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Abstract This paper analyzes the higher-order approximation of instrumental vari-
able (IV) estimators in a linear homoskedastic IV regression model when a large
set of instruments with potential invalidity is present. We establish theoretical re-
sults on the higher-order mean square error (MSE) approximation of the two-stage
least squares (2SLS), the limited information maximum likelihood (LIML), the Fuller
(FULL), the bias-adjusted 2SLS (B2SLS), and jackknife version of the LIML and FULL
(HLIM/HFUL) estimators by allowing for local violations of the instrument exogene-
ity conditions. Based on the approximation to the higher-order MSE, we consider the
instrument selection criteria that can be used to choose among the set of available
instruments. We demonstrate the asymptotic optimality of the instrument selection
procedure proposed by Donald and Newey (2001, Econometrica) in the presence of lo-

cally (faster than N−1/2) invalid instruments in the sense that the dominant term in the
MSE with the chosen instrument is asymptotically equivalent to the infeasible optimum.
Further, we propose instrument selection procedures to choose instruments among the
sets of conservative (known) valid instruments and potentially locally (N−1/2) invalid
instruments based on the higher-order MSE of the IV estimators by considering the
bias-variance tradeoff.

1. INTRODUCTION

Instrumental variable (IV) estimators are widely used in modern economics, and some

empirical applications involve a large set of potential instruments and debates about

the validity of the instruments which we refer to as an exogeneity condition, i.e., the

instruments are uncorrelated with the error term in the structural equation. Although

researchers have routinely used the Sargan-Hansen J-test, the validity of instruments is

generally uncertain; instruments may have direct effects on the outcome variables, and
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nar participants at UW-Madison, MEG 2013, NEM 2019. This paper is a revised version of the second
chapter in the author’s Ph.D. thesis at UW-Madison and the previous version was also circulated un-
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model misspecification can make instruments invalid.1 Furthermore, when there are many

potential instruments, the finite-sample performance of the IV estimator can be sensitive

to the choice of instruments. To capture finite-sample properties of an IV estimator,

higher-order approximation and instrument selection criteria have been found useful in

the literature, e.g., Donald and Newey (2001), Hahn et al. (2004), Kuersteiner and Okui

(2010), assuming that the instruments are valid.

This paper develops Nagar (1959)-type higher-order mean square error (MSE) ap-

proximations of the k-class estimators (including the two-stage least squares (2SLS)

estimator, the limited information maximum likelihood (LIML) estimator, the Fuller

(FULL) estimator, and the bias-adjusted version of the 2SLS (B2SLS) estimator) in a

linear homoskedastic IV model with many instruments while allowing for locally invalid

instruments. Higher-order MSE approximations of general k-class estimators under lo-

cal violations of instrument exogeneity include higher-order biases from many/invalid

instruments as well as higher-order variances, and such a result is not available in the

literature. MSE approximation depends not only on the number of instruments but also

on the degree of instrument invalidity and the relative strengths of the valid and invalid

instruments. For the 2SLS estimator, this paper also generalizes the first-order asymp-

totic results in Hahn and Hausman (2005), as well as the higher-order expansions in

Rothenberg (1984), with invalid instruments; see Remarks 3.3 and 3.4 below.

Although the theoretical results in this paper are based on homoskedasticity assump-

tion and the rate conditions K/N → 0, we also provide higher-order MSE results for the

estimators that are robust to heteroskedasticity and many instruments, such as the jack-

knife IV estimator (JIVE) and jackknife versions of the LIML and FULL (HLIM/HFUL)

estimators considered in Hausman et al. (2012).2 The higher-order results of the jack-

knife versions of the k-class estimators are new with or without invalid instruments, and

they complement the results in the literature, such as Chao et al. (2012), Hausman et al.

(2012); see Remarks 3.7 and 3.8.

The higher-order approximations in this paper hinge on N−γ(γ ≥ 1/2) local-to-zero

1For questionable IVs with potential invalidity in various empirical applications, see Section 2.1 of
Guggenberger (2012), Kraay (2012) and the references therein. See also Kolesár et al. (2015) for an
interesting empirical application with invalid instruments, even when the instruments are assigned ran-
domly.
2When the number of instruments increases at the same rate as the sample size, i.e., K/N → α, 0 <
α < 1 (Bekker (1994)), the LIML, FULL and B2SLS estimators are inconsistent with heteroskedasticity
(Bekker and van der Ploeg (2005), Hausman et al. (2012)).
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specification that allows for locally invalid instruments, and the local-misspecification

approach has recently attracted considerable new attention, e.g., Conley et al. (2012),

Andrews et al. (2017), Bonhomme and Weidner (2021), and Armstrong and Kolesár

(2021).3 This device allows for the development of useful approximation theory for IV

estimators with invalid instruments by focusing on a common structural parameter of

interest, and this approach requires a non-trivial extension of Donald and Newey (2001)

because the dominating higher-order terms depend not only on the order of the invalid

instruments (γ) but also on the rate of the number of instruments (K) as well as the

estimators considered.

We show that the robustness of the higher-order MSE approximations (and instrument

selection criteria) in Donald and Newey (2001) under the presence of locally invalid

instruments with γ > 1/2 as the dominating terms that depend on K are the same

as those of Donald and Newey (2001). We establish the asymptotic optimality of the

instrument selection criteria in Donald and Newey (2001) even with the presence of a

small degree of invalid instruments (γ > 1/2) in the sense that the dominant term in the

MSE with the chosen K̂ achieves the infeasible optimum asymptotically (e.g., Li (1987),

see equation (5.5) for a formal definition). While the selection criteria for other k-class

estimators are asymptotically optimal for all γ > 1/2, in contrast, the criterion for the

2SLS estimator is optimal if γ > 1 − α with K = Nα, α < 1/2, i.e., when the degree of

invalidity is sufficiently small (γ is sufficiently large).

We also consider invalidity-robust (IR) instrument selection criteria based on a higher-

order approximation with γ = 1/2; these criteria include higher-order bias/variance terms

due to invalid instruments. In the presence of N−1/2-locally invalid instruments, instru-

ment selection criteria without additional terms in the MSE may lead to a misleading

balance between bias and efficiency; the inclusion of invalid instruments that are strong

first-stage predictors can reduce the MSE, although this may slightly increase the bias.

Since the MSE in this case contains terms that cannot be estimated in the absence of

valid instruments, the proposed criteria require a known set of valid instruments. Such

criteria can be useful when researchers have a “conservative” set of valid instruments

3Several important papers deal with estimation and inference issues involving local violations of the
exogeneity conditions, e.g., Newey (1985), Hahn and Hausman (2005), Berkowitz et al. (2008, 2012),
Otsu (2011), Guggenberger (2012), Guggenberger and Kumar (2012), Kraay (2012), and Caner (2014)
among many others.
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and explore all other candidate instruments that are potentially invalid considering the

bias-variance tradeoff induced by including them.4 We show that the IR criterion is

an asymptotically unbiased estimator of the dominant terms in the higher-order MSE

approximation (Proposition 5.2).

In this paper, we also investigate the finite-sample properties of IV estimators (with or

without instrument selection) under potentially invalid instruments with various Monte

Carlo experiments. Our main findings are in line with those in the literature (Hahn et

al. (2004), Guggenberger (2008), Hausman et al. (2012)), who recommend utilizing esti-

mators with finite-sample moments instead of “no-moment” estimators. The interdecile

range and root mean square error (MSE) of the LIML/HLIM and JIVE estimators are

considerably larger than those of the FULL/HFUL and (overidentified) 2SLS estimators

with many instruments regardless of instrument invalidity γ, especially in the weakly

identified cases.5

Although it is highlighted in the literature that the Fuller and HFUL estimators per-

form well under many weak instrument setups, our simulation evidence further suggests

that these estimators combined with instrument selection procedures can perform well

even when the instruments are potentially invalid. We find that the FULL/HFUL estima-

tors combined with the Donald and Newey (2001) (DN) criterion can lead to a reduction

in the MSE compared with that obtained by the estimators when using all instrument

sets or only valid instruments even when instruments are slightly invalid and the correct

specification case. This is expected from the theory in Proposition 5.1 which shows that

the DN criteria are asymptotically optimal when we suspect a small degree of invalid

instruments (γ > 1/2). The FULL/HFUL estimators based on IR criteria have similar or

slightly larger MSEs than those of the DN criterion across different values of γ. 2SLS also

performs well and the median bias of 2SLS can be lower than those of the other estima-

tors with invalid instruments because the misspecification bias and the many-instrument

4Some recent papers in the GMM setup also assume that there is a subset of moment conditions that are
known to be valid. When the correctly specified moment conditions identify a parameter of interest, Liao
(2013) and Cheng and Liao (2015) consider consistent moment selection methods based on shrinkage
estimation. In DiTraglia (2016), valid moment conditions are used to provide an asymptotically unbiased
estimator of the first-order asymptotic MSE, which is similar to our paper.
5It is well known that the LIML estimator has no finite moments (Mariano and Sawa (1972)) and

that the 2SLS estimator has moments up to the degree of overidentification (Kinal (1980), Phillips
(1980)). The Fuller (1977) modifications of the LIML and HFUL estimators have finite sample moments
(Hausman et al. (2012)). For models with general moment conditions, see also Hausman et al. (2011),
who provide some modifications for the continuous updating estimator (CUE) to solve the moment
problems associated with the CUE.
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bias can have opposite signs so that they offset each other, as expected from the theory

(Remark 3.4).

It may be true that the MSE approximations derived in this paper may not provide

good practical guidance for “no-moment” estimators, especially in the weak instrument

scenarios (Hahn et al. (2004)). Although this paper makes no theoretical contribution

with regards to the “no moments problem”, in some simulation evidence, we find that

instrument selection and model averaging can mitigate the moment problem for “no-

moment” estimators such as LIML in terms of a significant reduction in the trimmed

MSE and MAD (median absolute deviation).

The literature on higher-order approximations of k-class estimators with valid instru-

ments has a long history, such as Nagar (1959), Anderson and Sawa (1973), Morimune

(1983), and Rothenberg (1984). Phillips (1980) provides the exact distribution theory

for the IV estimators in the general simultaneous equations models and a higher order

expansion of that distribution using the Laplace approximation, which can be consid-

erably more accurate than the Edgeworth expansions. The exact distribution theory

remains valid even when no moments are finite and also provides more information on

the distribution of IVs than the MSEs (see Phillips (1983) for an excellent review of

the exact small sample theory of the IV estimators). Newey and Smith (2004) derive

the higher-order asymptotic properties of the generalized method of moments (GMM)

and the generalized empirical likelihood (GEL) estimators under correct specifications.

Schennach (2007) proposes an exponentially tilted empirical likelihood (ETEL) estimator

that is robust under globally misspecified models while achieving the same higher-order

properties of the empirical likelihood (EL) estimator under correct specifications.

Based on higher-order approximations, there are many papers that study the instru-

ment (moment) and/or weight selections in the IV and GMM setups, e.g., Donald and

Newey (2001), Donald et al. (2009), Canay (2010), Kuersteiner and Okui (2010), Okui

(2011), Carrasco (2012), Kuersteiner (2012), and Lee and Zhou (2015), among others.

Many papers have also developed moment selection procedures to select valid moments

from the sets of valid and invalid moment conditions, e.g., Andrews (1999), Andrews

and Lu (2001), Hall and Peixe (2003), Hong et al. (2003), and Liao (2013). DiTraglia

(2016) develops a moment selection criterion based on the first-order asymptotic MSE

with possible locally invalid moment conditions in GMM setups.
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Several important papers have investigated the asymptotic properties of IV and GMM

estimators in misspecified moment condition models, such as Maasoumi and Phillips

(1982) and Hall and Inoue (2003). Kitamura et al. (2013) propose an estimator that

achieves optimal robust minimax properties under local model perturbations. For locally

misspecified moment condition models, Andrews et al. (2017) propose a measure of the

sensitivity of parameter estimates for minimum distance estimators, and Armstrong and

Kolesár (2021) develop a method for constructing valid confidence intervals that are

robust to misspecification. I. Andrews (2019) characterizes the estimands of the linear

GMM under global misspecification. In an IV model with heterogeneous treatment effects,

the moment condition is misspecified, and a 2SLS estimand can be characterized as a

weighted average of the local average treatment effects (LATEs); see Imbens and Angrist

(1994). Under treatment effect heterogeneity, Kolesár (2013) shows that LIML estimands

may be outside of the convex hulls of the individual treatment effects and Evdokimov

and Kolesár (2019) describe the estimands of the 2SLS and JIVE estimators with many

instruments/covariates and provide valid asymptotic variance formulas.

Asymptotic optimality results (Proposition 5.1) require prior knowledge regarding the

order of the instrument strengths, similar to Donald and Newey (2001); however, many

recent papers, such as Belloni et al. (2012), Cheng and Liao (2015), and Caner et al.

(2018), have developed estimation and moment selection techniques (e.g., Lasso) in high-

dimensional setups without requiring an order of the instruments. Kang et al. (2016) pro-

pose Lasso-type methods to identify and select valid instruments, and these approaches

do not require set of instruments that are known to be valid. Windmeijer et al. (2018) de-

termine that Lasso procedures may not consistently select the invalid instruments if they

are relatively strong, and the authors propose a median-type estimator that is consistent

when more than 50% of the instruments are valid.

The outline of this paper is as follows. Section 2 introduces the basic model setup and

assumptions. Section 3 provides the theoretical results on the higher-order MSE approx-

imations of IV estimators with γ = 1/2. Section 4 establishes the MSE approximations

under different local sequences of invalid instruments (γ > 1/2). Section 5 provides the

asymptotic optimality of instrument selection according to the Donald and Newey (2001)

criteria and proposes invalidity-robust instrument selection criteria. Section 6 includes

the simulation results obtained under various Monte Carlo settings, and Section 7 con-
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cludes the paper. All proofs, additional simulations, and auxiliary results are provided

in the Online Supplementary Material.

2. THE MODEL AND ESTIMATORS

We consider a linear IV model allowing for potentially invalid instruments:

yi = W ′i δ0 + εi = Y ′i θ0 + x′1iβ0 + εi (2.1)

Wi = f(xi) + ui =

 E[Yi|xi]

x1i

+

 ξi

0

 , (2.2)

εi =
g(xi)

Nγ
+ vi, E[vi|xi] = 0, for i = 1, ..., N, (2.3)

where yi is a scalar outcome variable, Wi is a p×1 vector that includes endogenous vari-

ables Yi and d × 1 vector of exogenous variables x1i. δ0 = (θ′0, β
′
0)′ ∈ Rp is a parameter

of interest, and x1i is a subset of the exogenous variables xi. The number of regressors

(p) and the number of exogenous regressors (d) are assumed to be fixed, and they do not

depend on the sample size N . Note that all statements and conditions involving condi-

tional expectations (conditional on X = [x1, ..., xN ]′) hold with probability approaching

one (w.p.a.1.). We suppress the subscript N hereafter and omit the “w.p.a.1.” to simplify

the notation. Although our results are based upon the homoskedastic assumption of error

terms (vi, ξ
′
i), the presence of invalid instruments leads to heteroskedastic errors in the

estimation equation, i.e., E[ε2
i |xi] depends on xi for any finite N .

Let ψKi ≡ ψK(xi) = (ψ1K(xi), ..., ψKK(xi))
′ be a K×1(K ≥ p) vector of instrumental

variables (or basis functions), and we assume that ψKi contains the included exogenous

variables x1i. Here, K indicates both the number of instruments and the index of the

instrument sets. Different groups of instruments are allowed for different K, and the

potential candidate instrument set does not necessarily have to be a nested set. That is,

we allow different approximating functions in the series (sieves) terms or qualitatively

different instruments to be used for different Ks. We further note that the growth rate

of K is restricted (K/N → 0) in this paper.

Although the theoretical results regarding the asymptotic MSE below do not need

such modifications, we restrict the rate of the total number of candidate sets for the

asymptotic optimality of the instrument selection criteria, similar to Donald and Newey
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(2001). In particular, we do not allow for the consideration of all possible combinations of

instrument sets. Having prior knowledge of the order of instruments may reduce the num-

ber of candidate sets and greatly reduce the computational cost in practice. In general,

researchers may not have prior beliefs about which instrument groups have large impacts

on the reduced-form equation. However, in certain setups, it may be natural to have this

ordering, e.g., including lower orders first for a power series approximation or including

main instruments first among vectors of main instruments and various interaction terms.

We allow for possibly invalid instruments in (2.3) and consider a local-to-zero specifi-

cation by defining

E[εi|xi] = gN (xi) =
g(xi)

Nγ
, for γ ≥ 1/2. (2.4)

Under this setup, any potential instruments ψ(xi) are asymptotically valid as N → ∞,

but E[ψ(xi)εi] = 0 does not necessarily hold in finite samples. Note that the direct effects

of the instruments g(xi) can be large numbers for any finite N , and we do not restrict

the functional form of g(xi).

Although our framework deals with mixed drifting sequences, it is important to deal

with the cases where γ = 1/2 and γ > 1/2 separately in a Nagar (1959)-type approx-

imation to distinguish Op(1), the leading higher-order terms, and the remaining terms

that are of smaller orders. With the knife-edge rate γ = 1/2 (Section 3), the stochastic

order of the biases of the IV estimators from an invalid instrument is equal to the stan-

dard deviation. This rate provides the right balance for a useful theory to understand

the finite-sample behaviors of IV estimators with possibly invalid instruments. When

γ > 1/2 (Section 4), a different analysis is required because the dominating term in the

higher-order MSE approximation changes.

Remark 2.1. We may consider γ = 0 (global misspecification or globally invalid in-

struments) or 0 < γ < 1/2, where the bias from invalid instruments dominates. We can

still provide MSE approximations centered with a pseudo-true value which is the prob-

ability limit of an IV estimator (or a sequence of pseudo-true values depending on N),

e.g., instrument-specific LATE parameters for 2SLS in the presence of a heterogeneous

treatment effect. However, different choices of instruments and estimators can lead to

different pseudo-true values regardless of misspecification; even under a correct specifi-

cation (without invalid instruments), IV estimators can have different probability limits
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in the presence of many instruments. Under (global or local) misspecification, the prob-

lem can be more severe, and pseudo-true values are generally difficult to characterize in

misspecified models, which makes MSE comparisons difficult across different estimators.

Here, we focus on the common parameter of interest δ0 and compare the MSEs among

different instruments K as well as different IV estimators with γ ≥ 1/2. With globally

invalid instruments, Nevo and Rosen (2012), Kolesár et al. (2015), and Kang et al. (2016)

provide (set or point) identification results with respect to δ0 in an IV framework.

Now, we consider several k-class estimators that are widely used in linear IV models.

We first consider the 2SLS estimator:

δ̂2SLS(K) = (W ′PKW )−1(W ′PKy), (2.5)

where y = (y1, · · · , yN )′,W = [Y,X1], Y = [Y1, · · · , YN ]′, X1 = [x11, · · · , x1N ]′ and PK =

ΨK(ΨK′ΨK)−ΨK′ is the projection matrix for the instrument vector ΨK = [ψK1 , ..., ψ
K
N ]′.

Next, we consider the LIML estimator:

δ̂LIML(K) = (W ′PKW − Λ̂(K)W ′W )−1(W ′PKy − Λ̂(K)W ′y), (2.6)

where

Λ̂(K) = min
δ

(y −Wδ)′PK(y −Wδ)

(y −Wδ)′(y −Wδ)
.

LIML is known to be median unbiased to the second-order and is also known not to have

finite-sample moments. We next consider the Fuller (1977) estimator (FULL), which

solves the nonexistence of moments in LIML:

δ̂FULL(K) = (W ′PKW − Λ̌(K)W ′W )−1(W ′PKy − Λ̌(K)W ′y), (2.7)

where

Λ̌(K) =
Λ̂(K)− C

N−K (1− Λ̂(K))

1− C
N−K (1− Λ̂(K))

for some constant C. Popular choices are C = 1 or C = 4 due to their higher-order

unbiasedness or the minimum MSE property. Next, we consider the bias-adjusted 2SLS

estimator (B2SLS) from Donald and Newey (2001) as a modification of the Nagar (1959)

estimator with Λ̄(K) = (K − d− 2)/N :

δ̂B2SLS(K) = (W ′PKW − Λ̄(K)W ′W )−1(W ′PKy − Λ̄(K)W ′y). (2.8)
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Finally, we consider the following jackknife-version k-class estimators of the form

δ̂(K) =
(
W ′PKW −

n∑
i=1

PKii WiW
′
i − λ̄(K)W ′W

)−1(
W ′PKy−

n∑
i=1

PKii Wiyi− λ̄(K)W ′y
)

(2.9)

where PKii denotes the diagonal elements of PK . λ̄(K) = 0 corresponds to the JIVE2

estimator with δ̂JIVE2(K) considered in Angrist, Imbens and Krueger (1999), Newey and

Windmeijer (2009), and Chao et al. (2012), among others. When λ̄(K) = λ̂(K),

λ̂(K) = min
δ

(y −Wδ)′(PK −DK)(y −Wδ)

(y −Wδ)′(y −Wδ)

where DK = diag(PKii ) is a diagonal matrix, δ̂(K) = δ̂HLIM(K) is a jackknife version of

the LIML estimator that is robust to heteroskedasticity (HLIM) (considered in Hausman

et al. (2012)).6 When λ̄(K) = λ̂(K)−C/N(1−λ̂(K))

1−C/N(1−λ̂(K))
, δ̂(K) = δ̂HFUL(K) is a heteroskedas-

ticity robust version of the Fuller (1977) (HFUL) estimator, which is also considered in

Hausman et al. (2012). Hausman et al. (2012) recommend C = 1 for the HFUL estimator.

2.1. Assumptions and higher-order MSEs

We derive the Nagar (1959)-type higher-order asymptotic MSEs for the IV estimators

with locally invalid instrument setups. As in Nagar (1959) and Rothenberg (1984), a

higher-order MSE can be calculated from the first few terms of the stochastic expansion

of an estimator. Even when some IV estimators do not possess finite moments, the

moments of an approximating distribution can be defined, and the calculated moments

can be interpreted as “pseudomoments” (see Pfanzagl and Wefelmeyer (1978), Sargan

(1982), and Phillips (2003) for detailed discussions).

We consider conditional (with respect to the exogenous variables X = [x1, ..., xN ]′)

MSEs for the IV estimators δ̂(K) and find a decomposition with the following form:

N(δ̂(K)− δ0)(δ̂(K)− δ0)′ = Q̂(K) + r̂(K),

E[Q̂(K)|X] = Φ +G+ L(K) + T (K), (2.10)

[r̂(K) + T (K)]/tr(G+ L(K)) = op(1), K →∞, N →∞,

6HLIM can be equivalently defined with λ̂(K) as the smallest eigenvalue of
(
W
′
W
)−1(

W
′
PW −∑n

i=1 P
K
ii W iW

′
i

)
with W = [y,W ].
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where the main terms Φ, G and L(K) in (2.10) will be defined later in Sections 3-4 as

they have different forms for each IV estimator and γ.

The dominant term in (2.10) is Φ, which is Op(1), and it does not depend on K in our

large-K approximation. Further note that different γ values lead to changes in the order

of the stochastic terms and thus, this requires a separate analysis. For example, when

γ = 1/2, Φ includes the first-order asymptotic variance and the square of the asymptotic

bias from the locally invalid instrument. However, when γ > 1/2, the bias from invalid

instruments becomes the higher-order term, so Φ only includes the first-order variance

term. It is important to note that Φ is omitted in the approximate MSE criteria (Section

5) to be used for selecting K, as it is the same for all estimators and does not depend on

K.

G and L(K) are the next leading terms, which include the higher-order bias and vari-

ance due to the presence of many invalid instruments. G includes terms that do not

depend on K, and the instrument selection criteria are based only on L(K), which is

the leading higher-order term that depends on K in the conditional MSE approximation

(2.10). L(K) contain the important higher-order terms for all the subsequent analyses in

the following sections. r̂(K) and T (K) are the remainder terms that converge to 0 faster

than G+ L(K).

We impose the following assumptions, similar to Donald and Newey (2001). Let fi =

f(xi) and gi = g(xi).

Assumption 2.1. (a) Let {(vi, Yi, xi) : i = 1, ..., N ;N ≥ 1} be i.i.d. random vectors

satisfying the model (2.1)-(2.3). (b) E[v2
i |xi] = σ2

v > 0, and E[‖ξi‖4|xi],E[|vi|4|xi] are

finite.

Assumption 2.2. (a) H̄ = E[fif
′
i ] exists and is nonsingular, H̄g = E[figi] exists. (b)

There exists πK , π
g
K such that E[‖f(x)−πKψK(x)‖2]→ 0 and E[|g(x)−πgKψK(x)|2]→ 0

as K →∞.

Assumption 2.3. (a) E[(vi, ξ
′
i)
′(vi, ξ

′
i)|xi] is constant. (b) ΨK ′ΨK is nonsingular with

probability approaching one. (c) maxi≤NP
K
ii

p→ 0. (d) fi and gi are bounded.
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Assumption 2.1(b) imposes homoskedasticity and boundedness of the fourth conditional

moments of the error terms. Assumption 2.2(a) is imposed for a usual identification

assumption and the existence of first-order bias from invalid instruments. Assumption

2.2(b) requires the mean square approximation error of the unknown f(x) and g(x) by

the linear combination of instruments ψK(x) to go to 0 as the number of instruments

increases. Assumption 2.3 imposes homoskedasticity and restricts the growth rate of K.

For example, K = O(N), as in Bekker (1994), is not allowed under 2.3(c); see van Hasselt

(2010), Anatolyev and Yaskov (2017), and the references therein. For the data-generating

process (DGP) we consider in the Monte Carlo simulation (Section 6, equation (6.11)), we

can easily verify Assumptions 2.2-2.3. For example, Assumption 2.2(b) is automatically

satisfied with linear specifications of f(·) and g(·), and Assumption 2.3(b) is satisfied

using the standard arguments in the nonparametric series regression literature (e.g.,

Newey (1997)).

3. HIGHER-ORDER MSE RESULTS WITH γ = 1/2

This section provides higher-order MSE approximations of the k-class estimators, in-

cluding 2SLS, LIML, FULL and B2SLS, by allowing locally invalid instruments when

γ = 1/2. Some of the results below extend the results presented in Donald and Newey

(2001), and the results on the higher-order MSEs of the jackknife versions of k-class

estimators (JIVE2, HLIM and HFUL) in the homoskedastic linear IV setup are new to

the literature with (or without) locally invalid instruments.

Our first result gives the MSE approximation for the 2SLS estimator. Proposition 3.1

is a generalization of the result in Donald and Newey (2001) that allows possibly (locally)

invalid instruments. Let H = f ′f/N,Hg = f ′g/N, f = [f1, · · · , fN ]′, g = [g1, · · · , gN ]′,

σuv = E[uivi|xi] and σ2
v = E[v2

i |xi].

Proposition 3.1. If Assumptions 2.1, 2.2, 2.3 are satisfied with γ = 1/2, σuv 6= 0, Hg 6=

0, and K2/N → 0, then the approximate MSE for the 2SLS estimator satisfies the de-

composition (2.10) with Φ = σ2
vH
−1 +H−1HgH

′
gH
−1, G = 0 and the following terms:

L(K) = H−1
[ K

N1/2
(Hgσ

′
uv+σuvH

′
g)+σuvσ

′
uv

K2

N
+σ2

v

f ′(I − PK)f

N
+Lg(K)

]
H−1, (3.1)
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where

Lg(K) = HgH
′
gH
−1 f

′(I − PK)f

N
+
f ′(I − PK)f

N
H−1HgH

′
g

−f
′(I − PK)g

N
H ′g −Hg

g′(I − PK)f

N
.

Moreover, ignoring the terms of order Op(K
2/N) = op(K/

√
N), we have

L(K) = H−1
[ K

N1/2
(Hgσ

′
uv + σuvH

′
g) + σ2

v

f ′(I − PK)f

N
+ Lg(K)

]
H−1. (3.2)

With invalid instruments (Hg 6= 0), it is important to point out that the dominating

term of L(K) in Proposition 3.1 is proportional to K/
√
N , and it comes from the cross-

product of the bias from many instruments and invalid instruments. Differently from

Donald and Newey (2001), this higher order bias term dominates the squared bias from

many instruments which is proportional to K2/N since K2/N = o(K/
√
N) as K →∞.

Remark 3.1. The MSE approximation results in Proposition 3.1 include higher-order

terms from many instruments as well as additional terms due to invalid instruments.

When Hg = 0 with probability approaching one, it can be shown that Proposition 3.1

reduces to Proposition 1 in Donald and Newey (2001):

L(K) = H−1[σuvσ
′
uv

K2

N
+ σ2

v

f ′(I − PK)f

N
]H−1.

Note that the condition Hg
p→ 0 is closely related to the identification assumption in

Kolesár et al. (2015, Assumptions 4 and 5) for the consistency of k-class estimators

under many (global) invalid instrument setups. Interestingly, Hg
p→ 0 not only holds

when g(x) = 0 (i.e., exclusion restriction holds) but also holds when the direct effects of

the instruments on the outcome variable are orthogonal to their effects on the endogenous

variable with a random effect structure, as in Kolesár et al. (2015). Consider a linear

model f = Ψπ, g = Ψτ , and suppose that we treat the coefficients π, τ as random

vectors (conditional on xi). As in Kolesár et al. (2015), if we orthogonalize the coefficient

(τ̃ , π̃) = (αΨ′Ψ)1/2(τ, π), α = K/N and assume that the pairs (τ̃k, π̃k) for k = 1, ...,K

are i.i.d. random vectors with mean (µτ , µπ) and variance-covariance Ξ, then Hg =

π′Ψ′Ψτ/N =
∑K
k=1 π̃k τ̃k/K

p→ µτµπ + Ξ12, and the identification condition Hg
p→ 0

holds when µτ = 0 and Ξ12 = 0 (covariance of π̃k and τ̃k). Kolesár et al. (2015) discuss
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an empirical example such as that in Chetty et al. (2011), where Hg
p→ 0 may be a

reasonable assumption.

The leading higher-order terms L(K) can be reduced to those of Donald and Newey

(2001) by allowing g(x) 6= 0, and this observation suggests that the instrument selection

criteria in Donald and Newey (2001) can be shown to be asymptotically optimal even

with possibly invalid instruments when γ = 1/2, i.e., the dominant terms in the MSE with

the selected K̂ are asymptotically equivalent to the infeasible optimum in the presence

of locally invalid instruments when Hg
p→ 0. See Proposition 5.1 for formal asymptotic

optimality results and similar implications when γ > 1/2 without imposing Hg
p→ 0.

Remark 3.2. The first three terms of L(K) in (3.1) and H−1HgH
′
gH
−1 in Φ corre-

spond to the square and cross-product of the two bias sources that we consider: the

bias from many instruments and that from invalid instruments. The remaining terms

in L(K) represent higher-order variance terms and the term f ′(I − PK)f/N decreases

as K increases. Note that locally invalid instrument specifications change not only the

order of the biases from many instruments but also the weights of the higher-order vari-

ances f ′(I − PK)f/N . If PKg/N
p→ 0 (which holds when the chosen instruments K

are independent of the invalid instruments that have direct effects), then the last two

terms in Lg(K) reduce to −2HgH
′
g. Therefore, the exclusion of invalid instruments can

help to reduce the MSE. However, including (locally) invalid instruments that are strong

predictors of the first-stage can also lower the MSE. Proposition 3.1 provides a bias and

variance tradeoff in the presence of invalid instruments.

Remark 3.3. In the Online Supplementary Material (Section S2.1), we provide an MSE

approximation of 2SLS under K = O(
√
N), which generalizes the first-order asymptotic

MSE results of Hahn and Hausman (2005).7 For a linear specification of f = Ψπ, g = Ψτ

with a scalar endogenous variable Yi and no included exogenous variables, the dominating

bias term in the MSE approximation becomes

H−1HgH
′
gH
−1 +H−1

[ K√
N

(Hgσ
′
uv + σuvH

′
g) + σuvσ

′
uv

K2

N

]
H−1 = (

Hg + ασuv
H

)2

7A version of a similar result can also be found in Lee and Okui (2012), where the authors derive the
first-order asymptotic bias and variance of 2SLS under K = O(N) with locally invalid IVs in the proof
of Theorem 4.
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where Hg = π′Ψ′Ψτ/N, α = K/
√
N , and this corresponds to Theorem 3 of Hahn and

Hausman (2005). Our results imply that the normal distribution of the error terms and

linearity assumption regarding f and g are not essential for the results in Hahn and

Hausman (2005).

Remark 3.4. In the Online Supplementary Material (Section S2.2), we also provide bias

and variance approximations for 2SLS with invalid instruments by using a similar method

to the approaches in Rothenberg (1984). Consider a model y = Wδ0 + Ψτ/µ + v,W =

Ψπ + u, where µ2 = π′Ψ′Ψπ/σ2
u is a concentration parameter and δ0 is a scalar. Under

conventional asymptotics (µ is large and K is small), the bias of the 2SLS estimator can

be approximated by

E[δ̂2SLS(K)− δ0] ≈ σuv
σ2
u

(
K − 2

µ2
) +

σv
σu

µ̃

µ3

where µ̃ = π′Ψ′Ψτ/(σuσv). The 2SLS bias depends on the strength (µ2) and the number

of instruments (K), as well as the invalidity of the instruments (µ̃). When K/µ2 � µ̃/µ3,

the first term dominates, and vice versa. Although our theory does not rely on weak

instrument asymptotics, the above approximation can be useful for understanding the

relative magnitude of bias due to many instruments and invalid instruments. For 2SLS,

the misspecification bias and the many-instrument bias can have opposite signs and

cancel out each other so that 2SLS can have a smaller finite-sample bias than those of

other IV estimators.8

Next, we give the MSE approximations for the LIML and FULL estimators. Unlike

that of 2SLS, the order of the dominating terms that depend on K for the LIML and

FULL estimators remain the same (Op(K/N)), as in Donald and Newey (2001). Note

that the LIML and FULL estimators have the same approximate MSEs for the order we

consider here.

Let ηi = ui − viσuv/σ2
v , Σu = E[uiu

′
i] and Ση = E[ηiη

′
i] = Σu − σuvσ′uv/σ2

v .

Proposition 3.2. If Assumptions 2.1, 2.2, 2.3 are satisfied with γ = 1/2, E[v2
i ηi|xi] =

0, Ση 6= 0, Hg 6= 0, K/N → 0, and E[‖ξi‖5|xi],E[|vi|5|xi] are finite, then the approximate

MSEs for the LIML and FULL estimators satisfy the decomposition (2.10) with Φ =

8We thank the referee for pointing this out.
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σ2
vH
−1 + H−1HgH

′
gH
−1, G = GLIML defined in the Online Supplementary Material,

and the following terms:

L(K) = H−1
[
σ2
vΣη

K

N
+ σ2

v

f ′(I − PK)f

N
+ Lg(K)

]
H−1 (3.3)

where Lg(K) is defined in Proposition 3.1.

Remark 3.5. It is important to note that G = GLIML = Op(1/
√
N) does not depend on

K. Although G can be estimated with sample analogs, it is not used for the instrument

selection criterion. With possibly invalid instruments, the dominating term in the MSE

approximation (which depends on K) is proportional to K/N , which is the same as

that in Donald and Newey (2001). For LIML or FULL, L(K) does not include a higher-

order bias from the presence of many instruments, and the terms in L(K) show higher-

order variance tradeoffs with many invalid instruments. The third-moment condition

E[v2
i ηi|xi] = 0 holds when (vi, η

′
i)
′ is normally distributed, and this is imposed for a

simplification similar to Donald and Newey (2001). Without this condition, L(K) have

additional terms that can be estimated, and they are provided in the proof of Proposition

3.2.

Next, we provide a result for B2SLS estimator.

Proposition 3.3. If Assumptions 2.1, 2.2, 2.3 are satisfied with γ = 1/2, σuv 6= 0, Hg 6=

0,E[v2
i ui|xi] = 0, and K/N → 0, then the approximate MSE for the B2SLS estimator

satisfies the decomposition (2.10) with Φ = σ2
vH
−1+H−1HgH

′
gH
−1, G = GB2SLS defined

in the Online Supplementary Material, and the following terms:

L(K) = H−1
[
(σ2
vΣη + 2σuvσ

′
uv)

K

N
+ σ2

v

f ′(I − PK)f

N
+ Lg(K)

]
H−1 (3.4)

where Lg(K) is defined in Proposition 3.1.

Remark 3.6. B2SLS is shown to be less efficient than LIML in the absence of invalid

instruments (Hg = 0). Although L(K) in the MSE approximation for B2SLS is larger

than those of LIML/FULL, it seems difficult to show the higher-order efficiency of the

LIML and FULL estimators with locally invalid instruments because of the different

terms, i.e., GLIML in Proposition 3.2 and GB2SLS in Proposition 3.3.
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We next consider the JIVE2, HLIM and HFUL estimators. Under the rate condition

in this paper (K/N → 0), all estimators considered are consistent. However, JIVE2,

HLIM and HFUL are consistent under many-instruments sequences (K/N → α > 0)

and heteroskedasticity while 2SLS, LIML and B2SLS are not consistent. Although our

results are based upon homoskedastic error terms, the higher-order theory of the jackknife

versions of the k-class estimators complements the literature, and some of the theoretical

results are consistent with the (first-order) asymptotic results in Chao et al. (2012) and

Hausman et al. (2012).

Furthermore, the higher-order MSEs of the JIVE2 and HLIM/HFUL estimators do

not contain the terms derived from the third moments, unlike those of B2SLS and

LIML/FULL. For example, Chao et al. (2012) and Hausman et al. (2012, page 223)

also show that the first-order asymptotic variance of JIVE2/HLIM does not depend on

the third and fourth moment terms of the error disturbances under homoskedasticity.

We next provide a result for JIVE2 estimator. Let DK = diag(PKii ) be a diagonal

matrix.

Proposition 3.4. If Assumptions 2.1, 2.2, 2.3 are satisfied with γ = 1/2, σuv 6= 0, Hg 6=

0, and K/N → 0, then the approximate MSE for the JIVE2 estimator satisfies the

decomposition (2.10) with Φ = σ2
vH
−1 + H−1HgH

′
gH
−1, G = GJIVE2 defined in the

Online Supplementary Material, and the following terms:

L(K) = H−1
[
(σ2
vΣη + 2σuvσ

′
uv)

K

N
+ σ2

v

f ′(I − PK)f

N
+ Lg,D(K)

]
H−1 (3.5)

where

Lg,D(K) = HgH
′
gH
−1 f

′(I − (PK −DK))f

N
+
f ′(I − (PK −DK))f

N
H−1HgH

′
g

−f
′(I − (PK −DK))g

N
H ′g −Hg

g′(I − (PK −DK))f

N
.

Remark 3.7. When Hg = 0 w.p.a.1., L(K) in Proposition 3.4 reduces to that of B2SLS

in Proposition 3.3 without assuming zero third-moment conditions. Without invalid in-

struments, Hahn et al. (2004) provides the same higher-order MSE results for the jack-

knife 2SLS estimator with a scalar endogenous variable, no included exogenous variables,

jointly normal residuals (vi, u
′
i)
′ and an additional assumption maxi P

K
ii = Op(N

−1),

which is slightly stronger than that which we impose here (Assumption 2.3(c)). Donald
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and Newey (1999) derive similar results for the JIVE1 estimator considered in Phillips

and Hale (1977), Angrist, Imbens and Krueger (1999). Higher-order MSE derivations for

the JIVE2 estimator have not been available in the literature, and we also contribute to

the literature by extending the existing results to a setup with locally invalid instruments.

However, the presence of invalid instruments complicates higher-order MSE comparisons

among B2SLS, JIVE2 and LIML.

Finally, we give results for the HLIM and HFUL estimators.

Proposition 3.5. If Assumptions 2.1, 2.2, 2.3 are satisfied with γ = 1/2, Ση 6= 0, Hg 6=

0, and K/N → 0, then the approximate MSEs for the HLIM and HFUL estimators satisfy

the decomposition (2.10) with Φ = σ2
vH
−1 + H−1HgH

′
gH
−1, G = GHLIM defined in the

Online Supplementary Material, and the following terms:

L(K) = H−1
[
σ2
vΣη

K

N
+ σ2

v

f ′(I − PK)f

N
+ Lg,D(K)

]
H−1 (3.6)

where Lg,D(K) is defined in Proposition 3.4.

Remark 3.8. When Hg = 0, dominant terms of the MSE in Proposition 3.5 (with-

out imposing symmetry-type conditions on the error terms) are identical to those of

LIML/FULL in Proposition 3.2. Hausman et al. (2012, page 224) show that the (first-

order) asymptotic variances of HLIM and LIML are the same in the presence of many

weak instruments,K/N → 0,maxi P
K
ii = op(1) and homoskedasticity. AlthoughGLIML =

GHLIM (see the equation (S1.1) in the Online Supplementary Appendix), however, L(K)

is different in the presence of invalid instruments, and neither of the estimators dominates

each other in terms of their higher-order MSEs.

Proposition 3.5 also provides the higher-order efficiency of HLIM/HFUL relative to

that of JIVE2 in the absence of invalid instruments, as the dominating terms L(K) in

the higher-order MSE are smaller than those for JIVE2 in Proposition 3.4. This comple-

ments the results in Chao et al. (2012) and Hausman et al. (2012), where the authors show

that HLIM is asymptotically more efficient than JIVE2 under many-weak instruments

and homoskedasticity.
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4. HIGHER-ORDER MSE RESULTS WITH γ > 1/2

In this section, we consider faster rates of local-to-zero specification (i.e., a smaller degree

of invalidity) than the N−1/2 rates considered in Section 3. All estimators are consistent,

and there are no first-order asymptotic biases due to invalid instruments under the con-

ditions imposed here, but higher-order theory is still useful for capturing changes in the

orders of the bias and variance that the first-order asymptotic theory does not capture.

Although we expect the stochastic orders of the higher-order bias and variance from

invalid instruments to become smaller than the terms due to the many instruments, the

results generally depend not only on the drifting sequences but also on the specific rate

of K. The key insight from the main results in this section (Propositions 4.1-4.5) is that

the changes in the degree of invalid instruments (γ) affect the finite-sample behaviors of

IV estimators differently.

The following proposition provides a higher-order MSE approximation result for the

2SLS estimator with γ > 1/2.

Proposition 4.1. Suppose that Assumptions 2.1-2.3 are satisfied with γ > 1/2. If σuv 6=

0, Hg 6= 0, and K2/N → 0, then the approximate MSE for the 2SLS estimator satisfies

the decomposition (2.10) with Φ = σ2
vH
−1, G = 1

N2γ−1H
−1HgH

′
gH
−1 and

L(K) = H−1
[ K
Nγ

(Hgσ
′
uv + σuvH

′
g) + σuvσ

′
uv

K2

N
+ σ2

v

f ′(I − PK)f

N

]
H−1. (4.1)

If we further assume that K
N1−γ →∞, then (2.10) holds with Φ = σ2

vH
−1, G = 0 and

L(K) = H−1
[
σuvσ

′
uv

K2

N
+ σ2

v

f ′(I − PK)f

N

]
H−1. (4.2)

Remark 4.1. In (4.1), G and L(K) contain higher-order bias terms due to the presence

of many invalid instruments, as well as higher-order variance terms because of the many

instruments. L(K) includes the (squared) bias from many instruments (proportional to

K2/N) and the interactions from many invalid instruments (proportional to K/Nγ).

Note that the order of the interaction biases increases with K and decreases with γ and

cannot be ignored in general. When γ = 1/2, this interaction bias dominates the bias

from many instruments, as in Proposition 3.1. However, if we restrict the rate of K, the

second result of Proposition 4.1 shows that the higher-order bias from many instruments

dominates the bias terms due to the invalid instruments, and L(K) in (4.2) has the
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same form in Donald and Newey (2001). The assumption of the second result holds when

γ > 1− α (K = O(Nα)), and this always holds for γ ≥ 1.

In (4.2), the dominant terms L(K) remain the same as those in Donald and Newey

(2001), which shows that the MSE approximation in Donald and Newey (2001) for the

2SLS estimator is robust to a small degree of invalid instruments. Nevertheless of these

intuitive results, we quantify the robustness of the MSE approximation of the 2SLS

estimator in Donald and Newey (2001), and this is nontrivial as the dominating terms in

L(K) depend not only on the order of invalid instruments γ but also on the rate of K.

Moreover, we establish the asymptotic optimality of the instrument selection criterion

for 2SLS, which does not require the estimation of Hg and g(·); see Proposition 5.1.

The next two results are for the LIML/FULL and B2SLS estimators.

Proposition 4.2. Suppose that Assumptions 2.1-2.3 are satisfied with γ > 1/2. As-

sume that Ση 6= 0, Hg 6= 0,E[v2
i ηi|xi] = 0, K/N → 0 and E[‖ξi‖5|xi],E[|vi|5|xi] are

finite. Then, the approximate MSEs for the LIML and FULL estimators satisfy the de-

composition (2.10) with Φ = σ2
vH
−1, G = 1

N2γ−1H
−1HgH

′
gH
−1, and the following terms:

L(K) = H−1
[
σ2
vΣη

K

N
+ σ2

v

f ′(I − PK)f

N

]
H−1. (4.3)

Proposition 4.3. Suppose that Assumptions 2.1-2.3 are satisfied with γ > 1/2. As-

sume that σuv 6= 0, Hg 6= 0, E[v2
i ui|xi] = 0, and K/N → 0. Then, the approximate

MSE for the B2SLS estimator satisfies the decomposition (2.10) with Φ = σ2
vH
−1, G =

1
N2γ−1H

−1HgH
′
gH
−1, and

L(K) = H−1
[
(σ2
vΣη + 2σuvσ

′
uv)

K

N
+ σ2

v

f ′(I − PK)f

N

]
H−1. (4.4)

Remark 4.2. Propositions 4.2 and 4.3 show that the leading term L(K) in the MSE

approximations for the LIML, FULL and B2SLS estimators is the same as the leading

term in Donald and Newey (2001) for all γ > 1/2 under the same rate conditions K/N →

0. Note that the MSE approximations can still capture the higher-order biases from

locally invalid instruments G, which do not depend on K. The above results show the

robustness of the MSE approximations (and instrument selection criteria) of the LIML,

FULL, B2SLS estimators in Donald and Newey (2001) under the presence of locally
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invalid instruments in the sense that the dominant terms (that depend on K) in the

higher-order MSEs remain the same with possibly invalid instruments (γ > 1/2). With

a smaller higher-order bias from many instruments, the dominating terms in the MSE

approximation coincide with those of Donald and Newey (2001) for LIML/FULL and

B2SLS only if γ > 1/2; in contrast, 2SLS requires a more stringent condition.

The next two results are valid for JIVE2 and HLIM/HFUL estimators. Their implica-

tions remain the same as in Remark 4.2.

Proposition 4.4. Suppose that Assumptions 2.1-2.3 are satisfied with γ > 1/2. Assume

that σuv 6= 0, Hg 6= 0, and K/N → 0. Then the approximate MSE for the JIVE2 estimator

satisfies the decomposition (2.10) with Φ = σ2
vH
−1, G = 1

N2γ−1H
−1HgH

′
gH
−1, and L(K)

defined the same as in Proposition 4.3.

Proposition 4.5. Suppose that Assumptions 2.1-2.3 are satisfied with γ > 1/2. Assume

Ση 6= 0, Hg 6= 0, and K/N → 0. Then the approximate MSEs for the HLIM and HFUL

estimators satisfy the decomposition (2.10) with Φ = σ2
vH
−1, G = 1

N2γ−1H
−1HgH

′
gH
−1,

and L(K) defined the same as in Proposition 4.2.

5. INSTRUMENT SELECTION CRITERIA

In this section, we consider instrument selection criteria based on the higher-order MSE

approximations provided in Sections 3-4.

We first establish the asymptotic optimality property of Donald and Newey (2001)’s

criteria under a specification with N−γ (γ > 1/2) locally invalid instrument based on

Propositions 4.1-4.5. To simplify the results, we consider a case with a scalar endoge-

nous regressor (i.e., Yi is scalar) where the covariates have already been partialled out.9

For the details of the case with general vector endogenous variables Yi, see the Online

Supplementary Material (Section S3).

9Specifically, from the original data (ỹ, Ỹ , X̃), let y = MX1 ỹ, Y = MX1 Ỹ , X = MX1X̃, where MX1 =

I −X1(X′1X1)−X′1 is the orthogonal projection matrix of the exogenous covariates x1i.
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5.1. Optimality of Donald and Newey (2001)’s criteria under γ > 1/2

We choose K to minimize an estimate of the dominant term L(K) based on the higher-

order MSE approximation:

K̂ = arg min
K∈K

L̂(K), (5.1)

where K = KN = {Km : 1 ≤ m ≤MN} is a set of instruments, and the total number of

instrument sets MN depends on the sample size.

We require preliminary estimates of the model and the goodness of fit criterion for

the first-stage reduced-form equation. Let δ̃ be some preliminary estimator, e.g., an IV

estimator where the instruments K̃ are chosen to minimize the cross validation (CV) or

Mallows (1973) criteria for the reduced-form equation. Let ε̃ = y−Wδ̃ be residuals, and

let Ĥ = W ′P K̃W/N − σ̂2
uK̃/N be a preliminary estimator of H = f ′f/N . Additionally,

let ũ = (I − P K̃)W be a residual vector of the first-stage reduced-form regression; it is

important that all preliminary estimates remain fixed and do not depend on K, while

the criterion is calculated for different instrument sets.

The criteria based on Propositions 4.1-4.5 are defined below and are equivalent to those

of Donald and Newey (2001):

2SLS : L̂DN (K) = σ̂2
uv

K2

N
+ σ̂2

v(R̂(K)− σ̂2
u

K

N
), (5.2)

LIML,FULL,HLIM,HFUL : L̂DN (K) = σ̂2
v(R̂(K)− σ̂2

uv

σ̂2
v

K

N
), (5.3)

B2SLS, JIVE2 : L̂DN (K) = σ̂2
v(R̂(K) +

σ̂2
uv

σ̂2
v

K

N
), (5.4)

where σ̂uv = ũ′ε̃/N, σ̂2
v = ε̃′ε̃/N, σ̂2

u = ũ′ũ/N , and the Mallows or CV criterion

R̂(K) =
ûK
′
ûK

N
+ 2σ̂2

u

K

N
, R̂(K) =

1

N

N∑
i=1

(ûKi )2

(1− PKii )2

with residual vectors ûK = (I − PK)W .

We show that the instrument selection criteria in Donald and Newey (2001) are asymp-

totically optimal in the sense of Li (1987) under locally invalid instruments, i.e., K̂ in

(5.1) with L̂DN (K) satisfies equation (5.5) below.
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Assumption 5.1. Wi is a scalar, σ̂2
v − σ2

v = op(1), σ̂2
u − σ2

u = op(1), σ̂uv − σuv = op(1),

Ĥ − H̄ = op(1), H̄−1σuv 6= 0, and var(H̄−1ηi) > 0.

Assumption 5.2. Assume that E[u8
i |xi] < ∞ and

∑
K∈KN (NR(K))−1 → 0, where

R(K) = σ2
u(K/N) + H̄−1[f ′(I − PK)f/N ]H̄−1. Further assume that supK supi P

K
ii

p→ 0

when R̂(K) is the CV criterion.

Assumption 5.1 imposes consistency of the preliminary estimators. Assumption 5.2 is a

standard assumption in the literature (e.g., Li (1987)) regarding the asymptotic optimal-

ity of the model selection criteria. As
∑
K∈KN (NR(K))−1 ≤ MN (infK∈KN NR(K))−1,

Assumption 5.2 can be replaced by infK∈KN NR(K) → ∞ with restrictions on the set

of possible instrument sets MN , and this excludes the case where f has a finite-order

representation with a number of instruments and rules out KN including all possible

combinations of instruments.

Proposition 5.1. Suppose that Assumptions 5.1 and 5.2 hold. Under the same assump-

tions as in Proposition 4.1, the following holds for 2SLS with K̂ = arg minK∈K L̂DN (K)

if K
N1−γ →∞:

L(K̂)

infK L(K)

p−→ 1 (5.5)

where L(K) is as defined in (4.2).

For the LIML (FULL), B2SLS, JIVE2 and HLIM (HFUL) criteria, equation (5.5)

holds for all γ > 1/2 under the same assumptions as in Proposition 4.2, Proposition 4.3,

Proposition 4.4, and Proposition 4.5, respectively.

Remark 5.1. Proposition 5.1 provides the asymptotic optimality of the instrument se-

lection criteria in Donald and Newey (2001) and shows that their criteria for choosing

K are robust to locally invalid instruments (γ > 1/2). The optimality result, equation

(5.5), implies that L(K̂) with K̂ obtained by the selection procedure is asymptotically

equivalent to minimizing the unknown L(K) directly in the presence of locally invalid

instruments. Asymptotic optimality results for the JIVE2, HLIM, and HFUL estimators

are new with or without invalid instruments.

While the selection criteria for LIML/FULL, B2SLS, JIVE2, and HLIM/HFUL are

asymptotically optimal for all γ > 1/2, the optimality of the 2SLS criterion requires



24 B. Kang

γ > 1− α, where K = O(Nα), 0 < α < 1/2. The criterion for 2SLS is optimal when the

degree of invalidity is sufficiently small (γ is sufficiently large).

5.2. Invalidity-robust instrument selection criteria

We next consider instrument selection criteria based on Propositions 3.1-3.5. Although

Proposition 5.1 shows that the instrument selection criteria in Donald and Newey (2001)

are robust to a very small degree of invalid instruments (γ > 1/2), the higher-order

bias/variance terms due to invalid instruments may not be negligible when the degree of

invalidity increases (i.e., γ = 1/2), as shown in Section 3.

We propose invalidity-robust (IR) instrument selection criteria that are robust to a

larger degree of invalid instruments (γ = 1/2) based on Propositions 3.1-3.5. Because the

estimation of the MSE requires some preliminary estimates of g(x), we require a known

set of valid instruments zi: E[ziεi] = 0, zi ∈ Rq(q ≥ p). We consider the case in which

researchers have a “conservative” set of valid instruments and explore all other candidate

instruments that are potentially invalid considering the bias-variance tradeoff. Although

this is a critical assumption, our derivations of the MSE approximations in earlier sec-

tions do not require known valid instruments. Recent papers that have addressed similar

questions regarding the general GMM setup (such as Liao (2013), Cheng and Liao (2015),

DiTraglia (2016), and Cheng et al. (2019)) also assume that there is a subset of moments

that is known to be valid for identification and estimation.

The proposed instrument selection criteria L̂IR(K) are as follows:

2SLS : L̂IR(K) = L̂DN (K) + 2Ĥgσ̂uv
K√
N

+ L̂g(K) (5.6)

LIML/FULL/B2SLS : L̂IR(K) = L̂DN (K) + L̂g(K) (5.7)

JIVE2/HLIM/HFUL : L̂IR(K) = L̂DN (K) + L̂g,D(K) (5.8)

where L̂DN (K) is defined as in (5.2)-(5.4),

L̂g(K) =
2Ĥ2

g

Ĥ
(R̂(K)− σ̂2

u

K

N
)− 2ĤgĜ(K) + R̂g(K),

L̂g,D(K) =
2Ĥ2

g

Ĥ
R̂D(K)− 2ĤgĜD(K) + R̂g,D(K),

Ĥg = W ′P K̃ ε̂/
√
N − K̃/

√
Nσ̂uv, Ĝ(K) = W ′(I − PK)ε̂/

√
N + K/

√
Nσ̂uv, R̂g(K) =
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2K/NĤĤ−1
z σ̂2

v,zσ̂
2
u(I−ĤĤ−1

z )−2ĤĤ−1
z σ̂2

vR̂z(K)+2Ĥz,DĤ
−1
z σ̂2

vR̂(K), Ĥz = W ′PzW/N,

R̂z(K) = W ′Pz(I−PK)W/N + 2σ̂2
uK/N, Ĥz,D = W ′DzW/N where Pz is the projection

matrix using valid instrument z = [z1, ..., zN ]′, and Dz = diag(Pii,z) is a diagonal ma-

trix. Let also R̂D(K) = W ′(I−(PK−DK))W
N , R̂g,D(K) = W ′DKW/N(σ̂2

vI − ĤĤ−1
z σ̂2

v,z)−

2ĤĤ−1
z σ̂2

vR̂z(K) + 2Ĥz,DĤ
−1
z σ̂2

vR̂D(K), ĜD(K) = W ′(I − (PK − DK))ε̂/
√
N , σ̂2

v,z =

ε̂′Pz ε̂/N , ε̂ = y−Wδ̂, and δ̂ is a preliminary estimator obtained using valid instruments

z = [z1, ..., zN ]′ with the projection matrix Pz.
10

We show below that L̂IR(K) is an asymptotically unbiased estimator of the leading

terms in higher-order MSE approximation that depend on K defined in Sections 3-4.

Details on the proof and sufficient conditions for the higher-order decomposition are

provided in the Online Supplementary Material (Section S1.3). Let ρ̄K,N = tr(L(K))

and σ2
v,z = E[v′zvz/N |X], vz = Pzv.11

We impose a following assumption on the consistency of the preliminary estimators.

Assumption 5.3 also imposes high-level assumption for a preliminary estimator with

the instruments K̃. For example, the higher-order decomposition Ĥg − (Hg + Λg) =

Tg + op(ρ̄K,N ), Ĥ −H = TH + op(ρ̄K,N ) holds when ρ̄K̃,N = o(ρ̄K,N ) as K̃,K →∞.

Assumption 5.3. Wi is a scalar, σ̂2
v − σ2

v = op(1), σ̂2
u − σ2

u = op(1), σ̂uv − σuv =

op(1), σ̂2
v,z−σ2

v,z = op(1), Ĥg− (Hg+Λg) = Tg+op(ρ̄K,N ), and Ĥ−H = TH +op(ρ̄K,N ),

Ĝ(K) = TG + op(ρ̄K,N ) for K ∈ KN , where Λg = Op(1), TH = op(1), Tg = op(1), TG =

op(1), ρ̄K,N = op(1), ||Tg||||TG|| = op(ρ̄K,N ).

Proposition 5.2. Suppose that we have a vector of valid instruments zi ∈ Rq(q ≥ p)

such that E[ziεi] = 0 for finite q. In addition, suppose that Assumption 5.3 holds and

E[v2
i ui|xi] = 0. Under the same assumptions in Propositions 3.1-3.5 with γ = 1/2,

L̂IR(K) given in (5.6)-(5.8) for the 2SLS, LIML (FULL), B2SLS, JIVE2, and HLIM

10Note that we considered a simplified version of the criteria L̂IR(K) without R̂g(K), R̂g,D(K) for

the simulation. If we use estimates Ĥz = Ĥ = Ĥz,D, σ̂
2
v,z = σ̂2

v , R̂z(K) = R̂(K) = R̂D(K), then

R̂g(K) = R̂g,D(K) = 0, and there are no notable differences in the simulation evidence with or without

these additional terms. For the simplified version, L̂IR(K) in (5.6)-(5.8) reduces to L̂DN (K) in (5.2)-(5.4)

when Ĥg = 0.
11Because the choice of K is unaffected by subtracting constants from L̂IR(K), we can assume without

loss of generality that L̂IR(K) can be constructed using R̃(K) = R̂(K) − u′u/N, G̃(K) = Ĝ(K) − Ḡ
where Ḡ = Op(1) that do not depend on K.
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(HFUL) estimators satisfy the following decomposition:

L̂IR(K) = Q̂L(K) + r̂L(K),

E[Q̂L(K)|X] = L(K) + r̄L(K) (5.9)

[r̂L(K) + r̄L(K)]/tr(L(K)) = op(1), K →∞, N →∞,

with L(K) defined in Propositions 3.1- 3.5, respectively.

Alternatively, under the same assumptions in Proposition 4.1-Proposition 4.5 with γ >

1/2, the decomposition (5.9) holds with L(K) defined in (4.2) - (4.4) for the 2SLS, LIML

(FULL), B2SLS, JIVE2, and HLIM (HFUL) estimators, respectively.

Assuming that we have a known set of valid instruments, Proposition 5.2 implies that

L̂IR(K) is an asymptotically unbiased estimator of the leading terms (that depend on

K) L(K) in the higher-order MSE approximation provided in Propositions 3.1-3.5 and

the remainder terms (r̄L(K), r̂L(K)) go to zero faster than the L(K). This result also

holds with γ > 1/2 and the L(K) defined in Section 4.12

It is important to note that while L̂IR(K) satisfies (5.9) for a non-random sequence of

K →∞, this does not necessarily imply that L̂IR(K̂) with K̂ selected by the invalidity-

robust criterion approximates the infeasible infK L(K) well in practice. It would be desir-

able to justify L̂IR(K) in terms of optimality as in Proposition 5.1, but this is a difficult

problem, as it requires dealing with the estimation of g(·), which is not
√
N -estimable.

Although (5.9) shows that L̂IR(K) is an unbiased estimate of L(K), the sampling vari-

ability of L̂IR(K) can be large which makes uniform consistency fail to hold, but we do

not investigate this direction in the paper. We further note that the preliminary estimator

δ̂ may affect the finite-sample behavior of the invalidity-robust criterion; however, simu-

lation evidence suggests that an invalidity-robust instrument selection criterion combined

with an IV estimator that has a small bias property under many instruments without

moment problems, such as the Fuller/HFUL estimators, works well.

12The third moment assumption E[v2i ui|xi] = 0 is imposed for the simplification of the criteria similar

to Propositions 3.2-3.3. Without this condition, L̂IR(K) have additional terms that can be estimated.
We have not included these terms in the instrument selection criteria for simplicity and they provide
similar results in our simulations.
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6. MONTE CARLO SIMULATION

We investigate the finite-sample performance of the IV estimators based on the instru-

ment selection criteria considered in this paper. We use the same simulation design of

Donald and Newey (2001), Kuersteiner and Okui (2010), allowing for potentially invalid

instruments (with an intercept in the model). The model to be estimated is

yi = β0 + xiβ1 + εi,

E (ziεi) = 0 (6.10)

where xi and β0, β1 are scalars, and zi is a (K + 1)× 1 vector of instrumental variables.

We assume that zi always contains a constant and K denotes the number of excluded

exogenous variables.

We estimate β0, β1 by various IV estimators with K̂ chosen via instrument selection

criteria. Our DGP is

yi = β0 + xiβ1 +
τ ′Zi
Nγ

+ vi, (6.11)

xi = π′Zi + ui,

Zi ∼ N (0, IK̄) , vi

ui

 ∼ N
 0

0

 ,

 1 σuv − π′τ/Nγ

σuv − π′τ/Nγ 1

 .

We set β0 = 1, β1 = 0.1 and vary (N, K̄,R2, π, τ) in the simulation experiments. We set

the maximum number of instruments K̄ = 20 when the number of observations N = 100

and K̄ = 30 for N = 1000. We set the first-stage R2 as {0.1, 0.01}. We also set the

endogeneity of xi as Cov(xi, εi) = σuv = 0.5 and perform 10,000 simulation replications.

As in Donald and Newey (2001), we set the first-stage coefficient π = (π1, · · · , πK̄)′ as

πk = c(K̄)(1− k/(K̄ + 1))4

where c(K̄) is chosen to make R2 either 0.1 or 0.01. We consider the case in which there

is some prior information about which instruments are strong.

When we fix τ 6= 0, the key parameter is γ (“degree of invalidity”), and we vary

γ =∞, 1, 1/2 and 1/3. When γ =∞, any instruments zi from the full set of instruments

Zi are valid. For 0 < γ <∞, we find that E(ziεi) = τ/Nγ 6= 0, so the moment condition
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(6.10) fails to hold in any finite sample. The DGP can also be written as a globally

misspecified model such that γ = 0 and τ is not too large, but we use the locally

misspecified setup to be consistent with the results in Sections 3 and 4.

We consider the following specification for τ = (τ1, · · · , τK̄)′:

τk = 0 for k = 1, τk = 0.5 for k = 2, · · · , K̄/2, and τk = 0 for k > K̄/2.

We assume that only the first instrument is known to be valid. Valid instruments are

included in all candidate instruments and used for preliminary estimates in the invalidity-

robust instrument selection criteria. We consider that the next “strong” IVs are poten-

tially invalid. This is empirically relevant, as IVs that are strongly correlated with the

endogenous regressor are more likely to be correlated with the dependent variable, and

there exists a bias-variance tradeoff when using invalid but relevant instruments. More-

over, the last half of the “weak” IVs are valid, so there also exists a tradeoff when using

valid but weak instruments.13

We focus on β1, and Tables 1-4 report the median bias (Bias), median absolute devia-

tion (MAD), interdecile range (IDR), root mean squared error (MSE), and root trimmed

mean squared error (TMSE) of 2SLS, LIML, FULL (with C = 1), JIVE2, HLIM, and

HFUL (with C = 1). We use these robust measures of central tendency and dispersion

due to concerns on the existence of moments for some estimators.14 For comparison pur-

poses, we include the OLS and GMM averaging estimator (GMM-AVE) by Cheng et al.

(2019), which combines a conservative GMM estimator with valid moment conditions

and a GMM estimator based on all (possibly invalid) instruments, where the weights are

given in Cheng et al. (2019, equation (4.7)).15 For all IV estimators, we consider four

13In the additional simulation results reported in the Online Supplementary Material, we also investigate
the same simulation design of Donald and Newey (2001) without an intercept in the model. For example,
we consider different specifications such as σuv = 0.2, 0.8, different π and τ , and a heteroskedastic setup.

In particular, we consider 1) πk =
√
R2/K̄(1−R2), the case where the instruments have equal strengths

as in Donald and Newey (2001, Model 2), 2) πk = c(K̄)(1−(K̄+1−k)/(K̄+1))4, the case where the order
of the IV strengths is wrong, 3) τ ∝ (0, 1, 1, 1, 0, ...., 0), 4) τ ∝ (0, 1, 0, ...., 0), and 5) τ ∝ (0, 0, 0, 0, 1, ...., 1).
Further, we also explore the simulation design in Hausman et al. (2012) with an intercept, and we note
that theoretical results of HLIM/HFUL in Hausman et al. (2012, Assumption 1) include an intercept
in the model. See the Online Supplementary Material for further discussion. In an earlier version of the
paper, we provide the results assuming the first two instruments are known to be valid.

14To be specific, we compute a root trimmed mean square,

√
E[min{(β̂1 − β1)2, 100}] similar to Okui

(2011), but with a larger trimming parameter.
15We do not report the results for the Fuller/HFUL estimator with a constant C = 4, as they are mostly
similar to those in the C = 1 case. We also omit the results for B2SLS, as it is dominated by the other
estimators in most cases.
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different cases: using all available instruments (all), using the valid instrument only (val),

utilizing the instruments chosen by Donald and Newey (2001)’s criterion (DN), and the

instruments selected by the invalidity-robust criterion in this paper (IR). Additionally,

Table 5 reports the median value of K̂ and KMSE that minimizes the trimmed MSE of

the estimators.16

MSE, TMSE and IDR: In terms of the MSEs, our findings are in line with the

literature (Hahn et al. (2004), Guggenberger (2008), and Hausman et al. (2012)), which

recommends utilizing estimators with finite-sample moments over the “no-moment” es-

timators. The MSE/TMSEs of LIML/HLIM and JIVE2 are considerably larger than

those of FULL/HFUL with many instruments regardless of the instrument invalidity γ,

especially in the weakly identified cases (Tables 2 and 4). We observe that MSE can be

significantly larger than the trimmed MSE for “no-moment” estimators, but MSE for

Fuller/HFUL estimator is the same as trimmed MSE in all cases.

It is true that the MSE approximations derived in this paper may perform poorly

for “no-moment” estimators, especially in the weak instrument scenarios (Hahn et al.

(2004)). However, we find that the FULL/HFUL estimators combined with the Donald

and Newey (2001) (DN) criterion can lead to a reduction in the IDR and MSE/TMSE

compared to those of the estimators using all instrument sets or only valid instruments,

even when the instruments are slightly invalid and the correct specification case (γ =

∞). This is consistent with our theory that the DN criterion is asymptotically optimal

under ‘slightly invalid’ (γ > 1/2) instruments. The FULL/HFUL estimators based on the

invalidity-robust criterion (IR) have similar MSE to those of DN across different γ, and

DN/IR may include a few more invalid but strong instruments for MSE reductions. We

find that selecting estimators based on these criteria can mitigate the moment problem

even for LIML/HLIM/JIVE2, with significant TMSE reductions, although this is not

always the case.

For FULL/HFUL, the MSE/TMSE typically increases when γ or R2 decreases. The

IDR/TMSE of the IV estimators with strong invalid instruments (Table 1 with R2 =

0.1, γ = 1/3) and valid weak instruments (Table 2 with R2 = 0.01, γ =∞) can be similar.

16Note that this is a different measure with K∗ reported in Donald and Newey (2001, Tables V-VI),
which is a median of arg minK∈K L(K).
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We also find that the model averaging estimator can help to mitigate the moment problem

by effectively choosing weights between a conservative and an aggressive GMM estimator,

and the MSE of GMM-AVE works quite well across simulations. Because 2SLS has finite

moments for K ≥ 2, the MSE of 2SLS when using only valid instruments is considerably

larger than those of DN/IR as well as using all instruments.

With larger sample sizes N = 1000, the MSE/TMSE (IDR) of LIML/HLIM based on

the DN/IR criteria are very similar to those of FULL/HFUL across γ in the relatively

strongly identified case (Table 3), but not in the weakly identified case (Table 4).

Median Bias and Median Absolute Deviation (MAD):

We first compare the IV estimators using all instruments (K = K̄). We find that

the median bias and MAD are very similar, with the exception that the bias of 2SLS

can be substantially larger than those of the other estimators in the strongly identi-

fied cases when the instruments are valid or slightly invalid. Similar performances for

2SLS/LIML/FULL under valid instruments can also be found in Hahn et al. (2004).

However, the bias/MAD of 2SLS can be lower than those of the other estimators, espe-

cially when the degree of invalidity is large (γ = 1/3) because the misspecification bias

and the many-instrument bias can have opposite signs and offset each other, as theoret-

ically expected (Remark 3.4). The median bias and MAD of LIML/HLIM under many

instruments can be significantly larger than those of FULL/HFUL when the instruments

are invalid (γ = 1/3), especially in the weakly identified cases (Table 2).

The DN criterion tends to choose more invalid instruments when the degree of invalid-

ity increases, which leads to a large estimator bias that increases as γ decreases, although

the bias decreases when the sample size increases to N = 1000. In general, we find that

an estimator based on IR has a lower median bias than an estimator with DN, and it has

similar or slightly larger MAD than that obtained using only valid instruments across γ.

In sum, the Fuller and HFUL estimators combined with instrument selection perform

very well, with the lowest IDR and MSE/TMSE. For FULL/HFUL, the median of the

selected K̂ based on DN or IR is close to KMSE in many cases. Although it is highlighted

in the literature that the Fuller or HFUL estimator performs well under many weak in-

strument setups, our simulation suggests that those estimators combined with instrument
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selection procedures can also perform well when the instruments are potentially invalid

in finite samples.

Remark 6.1. Potentially interesting future research involves the investigation of diag-

nostic tools that provide empirical researchers with the ability to evaluate the degree of

invalidity of a set of available instruments. In practice, researchers can compare estimates

with instruments chosen by DN and IR criteria. In our simulation experiments, we find

that the differences in the median biases of the 2SLS estimators and the rejection rates

of the Sargan-Hansen J-test based on DN and IR tend to increase when the degree of

invalidity increases.17 However, this is not a formal way of distinguishing between the

cases with γ = 1/2, γ > 1/2, and γ < 1/2. We leave this topic for future research.

7. CONCLUSIONS

This paper develops higher-order MSE approximations for IV estimators in a linear ho-

moskedastic IV model with many and possibly invalid instruments. We consider various

k-class estimators, including 2SLS, LIML, FULL, B2SLS, JIVE2, HLIM and HFUL.

Based on the higher-order MSE approximations, we consider the instrument selection

criteria that can be used to choose among the set of available instruments. We demon-

strate the asymptotic optimality of the instrument selection criteria in Donald and Newey

(2001) under locally (N−γ , γ > 1/2) invalid instrument setups. We also propose instru-

ment selection criteria that are applicable when researchers have a “conservative” set

of valid instruments by considering additional higher-order terms due to N−1/2-locally

invalid instruments.

There are some limitations in the present work and scope for future extensions. First,

it would be interesting to extend the results for a case involving heteroskedastic error

terms. The assumption of conditional homoskedasticity greatly simplifies calculations

and helps to investigate higher-order comparisons between estimators. It would be of

interest to analyze locally invalid instrument specifications combined with the existing

work of Donald et al. (2009) in a GMM setup.

Second, our higher-order results do not rely on the weak- or many-weak-instrument

17We further note that the conventional overidentification tests may perform poorly when the number
of instruments is large (Lee and Okui (2012), Chao et al. (2014)).
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asymptotics of Staiger and Stock (1997) and Chao and Swanson (2005), and the MSE

approximations in this paper are not valid under such sequences. Here, we consider

the scenario where the number of instruments is small relative to the sample size and

the instruments are strong, and we believe that this case is important in many empirical

applications (see Hansen et al. (2008) for a survey of applied microeconomic applications).

Our simulation evidence suggests that the proposed instrument selection criteria can be

useful for estimators that perform well under many weak instrument setups, such as

FULL/HFUL.

Finally, our instrument selection criteria can suffer from post model selection problems.

Simulation evidence (in Section 6) shows that a selection estimator can outperform an

estimator using only valid instruments for some parts of the parameter spaces (mostly

where γ > 1/2); the worst-case MSE of the instrument selection procedure increases

when γ decreases and can be much worse than that obtained using only valid instru-

ments when the degree of invalidity is large (small γ). Although we justify the choice

of K̂ by asymptotic optimality or unbiasedness over large parameter spaces for γ, the

randomness in K̂ may not be fully accounted for in the high-order MSE approximation

of δ̂(K̂). The worst-case (scaled) MSE of the estimator based on the DN procedures can

diverge to infinity as the sample size grows when γ < 1/2, as the criteria concern only

the bias and variance from many instruments while ignoring the bias from invalid instru-

ments. The MSE of an estimator based on IR procedures can also increase as γ decreases

because poor estimation of g(·) can worsen performance. Similar undesirable (related to

nonuniformity) properties of the post model selection estimators can be found in Leeb

and Pötscher (2005, 2008). In a related study on the pretesting issue, Guggenberger and

Kumar (2012) investigate the negative impact of an overidentification pretest on the

subsequent inference and show that the asymptotic size of the second-stage test can be

equal to one. A recent paper Cheng et al. (2019) has shown that the averaging estimator

can have uniformly lower asymptotic risk than an estimator using only the valid moment

conditions in the GMM setup.
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Table 5. Monte Carlo Results: Median of K̂.

γ =∞ γ = 1 γ = 1/2 γ = 1/3

N R2 KMSE DN IR KMSE DN IR KMSE DN IR KMSE DN IR
100 0.1 2SLS 7 4 3 7 4 3 4 5 2 20 5 2

LIML 4 3 3 5 3 3 4 3 2 3 3 2
FULL 3 4 2 4 4 2 1 3 2 1 3 2
JIVE 5 3 2 6 3 2 6 3 2 4 3 2
HLIM 4 3 2 5 3 2 4 3 2 3 3 3
HFUL 3 3 2 4 3 2 1 3 2 1 3 2

100 0.01 2SLS 20 3 3 20 3 3 20 3 3 20 3 3
LIML 2 1 2 4 1 2 3 1 2 1 1 2
FULL 1 1 1 1 1 1 1 1 1 1 1 1
JIVE 1 1 1 1 1 1 1 1 1 1 1 1
HLIM 2 1 2 3 1 2 3 1 2 1 1 2
HFUL 1 1 1 1 1 1 1 1 1 1 1 1

1000 0.1 2SLS 9 8 7 9 8 7 4 9 5 2 13 3
LIML 12 11 9 12 11 9 4 10 6 2 10 3
FULL 12 11 8 12 11 8 4 10 5 1 10 3
JIVE 11 10 1 10 10 1 5 10 1 2 10 1
HLIM 12 11 1 12 11 1 4 10 1 2 10 1
HFUL 12 11 1 12 11 1 4 10 1 1 10 1

1000 0.01 2SLS 8 7 5 8 7 5 5 9 4 30 8 3
LIML 6 4 4 8 4 4 5 4 3 1 4 2
FULL 4 4 4 4 4 4 1 4 4 1 4 2
JIVE 8 3 3 9 3 3 7 3 4 3 3 2
HLIM 6 4 5 8 4 5 5 4 5 1 4 3
HFUL 4 4 3 4 4 3 1 3 4 1 4 2
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