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A B S T R A C T

Stress has become one of the most prominent problems of modern societies and
a key contributor to major health issues. Dealing with stress effectively requires
detecting it in real-time, informing the user, and giving instructions on how to
manage it. Over the past few years, wearable devices equipped with biosensors that
can be utilized for stress detection have become increasingly popular. Since they
come with various designs and technologies and acquire biosignals from different
body locations, choosing a suitable device for a particular application has become a
challenge for researchers and end-users. This study compares seven common wearable
biosensors for stress detection applications. This was accomplished by collecting
physiological sensor data during Baseline, Stress, Recovery, and Cycling sessions
from 32 participants. Machine learning algorithms were used to classify four stress
classes, and the results obtained from all wearables were compared. Following this,
a state-of-the-art explainable artificial intelligence method was employed to clarify
our models’ predictions and investigate the influence different features have on the
models’ outputs. Despite the results showing that ECG wearables perform slightly
better than the rest of the devices, adding a second biosignal (EDA) improved the
results significantly, tipping the balance toward multisensor wearables. Finally, we
concluded that although the output results of each model can be affected by various
factors, in most cases, there is no significant difference in the accuracy of stress
detection by different wearables. However, the decision to select a particular wearable
for stress detection applications must be made carefully considering the trade-off
between the users’ expectations and preferences and the pros and cons of each device.

1. Introduction
Stress has become a major underlying cause for health-related problems, exposing people to varying

degrees of mental and physical ailments [1] with increased societal cost. According to a report by the
American Psychological Association, it has been estimated that stress-related health problems and their
consequences cost the United States alone $300 billion annually [2].

Nowadays, one of the most effective methods of dealing with stress is developing the ability to self-
regulate one’s physiological and mental state [3, 4, 5]. Self-regulation of stress can be achieved using
biofeedback since it helps users become self-aware of their stress levels and subsequently perform the
necessary interventions [4]. Sufficient self-regulation of daily life stresses is achievable using cost-effective
interventions with short durations [6]. For instance, relaxation is regarded as the most practical among
different stress management interventions since it is the most inexpensive and most straightforward to
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implement [6, 7]. Other methods such as mobile applications for practicing mindfulness also show promising
results for effective stress reduction [8, 9]. Accordingly, it can be concluded that in an efficient stress
management system, the first and most crucial step is to detect the occurrence and levels of stress for
informing the user.

One of the most common, reliable, and easy to access methods for detecting stress is the use of
physiological signals, characterizing changes in physiological arousal [10]. In a rudimentary wearable sensor
not customized for a specific application, only the physiological signals and their fluctuations are possible to
observe. For instance, the HRV signal and its features can be utilized to detect mental stress. However, the
end-user may not comprehend what these signals reveal, and the presence of an expert will be required for
meaningful interpretation necessary to detect signs of stress. Nowadays, machine learning (ML) methods are
used in designing stress detection mechanisms for everyday life. For making these mechanisms capable of
interpreting the data and recognizing users’ stress levels, ML algorithms are trained using previous data.

In recent decades, collecting physiological signals from the human body has often required cumbersome
laboratory equipment. Nevertheless, due to significant advancements in Micro-Electro-Mechanical Systems
(MEMS), the sizes of these sensors have considerably shrunk while preserving an adequate level of
measurements’ quality [11]. Much research aimed to develop and improve the ubiquitous and wearable
affective computing technologies in order to help improve people’s mental well-being [12]. Wearable sensors
are offered in the form of single-purpose devices or as add-ons to smartphones and smartwatches. As a
result, people can easily carry a variety of sensors in their pockets, on their wrists, or arms to record and
examine their body’s physiological signals. For instance, nearly all low-cost smartwatches are equipped with
Photoplethysmography (PPG) sensors to measure cardiovascular signals, while more expensive ones include
sensors such as Accelerometer (ACC), Electrocardiography (ECG), Electrodermal Activity (EDA), and those
for body temperature. While biosignal acquisition is a promising feature of personal wearable devices, there
are some disadvantages to consider as well. For instance, they have to fairly divide their battery capacity
into multiple purposes, and this energy optimization yields a trade-off between availability and performance.
On the contrary, medical-grade devices, or even wearable devices with larger sizes that have no battery
restrictions and are solely designed for a single purpose, can record continuously without energy restrictions
and with a higher sampling rate, resulting in higher accuracy and superior data quality.

Much previous research on the validity of wearables have concluded that their measurement accuracy is
lower than that of medical-grade devices [13, 14, 15]. Despite this, the demand for wearable devices continues
to grow due to multiple factors such as their unobtrusiveness and ease of use [16]. Besides, the measurement
quality of these devices continues to increase with the introduction of newer generations equipped with
enhanced technologies and capabilities [15, 17, 18]. It is expected that by 2023, there will be more than 330
million people who use at least one wearable device, and the market is expanding every year [19]. However,
the wide variety of wearable gadgets on the market can make it difficult for end-users and researchers to
choose the right ones for stress measurement applications. In order to choose the best available options, it is
necessary to make a comprehensive comparison between different wearable devices.

Since the signals collected by biosensors are the building blocks in the biofeedback process, in a previous
study, we conducted a comprehensive comparative study by comparing the physiological data quality
collected simultaneously from several devices [20]. The HRV features were compared using correlation and
agreement analysis in several conditions. However, all comparisons were made only at the feature level,
and neither device was investigated under a specific application (e.g., stress measurement). Findings showed
that single-purpose ECG chest bands exhibited relatively superior data quality compared to smart and non-
smart wristbands fitted with PPG sensors. One of the main reasons for this difference in data quality was
the extreme adverse effects of various noises, such as physical movements on devices with PPG sensors. It
was also observed that by applying proper noise reduction methods, output data from PPG sensors could
become similar to and more correlated with ECG sensor data. Following the quantitative analysis, in order to
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investigate the usability and users’ preferences, the previous study also involved a qualitative evaluation. By
interviewing users of a wide range of smartwatches, wristbands, chest bands, and other specialized wearables,
we found that most users favored smaller devices, preferably with screens, and in a format that could be worn
on the wrist. Thus, in general, and regardless of a specific type of application, factors such as wearability,
ease of use, and comfort can tip the balance in favor of choosing devices with lower data quality.

While this previous paper focused only on data quality [20], the present paper examines the effects of
using the data produced by each device in a particular application (i.e., stress level detection). In this paper,
we report an experiment where participants were first subjected to mental stress followed by intense physical
activity. We wanted to find out whether devices equipped with ECG sensors still function much better and
retain their superiority, or are we going to witness a close competition? For this purpose, we studied the
difference in stress level detection quality between these devices in terms of accuracy and precision by
making higher-level (application level) comparisons using ML algorithms. Features extracted from three
types of biosignals (i.e., ECG, PPG, and EDA) of a comprehensive set of wearables (seven devices) were
used for training and testing the ML models.

Moreover, a state-of-the-art explainable AI (XAI) method was utilized to investigate various factors,
including the number and importance of features, data preprocessing methods, effects of different models,
and the impacts of all these factors on the models’ outputs. Furthermore, we inspected the importance of
preventing data leakage and examined whether different features exhibit similar behaviors under the influence
of various selections of classifiers and scaling algorithms. To the best of our knowledge, this study is the first
of its kind, which compares and evaluates a comprehensive set of wearable devices for identifying stress
and physical activity. The main contributions of this study are (i) to help end-users and researchers make
better decisions in choosing wearable devices for stress level detection, and (ii) to introduce the advantages
of using XAI in affective computing for better comprehension of the features’ importance and their impact
on the selection of a particular class by ML models.

2. Background and Related Works
Stress has become an inseparable part of modern life. Many factors, such as highly competitive work

environments, heavy workloads, time pressure, and financial conditions, contribute to excessive stress among
individuals. The non-formal definition of stress is the human body’s response to any challenging or dangerous
situation. When people are stimulated with such stressors, they check their inner resources to handle them
[11]. No matter how difficult the situation is, if people feel they have enough resources, they will not feel
stressed. Otherwise, their mental stress levels will increase. There are different stress types when the duration
and evaluation reference are considered [11, 21]. Long-term stress is called chronic, whereas short-term stress
is named acute stress. When the reference is taken into consideration, the body’s physiological reaction to a
stressor can be named physiological stress. The context (i.e., stressed and relaxed) of individuals is used as a
reference in this type of stress. On the other hand, mental appraisal and interpretation of stressful situations
is called perceived stress. Self-report questionnaires are used for measuring perceived stress.

Traditionally, stress has been measured by analyzing self-report questionnaires or being interviewed
by a psychologist. However, with the advancement of wearable technologies, automatic stress monitoring
systems have been developed. They collect physiological information related to the intensity of stress and
experience of a subject. The related signals could be listed as Heart Rate Variability (HRV), Brain Activity,
Electro-Dermal Activity (EDA), also known as Galvanic Skin Response (GSR), Blood Pressure (BP), Skin
Temperature (ST), Muscle Activity, Respiration, Blood Volume Pulse (BVP).

One of the most significant signals for determining stress levels is heart activity since the autonomic
nervous system influences the heart directly. The most commonly extracted feature of heart activity is Heart
Rate Variability (HRV) which can be defined as the change in the time interval between successive heartbeats.
Under emotional arousal, sinusoidal heart rhythms are corrupted, and they become more irregular and faster,
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and this effect could be observed from HRV very clearly. That is why we selected HRV for physiological
biofeedback. Two leading sensor technology can measure heart activity: ECG and PPG namely and we used
both technologies in this study.

There are different levels of validity assessment of wearable devices [22]. The first level is signal level,
the most straightforward comparison that evaluates the ability of a device to generate the same raw data
as the reference device. Correlation is generally computed for this level of validity assessment. The second
one is the feature (parameter) level: it determines whether a device delivers physiological features similar
to the reference device. The Bland–Altman plot is the most commonly applied technique for this level.
Lastly, the application (event) level compares devices with the reference device on the capability to recognize
an application (event). Usually, ML algorithms are used with both devices, and metrics such as accuracy,
precision, recall, and 𝐹1 score are then compared.

In the literature, wearable devices are compared with medical-grade ones, especially at the feature level.
These studies demonstrate that wearable PPG sensors are catching up with medical-grade ECG sensors
for extracting HRV features. Bolanos et al. [23] reported that there is an excellent agreement between
different measures of HRV signals acquired from both sensors, and the presented results provide potential
support for the idea of using PPGs instead of ECGs in HRV signal derivation and analysis in ambulatory
cardiac monitoring of healthy individuals. Selvaraj et al. [24] also inferred that HRV features can be reliably
estimated from the PPG. Jeyhani et al. [25] compared PPG-based wearable devices with medical-grade
ECG devices at the feature level in their preliminary study. Schuurmans et al. [14] assessed the validity
of Empatica E4 devices under baseline conditions again at the feature level. After these studies compared
wearable devices with medical-grade ones under baseline conditions, researchers realized that the validation
should be extended to more challenging conditions such as mental or physical stress. Konstantinou et al. [26]
compared wearable devices with stationary devices under mental stress conditions at the feature level. They
used Microsoft Band 2 as the wearable and showed that the features’ distances with the reference device
increase under mental stress. After considerable effort at the feature level, researchers started preliminary
studies at the application level. Ollander et al. [27] compared the Empatica E4 device with a stationary
sensor under mental stress with seven participants. They stated that although the stationary sensors are very
close to the reference devices at feature levels when compared to wearable devices, the stress discrimination
power at the application level is maintained with wearable sensors. Furthermore, in another study [28], the
authors trained machine learning models to compare the Biopac MP150 (laboratory sensor) and Empatica E4
(wearable sensor) for recognizing emotions. They reported that the accuracy of emotion recognition with data
collected by wearable devices was very similar to when data was collected by laboratory equipment. These
comparison studies promoted wearable devices and led to more research on emotion and stress recognition
using wearables for data collection [29, 30, 31].

Physical activity is another condition that wearable sensors should be validated at feature and application
levels. Pinheiro et al. [32] found an average correlation of 0.82 between features extracted from wearable and
medical-grade sensors. Even in physically active conditions, they reported a 0.68 correlation which shows a
relatively strong relation. Furthermore, they computed a 0.88 correlation between these signals in the resting
conditions. They concluded that the presented results show the potential of the PPG sensor as an alternative
for HRV analysis in healthy subjects, even in physically active situations. As seen in the literature (see Table
1), although there are preliminary studies with a limited number of devices and subjects comparing wearables
with stationary devices, there is no study comparing the wearable devices under mental stress and physical
activity at both feature and application levels.

Our study is not only the first one to compare wearables under mental stress and physical activity at
both levels, but we also used the most comprehensive and diverse set of wearables in the literature for
comparison. We also employed a state-of-the-art explainable AI (XAI) method to investigate and demonstrate
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Table 1
List of comparison studies conducted using wearable heart monitoring sensors

Article Comparison type Monitoring type Sensors

Application-level Feature-level Mental stress Physical activity Number of participants Multi-modal Number of sensors Placement

[27] ✓ ✗ ✓ ✗ 7 ✓ 3 Wrist

[23] ✗ ✓ ✗ ✗ 2 ✗ 2 Chest, Finger

[24] ✗ ✓ ✗ ✗ 10 ✗ 2 Chest, Finger

[32] ✗ ✓ ✗ ✓ 35 ✗ 2 Chest, Finger

[28] ✓ ✓ ✓(Arousal) ✗ 19 ✓ 2 Chest, Finger

[15] ✗ ✓ ✗ ✗ 49 ✗ 2 Finger, Wrist

[26] ✗ ✓ ✓ ✗ 43 ✓ 2 Wrist

[14] ✗ ✓ ✗ ✗ 15 ✗ 2 Chest, Wrist

[25] ✗ ✓ ✗ ✗ 19 ✗ 2 Wrist

[20] ✗ ✓ ✗ ✗ 32 ✗ 5 Chest, Wrist

Current study ✓ ✓ ✓ ✓ 32 ✓ 7 Chest, Wrist, Finger

Check mark symbols (✓) are used to indicate "Yes", and X mark symbols (✗) are used to indicate "No".

the importance of features and data preprocessing techniques and their impact on the output of various
classification algorithms.

3. Methodology
The primary purpose of this study is to compare the performance of different wearable devices in the

application of mental and physical stress diagnosis. This comparison was performed in terms of accuracy
and sensitivity of diagnosis. In addition, several factors, such as differences in the impact of features, have
been examined and compared, which will be explained in detail in future chapters.

Overall, We recruited 32 healthy participants (10 Females and 22 Males, age=28.4±5.98 years,
BMI=25.61±6.49) for data collection through advertisement within our university campus. Participants
were instructed to maintain a regular sleep schedule the night before [33], and refrain from eating food and
consuming caffeinated drinks two hours prior to the study [34, 35]. The data acquisition procedure took place
in a soundproof room without any auditory and visual distractions, facilitated by the first and third authors
during participants’ single visit to our lab. Each participant’s session took 70 minutes and was divided into
four parts, as detailed below.

3.1. Part 1: Study Introduction and Participants’ Consent
The first part of the study consisted of researchers introducing the study to the participants. Each

participant was given a participant information sheet that detailed all the information regarding the data
collection procedure, i.e., what data will be collected and how it will be used. Moreover, participants were
told that their participation was voluntary, and they were free to withdraw during and after a week of the study
without giving any reason. Participants were notified that if they chose to leave the study during this time
period, all of their data would be destroyed. If they agreed to participate, their data would be anonymized and
would not link to their names or any other details that could identify them. Participants were encouraged to ask
questions at this stage if they did not understand anything. Once participants understood the study details,
they signed a consent form followed by a short demographics questionnaire. All participants underwent
exactly the same sessions during the data collection sessions, and each visited the laboratory only once. The
procedure of the methodology used in this study complies with the 1964 Declaration of Helsinki [36] and is
approved by the Institutional Review Board for Research with Human Subjects of Boğaziçi University with
the approval number 2018/16.
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Table 2
Heart monitoring sensors used in this study, their placements, technical details, and a list of studies conducted
using these devices

Article Device Sensors Sampling rate Placement Connectivity Realtime streaming Cloud storage Actuator/Display

[37, 38, 39, 40] Empatica E4 PPG, EDA, ACC, IR Thermopile 64 Hz Wrist Bluetooth ✓ ✓ ✗

[41, 42, 43] Samsung Gear S2 PPG, ACC, Barometer, Gyro 100 Hz Wrist Bluetooth ✓ ✗ Display

[44, 45, 46, 47] Firstbeat Bodyguard 2 ECG, ACC 1000 Hz Chest USB ✗ ✗ ✗

[48, 49, 50, 51] BITalino (r)evolution ECG, EEG, EDA, EMG, ACC 1000 Hz Chest Bluetooth ✓ ✗ Vibration, Buzzer, Led

[52, 53, 54, 55, 56] Polar H10 ECG 130 Hz Chest Bluetooth ✓ ✓ ✗

[57, 58, 59, 60] Zephyr HxM ECG 250 Hz Chest Bluetooth ✓ ✗ ✗

[61, 62, 63, 64] CorSense PPG 500 Hz Finger Bluetooth ✓ ✓ ✗

Check mark symbols (✓) are used to indicate "Yes", and X mark symbols (✗) are used to indicate "No".

3.2. Part 2: Sensor Placement
The second part of the study consisted of sensor placement. Two of the authors helped participants

place all the sensors as shown in Figure 1. We used the standard placement procedure recommended by
the manufacturer for data recording while ensuring that it was comfortable for participants. Seven different
off-the-shelf heart rate monitoring wearable devices were utilized in this study: BITalino (r)evolution board,
Firstbeat Bodyguard 2, Polar H10, Zephyr HxM, Empatica E4, Samsung Gear S2, and CorSense. The
technical details of the devices used are listed in Table 2. In addition, the first column of this table represents
a number of studies in the literature that have used these devices in the research related to stress detection
and measurement. Further information on the sensors and data acquisition are detailed in section 3.5.

3.3. Part 3: Mental Stressor
Once all the sensors were placed correctly and ready for recording, we started recording the baseline

stress level measurement data for 10 minutes. In order to achieve a precise and accurate interpretation
of psychophysiological phenomena and of vagal tone, and based on the guidelines in the literature [65],
participants were instructed to avoid any large movements while sitting comfortably in an upright posture.
After the baseline session, participants were then asked to perform stressor tasks for ten minutes, followed by
five minutes of resting, cycling, and finally, the last resting phase, as shown in Figure 2. In phase one of the
stressor task, participants were taught how to complete the Stroop Color Test on a tablet. The Stroop Color
Test is a color and word neuropsychological test widely utilized in the literature and clinical purposes [66].
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Figure 2: Sample RR intervals with ten and five minute windows collected from a single subject. It should be
noted that the gaps in between the activity windows correspond to the time between the activities

The Stroop Color and Word Test (SCWT) is based on the principle that humans can read words more quickly
than they can identify and recognize colors. During the Stroop Color Test, color names ( e.g., green, red,
or blue) appear in different colors (e.g., the word "blue" in green, rather than in blue). The subject is asked
to identify the color words displayed in an inconsistent color (for instance, the term "Green" is shown by a
blue color). The processing of the distinct feature (word) impedes the simultaneous processing of the second
feature (color), taking longer time and effort, making the subjects susceptible to more misinterpretation.
SCWT has been widely exploited in the literature as a mental stressor [67, 66]. Participants were asked to
carry out this test for five minutes and also were told that their test results would be compared to those of other
participants. It must be noted that SCWT has been used at different degrees of difficulty in some studies. For
instance, de Arriba-Pérez et al. used three difficulty levels, where colors and words match, colors and words
still match but with different randomized order of appearance, and colors and words do not match, are levels
one, two, and three respectively [68]. Compared to de Arriba-Pérez et al.’s work [68], the level of SCWT
difficulty in our study’s stress session was level three, and a combination of levels one and two was only used
during a short training for each participant before the start of the stress session.

As a follow-up to the Stroop test, the second phase of the stressor task consisted of arithmetic questions,
a component of the widely known Trier Social Stress Test (TSST) [69]. While one of the authors pretended
to take notes of the correct and incorrect responses, participants were asked to count backward with varying
differences for five minutes (for example, counting backward from a particular three-digit number in steps of
23). At the end of this session, participants were asked to rest for five minutes. Both TSST and Stroop color
test, which are highly popular and widely accepted in the scientific community, are very effective methods
to induce psychological stress [16]. We utilized these two different stressors for five minutes each in order to
prevent the possibility of habituation and fatigue. When the physiological signals are examined (see Figure
2), it could be seen that both methods successfully created stress reactions in participants.

3.4. Part 4: Physical Stressor
The third part of the study consisted of a physical stressor where participants were asked to perform

cycling on an indoor exercise bike.
The reason for choosing cycling as a physical activity in our study was that due to limitations in laboratory

environments, moderate to intense physical activity is only possible using equipment such as a stationary
bike or a treadmill. HRV represents the activities of both sympathetic and parasympathetic components
of the autonomic nervous system. When an individual engages in exercise and physical activity, it affects
their HRV, as physical demands are met by both components [70]. HRV has been used in the literature for
measuring physical stress [71, 72, 73] with cycling as the exercise method or even psychological stress during
the cycling [74].
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The Cycling activity in our study lasted for 5 minutes where participants started with low resistance
(60W) and then gradually moved to medium (90W) and ended up performing intense cycling exercise
(120W). After the cycling activity, subjects underwent a five-minute recovery period, and data collection
stopped after the last recovery.

3.5. Sensors
Firstbeat Bodyguard 2 serves as one of the ECG devices in our experiment. This lightweight wearable

sensor for measuring cardiac signals and R-R intervals is validated in [75] and used in many studies in recent
years. Once the Firstbeat Bodyguard 2 is connected to the skin, it begins recording data automatically. The
ECG signals are processed inside the device with a sampling rate of 1000 Hz. The RR data are captured as
offline data that can be accessed later via a USB connection. The Polar H10 chest strap, an ECG chest strap
that can provide an accurate heart rate measurement at a frequency of 130 Hz, is the second ECG wearable
employed in this study. Using the Polar H10, the RR data can be recorded in real-time on a smartphone
and saved in cloud storage as well. Additionally, it is capable of transmitting its RR data to the Polar V800
sports watch and heart rate activity monitor. The third device we used in this study was a board kit produced
by PLUX Wireless Biosignals. The BITalino (r)evolution board kit includes multiple types of sensors and
actuators and measures the ECG at a speed of 1000 Hz. Acquisition of the ECG signal in BITalino kit is
performed live via Bluetooth connection with a computer. The fourth ECG device employed in this study is
Zephyr HxM. It is very similar to Polar H10 in performance and almost identical in appearance and aesthetics.
It can only transmit its data to the computer using a live Bluetooth connection. All of the ECG devices
mentioned above, except the BITalino kit, provide RR values processed inside the device instead of raw ECG
signals. Empatica E4, Samsung Gear S2, and CorSense are the PPG devices utilized in this study. Empatica
E4 has a charging time of fewer than two hours and a battery life of 32+ hours. Additionally, it can store 60
hours of data, and as well as a USB connection, it can perform real-time data transfers through Bluetooth.
The Empatica E4 is exclusively designed for research purposes and is equipped with additional sensors like
EDA, body temperature, and accelerometer. Empatica E4 uses a 64 Hz sampling rate to record the raw blood
volume pulse (BVP) signal with its PPG sensor [76]. The inter-beat interval values are calculated using
the diastolic points of the blood volume pulse, which correspond to the local minima of the BVP signals.
The second PPG device utilized in this study is Samsung Gear S2. It is a smartwatch capable of generating
IBI values from the signals captured with its PPG sensor. Gear 2’s battery provides up to three hours of
continuous use when the PPG sensor is activated for continuous recording. The third PPG sensor used in this
study is CorSense, an HRV monitor and live biofeedback training device designed to detect heart rate signals
from the fingertip. It measures heart rate variability through a PPG sensor at 500 Hz. Two of the authors
present at the lab instructed participants on how to wear the device, and participants were also advised not to
make sudden movements during data collection. Details mentioned above were only parts of the on-the-paper
device specifications advertised by the manufacturer. We will share our hands-on experiences gained with
all devices during the data recording sessions in the following chapters.

4. Data Analysis and Results
This section outlines the data and various operations we conducted to obtain the most accurate and

reliable results. Following the comprehensive description of the various devices provided in the previous
section, here in this section, we will provide a brief description of the practical experiences that we gained
during data collection with these devices. The raw data will be described, and the operations carried out for
data pre-processing. Next, we will discuss the methods for pre-processing the data before classification. Next,
we will discuss the methods and algorithms utilized to select the features, construct the pipelines, and find
the best hyperparameters. Last but not least, we will discuss the results and explain them comprehensively
from a statistical and explainable artificial intelligence perspective. Several steps of our system architecture
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are illustrated in Figure 1, starting with the preprocessing of signals and raw data on the left, it progresses
with the ML pipeline and concludes with XAI and performance metrics.

4.1. Data Labeling
Stress levels reported by an individual can be under the influence of factors such as social-desirability

bias, and high subjectivity of stress, resulting in exaggerated or understated reports [39, 77]. It has been
shown that even different genders may report their emotional states differently when faced with the same
situation [78]. Since the stressors in this study (TSST and SCWT) were induced precisely in the same way to
all participants, we decided to use the context information (known activity type) as the data labels to prevent
the probability of bias in subjective reports. Our data are accurately labeled using known context information.
This is due to the fact that data collection was carried on in the laboratory environment and two of the authors
were always present throughout all data acquisition sessions and kept detailed notes on the exact start and
end times of each session and activity type.

The experiment was designed based on different levels of mental and physical stress. We included
baseline ("low stress") and TSST+SCWT ("high stress") states. Furthermore, because the majority of the
studies only differentiate between stress and baseline states, which is not representative of the vast array of
possible nuances that define the continuum from baseline to the highest stress levels, the "medium stress"
level was also added to the experiment design. We included the recovery (relaxation) state for the "medium
stress" level. This state begins right after the "high stress" level, and it is expected to return participants
to their baseline ("low stress") levels using relaxation and breathing-based meditation. Right after a ten-
minute intense stress session, the recovery state that follows it would definitely consist of lower stress levels
than the preceding "high stress" state and higher than the participant’s baseline ("low stress") measure. We
also included physical activity ("physical stress") because the physiological response to physical activity
resembles the physiological stress response. The states of relaxation ("medium stress") and physical activity
("physical stress") are added because there must be states similar to, or likely to be confused with, "high
stress" while designing effective ML models which can classify four stress classes.

4.2. Data Preprocessing
The standard duration of short-term HRV recordings is five minutes as recommended by the North

American Society for Pacing and Electrophysiology and the task force of the European Society of Cardiology
[79]. In this study, we carried out the HRV analysis on basic and short-term durations, ten and five minutes,
respectively. Based on the rationale explained in the previous paragraph, and using timestamps collected
during the data acquisition session, we divided the raw heart rate data into five consecutive sessions,
i.e., Baseline, Stress, Recovery 1, Cycling, and Recovery 2, as shown in Figure 2. This was followed by
signal synchronization. To carry out the preprocessing step of the analysis, "Kubios HRV" version 3.4.1, a
scientifically validated HRV analysis software, was utilized [80]. Kubios HRV is a robust HRV analysis tool
used by researchers to study cardiac data and assess stress’s effect on human well-being.

The value of the data becomes even more apparent in studies that focus on human health data and where
research findings rely solely on the analysis of this data. It takes a great deal of effort to adequately prepare and
safeguard the data that has been collected with great difficulty and much time spent. One of the most crucial
requirements in a biosignal acquisition device is its ability to facilitate access to and ensure the integrity
and availability of the recorded data. Different devices store their data with different mechanisms and across
varied locations. Given that we are conducting a comparative type of research, remarking details concerning
the differences in data storage and retrieval mechanisms between the various biosensor devices as well may be
beneficial for the end-users. In different applications, the level of expectations is quite different. For instance,
when collecting data from a large number of users for research purposes or even for personal use on a daily
basis. The degree of complexity and time required to access data can be an essential criterion in selecting one
type of device over another. The fact is that for the end-users, in addition to the accuracy of measurement and
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data quality, minor differences such as cloud storage options can also make a big difference in their decision
to choose a specific type of device.

Data is simply stored in the device’s internal storage in three of the devices we utilized. These devices
are Firstbeat Bodyguard 2, Empatica E4, and Samsung Gear S2. Data cannot be saved locally and accessed
after the experiment in the rest of the devices. For accessing data recorded by BITalino (r)evolution, Polar
H10, CorSense, and Zephyr HxM, a direct wireless connection needed to be established with another device,
such as a computer or smartphone.

In order to maintain the integrity of the test conditions and data collection, we could not allow any
interruptions, modifications, or pauses during the recordings. Each session must have been continued until
the end without any intervention, immediately after it started. Therefore, in the event of a potential drop in
the wireless connection, we were unable to pause the session and resolve the issue, and the data from the
disconnected device must be considered as lost from that particular participant. However, all devices retained
stable connections, and for all 32 participants, wireless connections of all devices were maintained intact.
Working with devices with internal storage was a lot easier. Nevertheless, there were a few exceptions. For
example, Firstbeat Bodyguard 2 could not detect individual users in a situation where multiple users used
the device almost immediately after each other. In such a case, after collecting the data, we had to manually
separate the data of different users from a single file for several consecutive sessions using timestamps.
The Samsung smartwatch does not have access to IBI data by default, so we used an application developed
by Can et al. [81] to store the IBI data in the device’s internal storage. Empatica E4 is equipped with the
best storage method, in which data is both saved internally and uploaded to a free cloud space provided by
the manufacturer. Due to the fact that in studies like this, the data is genuinely invaluable, its loss can be
considered as an irreparable waste of time and resources. Therefore, we made every effort to store the data
as efficiently as possible and store it appropriately.

4.2.1. RR detection
One of the essential steps in analyzing cardiac data is to access the R-R peaks. The stored data from the

ECG and PPG sensors come in a variety of formats. Some devices, such as the BITalino (r)evolution, only
store large volumes of raw data without any internal preprocessing. Thus, further processing is required to
extract R-R intervals data from the ECG data collected from such a device. The same is true in Empatica
E4, in which we must process BVP data to obtain IBI (RR). Processing takes place inside the device in
all other devices, and the ready-to-use data is then delivered to the user. Although the latter takes much
less time to preprocess in the later stages, we are restricted to using the R-R intervals data generated by
the device. In contrast, we can use more advanced and more efficient algorithms to generate R-R data with
devices that provide raw files. As described above, in output files created by devices that only provide raw
data, no R-R intervals data is present. Therefore, we need to convert these raw data into R-R intervals using
another method. For instance, the premium version of Kubios HRV version 3.4.1 was used to perform R-
R extraction from raw files produced by BITalino (r)evolution. As a powerful tool frequently used by the
research community, Kubios HRV is considered as one of the most widely used tools for analyzing heart
health data and measuring stress’s impact on health, and well-being [80]. The other devices, in which the RR
intervals data were computed directly by the device itself, were also preprocessed by Kubios HRV, including
feature extraction and artifact correction.

4.2.2. Artifact removal
One of the most common problems in using wearable devices in daily life is the susceptibility of these

devices to noise. In the HRV related studies, users’ involuntary fast movements and environmental factors
may contribute to these noises, and different types of sensors can be affected differently depending on their
attachment locations and sensor types. These adverse effects and noise that negatively affect data quality
and clearance are known as artifacts. In order to diminish the chances of adverse effects that these artifacts
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can induce in the HRV data and stress assessment, the Task-force of the European society of cardiology
recommends that all artifacts in the R-R time series data be either corrected or removed [79].

The artifact correction algorithm available in Kubios HRV, which we applied to the data from our seven
wearables, is a validated novel method that can detect different types of artifacts with a sensitivity over
96.96% [82]. It is based on time-varying thresholds calculated from the series of succeeding RR-interval
variations paired with a beat classification method. In a previous study, we discovered that using appropriate
noise-canceling algorithms with proper thresholds led to promising results [20]. When applied to data from
PPG devices, it resulted in gaining higher correlation and agreement levels with data recorded from ECG
devices. The extent to which individual sensors are influenced by ambient noise alters the nature of their data.
Therefore, a single solution cannot be applied to all devices, and different noise reduction thresholds were
applied to the data coming from different devices. As expected, ECG devices produced the smallest amount of
artifacts of all. Some of them, such as Firstbeat Bodyguard 2, also execute internal noise-reduction methods
on their data and present both raw and corrected data in the output file. To avoid discrepancies in the type
of algorithms employed and to ensure the integrity of the operations conducted on the data, we used the raw
output in this study and performed noise reduction by Kubios HRV when needed.

The artifacts’ presence was substantially higher in smart and non-smart wristbands, all equipped with
PPG sensors. The amount of artifact in the CorSense finger sensor was lower than in other PPG devices.
Perhaps this is due to the fact that it is designed to be used for at rest measurements. In its user manual
and even during the connection establishment with the smartphone, warning messages are presented to the
user to minimize hand and finger movements. Hence, we used CorSense only in the first three sessions, and
participants were asked to remove the device from their fingers at the start of the cycle session.

4.2.3. Synchronization and windowing
When comparing signals of the same nature recorded from different sources, signal synchronization is

essential in order to ensure no time difference exists between the recordings from the reference device and
those from the comparison device. All sessions data from each one of the devices were synchronized precisely
to achieve an accurate and fair comparison. Data synchronization was performed both automatically and
manually during data preprocessing to ensure absolute alignment. We determined the time shift between the
signal from the devices using cross-correlation, which is a widely used method in similar studies [83, 84, 13].
In this method, the time-point when the maximum of cross-correlation is obtained corresponds to when the
signals are best synchronized. Besides, Kubios HRV ’s data browser environment, as shown in Figure 2,
was also used for visual inspection and manual alignment of the raw peaks. Similar studies have employed
this method as well [85, 18], and we found out that in our analysis, this method was as accurate as cross-
correlation. It should be noted that apart from the accurate time stamp provided by each device, two of the
authors were present throughout all data acquisition sessions and kept detailed notes on the exact start and
end times of each session.

HRV features were calculated with a window width of 300 seconds and a grid interval of 60 seconds for
the moving window. The selection of 300 seconds windows was due to the fact that calculating HRV features
such as the root mean squared difference of successive R-R intervals (RMSSD) requires a minimum window
of five minutes [79, 86].

4.3. Data preprocessing for classification
The importance of data preparation always precedes their analysis, and any form of neglect at this point

can negatively affect the study results. Since real-world data is not always perfect, it may contain strong
outliers and missing values. In the data preprocessing stage, we first need to replace the missing data caused
by some technical and software problems using imputation. The total amount of incomplete values in our
data was negligible, and the number of missing values due to technical problems was also insignificant.
We performed the imputation only in sporadic cases, where a small part of a particular session was lost for
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a specific device. It is a fact that the normal ranges of physiological signals of different people are not in
the same exact range [87]. Since the intensities and strengths of signals differ and the accuracy with which
different devices record the signals, this means that the features are not in the same ranges and do not have
the same weight. Using such data in machine learning can lead to misleading results. Scaling is necessary
for several ML algorithms in order to bring all features to the same level and make sure that a single number
with its large magnitude does not negatively impact the model. Therefore, as part of data preprocessing, we
need to scale the data, meaning that the data need to be transformed to fit within a specific scale. In many
ML classifiers, if features were not in an approximately standard normally distributed fashion, ML algorithms
would not behave well. One of the common requirements to resolve this issue is the process of standardization
of the data.

Except for classifiers based on decision trees, many classification algorithms are developed in line with
the hypothesis that features must obtain values near zero and that all feature values fluctuate on equivalent
scales. If features are not presented to these algorithms as a standard normally distributed set, their prediction
performance can be impaired. For example, a Support Vector Machine with RBF kernel is not able to properly
learn from feature values that exhibit much smaller variances than others, and it would be dominated only by
the features with very large variances. One of the common requirements to resolve this issue is the process
of standardizing the data. Using robust scalers is ideal if the data contains outliers. There are several kinds
of scaling algorithms, each employing its own method for estimating the parameters for shifting and scaling
the data. In this study, we tested a number of different algorithms to achieve the best results.

The StandardScaler (Z-score Standardization), MinMaxScaler (min-max normalization), and Ro-
bustScaler in scikit-learn were used in the preprocessing step. When the data is distributed in a Gaussian
manner, StandardScaler may be more appropriate. It performs the standardization by subtracting the mean
and then scaling to Unit Variance or dividing all the values by the standard deviation. MinMaxScaler subtracts
the minimum value of the feature from each individual value and then divides the result by the range, which is
the difference between the maximum and minimum values of the feature. Despite preserving the shape of the
original distribution, MinMaxScaler does not alter the information embedded in the features meaningfully.
However, it is vulnerable to the effects of outliers and cannot mitigate their influence. The MinMaxScaler
returns values between zero and one as its default range. RobustScaler applies the same scaling principle as
MinMaxScaler. However, instead of using the minimums and maximum of a feature, it uses the interquartile
range, making it more robust against outliers.

4.4. Preprocessing Pipeline
The machine learning pipeline is one of the best solutions to make ML models optimized, scalable, and

automated. It is a process that enables ML workflows to be automated by transforming and correlating data
in a model that can later be evaluated for results. ML pipeline is an iterative process involving several steps
to train a model, in which each step is repeated in an attempt to improve the results continuously. Multiple
estimators can be chained together using a pipeline. This method is helpful because there is generally a
fixed sequence of operations for data preprocessing, for instance, standardization, feature selection, and
classification.

Furthermore, pipelines ensure that the same samples are used to train transformers and predictors in
cross-validation, thus preventing statistics from the test data from leaking into the trained model. Information
leakage from test data to a trained model may lead to unrealistic and overly optimistic results that are far from
the truth.

4.4.1. Feature selection
Feature selection is a crucial concept that can significantly impact a model’s performance by removing

irrelevant features. In order to lessen the complexity and reduce the time required for the execution of
computations, which has been greatly increased due to the utilization of Nested cross-validation, feature
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Table 3
List of the features selected by Recursive Feature Elimination with cross-validation (RFECV)*

Feature name Feature type Description
Time-domain Frequency-domain Nonlinear

Mean RR (ms) ✓ The mean of RR intervals

STD RR (ms) ✓ Standard deviation of RR intervals

RMSSD (ms) ✓ Square root of the mean squared differences between successive RR intervals

HRVti ✓ The integral of the RRI histogram divided by the height of the histogram

TINN (ms) ✓ Baseline width of the RR interval histogram

VLF power (log) ✓ Absolute powers of Very Low-Frequency Power of HRV

HF power (log) ✓ Absolute powers of High-Frequency Power of HRV

LF/HF ratio ✓ Ratio between LF and HF band powers

SD2/SD1 ✓ Ratio between SD2 and SD1

ApEn ✓ Approximate Entropy

SampEn ✓ Sample Entropy

HR Max - HR Min ✓ Difference of the Minimum and Maximum HR

Features in this table are not ordered by importance.

selection becomes one of the essential steps in constructing our stress detection model. Following the
selection of a set of popular feature selection algorithms, in order to achieve the best results, a preliminary
comparison was made between the impact of using each of them in model accuracy. To make a fair
comparison, it is essential that all conditions be identical, especially the quantity and the nature of the data
being compared. Considering that the primary objective of this study is to compare the accuracy of stress
detection in different devices using the same models, all comparison conditions should be the same for all
devices. The final comparison results will not be fair if the number and type of the features selected vary
between each device. Following the initial implementations of different feature selection algorithms on all
training data sets, we found out that the set of features selected by the Recursive Feature Elimination with
Cross-Validation (RFECV) led to the best classification results. In addition, according to RFECV, the number
of features selected to achieve the best classification results was between 12 and 15 out of a total of 25 features
for different devices, as seen in Figure 3a, and Table 3.

Ideally, it is better to select the features inside the ML pipeline. However, running RFECV inside the
pipeline could lead to the selection of very distinct sets of features for every model. Therefore, in order to
keep the comparison conditions equal in terms of the number and the type of features selected for all devices,
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Figure 4: Hyperparameter optimization in SVM for two different devices

the selection of 12 features was performed outside the pipeline by Recursive Feature Elimination (RFE). The
decision for choosing RFE with 12 features as the feature selection algorithms for all models was made after
comparing the classification accuracy using several different algorithms with sets of 12 and 15, as depicted
in Figure 3b.

4.4.2. Grid Search
Grid search is one of the most efficient ways for testing several hyperparameter settings and finding

the model’s optimal hyperparameters. However, it is computationally expensive when the number of
combinations in the search space is very high. It becomes even more problematic when dealing with
multiple estimators, each requiring different hyperparameter optimization. With nested cross-validation, the
computation time increases even further. Most studies use random search for tuning the hyperparameters
since it is less expensive. However, we did not want to compromise the quality and reliability of our results for
achieving quick results and much higher speeds of the operations. Figure 4 illustrates the effects of different
combinations of hyperparameters on the SVM classifier’s output accuracy for two different devices. Despite
the overall similarity in both schemes, contour areas are marginally different, and even these slight differences
can result in significant changes in the final accuracies. Therefore, by defining device-specific personalized
ranges for the parameter grids of each model, we are more likely to achieve the most optimized results for
each device. In other words, it is preferable to configure the hyperparameters for each device separately due
to the fact that a general model that covers all devices may not show the maximum performance of some
of the devices. It should be noted that certain unwritten rules must be taken into account for defining the
parameter grid ranges. For instance, using an overly broad range that can significantly increase the chances
of wasting time and resources with not much gain in return, and also using specific ranges of values that can
cause overfitting must be strictly avoided.

4.4.3. Nested Cross-validation
Using the k-fold cross-validation method, we can estimate how well ML models perform when it makes

predictions on data not seen during training. Both hyperparameter optimization and model comparison and
selection can be achieved using this procedure. However, in the process of tuning the hyperparameters and
evaluating model performance, cross-validation uses the same set of data. This can result in data leakage and
lead to unintended overfitting of the model, and overly optimistic biased results [88]. As we have already
emphasized the importance of preventing data leakage and ensuring the fairness and reliability of the results,
necessary steps had to be taken accordingly. Data leakage problem and the optimistic bias caused by it can
be avoided by nesting the hyperparameter optimization procedure beneath the model selection [89]. This
procedure is known as nested cross-validation. A nested cross-validation strategy allows for a more robust
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and generalized assessment of model performance [90]. It consists of two nested loops, the inner cross-
validation loop responsible for hyperparameter optimization and model selection is nested within the outer
CV loop responsible for estimating generalization error. The inner loop is used for GridSearchCV object and
the cross_val_score object uses the outer loops.

4.5. Classifier selection
Based on initial experimentation with eight different algorithms, we chose four that showed the most

promising results in stratified cross-validation. The first classifier used in this study for stress classification
is the Support Vector Machine (SVM) with the radial basis function (RBF) kernel. SVMs are among the
most reliable methods in supervised learning algorithms. In the SVM classifier, a point is plotted in the
n-dimensional space (n = number of features) for each data item, with each feature’s value representing a
value of a specific coordinate. As well as being effective in high-dimensional settings, SVMs are versatile
since they allow different Kernel functions to be customized for the decision function. SVMs perform best
when C and gamma are chosen appropriately. In addition to the utilization of GridSearchCV for choosing the
best C and gamma values, we carefully examined CV scores and selected the search space values to prevent
overfitting and efficiently combine the parameters. The second classifier selected to be employed A random
forest classifier fits many decision tree classifiers on different subsamples of the dataset and combines the
averages of the results in order to prevent overfitting and improve prediction accuracy, and the random forest
output is the class chosen by the majority of trees [91, 92]. As the name suggests, randomness is the prime
feature of Random Forests. The concept of randomness was introduced to increase the generalization as a
successful attempt to address the problem of decision trees tending to overfit. Randomization is achieved by
training each tree solely on a random subspace of samples with a random subset of features pulled from the
training set (with replacement).

An additional randomization step results in Extremely Randomized Tree (ExtraTree), which is the third
classifier we have employed in this study. Being ensembles of decision trees, Both RF and ExtraTree are
based on individual decision trees. However, they differ primarily in two ways. In the ExtraTree classifier, the
whole learning sample is used to train the tree, and no replacement is done, as opposed to RF that bootstraps
the samples. Moreover, instead of optimum splits, which are commonly done based on the Gini impurity
or information gain in RF, in the ExtraTree, a randomized top-down split is used [93]. Gradient boosting
is a powerful ML method built as an ensemble of weak learning models. This method relies on the idea of
sequentially building models, and those models must try to reduce the errors of the preceding model [94].
Individual decision trees are the weak learners in gradient boosting decision trees. All individual decision
trees are connected in series, and each tree attempts to minimize the error of the preceding one. Light Gradient
Boosting Machine (LightGBM) is the fourth algorithm used in our study. It is an open-source gradient
boosting framework that increases the model speed and efficiency and reduces its memory consumption
by following a leaf-wise tree growth approach and utilization of two additional novel methods, One-side
sampling and exclusive feature bundling [94, 95]. Faster training speed, and lower resource requirements,
make LightGBM one of the best choices when frequent retraining or fast evaluation of large datasets are
required.

The primary purpose of this study is the assessment and comparison of stress detection performance
between different wearable devices using supervised ML algorithms. At first, we decided to perform the
study only with SVM and RF. However, after observing promising results with RF, we decided to add two
additional more robust decision tree-based methods to the study.

4.5.1. Reproducible splits
Considering that this study was conducted to compare the performance of different devices on stress

detection accuracy, all comparisons are expected to be fair. As mentioned earlier, a fair comparison requires
identical conditions between all models. A key component in fulfilling this fairness was to keep the
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Table 4
Classification results using four algorithms for all seven wearable devices

SVM Random Forest ExtraTree LightGBM

Device Session Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

Firstbeat
Bodyguard 2

Baseline 80.73 78.72 79.71 83.58 79.43 81.45 86.57 82.27 84.36 82.85 80.50 81.65
Stress 86.55 84.40 85.46 82.13 84.75 83.42 83.28 88.30 85.71 81.44 84.04 82.72
Relaxation 73.27 79.48 76.25 79.30 81.11 80.19 81.55 82.08 81.82 77.42 78.18 77.80
Cycling 94.33 86.93 90.48 90.73 89.54 90.13 92.57 89.54 91.03 93.96 91.50 92.72

CV Accuracy 79.40% +/- 3.28 80.96% +/- 1.86 83.30% +/- 2.26 80.67% +/- 2.30
Test Accuracy 79.69% 82.81% 86.72% 82.03%

Polar H10

Baseline 78.80 79.08 78.94 80.57 80.85 80.71 83.88 81.21 82.52 82.26 77.30 79.71
Stress 85.56 81.91 83.70 84.23 83.33 83.78 84.25 87.23 85.71 81.23 84.40 82.78
Relaxation 75.08 80.46 77.67 78.90 79.15 79.02 84.04 84.04 84.04 79.05 81.11 80.06
Cycling 99.30 92.16 95.59 93.51 94.12 93.81 96.05 95.42 95.74 97.35 96.08 96.71

CV Accuracy 80.47% +/- 2.06 81.84% +/- 2.23 84.47% +/- 1.89 82.23% +/- 3.33
Test Accuracy 80.86% 84.38% 84.38% 83.98%

Zephyr HxM

Baseline 79.41 76.60 77.98 83.21 79.08 81.09 85.82 83.69 84.74 82.80 81.91 82.35
Stress 86.14 81.56 83.79 84.01 87.59 85.76 86.71 87.94 87.32 85.46 85.46 85.46
Relaxation 70.99 82.08 76.13 81.43 81.43 81.43 85.25 84.69 84.97 80.07 79.80 79.93
Cycling 96.92 82.35 89.05 94.19 95.42 94.81 93.04 96.08 94.53 92.36 94.77 93.55

CV Accuracy 80.27% +/- 2.51 83.50% +/- 2.32 84.47% +/- 1.87 82.13% +/- 0.87
Test Accuracy 81.25% 84.38% 87.89% 84.38%

BITalino

Baseline 74.44 80.16 77.19 81.32 89.88 85.38 86.79 93.12 89.84 82.54 84.21 83.37
Stress 83.40 80.78 82.07 85.89 83.53 84.69 91.09 88.24 89.64 86.06 84.71 85.38
Relaxation 78.10 76.98 77.54 87.21 80.94 83.96 88.52 85.97 87.23 79.93 80.22 80.07
Cycling 93.94 89.21 91.51 92.14 92.81 92.47 94.89 93.53 94.20 91.97 90.65 91.30

CV Accuracy 79.00% +/- 2.08 84.88% +/- 2.94 87.16% +/- 2.40 84.01% +/- 2.13
Test Accuracy 80.43% 84.78% 88.26% 85.65%

Empatica E4

Baseline 78.97 75.89 77.40 82.35 79.43 80.87 84.36 82.27 83.30 78.82 80.50 79.65
Stress 81.25 78.37 79.78 82.44 81.56 82.00 79.66 83.33 81.46 82.48 80.14 81.29
Relaxation 68.34 75.24 71.63 76.71 80.46 78.54 79.80 79.80 79.80 77.24 78.50 77.87
Cycling 92.31 86.27 89.19 94.70 93.46 94.08 95.24 91.50 93.33 93.33 91.50 92.41

CV Accuracy 75.78% +/- 0.82 80.28% +/- 3.45 81.35% +/- 3.11 79.88% +/- 2.67
Test Accuracy 81.25% 83.98% 82.42% 81.25%

Samsung Gear S2

Baseline 77.06 76.24 76.65 82.56 82.27 82.42 85.47 87.59 86.51 81.36 80.50 80.93
Stress 78.76 72.34 75.42 83.15 82.27 82.71 86.13 83.69 84.89 78.32 79.43 78.87
Relaxation 69.54 78.83 73.89 80.00 84.69 82.28 82.54 84.69 83.60 79.10 80.13 79.61
Cycling 87.68 79.08 83.16 94.24 85.62 89.73 91.10 86.93 88.96 89.86 86.93 88.37

CV Accuracy 75.30% +/- 2.08 79.40% +/- 1.93 83.01% +/- 0.92 78.12% +/- 2.80
Test Accuracy 80.08% 83.59% 83.98% 79.30%

CorSense

Baseline 78.86 83.63 81.17 79.74 86.83 83.13 80.72 87.90 84.16 81.19 87.54 84.25
Stress 81.82 83.27 82.54 81.72 84.34 83.01 83.28 86.83 85.02 85.36 85.05 85.20
Relaxation 81.06 69.48 74.83 80.83 62.99 70.80 85.47 64.94 73.80 79.70 68.83 73.87

CV Accuracy 79.74% +/- 3.63 79.05% +/- 3.25 81.98% +/- 3.47 80.17% +/- 3.34
Test Accuracy 84.44% 82.22% 80.56% 80.56%

random_state equal in all models. To accomplish this, we used an identical random_state value globally
throughout all operations, from primary data shuffling to splitting the data to training and test sets, as well as
the randomness of internal operations of each classifier (e.g., for generation of pseudo-random number for
shuffling the data in support vector machine, or for controlling the randomness of the bootstrapping of the
samples in use while building the trees in random forest classifier).

4.6. Classification results
It is common in the literature that many studies only report the test accuracy results. However, there

are studies in which decisions must be taken regarding issuing intervention instructions or even a simple
notification. When such decision-making is directly related to human health, which is "stress" in our case, it is
essential to know the model performance in terms of true/false positives and negative reports as well. For this
reason, we have reported several metrics, including accuracy, precision, recall, and F1 score. Furthermore,
results of the cross-validation accuracy on training data are also reported. Table 4 represents the classification
results. When we do not have a large dataset, it is feasible to evade splitting the data into train and test and
only perform cross-validation on the whole data [96]. However, as already described in 4.4.3, by using the
regular cross-validation, the same dataset will likely be used to tune and select a model, which will lead to a
biased assessment of model performance.
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In order to minimize this bias, model selection should be treated as an integral element of the model fitting
procedure, and independent trials should be conducted to avoid selection bias and to exhibit best practices.
For this reason, a nested CV is preferred over a non-nested CV to overcome the performance evaluation bias
[96]. In the case of using nested cross-validation, applying it to the whole data would be sufficient to report an
unbiased estimation of the model performance. Nevertheless, we still retained parts of the data as our holdout
test set. This was done to observe the performance of all of our 28 models faced with completely new data that
did not exist during the training process and to eliminate any uncertainty regarding the validity of the reported
results. These test sets were utterly intact from the onset and had no role neither in model selection and tuning
nor in feature selection. Split of our training and testing data in a stratified manner consisted of eighty and
twenty percent of the total data, respectively. It should be noted that by the experimental implementations of
the nested cross-validation on the whole data, we could achieve an average of three to six percent increased
performance in all models. This was due to the fact that in that case, since no data was reserved for the test,
consequently, more data was available for training.

Since this study is primarily devoted to the comparison of the stress detection performance across multiple
wearables, we will not be focusing on the models and comparing the algorithms in great detail. However,
a cursory glance at Table 4 suggests that overall, ExtraTree shows promising results and is proving to be
more effective than the other algorithms. On the other hand, SVM appears to be the least effective of
the four classifiers in this study. Further visual inspection of the table indicates that the Random Forest
and LightGBM algorithms appear to have performed almost equally well as the ExtraTree algorithm. As
described in 4.5, since the ExtraTree can be considered as an enhanced version of Random Forest, in order
to avoid increasing the number of detailed comparisons, we will continue this section by closer inspection
of device performances with two algorithms, namely LightGBM, and ExtraTree classifiers. As expected,
wearables equipped with ECG sensors that can record raw data with higher quality [20] maintained their
superiority in stress classification applications as well. In the ExtraTree classifier, the average test accuracy
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Figure 5: Normalized Confusion Matrix computed using four classifiers for all devices
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Figure 6: Kruskal-Wallis comparison followed by Dunn’s test for all devices with the LightGBM classifier

of ECG and PPG wearables is 86.81 and 82.32%, respectively. Similarly, for LightGBM, it is 84.01% and
80.37%. These results indicate that ECG wearables performed 5.45% and 4.52% better than PPG wearables
with ExtraTree and LightGBM models. In order to examine the results of the different classes in more detail,
the Precision, Recall, and F1 Scores for each class are also accessible using this table. These results are
obtained by averaging the values of these metrics obtained from the outer folds of the nested cross-validation
and are a valid criterion for presenting the performance of models on a large portion of the data. The class-
wise comparison of these metrics in the top two algorithms shows that almost all devices score above 80%
on all three metrics. We observe excellent results in the physical stress class (Cycling). It proves that the
magnitudes of changes in the HRV features while performing rigorous physical activity are so intense that
nearly all metrics for this class achieve scores above 90%. It was anticipated that all models would face
difficulty choosing between recovery and baseline classes because of the remarkable similarity. However,
despite the fact that compared to other classes, we can see slightly lower performances in these two classes
in all models, our two top-performing models classify these two classes with excellent scores.

The results in Table 4 provide a brief overview of the overall differences between our seven devices.
Moreover, the normalized confusion matrix for all models is depicted in Figure 5. However, we need to
take further steps to make a valid judgment and a final statement. Since comparing all of the 28 models
with at least five metrics in each can cause unnecessary confusion and create a new perplexing problem, we
make a statistical comparison of all the metrics of the two top algorithms cumulatively. Following Shapiro-
Wilk and Levene’s tests to examine the normality of distributions and equality of variances in our results,
since they did not meet the assumptions of normality, we decided to utilize the Kruskal-Wallis test, a non-
parametric equivalent of one-way ANOVA [97, 98]. As seen in Figure 6a, in the LightGBM models, Kruskal-
Wallis showed a significant main effect (p = 0.009). Hence we continued with posthoc analysis. For this,
pairwise comparisons were performed with Dunn’s test, and p-value adjustment following multiple pairwise
comparisons was carried out using Holm’s method [99]. For the results obtained with LightGBM for all
classes, posthoc analysis showed significant differences only between BITalino (r)evolution and Samsung
Gear S2 wearables (p = 0.028). A similar result was repeated in the stress class (p = 0.024). Simply put,
using LightGBM, the only statistically significant difference exists between the ECG device with best results
(BITalino (r)evolution) and the PPG wearable with the lowest results (Samsung Gear S2), and there exists no
statistically significant difference between other devices. Repeating the same statistical approach to analyze
the results obtained from the ExtraTree classifier results in more conservative results. Here, in the all-classes
comparison, there are significant differences between BITalino (r)evolution and two other PPG devices
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(Empatica E4 and CorSense, and between Zephyr HxM and Empatica E4 as well. In the stress class, similar
to the LightGBM, there is only a statistically significant difference between the two ECG and PPG devices
(BITalino (r)evolution, and the Empatica E4).

4.6.1. Effects of Multimodality
Wearable devices in this study showed great potential for producing reliable results for stress detection

and classification, especially those equipped with ECG sensors. However, up until this point, all comparisons
in this study were made solely based on HRV data calculated from cardiac signals. Considering the fact
that HRV is a valid criterion for detecting psychophysiological changes, a critical question to address is
whether collecting the data solely from a single modality (cardiac signals in our case) would be sufficient for
stress detection? Since user expectations from different applications may differ, an appropriate answer can
be that it would be best for the end-user to decide on this issue, keeping both the pros and cons of utilizing
multimodality in mind. For instance, by employing multimodality, depending on the availability of multiple
sensors on a device, we will be limited to using a particular type of device or even a combination of two or
more devices simultaneously. In addition to bringing unobtrusiveness, this will lead to extra computational
load and higher energy consumption. In this section, we will investigate the effect of multimodality by
comparing the classification results with and without multimodality.

Although the idea of using Electrodermal Activity (EDA) in psychological research has been around for
a long time [100], it is still among the top biosensing measures employed in the subject area of affective
computing using ubiquitous and wearable devices [12, 101]. Electrodermal activity (EDA) is an umbrella
term for Galvanic skin response (GSR). Skin sweat gland activity increases following the occurrence of
high arousal in the sympathetic branch of the autonomic nervous system (ANS). This increased sweat gland
activity increases the skin conductance. Therefore, skin conductance acts as a measure of sympathetic and
emotional responses. Among all devices employed in this study, only the Empatica E4 is equipped with
an EDA sensor capable of capturing EDA biosignals at a rate of 4 Hz. To bring another modality into
the study, we first performed the necessary preprocessing and feature extraction on this EDA data using
NeuroKit2, which is a Python toolbox designed for neurophysiological biosignal processing [102]. As seen
in Figure 7, Tonic and Phasic components of the EDA signals and their corresponding features were extracted
using NeuroKit2, and a closer look at the EDA data from five subjects is demonstrated at the bottom of the

Figure 7: Sample of Electrodermal Activity for five participants
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Table 5
Classification results using four algorithms for the Empatica E4 with and without EDA data

SVM Random Forest ExtraTree LightGBM

Device Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Precisio Recall F1-Score

Empatica E4

Baseline 78.97 75.89 77.40 82.35 79.43 80.87 84.36 82.27 83.30 78.82 80.50 79.65
Relaxation 68.34 75.24 71.63 76.71 80.46 78.54 79.80 79.80 79.80 77.24 78.50 77.87
Stress 81.25 78.37 79.78 82.44 81.56 82.00 79.66 83.33 81.46 82.48 80.14 81.29
Cycling 92.31 86.27 89.19 94.70 93.46 94.08 95.24 91.50 93.33 93.33 91.50 92.41

CV Accuracy 75.78% +/- 0.82 80.28% +/- 3.45 81.35% +/- 3.11 79.88% +/- 2.67
Test Accuracy 81.25% 83.98% 82.42% 81.25%

Empatica E4 + EDA

Baseline 76.35 80.14 78.20 83.99 83.69 83.84 85.05 84.75 84.90 85.92 86.52 86.22
Relaxation 74.92 73.94 74.43 80.19 81.76 80.97 82.79 83.06 82.93 81.41 82.74 82.07
Stress 79.20 76.95 78.06 86.28 84.75 85.51 86.11 87.94 87.02 86.45 83.69 85.05
Cycling 91.39 90.20 90.79 93.46 93.46 93.46 95.24 91.50 93.33 90.97 92.16 91.56

CV Accuracy 77.15% +/- 1.90 83.40% +/- 3.46 84.67% +/- 3.86 83.40% +/- 4.23
Test Accuracy 82.81% 89.84% 90.62% 88.28%

same figure. Based on the results reported in Table 5, and displayed in Figure 8, we achieved a significant
improvement in classification results with the addition of a single additional modality (EDA). The Empatica
E4 (with EDA) shows the highest accuracy of all devices. This record-breaking increase includes all models,
with a staggering 90.62% accuracy with the ExtraTree algorithm. These results indicate that a wearable with
a single type of sensor (ECG), regardless of how well it records high-quality HRV data and leads to high
classification accuracy, is still not a silver bullet. Moreover, with respect to the fact that HRV is a robust
criterion for detecting stress, bringing a second type of sensor to the table, and exploiting multimodality can
lead to much better results.

4.7. Comparison with the literature
Recently, several studies have been published to explore the potential of commercial wearables in

detecting different types of stress. We listed the prominent ones in Table 6. As seen in this table, 2-class
stress detection results (stress vs. baseline) are above 90% in laboratory environments. Our study obtained a
maximum of 90.6% accuracy in four class classification (stress, baseline, relaxation, and physical activity),
which is clearly a more difficult task. However, different studies in the literature have been applying various
methods to the unique datasets collected for their study. Therefore, unless the same data sets are used, one

Polar H10

Firstbeat 
Bodyguard 2

       BITalino

                  Zephyr HxMEmpatica E4 + EDA

Samsung 
Gear S2

CorSense        

70%

75%

80%

85%

90%

SVM ExtraTree LightGBM Random Forest 

Empatica E4

(a) Accuracy performance comparison

Polar H10

       BITalino

                  Zephyr HxMEmpatica E4 + EDA

CorSense        

70%

75%

80%

85%

90%

SVM ExtraTree LightGBM Random Forest

Empatica E4

Samsung 
Gear S2

Firstbeat 
Bodyguard 2

(b) F1-Score performance comparison

Figure 8: Comparison of Test Accuracy and F1-Score results using four classification algorithms on data from
seven devices

N. Chalabianloo et al.: Preprint submitted to Elsevier Page 20 of 30



Table 6
Recent Stress-related studies using physiological signals.

Article Biosignal Algorithm Number of Classes Accuracy* Environment

Daily Life Laboratory

[103] (2021) HRV KNN, SVM, MLP, RF, XGB 2 (Baseline, Stress) 76 ✓

[104] (2021) HRV KNN, SVM, MLP, RF, GB 2 (Stress, no Stress) 80 ✓

[31] (2021) EDA SVM 4 (Baseline, and three Stress stages) 75 ✓

[105] (2020) HRV, EDA, EMG, ACC, RESP SVM, KNN, Adaboost, FNN 3 (Amusement, Baseline, Stress) 84.32 ✓

[106] (2020) EDA, HRV RF 2 (Stress, no Stress) 92 ✓

[107] (2019) HRV, EDA SVM, RF 2 (Baseline, Stress) 77 ✓

[29] (2019) HRV, EDA, ACC, ST LDA, QDA, RF 2 (Baseline, Stress) 87.4 ✓

[30] (2018) HRV, EDA and ST SVM, C4.5, kNN, RF, NaiveBayes 2 (Baseline, Stress) 99.85 ✓

[81] (2019) HRV, EDA, ACC MLP, RF, KNN, SVM 3 (Baseline, Cognitive Load, Stress) 92.15 ✓

[108] (2017) HRV, EDA, RESP, SPO2 SVM, KNN 2 (Baseline, Stress) 95.8 ✓

[109] (2016) EEG SVM 4 (Neutral, Low, Medium, High Stress) 89 ✓

Current study HRV, EDA ExtraTree, LightGBM, RF, SVM 4 (Baseline, Stress, Relaxation, Cycling) 90.6 ✓

Check mark symbols (✓) are used to indicate "Yes".

KNN: k-nearest neighbors, SVM: Support vector machine, MLP: Multilayer perceptron, RF: Random forest, XGB: XGBoost, GB: Gradient boosting,

FNN: Feedforward Neural Network, ACC: Accelerometer, EMG: Electromyography, RESP: Respiration, EEG: Electroencephalogram

* Best achieved Accuracy

could not infer the success of a technique over the others. These results were presented to provide the reader
with a sense of the performance of the stress detection studies in different environments. Having said that, it
could be stated that the proposed results are aligned with the best-reported results in the literature.

4.8. Model explainability
In many applications, understanding why a model reaches a particular prediction is just as essential as its

accuracy. Nowadays, it is often possible to achieve high accuracies with very complex models. However,
the model behavior and identifying the factors involved in the outcome becomes very hard to interpret
[110]. The ever-growing application of black-box machine learning models leads to the crucial need for
justifying and interpreting their decisions. This challenge is a significant barrier to ML adoption in critical
applications, such as healthcare. Despite the fact that ML models have made it considerably easier to predict
the feature health conditions of an individual, they still fall short in interpretability [111]. Identifying and
interpreting which features contribute most to a particular prediction in different models can be very useful,
especially if such analysis can be applied to specific classes and individuals. Therefore, model interpretability
can become crucial in ML problems related to early detection and intervention in human health [112]. An
essential aspect of investigating the models’ explainability in the context of this study is to determine whether
the same features from devices with different sensing technologies (ECG vs. PPG) have similar effects on
model outputs and classification results. Lime, Dalex, and SHAP are examples of analytical tools designed
in the area of Explainable Artificial Intelligence (XAI) [113, 114, 110]. These tools have evolved for model
interpretation and demystifying black-box models over the last few years and are becoming more popular
each day.

In this study, we utilize SHapley Additive exPlanations (SHAP) for explaining our models. SHAP is
an open-source game-theoretic approach to explain the results of ML models based on game theory. It
can probably be considered as state-of-the-art in XAI. Shapley value is a term used in game theory. It is
a solution concept named in honor of Nobel Prize-winning economist Lloyd Shapley. Derived from the
Shapley values of the original model’s conditional expectation function, SHAP values are unified measures
of feature importance [110]. Application of SHAP analysis to our data and our model outputs results in the
production of matrices containing the SHAP values. These matrices are in the same dimension as the original
data matrix. To provide a better comprehension of the subject for the readers who may not be familiar with the
game theory and the above concepts, it would be beneficial to provide a brief example for the whole concept
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Figure 9: Feature influences with SHAP on all classes, with two models using the Firstbeat Bodyguard 2 wearable
device

and extend it to its application in this study [115]. The game theory requires at least two elements: a game
and its players. Assuming we have a classification model, the "game" would be responsible for producing the
model’s results. In this example, the "players" have the role of features in our model. Shapley quantifies each
player’s contribution to the game, while SHAP quantifies each feature’s contribution to the prediction made
by the model. For instance, in our case, SHAP values can show the effects of the RMSSD feature on each
class, and this interpretation can be performed either globally or locally. For the global interpretation, SHAP
can show how much each feature impacts the prediction of each class, either negatively or positively. Unlike
the traditional feature importance plot, SHAP can generate plots that can demonstrate each feature’s positive
or negative impacts on the target. In the local interpretation, each observation receives its own respective set
of SHAP values. By this means, interpretation of individual subjects becomes possible. This is a significant
increase in transparency compared to the conventional feature importance algorithms that only display the
results of the whole population.

Using stacked bar plots, Figure 9 shows the mean of SHAP values for all features. This is equivalent
to the average impact of each feature on the output of two of the top-performing models, ExtraTree, and
LightGBM, respectively. Data for these two models came from the Firstbeat Bodyguard 2 device. As seen in
both plots, the time-domain feature, Mean RR, shows the highest impact on the overall output of the model
in both models. While the nonlinear feature ApEn is in the second place with the ExtraTree classifier, it is in
the third place using LightGBM, and basically, positions of the second and third-ranked features in the two
models are in the opposite order. Although we can see changes in several steps in the ranking order of some
of the features, from the top of the list to its bottom, there is a high overall similarity between the importance
of the features in both models. From a further extensive and class-wise perspective, we can interpret these
plots as follows. While in the ExtraTree classifier, Mean RR influences the prediction of each class in almost
the same magnitude, in LightGBM, this influence is doubled for the Baseline and Cycling sessions. ApEn has
the most significant influence on predicting the Stress class in both models, and the frequency-domain feature
LF/HF ratio has little to no impact on predicting the physical stress (Cycling) session. As a final example for
Figure 9, the effect of the SampEn nonlinear feature on the estimation of the Stress class is almost twice the
sum of its influences on the other three classes. In summary, these plots allow us to gain an understanding
of what our machine learning model has learned from the features. These analyses demonstrate that two
different models behave very similarly on the same device and that the identical features in two different
models have more or less the same effects on the model output. Nonetheless, there are also some differences
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Figure 10: Feature influences with SHAP on all classes, with ExtraTree classifier using the ECG, PPG, and PPG
+ EDA wearable devices

in the order of importance of the features in the overall output of the two models and the extent to which they
influence these two models in choosing a particular class as an output. This shows that regardless of the type
of device used, in-depth interpretation of the stress level measurement and the importance of the features
involved can be strongly influenced by the type of the employed model.

In Figure 10, we present a different analogy, comparing two devices with a single classifier. In this
comparison, we have two devices of type ECG and PPG, in Figures 10a, and 10b, respectively. In Figure
10c, we present the effect of multimodality on the model’s output. There are differences in the order of
feature impact rankings in all three plots. The amount of differences seen in 10a are naturally greater due to
the presence of EDA features. However, a similar pattern can be seen both in the order of the features and
in the influence of individual features on the model’s output. For example, ApEn has the greatest impact on
stress class prediction in all three models, and frequency-domain features are in the last of the rankings. This
shows that even similar models behave differently with devices of different types (ECG, PPG, and EDA),
and feature importances show higher differences as well.

In order to examine the effects of features on each class more precisely, it is necessary to zoom in to a
more detailed view. Figure 11 shows horizontal scatter plots for each feature with different color gradients.
Feature importances and feature effects are aggregated in this class-wise summary plot. Each point represents
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Figure 11: Feature influences with SHAP for the Stress class, with ExtraTree classifier
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Figure 12: Effects of using different types of scalings in model output

a Shapley value for a feature and an observation on this scatter plot. While features are positioned on the
y-axis, Shapley values of their instances are positioned on the x-axis. For better visualization, overlapping
points are jittered. The Intensity and gradient of the colors for each instance indicate the feature values from
low (blue) to high (pink), as shown in the color bar on the left side of the plots. We already examined the
behavior of ApEn in Figure 10. ApEn had the most impact on predicting the stress class in both devices. We
can now investigate the same behavior in a more detailed and class-wise perspective, using Figure 11. Upon
close investigation of Figure 11 we can realize that with higher (more pink) values of ApEn, the model is
more likely to classify the class as stress, whereas with lower (more blue) values, it is less likely to do so.
In other words, a high (more pink dots) level of ApEn has a high and positive (more towards the right dots)
effect on the class being predicted as stress. In a similar fashion, we can say that (HR Max - HR Min) is
negatively correlated with the class being predicted as stress.

In another example of using SHAP to gain a deeper understanding of the results from various models, we
examined the effects of different data scaling methods on the outputs obtained from different models. As seen
in Figure 12, The Random Forest classifier applied to the same sets of data scaled with two distinct types of
scalers produces almost identical results in all devices. There are no visible differences in the classification
results, features importances, or their impact on the classification result. Although not shown in this figure,
the ExtraTree classifier is no different and follows the same behavior as well. However, as seen in Figures 12c
and 12d, the LightGBM classifier shows different results for the data scaled with different types of scalers.
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This is due to the fact that the MinMaxScaler is exceptionally sensitive to the presence of outliers. However,
in the RobustScaler procedure, scaling and centering calculations are based on percentiles, and as a result,
outliers of a considerable magnitude do not affect the outcome much. Since boosting methods make trees
fix the errors made by their predecessors and build each tree on the residuals of previous trees, outliers will
have a much larger residual than non-outliers, making LightGBM and other boosting methods, in general,
more sensitive to outliers. This shows that such behavior may be caused by combining MinMaxScaler with a
boosting algorithm. In this case, it would be sufficient to minimize the effects of outliers as much as possible,
for example, by using a scaling method that is robust to outliers. This shows that some models may also be
sensitive to certain preprocessing steps. In such a case, even if accurate classification results were obtained,
detailed analysis and study of the effects of different features based on this model will not be very reliable.
Prior to implementing ML models, it is necessary to be aware of their possible weaknesses, shortcomings,
and compatibilities to avoid any factors that may lead to undesirable predictions by a particular algorithm.
All these details have been carefully taken into account in this study, and appropriate measures have been
taken to overcome all potential challenges.

In line with the primary objective of this study to compare the performance of wearable devices in stress
measurement and to achieve a more robust conclusion, we employed SHAP for model explainability. By
doing so, we were able to gauge the performance of the devices more accurately and make much more fair
decisions when choosing between them. Furthermore, the purpose of using SHAP for the explainability of
our models was to analyze our results and demonstrate the hidden potentials XAI can offer to studies related
to affective computing. The highly functional and unique capabilities of SHAP in examining the factors
involved in model decision-making and the comprehensiveness of SHAP values as being unified measures
of feature importance can provide new opportunities for researchers. Using SHAP, researchers can scrutinize
the factors involved in the occurrence, increase, or decrease of mental stress in the general study population
or even in a particular individual.

5. Conclusion
A total of seven wearable sensors were selected for stress detection in four classes, namely Baseline,

Stress, Relaxation, and Cycling. With four traditional machine learning models, precise tunings were carried
out to ensure unbiased results. Results showed that statistically significant differences exist between some of
the devices in the classification performance. It is a fact that a statistically significant difference may prove
useful for researchers who want to achieve the highest performance in stress level measurement applications
and wish to gain insight into the importance and influences of different features. Nonetheless, as far as
the end-user is concerned, all devices deliver very similar results, and there is not much difference in the
stress measurement performance for the end-user. Consequently, they are all acceptable for daily use. As
shown in the previous study [20], the end-user’s ultimate decision may be influenced more by wearability
and unobtrusiveness than by seemingly minor differences in performance.

As part of this study, we also used SHAP to make our machine learning models explainable. Using SHAP,
we showed that there could be differences between models in the way they prefer one class over another. This
was because there were differences in the amount of influences that features had on model output in different
models. In some respects, this proves that the effects of HRV features on stress reported in similar studies
must be taken with a grain of salt. In addition, we also examined the effect of different preprocessing methods
on the output of some models.

Our results showed that ECG wearables demonstrate slightly better performance in all our sessions.
Nonetheless, since the ultimate goal of this article is to study the comparison of different devices in the
context of stress detection; thus, readers might expect specific devices to be announced as the winner of this
analysis. However, we must be cautious in announcing the study’s findings in order to avoid creating a biased
opinion that could lead to a far-fetched theory. It would be possible to render a final verdict on the superiority
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of a particular device if, under all conditions, very consistent and similar results were obtained. However,
this was not the case. We found that the choice of classifier, and even differences in the data normalization
and scaling methods, can influence the outcome of a model and change the importance of a feature.

Furthermore, we found that multimodality improves stress detection performance in a very significant
way. While this is true, it still remains difficult to say definitively whether using the best performer single-
sensor ECG device or a multi-sensor device like the Empatica E4 with PPG and EDA sensors is more
effective. Last but not least, we observed that all of the devices used in this study showed relatively high
and nearly similar performance in the stress detection application. As a result, the final decision for choosing
a particular wearable device over another can be based on the inclusion of additional factors such as personal
preferences, expectations, and the pros and cons of each device.

One of the limitations in the current study, which is also prevalent in similar works, is that the number of
subjects and devices available for data collection is limited due to financial, human, and time constraints in
academic research groups. This issue can lead to specific problems in the future. For instance, the amount of
collected data is not sufficient for applying deep learning algorithms, and in case of data loss from any user
or their withdrawal from participation, it will be almost impossible to compensate for the lost data. Another
limitation of our study is that it was impossible to collect data in real life due to the variety of devices. No
matter how unobtrusive our wearables are, users could not carry out their daily life routine with seven devices
simultaneously connected to their bodies.
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