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Development of Marine Hoses

 Riser Classification:

❑ Drilling Risers;

❑ Production Risers.

Oil and gas industry

Pipes 
Transport of fluid 

to well

Risers, Hoses, 
Mooring lines, etc.

Risers Application

Transport of fluid 
from oil field to 

refinery / storage

❖ Flexible Risers;

❖ Rigid Risers;

❖ Hybrid Risers;

❖ Composite Risers

Types of Risers

• Offshore Hose Classification:

❑ Floating Hoses;

❑ Submarine Hoses.



Literature Review on Research

Oil and Gas Industry

Mainstream

Offshore

Risers & Hoses 

Onshore

Mooring lines

Platforms Pipelines, etc.

Reeling Hoses

Rigid Risers

Hybrid Risers

Composite Risers

Floating Hoses

Submarine Hoses

• Tsinghua University, Beijing, China;

• Xidian University, China;

• Orcina, Ulverston, Cumbria;

• Bluewater Netherlands;

• Dunlop Oil and Marine, Grimsby, UK;

• Airborne Oil and Gas Netherlands,

• Magma UK;

• Siemens Ulverston, Cumbria;

• Composites UK;

• Coventry University, Coventry, UK;

• University of Liverpool, Liverpool, UK

• Lancaster University, Lancaster, UK

• Newcastle University, Newcastle, UK.

Flexible Risers

Research Collaborations

Renewable



Industry Application: CALM Buoy-Chinese Lantern



Scientometic Review on Marine Hoses



Scientometic

Review on 

Marine Hoses

https://doi.org/10.3390/en15207723



Research in brief –Countries and Authors



Monitoring of 

Subsea Facilities



PhD Research Outline

Development of 

marine hose 

model

Mesh 

Generation

Propoerties & 

Behaviour of 

Physical Hose 

Models

Boundary 

Conditions

Analysis & 

Evaluation of 

results

Chapter Chapter Eight: Conclusions and Recommendations

Chapter Chapter Seven: Dynamic behaviour of submarine hoses on CALM buoy in Lazy-S config under water waves

Chapter Chapter Six: Strength of submarine hoses in Chinese-lantern config from wave loads on CALM buoy

Chapter
Chapter Five: Numerical simulation on motion characterization from hydrodynamic loading on a CALM buoy and its 
marine hoses

Chapter Chapter Four: Finite Element Modelling (FEM) on Bonded Marine Hose

Chapter Chapter Three: Experimental Study on Motion Characterization of CALM buoy hose system

Chapter Chapter Two: Review on the mechanics and hydrodynamics of Marine Hoses for CALM buoys

Chapter Chapter One: Introduction 



Some Recommended Tests

Burst Load

Bending Stiffness Test

Depiction of crush load test on hose

Depiction of torsion and tensile tests



Experimental work on submarine hose using 
CALM buoy model on Lancaster University 
Wave Tank

• (images taken using Underwater 
camera, from different views)

• https://doi.org/10.3390/jmse10020204



Hose-Riser End-fitting Designs
End-fitting Description of the 

design
Reference

Airborne end-fitting 
design

Airborne, (2016)

Traplock end-fitting 
design

Hatton et al., (2013)

Magma end-fitting 
design

Magma, (2016)

Swagged End-fitting Hatton et al., (2013)

Heidrun End-fitting Salama et al. (2005)

Metallic liner end-
fitting

Hatton et al., (2013)

• Crude oil and LNG loading / 
offloading operations utilizes flexible 
medium (steel and composite pipes) 
which are most often reeled on drums 
during installation and after use, 
depending on what type of riser. 

• Recently, oil well operator are 
beginning to experience failures with 
their reeled risers from loads which are 
generated from the reel; crush loads, 
delamination from steel and rubber 
interface. 

• This is generating a huge cost on 
offshore offloading as the risers are 
constantly been changed. This 
project is aimed at understanding the 
stress distribution on offshore reeling 
risers during service. 

Determination of Interface Load / Stresses



Hoses & Riser Configurations

Free Hanging Catenary Lazy Wave

Steep Wave Tethered Lazy Wave / Reverse Pliant Wave

Lazy-S Steep-S

Pliant Wave Chinese-lantern
Reeled Hoses 



Marine Hose & Helix Models

doi: 10.3390/jcs6030079

doi: 10.3390/jmse10020151

The section should layers: 
---The Lining 
---The Main Plies
---The Embed Wire
---The Cover
---The End Fitting.

https://doi.org/10.3390/jcs6030079
https://doi.org/10.3390/jmse10020151


Results of Local Design

doi: 10.3390/jmse10020151doi: 10.3390/jcs6030079

https://doi.org/10.3390/jmse10020151
https://doi.org/10.3390/jcs6030079


Environmental Condition - Wave Spectrum

JONSWAP Wave Spectrum
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Motion RAOs of CALM Buoy

Heave 
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doi: 10.3390/jmse10010120

https://doi.org/10.3390/jmse10010120


Nonlinear Seabed Model 

Soil model characteristics showing different modes (Randolph, 2009)

Parameter Symbol Value

Mudline Shear Strength (kPa) Su0 4.5

Shear Strength Gradient 
(kPa/m)

Sg 1.5

Saturated Soil Density (te/m3) ρsoil 1.5

Power Law Parameter a 6.0

Power Law Parameter b 0.25

Soil Buoyancy Factor fb 1.5

Normalized Maximum 
Stiffness (kNm-1m2)

Kmax 200.0

Suction Resistance Ratio fsuc 0.7

Suction Decay Parameter λsuc 1.0

Repenetration Parameter λrep 0.3



Pressures & Motions Profile of CALM Buoy
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Effect of RAOs for different environmental cases 

Curvature for Hose1 with hose hydrodynamic load Curvature for Hose without hose hydrodynamic load
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Hydrodynamic Panel & 6DoF of a floating buoy

Roll

Yaw
Z

X

Y

Pitch

Heave 
Morison Element 

3

Morison Element 1

Morison Element 2

Morison Element 4

Water line

Morison Element for CALM Buoy



Sensitivity Study of Buoy Skirts

0o flow angle

30o flow angle

60o flow angle 90o flow angle 120o flow angle

150o flow angle

180o flow angle

Wave Angles 

& Flow Angles



Chinese-Lantern Configuration



Lazy-wave Configuration & Local Coordinate System for Buoy on 

flat seabed with Mooring Lines in (a) buoy top view (b) buoy plan 

view

https://doi.org/10.1016/j.oceaneng.2018.11.010.



Current and Wind
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https://doi.org/10.1016/j.oceaneng.2018.11.010.



Surface and Seabed Current profiles 
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https://doi.org/10.3390/jmse9101130
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Typical system with floats attached to submarine hoses

(b) The Discretized Model(a) The Main Line

Extends Down to End B

Lumped 

mass at Node 

2

Lumped mass 

at Node 1

1st Segment

2nd Segment

End A

1st Line Segment

2nd Line Segment

Spline Segment
Orcaflex Line Model

https://doi.org/10.3390/jmse9101130

https://doi.org/10.3390/jmse9101130


Effect of RAOs on curvature & Eff. Tension

https://doi.org/10.1016/j.oceaneng.2018.11.010.



Effect of hose bending moment & DAF

, https://doi.org/10.1016/j.oceaneng.2018.11.010.
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