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Abstract. The synthesis mechanism given in [4] uses saturated models,
along with overdispersed count distributions, to generate synthetic cat-
egorical data. The mechanism is controlled by tuning parameters, which
can be tuned according to a specific risk or utility metric. Thus expected
properties of synthetic data sets can be determined analytically a pri-
ori, that is, before they are generated. While [4] considered the case of
generating m = 1 data set, this paper considers generating m > 1 data
sets. In effect, m becomes a tuning parameter and the role of m in re-
lation to the risk-utility trade-off can be shown analytically. The paper
introduces a pair of risk metrics, τ3(k, d) and τ4(k, d), that are suited to
m > 1 data sets; and also considers the more general issue of how best to
analyse m > 1 categorical data sets: average the data sets pre-analysis
or average results post-analysis. Finally, the methods are demonstrated
empirically with the synthesis of a constructed data set which is used to
represent the English School Census.
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1 Introduction

When disseminating data relating to individuals, there are always two conflict-
ing targets: maximising utility and minimising disclosure risk. To minimise risk,
statistical disclosure control (SDC) methods, which typically involve either sup-
pressing or perturbing certain values, are applied to a data set prior to its release.
One such method is the generation of synthetic data sets [14, 6], which involves
simulating from a model fit to the original data. These methods, while reducing
risk, adversely impact the data’s utility resulting in a clear trade-off between
risk and utility.

This paper focuses on the role of multiple data sets when synthesizing cate-
gorical data (that is, data consisting of only categorical variables) at the aggre-
gated level using saturated count models [4]. Saturated synthesis models allow
the synthesizer to generate synthetic data with certain pre-specified properties,
thus allowing them to easily tailor the synthesis to suit the data environment
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[3]. For example, if the intention is to release open data, relatively more noise
can be applied to the data than if the data are released in a secure environment.
While the Poisson model is often used to model categorical data, for synthesis
this is not necessarily an optimal choice, because the synthesizer - that is, the
person(s) responsible for synthesizing the data - has no control over the variance
and has, therefore, no way to add additional noise to at-risk records in the data.
For this reason, the negative binomial (NBI), a two-parameter count distribu-
tion, is much more effective for synthesis. As the NBI distribution’s variance is
not completely determined by the mean - though the variance is always greater
than the mean - the variance can be increased accordingly. Nevertheless, there
are still restrictions and these are discussed later on.

Specifically, this paper explores how flexibility can be incorporated into the
mechanism through the use of multiple synthetic data sets. In some cases (as
explained in Section 3), m > 1 synthetic data sets must be generated; while
in other cases, though it may be sufficient to generate just m = 1 synthetic
data set, the optimal m can still be considered in relation to the risk-utility
trade-off: does the improvement in utility sufficiently outweigh the cost in terms
of greater risk? This is because, since it reduces simulation error, increasing m
leads to greater utility but also, inevitably, greater risk [11, 12]. More generally,
considering m > 1 introduces another tuning parameter for the synthesizer to
set, thereby providing further flexibility.

This paper is structured as follows: Section 2 summaries the (σ, α)-synthesis
mechanism, on which the results in this paper are based; Section 3 extends
the mechanism to incorporating m > 1; Section 4 introduces the τ3(k, d) and
τ4(k, d) metrics, developed to assess risk in multiple categorical synthetic data
sets; Section 5 presents an illustrative example; and lastly Section 6 ends the
paper with a discussion and areas of future research.

2 Review of the use of saturated models for synthesis

The discrete nature of categorical data allow it to be expressed as a multi-
dimensional contingency table (multi-way table). As a multi-way table, the data
consist of a structured set of cell counts f1, . . . , fK , which give the frequencies
with which each combination of categories is observed.

Synthetic data sets can then be generated by replacing these observed counts
(known henceforth as “original counts”) with synthetic counts. There are two dis-
tinct modelling methods for contingency tables: multinomial models and count
models. The multinomial approach ensures that the total number of individuals
in the original data n is equal to the total number of individuals in the synthetic
data nsyn. The syn.catall function in the R package synthpop [7] can be used
to generate synthetic data via a saturated multinomial model.

The (σ, α)-synthesis mechanism [4] uses saturated count models for synthesis;
specifically, either a saturated negative binomial (NBI) model or a saturated
Poisson-inverse Gaussian (PIG) [13] model. In this paper, for brevity, only the
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NBI has been considered. Besides, the NBI and PIG distributions are broadly
similar, as they share the same mean-variance relationship.

The (σ, α)-synthesis mechanism has two parameters which are set by the
synthesizer. The first, σ > 0, is the scale parameter from a two-parameter count
distribution (such as the NBI). The parameter σ can be tuned by the synthesizer
to adjust the variability in the synthetic counts, thus increasing or decreasing
their expected divergence from the original counts. More noise is required for sen-
sitive cells - usually small cell counts, which correspond to individuals who have
a unique (or near-unique) set of observations - to generate sufficient uncertainty
to mask the original counts’ true values.

The mechanism’s second parameter, denoted by α ≥ 0, relates to the size of
the pseudocount - in practice, this is not actually a count but a small positive
number such as 0.01 - which is added to zero cell counts (zero cells) in the
original data. This assigns a non-zero probability that a zero cell is synthesized
to a non-zero. The pseudocount α is only applied to non-structural zero cells
(known as random or sampling zeros), which are zero cells for which a non-zero
count could have been observed. Throughout this paper it has been assumed,
for brevity, that α = 0.

Given an original count fi = Ni i = 1, . . . ,K, the corresponding synthetic
count f syn

i is drawn from the following model:

f syn
i | fi = Ni, σ ∼ NBI(Ni, σ), and therefore,

p(f syn
i = N2 | fi = N1, σ) =

Γ (N2 + 1/σ)

Γ (N2 + 1) · Γ (1/σ)
·
(

σN1

1 + σN1

)N2

·
(

1

1 + σN1

)1/σ

.

Using a saturated count model has certain advantages in data synthesis. Firstly,
it guarantees the preservation of relationships between variables, as no assump-
tions are made as to which interactions exist. Secondly, the method scales equally
well to large data sets, as no model fitting is required - the model’s fitted counts
are just the observed counts. Finally, as the fitted counts are just equal to the
observed counts, it allows expected properties of the synthetic data to be deter-
mined a priori (that is, prior to synthesis). The (unwelcome) uncertainty around
model choice is, in effect, minimised, and instead uncertainty is injected where
it is most needed: to add noise to sensitive cells in the original data.

2.1 The τ metrics

The following τ metrics [4], give a basic quantification of risk (and utility) in
tabular data:

τ1(k) = p(f syn = k) τ3(k) = p(f syn = k|f = k)

τ2(k) = p(f = k) τ4(k) = p(f = k|f syn = k),

where f and f syn are arbitrary original and synthetic counts, respectively. The
metric τ2(k) is the empirical proportion of original counts with a count of k,
and τ1(k) is the proportion of synthetic counts of size k. The metric τ3(k) is the
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probability that an original count of size k is synthesized to k; and τ4(k) is the
probability that a synthetic count of size k originated from a count of size k. The
metrics τ3(1) and τ4(1), in particular, are the most associated with risk, as these
relate to uniques and can be viewed as outliers in the data. When, for example,
τ4(1) is close to 1, it is possible to identify, with near certainty, uniques in the
original data from the synthetic data.

When saturated models are used, the expected values of these τ metrics
can be found analytically as functions of the tuning parameters (σ, α and, as
later described, m). Hence the synthesizer knows, a priori, the noise required to
achieve a given τ3(1) or τ4(1) value.

3 The role of m as a tuning parameter

The original inferential frameworks for fully and partially synthetic data sets [9,
10] relied on the generation of m > 1 synthetic data sets, because they required
the computation of the between-synthesis variance bm (see below). However,
when the original data constitute a simple random sample, and the data are
completely synthesized, valid inferences can be obtained from m = 1 synthetic
data set [8]. In this instance, while m > 1 data sets are not intrinsic to obtaining
valid inferences, the quality of inferences - for example, the width of confidence
intervals - can, nevertheless, be improved upon by increasing m - but at the
expense of higher risk. It is less a question, therefore, of which m allows valid
inferences to be obtained, but rather a question of which value of m is optimal
with respect to the risk-utility trade-off?

Thus m can be viewed as a tuning parameter, and, as with the other tuning
parameters σ and α, expected risk and utility profiles can be derived analytically,
a priori. When saturated models are used for synthesis, ignoring the small bias
arising from α > 0, simulation error is the only source of uncertainty - and
increasing m reduces simulation error. The notion is that m > 1 may allow
a more favourable position in relation to the risk-utility trade-off than when
m = 1; in short, it increases the number of options available to the synthesizer.

The use of parallel processing can substantially reduce the central processing
unit (CPU) time when generating multiple data sets. Besides, the CPU time
taken is typically negligible anyway; the synthesis presented in Section 5 took
0.3 seconds for the NBI with m = 1 on a typical laptop running R.

3.1 Obtaining inferences from m > 1 data sets

Analysing the m > 1 data sets before averaging the results When
analysing multiple synthetic data sets, traditionally the analyst considers each
data set separately before later combining inferences. While point estimates are
simply averaged, the way in which variance estimates are combined depends on
the type of synthesis carried out: such as whether fully or partially synthetic
data sets are generated and also whether synthetic counts are generated by
simulating from the Bayesian posterior predictive distribution or by simulating
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directly from the fitted model. The combining rules also depend on whether
an analyst is using the synthetic data to estimate a population parameter Q,
or an observed data estimate Q̂: the former needs to account for the sampling
uncertainty in the original data whereas the latter does not.

Suppose, then, that an analyst wishes to estimate a univariate population
parameter Q from m > 1 synthetic data sets. A point estimate q(l), and its
variance estimate v(l), is obtained from each synthetic data set, l = 1, . . . ,m.
Before these estimates are substituted into a set of combining rules, it is common,
as an intermediary step, to first calculate the following three quantities [2]:

q̄m =
1

m

m∑
l=1

q(l), bm =
1

(m− 1)

m∑
l=1

(q(l) − q̄m)2, v̄m =
1

m

m∑
l=1

v(l),

where q̄m is the mean estimate, bm is the ‘between-synthesis variance’, that is,
the sample variance of the m > 1 estimates, and v̄m is the mean ‘within-synthesis
variance’, the mean of the estimates’ variance estimates.

The quantity q̄m is an unbiased estimator for Q̂, and is so regardless of
whether fully or partially synthetic data sets are generated. When using the
synthesis method described in Section 2, partially - rather than fully - synthetic
data sets are generated, because a synthetic population is not constructed and
sampled from, as stipulated in [9]. Hence, the following estimator Tp [10], is valid
when estimating Var(Q̂),

Tp =
bm
m

+ v̄m.

The sampling distribution (if frequentist) or posterior distribution (if Bayesian)
of Q̂ is a t-distribution with νp = (m − 1) (1 +mv̄m/bm)

2 degrees of freedom.
Often, νp is large enough for the t-distribution to be approximated by a normal
distribution. However, when the between-synthesis variability is much larger
than the within-synthesis variability, that is, when bm is much larger than v̄m
- as may happen when large amounts of noise are applied to protect sensitive
records - then νp is crucial to obtaining valid inferences.

As the data sets are completely synthesized in the sense of [8] - that is, no
original values remain - the following estimator Ts is valid, too, under certain
conditions:

Ts = v̄m

(nsyn

n
+

1

m

)
≈ v̄m

(
1 +

1

m

)
.

These conditions are: firstly, that the original data constitute a simple random
sample - therefore, Ts would not be valid if the data originate from a complex
survey design - and secondly, that the original data are large enough to support
a large sample assumption. The overriding advantage of Ts is that, assuming its
conditions do indeed hold, it allows valid variance estimates to be obtained from
m = 1 synthetic data set.

The large sample assumption facilitates the use of a normal distribution for
the sampling distribution (or the posterior distribution) of Q̂ when Ts is used to
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estimate the variance. The notion is that, in large samples, bm can be replaced
with v̄m. It is difficult to assess, however, when a large sample assumption is
reasonable, because it also depends on the specific analysis being undertaken on
the synthetic data, that is, it depends on the analysis’s sufficient statistic(s).

The estimators Tp and Ts assume that nsyn = n (or that nsyn is constant
across the m synthetic data sets in the case of Ts). When using count models
as opposed to multinomial models, nsyn is stochastic and this assumption is vio-
lated. However, in a simulation study unreported here, the effect of varying nsyn
was found to have a negligible effect on the validity of inferences, for example,
confidence intervals still achieved the nominal coverage. Nevertheless, in some
cases, new estimators may be required; such estimators may introduce weights
w1 . . . , wm that relate to n

(1)
syn, . . . , n

(m)
syn , the sample sizes of the m synthetic data

sets.

Averaging the m > 1 data sets before analysing them When faced
with multiple categorical data sets, analysts (and attackers) may either pool
or average the data sets before analysing them. This is feasible only with con-
tingency tables, as they have the same structure across the m > 1 data sets.
There are several advantages to doing so. Firstly, it means that analysts only
have to undertake their analyses once rather than multiple times, thus leading
to reduced computational time. Note, although averaging leads to non-integer
“counts”, standard software such as the glm function in R can typically cope with
this and still allow models to be fit. Secondly, model-fitting in aggregated data is
often hampered by the presence of zero counts, but either averaging or pooling
reduces the proportion of zero counts, since it only takes one non-zero across the
m > 1 data sets to produce a non-zero when averaged or pooled.

When the NBI is used, for a given original count fi = N (i = 1, . . . ,K), the
corresponding mean synthetic cell count f̄ syn

i has mean and variance,

E(f̄ syn
i ) = N and Var(f̄ syn

i ) =
1

m

(
N + σN2

)
, (1)

as the synthetic data sets are independent.
Thus, for a given original count, the variance of the corresponding mean

synthetic count is inversely proportional to m, and linearly related to σ. This
means that the minimum obtainable variance when σ alone is tuned - which
is achieved as σ → 0 and the NBI tends towards its limiting distribution, the
Poisson - is N/m. On the other hand, increasing m can essentially take the
variance to zero. If m is too large, though, the original counts are simply returned
when averaged, which, of course, renders the synthesis worthless. This, perhaps,
suggests the suitability of m as a tuning parameter in cases where the original
counts are large and relatively low risk, such that a relatively small variance
suffices.
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4 Introducing the τ3(k, d) and τ4(k, d) metrics

When multiple synthetic data sets are generated and the mean synthetic count
calculated - which is no longer always an integer - it becomes more suitable to
consider the proportion of synthetic counts within a certain distance of original
counts of k. To allow this, the metrics τ3(k) and τ4(k) can be extended to τ3(k, d)
and τ4(k, d), respectively:

τ3(k, d) := p(|f syn − k| ≤ d | f = k), τ4(k, d) := p(f = k | |f syn − k| ≤ d).

The metric τ3(k, d) is the probability that a cell count of size k in the original
data is synthesized to within d of k; and τ4(k, d) is the probability that a cell
count within d of k in the synthetic data originated from a cell of k. Unlike
k, d > 0 does not need to be an integer. By extending the τ1(k) metric, such
that τ1(k, d) is the proportion of synthetic counts within d of k, it follows that
τ3(k, d)τ2(k) = τ4(k, d)τ1(k, d).

The τ3(k) and τ4(k) metrics are then special cases of τ3(k, d) and τ4(k, d),
respectively (the case where d = 0). For small k, these τ(k, d) metrics are in-
tended primarily as risk metrics, because they are dealing with uniques or near
uniques. However, when d is reasonably large, τ3(k, d) and τ4(k, d) are, perhaps,
better viewed as utility metrics, because they are dealing with the proportion of
uniques that are synthesized to much larger counts (which impacts utility).

When m > 1 is sufficiently large, tractable expressions for the τ3(k, d) and
τ4(k, d) metrics can be obtained via the Central Limit Theorem (CLT), as the
distribution of each mean synthetic count can be approximated by a normal dis-
tribution, with mean and variance as given in (1). That is, given an original count
fi = N (i = 1, . . . ,K), when m is large, the distribution of the corresponding
mean synthetic cell count f̄ syn

i is given as:

f̄ syn
i | fi = N, σ,m ∼ Normal(N, (N + σN2)/m).

This can be used to approximate τ3(k, d) and τ4(k, d):

τ3(k, d) = p(|f̄ syn − k| ≤ d | f = k),

= p(f̄ syn < k + d | f = k)− p(f̄ syn < k − d | f = k),

= Φ

(
(k + d)− k√
(k + σk2)/m

)
− Φ

(
(k − d)− k√
(k + σk2)/m

)

= 2Φ

(
d√

(k + σk2)/m

)
− 1, (2)
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τ4(k, d) = p(f = k | |f̄ syn − k| ≤ d)

=
τ3(k, d) · τ2(k)∑∞

i=0 p(|f syn − k| ≤ d | f = i) · p(f = i)

=

[
2Φ

(
d
/√

(k + σk2)/m
)
− 1

]
· τ2(k)

∞∑
i=1

[
Φ
(
(k + d− i)

/√
(i+ σi2)/m

)
− Φ

(
(k − d− i)

/√
(i+ σi2)/m

)]
· τ2(i)

(3)

where Φ is which is used to denote the cumulative distribution function (CDF)
of the standard normal distribution.

5 Empirical Study

The data set synthesized here was constructed with the intention of being used
as a substitute to the English School Census, an administrative database held by
the Department for Education (DfE). It was constructed using publicly available
data sources such as English School Census published data and 2011 census
output tables. The data - along with a more detailed description of its origin -
is available at [1]. While the data is constructed from public sources, it shares
relevant features present in large administrative databases that serve to illustrate
risk and utility in synthetic data and, specifically, the role that m plays in relation
to the risk-utility trade-off. The framework developed here could be equally
applied to any categorical data set.

The data comprises 8.2 ×106 individuals observed over p = 5 categorical
variables. The local authority variable has the greatest number of categories with
326; while sex has the fewest with 4. When aggregated, the resulting contingency
table has K = 3.5×106 cells, 90% of which are unobserved, that is, have a count
of zero.

The function rNBI from the R package gamlss.dist [16] was used to generate
multiple synthetic data sets using the (σ, α)-synthesis mechanism described in
Section 2. This was done for a range of σ, 0, 0.1, 0.5, 2 and 10, and 50 synthetic
data sets were generated for each. This allowed comparisons to be drawn for a
range of m, for example, taking the first five data sets gives m = 5, taking the
first ten gives m = 10, etc.

5.1 Measuring risk

Evaluating risk in synthetic data, particularly in synthetic categorical data, is
not always straightforward. Attempting to estimate the risk of re-identification
[12] is not possible, because the ability to link records is lost when a microdata
set is aggregated, synthesized and disaggregated back to microdata again.

The τ3(1, d) and τ4(1, d) metrics (that is, setting k = 1), introduced in Sec-
tion 4, were used as risk metrics. Figure 1 in the Appendix shows that either
increasing m or decreasing σ increases τ3(1, d) and τ4(1, d) and hence risk. There
is an initial fall in the τ3(1, 0.1) curves as m increases initially, suggesting lower
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not higher risk. However, this is just owing to the small d: for example, when
d = 0.1, the only way to obtain a mean synthetic count within 0.1 of k when, say
m = 5, is by obtaining a one in each of the five synthetic data sets, compared to
just once when m = 1.

When m is large, the τ3(k, d) and τ4(k, d) metrics can be approximated ana-
lytically through (2), which relies on the CLT. There is uncertainty in both the
empirical values (owing to simulation error) and the analytical values (owing to
the normal approximation), though the divergences between the empirical and
analytical values are small.

In general, then, increasing m or decreasing σ increases risk. This is also
shown visually in Figure 2 (Appendix), which demonstrates how m and σ can
be used in tandem to adjust risk. Here, τ3(1, 0.1) is used as the z-axis (risk) but
any τ3(k, d) or τ4(k, d) would give similar results.

5.2 Measuring utility

As saturated models are used, increasing m (for a given σ) causes the mean
synthetic counts to tend towards the original counts. This can be seen in the
Hellinger and Euclidean distances given in Figure 3 (Appendix), which show an
improvement in general utility when either increasing m or reducing σ.

These measures are equally relevant to risk, too, hence Figure 3 reiterates
that risk increases with m. It is fairly trivial, however, that reducing simulation
error increases risk and utility. It is more useful to gain an insight into the rate
at which risk and utility increase with m, that is, the shape of the curves. For
example, Figure 3, shows that increasing m has greater effect when σ = 1 than
when σ = 0.1.

The utility of synthetic data can also be assessed for specific analyses by, for
example, comparing regression coefficient estimates obtained from a model fit
to both the observed and synthetic data. While such measures only assess the
synthetic data’s ability to support a particular analysis, they nevertheless can be
a useful indicator to, for example, the required m needed to attain a satisfactory
level of utility.

Here, the estimand of interest is the slope parameter from the logistic regres-
sion of age Y (aged ≤ 9 = 0, ≥ 10 = 1) on language X. A subset of the data
were used, as just two of the language variable’s seven categories were consid-
ered, while the age variable was dichotomised. When estimated from the original
data, β1 - which is a log marginal odds ratio - was equal to -0.0075 with a 95%
confidence interval of (-0.0151, -0.0001). Note that, in order to estimate this, it
was assumed that the original data constituted a simple random sample drawn
from a much larger population. It is hugely doubtful whether such an assump-
tion would be reasonable in practice, but the purpose here was just to evaluate
the ability of the synthetic data to produce similar conclusions to the original
data.

The analysis was undertaken in the two ways described in Section 3. Firstly,
the m > 1 synthetic data sets were analysed separately and variance estimates
were obtained through the estimator Tp. Secondly, the m > 1 synthetic data sets
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were pooled into one data set prior to the analysis and variance estimates were
obtained through the estimator Ts.

As can be seen in Figure 4, the estimates from Tp were noticeably larger
than those from Ts, for small m. This was worrying for the validity of Ts - and
the confidence intervals subsequently computed using Ts - especially since the
sampling distribution of Tp was not approximated by a normal distribution, but
by a t-distribution with νp degrees of freedom, thus widening confidence intervals
further. This suggests that the large sample approximation that Ts relies on was
not reasonable in this case.

The confidence interval computed from the original data set was compared
with the confidence intervals computed from the synthetic data sets via the con-
fidence interval overlap metric [5, 15]. This metric is a composite measure that
takes into account both the length and the accuracy of the synthetic data confi-
dence interval. Yet whether these factors are weighted appropriately is open to
debate. Valid confidence intervals estimated from synthetic data, that is, con-
fidence intervals that achieve the nominal coverage, are longer than the corre-
sponding confidence intervals estimated from the original data, because synthetic
data estimates are subject to the uncertainty present in the original data esti-
mates, plus have additional uncertainty from synthesis. However, a synthetic
data confidence interval, say, one that is x% narrower than the original data
confidence interval (hence clearly invalid) would yield roughly the same overlap
as, say, a confidence interval that is x% wider. Moreover, either an infinitely wide
or infinitely small synthetic data confidence interval would achieve an overlap of
0.5.

The confidence interval overlap results are presented in Table 1 in the Ap-
pendix. The top frame gives the overlap values from when the data sets are anal-
ysed separately, and the bottom frame gives the results from when the data sets
are pooled. It can be seen that increasing m broadly results in an increase in the
overlap; and that the overlap tends towards 1 as the original and synthetic data
confidence intervals converge. The confidence intervals computed using Ts are
less robust as those using Tp, which is evident in the zero overlap when m = 20
and σ = 10. This is because, unlike the variance estimator Tp, Ts only considers
the within-synthesis variability v̄m, not the between-synthesis variability bm.

5.3 Tuning m and σ in relation to the risk-utility trade-off

The plots in Figure 5 (Appendix) show how m and σ can be tuned in tandem
to produce synthetic data sets that sit favourably within the risk-utility trade-
off. These trade-off plots, though, depend on the metrics used to measure risk
and utility. Here, risk was measured by either τ4(1, 0.5) or τ4(1, 0.75), and util-
ity by either confidence interval overlap (using Tp) or Hellinger distance. The
Hellinger distances were standardised onto the interval of [0,1] (by dividing by
the largest Hellinger distance observed and then subtracting from 1, so that 1
and 0 represent maximum and minimum utility, respectively).

It is possible to strictly dominate synthetic data sets over others, that is,
obtain lower risk and greater utility values. For example, looking at the top-left
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plot, synthetic data sets generated with m = 50, σ = 2 have higher risk but lower
utility than when m = 20, σ = 0.5. These visual trade-offs are plotted using
the empirical results, so are subject to variation from simulation; the confidence
interval overlap values, in particular, can be volatile, especially when σ is large.

The intention is that the synthesizer produces such plots before releasing
the data. Furthermore, as many metrics can be expressed analytically when
using saturated models, they can be produced before the synthetic data is even
generated.

6 Discussion

The setting of the synthesis mechanism’s tuning parameters is a policy decision,
and therefore is subjective. The general notion is that the synthesizer decides
on an acceptable level of risk and maximises utility based on this; a larger m
would necessitate a larger σ to maintain a given level of risk. As many metrics
can be expressed as functions of the synthesis mechanism’s tuning parameters,
these functions’ partial derivatives may be useful to determine the rate at which
risk and utility change; for example, there may be a point where any further
increases in m lead to a disproportionately small improvement in utility.

In addition to m, the synthesizer could also increase or decrease E(nsyn),
the expected sample size of each synthetic data set. A single synthetic data
set (m = 1) with E(nsyn) = n contains roughly the same number of records
as two synthetic data sets (m = 2) each with E(nsyn) = n/2. To generate a
synthetic data set with an expected sample size of n/2, the synthesizer simply
takes draws from NBI distributions with means exactly half of what they were
previously. Reducing E(nsyn) should reduce risk, as fewer records are released,
but inevitably reduces utility, too; once again, it calls for an evaluation with
respect to the risk-utility trade-off.

Moreover, there are further tuning parameters that could be incorporated
into this synthesis mechanism. One way would be to use a three-parameter dis-
tribution. When using a two-parameter count distribution, the synthesizer can
increase the variance but cannot control how the variability manifests itself. The
use of a three-parameter count distribution would allow the synthesizer to con-
trol the skewness, that is, they could change the shape of the distribution for a
given mean and variance.

There are, of course, disadvantages to generating m > 1 synthetic data sets
with the most obvious being the increased risk. Nevertheless, the potential bene-
fits warrant further exploration, especially in relation to the risk-utility trade-off:
does the gain in utility outweigh the increase in risk?

Organisations are taking a greater interest in making data - such as ad-
ministrative data - available to researchers, by producing their own synthetic
data. For this to be successful, organisations need to guarantee the protection
of individuals’ personal data - which, as more data becomes publicly available,
becomes ever more challenging - while also producing data that are useful for
analysts. Therefore, there needs to be scope to fine tune the risk and utility of
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synthetic data effectively, and integrating m as a tuning parameter into this a
priori framework helps to achieve this.
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right hand plots give the empirical values of τ4(1, d) for d = 0.5 and 0.75.
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Table 1. The confidence interval overlap results from when: (i) the data sets were
analysed separately and Tp was used to estimate confidence intervals; and (ii) the data
sets were pooled and Ts was used to estimate confidence intervals.

m = 2 m = 5 m = 10 m = 20 m = 30 m = 40 m = 50

The overlap when the data sets were analysed separately and Tp used
σ = 0 0.883 0.901 0.950 0.992 0.990 0.994 0.983
σ = 0.1 0.533 0.692 0.822 0.898 0.913 0.925 0.917
σ = 0.5 0.536 0.635 0.778 0.843 0.878 0.909 0.923
σ = 2 0.000 0.587 0.667 0.726 0.716 0.742 0.780
σ = 10 0.522 0.535 0.554 0.583 0.604 0.623 0.638

The overlap when the data sets were pooled and Ts used
σ = 0 0.881 0.905 0.951 0.988 0.990 0.994 0.983
σ = 0.1 0.700 0.317 0.802 0.942 0.904 0.920 0.915
σ = 0.5 0.221 0.344 0.653 0.789 0.864 0.915 0.967
σ = 2 0.020 0.436 0.856 0.775 0.825 0.809 0.906
σ = 10 0.000 0.664 0.454 0.000 0.078 0.258 0.465
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Fig. 5. Risk-utility trade-off plots to show where various synthetic data sets are located
with respect to the risk-utility trade-off. The optimal position in each plot - that is,
the lowest risk and the highest utility - is the bottom right corner. To measure risk, the
metrics τ4(1, 0.5) and τ4(1, 0.75) were used. To measure utility, the confidence interval
overlap and Hellinger distance were used.
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