k = 2, for orthogonal tapers, the

sum collapses to just a sum of K tapered estimates as in Thomson (1982). Usually

the dpss (discrete prolate spheroidal sequence) tapers are used, see Birkelund et al.

(2003) for more details.

5.3.3 Practical considerations

From a practical standpoint it is worth noting some computational aspects of the es-

timators described in this section. Firstly, for a periodogram of a time series of length

n, we must compute the discrete Fourier transform of the time series, an O(n log n)

operation, and then compute the periodogram at each frequency. Ignoring symme-

tries, there are nk−1 Fourier frequencies, making this process O(nk−1). Additionally,

we have a memory cost of O(nk−1). For k > 3, this very quickly becomes an issue,

in fact, if we have n = 1000 and k = 4, since the periodogram is complex valued, if

we used 64 bit floating point numbers, we would require 16GB of memory to store

the periodogram at all of the Fourier frequencies. Of course, there are symmetries

which reduce this cost, but we often have n much larger than 1000. If we want to

perform bootstrap tests, as in Section 5.5 and Chapter 6, this could quickly become

an issue.

Furthermore, note that for the multivariate case, we have dk different cross higher-

order spectra to compute. So a memory and computational cost of O(dknk−1). One
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way to avoid some of the memory problems is to use segment averaging. Alterna-

tively, we can just evaluate the spectra at some subset of the Fourier frequencies,

typically based on the bandwidth of the smoothing being used. Such an approach

is preferable not only because it reduces the memory and computational costs, but

also because estimates are then less correlated with each other, an approach used in

tests for Gaussianity and linearity (Hinich, 1982; Wong, 1993, for example). This is

described in more detail in the third-order case in Chapter 6.

5.4 Normalisation

The higher-order spectra alone can be hard to interpret. Even for Gaussian processes,

the variance of estimators of the higher-order spectra depends on the second-order

spectral density function. Additionally, the higher-order spectra of linear processes

are not necessarily constant, but all of the structure comes from the linear filter.

Therefore, it is often useful to normalise higher-order spectra. There are two com-

peting normalisations in the literature, the older normalising due to Brillinger (1965)

and the alternate normalisation proposed by Kim and Powers (1979), designed to be

bounded between zero and one. Hinich et al. (2005) points out the differences, and

describes why the former is preferable over the latter. Here we will describe these

normalisations and detail the objection of Hinich et al. (2005) to the latter normalisa-

tion. We will also describe a general class of normalisations which are invariant to

linear filtering.

In this section, we will use an augmented notation, writing

f (∆)Xa1 ...Xak
(ω1, . . . , ωk−1) = f (∆)a1...ak(ω1, . . . , ωk−1)

for all ω1, . . . , ωk−1 ∈ [−π/∆, π/∆]. When all of the series are the same, we will use
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the simpler notation f (∆)X , where the order will be clear from the number of argu-

ments. From now on, we will focus solely on discrete-time processes.

5.4.1 The third-order case

We shall begin by considering the simple case of the bispectrum of a univariate

discrete-time process X∆. If X∆ is linear, i.e. a time-invariant linear filter of a pure

white noise process ϵ (with transfer function h), from (Brillinger, 1965) we have

that

f (∆)X (ω) =
κ2

(2π/∆)
h(ω)h(−ω)

=
σ2

(2π/∆)
|h(ω)|2,

f (∆)X (ω1, ω2) =
κ3

(2π/∆)2 h(ω1)h(ω2)h(−ω1 − ω2)

=
κ3

(2π/∆)2 h(ω1)h(ω2)h(ω1 + ω2),

where κ2 = σ2 = var (ϵ(t)) and κ3 = C3[ϵ] = E
[
ϵ3].

Motivated by this, the squared skewness function is defined to be

ΓX(ω1, ω2) =
| f (∆)X (ω1, ω2)|2

f (∆)X (ω1) f (∆)X (ω2) f (∆)X (ω3)
.

It is often claimed (Hinich, 1982; Birkelund and Hanssen, 2009; Berg et al., 2010, for

example), that if a process is linear, then

ΓX(ω1, ω2) =
[κ2

3/(2π/∆)4]|h(ω1)h(ω2)h(−ω1 − ω2)|2
[σ6/(2π/∆)3]|h(ω1)|2|h(ω2)|2|h(−ω1 − ω2)|2

=
1

(2π/∆)
|κ3|2
σ6 .

Meaning that the squared skewness function is constant for a linear process. How-
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ever, this ignores the possibility that the spectral density function is zero at some

frequencies. In this case, the squared skewness function is not defined at those fre-

quencies. This happens precisely when the transfer function is zero. If the transfer

function of a linear filter is never zero, then it is said to be invertible. Therefore, we

shall refer to processes obtained by an invertible linear filter of an i.i.d. process as

invertible linear processes.

It is fairly easy to construct filters which are not invertible. In particular, consider

the filter where a(0) = 1 and a(∆) = 1 but a(t) = 0 for all other t ∈ ∆Z. The transfer

function of this filter is given by

h(ω) = e−iω∆ + 1

for all ω ∈ [−π/∆, π/∆]. Clearly this is zero when ω = ±π/∆. In fact, any filter of

the form

a(t) =


1 if 0 ≤ t ≤ m,

0 otherwise

where m ≥ 1 will have a transfer function which is zero at certain frequencies. This

result has an interesting interpretation. By the central limit theorem, such averaging

should produce a process which is “more Gaussian” than the original noise. Recall

that the bispectrum of a Gaussian process is zero, and in the case of these filters, the

resulting process has a bispectrum which is zeroed at certain frequencies. The more

points we include in the average, the more often the transfer function hits zero, and

the more of the bispectrum is zero.10

The square root of ΓX is often referred to as the skewness function11, and so we will

10This holds for spectra of all orders.
11Some authors (Kim and Powers, 1978) refer to this as bicoherence, though, as pointed out by
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refer to ΓX as the squared skewness function. Note that this is not the skewness of a

univariate random variable, but rather, can be heuristically interpreted as the cross

skewness of the associated spectral process.

Kim and Powers (1979) suggest an alternate normalisation, usually referred to as the

bicoherence. In particular, they define

ΓX(ω1, ω2) =
|E [X (ω1)X (ω2)X (ω3)] |2

E [|X (ω1)X (ω2)|2]E [|X (ω3)|2]

where X is the discrete Fourier transform of the stochastic process X for some long,

but finite time (He and Thomson, 2009).12 The Cauchy-Schwartz inequality gives

that Γ(ω1, ω2) ≤ 1. However, as pointed out by Hinich et al. (2005), this is mislead-

ing. The bicoherence (and its generalisation to arbitrary k) is still widely used, and

therefore, we will briefly reiterate the argument of Hinich and Wolinsky (2005).

As we mentioned, X is defined to be the discrete Fourier transform of X for some

long period of time, say N. In the notation of the previous section,

X (ω) = J(N)(ω).

The argument of Hinich and Wolinsky (2005) is as follows. From the results of

Brillinger and Rosenblatt (1967a) that if we avoid the proper submanifolds, as N →

∞ we have

E
[
|X (ω3)|2

]
= N f (∆)X (ω3) + O(1)

E [X (ω1)X (ω2)X (ω3)] = N f (∆)X (ω1, ω2) + O(1).

Hinich and Wolinsky (2005), this is misleading as the squared skewness function is not bounded
above by one. Note we use bicoherence to refer to the quantity defined by Kim and Powers (1979).

12Again, this is not always defined, though it is for invertible linear processes.
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The final term in the denominator is

E
[
|X (ω1)X (ω2)|2

]
= E [X (ω1)X (ω2)X (−ω1)X (−ω2)]

= C [X (ω1),X (ω2),X (−ω1),X (−ω2)]

+ E
[
|X (ω1)|2

]
E
[
|X (ω2)|2

]
+ O(1)

= N f (∆)X (ω1, ω2,−ω1)

+ [N f (∆)X (ω1) + O(1)][N f (∆)X (ω2) + O(1)] + O(1)

= N f (∆)X (ω1, ω2,−ω1) + N2 f (∆)X (ω1) f (∆)X (ω2) + O(N).

Putting this together we have

Γ(ω1, ω2) =
|E [X (ω1)X (ω2)X (ω3)] |2

E [|X (ω1)X (ω2)|2]E [|X (ω3)|2]

=
f (∆)X (ω1, ω2) + O(1/N)

f (∆)X (ω1, ω2,−ω1) f (∆)X (ω3) + N f (∆)X (ω1) f (∆)X (ω2) f (∆)X (ω3) + O(1)
.

So as N → ∞, this tends to zero. As a result, this statistic is artificially bounded

above by one, and will likely be misleading (Hinich and Wolinsky, 2005).

5.4.2 The general case

In the third-order case, one of the motivations for considering the squared skewness

function is that it is constant for an invertible linear processes. In fact, the squared

skewness function is invariant to invertible linear filters. In general, it is possible to

construct a broader class of normalisations for which this is true. Consider

Γ(P)
X (ω1, . . . , ωk) =

| f (∆)X (ω1, . . . , ωk−1)|2

∏A∈P f̃ (∆)X (ωA,−ωA)
(5.4.1)
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where P is some partition of {1, . . . , k} and

f̃ (∆)X (ωA,−ωA) = f (∆)X (ωA1 , . . . , ωAr ,−ω1, . . . ,−ωAr−1),

with r = |A|. Essentially, the standard normalisation corresponds to the largest

partition i.e. with |P| = k. A normalisation similar to, but not the same as, the Kim

and Powers normalisation corresponds to partitions with |P| = 2 (of which there are

k choices).

Brillinger (1965) show that if Y arises from a linear filter of X then

f (∆)Y (ω1, . . . , ωk−1) = f (∆)X (ω1, . . . , ωk−1)
k

∏
j=1

h(ωj).

Therefore, assuming that the linear filter is invertible, and that f (∆)X (ω) > 0 for all ω,

we have

Γ(P)
Y (ω1, . . . , ωk) =

| f (∆)Y (ω1, . . . , ωk−1)|2

∏A∈P f̃ (∆)Y (ωA,−ωA)

=
| f (∆)X (ω1, . . . , ωk−1)∏k

j=1 h(ωj)|2

∏A∈P f̃ (∆)X (ωA,−ωA)∏j∈A h(ωj)h(−ωj)

=
| f (∆)X (ω1, . . . , ωk−1)|2

∏A∈P f̃ (∆)X (ωA,−ωA)

= Γ(P)
X (ω1, . . . , ωk)

where the cancellation of the transfer functions follows from P being a partition of

{1, . . . , k} and conjugate symmetry of the transfer function. Thus these normalisa-

tions are all invariant to invertible linear filters.

Since an invertible linear process is the result of applying an invertible linear filter to

a pure white noise process, and a pure white noise process has constant spectra for
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all k, linearly-invariant normalisations of the form (5.4.1) are constant for invertible

linear processes. In particular, for a pure white noise process ϵ = {ϵ(t)}t∈∆Z, letting

κk = Ck[ϵ(t)] we have

f (∆)ϵ (ω1, . . . , ωk−1) =
κk

(2π/∆)k−1

and therefore

Γϵ(ω1, . . . , ωk−1) =
κk

(2π/∆)k−1 ∏
A∈P

(2π/∆)2|A|−1

κ|A|

=

∣∣∣∣∣ κk

∏A∈P κ|A|

∣∣∣∣∣
2 (

2π

∆

)2−|P|
.

Note that the only form of (5.4.1) which avoids normalising by a higher-order spec-

tral density on a proper submanifold is when |P| = k. Additionally, by normalising

by the second order spectral density function (|P| = k), we standardise the vari-

ance of most non-parametric estimators. For these reasons, we prefer the statistical

normalisation

ΓX(ω1, . . . , ωk−1) =
| f (∆)X (ω1, . . . , ωk−1)|2

∏k
j=1 f (∆)X (ωj)

.

In particular, in the third-order case, we use the squared skewness function.

5.4.3 Multivariate squared skewness

Consider a d-dimensional real-valued mean-zero stationary process denoted by X =

{X(t)}t∈∆Z. Hannan (2009) define the process to be linear if, for all t ∈ ∆Z,

X(t) = ∑
j∈∆Z

A(j)ϵ(t − j)
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where {ϵ(t)}t∈∆Z is i.i.d. and Aj are matrices satisfying ∑j∈Z ∥Aj∥2 < ∞ (where ∥A∥

is the largest singular value of the matrix A). As in the univariate case, the process

is a linear filter of an i.i.d. process, with impulse response sequence A : ∆Z → Rd×d

and transfer Function H : [−π/∆, π/∆] → Cd×d such that

H(ω) =
∆

2π ∑
t∈∆Z

A(t)e−itω.

Whilst we could consider the cross squared skewness, Wong (1997) point out that

this would not be constant for processes that are linear in the multivariate sense. For

this reason, they propose a multivariate version of the squared skewness function,

which is constant for linear processes. This is then used in a test for non-Gaussianity

and non-linearity (see Section 5.5). As in the univariate case, this is only true for

invertible linear filters. In the multivariate case, a linear filter is said to be invertible

if the the transfer function, which is matrix valued, is invertible at every frequency

(Hannan, 2009).

We now need the concept of the cumulant vector sequence. For a full definition,

see Jammalamadaka et al. (2006); however, for our purposes we use the definition

of Wong (1997). In particular, the kth-order vector cumulant sequence is denoted by

c(∆)X : ∆Zk−1 → Rdk
such that

c(∆)X (τ1, . . . , τk−1) = [c(∆)Xa1 ...Xak
(τ1, . . . , τk−1)]a1,...,ak ,

where the indices are ordered in the same way as a Kronecker product of k vectors,

each of length d. The kth-order spectral density vector function f (∆)
X

: Rk−1 → Cdk
, is

the Fourier transform of c(∆)X .

Note that in the second-order case, this is different to the spectral density matrix
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function, f (∆)X , encountered in Chapter 3. We make the distinction by underlining

vector valued functions (and vectors). The spectral density vector function and spec-

tral density matrix function are related by

f (∆)
X

(ω) = vec( f (∆)X (ω)T)

where vec denotes the operator that stacks a matrix by its columns. The transpose is

required because the Kronecker product stacks things differently to the vec operator

(see Graham, 1981).

If the process is multivariate linear, then Wong (1997) show that

f (∆)
X

(ω1, . . . , ωk−1) =
∆k−1

(2π)k−1 κk

⊗k

∏
j=1

H(ωj)

where ∏⊗k
j=1 H(ωj) = H(ω1)⊗ . . . ⊗ H(ωk) and

f X(ω) =
∆

(2π)
ΣH(ωj)

⊗2

with H(ω)⊗2 = H(ω)⊗ H(ω).

Wong (1997) defines the normalisation ΓX : ∆Zk−1 → R such that

ΓX(ω1, . . . , ωk−1) = f (∆)
X

(ω1, . . . , ωk−1)
H

(
⊗k

∏
k=1

f (∆)X (ωj)

)−1

f (∆)
X

(ω1, . . . , ωk−1).

They show that, if the process is linear we have

ΓX(ω1, . . . , ωk−1) =
1

(2π)k−2 κH
k (Σ

⊗k)−1κk,
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where

κk = C[ϵ(t), . . . , ϵ(t)︸ ︷︷ ︸
k times

]

Σ = E
[
ϵ(t)ϵ(t)H

]
− E [ϵ(t)]E [ϵ(t)]H

so that vec(ΣT) = κ2. However, as in the univariate case, their proof only holds if

the process is also invertible (the squared skewness function is not defined at some

frequencies when it isn’t). Again, this result can be seen in the slightly more gen-

eral light as an invariance to invertible linear filtering (assuming of course that the

spectral density matrix function of the process being filtered is itself invertible at all

frequencies).

5.5 Global tests for linearity and Gaussianity

In what follows, when we refer to a linear process, we will mean that the process

is invertible, i.e. it has a positive spectral density function (positive definite in the

multivariate case). We also drop the dependence on X in many quantities, as the dif-

ference between univariate and multivariate will either not matter, or be clear from

context. Hinich (1982) suggested tests for Gaussianity and linearity based on the

asymptotic distribution of the skewness function under the respective nulls (an ap-

proach which has been used by Cherneva and Soares (2007) to test for non-linearity

in ocean wave records). Wong (1997) then extended this to the multivariate third-

order case, and Dalle Molle and Hinich (1995) to the fourth-order univariate case.

Testing is based on the asymptotic distribution, under the null, of

R̂n(ω1, ω2) = 2π2Cnn−1Γ̂n(ω1, ω2),
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where Γ̂n(ω1, ω2) is an estimator of Γ(ω1, ω2) (typically a plug in estimator) and Cn

is a normalising constant depending on the method used to estimate the various

spectra required for computing Γ̂n. Hinich (1982) in the univariate case and Wong

(1997) in the multivariate case show that for large n, R̂n(ω1, ω2) is approximately

χ2
2d3(λn(ω1, ω2)), where λn(ω1, ω2) = 2π2Cnn−1Γ(ω1, ω2), provided n/Cn → 0 as

n → ∞.

Gaussianity

Under the null hypothesis of Gaussianity, λ(ω1, ω2) = 0 for all ω1, ω2 ∈ ΩPD. There-

fore Hinich (1982) suggest the test statistic

DG = ∑
(ω1,ω2)∈Ω

R̂n(ω1, ω2),

where Ω ⊂ ΩPD. In the univariate case, under the null assumption of Gaussianity,

DG is approximately χ2
2|Ω| (Hinich, 1982). Or more generally, in the multivariate case,

DG is approximately χ2
2d3|Ω| as n → ∞ (Wong, 1997), assuming the process is Gaus-

sian. Therefore, the null hypothesis of Gaussianity is rejected at the q significance

level if P
(

DG > χ2
2d3|Ω|

)
≤ q.

Linearity

Under the null of a linear, but not necessarily Gaussian process, (Hinich, 1982) and

Wong (1997) show that for large n, R̂n(ω1, ω2) is approximately χ2
2d3|Ω|(λ0), where

λ0 = 2Cnn−1κH
3 (Σ⊗3)−1κ3, in particular, the noncentrality parameter is constant.

Since λ0 is unknown, Hinich (1982) suggest estimating it with the method of mo-

ments estimator

λ̃0 =
1
|Ω| ∑

(ω1,ω2)∈Ω
R̂n(ω1, ω2)− d3.
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This could be replaced by the maximum likelihood estimator

λ̂0 = argmax
λ∈R

∑
(ω1,ω2)∈Ω

log fR(R̂n(ω1, ω2); 2d3, λ)

where

fR(x; ν, λ) =
1
2

e−(x+λ)/2
( x

λ

)ν/4−1/2
Iν/2−1(

√
λx)

is the pdf of a noncentral chi-squared distribution with degree of freedom ν and

noncentrality parameter λ (and Ik is a modified Bessel function of the first kind),

but we have found little difference in simulations. If the process is not linear, then

the noncentrality parameter may not be constant. In this case, there should be more

density in the tails of R̂n(ω1, ω2) than in a χ2
2d3(λ̂0) distribution. To test this, Hinich

(1982) suggest using the inter quartile range of R̂ = [R̂n(ω1, ω2)](ω1,ω2)∈Ω, whilst

Wong (1997) suggest the 80% inter quantile range due to the results from Ashley et al.

(1986). We shall refer to these test statistics as D(IQR)
L and D(80)

L for the interquartile

range and 80% interquantile range respectively.

More formally, let R̂(j) denote the jth order statistic of R̂. Then the yth sample quan-

tile of R is R̂(⌊y|Ω|⌋+1), where ⌊x⌋ denotes the largest integer less than or equal to

x. Assume that the null of linearity is true (so that each element of R is approxi-

mately χ2
2d3(λ̂0) distributed) and write ξy = F−1

R (y) where F−1
R is the inverse CDF

of a χ2
2d3(λ̂0) distribution. Then by Theorem 10.3 of David and Nagaraja (2004),

we have for arbitrary quantiles 0 < y1 < y2 < 1 the quantile range DL(y1, y2) =

R̂(⌊y2|Ω|⌋+1) − R̂(⌊y1|Ω|⌋+1) satisfies

|Ω|1/2 [DL(y1, y2)− (ξy2 − ξy1)
] L−→ N (0, σ2(y1, y2))
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as |Ω| → ∞, where L−→ denotes convergence in distribution and

σ2(y1, y2) =
y2(1 − y2)

fR(ξy2)
2 +

y1(1 − y1)

fR(ξy1)
2 − 2

y1(1 − y2)

fR(ξy2) fR(ξy1)

and fR is the pdf of a χ2
2d3(λ̂0). In the case of the inter quartile range, y1 = 0.25 and

y2 = 0.75, so we have (Hinich, 1982)

σ2(0.25, 0.75) =
1

16

(
3

fR(ξ0.75)2 +
3

fR(ξ0.25)2 − 2
fR(ξ0.75) fR(ξ0.25)

)
.

For the 80% quantile range, we have y1 = 0.1 and y2 = 0.9 and thus

σ2(0.1, 0.9) =
1

100

(
9

fR(ξ0.9)2 +
9

fR(ξ0.1)2 − 2
fR(ξ0.9) fR(ξ0.1)

)
.

Note that this is different to the result stated by Wong (1997), who claim

σ2(0.1, 0.9) =
1

16

(
3

fR(ξ0.9)2 +
3

fR(ξ0.1)2 − 2
fR(ξ0.9) fR(ξ0.1)

)

which is not correct. In any case, given a quantile range with lower quantile y1 and

upper quantile y2 we reject the null hypothesis at the q significance level if

P
(

DL(y1, y2) > N (ξy2 − ξy1 , σ2(y1, y2)/|Ω|)
)
≤ q.

The test statitics used by Hinich (1982) and Wong (1997) are D(IQR)
L = DL(0.25, 0.75)

and D(80)
L = DL(0.1, 0.9) respectively.

5.5.1 Univariate bootstrap tests

There are many cases in which the finite sample distribution of the aforementioned

test statistics deviates greatly from the asymptotic distribution (e.g. Birkelund and

Hanssen, 2009; Berg et al., 2010). In the univariate case, Birkelund and Hanssen
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(2009) address this problem by using the method of surrogate data to generate series

under the null hypothesis, in order to better approximate the distribution of the test

statistics. Additionally, they suggest two new test statistics

D̃G =
1
|Ω| ∑

(ω1,ω2)∈Ω
R̂n(ω1, ω2)

D̃L =
1
|Ω| ∑

(ω1,ω2)∈Ω
(R̂n(ω1, ω2)− D̃G)

2

which are sample mean and (biased) sample variance of R̂ respectively.

Under the Gaussian null hypothesis, Birkelund and Hanssen (2009) suggest using

the randomised phase approach of Theiler et al. (1992) to generate surrogate time

series, namely

X∗(t) =
1
n

n

∑
j=1

d(n)X (ωj)eiθj eitωj

where ωj is the jth Fourier frequency and θj
i.i.d∼ Unif(0, 2π). In other words, compute

the discrete Fourier transform of the series, scramble the phases and use the inverse

discrete Fourier transform to return to the time domain.

To simulate under the null of linearity, Birkelund and Hanssen (2009) propose the

linearly filtered non-Gaussian (LFNG) surrogate data generator. In particular, they

propose first fitting an AR(p) model to the time series, with parameter estimate

â1, . . . , âp, and then bootstrapping the residuals. Birkelund and Hanssen (2009) claim

that, because an AR model averages, by the central limit theorem, the simulated time

series are “Gaussianified”. To circumvent this, Birkelund and Hanssen (2009) pro-

pose adjusting the bootstrapped residuals as follows. Start with initial noise ϵ̂0(t)
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generated by bootstrapping the residuals of the AR model, i.e. bootstrapping

ϵ̂(t) = X(t)−
p

∑
j=1

ajX(t − j)

for t ∈ {p + 1, . . . , n}. Adjust the noise iteratively by computing

ϵ̂j+1(t) = ϵ̂∗j (t) + X(t) − X(j)
(t)

where ϵ̂∗j (t) is a bootstrap sample from {ϵ̂j(t)}n
t=p+1 and X(j)

(t) is ordered output of

the AR filter of {ϵ̂j(t)}n
t=p+1. This procedure is terminated when |κ̂3/κ̂

(j)
3 − 1| ≤ ε,

where ε is some tolerance and κ̂3 and κ̂
(j)
3 are estimates of the skewness of {X(t)}

and {X(j)(t)} respectively (which is not the squared skewness function of those pro-

cesses).

Berg et al. (2010) suggest using the AR(∞) “seive” bootstrap (first introduced by

Kreiss, 1988). This proceeds as follows:

1. Fit an AR(p) to the time series, for some large p.

2. Generate AR realisations from residuals drawn from a distribution which de-

pends on the null in question:

• Gaussian null: N (0, σ̂2) where σ̂2 = 1
n−p ∑n

t=p+1(ϵ̂(t)− ϵ) and

ϵ = 1
n−p ∑n

t=p+1 ϵ̂(t).

• Linear null: empirical distribution of ϵ(t)− ϵ.

• Linear null with symmetric errors (zero skewness): symmetrised empir-

ical distribution of ϵ(t) − ϵ (achieved by multiplying a realisation from

the empirical distribution by −1 or 1 based on a Bernoulli(0.5) random

variable).
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This is referred to as an AR(∞) bootstrap as the order of the AR (p) is taken to infinity

in theory. This is in contrast to the method proposed by Birkelund and Hanssen

(2009), who choose the order of the AR model based on standard model comparison

techniques (not taking p to infinity).

At this point, the reader may be wondering why the algorithm due to Birkelund and

Hanssen (2009) involved a correction for “Gaussianification”, but that the AR(∞)

approach of Berg et al. (2010) did not. The claim of Birkelund and Hanssen (2009)

is that, due to the central limit theorem, a linear filter will make the filtered process

more Gaussian than the original. Note however, that the Wold decomposition yields

a plethora of counter examples, since it says that any stationary process is the result

of applying a linear filter to a white noise process, which includes all non-Gaussian

(and indeed non-linear) stationary discrete-time processes.

However, clearly some linear filters will make the resultant process more Gaussian,

e.g. a filter which computes an unweighted average of a finite number of time points

from the input process. At this point it helps to make the concept of “Gaussianifica-

tion” more concrete. The property that concerns us here is that the result of applying

the AR filter to the bootstrapped residuals (which we hope are white noise) would

not change the squared skewness function. Provided the filter is invertible, then this

will not happen. For our purpose, note that AR processes are stationary if and only

if they are produced by an invertible filter (Grenander and Rosenblatt, 2008), and so

when the AR filter is applied to noise the squared skewness function will not change.

Thus the adjustment suggest by Birkelund and Hanssen (2009) is not necessary (as

is confirmed by the results of Berg et al. (2010), where AR filtering is shown to work

without such an adjustment).
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5.6 Conclusion

In this chapter, we have reviewed higher-order versions of the spectral density func-

tion. We gave a detailed discussion of different normalisation choices, and recom-

mendations for their use. Additionally, we reviewed a variety of estimation tech-

niques. We finished with a discussion of global testing for Gaussianity and linearity

of time series. However, in the case of ocean waves, the interest is not in global

tests. Rather, the interest is in detecting frequency regions in which the higher-order

spectra are non-zero. It is these local tests that we focus on in Chapter 6.



Chapter 6

Testing for non-Gaussianity in ocean

wave records

In Chapter 5, we reviewed higher-order spectra in the general case, and discussed

some global tests for Gaussianity and linearity (in the time series sense). From the

perspective of ocean waves, the interest in detecting non-linearities in wave records

usually corresponds to detecting regions of higher-order spectra which are non-zero.

In the language of the tests seen in the previous section, the interest is in tests of non-

Gaussianity. In contrast to the global tests discussed in Section 5.5, there is significant

interest in the frequencies at which these (oceanographic) non-linearities occur.

A technique for detecting local non-linearities, based on generating surrogate back-

ground data, has been proposed by Schulte (2016). They propose using a Gaus-

sian AR(1) process to generate a background level used for detecting non-linearities.

However, the processes we are interested in are very different from AR(1) processes.

To some extent, this is mitigated against because the test is for departures in the

squared skewness function, which is invariant to the second-order spectral density

158
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function of the process. Since this is all that distinguishes two (mean-zero) Gaussian

processes, the choice should not matter. However, whilst this is true of the pro-

cess, the finite sample properties of estimates of the squared skewness function will

in general not be the same for two different Gaussian processes. As such, we pro-

pose generating the surrogate data using circulant embedding from non-parametric

estimates of the spectral density function, a technique developed by Percival and

Constantine (2006) for univariate time series and Chandna and Walden (2013) for

multivariate time series.

At this point we should note that the squared skewness function is different from

the marginal skewness of the process at a given point in time. In particular, if the

squared skewness function is zero, then so is the skewness of the process at a given

time point. However, the converse is not true (Raghuveer, 1994).

This chapter is structured as follows. Firstly, we review some definitions of third

order spectra in Section 6.1. Then in Section 6.2 we introduce a family of simple pro-

cesses with interesting higher-order spectra based on polynomials of two different

Gaussian processes. Section 6.3 presents simulation studies exploring the perfor-

mance of the proposed technique. An application to wave data recorded at Hum-

boldt Bay in California is then presented in Section 6.4. A discussion and concluding

remarks are then made in Section 6.5.

6.1 Background

In this section, we briefly review some necessary background literature. Chap-

ter 5 provided a more thorough overview of these concepts, but we review some

of them here for convenience. Note that we restrict our attention to the discrete-time

case.
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6.1.1 The bispectrum

Let X = {X(t)}t∈∆Z be a discrete-time strictly-stationary real-valued stochastic pro-

cess. The autocovariance (second-order cumulant function) and third-order cumu-

lant function are defined as

cX(τ) = cov (X(τ), X(0)) ,

cX(τ1, τ2) = C [X(τ1), X(τ2), X(0)] ,

respectively, where C denotes the joint cumulant.1 If the process is mean zero,

then the third-order cumulant function is equal to the third-order moment func-

tion. Assuming that the second- and third-order cumulant functions are absolutely

summable, the second-order cumulant spectral density function (or power spec-

trum) is the Fourier transform of the autocovariance, and the third-order cumulant

spectral density function (often referred to as the bispectrum) is the Fourier trans-

form of the third-order cumulant function. In other words, the power spectrum and

bispectrum are

f (∆)X (ω) = ∑
τ∈∆Z

cX(τ)e−iωτ,

f (∆)X (ω1, ω2) = ∑
τ1∈∆Z

∑
τ2∈∆Z

cX(τ1, τ2)e−i(ω1τ1+ω2τ2),

respectively. A stationary process has a spectral representation (Cramer and Lead-

better, 1967) so that

X(t) =
∫ π/∆

−π/∆
eitωdζ

(∆)
X (ω).

1Note that for real valued processes, cov (X(τ), X(0)) = C [X(τ), X(0)], but for complex processes
this is not the case. In particular, cov (X(τ), X(0)) = C

[
X(τ), X(0)

]
.
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The associated spectral process ζ
(∆)
X can be related to the power spectrum and bis-

pectrum by

E
[
dζ

(∆)
X (ω1)dζ

(∆)
X (ω2)

]
= δ∆(ω1 + ω2) f (∆)X (ω1)dω1dω2,

E
[
dζ

(∆)
X (ω1)dζ

(∆)
X (ω2)dζ

(∆)
X (ω3)

]
= δ∆(ω1 + ω2 + ω3) f (∆)X (ω1, ω2)dω1dω2dω3

where δ∆(x) = ∑k∈Z δ(x + 2πk/∆) denotes the aliased Dirac delta function. Heuris-

tically, this suggests that we can think about power spectra as describing the variance

of the spectral process (which is uncorrelated for different frequencies) and the bis-

pectra as describing the third-order joint cumulant between the spectral process at

different frequencies.

6.1.2 Normalisation

The bispectrum can be difficult to interpret alone, as linear aspects of the process

are often present in the bispectrum. Therefore, it is common to first normalise the

bispectrum. Many authors (including Schulte, 2016) favour the use of bicoherence,

introduced by Kim and Powers (1979). However, as we discussed in Section 5.4, we

will use the squared skewness function. In the univariate case this is defined as

ΓX(ω1, ω2) =
| f (∆)X (ω1, ω2)|2

f (∆)X (ω1) f (∆)X (ω2) f (∆)X (ω3)

where ω3 = −ω1 − ω2 mod 2π/∆ such that |ω3| < π/∆ (see Chapter 5 for the

multivariate definition). To summarise Section 5.4, the use of the squared skewness

function over bicoherence, is for two main reasons. Firstly, estimates of the bicoher-

ence tend to zero as n → ∞ (Hinich and Wolinsky, 2005). Secondly, the bicoherence

down-weights non-linearities in the bispectrum by non-linearities of higher-order,

which can be misleading. Therefore, we prefer the squared skewness function.
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6.1.3 Estimation

In Section 5.3, we described a variety of different estimation techniques for higher-

order spectra, in particular bispectra. Whilst in theory these could be evaluated

at any frequency pair, in practice we only evaluate them at some finite number of

frequency pairs, which we shall call evaluation frequencies. In the case of the peri-

odogram, a fairly natural choice is the Fourier frequencies. However, for smoothed

estimates there are other considerations. In particular, because such smoothing cor-

relates over frequency, we will often only estimate the bispectra at a subset of the

Fourier frequencies, with a spacing determined by the bandwidth of the estimation

technique in question. This is similar to the approach used in global testing (e.g.

Hinich, 1982; Wong, 1997). For example, consider a kernel smoothed estimate of the

bispectra using uniform rectangular windows (see Section 5.3.1). Then we choose

evaluation frequencies by placing the appropriate sized squares over the grid of

Fourier frequencies such that they are separated by a gap of one Fourier frequency,

in other words, so that no periodogram ordinate is used in more than one estimate

(avoiding additional correlation between estimates at different frequencies). We then

only include frequencies for which the entire square is in the interior2 of the principle

domain

ΩPD = {(ω1, ω2) | 0 ≤ ω1 ≤ ω2 & ω1 + 2ω2 ≤ 2π/∆}.

The procedure is analogous for other kinds of estimates. We choose a bandwidth of

bn = ⌊n0.55/2⌋, as this satisfies the consistency requirements, but does not lose too

much resolution.

Figure 6.1.1 shows the evaluation frequencies for both rectangular and hexagonal

smoothing when n = 200 and bn = 9. The potential evaluation frequencies are

shown as dots at the centre of the smoothing region, and are black if the frequency
2We follow Wong (1997) in not including the boundary as estimates of the squared skewness func-

tion on the boundary have a different distribution to the interior.
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Figure 6.1.1: Evaluation frequencies for uniform smoothing over rectangles (left) and
hexagons (right). Minor ticks are at each of the Fourier frequencies and the filled
orange triangle is the principle domain.

pair is included and white if not. Solid lines indicate that the boundary is included

in a region, whilst dashed lines indicate that the boundary is not included.

In the remainder of this chapter, we will use the uniform hexagonal smoothing ker-

nel to estimate the bispectrum, as this is fast and has a very obvious definition of

smoothing region, whilst improving over the rectangular kernel in that it smooths

over a region which is more centred on the frequency pair of interest.

6.1.4 Local testing for non-Gaussianity

Schulte (2016) proposed an approach for determining significant deviations from

zero in wavelet bicoherence (which is analogous to the Kim and Powers normalisa-

tion, but for wavelets). We will use the squared skewness function in this work, but

the procedure is analogous. Their approach was to generate background red-noise

processes (AR(1) processes) with the same covariance structure as the observed pro-

cesses, i.e. the same lag-1 correlation3. Let Nr denote the number of replications

used in the procedure. Estimates of the squared skewness function of these back-

3The same variance is not required as the squared skewness function is invariant to this (as is the
bicoherence).
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ground processes are used to compute p-values for the squared skewness function

of the true process at each frequency pair. This can then be used to approximate

the true distribution of such p-values under the null hypothesis that the process is

Gaussian.

In general, for recorded time series X(0), X(∆), . . . , X([n − 1]∆) and some frequency

pair ω1, ω2,

1. Estimate the squared skewness function from the original record, Γ̂X(ω1, ω2).

2. For j ∈ {1, . . . , Nr}:

(a) Generate X̃j(0), X̃j(∆), . . . , X̃j([n − 1]∆) from some Gaussian process X̃.

(b) Compute Γ̂X̃j
(ω1, ω2).

3. Estimate the p-value by 1
Nr

∑Nr
j=1 1Γ̂X̃j

(ω1,ω2)≤Γ̂X(ω1,ω2)
.

This procedure is then repeated for each desired frequency pair. In the version pro-

posed by Schulte (2016), X̃ is an AR(1) with lag-1 coefficient equal to the sample lag-1

correlation of the recorded time series. However, the processes we are interested in

are not well represented by an AR(1) process. A sensible first choice would be to con-

sider the AR(∞) bootstrap technique (Kreiss, 1988), which has already been used by

Berg et al. (2010) in the case of global testing (see Section 5.5). However, whilst the

AR model here is infinite in theory, clearly in practice a finite AR model must be

used. To investigate the effect of this, we generate 10,000 time series with JONSWAP

spectral density functions (with parameters α = 0.7, ωp = 0.8, γ = 3.3, r = 5). For

each time series we fit AR models of order 1, 10, 30 and 50. Figure 6.1.2 shows the

average spectral density function of the residuals of such model fits. If the residuals

were white noise, then the spectral density function would be flat. We can see that

this is clearly not the case, even for the AR(50). The AR(∞) bootstrap assumes that
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Figure 6.1.2: The spectral density function of the residuals of AR(p) processes fitted
to Gaussian processes with a JONSWAP spectral density function (α = 0.7, ωp = 0.8,
γ = 3.3, r = 5).

the residuals are white noise, and so is unlikely to work well in this case.

Therefore, we propose replacing this with X̃, a Gaussian process where fX̃(ω) is

equal to an estimate of the spectral density function (typically a multitaper estimate).

Such a process can be simulated efficiently with circulant embedding (Percival and

Constantine, 2006; Chandna and Walden, 2013). We review circulant embedding in

Appendix C.1. Note that this is slightly restrictive, as we can now only test the null

hypothesis that the process is Gaussian (and not that it is linear). However, this

is still useful in our context as the default assumption is that recordings of ocean

waves are Gaussian. Furthermore, testing for linearity locally would be much more

challenging, as we would need to test for deviations from some constant but non-

zero level. The exception being processes with zero squared skewness functions that

are not Gaussian. The methodology developed here will not be able to simulate

under such a null hypothesis, but in our context this is not a major problem, though

this is an avenue of possible further work.
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Accounting for multiple testing

Schulte (2016) suggest accounting for multiple testing by controlling the false discov-

ery rate (FDR). The false discovery rate is defined as the expected proportion of the

rejected null hypotheses which were rejected in error, and was originally proposed

by Benjamini and Hochberg (1995). In other words, the FDR is E [V/R] where V is

the number of true null hypotheses which were rejected and R is the total number

of rejected null hypotheses.4 Because the test statistics exhibit some dependence,

Schulte (2016) suggest using the correction due to Benjamini and Yekutieli (2001) for

data with arbitrary dependence structure.

Say that we are testing m hypothesis (so we have p-values p1, . . . , pm) and test at a

significance level of q. The procedure proposed by Benjamini and Hochberg (1995)

first computes ordered p-values p(1), . . . , p(n). Then compute

r = max
{

1 ≤ j ≤ m : p(j) ≤
j

m q
}

(6.1.1)

and reject the null hypotheses corresponding to p(1), . . . , p(r). For convenience, we

will refer to this as the first FDR method. In contrast, the correction for arbitrary cor-

relation due to Benjamini and Yekutieli (2001) rejects the hypotheses corresponding

to the first

r̃ = max
{

1 ≤ j ≤ m : p(j) ≤
j

m q/(∑m
j=1 1/j)

}
(6.1.2)

p-values, i.e. p(1), . . . , p(r̃). Such a corrected test is less powerful, but decreases false

positives and controls the FDR in the more general case (Benjamini and Yekutieli,

2001). We will refer to this as the second FDR method. We compare each of these

and the standard Bonferroni correction (i.e. using q/m in place of q as a significance

4The ratio is taken to be zero when R = 0.
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level) in Section 6.3.1. Benjamini and Yekutieli (2001) show that under positive de-

pendence, the first FDR method controls the FDR to be less than or equal to m0
m q

(where m0 is the number of true null hypotheses), and the second FDR method al-

ways controls the FDR at this level.

6.1.5 Choosing the number of surrogate realisations

Schulte (2016) suggest generating “a large ensemble” of surrogate realisations. In

this section, we give a lower bound on the number of required surrogate realisa-

tions, Nr, motivated by the FDR. Notice that, at a given frequency pair ω1, ω2, if

the observed squared skewness function Γ̂X(ω1, ω2) is below the squared skewness

function of all of the surrogate data, i.e.

Γ̂X(ω1, ω2) < Γ̂X̃j
(ω1, ω2) for all j ∈ {1, . . . , Nr}

then the p-value will be zero, and will be rejected by any method for controlling the

FDR, regardless of how conservative the method is.5 If we do not generate enough

surrogate realisations, then this may happen often, and can drastically increase the

FDR.

Say that X is a Gaussian process and that we have a perfect surrogate data generator

(in the sense that we can simulate realisations of the same Gaussian process per-

fectly). If we generate Nr surrogate realisations, then the probability that we obtain a

p-value of zero at a given frequency pair is 1/(Nr + 1). This occurs because we have

Nr + 1 total realisations of the process (including the original), and thus at a given

frequency pair have Nr + 1 i.i.d realisations of the squared skewness function, and

the p-value is zero if the smallest of these realisations corresponds to the original

process X.

5Assuming the method is sensible.
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Say that we test at a total of NT frequency pairs. Because we assumed the process was

Gaussian, we have a false rejection if any of these tests are rejected. The probability

that at least one test is rejected is bounded below by the probability that at least one

of the p-values is zero. Let M be the number of p-values that are zero, then

P (M ≥ 1) = 1 − P (M = 0)

= 1 − (Nr/(Nr + 1))NT .

Say that we wish to have an FDR of q. Then we have

q ≥ P (M ≥ 1)

= 1 − (Nr/(Nr + 1))NT

and so,

q ≥ 1 − (Nr/(Nr + 1))NT

⇔ Nr

Nr + 1
≥ (1 − q)1/NT

⇔ Nr ≥
(1 − q)1/NT

1 − (1 − q)1/NT
.

In our experiments in Section 6.3, we have 90 evaluation frequencies and q = 0.05.

Therefore, we require at the very least Nr ≥ 1755. Of course this is only a lower

bound, and so we often use a larger Nr. In particular, in our simulation studies in

Section 6.3, we used Nr = 4000.

6.2 Toy example

In many practical studies of higher-order spectra (Schulte, 2016; Ewans et al., 2021,

for example) the toy examples examined are discrete frequency, often determinis-
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tic processes6 embedded in noise. However, the processes we are interested in are

not discrete frequency. Models for non-linear time series are of course available, see

Tjøstheim (1994), but the processes described below are more similar to the processes

we are interested in. As such, we shall study toy examples constructed as polyno-

mials of Gaussian processes. Such models can induce interesting behaviours, whilst

being simple enough to study analytically. In particular, we shall consider polyno-

mial interactions between two processes, loosely designed to mimic an interaction

between a swell and a wind-sea process.

6.2.1 Univariate

In the univariate case, consider two independent Gaussian processes U and V (we

might think of them as a swell and a wind-sea component). Define a new process W

by

W(t) = U(t) + V(t) + aU(t)V(t). (6.2.1)

The spectral density function is

fW(ω) = fU(ω) + fV(ω) + a2[ fU ∗ fV ](ω).

Similarly, the bispectrum is

fW(ω1, ω2) = a[ fU(ω1) fV(ω2) + fU(ω2) fV(ω1)+

fU(−ω2) fV(ω1 + ω2) + fU(ω1 + ω2) fV(−ω2)+

fU(ω1) fV(ω1 + ω2) + fU(ω1 + ω2) fV(ω1)].

6Such processes are not stationary. In this case, time averaged spectra and bispectra can be defined,
but we do not consider that here. See Nikias (1993) for more details.
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Figure 6.2.1: Example model spectral density function (left), bispectrum (middle)
and squared skewness function (right).

The derivation of this is given in Appendix C.2. For example, consider U and V

with JONSWAP spectral density functions with parameters given in Table 6.3.1 and

a = 0.8. Then the spectral density functions of W are shown in Figure 6.2.1 (left) and

the bispectrum and squared skewness function are shown in the middle and right

panes of Figure 6.2.1.

6.2.2 Multivariate

In the multivariate case, let Uj and Vj for j ∈ {1, . . . , d} be Gaussian processes such

that for any i, j ∈ {1, . . . , d}, Ui is independent of Vj. We shall consider models of the

form

Wj(t) = Uj(t) + Vj(t) +
d

∑
r=1

d

∑
s=1

a(j)
rs Ur(t)Vs(t)

= Uj(t) + Vj(t) + vec(aT
j )

T [U(t)⊗ V(t)]

where aj = [a(j)
rs ]1≤r,s≤d ∈ Rd×d are matrices of coefficients. Essentially these models

are additive models with additional interaction terms which can be cross series.

The cross-spectral density functions are given by

fZiZj(ω) = fUiUj(ω) + fViVj(ω) +
d

∑
r1=1

d

∑
s1=1

d

∑
r2=1

d

∑
s2=1

a(i)r1s1 a(j)
r2s2

[
fUr1Ur2

∗ fVs1 Vs2

]
(ω)
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and the cross-bispectra are

fZiZjZk(ω1, ω2) =
d

∑
r=1

d

∑
s=1

a(i)rs

[
fUrUk(ω1 + ω2) fVsVj(ω2) + fUrUj(ω2) fVsVk(ω1 + ω2)

]
+a(j)

rs
[

fUrUk(ω1 + ω2) fViVs(ω1) + fUiUr(ω1) fVsVk(ω1 + ω2)
]

+a(k)rs

[
fUiUr(ω1) fVjVs(ω2) + fUjUr(ω2) fViVs(ω1)

]
.

The derivation of this is analogous to the univariate case.

6.3 Monte-Carlo simulation studies

In this section, we evaluate the performance of the proposed technique with a Monte

Carlo simulation. These simulation studies all take on the following form (where Nm

is the number of Monte Carlo replications).

1. For j ∈ {1 . . . , Nm}

(a) Generate a realisation of the process of length n.

(b) Compute the p-values with the desired technique (e.g. using surrogate

processes generated by circulant embedding).

(c) Test hypotheses using the desired method for correcting for multiple test-

ing, setting rj = 1 if rejected and rj = 0 otherwise.

2. Compute the proportion of rejected hypotheses, i.e. 1
Nm

∑Nm
j=1 rj.

Note that if we use surrogate data we must compute NmNr estimates of the squared

skewness function for each simulation study, at each pair of frequencies. This can be

quite expensive, especially in the multivariate case.
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Figure 6.3.1: The spectral density functions (top), bispectra (middle) and squared
skewness functions (bottom) of Cases 1, 2 and 3, the models used in the univariate
simulation study. Here a is equal to zero (left), one (middle) and four (right).

6.3.1 Univariate simulation study

To evaluate the performance of circulant embedding in the univariate case, consider

two independent Gaussian processes U and V with JONSWAP spectral density func-

tions, the parameters of which are given in Table 6.3.1. We use three different cases

from the polynomial model given in (6.2.1), a = 0, 1, 4. The spectral density func-

tions, bispectra and squared skewness functions are shown in Figure 6.3.1.

α ωp γ r
θU 0.02 0.5 3.3 5.0
θV 0.7 1.3 3.3 5.0

Table 6.3.1: Parameters used to generate the models for the simulation study.

To evaluate the performance of the AR(1) and circulant embedding techniques, we

perform a Monte Carlo simulation as described above, with Nm = 1000 Monte Carlo

replications, for n = 2304, ∆ = 1/1.28 with Nr = 4000 surrogate data replications.
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Figure 6.3.2: Proportion or rejections for different models using both circulant em-
bedding and an AR(1) process to generate surrogate data for Cases 1, 2 and 3 (the
univariate cases).

Figure 6.3.2 shows the proportion of rejections of the null at the q = 0.05 significance

level for both circulant embedding and the AR(1) approach.

The first thing to note is that with circulant embedding in Case 1 (the Gaussian case)

we have a rejection rate very close to 0.05 for all frequencies, as expected. This is

in contrast to the AR(1), which has an inflated rejection rate near the boundaries.

Looking at Case 2, we see that both techniques have high rejection rates in the re-

gion where the squared skewness function is (substantially) non-zero, but preserve

the rejection rate of 0.05 away from this region. Finally, in Case 3, we see that both

techniques detect the region in which the squared skewness function is large but, al-

though the rejection rates away from this region are low, they are above 0.05. How-

ever, the process has a fairly extreme degree of non-linearity, so in practice this is

unlikely to be a problem. In fact, the squared skewness function in both Case 2 and

3 is greater than zero everywhere, so in some sense we should detect something in

these other regions.

At this point, we have not yet corrected for multiple testing. In Figure 6.3.3, we

show the proportion of replications for which the null hypothesis is rejected using
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Figure 6.3.3: Proportion of rejections with different correction levels using circulant
embedding to generate under the null for Cases 1, 2 and 3.

each correction method. We notice that all correction methods do a good job in the

null case of reducing the detection rate. Similarly, we see as expected that, of all of

the correction methods, the first FDR method has the highest power of the three, but

this comes at the cost of higher detection rates away from the peak.

To evaluate the performance of the different corrections discussed in Section 6.1.4

more formally, we first must determine for which frequency pairs the null hypothesis

(squared skewness function equal to zero) is true, and for which pairs the alternate

is true. This is not trivial (except in Case 1), as in Cases 2 and 3, true squared skew-

ness function is often very close to zero, but is never exactly zero (since the aliased
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spectral density functions of U and V are never zero). We choose to define the null

hypothesis to be true whenever the squared skewness function of the underlying

process satisfies ΓW(ω1, ω2) < 0.1.7 A plot of the regions considered to have true

null and true alternate hypotheses is shown in Figure 6.3.4. Based on this definition,

we estimate the FDR and power (number of detected false nulls over the total num-

ber of false nulls) of the corrected tests using, no correction, Bonferroni correction,

and the two FDR methods, defined in (6.1.1) and (6.1.2). Again we are testing at the

q = 0.05 significance level. In Cases 1, 2 and 3, the total number of true null hypothe-

ses, m0, equals 90, 65 and 62 respectively and the total number of tested hypotheses

is m = 90. Therefore, we expect to control the FDR at less than or equal to 0.05 in

Case 1 and approximately 0.0361 and 0.0344 in Cases 2 and 3 respectively.

Table 6.3.2 shows the FDR and power for the different correction methods for Cases

1, 2 and 3. In Case 1, we see that without correction the FDR is very high, as expected.

However, we also see that the FDR is slightly elevated in both the Bonferroni correc-

tion and first FDR method. In Cases 2 and 3, we see that, ignoring no correction,

Bonferroni has the lowest FDR and lowest power as expected, followed by the sec-

ond FDR method then the first FDR method. The first FDR method seems to not

be conservative enough, so we will use the second FDR method, though in practice

we will often also examine the results of the first FDR method. The results of addi-

tional simulation studies varying the γ parameters in the two JONSWAP processes

are shown in Appendix C.3.

6.3.2 Multivariate

In the multivariate case, simulation studies yield similar results to the univariate

case. In particular, we generate non-linear interactions between a swell process U

7Note that this is entirely for evaluating the performance of our method, and not a part of the
methodology itself.
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Figure 6.3.4: Definition of a true null, top row showing the true bispectra for each
process on the estimation grid and bottom row showing which hypothesis is con-
sidered true for each frequency pair (black for H0 and white for H1). Here we use a
definition of Γ(ω1, ω2) < 0.1 for the null.

and a wind-sea process V . For the swell process, we use a JONSWAP with a single

wrapped Gaussian spreading function8, and for the wind-sea we use a JONSWAP

with bimodal wrapped Gaussian. The parameters of which are given in Table 6.3.3.

In Case 4, we do not include any interactions, so the resulting process is also Gaus-

sian (i.e. a1 = a2 = a3 = 0). In Cases 5 and 6, we add non-linearities to the second

time series, so that

a2 =


0 0 0

1 1 0

0 0 0

 (Case 5), a2 =


0 0 0

4 4 0

0 2 0

 (Case 6),

but in both cases a1 = a3 = 0. Figure 6.3.5 shows the squared skewness functions of

these models.

We compare the performance of the multivariate circulant embedding described in

8This is a wrapped Gaussian with fixed mean ϕm and fixed standard deviation σ at all frequencies.
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technique statistic Case 1 Case 2 Case 3

No correction FDR 0.987 (±0.007) 0.284 (±0.028) 0.363 (±0.030)
power —– 0.703 (±0.028) 0.750 (±0.026)

Bonferroni FDR 0.065 (±0.015) 0.048 (±0.013) 0.104 (±0.019)
power —– 0.265 (±0.027) 0.510 (±0.031)

First FDR FDR 0.065 (±0.015) 0.133 (±0.021) 0.258 (±0.027)
power —– 0.487 (±0.031) 0.699 (±0.028)

Second FDR FDR 0.019 (±0.009) 0.050 (±0.014) 0.145 (±0.022)
power —– 0.282 (±0.028) 0.578 (±0.031)

Table 6.3.2: FDR and power for various corrections for multiple testing. These re-
sults are for the univariate simulation study using circulant embedding to generate
surrogate data. We give 95% confidence intervals in brackets, so that the significance
of any differences can be ascertained.

α ωp γ r ϕm β ν σl σr σ
θU 0.02 0.5 3.3 5.0 1.5 — — — — 0.5
θV 0.7 1.3 3.3 5.0 0.5 4.0 2.7 0.55 0.26 —

Table 6.3.3: Parameters used to generate the models for the multivariate simulation
study (Cases 4, 5 and 6).

Section C.1 with a marginal circulant embedding approach, which simulates each

individual component process independently. Figure 6.3.6 shows the result of this

comparison. As expected, we see that simulating with multivariate circulant em-

bedding yields the correct false positive rate, but if each series is simulated indepen-

dently, we do not get the correct rate. This highlights the need for the multivariate

surrogate data generator, as opposed to using the univariate version independently

for each series. Results for the different multiple testing corrections behave similarly

to univariate case, see Figure C.3.3 in Appendix C.3.

Figure 6.3.5: Squared skewness function of Cases 4, 5 and 6, the models used in the
multivariate simulation study.
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Figure 6.3.6: Proportion of rejections using multivariate circulant embedding and
marginal univariate circulant embedding to generate under the null for Cases 4, 5
and 6 (the multivariate cases).

6.3.3 Bias correction

In Section 6.1.3 (and Section 5.3), we discussed estimation of the spectral density

function and bispectrum. Of course, we also want to estimate the squared skewness

function. Taking absolute values and squaring shifts variance into the mean, intro-

ducing bias into the estimate. However, as we shall show in this section, we can

correct for this to some extent.

Recall from Section 5.5 (Hinich, 1982; Wong, 1997) that R̂n(ω1, ω2) is approximately

χ2
2d3(λn(ω1, ω2)) where

R̂n(ω1, ω2) = 2π2Cnn−1Γ̂n(ω1, ω2),

and λn(ω1, ω2) = 2π2Cnn−1ΓX(ω1, ω2). Therefore

E
[
R̂n(ω1, ω2)

]
≈ 2π2Cnn−1Γ(ω1, ω2) + 2d3,
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which implies that

E
[
Γ̂n(ω1, ω2)

]
≈ Γ(ω1, ω2) +

d3n
2πCn

.

Furthermore, d3n/(2πCn) is known a priori, so we can reduce the bias in the estimate

by simply subtracting this from Γ̂, i.e. by using the

Γ̌n(ω1, ω2) = Γ̂n(ω1, ω2)−
d3n

2πCn
,

as the estimate for squared skewness function.9 Since for consistency we already

require Cn/n → ∞ as n → ∞, we have d3n/(2πCn) → 0 as n → ∞. As a result,

both Γ̂n and Γ̌n are asymptotically unbiased, but the latter will have better finite

sample properties. This is particularly relevant for the multivariate case, as the bias

is proportional to d3. Figure 6.3.7 shows the bias of the estimated squared skew-

ness function for the multivariate experiments, both before and after the correction.

We see that the correction gives a major improvement in bias. However, estimates

can now be negative. Whilst this may seem undesirable, we argue that it actually

serves as a reminder of the substantial uncertainties present in such estimation, and

is preferable to the bias present in the original estimate.10

6.4 Application to ocean wave data

We will now apply this methodology to the buoy data used in Chapter 2, from CDIP

station 168, Humboldt Bay North Spit in California. Data were furnished by the

Coastal Data Information Program, Integrative Oceanography Division, operated

by the Scripps Institution of Oceanography, and is freely available on their website.

9Note that this bias adjustment involves an additive constant, and thus does not change the vari-
ance.

10The p-values are invariant to this correction, so it is not necessary for the testing, only for the
estimate itself.
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Figure 6.3.7: Average bias of estimated skewness function for Cases 4, 5 and 6 of the
multivariate simulation, from 5000 Monte Carlo replications. Top row shows the bias
of the standard estimates, and bottom row shows the bias of the corrected estimates.

Specifically, we shall demonstrate the technique on the half hour record with the

largest value of Hs from the same storm analysed in Chapter 2. We choose the record

with the largest Hs as this is most likely to contain non-linearities.

Recall that we have three-dimensional displacement data for the buoy. Therefore,

we have three time series to analyse. We call them Z, X and Y, as in Chapter 3. We

shall begin by considering each series as univariate. Figure 6.4.1 shows the resulting

estimates of the squared skewness function. In order to show the results of signifi-

cance testing, we highlight the borders of hexagons for which the null is rejected with

colours depending on the correction level. In particular, we use purple if the p-value

is less than 0.05, red if we reject the null hypothesis using the first FDR method, and

orange if the null hypothesis is rejected using the second (more conservative) FDR

method. We see that, provided we correct for multiple testing, the null is not rejected

for any frequency pair in the case of Z and Y, but that for X, the null is rejected at

many frequency pairs. However, we suspect this is spurious.

As previously mentioned, the squared skewness function is invariant to invertible

linear filters, but estimates of the squared skewness function will not be. In particu-
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lar, filtering the series to flatten the power spectrum and bispectrum will reduce bias

from smoothing. The idea of first filtering the time series in this manner and then

estimating spectra is referred to as prewhitening (Press and Tukey, 1956).11 When

prewhitening is used for estimating the spectral density function, the resulting esti-

mate must be divided by some product of the transfer function of the filter to obtain

an estimate of the spectrum of interest. However, in our case we do not need to do

this, as the transfer function cancels out when we compute the squared skewness

function.

In particular, we fit moving average, MA(q), models with q ∈ {5, 10, 15, 20}, and

then estimate the squared skewness function of the residuals (see Brockwell and

Davis, 2006, for example). The results of this are shown in Figure 6.4.2. We now see

that far fewer frequencies are detected as significant when compared to the unfil-

tered version in Figure 6.4.1. However, interestingly, we do see that we still detect an

interaction near the anomalous low frequency peak (which we encountered earlier,

in Section 3.4.1). In particular, across all of the prewhitening techniques, we detect

non-linearity at approximately the frequencies ω1 = 0.3, ω2 = 0.6 and ω3 = −0.9.

This is an interaction between the low frequency peak and the wind-sea component.

In Figure 6.4.3 we show the estimated multivariate squared skewness function and

test results, both with no filtering and after fitting marginal MA(q) models. Again

we see that such prewhitening seems necessary to stabilise results in practice. How-

ever, the low frequency peak is no longer detected as significant when using the

more conservative FDR correction.

In addition to the results shown here for the sea state with the largest significant

wave height, we also ran the analysis for the previous 20 sea states and the subse-

quent 20 sea states. The results of this analysis were similar to those shown above,

11Differencing can be an example of such a prewhitening filter (which we used in Chapter 2).
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in that often the low frequency peak is detected as a significant non-linearity, but

other frequencies are not. Whilst this may seem to be somewhat of a non-result, this

actually means that the second-order modelling we developed in Part I is sufficient

to describe these processes (with the exception of the low-frequency peak, and the

caveat that we have not examined spectra of higher order).

Figure 6.4.1: The squared skewness function of the X, Y and Z processes. If a p-value
was classed as significant the border of the hexagon is highlighted with a colour
depending on the correction method. In particular, in purple (no correction), red
(first FDR method) and orange (second FDR method).

6.5 Conclusion

In this chapter, we have developed methodology for detecting non-linearities locally

in frequency space. In particular, we demonstrated that existing surrogate data tech-

niques based on simulating AR(1) processes have an elevated false detection rate for

certain processes. In contrast, by simulating more representative processes, we are

able to correct for this, without loosing power. Furthermore, we explore the effect of

different corrections for multiple testing and show how to remove the bias generated

by taking absolute values. We also give recommendations for selecting the number

of surrogate realisations, motivated by controlling the FDR.
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Figure 6.4.2: The squared skewness function of the X, Y and Z processes after ap-
plying various filters. The filters are fitted MA models with q = 5, 10, 15 and 20 for
rows from top to bottom. Test results are highlighted analogously to Figure 6.4.1.

Figure 6.4.3: Estimate of the multivariate squared skewness function of the CDIP
data, both with no filter and marginal MA models as applied in Figure 6.4.2.
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Additionally, we demonstrated the technique on a time series recorded at Humboldt

Bay. We found that the low frequency peak was detected as significant when apply-

ing the technique to the X time series in isolation, but it was not detected in the other

series. However, we should note the detection in the X and not the Y series is likely

related to the direction of the phenomena at this particular time, as it is unlikely that

there is something special about the X displacement of the buoy when compared to

the Y displacement in general. Furthermore, we note that we found similar results

for other time series taken from the Humboldt Bay data, often detecting non-linearity

in the low-frequency peak, but not in the frequencies associated with the processes

of interest.

This is encouraging, as it suggests that the modelling we perform in Part I is suffi-

cient to describe the behaviour of the observed processes. To end on a note of cau-

tion, whilst we have made some progress in making the analysis of the bispectrum

of ocean wave records more conservative, results can be unstable without careful

preprocessing of the data, e.g. by prewhitening.



Chapter 7

Conclusions of Part II

In Part II of this thesis, we have discussed the detection of non-linearities in records

of ocean waves. We began, in Chapter 5, with a detailed background on higher-order

spectra. This included a discussion of different normalisations and global tests for

Gaussianity and linearity.

In Chapter 6, we discussed local testing for Gaussianity. Existing surrogate data

generation techniques do not have the correct marginal false positive rate under the

null. We demonstrated that circulant embedding can be utilised to resolve this issue.

Additionally, we extended the methodology to the multivariate case, again using cir-

culant embedding to generate surrogate realisations. Furthermore, we investigated

both power and FDR for simulated processes with varying degrees of non-linearity,

as well as various corrections for multiple testing.

In order to use such surrogate data techniques, we need to specify the number of sur-

rogate realisations to generate. If we do not generate enough surrogate realisations,

we will often obtain p-values of zero, which cannot be adjusted correctly for mul-

tiple testing. Motivated by this we give a lower bound on the number of required
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surrogate replications so that the FDR could be at the required level, though this does

not guarantee that it is at that level. Additionally, we demonstrated how the bias due

to squaring the estimate of the bispectrum when computing the squared skewness

function can easily be removed without increasing the variance.

We then applied this methodology to buoy data from Humboldt Bay, and discussed

practical issues this raises. In particular, the impact of prewhitening on the result-

ing estimates and tests. It seems that the anomalous low-frequency peak seen in

the spectral density function of the horizontal motion of the buoy may have been

generated by non-linear interactions, but further investigation would be required to

ascertain the exact nature of this phenomenon. For the most part, we do not detect

significant non-linearities for most of the spectral domain, which is encouraging as

it suggests that the linear modelling developed in Part I was sufficient to describe

such processes.

7.1 Further work

In Chapter 6, we focused on the bispectrum. However, there is growing interest in

spectra of higher order, i.e. the fourth-order spectral density function (Ewans et al.,

2021, for example), which is usually called the trispectrum. The testing procedures

described in Chapter 6 could be extended to such a setting, though it is likely that

there will be substantial difficulties. Firstly, such estimation is much more costly

from a computational perspective, even in the univariate case. Furthermore, we are

somewhat doubtful that such quantities can be reliably estimated from ocean wave

records without having to assume stationarity for an unpalatable length of time. In

order to gain consistency, the loss of resolution is even worse than in the third-order

case.
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One drawback of the proposed methodology is that we can only test the null hy-

pothesis of Gaussianity. In part, this is due to the method used for generating the

surrogate data, however, it is also not obvious how we would test for a non-constant

squared skewness function. One possibility is to note that under the null of linear-

ity, estimates of the squared skewness function would have the same distribution

(asymptotically). In particular, if we suspect that the squared skewness function is

constant except in a certain region, we might expect a change in mean in this region.

However, such an approach would likely be unstable.

This technique could also be applied to physical models, where, although the true

squared skewness function may not be known, non-linear physical terms can be

turned on and off, giving at least some ground truth. For example, the HOS model

(Ducrozet et al., 2016), which was used by Ewans et al. (2021) to investigate the

trispectrum.

We focused on the stationary case in this thesis, but ocean waves are not actually

stationary. Approaches such as dual frequency spectra (Olhede and Ombao, 2013,

for example) in the second-order case, or wavelets (both for second-order, e.g. Perci-

val and Walden, 2000, and higher-order, e.g. Schulte, 2016) could be explored further

for this kind of data. However, surrogate data generation will be substantially more

challenging in this setting.



Epilogue

In this thesis, we developed methodology to solve two broad problems. Part I fo-

cused on parametric estimation for the frequency and frequency-direction spectrum.

Part II discussed quantifying the significance of peaks in the bispectrum. Whilst dif-

ferent in theme, Parts I and II are joined by a strong practical motivation around the

analysis of buoy data.

In Part I, we saw that substantial improvements can be made in the quality of esti-

mated parameters, without the need to use computationally expensive methodology.

The methodology developed throughout Chapters 2 and 3 can be used to model ever

more complicated situations, and to make inferences about more intricate aspects of

the frequency domain behaviour of ocean wave time series.

In Part II, methodology was developed to improve the detection of non-linearities

present in the bispectrum. In this case, we saw that by simulating surrogate pro-

cesses with similar linear structure to the original process, we are able to reduce

the number of false detections. The methodology can then be used to determine

whether an observed peak in the normalised bispectrum should be considered as

significant.

In general, we have demonstrated that careful application of statistical methodology

to buoy data yields improved insights about the behaviour of ocean waves.
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“There he stood far into the night, hearing only the

sigh and murmur of the waves on the shores of Middle-

Earth, and the sound of them sank deep into his heart.”

— J. R. R. TOLKIEN, THE RETURN OF THE KING

Appendices to Parts I and II
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Appendix A

Appendix to Chapter 2

A.1 Derivatives of ocean wave spectra

When calculating the derivatives of the generalised JONSWAP form, special care

must be taken around the peak frequency and zero frequency, to check that the gen-

eralised JONSWAP form is actually differentiable. We do not show this here, but

for the first derivatives there is no issue (though this is not the case for the second

derivatives, which do not all exist at the peak). Consider the generalised JONSWAP
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spectral form, fG(ω; θ). We may write, for ω > 0,

∂

∂ω
fG(ω; θ) = fG(ω; θ)

[
r

ωp

(
ω

ωp

)−s−1

− r
ω

−
δ(ω; θ) · (ω − ωp) log γ

ω2
pσ(ω; θ)2

]

→ 0 as ω → 0+,

∂

∂α
fG(ω; θ) = fG(ω; θ)/α

→ 0 as ω → 0+,

∂

∂ωp
fG(ω; θ) = fG(ω; θ)

[
δ(ω; θ) log(γ)

ω

σ(ω; θ)2

(
ω − ωp

ω3
p

)
− ωr

ω2
p

(
ω

ωp

)−s−1
]

→ 0 as ω → 0+,

∂

∂γ
fG(ω; θ) = αω−r exp

{
−r

s

(
ω

ωp

)−s
}

δ(ω; θ)γδ(ω;θ)−1/2

= fG(ω; θ)δ(ω; θ)/γ

→ 0 as ω → 0+,

∂

∂r
fG(ω; θ) = fG(ω; θ)

[
− log(ω)− 1

s

(
ω

ωp

)−s
]

→ 0 as ω → 0+.

By the chain rule, for ω < 0

∂

∂ω
fG(ω; θ) = − ∂

∂ω
fG(−ω; θ),

∂

∂α
fG(ω; θ) =

∂

∂α
fG(−ω; θ),

∂

∂ωp
fG(ω; θ) =

∂

∂ωp
fG(−ω; θ),

∂

∂γ
fG(ω; θ) =

∂

∂γ
fG(−ω; θ),

∂

∂r
fG(ω; θ) =

∂

∂r
fG(−ω; θ).
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Finally, for ω = 0, since fG(0, α, ωp, γ, r) = 0, we may write

∂

∂ω
fG(ω; θ)|ω=0 = 0,

∂

∂α
fG(0, ; θ) = 0,

∂

∂ωp
fG(0, ; θ) = 0,

∂

∂γ
fG(0, ; θ) = 0,

∂

∂r
fG(0, ; θ) = 0.

Therefore, we see that fG has continuous first derivatives.

Proposition A.1.1. For all x ∈ {ω, α, ωp, γ, r} the series

∞

∑
k=−∞

∂

∂x
fG

(
ω +

2πk
∆

; θ

)

converges uniformly.

Proof. Firstly, due to symmetry, we may consider the series

∞

∑
k=L

∂

∂x
fG

(
ω +

2πk
∆

; θ

)

where L is such that ωp < π
∆ + 2πL

∆ . Now write

gk(ω; θ) = fG

(
ω +

2πk
∆

; θ

)
and

gk,x(ω; θ) =
∂

∂x
fG

(
ω +

2πk
∆

; θ

)
.
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Next notice that

|gk(ω; θ)| ≤ αγ

(
ω +

2πk
∆

)−r

≤ αγ

(
−π

∆
+

2πk
∆

)−r

= αγ
(π

∆

)−r
(2k − 1)−r .

Let Mk = αγ (π/∆)−r (2k − 1)−r. It now suffices to notice that each of the partial

derivatives can be written as fG(ω; θ) multiplied by some other function. Further-

more, each of these functions can be bounded. Therefore we may write

|gk,x(ω; θ)| ≤ Cx Mk,

for some constants Cx > 0. Finally

∞

∑
k=L

Mk < ∞,

so by the Weierstrass M-test, we have uniform convergence. By extension we can see

that

∞

∑
k=−∞

∂

∂x
fG

(
ω +

2πk
∆

; θ

)

is also uniformly convergent.

Proposition A.1.2. For all x ∈ {ω, α, ωp, γ, r}

∂

∂x
f∆ (ω; θ) =

∞

∑
k=−∞

∂

∂x
fG

(
ω +

2πk
∆

; θ

)
.

Furthermore, ∂
∂x f∆ (ω; θ) is continuous.
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Proof. This first part follows from Proposition A.1.1, the convergence of

∞

∑
k=−∞

fG (ω + 2πk/∆; θ) ,

the continuous differentiability of fG, and Theorem 4.4.20 of Trench (2013). The con-

tinuity follows from the continuity of the derivatives of fG and the uniform limit

theorem.

A.2 Computing the variance of the first derivative

Sykulski et al. (2019) decompose the variance of the first derivative of the debiased

Whittle likelihood as follows:

var
(

∂

∂θi
ℓDW(θ)

)
=

n

∑
j=1

n

∑
k=1

aij(θ)aik(θ) cov
(

I(ωj), I(ωk)
)

,

where ωj, ωk denote Fourier frequencies and

aij(θ) =
∂ f̄n(ωj; θ)

∂θi

1
f̄ 2
n(ωj; θ)

.

To estimate the variance, they propose using

ˆvar
(

∂

∂θi
ℓDW(θ)

)
=

n

∑
j=1

n

∑
k=1

aij(θ̂DW)aik(θ̂DW) ˆcov
(

I(ωj), I(ωk)
)

.

For ocean wave models, aij(θ̂DW) can be easily computed by using the results from

Section A.1. So, from Sykulski et al. (2019), we are interested in computing

ˆcov
(

I(ωj), I(ωk)
)
=

∣∣∣∣ ∆
2πn

∫ π/∆

−π/∆
f∆(ω

′; θ)Dn(∆(ωj − ω′))Dn(∆(ωk − ω′))dω′
∣∣∣∣2 ,
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where

Dn(v) =
sin (nv/2)
sin(v/2)

e−iv(n+1)/2.

To do this efficiently, first note that

Dn(v) =
sin (nv/2)
sin(v/2)

e−iv(n+1)/2 =
einv/2 − e−inv/2

eiv/2 − e−iv/2 e−iv(n+1)/2

=
e−inv/2

e−iv/2
einv − 1
eiv − 1

e−iv(n+1)/2 = e−i(n−1)v/2e−iv(n+1)/2
n−1

∑
s=0

eisv

= e−inv
n−1

∑
s=0

eisv.

It is also convenient to write

Dn(v) =
sin (nv/2)
sin(v/2)

eiv(n+1)/2 = eiv
n−1

∑
s=0

eisv.

Now, consider the function

hjk(ω) = f∆(ω; θ)Dn(∆(ωj − ω))Dn(∆(ωk − ω))

= f∆(ω; θ)

(
e−in(∆(ωj−ω))

n−1

∑
s=0

eis(∆(ωj−ω))

)(
ei(∆(ωk−ω))

n−1

∑
r=0

eir(∆(ωk−ω))

)

= e−i∆(nωj−ωk)
n−1

∑
s=0

n−1

∑
r=0

eis∆ωj eir∆ωk
[

f∆(ω; θ)ei∆(n−1)ωe−i∆(s+r)ω
]

,

where we have rearranged for later convenience. We can now see, by linearity of

integration, that
∫ π/∆
−π/∆ hjk(ω)dω equals

e−i∆(nωj−ωk)
n−1

∑
s=0

n−1

∑
r=0

eis∆ωj eir∆ωk

∫ π/∆

−π/∆
f∆(ω; θ)ei∆(n−1)ωe−i∆(s+r)ωdω.
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Thus for r = 0, . . . , n − 1 and s = 0 . . . , n − 1 we must calculate

∫ π/∆

−π/∆
f∆(ω; θ)ei∆(n−1)ωe−i∆(r+s)ωdω.

Notice that by letting t = r + s we need to calculate the following integral for t =

0, . . . , (2n − 1)− 1

∫ π/∆

−π/∆
f∆(ω; θ)ei∆(n−1)ωe−i∆tωdω.

For clarity let

q(ω) = f∆(ω; θ)ei∆(n−1)ω

then we need to compute

Q(t) =
∫ π/∆

−π/∆
q(ω)e−i∆tωdω, (A.2.1)

for t = 0, . . . , 2n − 2. We notice that this is a Fourier transform and we can obtain

an approximation of this integral at each of the required t by doing an FFT on the

relevant length 2n − 1 sequence (the details of this are discussed in Section A.2.1).

This means that we only need to do one Fourier transform, and can then substitute

this into the previous sums. Now we require

∫ π/∆

−π/∆
hjk(ω)dω = e−i∆(nωj−ωk)

n−1

∑
s=0

n−1

∑
r=0

eis∆ωj eir∆ωk Q(r + s)

= e−i∆(nωj−ωk)
n−1

∑
s=0

n−1

∑
r=0

Q̃(s, r)ei∆2π(sj+rk)/n∆

= e−i∆(nωj−ωk)
n−1

∑
s=0

n−1

∑
r=0

Q̃(s, r)ei2π(sj+rk)/n
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where Q̃(s, r) = Q(r + s). This is a 2D Fourier transform, and can be computed ef-

ficiently for j, k = 0, . . . , n − 1. This means we take O(n2 log n) time. Importantly,

libraries exist to compute this very quickly in most programming languages. Fi-

nally

ˆcov
(

I(ωj), I(ωk)
)
=

∣∣∣∣ ∆
2πn

∫ π/∆

−π/∆
hjk(ω)dω

∣∣∣∣2
=

∣∣∣∣∣ ∆
2πn

e−i∆(nωj−ωk)
n−1

∑
s=0

n−1

∑
r=0

Q̃(s, r)ei2π(sj+rk)/n

∣∣∣∣∣
2

=

∣∣∣∣∣ ∆
2πn

n−1

∑
s=0

n−1

∑
r=0

Q̃(s, r)ei2π(sj+rk)/n

∣∣∣∣∣
2

.

A.2.1 Approximating Q(t)

Note that we must still approximate Q(t) at t = 0, . . . , 2n− 2. We aim to approximate

the integral in (A.2.1). To achieve this, we use the Riemann sum given by

Q̄(t) =
2π

m∆

m−1

∑
j=0

q(2π j/m∆)e−i(t∆)(2π j/m∆).

An FFT will produce values of Q̄(t) for t = 0, 1, . . . , (m − 1). Therefore, provided

M ≥ 2n − 1 we can obtain approximations of the desired integrals.

A.3 Assumptions for debiased Whittle

Theorem 1 of Sykulski et al. (2019) gives assumptions for the optimal convergence of

the debiased Whittle likelihood estimator. The first of these assumptions is that the

parameter space is compact with non-null interior and that the true value of the pa-

rameter lies in the interior of the parameter space. This is not strictly satisfied by the

generalised JONSWAP spectral density; however, for physical reasons the parame-
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ter space can be restricted so that it is compact. The greater problem is that a value

of γ = 1, which corresponds to the fully developed sea described by Pierson and

Moskowitz (1964), may occur in nature and would violate this assumption. In Sec-

tion 2.5.3 we demonstrate that, in this case, the debiased Whittle likelihood estimator

still performs well.

The second assumption is that the spectral density of the aliased process is bounded

above and is bounded below by some positive real number. This is satisfied by the

generalised JONSWAP spectral density. The aliased spectrum is bounded below by

the non-aliased spectrum, and is bounded above by the variance of X(t) (which is

finite). Therefore, the only frequency remaining to consider is zero, as the spectral

density is zero when ω = 0. However, contributions from above the Nyquist fre-

quency are positive, and as such the aliased spectral density at zero will also be

positive.

Assumption three relates to parameter identifiability. Informally, this requires the

aliased spectral density function to be different for different choices of θ. Intuitively,

provided the sampling interval is sufficiently small (so that the peak frequency is

smaller than the Nyquist), then each of the parameters is changing the shape of the

generalised JONSWAP spectrum in a different way, such that the parameters will in

general be identifiable for a sufficient sample size.

The fourth assumption states that the aliased spectral density function must be con-

tinuous in θ and Riemann integrable in ω. This is satisfied for the generalised JON-

SWAP spectral form as it is continuous in θ and ω.

Assumption five states that the expected periodogram has two continuous deriva-

tives in θ, and that these derivatives are bounded uniformly for all n. Furthermore

the first derivatives are required to have Θ(n) non-zero frequencies. Strictly speak-
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ing, the generalised JONSWAP is not twice differentiable (the second derivative does

not exist at the peak, due to the step function σ(ω; θ)). However, a simple adaptation

can be made, by replacing σ(ω; θ) with

σ̄(ω; θ) = σ1 + (σ2 − σ1)

(
1
2
+

1
π

arctan
(
C
(
ω − ωp

)))
,

where C ∈ (0, ∞) is chosen to be large. This has the advantage of having continu-

ous second derivatives, and is essentially equivalent to the generalised JONSWAP,

because C can be chosen such that it would be impossible to distinguish between

the two models from observed data. Since this part of the generalised JONSWAP

was developed empirically, there is no practical difference in using the step function

over this reformulation. Indeed, in keeping with the general philosophy of statisti-

cal modelling — “all models are wrong, but some models are useful” — we suggest

that this alternative formulation is just as appropriate as the generalised JONSWAP,

but more useful here as it allows us to show this assumption is satisfied. By similar

arguments to those presented in Appendix A.1 and Appendix A.2, we can see that

the aliased spectral density has continuous second derivatives. The autocovariance

then has continuous second derivatives by a similar argument to that in Section 2.6,

and noting that the second derivative of the aliased spectral density function is inte-

grable, and so therefore the second derivative of the autocovariance must be continu-

ous (as they can be shown to be Fourier pairs). Therefore, the expected periodogram

also has continuous second derivatives by linearity of derivatives and the fact that

linear combinations of continuous functions are continuous. These derivatives are

also bounded uniformly for all n due to the compactness of the set of frequencies Ω

and the parameter space θ.

The final assumption states that the process in question is fourth-order stationary

with finite fourth order moments and absolutely summable fourth order cumulants.
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Clearly this is true for a Gaussian process (as second order stationarity implies strict

stationarity for Gaussian) and it is also true for some non-linear processes, such as

the class of non-linear processes discussed by Sykulski et al. (2019).

Finally, in our simulations the estimator based on the debiased Whittle likelihood

performs in broad agreement with the theory, for example we observed desirable

properties such as root n convergence when exploring different values of n. We also

did not find any problems with local minima during optimisation for any of the

record lengths considered, suggesting that the parameters of the generalised JON-

SWAP form are indeed identifiable in practice for sufficiently long records.



Appendix B

Appendix to Chapter 3

B.1 Deriving the spectral density matrix function from

the frequency-direction spectrum

We wish to obtain an expression for the spectral density matrix function of a buoy

assuming that the surface has a bimodal wrapped Gaussian spreading function.

Firstly, observe that many of these integrals can be rearranged, in ways which will

be demonstrated shortly, such that they can be split into integrals that are of the

form

∫ π

−π
cos(nϕ)gX(ϕ)dϕ = E [cos(nX)] = R

(
E
[
einX

])
,

or

∫ π

−π
sin(nϕ)gX(ϕ)dϕ = E [sin(nX)] = I

(
E
[
einX

])
,

201
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where gX(ϕ) is the pdf of some wrapped random variable X and n ∈ Z. In other

words, we need only to compute the characteristic function of the random variable

X, and then can just take real and imaginary parts. Fortunately, many random vari-

ables (including Gaussian random variables) have a known characteristic function

with a nice close form. Furthermore, the characteristic function of a random variable

and its wrapped form are related.1 Denote the unwrapped random variable by Y, so

that gX(x) = ∑∞
k=−∞ gY(x + 2πk). Then, for integer values of n,

E
[
einX

]
=
∫ π

−π
einxgX(x)dx

=
∫ π

−π
einx

∞

∑
k=−∞

gY(x + 2πk)dx

=
∞

∑
k=−∞

∫ π

−π
einxgY(x + 2πk)dx

=
∞

∑
k=−∞

∫ π(2k+1)

π(2k−1)
einxe−ink2πgY(x)dx

=
∞

∑
k=−∞

∫ π(2k+1)

π(2k−1)
einxgY(x)dx

=
∫ ∞

−∞
einxgY(x)dx

= E
[
einY

]
,

where the interchange of sum and integral is justified because gX(·) is a probability

density so has an absolute integral which is finite (hence we may apply the Fubini-

Tonelli theorem). For a wrapped Gaussian with mean µ and variance σ2, we see

that

E
[
einX

]
= einµ− 1

2 σ2n2
,

1Interestingly, this is actually an analogous relation to the one between the spectral density func-
tions of a continuous time process and the corresponding sampled discrete time process.
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for n ∈ Z. Therefore, by extension

E [cos(nX)] = cos(nµ)e−
1
2 σ2n2

,

E [sin(nX)] = sin(nµ)e−
1
2 σ2n2

.

We shall give results for ω > 0, noting that the remainder of the domain can be

obtained by conjugate symmetry (and that all the cross spectra are 0 for ω = 0).

We also only give some of the cross spectra, noting that the remainder can also be

obtained by the Hermitian symmetry of the spectral density matrix. We introduce

the simplified notation gXj(·) = gX(· ; ϕmj(ω), σ(ω)2) for j = 1, 2.

Rewriting equation (3.2.1) for the cross spectra (Longuet-Higgins et al., 1963) we see

that

fZZ(ω) = f (ω),

fXX(ω) = f (ω)
∫ π

−π
cos2(ϕ)D(ω, ϕ)dϕ,

fYY(ω) = f (ω)
∫ π

−π
sin2(ϕ)D(ω, ϕ)dϕ,

fXZ(ω) = i f (ω)
∫ π

−π
cos(ϕ)D(ω, ϕ)dϕ,

fYZ(ω) = i f (ω)
∫ π

−π
sin(ϕ)D(ω, ϕ)dϕ,

fYX(ω) = f (ω)
∫ π

−π
cos(ϕ) sin(ϕ)D(ω, ϕ)dϕ.

Then we see that

fZZ(ω) = f (ω),
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also

fXX(ω) = f (ω)
∫ π

−π
cos2(ϕ)D(ω, ϕ)dϕ

= f (ω)
∫ π

−π
cos2(ϕ)

1
2
[gX1(ϕ) + gX2(ϕ)]dϕ

= f (ω)
∫ π

−π

1
2
(cos(2ϕ) + 1)

1
2
[gX1(ϕ) + gX2(ϕ)]dϕ

= f (ω)
1
4

(
R
{

E
[
ei2X1

]}
+R

{
E
[
ei2X2

]}
+ 2
)

= f (ω)
1
4

(
cos(2ϕm1(ω))e−2σ(ω)2

+ cos(2ϕm2(ω))e−2σ(ω)2
+ 2
)

= f (ω)
1
2

(
cos2(ϕm1(ω))e−2σ(ω)2

+ cos2(ϕm2(ω))e−2σ(ω)2 − e−2σ(ω)2
+ 1
)

,

similarly

fYY(ω) = f (ω)
∫ π

−π
sin2(ϕ)D(ω, ϕ)dϕ

= f (ω)
∫ π

−π

1
2
(1 − cos(2ϕ))

1
2
[gX1(ϕ) + gX2(ϕ)]dϕ,

= f (ω)
1
4

(
2 −R

{
E
[
ei2X1

]}
−R

{
E
[
ei2X2

]})
= f (ω)

1
4

(
2 − cos(2ϕm1(ω))e−2σ(ω)2 − cos(2ϕm2(ω))e−2σ(ω)2

)
= f (ω)

1
2

(
sin2(ϕm1(ω))e−2σ(ω)2

+ sin2(ϕm2(ω))e−2σ(ω)2 − e−2σ(ω)2
+ 1
)

,

fXZ(ω) = i f (ω)
∫ π

−π
cos(ϕ)D(ω, ϕ)dϕ,

= i f (ω)
1
2

(
cos(ϕm1(ω))e−σ(ω)2/2 + cos(ϕm2(ω))e−σ(ω)2/2

)
,

fYZ(ω) = i f (ω)
∫ π

−π
sin(ϕ)D(ω, ϕ)dϕ,

= i f (ω)
1
2

(
sin(ϕm1(ω))e−σ(ω)2/2 + sin(ϕm2(ω))e−σ(ω)2/2

)
,
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and finally

fYX(ω) = f (ω)
∫ π

−π
cos(ϕ) sin(ϕ)D(ω, ϕ)dϕ

= f (ω)
∫ π

−π

1
2

sin(2ϕ)D(ω, ϕ)dϕ

= f (ω)
1
4

(
I
{

E
[
ei2X1

]}
+ I

{
E
[
ei2X2

]})
= f (ω)

1
4

(
sin(2ϕm1(ω))e−2σ(ω)2

+ sin(2ϕm2(ω))e−2σ(ω)2
)

.

B.2 Finite water depth correction

The relation given in (3.2.1) is for waves in deep water. For finite water depths a

slightly different relation is required. In particular, we have

G(ω, ϕ) =

[
1 i cos ϕ/ tanh(kh) i sin ϕ/ tanh(kh)

]T

where h is the water depth (in metres)2 and ω2 = k tanh(kh). Consequently we

have

fZZ(ω) = ( fXX(ω) + fYY(ω)) tanh(kh)2

meaning that the finite water depth definition for R(ω) is

R(ω) = log( fXX(ω) + fYY(ω)) + 2 log(tanh(kh))− log( fZZ(ω)).

It is this definition for R(ω) we use in Figure 3.4.1.

2In our case, h ≈ 40.
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B.3 Optimisation and gradient calculation

Parameters are estimated jointly by optimising the debiased Whittle likelihood us-

ing the interior point Newton method as implemented in Optim.jl (Mogensen and

Riseth, 2018). We use Fisher scoring as the expected Hessian of the debiased Whittle

likelihood can be computed analytically from the first derivatives of the autocovari-

ance (whilst the Hessian would require the second derivatives as well). This results

in very fast optimisation compared to other approaches. For further details, see the

Julia package WhittleLikelihoodInference.jl (Grainger, 2022c).

B.4 Confidence intervals of the multivariate debiased

Whittle likelihood

In Chapter 3, we used the inverse expected Hessian to compute confidence intervals.

It is possible to obtain improved confidence intervals, analogously to those used

in Chapter 2. However, they are much harder to compute from a computational

perspective, so we did not use them. However, for completeness, we present the

derivation here.

From Proposition 4 of Guillaumin et al. (2022), we have

var
(
θ̂DW

)
≈ E [H(θ)]−1 var (∇ℓDW(θ))E [H(θ)]−1 .

Sykulski et al. (2019); Guillaumin et al. (2022) give the form for var (∇ℓDW(θ)) in

the univariate case, for a Gaussian process and Gaussian random field respectively.

Here we extend this to the multivariate case.
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Firstly, we have that

∂ℓD(θ)

∂θj
= ∑

ω∈ΩN

tr

(
∂E(ω; θ)

∂θj
E(ω; θ)−1 − I(ω)E(ω; θ)−1 ∂E(ω; θ)

∂θj
E(ω; θ)−1

)
,

= ∑
ω∈ΩN

tr

(
[E(ω; θ)− I(ω)] E(ω; θ)−1 ∂E(ω; θ)

∂θj
E(ω; θ)−1

)
,

where E(ω; θ) = E [I(ω); θ)] and ∂E(ω;θ)
∂θj

is the matrix of element-wise derivatives of

E(ω; θ) with respect to θj. For convenience, write

Bj(ω; θ) = E(ω; θ)−1 ∂E(ω; θ)

∂θj
E(ω; θ)−1

Aj(ω; θ) = [E(ω; θ)− I(ω)] Bj(ω; θ)

so that

∂ℓD(θ)

∂θj
= ∑

ω∈ΩN

tr
(

Aj(ω; θ)
)

.

Therefore we have

cov

(
∂ℓD(θ)

∂θj
,

∂ℓD(θ)

∂θk

)
= cov

(
∑

ω∈ΩN

tr
(

Aj(ω; θ)
)

, ∑
λ∈ΩN

tr (Ak(λ; θ))

)

= ∑
ω∈ΩN

∑
λ∈ΩN

cov
(
tr
(

Aj(ω; θ)
)

, tr (Ak(λ; θ))
)

= ∑
ω∈ΩN

∑
λ∈ΩN

tr
(

cov
(

Aj(ω; θ), Ak(λ; θ)
))

where the covariance here is matrix covariance (see Wong, 1997, for example). The

matrix covariance is essentially comprised from stacking marginal covariances in

the same way as a Kronecker product, i.e. for random matrices A1 ∈ Cm1×n1 and
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A2 ∈ Cm2×n2 we have

cov (A1, A2) =
[

cov
(

a(1)rs , a(2)kl

)]
r,s,k,l

where the indices are as in A1 ⊗ A2. From Lemma 2.1 of Wong (1997), we have that

if we have constant matrices of appropriate dimensions B1, B2, C1, C2, that

cov (B1A1C1, B2A2C2)) = C
[

B1A1C1, B2A2C2)
]

= (B1 ⊗ B2) cov (A1, A2) (C1 ⊗ C2).

Note that Lemma 2.1 of Wong (1997) is for general cumulants, so we need to con-

jugate the k = 2 case for covariance. Furthermore, covariance is shift invariant.

Therefore, we see that

cov
(

Aj(ω; θ), Ak(λ; θ)
)
= cov

(
[E(ω; θ)− I(ω)] Bj(ω; θ), [E(λ; θ)− I(λ)] Bk(λ; θ)

)
= cov (I(ω), I(λ))

(
Bj(ω; θ)⊗ Bk(λ; θ)

)
. (B.4.1)

We now consider each of these parts in turn. Firstly, cov (I(ω), I(λ)) is entirely

determined by

cov (Irs(ω), Ikl(λ)) =
∆

2πn
cov

(
Jr(ω)Js(ω), Jk(λ)Jl(λ)

)
where Irs(ω) = [I(ω)]rs and Jr(ω) = [J(ω)]r. As in Percival (1992), we make use of

Israelis Theorem (Isserlis, 1918) which states that if we have four mean-zero complex

Gaussian random variables Z1, Z2, Z3, Z4 then

cov (Z1Z2, Z3Z4) = cov (Z1, Z3) cov (Z2, Z4) + cov (Z1, Z4) cov (Z2, Z3) .
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Now Jr(ω) is approximately mean-zero and complex Gaussian and so assuming it is

we can write

cov
(

Jr(ω)Js(ω), Jk(λ)Jl(λ)
)
= cov (Jr(ω), Jk(λ)) cov

(
Js(ω), Jl(λ)

)
+ cov

(
Jr(ω), Jl(λ)

)
cov

(
Js(ω), Jk(λ)

)
.

Again in parallel to the argument presented by Percival (1992) in the univariate case,

we note that

Jk(ω) =
∫ π/∆

−π/∆
Dn(∆[ω − u])dζk(u)

= −
∫ π/∆

−π/∆
Dn(∆[ω + u])dζk(u).

and so writing

Crl(ω, λ) = cov
(

Jr(ω), Jl(λ)
)

=
∫ π/∆

−π/∆
Dn(∆[ω − u])Dn(∆[λ − u]) f (∆)rl (u)du

Drk(ω, λ) = cov (Jr(ω), Jk(λ))

= −
∫ π/∆

−π/∆
Dn(∆[ω − u])Dn(∆[λ + u]) f (∆)rk (u)du

where f (∆)rl (u) = [ f ∆(u; θ)]rl.
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Putting this together we have

cov
(

Jr(ω)Js(ω), Jk(λ)Jl(λ)
)
= cov (Jr(ω), Jk(λ)) cov

(
Js(ω), Jl(λ)

)
+ cov

(
Jr(ω), Jl(λ)

)
cov

(
Js(ω), Jk(λ)

)
= cov (Jr(ω), Jk(λ)) cov (Js(ω), Jl(λ))

+ cov
(

Jr(ω), Jl(λ)
)

cov
(

Js(ω), Jk(λ)
)

= Drk(ω, λ)Dsl(ω, λ) + Crl(ω, λ)Csk(ω, λ).

Integrals of the type C can easily be computed efficiently using the approach de-

scribed in Appendix A.2. Integrals of the type D, can be computed analogously by

noting that, under the notation of Appendix A.2, if

hjk(ω) = f∆(ω)Dn(∆[ωj − ω])Dn(∆[ωk + ω])

= f∆(ω; θ)

(
e−in(∆(ωj−ω))

n−1

∑
s=0

eis(∆(ωj−ω))

)(
e−in(∆(ωk−ω))

n−1

∑
r=0

eir(∆(ωk−ω))

)

= e−i∆n(ωj+ωk)
n−1

∑
s=0

n−1

∑
r=0

eis∆ωj eir∆ωk
[

f∆(ω; θ)ei∆(1−n)ωe−i∆(s−r+n−1)ω
]

,

using q(ω) = f∆(ω; θ)ei∆(1−n)ω and Q̃(s, r) = Q(s − r + n − 1) in the algorithm in

Appendix A.2, we can approximate the desired integral. Clearly we also need to

replace f∆(ω; θ) with the appropriate cross spectra, but the algorithm works the

same regardless. Note that the term e−i∆n(ωj+ωk) will cancel when we compute

Drk(ω, λ)Dsl(ω, λ).
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Now moving to the second part of (B.4.1), i.e.

Bj(ω; θ)⊗ Bk(λ; θ) =

(
E(ω; θ)−1 ∂E(ω; θ)

∂θj
E(ω; θ)−1

)

⊗
(

E(λ; θ)−1 ∂E(λ; θ)

∂θk
E(λ; θ)−1

)
= E(ω, λ; θ)

(
∂E(ω; θ)

∂θj
⊗ ∂E(λ; θ)

∂θk

)
E(ω, λ; θ)

where

E(ω, λ; θ) =
(

E(ω; θ)−1 ⊗ E(λ; θ)−1
)

.

Note that the covariance matrix of interest cov (I(ω), I(λ)) is a d2 × d2 matrix.

B.5 Proof of the approximation of cross-spectral density

function for two wave staffs

Recall that we need to compute

I1 =
∫ 2π

0
exp{ik(x cos ϕ + y sin ϕ)}D(ω, ϕ)dϕ

Noting that ω is fixed and so D(ω, ·) is a pdf for a random variable supported on

[0, 2π], call it X. Thus we want to compute I1 = E [exp{i(a cos X + b sin X)}], where

a = kx and b = ky. Firstly

∀x ∈ R, |a cos x + b sin x|k ≤ |a + b|k
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therefore

∞

∑
k=0

E

[∣∣∣∣∣ ik(a cos X + b sin X)k

k!

∣∣∣∣∣
]
=

∞

∑
k=0

E

[
|a cos X + b sin X|k

k!

]

≤
∞

∑
k=0

E

[
|a + b|k

k!

]

=
∞

∑
k=0

|a + b|k
k!

= e|a+b| < ∞.

So we may apply the Fubini-Tonelli theorem and get

I1 = E

[
∞

∑
k=0

ik (a cos X + b sin X)k

k!

]

=
∞

∑
k=0

ik

k!
E
[
(a cos X + b sin X)k

]
.

Thus we must compute, for all k ∈ N0,

I2(k) = E
[
(a cos X + b sin X)k

]
= E

[
k

∑
n=0

(
k
n

)
anbk−n cosn X sink−n X

]

=
k

∑
n=0

(
k
n

)
anbk−nE

[
cosn X sink−n X

]
.

In other words, we must compute, for all n, m ∈ N0,

I3(n, m) = E [cosn X sinm X]

= E

[(
1
2n

n

∑
j=0

(
n
j

)
ei(2j−n)X

)(
1

(2i)m

m

∑
r=0

(
m
r

)
(−1)m−rei(2r−m)X

)]

=
1

2n+mim

m

∑
r=0

(−1)m−r
(

m
r

) n

∑
j=0

(
n
j

)
E
[
ei(2j+2r−n−m)X

]
=

1
2n+mim

m

∑
r=0

(−1)m−r
(

m
r

) n

∑
j=0

(
n
j

)
φX(2j + 2r − n − m),
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where φX(t) is the characteristic function of X. Note at this point X could be any

distribution.

Putting this together we have

I2(k) =
k

∑
n=0

(
k
n

)
anbk−n I3(n, k − n)

=
k

∑
n=0

(
k
n

)
anbk−n 1

2kik−n

k−n

∑
r=0

(
k − n

r

)
(−1)k−n−r

n

∑
j=0

(
n
j

)
φX(2j + 2r − k)

=
1
2k

k

∑
n=0

(
k
n

)
anbk−n

k−n

∑
r=0

(
k − n

r

)
ik−n−2r

n

∑
j=0

(
n
j

)
φX(2j + 2r − k),

and finally

I1 =
∞

∑
k=0

ik

k!
1
2k

k

∑
n=0

(
k
n

)
anbk−n

k−n

∑
r=0

(
k − n

r

)
ik−n−2r

n

∑
j=0

(
n
j

)
φX(2j + 2r − k).

In our case, we wish to compute this for X ∼ N (µ, σ2). So we have that φX(t) =

eitµ−t2σ2/2. Therefore

I1 =
∞

∑
k=0

ik

k!
1
2k

k

∑
n=0

(
k
n

)
anbk−n

k−n

∑
r=0

(
k − n

r

)
ik−n−2r

n

∑
j=0

(
n
j

)
ei(2j+2r−k)µ−(2j+2r−k)2σ2/2.

In fact, we are interested in Y ∼ BN(µ1, µ2, σ2) where BN is the bimodal Normal

distribution, with pdf given by [g(y; µ1, σ2) + g(y; µ2, σ2)]/2 where g is the pdf of

a Gaussian random variable. Therefore, from linearity of Fourier transforms we
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have

φY(t) =
φX1(t) + φX2(t)

2

=
1
2

(
eitµ1−t2σ2/2 + eitµ2−t2σ2/2

)
=

e−t2σ2/2

2

(
eitµ1 + eitµ2

)
.

Now note that

I1 =
∞

∑
k=0

ik

k!
1
2k

k

∑
n=0

(
k
n

)
anbk−n

k−n

∑
r=0

(
k − n

r

)
ik−n−2r

n

∑
j=0

(
n
j

)
φY(2j + 2r − k)

=
∞

∑
k=0

k

∑
n=0

anbk−n
k−n

∑
r=0

ik

k!
1
2k ik−n−2r

n

∑
j=0

(
k
n

)(
k − n

r

)(
n
j

)
φY(2j + 2r − k)

=
∞

∑
k=0

k

∑
n=0

anbk−n
k−n

∑
r=0

i−n · (−1)k−r

2k

n

∑
j=0

1
r!(k − n − r)!j!(n − j)!

φY(2j + 2r − k)

=
∞

∑
k=0

k

∑
n=0

anbk−n J1(k, n),

where

J1(n, k) =
k−n

∑
r=0

i−n · (−1)k−r

2k

n

∑
j=0

1
r!(k − n − r)!j!(n − j)!

φY(2j + 2r − k)

=
k−n

∑
r=0

i−n · (−1)k−r

2k+1

n

∑
j=0

e−(2j+2r−k)2σ2/2
(

ei(2j+2r−k)µ1 + ei(2j+2r−k)µ2
)

r!(k − n − r)!j!(n − j)!

=
k−n

∑
r=0

i−n · (−1)k+r

2k+1 J2(k, n, r),

with

J2(k, n, r) =
n

∑
j=0

e−(2j+2r−k)2σ2/2
(

ei(2j+2r−k)µ1 + ei(2j+2r−k)µ2
)

r!(k − n − r)!j!(n − j)!
.
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Appendix to Chapter 6

C.1 Circulant embedding

In this appendix, we review circulant embedding for univariate and multivariate

time series, in particular from a non-parametric estimate of the spectral density func-

tion (Percival and Constantine, 2006; Chandna and Walden, 2013). It is this approach

which we propose using to generate surrogate realisations.

C.1.1 Univariate circulant embedding

A matrix A ∈ Rm×m is said to be circulant if each row is a cycle one to the right of

the previous row. In other words, if

A =



a(0) a(1) a(2) . . . a(m − 1)

a(m − 1) a(0) a(1) . . . a(m − 2)

a(m − 2) a(m − 1) a(0) . . . ...
...

... . . . . . . a(1)

a(1) a(2) . . . a(m − 1) a(0)


. (C.1.1)
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If A is such a matrix, we can find a matrix square root of A in O(m log m) time

(Brockwell and Davis, 2006).

Circulant embedding (Davies and Harte, 1987; Wood and Chan, 1994) makes use

of this by noting the following: if Y is multivariate Normal with zero mean and

covariance matrix

A =

Σ . . .
... . . .


then the first n observations of Y are multivariate Normal with mean zero and co-

variance matrix Σ. Furthermore, if A were circulant, we could obtain such a Y using

Fourier transforms. Remember that we are interested in second-order stationary

processes, and Σ is symmetric and Toeplitz. As such,

Σ =



c(0) c(∆) . . . c([n − 1]∆)

c(∆) c(0) . . . c([n − 2]∆)
...

... . . . ...

c([n − 1]∆) c([n − 2]∆) . . . c(0)


is the covariance matrix of multivariate Gaussian from which we wish to simulate

our univariate time series. If A has the representation given in (C.1.1), then we can

achieve such an embedding by setting

a(j) =


c(j∆) 0 ≤ j ≤ n,

c([m − j]∆) m − (n − 1) ≤ j ≤ m − 1,

b(j) otherwise,

where the b(j) is chosen out of convenience so that the matrix is circulant (often set
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equal to 0). If m = 2n then these b(j)s need not be specified, but this is no guarantee

that this matrix A will be non-negative definite, so a larger m may have to be used.

Because A is circulant, its eigenvalues are the Fourier transform of a(0), . . . , a(m− 1)

(Brockwell and Davis, 2006), so A being non-negative definite is equivalent to the

Fourier transform of the sequence a(j) being non-negative and therefore is easy to

check (Percival and Constantine, 2006). In our setting, we can choose estimators of

the spectral density function which guarantee this, avoiding the problem.

Given a non-negative definite circulant embedding A, Dietrich and Newsam (1997)

suggest performing the following procedure:

1. For k ∈ {0, . . . , m − 1}

(a) Compute S(k) = ∑m−1
j=0 a(j)e−i2π jk/m.

(b) Compute
√

1
m S(k)Z(k) where Z(k) i.i.d∼ Nc (0, 1).

2. Form Y(t) = ∑m−1
k=0 Z(k)e−i2πtk/m for t ∈ {0, . . . , m − 1}.

3. Set X(1)(t∆) = R(Y(t)) and X(2)(t∆) = I(Y(t)) for t ∈ {0, . . . , n − 1}.

Here Nc (0, 1) denotes a standard complex Gaussian random variable, i.e. Z ∼

Nc (0, 1) if and only if Z = X + iY where X, Y ∼ N (0, 1/2). The obtained series

X(1) and X(2) will both be realisations of a multivariate Gaussian distribution with

covariance matrix A (Dietrich and Newsam, 1997). Furthermore, if Σ has been em-

bedded as described before, the first N observations of X(1) and X(2) form two in-

dependent realisations from a multivariate Gaussian with covariance matrix Σ (and

mean 0).
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C.1.2 Multivariate circulant embedding

Circulant embedding for simulating multivariate Gaussian processes was first intro-

duced by Chan and Wood (1999) in general case of multivariate Gaussian random

fields, but (Helgason et al., 2011) give a more detailed account for the case of mul-

tivariate Gaussian processes, so we follow their approach here. The approach pro-

vides a fast and exact simulation of regularly sampled stationary Gaussian processes

given some specified covariance structure. Let X be the d-dimensional process from

which we wish to simulate, and write

Σrs =



cXrXs(0) cXrXs(−∆) . . . cXrXs(−[n − 1]∆)

cXrXs(∆) cXrXs(0) . . . cXrXs(−[n − 2]∆)
...

... . . . ...

cXrXs([n − 1]∆) cXrXs([n − 2]∆) . . . cXrXs(0)


for 1 ≤ r ≤ s ≤ d. These are embedded in larger circulant matrices analogously to

the univariate case by setting

Ars =



ars(0) ars(1) ars(2) . . . ars(m − 1)

ars(m − 1) ars(0) ars(1) . . . ars(m − 2)

ars(m − 2) ars(m − 1) ars(0)
. . . ...

...
... . . . . . . ars(1)

ars(1) ars(2) . . . ars(m − 1) ars(0)


where for 1 ≤ r ≤ s ≤ d

ars(j) =


cXrXs(−j∆) 0 ≤ j ≤ n,

cXrXs([m − j]∆) m − (n − 1) ≤ j ≤ m − 1,

brs(j) otherwise.
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For r > s, set Ars = AT
sr. Note that this is different from the expression in Helgason

et al. (2011) because we defined autocovariance as lagged covariance rather than led

covariance, i.e. we define crs(τ) = E [Xr(τ)Xs(0)] whereas Helgason et al. (2011) use

E [Xr(0)Xs(τ)] . The difference is essentially a matter of preference. (In the frequency

domain, this difference corresponds to taking conjugates.)

Helgason et al. (2011) show that the following procedure simulates from a process

with covariance and cross covariance matrices given by Ars.

1. For k ∈ {0 . . . m − 1}:

(a) Compute Srs(k) = ∑m−1
j=0 ars(j) exp{−i2π jk/m}.

(b) Compute C(k) = [2Srs(k)/(Srr(k)Sss(k))1/2]1≤r,s≤d, setting terms equal to

zero if Srr(k)Sss(k) = 0.

(c) Compute the Cholesky decomposition L(k)L(k)H = C(k).

(d) Set Z(k) = L(k)W(k) where W(k) i.i.d∼ Nc (0, 1).

2. Form Y(t) = ∑m−1
k=0 Z(k) exp{−i2πtk/m} for t ∈ {0, . . . , m − 1}.

3. Set X(1)(t∆) = R(Y(t)) and X(2)(t∆) = I(Y(t)) for t ∈ {0, . . . , n − 1}.

As in the univariate case, X(1) and X(2) are independent Gaussian processes with

mean zero and covariance/cross-covariance matrices Σrs.

C.1.3 Circulant embedding from non-parametric estimates

We describe the simulation from non-parametric estimates in the multivariate case,

as proposed by Chandna and Walden (2013), because the univariate version (Percival

and Constantine, 2006) is analogous. We wish to simulate Gaussian processes with



APPENDIX C. APPENDIX TO CHAPTER 6 220
a

the same covariance structure as some observed process. Let f̂ (ω) denote some

consistent estimate of the spectral density matrix function. We can write

f̂ (ω) =
∆

2π

n−1

∑
τ=−n+1

ĉ(τ)e−iωτ.

where ĉ(τ) is an estimate of the autocovariance. We aim to simulate a Gaussian

process with autocovariance given by ĉ(τ) for τ ∈ {−(n − 1)∆, . . . , (n − 1)∆} and

0 otherwise. Taking the algorithm due to Helgason et al. (2011) above and setting

m = 2n, we have

Srs(k) =
m−1

∑
j=0

ars(j)e−i2π jk/m

=
n

∑
j=0

ĉrs(−j∆)e−i2π jk/m +
m−1

∑
j=n+1

ĉrs((m − j)∆)e−i2π jk/m

=
n−1

∑
j=0

ĉrs(−j∆)e−i2π jk/m +
−1

∑
j=−(n−1)

ĉrs(−j∆)e−i2π jk/me−i2πk

=
n−1

∑
j=−(n−1)

ĉrs(−j∆)e−i2π jk/m

=
2π

∆
f̂rs

(
2πk
m∆

)
.

So setting

Srs(k) =
2π

∆
f̂rs

(
2πk
m∆

)

and running the circulant embedding algorithm will produce simulations from the

desired Gaussian process. Additionally, from Theorem 2.1 of Helgason et al. (2011),

the embedding will be valid (will produce a process with non-negative definite co-

variance matrices) if and only if the matrices S(k) = [Srs(k)]1≤r,s≤d are non-negative
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definite for all k ∈ {0, . . . , m − 1}. Note that

S(k) =
2π

∆
f̂
(

2πk
m∆

)
=

2π

∆
f̂
(

2πk
m∆

)T

and so this is equivalent to the non-parametric spectral density estimate being non-

negative definite for all of the Fourier frequencies. Multitaper estimates satisfy this

property, and will be used in our simulations, as in Chandna and Walden (2013).

C.2 Derivation of univariate model

Recall that we have the model

W(t) = U(t) + V(t) + aU(t)V(t),

where U and V are univariate mean-zero stationary Gaussian processes which are

independent of each other. We have that the autocovariance is given by

cW(τ) = E [W(τ)W(0)]

= E [{U(τ) + V(τ) + aU(τ)V(τ)}{U(0) + V(0) + aU(0)V(0)}]

= cU(τ) + cV(τ) + a2cU(τ)cV(τ)

because we have by independence that E [U(t)mV(t)n] = E [U(t)m]E [V(t)n] and

E [U(t)] = E [V(t)] = E
[
U(t)3] = E

[
V(t)3] = 0. Therefore the spectral density

function is

fW(ω) = fU(ω) + fV(ω) + a2[ fU ∗ fV ](ω).
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Similarly, the third-order cumulant function is

cW(τ1, τ2) = a[cU(τ1)cV(τ2) + cU(τ2)cV(τ1)+

cU(τ1 − τ2)cV(τ1) + cU(τ1)cV(τ1 − τ2)+

cU(τ1 − τ2)cV(τ2) + cU(τ2)cV(τ1 − τ2)]

and so

fW(ω1, ω2) = a[ fU(ω1) fV(ω2) + fU(ω2) fV(ω1)+

fU(−ω2) fV(ω1 + ω2) + fU(ω1 + ω2) fV(−ω2)+

fU(ω1) fV(ω1 + ω2) + fU(ω1 + ω2) fV(ω1)].

C.3 Additional simulation studies

In this appendix, we provide the results of additional simulation studies to accom-

pany those in Chapter 6. Firstly, Figure C.3.1 shows models of the type Case 2, but

with varying γ parameters taking values 1, 3.5 and 5, in both the swell and wind-

sea. Secondly, Figure C.3.3 shows proportion of rejections using different levels of

multiple testing correction, accompanying Figure 6.3.6.
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Figure C.3.1: Squared skewness function for univariate processes with a = 1 but
with varying γ parameters.

Figure C.3.2: Results of simulation study with the models given in Figure C.3.1.
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Figure C.3.3: Proportion of rejections with different correction levels using circulant
embedding to generate under the null for multivariate processes.
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