Stability factor for robust balancing of simple assembly lines under uncertainty

Gurevsky, Evgeny and Rasamimanana, Andry and Pirogov, Aleksandr and Dolgui, Alexandre and Rossi, Andre (2022) Stability factor for robust balancing of simple assembly lines under uncertainty. Discrete Applied Mathematics, 318. pp. 113-132. ISSN 0166-218X

[thumbnail of SF-SALBP.2021.09.28]
Text (SF-SALBP.2021.09.28)
SF_SALBP.2021.09.28.pdf - Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (292kB)


This paper deals with an optimization problem, which arises when a new simple assembly line has to be designed subject to a fixed number of available workstations, cycle time constraint, and precedence relations between necessary assembly tasks. The studied problem consists in assigning a given set of tasks to workstations so as to find the most robust line configuration, which can withstand processing time uncertainty as much as possible. The line robustness is measured by a new indicator, called stability factor. In this work, the studied problem is proven to be strongly NP-hard, upper bounds are proposed, and the relation of the stability factor with another robustness indicator, known as stability radius, is investigated. A mixed-integer linear program (MILP) is proposed for maximizing the stability factor in the general case, and an alternative formulation is also derived when uncertainty originates in workstations only. Computational results are reported on a collection of instances derived from classic benchmark data used in the literature for the Simple Assembly Line Balancing Problem (SALBP).

Item Type:
Journal Article
Journal or Publication Title:
Discrete Applied Mathematics
Additional Information:
This is the author’s version of a work that was accepted for publication in Discrete Applied Mathematics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Discrete Applied Mathematics, 318, 2022 DOI: 10.1016/j.dam.2022.03.024
Uncontrolled Keywords:
?? assembly linebalancingrobustnessrobust optimizationstability radiusuncertaintymilpdiscrete mathematics and combinatoricsapplied mathematics ??
ID Code:
Deposited By:
Deposited On:
02 Nov 2022 12:10
Last Modified:
08 Feb 2024 01:12