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Abstract

Waves in the ocean can be as dangerous as they are impressive. In order to study

the behaviour of such waves, buoys are commonly deployed to collect recordings of

the ocean surface over time. This results in large quantities of high-frequency mul-

tivariate time series data. The statistical analysis of such data is of great importance

in a variety of engineering and scientific contexts, from the design of coastal flood

defences to offshore structures.

We develop methodology for analysing such buoy data, investigating two key ques-

tions. Firstly, how should we perform parameter inference for models of the fre-

quency domain behaviour of the surface, given recorded buoy data? Secondly, how

can we detect statistically significant non-linearities present in these time series?

For parameter inference, we find that pseudo-likelihood approaches greatly outper-

form state-of-the-art methodologies. As a result, not only can we obtain more reli-

able parameter estimates, but we can also perform inference for more complicated

models, allowing for a more intricate description of the waves. Due to the improved

performance of such estimates, we are able to see the evolution of these parameters

throughout storm events, using recorded buoy data from both California and the

North Sea.

For detecting non-linearities, we develop a robust testing procedure by evaluating
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the bispectrum of the observed time series against the bispectrum of bootstrap sim-

ulated Gaussian processes with similar characteristics. We explore the performance

of this technique in simulation studies, and apply the approach to buoy data from

California.
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Introduction

Waves in the ocean rank amongst the most impressive of natural phenomena. For

all of recorded history, the ocean (and its waves) have played an important role in

many aspects of human activity from coastal �shing and trade to exploration and

discovery. Risk to human life and infrastructure has always been a central concern

of man's interaction with the ocean's surface. From the design of coastal �ood de-

fences (Committee on Climate Change, 2018) to the design of ships and electricity

generators from offshore wind and wave installations (Tucker and Pitt, 2001), ocean

waves have a major impact on many design and safety assessments.

Ocean waves come in a variety of forms, from short capillary waves generated by

pressure differences over the ocean's surface, to tides generated by the gravity of

celestial bodies (Holthuijsen, 2007). In this thesis, we will focus on wind-generated

surface-gravity waves, which are waves generated by the wind, whose restoring

force is gravity. Wind-generated surface-gravity waves in turn can be separated into

two types: wind-sea waves and swell waves. Wind-sea waves are generated lo-

cally, by the wind blowing over the surface of the ocean. In contrast, swell waves

were once wind-sea waves, but have propagated away from the site of their gen-

eration, and are now observed elsewhere. Typically, swell waves are longer (lower

frequency) than wind-sea waves, and tend to be more regular (with energy that is

more focused in both frequency and direction).
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Such waves can be recorded in a number of different ways, from in-situ devices such

as buoys to remote sensing such as plane mounted radar (Hwang et al., 1998), or

even satellites (Douglas and Cheney, 1990). The two most common in-situ measure-

ment techniques are wave staffs and buoys (see Holthuijsen, 2007, for an overview

of other kinds of recording devices). In some circumstances, wave staffs can be used

to obtain Eulerian measurements of the surface of the water over both space and

time, e.g. in small lakes (Donelan et al., 1985; Young et al., 1996) or wave tanks (For-

ristall, 2015; Schubert et al., 2020). Such setups would be ideal in theory, but, in

deeper water, are not possible in practice.3 In contrast, buoys in the water provide

recordings of their Lagrangian motion. Whilst some buoys only record their vertical

displacement, many record other aspects of their motion. Such measurements can

provide information about the directional characteristics of the waves. For exam-

ple, a heave-pitch-roll buoy records its vertical displacement (heave) and its rotation

about its horizontal axes (pitch and roll), see e.g. Longuet-Higgins et al. (1963). More

modern buoys, such as a Datawell Waverider MkIII buoy (Datawell, 2006), record

their displacement in three orthogonal directions (vertical, Northwards and East-

wards). Summary statistics of these time series, such as signi�cant wave height and

peak period, are of great importance, especially their extremes (e.g. Forristall, 2004;

Wadsworth and Tawn, 2012; Northrop et al., 2017; Tawn et al., 2018; Shooter et al.,

2022).4 However, the focus of this thesis is on the buoy displacement time series

themselves, a higher resolution phenomenon.

Typically, such time series are analysed in the frequency domain. Heuristically, the

recorded time series is treated as a linear combination of regular waves of differ-

ing frequencies with random amplitudes and phases (Longuet-Higgins, 1957). Un-

3At least not with existing technology.
4Such studies are typically performed on hindcast predictions of signi�cant wave height, gen-

erated from physical models, as opposed to from the time series directly. But such hindcasts are
inherently predicting a description of the aforementioned time series.
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der linear wave theory 5, these amplitudes and phases are independent of one an-

other, and the process is Gaussian. In some sense, the spectral density function can

be thought of as describing the variance of these amplitudes.6 Similarly, the ocean

surface is viewed as a linear combination of regular waves with differing frequen-

cies and directions, whose amplitudes have a variance speci�ed by the frequency-

direction spectrum. The speci�c shape of these spectra provide an important de-

scription of the behaviour of such waves. For example, Figure I shows the spectral

density function of a process where both wind-sea and swell waves are present. The

presence of two components is clear to see in the frequency domain, but would be

much less clear in the time domain (e.g. from looking at autocovariance). In sum-

mary, we are interested in the spectral density function, a decomposition of vari-

ability in frequency; and the frequency-direction spectrum, a decomposition of vari-

ability in bothfrequency and direction. These concepts are de�ned formally in Sec-

tions 1.1 and 1.2 respectively.

Figure I: Illustration of the spectral density function of a process with both swell and
wind-sea.

Often, parametric models are proposed for the shape of the spectral density func-

tion and frequency-direction spectrum (one of the most popular models being the

JONSWAP spectrum proposed by Hasselmann et al., 1973). The parameters of these

5Linear wave theory arises from linearising the equations and boundary conditions that describe
the motion of water waves (see Holthuijsen, 2007, for example). The solutions to such equations are
often referred to as Airy waves (Airy, 1845).

6This is expressed more formally in Chapter 1.
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models are then estimated from recorded time series. However, it is known that esti-

mates of these parameters can be unreliable (Ewans and McConochie, 2018). There-

fore, in Part I of this thesis, we focus on improving the estimation of such parameters.

In particular, we show how, using pseudo-likelihood approaches to directly model

the time series, we can get major improvements in both bias and variance of the pa-

rameter estimators. Both for parameters of the spectral density function, and of the

frequency-direction spectrum.

Whilst Part I focuses on the linear properties of ocean waves, deviations from linear-

ity are also of interest (e.g. Ewans et al., 2021). From the perspective of the time series

analysis of ocean waves, this means deviations from Gaussianity. In the frequency

domain, this corresponds to the amplitudes (and phases) being uncorrelated 7 at dif-

ferent frequencies, but not necessarily independent. This dependence can be de-

scribed by higher-order joint cumulants, determined by the higher-order spectra of

the process.

To explore such non-linearities, many authors look for peaks in the higher-order

spectra (which would be identically zero in the case of a Gaussian process). Whilst

many studies have looked into this problem in the context of ocean waves, both in

the third-order case (e.g. Hasselmann, 1962; Elgar and Guza, 1985; Cherneva and

Soares, 2007) and fourth-order case (e.g. Chandran et al., 1994; Elgar et al., 1995;

Ewans et al., 2021), they only consider univariate processes, with signi�cance levels

based on often-unrealisable asymptotics. Therefore, in Part II of this thesis, we focus

on higher-order spectra, and their application to ocean wave time series. In partic-

ular, we discuss the normalisation problem (see Kim and Powers, 1979; Hinich and

Wolinsky, 2005), and local signi�cance testing for bispectra (the third-order spectral

density function). The bispectrum (and indeed spectra of higher order) are impor-

7Note that this is only true in the stationary case.
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tant in a wide range of applications, including plasma physics (Greb and Rusbridge,

1988; Riggs et al., 2021); seismology (Haubrich, 1965); medicine (He and Thomson,

2010) and of course ocean waves. Therefore, we hope that the methodology devel-

oped in Chapter 6 will be applicable beyond time series of ocean waves.



Thesis outline

There are two main themes in this thesis, and therefore it is presented in two parts.

Part I concerns parametric modelling of ocean wave spectra and is comprised of

Chapters 1, 2 and 3, with concluding remarks given in Chapter 4. Part II focuses on

higher-order spectra, and is comprised of Chapters 5 and 6, with conclusions given

in Chapter 7.

Outline for Part I

In Chapter 1, we review background theory on frequency domain time series anal-

ysis and spectral modelling of ocean wind-generated surface-gravity waves (hence-

forth “ocean waves”). In particular, we give de�nitions and introduce notation for

fundamental quantities including the spectral density function and the frequency-

direction spectrum. We introduce a variety of parametric models used to describe

the spectral density function and the frequency-direction spectrum for ocean waves.

We discuss non-parametric and parametric techniques used in the oceanography lit-

erature, and brie�y review simulation of (Gaussian) ocean wave time series.

Chapter 2 considers the univariate problem of estimating the parameters of a given

model for the spectral density function from ocean wave time series. We discuss

techniques used in the oceanographic and statistical literature. We demonstrate,

through numerical simulation, that the debiased Whittle likelihood outperforms

XXIX
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competitors, such as least squares �tting, in terms of bias and variance of the recov-

ered parameters. We also discuss uncertainty quanti�cation of parameter estimates,

and provide an algorithm for speeding up the approach of Sykulski et al. (2019). We

perform an example analysis for data recorded at Humboldt Bay offshore California,

to illustrate practical concerns that arise when applying the methodology.

Chapter 3 considers estimating the parameters of models for the frequency-direction

spectrum, which decomposes spatiotemporal variability by both frequency and di-

rection. We focus on modelling anchored buoy data, in the form of high frequency

multivariate time series. State-of-the-art methods for estimating the parameters of

such models do not make use of the full spatiotemporal content of the buoy ob-

servations due to various historical unnecessary assumptions and smoothing steps.

We explain how the multivariate debiased Whittle likelihood is used to estimate

jointly all model parameters directly from the recorded time series. When applied to

North Sea buoy data, debiased Whittle likelihood inference reveals a smooth evolu-

tion of model parameters over time. Finally, we discuss challenging practical issues

including model misspeci�cation, and provide guidelines for future application of

the method.

Outline for Part II

Chapter 5 introduces higher-order spectra, providing de�nitions and basic proper-

ties, and discussing a variety of estimation techniques. We also give a detailed dis-

cussion of different commonly used normalisations for the bispectrum, reiterating

the concerns of Hinich and Wolinsky (2005), and then describe a broad class of nor-

malistions motivated by invariance to certain linear operations. Finally, we discuss

global tests for Gaussianity and linearity proposed in the literature.
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Chapter 6 considers testing for bispectral non-linearities 8 locally (at speci�c frequen-

cies). We discuss the approach of Schulte (2016), propose an improvement based on

circulant embedding, and an extension to the multivariate case. We investigate the

performance of different approaches in simulation studies, quantifying power and

false detection rate. We then apply these methods to buoy data from Humboldt Bay

offshore California.

8In the oceanographic sense.



“It was like looking at the ocean: some days, you could

tell what mood it was in. Most days, though, it was

unreadable, mysterious.”

— RICK RIORDAN , THE L IGHTNING THIEF

Part I

Parametric modelling of ocean wave

spectra

1



Chapter 1

Spectral time series analysis and ocean

waves

The frequency domain analysis of time series revolves around the spectral density

function. Heuristically, this describes the contribution to the variance 1 of the pro-

cess from regular sinusoids of different frequencies. In the theory of ocean waves,

this is extended to the idea of a frequency-direction spectrum, which decomposes

the variance not only over frequency, but also over direction. In this chapter, we

shall formally introduce these quantities, and discuss some aspects of the paramet-

ric second-order2 modelling of ocean wave time series. Note that Chapters 2 and 3

are standalone, but in this chapter we provide more detailed background.

This chapter is structured as follows. We begin in Section 1.1 with a discussion of the

spectral density function and the multivariate generalisation, which will be required

for describing multivariate time series. We then give a detailed description of the fre-

quency direction spectra in Section 1.2. Existing parametric techniques are discussed

1Or, from the physical perspective, energy.
2In the time series sense.

2
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in Section 1.3. Then in Section 1.4 we cover simulation of Gaussian processes, which

is required for the simulation studies in Chapters 2 and 3. In this thesis, time is typi-

cally measured in seconds, space in metres and angular frequency in rad/s.

1.1 The spectral density function

In this section, we de�ne some of the fundamental quantities of this thesis, includ-

ing the spectral density function and its multivariate counterpart, the spectral den-

sity matrix function. Additionally, we discuss some non-parametric estimation tech-

niques for the spectral density function in Section 1.1.3, though this is less impor-

tant for understanding Chapters 2 and 3 than the de�nitions in Sections 1.1.1 and

1.1.2.

1.1.1 The univariate case

Consider a continuous-time stochastic processX = f X(t)gt2R . The processX is said

to be second-order stationary if, for all t, t 2 R,

1. E [X(t)] = E [X(0)],

2. cov(X(t + t ), X(t)) = cov (X(t ), X(0)),

3. var (X(t)) < ¥ .

In other words, the �rst and second order cumulants of X exist and are invariant to

time shifts. Typically, we will assume without loss of generality that processes we

deal with are mean-zero, that is E [X(t)] = 0 for all t 2 R.

Let XD = f X(t)gt2DZ be the stochastic process which arises from sampling X reg-

ularly with a sampling interval of D seconds, whereDA = f Da j a 2 Ag for some
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set A. Note that if the process X is second-order stationary, then clearly XD is also

second-order stationary.

The autocovariance function of a stationary continuous-time process X is de�ned

as cX (t ) = cov (X(t ), X(0)) for all t 2 R. The autocovariance sequence3 of the

sampled discrete-time process XD is c(D)
X (t ) = cov (X(t ), X(0)) and is only de�ned

for t 2 DZ . By de�nition, c(D)
X (t ) = cX (t ), for all t 2 DZ . Provided that the

autocovariance of the process is absolutely integrable (absolutely summable in the

discrete-time case), the spectral density function (sometimes referred to as the fre-

quency spectrum) of a process is de�ned as the Fourier transform of its autocovari-

ance.4 More speci�cally, the spectral density function of X is fX : R ! R and of XD

is f (D)
X : [� p / D, p / D] ! R such that

fX (w) =
1

2p

Z ¥

� ¥
cX (t )e� i tw dt ,

f (D)
X (w) =

D
2p å

t 2DZ
c(D)

X (t )e� i tw ,

where i =
p

� 1. We will often refer to f (D)
X as the aliased spectral density function,

because we have the relation

f (D)
X (w) = å

k2Z

fX (w + 2p k/ D).

In other words, fX (w + 2p k/ D) for all k 2 Z contributes to f (D)
X at frequency w,

so from a discrete-time process, we can only tell that the contribution to variance is

from frequencies w mod 2p / D. Essentially, the true density at a given frequency in

R has been assigned an “alias” in the interval [� p / D, p / D]. Therefore the phenom-

ena is known as aliasing, and we say the spectral density function of XD has been

3The unusual notation for a sequence is used to avoid overwhelming subscripts later in this thesis.
4The spectral density function can be de�ned in more general settings, but this is suf�cient for our

purpose. See Cramer and Leadbetter (1967), for example.
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aliased.

Cramer and Leadbetter (1967) show that for a mean-zero stationary processX, it is

possible to �nd an associated process zX such that

X(t) =
Z

R
eitwdzX (w).

The processzX is often referred to as the spectral or amplitude process associated

with X. This is related to the spectral density function by

E [dzX (w1)dzX (w2)] = d(w1 + w2) fX (w1)dw1dw2 (1.1.1)

where d is the Dirac delta function (Brillinger, 1974).

In other words, the process zX has orthogonal increments and a variance determined

by the spectral density function. It is this representation that gives rise to the com-

mon interpretation that a stationary stochastic process can be represented as a linear

combination of multiple uncorrelated sinusoids, with variance determined by the

spectral density function. A spectral representation can also be found for a discrete-

time process. In particular, for t 2 DZ ,

X(t) =
Z p / D

� p / D
eitwdz(D)

X (w),

where the relation to the aliased spectral density function is analogous to (1.1.1).

1.1.2 The multivariate case

Let X = f X (t)gt2R be ad-dimensional real-valued stochastic process. Such a process

is said to be second-order stationary if, for all t, t 2 R,
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1. E [X (t)] = E [X (0)],

2. cov(X (t + t ), X (t)) = cov (X (t ), X (0)),

3. tr( var (X (t))) < ¥ .

Again, X will be said to be mean zero if E [X (t)] = 0 for all t 2 R. As in the

univariate case, let the discretely sampled process beX D = f X (t)gt2DZ .

The autocovariance function of X is cX : R ! Rd� d and the autocovariance sequence

of X D is c(D)
X : DZ ! Rd� d such that

cX (t ) = cov (X (t ), X (0)) ,

c(D)
X (t ) = cov (X (t ), X (0)) .

Assuming that cX is absolutely integrable and c(D)
X is absolutely summable, the spec-

tral density matrix functions of the processes X and X D are f X : R ! Cd� d and

f (D)
X : [� p / D, p / D] ! Cd� d where

f X (w) =
1

2p

Z ¥

� ¥
cX (t )e� i tw dt ,

f (D)
X (w) =

D
2p å

t 2DZ
c(D)

X (t )e� i tw .

Unlike in the univariate case, the spectral density matrix function can be complex

valued (though the diagonals are real valued). In the univariate case, the spectral

density function is real valued because the autocovariance function is symmetric

about zero. This is not true in the multivariate case, where autocovariance is Hermi-

tian symmetric, i.e. cX (t ) = cX (� t )H , where zH denotes the conjugate transpose of

a matrix z.

The autocovariance of a multivariate process is a matrix valued function (or se-
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quence). The functions formed from the elements of these matrices are referred to as

autocovariance when they are on the diagonal, and cross-covariance when they are

off the diagonal. In other words, we often write

cX (t ) =
h
cX i X j (t )

i

1� i ,j � d

where cX i X i (t ) = cX i (t ) is the autocovariance of the univariate process X i and

cX i X j (t ) = cov
�
X i (t ), X j (0)

�
is the cross-covariance between processesX i and X j .

Similarly, the spectral density matrix function can be regarded as a matrix of func-

tions

f X (w) =
h

fX i X j (w)
i

1� i ,j � d

where fX i X i (w) = fX i (w) is the spectral density function of X i and fX i X j (w) is the

Fourier transform of the cross-covariance between X i and X j , referred to as the cross-

spectral density function.

The coherency betweenX i and X j is de�ned analogously to correlation:

rX i X j (w) =
fX i X j (w)

q
fX i (w) fX j (w)

,

de�ned to be zero when the denominator is zero (the numerator is bounded above

by the denominator, so is also zero in this case). The coherence and group delay are

de�ned to be the absolute value and argument of the coherency respectively. All of

these quantities are de�ned analogously for discrete-time processes.
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1.1.3 Non-parametric estimation

In this section, we introduce estimators for the spectral density matrix function in the

multivariate case. Consider a regularly sampled d-dimensional times series, denoted

X (0), X (D), . . . ,X ([n � 1]D), of some �nite length n. The discrete Fourier transform

of this time series is J(n) : [� p / D, p / D] ! Cd such that

J(n) (w) =
n� 1

å
t= 0

X (tD)e� itDw

and the periodogram is I (n) : [� p / D, p / D] ! Cd� d such that

I (n) (w) =
D

2p n
J(n) (w)H J(n) (w),

where zH denotes the conjugate transpose of a vector (or matrix) z. For �nite sam-

ples, the periodogram is a biased estimator of the spectral density function (Percival

and Walden, 1993). In particular, for w 2 [� p / D, p / D], the expected value is given

by

E
h
I (n) (w)

i
= [ F n � f (D)

X ](w)

where � denotes the convolution operator, and F n is the Fej́er kernel

F n(w) =
D

2p n

�
sin(wn/2 )
sin(w/2 )

� 2

.

This can result in substantial bias in small samples. Therefore, it is common to apply

a taper (a concept introduced by Blackman and Tukey, 1958). The tapered discrete
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Fourier transform of the series is

J(n)
v

(w) =
n

å
t= 1

v(t)X (tD)e� itDw

where v is the taper. The tapered periodogram is then

I (n)
v (w) =

D
2p

J(n)
v

(w)H J(n)
v

(w).

Here it is assumed that the taper is normalised so that å n
t= 1 v(t)2 = 1. For the tapered

periodogram the bias is different (Percival and Walden, 1993), with the expected

periodogram at w 2 [� p / D, p / D] given by

E
h
I (n)

v (w)
i

= [ Vn � f (D)
X ](w)

where Vn(w) = D
2p jVn(w)j2 and

Vn(w) =
n

å
t= 1

v(t)e� itDw.

Typically tapers reduce the bias of the periodogram at the cost of increasing narrow-

band correlation, i.e. correlation between frequencies that are similar (Percival and

Walden, 1993). Whilst tapering the periodogram reduces bias, both the regular and

tapered periodograms are inconsistent. As such, some form of smoothing is required

to achieve consistency.

Welch's overlapped segment averaging method (Welch, 1967) is commonly used in

many practical applications, including oceanography (e.g. Ewans and McConochie,

2018). Welch's method splits the data into segments of length nl with an overlap

of nl � ns points (shifting by the window by ns each time), computes tapered pe-

riodograms and then averages across all of the segments. A total of B = b(n �
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nl )/ nsc + 1 blocks are used. In particular, the estimate of the spectral density func-

tion takes the form

f̂
(nl ,B,ns)
v (w) =

1
B

B� 1

å
b= 0

I (bns:bns+ nl � 1)
v (w)

where

I (r:s)
v (w) =

D
2p

J(r:s)
v

(w)H J(r:s)
v

(w)

is the periodogram of the bth segment and

J(r:s)
v

(w) =
s� r

å
t= 0

v(t)X ([t + r ]D)e� itDw

is the discrete Fourier transform of the bth segment with taper v.

Multitapering, introduced by Thomson (1982), computes an average of multiple pe-

riodograms with different tapers. In particular, the basic version of a multitaper

estimate using K tapers is

f̂
(n)
K (w) =

1
K

K

å
j= 1

I (n)
vj (w)

where the tapers vj are orthogonal, i.e. å n
t= 1 vj (t)vk(t) = 0 when j 6= k. A com-

mon choice of taper is the discrete prolate spheroidal sequence (dpss) introduced by

Slepian (1978). Typically, more sophisticated weightings are used, details of which

can be found in Percival and Walden (1993), for example.

Welch's method and multitapering are consistent estimators (under the appropriate

conditions), but this is by no means a complete list of available consistent estimation

techniques. Many more can be found in Brillinger (1974); Percival (1992); Brockwell
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and Davis (2006) and many other references.

1.2 The frequency-direction spectrum

In this section, we provide a formal de�nition for the frequency-direction spectrum,

discuss its relation to other processes of interest, and introduce techniques for non-

parametric estimation. The discussion of non-parametric estimation is important

for understanding the existing parametric techniques described in Section 1.3.3, but

Chapter 3 could be read without this discussion.

1.2.1 De�nition

The frequency-direction spectrum gives a description not only of the behaviour of

the waves over frequency but also over direction. Fundamentally, it is not a de-

scription of a time series as we have been discussing previously, but a descrip-

tion of a spatio-temporal stochastic random �eld. Denote such a random �eld by

h = f h(t, x, y)gt,x,y2R . Then assuming the random �eld is stationary (homogeneous)

and mean-zero, we can write the covariance function

ch(t , l1, l2) = E [h(t , l1, l2)h(0, 0, 0)] .

Assuming that c(t , l1, l2) is absolutely integrable, can write

ch(t , l1, l2) =
Z ¥

� ¥

Z ¥

� ¥

Z ¥

� ¥
fh(w, k1, k2)e� i(wt + k1l1+ k2l2)dwdk1dk2

=
Z 2p

0

Z ¥

0

Z ¥

� ¥
k fh(w, kcosf , ksin f )e� i(wt + kcosf l1+ ksin f l2)dwdkdf

=
Z 2p

0

Z ¥

0

Z ¥

� ¥
f̃h(w, k, f )e� i(wt + kcosf l1+ ksin f l2)dwdkdf .



CHAPTER 1. SPECTRAL TIME SERIES ANALYSIS AND OCEAN WAVES 12
,

We call fh(w, k1, k2) the frequency-wavevector spectral density function of h and

f̃h(w, k, f ) = k fh(w, kcosf , ksin f ) the frequency-wavenumber-direction spectral

density function of h, incorporating a change of variable from Cartesian to polar

coordinates.

Under linear wave theory (Holthuijsen, 2007), there is a dispersion relation between

frequency and wavenumber

w2 = kgtanh(kh)

(where h is the water depth) so that the spectral-density is only supported on a subset

of the spectral domain (Barstow et al., 2005). Therefore, we have

f̃h(w, k, f ) = Sh(w, f )d(w2 � kgtanh(kh)) ,

where Sh : R � [0, 2p ] ! R is the frequency-direction spectral density function, or

simply the frequency-direction spectrum. In other words,

ch(t , l1, l2) =
Z 2p

0

Z ¥

0

Z ¥

� ¥
f̃ (w, k, f )e� i(wt + kcos(f ) l1+ ksin(f ) l2)dwdkdf ,

=
Z 2p

0

Z ¥

� ¥
Sh(w, f )e� i(wt + k(w) cos(f ) l1+ k(w) sin(f ) l2)dwdf ,

where k(w) satis�es k(w) tanh(k(w)h) = w2. From now on, we will use the simpler

notation S = Sh for the frequency-direction spectrum, dropping the subscript.

Note that in this de�nition, f is the direction the wave is travelling from. Some

authors use the direction the wave is travelling towards(e.g. Barstow et al., 2005).

“Direction from” is the same convention used for wind, whilst “direction towards”

is the same convention as currents. Since we compare with wind data, we use the

convention direction from. Aside from some implementation details, it does not mat-
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ter which de�nition is used. Heuristically, we can interpret the frequency-direction

spectrum as a measure of the contribution to the variance from waves of a given

frequency travelling from a given direction.

Let Z(t) = h(t, x, y) for all t 2 R at a �xed location 5 x, y 2 R. We have cZ (t ) =

ch(t , 0, 0), and therefore

Z ¥

� ¥
fZ (w)dw = cZ (t ) = ch(t , 0, 0) =

Z ¥

� ¥

Z 2p

0
S(w, f )e� iwt df dw.

Because thefZ and S are continuous, we have

fZ (w) =
Z 2p

0
S(w, f )e� iwt df , (1.2.1)

for all w 2 R. The relation in (1.2.1) gives rise to the standard decomposition of the

frequency-direction spectrum as

S(w, f ) = fZ (w)D(w, f )

where D(w, f ) is known as the spreading function, and fZ is often referred to as the

marginal spectral density function. From (1.2.1), we have

Z 2p

0
D(w, f )df = 1.

Therefore, for �xed frequency, the function D(w, �) : [0, 2p ] ! R at some �xed

w 2 R is essentially a probability density function with support on [0, 2p ]. From a

physical perspective, we expect D(w, �) to be 2p -periodic and continuous. Wrapped

distributions provide a convenient class of functions which can be used to model

D(w, �), see Section 1.3.2.

5The speci�c location does not matter as the process is stationary.
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In the same way that the frequency-direction spectrum describes the contribution to

the variance from waves of a given frequency and direction, the marginal spectral

density function describes the total contribution to variance from waves of a given

frequency over all directions. The spreading function can be interpreted as describ-

ing the contribution to the variance from waves of a given frequency and direction,

relativeto the contribution of all waves with that frequency.

1.2.2 Relation to other processes of interest

Under linear wave theory (see Holthuijsen, 2007, for example), many processes of

interest (say X) can be related to the frequency-direction spectrum via a transfer

function G as

f X (w) =
Z 2p

0
G(w, f )G(w, f )H S(w, f )df . (1.2.2)

For the displacement of a particle in deep water G(w, f ) = [ 1,i cosf , i sin f ]T (Isobe

et al., 1984). A table of different processes and their transfer functions can be found

in Benoit et al. (1997).

As in Chapter 3, we write Z = f Z(t)gt2DZ , X = f X(t)gt2DZ and Y = f Y(t)gt2DZ ,

for the vertical, northwards and eastwards displacements of the particle respectively.

Additionally, we will write P = f P(t) = [ Z(t), X(t),Y(t)]Tgt2R to be the multivari-

ate process describing constituted by the full three-dimensional motion of the parti-

cle. Of course, a buoy is not a particle in the water, but it is assumed to approximately

behave as such (see Section 3.4.1 for an example of when it does not).
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1.2.3 Non-parametric estimation

In an ideal world, we would estimate the frequency-direction spectrum from a record

of the spatio-temporal process h. However, recording such processes in deep water

is not (currently) possible in practice. Therefore, we record other related processes

(which are typically multivariate time series, such as the displacement of a buoy) and

use those toattemptto estimate the frequency-direction spectrum. Before we discuss

some non-parametric estimation techniques, it should be noted that this problem is

hard. Without the assistance of a model, such estimates can be unreliable.

Estimating the frequency-direction spectrum is equivalent to estimating both the

marginal spectral density function and the spreading function. We have already

discussed estimating the former from a time series in Section 1.1.3. However, esti-

mating the spreading function is challenging. Assuming that D(w, �) is 2p -periodic,

we can write it as a Fourier series, i.e.

D(w, f ) =
1
p

 
1
2

+
¥

å
j= 1

aj (w) cos( j f ) + bj (w) sin( j f )

!

, (1.2.3)

for f 2 [0, 2p ]. We can see from (1.2.2) that for displacement buoys

a1(w) =
I ( fXZ (w))

fZZ (w)
, b1(w) =

I ( fYZ (w))
fZZ (w)

,

a2(w) =
fXX (w) � fYY(w)

fZZ (w)
, b2(w) =

2fXY (w)
fZZ (w)

.

where I (z) denotes the imaginary part of a complex number z. In the case that

fZZ (w) = 0, these quantities are de�ned to be zero. Unfortunately, we cannot di-

rectly recover the remaining coef�cients. Therefore, to obtain the remaining Fourier

coef�cients, we must make some assumption about their behaviour. The two most

common techniques are the Maximum Likelihood method 6 (Isobe et al., 1984; Capon

6Not to be confused with maximum likelihood inference.
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et al., 1967) and Maximum Entropy method (Lygre and Krogstad, 1986) (referred to

as MLM and MEM respectively). Note that we are not yet estimating the spreading

function. Rather, we are attempting to invert the relation given in (1.2.2), which is in

general not invertible.

We shall begin by de�ning the MLM spreading function, which we denote DMLM .

The MLM spreading function is constructed to be a linear combination of the spectral

density matrix function (Isobe et al., 1984; Benoit et al., 1997), i.e.

DMLM (w, f ) =
1

f (w)
a(w, f )H f X (w)a(w, f )

where a(w, f ) is a vector of weights. To choose these weights, Isobe et al. (1984) �rst

write

DMLM (w, f ) =
Z 2p

0
D(w, f )W(w, y , f )dy , (1.2.4)

where

W(w, y , f ) = ja(w, f )H G(w, y )j2

plays the role of a window function. From (1.2.4) it can be seen that the closer

W(w, f , y ) is to d(y � f ), the closer the MLM spreading function, DMLM , will be

to the actual spreading function, D. Therefore, the weighting should be chosen such

that this is achieved as closely as possible (Benoit et al., 1997). The optimal choice

of weighting function then leads to the following estimate of the spreading function

(Isobe et al., 1984)

DMLM (w, f ) =
k

G(w, f )H f f X (w)g� 1G(w, f )
,
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where k is a normalising constant. The MLM spreading function can be estimated

from an observed buoy record by �rst estimating the spectral density matrix func-

tion, and then applying the above, replacing the spectral density with an estimate.

MLM estimates are widely used in the literature and are relatively easy and quick to

implement.

The MEM spreading function is another widely used transformation of the spread-

ing function, which can also be estimated from buoy measurements. The approach

attempts to maximise the entropy of the spreading function such that the �rst K

Fourier coef�cients of the spreading function match those derived directly from f X .

More formally, DMLM (w, f ) is de�ned to satisfy

max �
Z 2p

0
log(DMEM (w, f ))df ,

s.t.
Z 2p

0
DMEM (w, f )e� i j f df = cj (w) for j j j < K,

for w 2 R and f 2 [0, 2p ]. Where cj (w) = aj (w) + ibj (w) for j > 0, cj (w) =

aj (w) � ibj (w) for j < 0 and c0(w) = 1. For the case of a displacement buoy we have

K = 2 and Lygre and Krogstad (1986) show that

DMEM (w, f ) =
1

2p
1 � F1(w)c1(w) � F2(w)c2(w)
j1 � F1(w)e� i f � F2(w)e� i2f j2

,

where z denotes the conjugate of a complex number z and

F1(w) =
c1(w) � c2(w)c1(w)

1 � j c1(w)j2
,

F2(w) = c2(w) � c1(w)F1(w).

Notice that DMEM is merely a transformation of the spectral density matrix function

(which itself is a transformation of the frequency-direction spectrum, under the as-
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sumption of linear wave theory). The MEM estimate can be obtained from observed

buoy data by estimating the spectral density matrix function.

It is useful at this stage to note that there are actually two different objects referred

to as MLM estimates.7 The �rst is the transformation of the spreading function (a

property of the stochastic random �eld), which we refer to as the MLM spreading

function. 8 The second is the estimate of the MLM spreading function (there is pos-

sibly a third meaning if you also include the estimator). We make this distinction

as it is important to note that applying these methods to observed buoy data will

not produce estimates of the spreading function, but rather will produce estimates

of the MLM spreading function, essentially resulting in bias. Unlike in the estima-

tion of the marginal spectral density function, this bias is independent of the sample

size.

In both the MLM and MEM cases, the corresponding MLM (or MEM) frequency-

direction spectrum can be obtained by multiplying by the marginal spectral density

function (or by an estimate of it). Again it should be stressed that this is not the

same as the actual frequency-direction spectrum of the stochastic �eld: the MLM and

MEM frequency-direction spectrum are other properties of the stochastic process

that are related to, but not the same as, the frequency-direction spectrum.

1.3 Parametric models for ocean wave spectra

Chapters 2 and 3 focus on the parametric estimation of ocean wave spectra. To pre-

pare the ground for these chapters, here we introduce some of the models which

have been proposed for such spectra. In this section, we begin by reviewing some

7This also applies to MEM, but we state it for MLM only for brevity.
8Probably the name maximum likelihood spreading function is more natural than maximum like-

lihood method spreading function, but we use the latter as the acronym MLM is in keeping with the
oceanography literature.
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of the popular parametric models used to describe the (marginal) spectral density

function of ocean wave time series (in Section 1.3.1). We then discuss models for the

spreading function in Section 1.3.2. Whilst we discuss more than one model, each of

Sections 1.3.1 and 1.3.2 ends with descriptions of the model we use in Chapters 2 and

3. We then describe the existing parametric estimation techniques in Section 1.3.3. In

this section, we present models for wind-sea waves. Models for swell waves can be

found in Olagnon et al. (2013) for the marginal spectral density function and Ewans

(2002) for the spreading function, for example. Though in this thesis we focus on

wind-sea waves speci�cally, the techniques we develop can be applied to models for

swell waves, or models for more complex situations where mixtures of wind-sea and

swell waves are present, e.g. by using additive models such as those suggested by

van Zutphen et al. (2008).

1.3.1 Models for the marginal spectral density function

One of the earliest proposed parametric forms for the spectral density function of

wind-sea waves is the Pierson-Moskowitz spectrum (Pierson and Moskowitz, 1964).

In what follows, we will describe the spectral density functions for non-negative

frequencies, noting that they are all zero at the zero frequency and are symmetric

about zero.9

The Pierson-Moskowitz spectrum has a single parameter wp, and takes the form

fPM (w; wp) =
1
2

aw� 5 exp
�

�
5
4

� wp

w

� 4
�

.

for w > 0, where a = acg2 and ac = 8.1 � 10� 3 is known as the Phillips constant

(Phillips, 1958).

9Furthermore, we state the models in the two-sided form, hence the factor of one half.
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Following a large study of ocean wave spectra recorded in the North Sea, Has-

selmann et al. (1973) proposed a modi�cation known as the JONSWAP spectrum

(named after an acronym of Joint North Sea Wave Project). They propose modify-

ing the Pierson-Moskowitz spectrum to have an enhanced peak by multiplying by a

Gaussian kernel centred on the peak frequency. In particular, they propose a model

of the form

fJ(w; wp) =
1
2

aw� 5 exp
�

�
5
4

� wp

w

� 4
�

gd(w;wp) .

where

d(w; wp) = exp

(
(w � wp)2

2s(w; wp)2w2
p

)

and s(w; wp) = 0.07+ 0.021w> wp. (Note that d here is not the Dirac delta function

used elsewhere in this work). Typically a is the same as in the Pierson-Moskowitz

spectrum and g = 3.3.

Mackay (2016) expresses the JONSWAP function in a more general form as

fG(w; q) =
1
2

aw� r exp

(

�
r
4

�
w
wp

� � 4
)

gd(w;q) , (1.3.1)

where

d(w; q) = exp

(

�
1

2s(w; q)2

�
w
wp

� 1
� 2

)

,

and s(w; q) = 0.07+ 0.021w> wp. Now q = [ a, wp, g, r ]T is a vector of parameters,

where a is a scaling parameter, wp is the peak frequency, g is the peak enhancement

factor and r is the tail decay index.10 Without the peak enhancement term, (1.3.1) is

10This expression in (1.3.1) is actually slightly less general than the form in Mackay (2016), but
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essentially just a scaled Gamma probability density function.

1.3.2 Models for the spreading function

A wide variety of models for the spreading function have been proposed in the liter-

ature. We will brie�y discuss some of the more popular models, but when applying

our methodology in Chapter 3 we use the bimodal model proposed Ewans (1998)

due to its �exibility. More complete summaries of available models can be found in

Ewans (1998) and Barstow et al. (2005) for example.

One of the oldest models, proposed by Longuet-Higgins et al. (1963), is the so called

cos-2s model

D(w, f ) =
G(s(w) + 1)

2
p

p G(s(w) + 1/2 )
cos2s(w)

�
f � f m1(w)

2

�
,

where the functions f m1(w) and s(w) are usually written as functions of summary

statistics of the process (e.g. mean direction, peak frequency, spreading etc). See

Mitsuyasu et al. (1975); Hasselmann et al. (1980) for example.

Donelan et al. (1985) present evidence that the cos-2s spreading functions described

above tend to overestimate the energy in the peak direction. In response to this they

propose using a truncated sech2 distribution

D(w, f ) =
b(w)

2tanh(pb (w))
sech2(b(w) � f f � f 1(w)g) , (1.3.2)

where again b(w) is some fairly complicated function of peak frequency (with a

slightly modi�ed form proposed by Banner, 1990). It should be noted that the spread-

ing function given by (1.3.2) is not 2 p -periodic, though this is easily �xed by using a

we use this 4 parameter form as the other parameters are of less interest and make estimation more
dif�cult.
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wrapped sech2 instead (Barstow et al., 2005).

Young et al. (1995) demonstrate the spreading functions of ocean wave records are

likely to be bimodal at high frequencies, something that the parametric models above

do not describe. To handle this, Ewans (1998) suggests a bimodal spreading function

based on a wrapped bimodal Gaussian:

D(w, f ) =
1

p
8ps (w)

¥

å
k= � ¥

2

å
j= 1

exp

(

�
1
2

�
f � f mj(w) � 2p k

s(w)

� 2)

,

where s(w) is the standard deviation of the Gaussians (called angular width by

Ewans, 1998) andf m1(w), f m2(w) are the peak directions.

Typically, the angular width and peak direction functions are themselves parame-

terised. Ewans (1998) gives a parameterisation with �xed values based on observed

buoy data, with a single location parameter to determine the mean direction. We

shall use a less restrictive description by adding parameters for the shape of the

spreading function. A similar parametrisation was used by van Zutphen et al. (2008),

but we use slightly fewer parameters as some of the parameters in van Zutphen

et al. (2008) have little effect on the frequency-direction spectrum.11 In particular, we

write

f m1(w; q) = f m + f s(w; q)/2,

f m2(w; q) = f m � f s(w; q)/2,

f s(w; q) =

8
>><

>>:

b exp(� nwp/ jwj) for jwj > wp,

b exp(� n) otherwise,

s(w; q) = sl �
sr

3

 

4
�

wp

jwj

� 2

�
�

wp

jwj

� 8
!

.

11van Zutphen et al. (2008) parameterise the exponents ins(w; q) in addition to the parameters we
use.
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where wp is the peak frequency, as in the JONSWAP spectrum (1.3.1). This adds

an additional 5 parameters, namely f m, b, n, sl , sr to the parameters already required

for the marginal spectral density function. We prefer this model to the cos-2 s and

sech2 models as it is able to account for potential bimodal behaviour in the spreading

function (though unimodal behaviour can be obtained when b = 0).

1.3.3 Parametric estimation of ocean wave spectra

When estimating the parameters of frequency-direction spectra, a two stage ap-

proach is usually taken. Firstly, the parameters of the spectral density function of

the vertical displacement are estimated using least squares and then the parameters

of the spreading function are estimated separately. We discuss the least squares es-

timation in detail in Chapter 2, and so we will focus on estimation of parameters of

the spreading function in this section. Such estimation is usually performed in one

of two ways: a moments-matching approach (Ewans, 1998, for example); or by pro-

ducing a non-parametric estimate of the spreading function, then �tting using least

squares, as in van Zutphen et al. (2008).

Least squares �tting to estimates of the spreading function

A commonly used technique involves �tting the model spreading function to a non-

parametric estimate of the spreading function using least squares. In other words,

given D̂(w, f ), an estimate of the spreading function (see Section 1.2.3), the parame-

ters, q, are obtained by solving

argmin
q

å
w2W

å
f 2F

�
D(w, f ; q) � D̂(w, f )

� 2
,

where W � [� p / D, p / D] and F � [0, 2p ] are �nite sets of frequencies and direc-

tions respectively. This approach essentially assumes that the estimator used for
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the spreading function is unbiased, normally distributed, homoscedastic and that, at

different pairs of frequency and direction estimates are uncorrelated. However, in

practice, none of these are satis�ed. In particular, correlation across frequency and

direction is high for both MLM and MEM estimates, and bias is substantial. As a

result, estimation of anything other than location parameters using this technique

performs poorly, as we will see in Chapter 3.

Moments-matching approach

Early approaches to �tting parametric spreading functions to data from buoys, such

as Mitsuyasu et al. (1975), match the Fourier coef�cients estimated from the buoy to

the theoretical Fourier coef�cients from the model (under the relevant transfer func-

tion). Begin by estimating the properties of the spreading function at each frequency,

e.g. f m1(w). Importantly, these are different from the model parameters we eventu-

ally wish to estimate. Then use regression to estimate the parameters of the model

for the behaviour of the spreading function over frequency. In our case, following

Ewans (1998), at each frequency we estimateq(w) = [ f m1(w), f m2(w), s(w)]T us-

ing

q̂(w) = argmin
q(w)

jc1(w; q(w)) � ĉ1(w)j2 + jc2(w; q(w)) � ĉ2(w)j2

where, cj (w; q(w)) = aj (w; q(w)) + ibj (w; q(w)) and ĉj (w) is an estimate for cj (w)

obtained by plugging estimates for the relevant cross-spectral density functions into

(1.2.3). These are estimated forw in some �nite set W � [� p / D, p / D], yielding

f̂ m1(w), f̂ m2(w), and ŝ(w).
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The parameters of interest q = [ f m, b, n, sl , sr ]T are then estimated by

q̂ = argmin
q

å
w2W

h�
f m1(w; q) � f̂ m1(w)

� 2 +
�
f m2(w; q) � f̂ m2(w)

� 2

+
�
s(w; q) � ŝ(w)

� 2
i
.

Recall that the other parameters, a, wp, g, r, are estimated marginally prior to this.

Such a technique is usually not applied to a single sea state, but instead is applied

to multiple sea states with the view to �xing the parameters of the spreading func-

tion (except the mean direction). As we show in Chapter 3, this approach performs

poorly in application to a single sea state. However, it should be remembered that

this technique can still be useful for getting a general idea of the shape different as-

pects of the spreading function can take, as in Ewans (1998), but it is not useful for

estimating the parameters of a single sea state.

1.4 Simulating Gaussian processes

At various points in this thesis, it will be useful to be able to simulate processes with

a given spectral density function, in order to test methodology via Monte Carlo ex-

periments. In this section, we review some of the common simulation approaches

from the oceanography literature, discuss some of their draw backs, and detail exact

methods which can be used instead. In particular, we wish to simulate a Gaussian

process with known spectral density function (or equivalently autocovariance) at a

regular sampling interval of D, for n observations. In other words, we want to gen-

erate a realisation of X(0), X(D), . . . ,X([n � 1]D) where the process X is a Gaussian

process.
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1.4.1 Random phase methods

The most common approach to simulating Gaussian ocean wave time series is an

approximate frequency domain technique, due to Thompson (1973) and Tucker et al.

(1984). Choose somem � n, and for 0 � k � b m/2 c draw independent

Rk � Rayleigh( f (D)
X (2p k/ Dm)

1/2
),

Uk � Unif (0, 2p ),

and form

Zk =

8
>>>>>><

>>>>>>:

Rk for k = 0 or k = m/2,

RkeiUk/
p

2 for 1 � k � b m/2 c � 1,

Zm� k otherwise.

Note that the k = m/2 case only applies if m is even. We then take the inverse

discrete Fourier transform of Zk to form a realisation of the Gaussian process. In

other words,

X̃(t) =

r
2p
mD

m� 1

å
k= 0

Zk expf itk/ Dmg

for t = D, . . . ,nD. Using an FFT we can quickly obtain a time series of m observations

spaced equally with a sampling interval of D between them, and simply discard

observations beyond the nth . Adopting the terminology of M érigaud and Ringwood

(2018), we shall refer to this approach as the random amplitude scheme (RAS).

Since we require n observations spaced at an interval of D, Tucker et al. (1984) set

m = n. Unfortunately, even asymptotically this does not actually simulate from the

process of interest. There are three main issues that arise. Firstly, as pointed out by
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Mérigaud and Ringwood (2018), the resultant process will be periodic with period

nD, meaning that X̃(0) = X̃(nD) and so the correlation between the process at the

�rst time point and at the second time point, is the same as the correlation between

the process at the �rst time point and at the last time point, i.e.

cov (X(0), X([n � 1]D)) = cov (X(nD), X([n � 1]D))

= cov (X(0), X(D)) .

Clearly this should not be the case. Secondly, the expectation of the periodogram of

X̃ is equal to the spectral density function at the Fourier frequencies (Percival, 1992).

Furthermore, the periodogram of X̃ is exponentially distributed. In other words, the

periodogram of X̃ has a �nite sample distribution equal to the asymptoticdistribu-

tion of the periodogram of a process with the desired spectral density function. The

third issue is a somewhat related one, which is that the periodogram ordinates at the

Fourier frequencies are, by construction, uncorrelated. Thus the �nite joint distribu-

tion of the periodogram at all of the Fourier frequencies is exactly the asymptoticjoint

distribution of the periodogram of the process we wanted to simulate from.

As a result, if we are using such a simulation method to analyse the performance

of techniques that make approximations based on the asymptotic distribution of the

periodogram (which we will be doing), then we will see much better performance on

series simulated in this manner than series simulated with the correct �nite sample

properties. This in turn would result in overcon�dence in the performance of our

estimates.

Deterministic amplitude scheme

A commonly used modi�cation of RAS is the deterministic amplitude scheme (DAS).

As the name suggests, this approach is identical to RAS, except that the ampli-
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tudes are �xed to be equal to the spectral density function, i.e. replacing Rk by

R̃k = f (D)
X (2p k/ Dm)1/2 . Note that this is not equivalent to setting the amplitudes to

their expectation, as E [Rk] =
p

p /2 f (D)
X (2p k/ Dm)1/2 , but rather it �xes the power

(amplitude squared) to its expectation.

Not only do we now have periodograms with completely the wrong distribution (a

point mass at the spectral density function), but the resultant process is only asymp-

totically Gaussian (asymptotically in m). Clearly RAS is preferable over DAS, but

neither are especially satisfactory. Of course, simulating stationary Gaussian pro-

cesses (or any Gaussian process for that matter) can be done exactly12, as we discuss

in the next section. This should be preferred over both RAS and DAS for the afore-

mentioned reasons.

1.4.2 Exact method

We begin by discussing an approach to simulate exactly from the Gaussian time

series using standard multivariate Gaussian theory. Say we wish to simulate an n-

dimensional Gaussian random variable with mean m 2 Rn and covariance matrix

S 2 Rn� n. Note that, if L 2 Rn� n is such that LL T = S (L is a matrix square root of

S) and Z � N (0, I n), then setting X n = m+ LZ we have X n � N (m, S). Therefore

we can simulate from a mean-zero stationary Gaussian process by performing the

following steps:

1. Construct the covariance matrix S = [cX ([r � s]D)]1� r,s� n.

2. Find a matrix square root L of S, e.g. using a Cholesky decomposition.

3. Draw W from a N (0, I n).

12Of course, in practice the simulation is only exact up to the quality of random number generators
and �oating point operations.
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4. Compute X n = LW .

Here [ars]1� r,s� n denotes the matrix with elements ars and cX (t ) is the autocovari-

ance of the process we wish to simulate from. Thus we can simulate exactly from a

Gaussian time series, though it is slow compared to RAS (since �nding a Choleksy

square root in general requires O(n3) operations). However, when we have a sta-

tionary process this can be improved to O(n log(n)) operations, using circulant em-

bedding (Davies and Harte, 1987; Wood and Chan, 1994). This is presented in more

detail in Section C.1. The exact approach is easily extended to the multivariate case,

as is circulant embedding (Helgason et al., 2011).

1.5 Conclusion

In this chapter, we introduced many of the key ideas used throughout Part I of this

thesis. In particular, Chapter 2 focuses on univariate parameter estimation of the

spectral density function, introduced in Section 1.1, for the corresponding paramet-

ric models described in Section 1.3.1. The extension to frequency-direction spec-

trum described in Section 1.2 and the models from Section 1.3.2 are utilised in Chap-

ter 3, where we discuss the estimating the parameters of models for the frequency-

direction spectrum from buoy data. Additionally, we summarised the differences

between some approximate simulation techniques commonly used in the oceanog-

raphy literature, giving reasons why exact techniques should be preferred over the

techniques currently employed, especially in the context of this thesis.



Chapter 2

Estimating the parameters of ocean

wave spectra

The content of this chapter is a published paper (Grainger et al., 2021), with the

exception of Section 2.7, where we now analyse data recorded at Humboldt Bay,

California. In the original work we considered much older data from New Zealand,

recorded for 20 minutes at the start of each 3 hour period. The Humboldt Bay data

is recorded continuously (at 1.28Hz), and provides an interesting new analysis. The

rest of the content is the same, with small notational changes made for consistency

with other thesis chapters. We motivate the chapter in Section 2.1, and describe the

structure of the chapter at the end of Section 2.1. For simplicity, we will often drop

the some of the subscripts introduced in Chapter 1. For example, we will often write

f and fD as opposed to fX and f (D)
X respectively. Note that when we refer to X in this

chapter, this is the same processZ in Chapter 3, the vertical displacement (not to be

confused with the horizontal displacement).

30
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2.1 Introduction

Due to the random nature of wind-generated surface-gravity waves, it is common to

treat them as stochastic processes. There is particular interest in the spectral density

function of such wave processes. For this reason, it is important that we are able

to construct good spectral density estimators. Using such an estimator, estimates of

the spectral density function can be obtained from observed wave records. Broadly

speaking, there are two approaches for obtaining such an estimator: non-parametric

and parametric. The most basic non-parametric spectral density estimator is the pe-

riodogram — the Fourier transform of the sample autocovariance. However, the

periodogram is a noisy estimator. Therefore many less noisy estimators have been

developed (see Section 1.1.3). The second approach is to use a parametric spectral

density estimator. Here we assume that the spectral density function follows a para-

metric form, meaning that the inference task becomes estimation of the parameters

of this form. In general, parametric estimators are often preferable because they re-

sult in smoother estimates and more concise representations of the spectral density

function—and the parameters themselves provide physical interpretation of the na-

ture of the wave process.

Many such parametric forms have been developed in the oceanography literature.

Phillips (1958) gave theoretical arguments for the tail behaviour of the spectral den-

sity function for wind-generated wave processes. Based on this, Pierson and Mosk-

owitz (1964) established a parametric form that characterised the spectral density

function of a fully developed sea, describing both the spectral tail and peak be-

haviour. This was later extended by Hasselmann et al. (1973), so that the parametric

form could encompass a wider variety of spectral density functions, including those

associated with fetch limited wave processes. This widely used parametric form is

usually known as the JONSWAP spectral form. It should be noted that we use JON-
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SWAP to refer to the original formulation given by Hasselmann et al. (1973), with a

tail decay of O(w � 5) asw ! ¥ (where w denotes angular frequency).

Despite general acceptance of the JONSWAP spectral form amongst practitioners,

there is debate concerning the values of the tail decay index and peak enhancement

factor. Arguments for an w � 5 tail decay, made by Phillips (1958), were called into

question by Toba (1973) and later by Phillips (1985), who argued that an w � 4 tail

had a stronger theoretical basis. Experimental work such as Hasselmann et al. (1973)

and Battjes et al. (1987) found evidence for both w � 4 and w � 5 tail decays, while

Hwang et al. (2017) could not �nd evidence for either, further suggesting that the

tail decay index should be treated as a free parameter. In addition, there is a large

literature speculating on other tail behaviours, such as the occurrence of a transition

frequency from w � 4 to w � 5 (Forristall, 1981; Ewans and Kibblewhite, 1986; Babanin,

2010, for example). It is also common to �x the peak enhancement factor to 3.3; how-

ever, there is little evidence for using precisely this value. In this work, we adopt a

more general version of the JONSWAP spectral form, which treats both the tail decay

index and peak enhancement factor as free parameters (though our methods also ap-

ply to the special cases mentioned, in terms of estimating the remaining parameters

of interest).1 Many authors (Rodr �́guez and Soares, 1999; Ewans and McConochie,

2018, for example) have found that both the tail decay index and peak enhancement

factor are hard to estimate accurately, using current techniques. However, both of

these parameters are important for determining the properties of a given sea state.

Our contention is that current techniques are not suf�ciently accurate or precise to

allow strong statements to be made concerning the true values of the tail decay in-

dex or peak enhancement factor, from typical data sets. Indeed, in Section 2.5 we

demonstrate with simulated half hour records that estimates for the tail decay (us-

1To avoid potential confusion, it should be noted that we are interested in estimating the param-
eters of assumed parametric forms for the spectral density function (such as the generalised JON-
SWAP) and not spectral parameters of a sea state such as signi�cant wave height (Hs).
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ing current estimation techniques) range from O(w � 3) to O(w � 6), when the true tail

decay is known to be O(w � 4) as w ! ¥ . Because there is too much variability in

the estimates, it is impossible to determine from such half hour data if the true tail

decay is O(w � 4) or O(w � 5) as w ! ¥ . In this work we present an alternative tech-

nique that is capable of obtaining these parameters more accurately and precisely,

and show in simulated data that this technique can distinguish O(w � 4) and O(w � 5)

high-frequency tail decays, even from short records.

The standard approach for estimating parameters of a stochastic model from data

is by using maximum likelihood inference. When an analytical form for the likeli-

hood function is known, such parameters can be optimally estimated using maxi-

mum likelihood (Pawitan, 2001). For �nite sample sizes, maximum likelihood infer-

ence typically results in estimators with smaller RMSE compared to alternative tech-

niques, such as method of moments or least squares. However, in the case of wind-

generated wave processes, the exact probability distribution is unknown. Though it

is possible to make the simplifying assumption that the wave process is Gaussian,

for many sea states this assumption will not be reasonable. For this reason, it has

become common for oceanographers to use a non-parametric estimator of the spec-

tral density function, and obtain parameters by �tting a parametric form in the least

squares sense. However, such least squares estimators will in general be sub-optimal

when compared to full maximum likelihood (Constable, 1988).

We therefore turn to frequency domain likelihoods, which are widely used in both

time series analysis and spatial statistics (Nordman and Lahiri, 2006; Fuentes, 2007,

for example). The canonical approach is to use an approximation to maximum likeli-

hood known as the Whittle likelihood (Whittle, 1953b). The Whittle likelihood can be

computed quickly using Fast Fourier Transforms and does not require Gaussianity

(Dzhaparidze and Yaglom, 1983). However, the Whittle likelihood has been shown
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to produce biased estimates for small sample sizes (Dahlhaus, 1988; Velasco and

Robinson, 2000). Sykulski et al. (2019) developed a debiased version of the Whit-

tle likelihood that corrects for this bias, without sacri�cing the computational speed

or making extra distributional assumptions. In Section 2.3.4, we will provide some

intuition as to why we would expect the debiased Whittle likelihood to perform bet-

ter than least squares, both in terms of accuracy (bias) and precision (variance). Then

in Section 2.5, we evidence this claim using numerical simulations.

The contributions of this chapter are as follows. Firstly, we introduce the debiased

Whittle likelihood estimator for use on wind-generated wave processes (Section 2.3).

Secondly, we detail practical concerns regarding the implementation of the estima-

tion procedure for wind-generated ocean wave processes (Section 2.4), with accom-

panying MATLAB code provided on GitHub (Grainger, 2021). 2 This includes an

important generalisation of the Sykulski et al. (2019) procedure to allow parameters

to be �tted directly to the proposed spectral form without having to posit an analyt-

ical form for the time-domain theoretical autocovariance sequence—as required in

Sykulski et al. (2019), but unavailable for ocean wave spectral forms. Thirdly, we

present a novel reformulation of the variance of the debiased Whittle likelihood es-

timator which can be used to quantify the uncertainty of parameter estimates (Sec-

tion 2.6). Finally, we perform a detailed simulation and �eld data study compar-

ing the performance of different parametric spectral density estimators for wind-

generated wave processes (Section 2.5 and Section 2.7).

2Note that this toolbox has been superseded by the Julia packages WhittleLikelihoodInference.jl
(Grainger, 2022c) and OceanWaveSpectralFitting.jl (Grainger, 2022b).
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2.2 Background

So far we have used the word “wave” loosely to describe the shifting nature of the

sea surface. In truth, we are actually interested in modelling the displacement of

the sea surface from the resting surface. Of course, in reality this is a 3-dimensional

phenomena, but in this chapter we shall consider the vertical displacement of the

surface over time at a speci�c location in space. We can think of the displacement

at a given time as being a random variablewith some distribution. Therefore we can

describe the displacement over time by a stochastic process, an indexed family of ran-

dom variables, which we shall denote X = f X(t)gt2R . Note that this is a family

of random variables indexed over continuous time, as the actual physical process is

constantly changing. However, since we cannot actually record data continuously

in time, we must instead settle for recording the process at discrete points in time.

We assume that the data are being sampled regularly and denote the sampling in-

terval D and the process that arises from sampling X every D seconds we shall call

XD = f X(t)gt2DZ .

For the duration of a given record, observations of the sea surface are usually as-

sumed to be from an underlying process X that is second-order stationary. This means

X satis�es all of the following conditions:

1. E [X(t)] = E [X(0)],

2. E
�
jX(t)j2

�
< ¥ ,

3. E [X(t)X(s)] = E [X(t � s)X(0)],

for all t, s 2 R. However, the sea surface is not actually stationary: it evolves over

time. One way to circumvent this is to notice that whilst the conditions at sea do

evolve over time, they do so relatively slowly if we sample frequently. Therefore, we
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treat the sea surface as being stationary over short time intervals, sometimes known

as sea states. This is essentially the same approach as locally stationary modelling in

time series analysis (Dahlhaus, 2012). Ideally we would make this sea state as short

as possible. However, we must balance this with another fundamental statement:

the more observations we have, the more con�dent we can be in our inferences. The

question of the correct time interval to use will not be covered here; though, it is use-

ful to keep in mind that improving the precision of parameter estimates will mean

that we could use shorter sea states in our analysis. This would allow us to track the

evolution of certain meteorological processes, such as tropical cyclones, at a higher

precision and resolution. To summarise, the underlying wind-generated wave pro-

cess is not second-order stationary; however, for short enough time windows, this is

a widely used working assumption that allows some inference to be made about the

process in question.

The analysis of second-order stationary stochastic processes usually involves two

important characteristics: the autocovarianceand the spectral density function. The au-

tocovariance of a process at a given lagt , is just the covariance of a process with itself

t time-steps later. More formally, the autocovariance is c(t ) = cov (X(t ), X(0)).

For our purposes, we assume that E [X(t)] = 0 for all t 2 R; noting that if this is

not the case, then by �rst centring the data by subtracting its sample mean we can

obtain a process with the desired property. Therefore, the autocovariance simpli�es

to c(t ) = E [X(t )X(0)]. The spectral density function is a frequency domain ana-

logue of the autocovariance, which for the stochastic processesX and XD we shall

denote f (w) and fD(w) respectively. For the discrete time process, assuming that

å t 2DZ jc(t )j < ¥ ,

fD(w) =
D
2p å

t 2DZ
c(t )e� i tw ,
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for w 2 [� p / D, p / D], where p / D is the Nyquist frequencyand is the highest observ-

able frequency of the sampled process. Similarly for the continuous time process,

assuming
R¥

� ¥ jc(t )jdt < ¥ ,

f (w) =
1

2p

Z ¥

� ¥
c(t )e� i tw dt , (2.2.1)

for w 2 R.3 Similarly, the inverse relations are

c(t ) =
Z p / D

� p / D
fD(w)ei tw dw, (2.2.2)

for t 2 DZ and

c(t ) =
Z ¥

� ¥
f (w)ei tw dw, (2.2.3)

for t 2 R. The spectral density of the discrete time process, fD(w), can be thought

of as an aliased version of the continuous time spectral density function f (w). More

formally, we have the following relation:

fD(w) = å
k2Z

f
�

w +
2p k
D

�
, (2.2.4)

for w 2 [� p / D, p / D] (Percival and Walden, 1993, Chapter 4). In Section 2.5, we

demonstrate that aliasing can cause bias in parameter estimation, which is why it is

important to de�ne both f (w) and fD(w) and understand their relationship.

2.2.1 Non-parametric spectral density estimators

Though our purpose is the analysis of parametric spectral density estimators, it is

also pertinent to de�ne some of the non-parametric spectral density estimators that

3Note that we are working with angular frequency here, and for all examples in this thesis this is
measured in units of rad s � 1.



CHAPTER 2. ESTIMATING THE PARAMETERS OF OCEAN WAVE SPECTRA 38
,

are used throughout this chapter. There are two important properties that should

be considered when choosing an estimator. The �rst of these is bias, which is the

expectation of the estimator minus the true value. Ideally we would want to choose

an estimator that is unbiased, i.e. has a bias of zero. This is often not possible, but

the weaker condition of asymptotically unbiased is often achievable. An estimator

is said to be asymptotically unbiased if, as the number of observations increases, the

bias tends to zero. The second important property is consistency. For an estimator to

be consistent it must converge in probability to the true parameter as the number of

observations tends to in�nity. More formally, denote the true parameter by q0 and

an estimator from a series of n observations by q̂n. Then q̂n is a consistent estimator

if, for all e > 0, P
�
kq̂n � q0k > e

�
! 0 asn ! ¥ .

The most basic non-parametric estimator for the spectral density function of a dis-

crete time process is theperiodogram. Let XD,n = f X(0), X(D), . . . ,X(D[n � 1])g be a

series of n consecutive random variables from XD, then the periodogram is de�ned

as

I (w) =
D

2p n

�
�
�
�
�

n� 1

å
t= 0

X(Dt)e� itDw

�
�
�
�
�

2

,

for w 2 R. In practice, the periodogram is typically only evaluated at the Fourier fre-

quencies w = 2p j/ Dn using the FFT procedure, where j = �d n/2 e+ 1, . . . ,bn/2 c.

For convenience, we shall write Wn,D for the set of these frequencies. It should also

be noted that the periodogram is an estimator for the spectral density of the dis-

crete time process fD(w), not the spectral density of the continuous time process

f (w). The periodogram can be shown to be an asymptotically unbiased estimator

for fD(w), but the periodogram is not consistent.

For this reason, modi�ed versions of the periodogram, which are consistent, are usu-

ally used as an alternative to the periodogram. One such modi�ed periodogram,
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suggested by Welch (1967), splits the series into smaller segments, applies a taper,

calculates the periodogram of each segment and then averages these modi�ed peri-

odograms at each frequency. In practice, Welch's method results in an estimate that

is less noisy than a standard periodogram, but has lost resolution in frequency and

may be more biased. A subset of such methods is known asBartlett's method(Bartlett,

1948). This approach uses non-overlapping segments with no window function. In

other words, Bartlett's estimator is

f̂B(w) =
D

2p Bnl

B� 1

å
b= 0

�
�
�
�
�

bnl + nl � 1

å
t= bnl

X(Dt)e� itDw

�
�
�
�
�

2

,

where B is the number of segments and nl is the number of observations in each

segment (with Bnl � n).

2.2.2 Models for the spectral density function

When describing the sea surface, models are often expressed in terms of the spec-

tral density function. Many different spectral density functions have been devel-

oped for ocean waves, perhaps most notably the JONSWAP spectrum, developed

by Hasselmann et al. (1973). We shall consider a more general model, which en-

compasses many of the other waves models that have been developed. Following

Mackay (2016), we use the following parametrisation:

SG(w; q) = aw� r exp

(

�
r
s

�
w
wp

� � s
)

gd(w;q) , (2.2.5)

where

d(w; q) = exp

(

�
1

2s(w; q)2

�
w
wp

� 1
� 2

)

,
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and

s(w; q) =

8
>><

>>:

s1 for w � wp ,

s2 for w > wp ,

for w > 0; where a, wp, s > 0, g � 1, r > 14 and q denotes the vector of parameters.

Typically, and for the remainder of this chapter, s1, s2 and s are set to 0.07, 0.09, and

4 respectively (Mackay, 2016). In this case, the parameter vector isq = [ a, wp, g, r ]T.

Also let Q denote the parameter space— the set of possible values that q can take.

Then for this general model, the parameter space is Q = ( 0,¥ ) � (0,¥ ) � [1,¥ ) �

(1,¥ ) � R4. Note that (2.2.5) is a one sided spectral density, and is not de�ned

at w = 0. We shall work with the two sided version as this �ts in with the way

we have de�ned the spectral density function, the way techniques are described in

the statistical literature, and the way Fast Fourier Transforms are implemented on a

computer. Therefore, we de�ne fG : R � Q ! [0,¥ ),

fG(w; q) =

8
>>>>>><

>>>>>>:

SG(w; q)/2 for w > 0,

0 for w = 0,

SG(� w; q)/2 for w < 0.

(2.2.6)

We shall refer to the function de�ned by (2.2.6) as the generalised JONSWAP spec-

tral form. In this formulation, a is measured in units of m 2 s1� r radr � 1, wp in rad s � 1

and g and r are dimensionless. For convenience, we omit the units in future refer-

ences.
4Mackay (2016) gives the condition that r > 0. However, for the spectral density to be integrable

(such that the stochastic process has �nite variance), we require that r > 1.
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2.3 Fitting parametric spectral density functions

The process of �tting a parametric spectral density function to observations can be

thought of as estimating the parameters of a statistical model, which we denote q.

The techniques discussed in this section are applicable to a broad class of spectral

density functions. As such, we consider the general case and shall write f (w; q) for

the spectral density function of the continuous time process, given some choice of

parameters q. We shall also write fD(w; q) and c(t ; q) for the spectral density func-

tion of the discrete time process and the autocovariance function respectively. For

convenience, we shall sometimes refer to the spectral density function of the contin-

uous time process as the spectral density function, and the spectral density function

of the discrete time process as the aliased spectral density function. We also write

Sq for the covariance matrix of the multivariate random variable corresponding to n

consecutive random variables from XD. We now describe each of the �tting methods

discussed in this chapter.

2.3.1 Least squares

Current approaches to estimating parameters of spectral density functions used in

the ocean waves literature, such as the approaches described by Ewans and Mc-

Conochie (2018), usually involves two key steps. Firstly, a non-parametric estimator

of the spectral density function is constructed. Secondly, a curve �tting algorithm is

used so that the corresponding parametric form is a good �t for the observed data.

Typically this involves minimising the square distance between the parametric form

and non-parametric spectral density estimator. Therefore, we shall refer to such ap-

proaches as least squares �tting techniques.

For the purpose of this section, we let f̂ (w) denote a general non-parametric spectral

density estimator (this could be the periodogram, I (w), Bartlett estimator, f̂B(w),
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or some other non-parametric spectral density estimator). The second part of this

�tting routine involves �tting the parametric form to the obtained non-parametric

estimator. Typically, this is done by minimising the Euclidean distance between the

non-parametric estimator and the parametric spectral density function. We therefore

must minimise the objective function given by

` LS (q j XD,n) = å
w2W

�
f (w; q) � f̂ (w)

� 2
, (2.3.1)

where W � Wn,D (the choice of W is discussed in Section 2.4.1). In other words, the

least squares estimator for q is de�ned as q̂LS = argmin q2Q ` LS (q j XD,n). This ap-

proach could be adapted to account for aliasing by replacing f (w; q) with fD(w; q),

the aliased spectral density function; however, such a modi�ed approach is not cur-

rently used in the ocean waves literature and therefore we shall use the form given

by (2.3.1) in our simulation study.

Part of the reason that least squares performs poorly is that the variance of a spectral

estimate will be different at different frequencies. This means that low density areas

of the spectral density function (such as the high frequency tail) tend to be under-

weighted. For this reason, log transforms are often used in least squares objective

functions, especially in the statistics literature (Bloom�eld, 1973). Because standard

least squares is widely used in the ocean waves literature, we present a compari-

son of standard least square in this chapter. However, in simulations not shown in

this chapter, log least squares still does not perform as well as the debiased Whit-

tle likelihood. Whilst log least squares does provide better estimates of the spectral

tail decay index than standard least squares, some of the other parameter estimates

have increased bias when compared to standard least squares. Plots of these log least

squares simulations are available on GitHub (Grainger, 2021).
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2.3.2 Maximum likelihood

Maximum likelihood inference treats the sea surface data as observations of a ran-

dom variable with a given distribution. The parameters for this distribution are cho-

sen by maximising the probability of observing the data given that the underlying

distribution has certain parameters. For the moment, let the sea surface observations

be multivariate Gaussian with expectation zero and an unknown covariance matrix

Sq. The log-likelihood function for observations of such a process is

` ML (q j XD,n) =
1
2

�
� n log(2p ) � log jSqj � XT

D,nS� 1
q XD,n

�
, (2.3.2)

where XT
D,n denotes the transpose of XD,n and jSqj denotes the determinant of Sq.

The maximum likelihood estimator is obtained by maximising the log-likelihood

function. More formally, the maximum likelihood estimator of q is given by q̂ML =

argmaxq2Q ` ML (q j XD,n). Provided that the underlying random variable is actually

multivariate Gaussian, this technique will provide asymptotically optimal estimates

of q, in the sense that they converge at an optimal rate, see Pawitan (2001), Chapter

8.5, for more details.

This approach can be computationally expensive because evaluating the objective

function given by (2.3.2) requires the inversion of an n � n matrix. Also, if we want

to model a distribution that is not Gaussian, then a different log-likelihood function

must be used. This may take signi�cantly longer to compute, or may not even be

tractable. As previously discussed, wave processes will not typically be precisely

Gaussian. However, in Section 2.5 we shall compare �tting techniques on simulated

Gaussian processes in the �rst instance. In this case, full maximum likelihood pro-

vides a useful benchmark to compare the performance of other estimators to the

optimal choice of estimator.
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2.3.3 Spectral likelihood

To avoid some of the problems associated with maximum likelihood estimation we

can use approximations to the likelihood, known as pseudo- or quasi-likelihoods, to

gain some of the accuracy and precision of maximum likelihood, while keeping com-

putational costs (and distributional assumptions) low. One such quasi-likelihood 5 is

known as the Whittle likelihood (Whittle, 1953b). The Whittle likelihood has been

used in a wide range of applications due to its computational ef�ciency and fairly

free distributional assumptions (in particular, we no longer need to assume that

the underlying process is Gaussian). In its discretised form, the Whittle likelihood

is

`W (q j XD,n) = � å
w2W

�
log ( f (w; q)) +

I (w)
f (w; q)

�
, (2.3.3)

where I (w) denotes the periodogramordinate at angular frequency w. The corre-

sponding estimator is again obtained by maximising this spectral likelihood, which

we shall denote by q̂W = argmaxq2Q `W (q j XD,n). This estimator also does not ac-

count for aliasing. However, by replacing f (w; q) with fD(w; q) in (2.3.3), we obtain

an estimator that does account for aliasing. We shall refer to this as the aliased Whit-

tle likelihood, though it should be noted that some authors refer to this as simply the

Whittle likelihood.

Though this aliased approach accounts for some of the bias in the Whittle likeli-

hood, other forms of bias introduced through phenomena such as blurring 6 are still

present (Percival and Walden, 1993, chapter 6). Sykulski et al. (2019) introduced the

debiased Whittle likelihood to deal with both aliasing and blurring simultaneously.

5These likelihoods are usually referred to as quasi-likelihoods. However, we also use the term
spectral likelihood as it integrates nicely with current terminology used in the literature, as well as
giving an intuitive sense of what a spectral likelihood does.

6Blurring results from sampling for a �nite duration in time, which corresponds to convolution
with the Fej ér kernel in the frequency domain.
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The debiased Whittle likelihood is

`DW (q j XD,n) = � å
w2W

�
log

�
f̄n(w; q)

�
+

I (w)
f̄n(w; q)

�
,

where f̄n(w; q) = E [I (w); q] is the expected periodogram. As noted by Sykulski et al.

(2019), the expected periodogram can be calculated inO(n log n) time by using the

relation:

E [I (w); q] =
D
2p

n� 1

å
t = � n+ 1

�
1 �

jt j
n

�
c(t ; q)e� i t Dw. (2.3.4)

The resulting estimator can then be expressed asq̂DW = argmaxq2Q `DW (q j XD,n) .

Despite being constructed from the periodogram, an inconsistent estimator of the

spectral density function, the debiased Whittle likelihood is a consistent estimator of

the parameters for the parametric model. The debiased Whittle likelihood is able to

address the de�ciencies in the periodogram without introducing bias, by accounting

for the �nite sample properties of the periodogram. Sykulski et al. (2019) also show

that, under certain conditions, the debiased Whittle estimator converges optimally.

These condition are discussed further in Appendix A.3.

2.3.4 Comparison

In Section 2.5, we perform a simulation study to compare each of the estimators that

we have discussed. However, we can also try to build some intuition as to why

certain approaches are likely to be more effective than others. To achieve this we

shall consider the conditions under which each technique would be equivalent to

full maximum likelihood for a �nite sample, then evaluate how likely it is that said

assumptions are satis�ed. Note that this is not (and nor is it intended to be) a formal

proof; results related to the convergence of debiased Whittle estimators and their
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proofs can be found in Sykulski et al. (2019). Rather, this is a sketch of what is going

on under the hood that causes the debiased Whittle likelihood to outperform least

squares based techniques.

Maximum likelihood inference works by making probabilistic statements about the

distribution of data and then using this to work out the value of the parameters

for which the data are most likely. The part of this process of interest to us here is

making such distributional statements. For this comparison, we shall think of the

non-parametric spectral density estimates as “the data”, and shall consider what

their distribution would need to be for least squares or the Whittle likelihood to be

the optimum likelihood function for this data. 7

Then, for the least squares approach to yield the same parameter estimates as the

optimum likelihood function, we would need the non-parametric spectral density

estimator used in the �tting routine, f̂ (w), to satisfy the following four assumptions.

Firstly, at each frequency, the non-parametric estimator must be Gaussian. In gen-

eral, this is not true for non-parametric spectral density estimators, though it is true

asymptotically for some of them (e.g. Bartlett's method). Secondly, the expecta-

tion of the non-parametric estimator must be equal to the spectral density function

at a given frequency. This is not actually true for non-parametric spectral density

estimators, as these are constructed to estimate the aliased spectral density func-

tion, not the spectral density function of the continuous time process. Though this

aliasing could be accounted for by modifying the spectral form used in the �tting

routine, such modi�cation is not standard practice and many non-parametric spec-

tral density estimators are still biased. Thirdly, the variance of the non-parametric

spectral density estimator must be the same for each frequency. This is not the case

for non-parametric spectral density estimators in general, as the variance at a given

7This differs from full maximum likelihood on the time series as we have lost the phase informa-
tion in calculating a spectral density estimate.
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frequency depends on the spectral density function at that frequency (Brockwell and

Davis, 2006). Though weighted least squares approaches, such as the approach pro-

posed by Chiu (1988), do begin to address the problem of assumption three, they are

not widely used and still make the �rst and second assumptions. Fourthly, the non-

parametric estimators at any two different frequencies must be uncorrelated. This

assumption is discussed further in Section 2.3.5.

For the Whittle likelihood to yield the same parameter estimates as the optimum

likelihood function, we would need the following three assumptions on the peri-

odogram to hold. Firstly, we would require the periodogram to be exponentially dis-

tributed at each Fourier frequency. 8 Secondly, we would require that the expectation

of the periodogram is equal to the spectral density function at a given frequency (and

consequently that the variance is the square of the spectral density function). Thirdly,

the periodogram at any two different frequencies must be uncorrelated. At �xed fre-

quencies, the �rst assumption is true asymptotically for linear processes (Brockwell

and Davis, 2006) and for some classes of non-linear processes (Shao and Wu, 2007).

At �rst glance, this may seem to be similar to the asymptotic normality of Bartlett

modi�ed periodograms that are often used in least squares. However, it should be

noted that in the case of the periodogram, this asymptotic result is in terms of the

number of observations; whereas for Bartlett modi�ed periodograms, this result is

in terms of the number of segments that are used, which is much smaller. When it

comes to the second assumption, the periodogram is an asymptotically unbiased es-

timator of the aliased spectral density function. For this reason, the aliased version

of the Whittle likelihood should be used over the standard version. Again it may

seem that this is also true for Bartlett modi�ed periodograms, as Bartlett's method

averages periodograms and each periodogram is an asymptotically unbiased esti-

8A slightly different assumption is made about the zero and Nyquist frequency, though in practice
they are often omitted.
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mator of the aliased spectral density function. Therefore if we were to adjust for this

aliasing, least squares would be justi�ed. However, each of these component peri-

odograms are calculated from small segments of the full record, so it is dif�cult to

invoke asymptotic results. Indeed, this creates somewhat of a catch-22 for Bartlett

least squares: to get asymptotic normality we must average many periodograms; but

this results in using shorter segments for each periodogram, introducing bias (and

vice versa). The debiased Whittle likelihood (Sykulski et al., 2019) bypasses the sec-

ond assumption (made by the Whittle likelihood) altogether, as it uses the theoretical

expectation of the periodogram in place of the spectral density function. This means

that even for small sample sizes the debiased Whittle likelihood produces estimates

with very small to no bias. The �nal assumption, the assumption of independence

between frequencies, is required by both least squares and spectral likelihoods; how-

ever, the Whittle likelihood is also in a strong position when it comes to satisfying

this assumption. This is because asymptotically the periodogram is uncorrelated at

different frequencies, and we are using the longest periodogram possible, given the

length of the data. Of course, least squares techniques could be used on the raw

periodogram, meaning that the second and last assumptions are just as likely to be

satis�ed as when using spectral likelihoods, but in this case, the asymptotic normal-

ity required for least squares will not be satis�ed (nor in general will the constant

variance assumption).

When it comes to the �nal assumption for both least squares and spectral likelihood

techniques, there are some practical concerns that should be considered. In partic-

ular, when the aliased spectral density has high dynamic range, the frequencies are

often correlated. As we shall shortly show, in the case of wind-generated waves,

this issue does not present itself for 1Hz data. Although, for higher sampling fre-

quencies, such as 4Hz data, the periodogram is often highly correlated. To solve this

problem we can turn to differencing, a technique that is well established for reducing
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correlations in the periodogram (Velasco and Robinson, 2000).

2.3.5 Differencing

If the periodogram is highly correlated across frequencies, spectral likelihoods will

perform poorly when compared to full maximum likelihood (Velasco and Robinson,

2000). Differencing can sometimes provide a convenient mechanism for removing

such correlations. De�ne the differenced process as W(t) = X(t + D) � X(t). We

brie�y switch notation and let cX (t ) and fX (w) denote the autocovariance and spec-

tral density function of X at t and w respectively, and likewise cW(t ) and fW(w) for

the differenced process W. First notice that

cW(t ) = E [W(t )W(0)]

= E [X(t + D)X(D) � X(t + D)X(0) � X(t )X(D) + X(t )X(0)]

= 2cX (t ) � cX (t + D) � cX (t � D),

by stationarity. Then from (2.2.1) we can see that

fW(w) =
Z ¥

� ¥
(2cX (t ) � cX (t + D) � cX (t � D)) e� i tw dt

= 2fX (w) � eiwD fX (w) � e� iwD fX (w)

= 2(1 � cos(wD)) fX (w)

= 4 sin2
�

wD
2

�
fX (w). (2.3.5)

Therefore, differencing can be easily incorporated into the �tting techniques that

have been discussed in this chapter, by simply replacing X with the differenced pro-

cessW and fX with fW using the relation given by (2.3.5). Consider the correlation

matrix of the periodogram: the matrix with i, jth element de�ned to be the corre-

lation between the periodogram at the ith and jth Fourier frequencies. Figure 2.3.1
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shows a plot of the correlation matrix for the periodogram of a wind-generated wave

process, estimated from 1000 realisations of the process in question. We can see that

for data recorded at a 1Hz sampling rate there is little correlation in the periodogram;

however, this is not the case for 4Hz data. We can also see that the periodogram of the

differenced process is almost completely uncorrelated, even for the 4Hz data. 9 From

the signal processing perspective, this has reduced the dynamic range of the spec-

trum as we are multiplying the spectral density function by something that is close

to zero for angular frequencies that are small, but is close to one near the Nyquist,

down-weighting the peak far more than the tail.

2.4 Practical concerns for implementation with the gen-

eralised JONSWAP

In Section 2.3, we described some techniques that can be used to estimate model

parameters. When implementing these techniques for ocean wave models, there

are some practical concerns that must be addressed. Firstly, we need not use all

of the Fourier frequencies when �tting the model. Indeed, it may be preferable to

remove some frequencies that are contaminated by some other process or by obser-

vational noise. Secondly, there is no known analytical form for the autocovariance

corresponding to many of the spectral density functions used when modelling ocean

waves. Therefore, numerical techniques for estimating the autocovariance play an

important role in many of the �tting procedures discussed in Section 2.3. In partic-

ular, it is necessary for both the debiased Whittle likelihood and for full maximum

likelihood.
9It should be noted that the region of high correlation in the bottom left corner of each of the

correlation matrices is part of the reason for removing such frequencies from the objective function
when performing �ts, as discussed further in Section 2.4.1.
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(a) No differencing and D = 1. (b) Differencing and D = 1.

(c) No differencing and D = 1/4. (d) Differencing and D = 1/4.

Figure 2.3.1: Image plots of the correlation matrix of the periodogram of a wind-
generated wave process for different values of D and the corresponding images for
the differenced process, for a generalised JONSWAP with parameters a = 0.7,wp =
0.7,g = 3.3 and r = 5.
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2.4.1 Frequency selection

Many of the estimators de�ned in Section 2.3 involve minimising or maximising

objective functions, which are expressed as the sum over some set of frequencies

W � Wn,D. The most simple choice for this set W is just the set of Fourier frequencies

Wn,D. At �rst glance, this would seem like the most sensible choice (as omitting

frequencies is essentially the same as throwing away data-points). However, there

are many different circumstances in which it is preferable to remove some of the

frequencies from the �t.

One practical reason for removing certain frequencies is that for very low frequen-

cies, the generalised JONSWAP spectra is zero to machine precision. This often intro-

duces numerical instabilities, especially for objective functions that involve dividing

by the spectral density function (such as the Whittle likelihood). As can be seen in

Figure 2.3.1, there is also a region of high correlation in the low frequencies, which

provides an additional motivation for removing such frequencies. An alternative

method to reducing correlations in the periodogram is to use tapered versions of

the spectral density estimate in the Whittle likelihood (Dahlhaus, 1988), but in sim-

ulations (available on GitHub) we found omitting frequencies from the �t to be a

better solution than tapering in terms of the resulting bias and variance of parame-

ter estimates. Another reason for removing certain frequencies from the �t is that it

can help to remove noise processes that are present in a record. For example, wave

records often contain a low-frequency swell component, but we are interested in the

parameters of the wind-sea component. By removing frequencies in which the swell

is dominant, we are better able to model the wind-sea component of a sea state. On

top of this, there is an added technical concern when using the Whittle and debi-

ased Whittle likelihoods. The zero and Nyquist frequencies must be omitted (or a

modi�ed version of the summand must used for those frequencies). This is because
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these methods are based on the asymptotic distribution of the periodogram, which

is different at the Nyquist and zero frequency than it is at other frequencies.

Fitting the model in this way can be thought of as �tting a semi-parametric model

(as some of the frequencies are being modelled using a parametric model, and the

remaining frequencies by some non-parametric model such as the periodogram). It

is worth noting that this approach can actually be applied to full maximum like-

lihood as well. This can be achieved by transforming both the observations and

autocovariance of the model into the frequency domain, applying a band pass �lter,

and then transforming back. While this is possible in theory, it is �ddly in prac-

tice and is no longer exact. This demonstrates another major advantage of spectral

likelihoods: it is far easier to �lter out undesired frequencies from the model �t.

However, the choice of frequencies to be used in the �t should be made prior to the

objective function being optimised. Otherwise the number of degrees of freedom

could be changing throughout the optimisation routine, which would likely result

in additional bias.

2.4.2 Numerical estimation of the autocovariance

To calculate both the multivariate Gaussian likelihood and debiased Whittle likeli-

hood we require the autocovariance of the process given a certain parameter choice

(in (2.3.2) for the multivariate Gaussian likelihood and (2.3.4) for the debiased Whit-

tle likelihood). For the generalised JONSWAP spectra, there is no analytical form

for this autocovariance. As such, the autocovariance must be approximated numer-

ically. Firstly, recall that the autocovariance is the Fourier transform of the spectral

density function, as de�ned in (2.2.3), and we wish to obtain the autocovariance at

lags 0,D, . . . ,(n � 1)D. The �rst problem we encounter is that this integral is over

the entire real line. Clearly, we cannot approximate such an integral numerically
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and must instead settle for integrating up to some �nite frequency, such that the

spectral density function beyond that frequency is suf�ciently small. In particular, it

is convenient to choose a multiple of the Nyquist frequency, as the integral will be

approximated using a Fast Fourier Transform, so the desired lags can be extracted

by sub-sampling if a multiple of the Nyquist is used in the integration. Therefore,

based on equation (2.2.3), we can construct the approximate autocovariance

ĉ(t ) =
Z Lp / D

� Lp / D
f (w)ei tw dw, (2.4.1)

for L 2 N = f 1, 2, 3, . . .g.

Alternatively, we could consider the relation given in equation (2.2.2), between the

autocovariance and the discrete time spectral density function. In this case, we

would �rst need to approximate the spectral density function for the discrete time

process. To do this, we use a truncated version of the relation given by equation

(2.2.4), between the spectral density of the continuous and discrete time processes.

Consider the approximation of the aliased spectral density function given by

f̃D(w) =
K

å
k= � K

f
�

w +
2p k
D

�
,

for K 2 N 0 = f 0, 1, 2, . . .g. Then we can construct the alternative approximation to

the autocovariance given by

c̃(t ) =
Z p / D

� p / D
f̃D(w)ei tw dw. (2.4.2)
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Notice that we may write

c̃(t ) =
Z p / D

� p / D

K

å
k= � K

f
�

w +
2p k
D

�
ei tw dw

=
K

å
k= � K

Z p / D

� p / D
f

�
w +

2p k
D

�
ei tw dw

=
K

å
k= � K

Z (2k+ 1)p / D

(2k� 1)p / D
f (w) ei tw dw

=
Z (2K+ 1)p / D

(� 2K� 1)p / D
f (w) ei tw dw. (2.4.3)

From (2.4.3) we can see that, ifL = 2K + 1, then ĉ(t ) and c̃(t ) are equivalent. In

practice, these integrals must be approximated numerically. To do this, we consider

a Riemann approximation with bins of width 2 p / mD. By choosing m to be some

integer bigger than 2n, we can obtain the desired lags by performing a Fast Fourier

Transform and then sub-sampling appropriately.

We can now see that the approximation based on ĉ(t ) (in (2.4.1)) can be computed in

O(Lmlog Lm) time. However, computing the second approximation, based on c̃(t )

(in (2.4.2)), requires �rst computing f̃ (w) at m frequencies (taking O(Lm) operations)

and then performing a Fourier transform on m frequencies, requiring O(mlog m) op-

erations. In other words, the �rst approach requires O(m(L log L + L log m)) opera-

tions, whereas the second only requires O(m(L + log m)) operations. For this reason,

we use the latter approach when approximating the autocovariance: �rst approxi-

mating the aliased spectral density, then approximating the autocovariance.

The choice of K (or equivalently L) depends on the tail behaviour of the spectral

density function in question. In practice, we choose K so that for frequencies beyond

(2K + 1)p / D, the spectral density is below some threshold (e.g. 10� 6 m2 s rad� 1),

though K should really be chosen so that it scales with n, for convergence results to

still apply. The choice of m is based on the required accuracy of the integral approx-
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imation and should be tuned accordingly. For the generalised JONSWAP, we have

found that m = maxf 8192, 2ng is a good choice.

2.5 Simulation study

Though it is possible to make theoretical statements about the asymptotic behaviour

of different estimators, from a practical perspective, their �nite sample behaviour is

of primary interest. To investigate this, we perform a simulation study to assess the

performance of the estimators described in Section 2.3. In this simulation study, we

compare six different �tting techniques based on these estimators. The �rst, which

we call least squares, uses the curve �tting approach with the periodogram. The

second approach is similar, but uses Bartlett's method to estimate the spectral den-

sity function, which we refer to as Bartlett least squares. The window size is chosen

so that we have a spectral resolution of 0.2p , i.e. the window size is 100/ D.10 For

1.28Hz data, this corresponds to a window size of 128. The third and fourth ap-

proaches are the Whittle and aliased Whittle likelihoods respectively. The �nal two

approaches are the debiased Whittle likelihood and full time domain maximum like-

lihood.

2.5.1 Method

To investigate the effectiveness of different �tting approaches we simulate a linear

wave record with a known parametric spectral density function and then re-estimate

the parameters from the simulated record. By repeatedly performing this process,

we can assess the bias and variance of each of the estimators discussed in Section

2.3. For the purposes of the simulation study we let XD,n be a random variable with

a multivariate normal distribution resulting from sub-sampling the continuous-time

10Clearly for some values of D this would not be an integer; however, for the values of D that we
choose it is.
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mean-zero stationary Gaussian processX, where X has spectral density function

fG(w; q), de�ned by (2.2.6). We then simulate a realisation of XD,n using the cir-

culant embedding method described by Davies and Harte (1987) (and for complex

valued processes by Percival (2006)). We choose to use circulant embedding over the

typical approaches for simulating Gaussian processes often used in the ocean waves

literature, such as the method due to Tucker et al. (1984), as these methods only ap-

proximately simulate a Gaussian process with the given spectral density function,

whereas circulant embedding is exact (up to the quality of the approximation of the

autocovariance that is used). Furthermore, many techniques, such as the method

proposed by Tucker et al. (1984), or the more recent modi�cation due to M érigaud

and Ringwood (2018) do not account for aliasing when simulating the process. Since

we are explicitly interested in the effect that aliasing has on recovered parameters, it

is important that we simulate something that is as close as we can get to a Gaussian

process with the desired aliased spectral density function. Circulant embedding gen-

erates time series with all of the sampling effects discussed by Tucker et al. (1984),

but also includes additional �nite sampling effects such as aliasing and correlations

between spectral estimates at different frequencies. Such effects should be present

in generated time series, but are not in time series generated using the method sug-

gested by Tucker et al. (1984). More details can be found in Davies and Harte (1987);

Dietrich and Newsam (1997); Wood and Chan (1994).

To perform the �tting we �rst choose one of the objective functions described in

Section 2.3 and optimise this using the fmincon function in MATLAB (with maximi-

sation done by minimising the negative of the objective function). An initial guess

for the �tting procedure needs to be provided for each of the parameters. For wp, we

use the frequency corresponding to the largest value of the periodogram. For r, we

use a basic linear regression coef�cient between the log spectral density and log pe-

riodogram over the tail frequencies (where the tail is chosen to be all frequencies that
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are closer to the Nyquist than the peak). We choose to initialise g by setting it equal

to 3. This is because choosingg heuristically is not easy, and g = 3 is close to the

value commonly assumed by many oceanographers. In practice, the initial choice of

g does not seem to have a huge impact on the �nal �tted values; however, the opti-

misation could also be run with multiple starting values of g and the best estimate

could then be selected. Once these parameters are initialised,a is initialised so that

the area under the initial parametric spectral density function matches the area un-

der the periodogram. In simulations, we �nd that the inference is not sensitive to the

initial guess (provided it is sensible). In practice we are often �tting models to mul-

tiple consecutive sea states. In this case, it can be more ef�cient to use the parameter

estimates for the previous sea state as initial values when optimising.

2.5.2 A canonical sea state

We shall begin by considering how each of the estimators perform for one choice of

true parameters, before showing that the results are robust to the true parameters.

In particular, we begin by considering a spectral density function of the form de-

scribed in Section 2.2.2, with s1 = 0.07,s2 = 0.09 ands = 4 treated as known, and

with a = 0.7, wp = 0.7, g = 3.3 and r = 4 treated as unknown parameters to be

estimated. The reason for choosing these parameters is thata = 0.7 roughly corre-

sponds to the scaling present when using Phillip's constant in a JONSWAP spectra,

wp = 0.7 is a reasonable choice for peak frequency,g = 3.3 is commonly assumed

to be the peak enhancement factor, and r = 4 is one of the suggested values for

the tail decay index. Half hour records sampled at 1.28Hz (a standard time interval

and sampling frequency for wave records) were simulated and the parameters were

estimated using each of the six estimation methods described above. The resulting

estimates across 1000 repeated simulations are summarised in Figure 2.5.1, along-

side the time taken to perform the optimisation. For comparison, the true value of
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each parameter is given by a horizontal red dashed line.

Perhaps the most striking feature of Figure 2.5.1 is the difference in the variability in

estimates of the tail parameter, r, when comparing least squares type techniques to

likelihood based techniques. Least squares techniques recover parameter estimates

ranging from well beyond three to �ve, making it very dif�cult to make any state-

ments about the true value of the tail decay. However, we can see that statistical

techniques such as the debiased Whittle likelihood are able to recover the original

tail parameter to within a few decimal places. Therefore, by using the debiased

Whittle likelihood, practitioners would be able to distinguish between w � 4 and w � 5

spectral tails in observed records. Though it should be noted that this assumes the

wind-sea had a spectral density that is well described by a generalised JONSWAP

and so we cannot provide model free estimates of the tail decay. In particular, a dif-

ferent model would be required for a transition in tail decays over frequency, such as

the effect discussed by Babanin (2010); however, the debiased Whittle likelihood is

generic and could be applied to other models provided they satis�ed certain condi-

tions (see Appendix A.3). We can also see that the debiased Whittle likelihood offers

an improvement in estimates of g, performing almost as well as full maximum like-

lihood.

It is also interesting that bias can be seen in both the Whittle and aliased Whittle like-

lihood estimates, but that this bias is not present in the debiased Whittle likelihood

estimates. This veri�es that the debiased Whittle likelihood is indeed accounting

for some of the bias present in standard Whittle likelihood, and demonstrates why

debiased Whittle likelihood is necessary over the aliased Whittle likelihood, which

can still be seen to be biased for some parameters. In the analysis of Figure 2.5.1

full maximum likelihood provides the best estimates, in terms of root mean square

error. However, this comes at signi�cant computational cost, whilst giving limited
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improvement in bias and variance when compared to the debiased Whittle likeli-

hood.

Often, during optimisation, parameters may trade off against one-another. Therefore

it is also important to look at the joint behaviour of parameter estimates. Figure 2.5.2

shows a scatter plot of the debiased Whittle likelihood estimates from Figure 2.5.1.

We can see that there is very strong correlation between the estimates of a and r,

and some negative correlation between a and g. This likely occurs because g and r

change the area under the spectral density function, so a is likely to be adjusted to

compensate. Though it would be possible to reparameterise to try and avoid this, it

does not seem to have a signi�cant impact on the resulting estimates and is therefore

not necessary.

In practice, longer sea states are often used to estimate model parameters. There-

fore, we also compare some of the methods for 3 hour records. Figure 2.5.3 shows

the comparison of least squares, Bartlett least squares and debiased Whittle likeli-

hood estimates for these 3 hour records. The variance in the �rst two estimators has

indeed decreased when compared to the estimates from half hour records shown

in Figure 2.5.1. However, by comparing the debiased Whittle likelihood estimates in

Figure 2.5.1 to the least squares estimates in Figure 2.5.3, we can see that the debiased

Whittle likelihood used on a half hour record yields better estimates than the least

squares based estimates performed on 3 hour records. The longer record reduces the

variance of the least squares and Bartlett least squares techniques enough to allow

us to see another interesting feature, namely that there is signi�cant bias present in

the Bartlett least squares estimates that is not present in the standard least squares

estimates. This demonstrates that non-parametric smoothing can have unexpected

consequences when used to �t a parametric spectral density function.

In essence, by using the debiased Whittle likelihood, we can obtain more accurate
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