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Preface

This book is aimed at graduate students and researchers in symplectic geom-
etry. The primary message of the book is that when a symplectic manifold
X admits a Lagrangian torus fibration f : X → B, the base B inherits an
integral affine structure from which we can “read off” a lot of information
about X.

The book is based on a 10-hour lecture series I gave in 2019 for graduate
students at the London Taught Course Centre. It also draws on sessions
on toric geometry and symplectic reduction which I taught between 2014–
2017 for the Geometry Topics Course at the London School of Geometry and
Number Theory. It is heavily expanded from both of these. It could be used
as the basis for a one-semester graduate-level course: the core content is the
foundational material in Chapters 1–2, the examples and constructions in
Chapters 3–4, and the material on almost toric geometry in Chapters 6–8.
The lecturer could then choose whether to include more about Lagrangian
submanifolds (Chapter 5 and Appendix H), or about connections to low-
dimensional topology or algebraic geometry (Chapters 9–10 and Appendix
I).

There are many good books and papers which cover similar ground to this
book, including: Arnold’s book [3] on classical mechanics; Audin’s book
[5] on torus actions; Duistermaat’s paper [26] on action-angle coordinates;
Symington’s groundbreaking paper [106] on almost toric geometry and her
follow-up paper with Leung [66]; Auroux’s survey [7] on mirror symmetry, in
which almost toric fibrations play a crucial role; Zung’s papers [120, 121] on
the geometry and topology of Lagrangian fibrations; Vianna’s papers [115,
116, 117] on exotic tori and almost toric geometry, and his paper with Cheung
[17] on the appearance of mutations in a variety of contexts; Mikhalkin [80]

This material has been/will be published by Cambridge University Press as Lectures on
Lagrangian Torus Fibrations by Jonny Evans. This pre-publication version is free to
view and download for personal use only. Not for re-distribution, re-sale, or use in
derivative works.
c© Jonny Evans 2018–2023.
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and Matessi’s papers [72, 73] on tropical Lagrangian submanifolds. Where
there is common ground, I have tried to give a different perspective.

We will not discuss special Lagrangian torus fibrations, or much about the
connection to mirror symmetry. For the reader who is interested in this,
there are many good places to start, including Kontsevich and Soibelman’s
influential paper on homological mirror symmetry and torus fibrations [61],
Gross’s series of papers [46, 47, 45], and much of the early work of Joyce (see
for example [56]). We will also not get as far as discussing the piecewise-
smooth torus fibrations of Castaño-Bernard and Matessi [14, 13], or the far-
reaching and highly technical constructions of W.-D. Ruan [87, 88, 89].

Whilst reading, you will see that some lemmas are left as exercises. This is
because the proof is either (a) easy, (b) fun, or (c) too much of a distraction
from the main narrative1. You will find the proofs of these in the sections
called “solutions to inline exercises” at the end of each chapter. There are also
extensive appendices: some to provide background and make the book more
self-contained, some to discuss in more detail matters which are mentioned
in the main text at a point where a full discussion would distract.

Starting in Chapter 1, I will not assume you already know about symplectic
geometry and Lagrangian submanifolds (though it wouldn’t hurt). I will
assume that you know:

• Differential forms and De Rham cohomology (and occasionally singular
homology, though only in passing).

• Lie derivatives, though I have included an appendix (Appendix B)
which gives a high-level overview of this, including a proof of Cartan’s
“magic formulas” for taking Lie derivatives of differential forms.

• Some basic notions from differential topology like submersions, and
critical or regular values.

• The fundamental group and the theory of covering spaces.

There will probably be other things that I assume in passing, but these are
the most important ingredients. In the remainder of the preface, I will assume
familiarity with much more, so that I can put this book in context.

1In case (c), you shouldn’t feel too bad if you can’t figure out the proof for yourself!
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Let X be a symplectic manifold. Roughly speaking, a Lagrangian torus fi-
bration on X is a map f : X → B with Lagrangian fibres. We usually call the
target space B the base of the fibration. We will see very early on (Theorem
1.40 and Corollary 1.44) that the regular fibres must be tori, and that we can
use the symplectic structure to get a natural local coordinate system on B
whose transition maps are integral affine transformations. Moreover, under
nice conditions, one can reconstruct X starting from this integral affine man-
ifold B (Theorem 2.26). Since the base has only half as many dimensions
as the total space, Lagrangian torus fibrations give us a way of compress-
ing information in a way that helps us to visualise and understand 4- or
6-dimensional spaces using 2- or 3-dimensional integral affine geometry.

If we restrict to regular Lagrangian fibrations (with only regular fibres) then
we can only study a very restricted class of symplectic manifolds (total spaces
of torus bundles over a flat base). For this reason, over the course of the book,
we gradually expand the class of critical points that f is allowed to have. In
Chapter 3, we introduce toric critical points, which naturally appear in the
theory of toric varieties. This gives us a wealth of interesting examples like
X = CPn where the integral affine base is simply a polytope in Rn, and we
start to use the integral affine geometry of this polytope to understand the
symplectic geometry of X (for example using visible Lagrangian submanifolds
in Chapter 5). In Chapter 4, we introduce the symplectic cut operation: this
widens our class of examples to include things like resolutions of singularities.

In Chapters 6-8, we allow ourselves another type of critical point: the focus-
focus critical point. This was intensively studied by San Vu Ngo.c [111], who
understood the asymptotic behaviour of action coordinates as you approach
a focus-focus point; understanding Ngo.c’s calculation is the aim of Chapter
6. Margaret Symington [106] developed a general theory of Lagrangian torus
fibrations with at worst toric and focus-focus critical points, which she called
almost toric fibrations. In Chapter 7, we find many examples, including
Milnor fibres of cyclic quotient singularities (Chapter 7). In Chapter 8, we
explain Symington’s operations for modifying almost toric fibrations (nodal
trades, nodal slides, mutations).

Symington’s ideas will allow us to get to our first real highlight: the al-
most toric fibrations on CP2 discovered by Vianna in 2013 [115, 116]. In
these papers, Vianna discovered infinitely many non-Hamiltonian-isotopic
Lagrangian tori in CP2. These tori are very hard to see in our “usual” pic-
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tures of CP2, but become very easy to construct and study using almost toric
fibrations. We will not develop any of the Floer theory required to distin-
guish these tori, and refer the interested reader to Auroux’s paper [7] for an
introduction, to Vianna’s papers [115, 116, 117] for details, and Pascaleff-
Tonkonog [85] for later developments. Instead, we content ourselves with
the construction of the tori; in general, the methods developed in this book
are useful for constructing and visualising, but not so useful for proving con-
straints.

In Chapter 9, we explain some of the most useful surgery constructions that
behave well with respect to almost toric fibrations: non-toric blow-up, and
rational blow-up/blow-down:

• If you blow-up a toric variety at a toric fixed point then the result
is again toric, and the moment polytope is obtained from the original
moment polytope by truncating at the vertex corresponding to the fixed
point (see Example 4.23). Non-toric blow-up allows us to blow-up a
point in the toric boundary which is not a toric fixed-point and obtain
an almost toric fibration on the result. This operation was discovered
by Zung [121], and further elaborated by Symington [106].

• Rational blow-up/blow-down is a family of operations which allow us to
replace a chain of symplectically embedded spheres with a symplecti-
cally embedded rational homology ball. The simplest example replaces
a single sphere of self-intersection −4 with an open neighbourhood of
the zero-section in T ∗RP2. This has proved useful in low-dimensional
topology for constructing small exotic 4-manifolds.

We will use both non-toric blow-up and rational blow-down to understand
Lisca’s classification of symplectic fillings of lens spaces. Again, we will give
an almost toric construction of all of Lisca’s fillings, but shy away from
proving the classification, as this would require nontrivial input from pseu-
doholomorphic curve theory.

Finally, in Chapter 10, we will study integral affine cones and see that these
correspond to symplectic manifolds with singularities modelled on elliptic and
cusp singularities. This will allow us to understand the minimal resolutions
of cusp singularities and provide us with an almost toric fibration on a K3
surface. The pictures from this chapter will aid the reader who is interested
in reading Engel’s beautiful paper [31] on the Looijenga cusp conjecture.
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Appendices A-E provide some background material on symplectic linear al-
gebra, complex projective geometry, cotangent bundles, and Moser isotopy,
in an effort to make the book more self-contained. Appendix F gives a con-
struction of a toric variety associated to a convex polytope with vertices at
integer lattice points, as a more algebro-geometric alternative to the con-
struction using symplectic cuts from Chapter 4. Appendix G discusses the
contact geometry and Reeb dynamics of hypersurfaces which are fibred with
respect to a Lagrangian torus fibration. Appendix H gives a brief exposition
of Mikhalkin’s theory of tropical Lagrangian submanifolds. Appendix I ex-
plains some of the integral affine geometry behind the Diophantine Markov
equation, which underlies Vianna’s constructions of almost toric fibrations
on CP2.

My goal in writing this book is to provide you with the tools necessary for
you to make your own investigations, to probe hitherto unexplored regions
of our most cherished and familiar symplectic manifolds, and to bring back
and show me the new things that you find. Appendix J, the final chapter of
the book, gives a few open problems as inspiration.
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Notation

One point of confusion will be the fact that I often take vectors to be row
vectors and matrices to “act” from the right. Apart from the typographical
convenience of writing row vectors versus column vectors, this is because my
vectors are usually momenta and hence naturally transform as covectors. To
remind the reader when I am doing this, I use the convention〈

a b
c d

)
to emphasise that a matrix will be acting from the right.

Jonny Evans

Lancaster, 2021



Part I

Lagrangian torus fibrations

1





Chapter 1

The Arnold-Liouville theorem

1.1 Hamilton’s equations in 2D

Let (p, q) be coordinates on R2 and H(p, q) be a smooth function. A smooth
path (p(t), q(t)) is said to satisfy Hamilton’s equations for the Hamiltonian
H if1

ṗ = −∂H
∂q

, q̇ =
∂H

∂p
. (1.1)

This can be used to describe the classical motion of a particle moving on a
one-dimensional line. We think of q(t) as the position of the particle on the
line at time t, p(t) as its momentum, and H as its energy. For example, if
H(p, q) = p2

2m
(the usual expression for kinetic energy of a particle with mass

m) then Hamilton’s equations become

ṗ = 0, q̇ = p/m,

which are the statements that (a) there is no force acting and (b) momentum
is mass times velocity. You can add in external (conservative) forces by
adding potential energy terms to H. Observe that

Ḣ =
∂H

∂p
ṗ+

∂H

∂q
q̇ = q̇ṗ− ṗq̇ = 0,

so energy is conserved.
1A dot over a variable stands for differentiation with respect to time, e.g. ṗ = dp

dt .

This material has been/will be published by Cambridge University Press as Lectures on
Lagrangian Torus Fibrations by Jonny Evans. This pre-publication version is free to
view and download for personal use only. Not for re-distribution, re-sale, or use in
derivative works.
c© Jonny Evans 2018–2023.



4 1.1. Hamilton’s equations in 2D

From a purely mathematical point of view, Equation (1.1) is a machine for
turning the Hamiltonian2 function H(p, q) into a one-parameter family of
maps φHt : R2 → R2 called the associated Hamiltonian flow). The flow is
defined as follows:

φHT (p0, q0) = (p(T ), q(T )),

where (p(t), q(t)) is the solution to the differential equation (1.1) with p(0) =
p0 and q(0) = q0. Conservation ofH means that the flow satisfiesH(φHt (p, q)) =
H(p, q).

Remark 1.1. In conclusion, given a function H we get a flow φHt conserving
H. This is a simple instance of Noether’s theorem. See Section D.3 for a full
discussion.

Example 1.2. If H1 = 1
2
(p2 + q2) then ṗ = −q, q̇ = p, so(

p(t)
q(t)

)
=

(
cos t − sin t
sin t cos t

)(
p(0)
q(0)

)
.

This corresponds to a rotation of the plane with constant angular speed.
Conservation of H1 means that points stay a fixed distance from the origin.

Example 1.3. If H2 =
√
p2 + q2 then ṗ = −q/H2, q̇ = p/H2. Since Ḣ2 = 0,

we can treat H2 as a constant, so the solution is(
p(t)
q(t)

)
=

(
cos(t/H2) − sin(t/H2)
sin(t/H2) cos(t/H2)

)(
p(0)
q(0)

)
.

This flow has the same orbits (circles of radius H2), but now the orbit at
radius H2 has period 2πH2.

Theorem 1.4. If all level sets of H are closed (circular) orbits then there
exists a diffeomorphism α : R→ R such that, for the Hamiltonian α ◦H, all
orbits have period 2π.

Proof. By the chain rule, Hamilton’s equations for α ◦H are

ṗ = −∂(α ◦H)

∂q
= −α′(H)

∂H

∂q
and q̇ =

∂(α ◦H)

∂p
= α′(H)

∂H

∂p
,

2Any function can be used as a Hamiltonian, not only ones with physical relevance.
The adjective Hamiltonian is just here to indicate the way we’re using the function H, not
that there is anything special about H.
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◦ ◦••

φH1
π (2, 0)

φH1
π (1, 0)

◦ ◦•

•

φH2
π (2, 0)

φH2
π (1, 0)

Figure 1.1: Above: Snapshots at t = π of the Hamiltonian systems in Ex-
amples 1.2 (left) and 1.3 (right) showing the orbits and positions of φHπ (1, 0)
and φHπ (2, 0).

so the effect of postcomposing H with α is to rescale (ṗ, q̇) by α′(H). Since
H is conserved along orbits, α′(H) is constant along orbits. This means that
the orbits of the Hamiltonian flow for α ◦ H are just the orbits of the flow
for H, traversed at α′(H) times the speed. Let Ω := H−1(b) be one of the
orbits. If the period of the orbit Ω of the flow φHt is T (b) then its period
under the flow φα◦Ht is T (b)/α′(b). To ensure that all periods are 2π, we
should therefore use α(b) = 1

2π

∫ b
0
T (c) dc.

Example 1.5. Let us revisit Example 1.3. The period of the orbit H−1
2 (b)

is 2πb, so the proof of Theorem 1.4 gives us α(b) = 1
2π

∫ b
0

2πc dc = b2/2. This
tells us that to give all orbits the same period, we should use the Hamiltonian
1
2
H2

2 , which is precisely the Hamiltonian H1 from Example 1.2.

Periods are usually hard to find explicitly; for example, to calculate the
period of a simple pendulum in terms of its length, initial displacement and
the gravitational constant, you need to use elliptic functions (see, for example,
[42, Chapter 1] or [119, §44]). Similarly, the map α is difficult to write down
explicitly in examples. The following theorem gives a useful formula

Theorem 1.6. In a 1-parameter family of closed orbits Ωb, b ∈ R, of a
Hamiltonian system, the period of Ωb is d

db

∫
Ωb
p dq.

Proof. Assume for simplicity3 that we have coordinates (p, q), with q ∈
R/2πZ, such that the orbits have the form Ωb := {(pb(q), q) : q ∈ R/2πZ}

3One can always find coordinates (p, q) in which the orbits have this form.
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for some functions pb.

q

p

Ωb

Then

T (b) =

∫ 2π

0

dt

dq
dq =

∫ 2π

0

dq

q̇

=

∫ 2π

0

dq

∂H/∂pb
=

∫ 2π

0

∂pb
∂H

dq =
d

db

∫ 2π

0

p dq.

Remark 1.7. This means that α(b) = 1
2π

∫
Ωb
p dq is another way of writing

the function we found in Theorem 1.4. Note that

α(b1)− α(b0) =
1

2π

∫
Ωb1−Ωb0

p dq =
1

2π

∫
C

dp ∧ dq,

by Stokes’s theorem, where C is the cylinder of orbits
⋃
b∈[b0,b1] Ωb. Therefore

if we choose α(b0) = 0, the function α(b) is just the dp ∧ dq-area of the
cylinder connecting Ωb to Ωb0 .

Ωb1

Ωb0

C

Our goal in this first lecture is to generalise these observations to Hamiltonian
systems in higher dimensions. It will be convenient to introduce the language
of symplectic geometry.
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1.2 Symplectic geometry

This section uses Lie derivatives, Lie brackets, and the magic formulas that
relate these to exterior derivative and interior product; we refer to Appendix
B for a quick overview of these concepts and a proof of the magic formulas.

Definition 1.8. Let X be a manifold and ω a 2-form. Let vect(X) denote
the space of vector fields on X and Ω1(X) the space of 1-forms. Define a map
vect(X)→ Ω1(X) by V 7→ ιV ω. We say that ω is nondegenerate if this map
is an isomorphism. A symplectic form is a closed, nondegenerate 2-form.

Definition 1.9. Let ω be a symplectic form on a manifold X. Suppose we
are given a smooth function H : X → R. By nondegeneracy of ω, there
is a unique vector field VH such that ιVHω = −dH. We call vector fields
arising in this way Hamiltonian vector fields. The flow φHt along VH is called
a Hamiltonian flow.

Example 1.10. Let ω = dp ∧ dq on X = R2 and pick a Hamiltonian func-
tion H(p, q). Recall that the Hamiltonian flow is defined by (p(t), q(t)) =
φHt (p(0), q(0)) and the Hamiltonian vector field is VH = (ṗ, q̇). Using the
explicit formula for ω, we have ιVHω = ṗ dq − q̇ dp. By definition, ιVHω =
−dH = −∂H

∂p
dp − ∂H

∂q
dq. Comparing components, we recover Hamilton’s

equations:

ṗ = −∂H
∂q

, q̇ =
∂H

∂p
.

Lemma 1.11. A Hamiltonian flow φHt satisfies

(φHt )∗ω = ω and (φHt )∗H = H.

Proof. We have

d

dt
((φHt )∗ω) = (φHt )∗LVHω and

d

dt
((φHt )∗H) = (φHt )∗LVHH,

so it suffices to show that that the Lie derivatives LVHω and LVHH vanish.
For this, we use Cartan’s formula (Equation (B.2)) LV η = ιV dη + dιV η for
the Lie derivative of a differential form η along a vector field V .

We have
LVHω = dιVHω + ιVHdω
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Since dω = 0 the second term vanishes. Since ιVHω = −dH, we get

LVHω = −ddH = 0.

Finally, we have LVHH = ιVHdH = −ω(VH , VH) = 0, as ω is antisymmetric.

Remark 1.12. Note that if H is also allowed to depend4 explicitly on t then
the previous argument for conservation of energy ((φHt )∗H = H) breaks
down; an extra dHt/dt term appears in d((φHtt )∗Ht)/dt. Nonetheless, the
flow preserves the symplectic form. For example, consider the Hamiltonian
Ht = t. We have φHtt (x) = x for all t, which certainly preserves the symplectic
form, but energy changes over time.

Lemma 1.13. The Lie bracket of two Hamiltonian vector fields VF and VG
is the Hamiltonian vector field V{F,G}, where {F,G} = ω(VF , VG).

Proof. By Equation (B.3) in Appendix B, we have ι[VF ,VG]ω = [LVF , ιVG ]ω.
Since VF is Hamiltonian, LVFω = 0. Therefore

ι[VF ,VG]ω = LVF ιVGω = dιVF ιVGω + ιVF dιVGω.

Since dιVGω = −ddG = 0, we get ι[VF ,VG]ω = dιVF ιVGω. Since ιVF ιVGω =
−ω(VF , VG) this tells us that [VF , VG] = Vω(VF ,VG) as required.

Definition 1.14. The quantity {F,G} = ω(VF , VG) is called the Poisson
bracket of F and G. We say that F and G Poisson commute if {F,G} = 0.

Remark 1.15 (Exercise 1.45). Recall that the flows along two vector fields
commute if and only if the Lie bracket of the vector fields vanishes. Lemma
1.13 shows that two Hamiltonian flows φFt and φGt commute if and only if
the Poisson bracket {F,G} is locally constant.

Lemma 1.16 (Exercise 1.46). Let F and G be smooth functions. Define
Ft(x) := F (φGt (x)). Then dFt

dt
= {G,Ft}.

Remark 1.17. Lemma 1.16 should look familiar to readers who know some
quantum mechanics; it is the classical counterpart of Heisenberg’s equation of

4We call a Hamiltonian autonomous it does not depend on t and non-autonomous
otherwise. You should imagine that if H is autonomous then the system is just getting
on by itself, whereas if H depends on t then there is some external input changing the
system.
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motion for a quantum observable F̂ evolving under the quantum Hamiltonian
Ĝ.

1.3 Integrable Hamiltonian systems

Definition 1.18 (Hamiltonian Rn-actions). Suppose we have a symplectic
manifold (X,ω) and a map

H = (H1, . . . , Hn) : X → Rn

for which the components H1, . . . , Hn satisfy {Hi, Hj} = 0 for all pairs i, j.
In what follows, we will assume that the vector fields VHi can be integrated
for all time, so that the flows φHit are defined for all t ∈ R. By Remark 1.15,
the flows φH1

t1 , . . . , φ
Hn
tn commute with one another and hence define an action

of the group Rn on X. We call this a Hamiltonian Rn-action. We write
φHt := φH1

t1 · · ·φ
Hn
tn for this Rn-action and Ω(x) for its orbit through x ∈ X.

Example 1.19 (Not a Hamiltonian Rn-action). Consider the Hamiltonians
x and y on R2. These generate an R2-action on R2 where (s, t) acts by
φxt φ

y
s(x0, y0) = (x0 + s, y0 + t). This example is not a Hamiltonian R2-action

because the Poisson bracket {x, y} = 1 is not zero (i.e. the Hamiltonians do
not Poisson-commute even though the flows commute).

Remark 1.20. More generally, for a Lie group G with Lie algebra g, a Hamil-
tonianG-action is aG-action in which every one-parameter subgroup exp(tξ),
ξ ∈ g, acts as a Hamiltonian flow φ

Hξ
t , and the assignment ξ 7→ Hξ is a Lie

algebra map (i.e. H[ξ1,ξ2] = {Hξ1 , Hξ2} for all ξ1, ξ2 ∈ g).

Definition 1.21. A submanifold L of a symplectic manifold (X,ω) is called
isotropic if ω vanishes on vectors tangent to L and Lagrangian if it is isotropic
and 2 dim(L) = dim(X).

Lemma 1.22 (Exercise 1.47). If L is an isotropic submanifold of the sym-
plectic manifold (X,ω) then 2 dim(L) ≤ dim(X).

Lemma 1.23. Suppose that H : X → Rn generates a Hamiltonian Rn-
action. The orbits of this action are isotropic. As a consequence, if X
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contains a regular point5 of H then n ≤ 1
2

dimX.

Proof. The tangent space to an orbit is spanned by the vectors VH1 , . . . , VHn ,
which satisfy ω(VHi , VHj) = {Hi, Hj} = 0, so the orbits are isotropic. If
x ∈ X is a regular point then the differentials dH1, . . . , dHn are linearly
independent at x, so the vectors VH1(x), . . . , VHn(x) span an n-dimensional
isotropic space, which can have dimension at most 1

2
dimX.

Corollary 1.24. If dimX = 2n and H : X → Rn is a smooth map with
connected fibres whose components satisfy {Hi, Hj} = 0, then the regular
fibres are Lagrangian orbits of the Rn-action.

Proof. Since {Hi, Hj} = 0, Lemma 1.16 implies that Hj is constant along
the flow of VHi . In particular, this means that if x ∈ H−1(b) then its orbit
Ω(x) is contained in the fibre H−1(b). If b is a regular value then the fibre
H−1(b) is n-dimensional, and the orbit of each point in the fibre is a n-
dimensional isotropic (i.e. Lagrangian) submanifold, so the fibre is a union of
Lagrangian submanifolds. These orbits are open submanifolds of the fibre:
if Ω(x) ⊆H−1(b) then for any open neighbourhood T ⊆ Rn of 0, the subset
{φHt (x) : t ∈ T} is an open neighbourhood of x ∈ H−1(b) contained in
Ω(x). If the fibre is connected then it cannot be a union of more than one
open submanifold, so the Rn-action is transitive on connected regular fibres,
as required.

Definition 1.25. Let (X,ω) be a 2n-dimensional symplectic manifold. We
say that a smooth map H : X → Rn is a complete commuting Hamiltonian
system if the components H1, . . . , Hn satisfy {Hi, Hj} = 0 for all i, j. We say
that a complete commuting Hamiltonian system H is an integrable Hamil-
tonian system if

• H(X) contains a dense open set of regular values,

• H is proper (preimages of compact sets are compact) and has connected
fibres.

The first assumption rules out trivial examples; the properness condition
ensures that the flows of the vector fields VH1 , . . . , VHn exist for all time.

5Recall if H : X → Rn is a smooth map then a point x ∈ X is called regular if dH is
surjective at x and a point b ∈ Rn is called a regular value if the fibre H−1(b) consists
entirely of regular points; in this case we call H−1(b) a regular fibre.
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1.4 Period lattices

We want to generalise the idea that all orbits have the same period, but now
we have n Hamiltonians.

Definition 1.26. Suppose we have an integrable Hamiltonian systemH : X →
Rn. Let B ⊆ H(X) ⊆ Rn be an open subset of the image of H . A local
section over B is a map σ : B → X such that H ◦ σ = id.

Remark 1.27. Note that if σ is a local section over B then σ(b) is necessarily a
regular point ofH for every b ∈ B because dH(dσ(TbB)) = id(TbB) = TbB.

Definition 1.28. Given an integrable Hamiltonian systemH : X → Rn and
a local section σ : B → X, over a subset B ⊆ H(X), the period lattice at
b ∈ B is defined to be:

ΛHb := {t ∈ Rn : φHt (σ(b)) = σ(b)},

and the period lattice is

ΛH := {(b, t) ∈ B × Rn : t ∈ ΛHb }.

We will often omit the superscript H if H is clear from the context. We say
that the period lattice is standard if Λ = B × (2πZ)n.

Lemma 1.29. ΛHb consists of tuples t ∈ Rn such that φHt fixes every point
of the orbit Ω(σ(b)).

Proof. By definition, t ∈ ΛHb if and only if φHt fixes σ(b). Any other point
in this orbit can be written as φHt′ (σ(b)) for some t′. Therefore if t ∈ ΛHb , we
have

φHt (φHt′ (σ(b))) = φHt′ (φ
H
t (σ(b))) = φHt′ (σ(b)),

so φHt fixes every point in the orbit.

Remark 1.30. If the orbit Ω(σ(b)) is dense in H−1(b), this means

ΛHb = {t ∈ Rn : φHt |H−1(b) = idH−1(b)}.

Example 1.31. In Example 1.2, the Hamiltonian is H1(p, q) = 1
2
(p2 + q2)

on R2. If we take B = R>0 and choose the section σ(b) = (
√

2b, 0) then
φH1
t (σ(b)) = (

√
2b cos t,

√
2b sin t) and the period lattice is standard: every

point σ(b) returns to itself after time 2π. See Figure 1.2 (left).
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Example 1.32. In Example 1.3, the Hamiltonian is H2(p, q) =
√
p2 + q2

on R2. If we take the section σ(b) = (b, 0) then we have φH2
t (σ(b)) =

(b cos(t/b), b sin(t/b)) so the point σ(b) returns to itself after time 2πb. The
period lattice is therefore {(b, 2πbn) : b > 0, n ∈ Z}. See Figure 1.2 (right).

σ(B)◦ ◦••

φH1
π (2, 0)

φH1
π (1, 0)

σ(B)◦ ◦•

•

φH2
π (2, 0)

φH2
π (1, 0)

b

pe
ri
od

of
Ω

(σ
(b

))

0

2π

−2π

b

pe
ri
od

of
Ω

(σ
(b

)) 2πb4πb
6πb

2πb−4πb
−6πb

0

Figure 1.2: Above: Snapshots at t = π of the Hamiltonian systems in Exam-
ples 1.31 (left) and 1.32 (right) showing the orbits and positions of φHπ (1, 0)
and φHπ (2, 0). Below: The period lattices from Example 1.31 (left: standard)
and Example 1.32 (right: non-standard).

Example 1.33. Consider a Hamiltonian system on R2 whose level sets are
shown in Figure 1.3. This Hamiltonian generates an R-action which has three
types of orbits: the fixed points (marked • in the figure); the two separatrices
(arcs connecting the central fixed point to itself); the remaining orbits are
closed loops either inside or outside the separatrices. The separatrices have
infinite period (it takes infinitely long to flow around them). If we take as
Lagrangian section the wiggly line segment on the left then the period lattice
looks like the figure on the right.

The justification for “lattice” in the name period lattice comes from the fol-
lowing result:
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pe
ri
od

b

Figure 1.3: The Hamiltonian system (left) and period lattice (right) for Ex-
ample 1.33. The wiggly line is a Lagrangian section. The infinite period
of the separatrix is what gives rise to the vertical asymptotes of the period
lattice.

Lemma 1.34 (Exercise 1.49). For each b ∈ B, the intersection Λb = Λ ∩
({b} × Rn) is a lattice in Rn, that is a discrete subgroup of Rn. The rank
of the lattice is lower semicontinuous as a function of b, that is, b has a
neighbourhood V such that rank(Λb′) ≥ rank(Λb) for all b′ ∈ V .

Example 1.35. In Example 1.33, the period lattice for most orbits is isomor-
phic to Z, but where σ(B) intersects the separatrix orbit the period lattice
is the zero lattice; this corresponds to the vertical asymptote in Figure 1.3.

The following result can be found in Arnold’s book [3, Lemma 3, p.276], and
tells us that lattices are what we think they are. We will use it below to
explain why compact orbits are diffeomorphic to tori.

Lemma 1.36. If Λ ⊆ Rn is a lattice then there is a basis e1, . . . , en of Rn

such that Λ is the Z-linear span of the vectors e1, . . . , ek for some k ≤ n.

1.5 Liouville coordinates

In what follows, we will usually use Lagrangian sections to define the period
lattice, i.e. sections whose image is a Lagrangian submanifold. These always
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exist locally:

Lemma 1.37 (Exercise 1.48). LetH : X → Rn be an integrable Hamiltonian
system. There exists a local Lagrangian section through any regular point x.

Theorem 1.38 (Liouville coordinates). Let H : X → Rn be an integrable
Hamiltonian system, let B ⊆ Rn be an open set, and let σ : B → X be a local
Lagrangian section. Define

Ψ: B × Rn → X, Ψ(b, t) = φHt (σ(b)).

Then Ψ is both an immersion and a submersion and Ψ∗ω =
∑
dbi ∧ dti,

where (b1, . . . , bn) are the standard coordinates on B ⊆ Rn. This means that
(b1, . . . , bn, t1, . . . , tn) provide local symplectic coordinates on a neighbourhood
of σ(B); we call these Liouville coordinates.

Proof. We first verify that Ψ∗ω =
∑n

i=1 dbi ∧ dti on pairs of basis vectors ∂bi
and ∂ti . First, observe that, by definition of Ψ, we have

Ψ∗∂bi = (φHt )∗σ∗(∂bi), Ψ∗∂tiVHi .

The vectors Ψ∗∂bi and Ψ∗∂bj are tangent to φHt (σ(B)), which is the image
of a Lagrangian submanifold under a series of Hamiltonian flows, hence La-
grangian. Therefore ω(Ψ∗∂bi ,Ψ∗∂bj) = 0.

Since Ψ∗∂ti = VHi , we have ω(Ψ∗∂ti ,Ψ∗∂tj) = ω(VHi , VHj) = {Hi, Hj} = 0.

Finally, we have ω(Ψ∗∂bi ,Ψ∗∂tj) = −(ιVHjω)(Ψ∗∂bi)dHj(Ψ∗∂bi). Since the
flow along φHt preserves the level sets of Hj, we have (Hj ◦ Ψ)(b, t) = bj.
Therefore dHj(Ψ∗(∂bi)) = dbj(∂bi) = δij. This completes the verification that
Ψ∗ω =

∑
dbi ∧ dti.

This implies that Ψ is both an immersion and a submersion: if this failed at
some point then Ψ∗ω would be degenerate there.

Remark 1.39. Note that the period lattice is given by ΛH = Ψ−1(σ(B)).
Since Ψ is a symplectic map and σ is a Lagrangian section, the period lattice
is a Lagrangian submanifold of B × Rn with respect to

∑
dbi ∧ dti.
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1.6 The Arnold-Liouville theorem

Theorem 1.40 (Little Arnold-Liouville theorem). Let H : X → Rn be an
integrable Hamiltonian system and σ : B → X be a local section. Each orbit
Ω(σ(b)) is diffeomorphic to

(
Rk/Zk

)
× Rn−k for some k. In particular, if

Ω(σ(b)) is compact then it is a torus.

Proof. The action of Rn defines a diffeomorphism Rn/Λb → Ω(σ(b)). Since
Λb is a lattice, the result follows from the classification of lattices in Lemma
1.36.

We now focus attention on a neighbourhood of a regular fibre (i.e. one con-
taining no critical points). By Corollary 1.24, a regular fibre is an orbit of the
Rn-action. Since H is proper, its fibres are compact, so by Theorem 1.40, a
regular fibre is a torus; this is the analogue of assuming that our fibres are
circles in Theorem 1.4. Since the set of regular values is open, we can shrink
the domain B of our local Lagrangian section so that it is a disc consisting
entirely of regular values. Our goal is to find a map α : B → Rn such that
α ◦H has standard period lattice.

Lemma 1.41 (Exercise 1.50). Let H : X → B ⊆ Rn be an integrable Hamil-
tonian system over a disc with only regular fibres, let α : B → C ⊆ Rn be a
diffeomorphism, and let G := α ◦H. Let A(b) be the matrix with ijth entry6

Aij(b) = ∂αi
∂bj

(b) (the Jacobian of α). Then:

(i) the Hamiltonian vector fields ofG andH are related by VGi =
∑

j AijVHj ,

(ii) the Hamiltonian flows of G and H are related by φGt = φHAT t, and

(iii) the period lattices ΛG and ΛH are related by ATΛGα(b) = ΛHb .

Theorem 1.42 (Action-angle coordinates). Let H : X → B ⊆ Rn be an
integrable Hamiltonian system over the disc with only regular fibres and
pick a local Lagrangian section σ. There is a local change of coordinates
α : B → C ⊆ Rn such that G := α ◦H generates a Hamiltonian torus ac-
tion on X. In other words, the period lattice ΛG is standard and the map
(c, t) 7→ φGt (σ(α−1(c))) defined in Theorem 1.38 descends to give a symplec-
tomorphism C × (R/2πZ)n → G−1(C) = H−1(B).

6i.e. ith row, jth column.
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Proof. The following proof is due to Duistermaat [26].

For each b ∈ B, let 2πτ1(b), . . . , 2πτn(b) ∈ Rn be a collection of vectors
(smoothly varying in b) which span the lattice of periods ΛHb . This is possible
because B is contractible so there is no obstruction to picking sections of the
projection Λ→ B. This means that φHτi(b) = id for i = 1, . . . , n. Let us write
τi(b) = (Ai1(b), . . . , Ain(b)). Let A be the matrix with ijth entry Aij(b).
Then ΛHb = 2πATZn. By Lemma 1.41(iii), it is sufficient to find a map
α = (α1, . . . , αn) : B → Rn whose Jacobian ∂αi/∂bj is Aij.

By the Poincaré lemma, we can find such functions αi provided

∂Aij
∂bk

=
∂Aik
∂bj

, (1.2)

so it remains to check this identity.

Let Ψ: B × Rn → X be the Liouville coordinates associated to our choice
of Lagrangian section and Λ = Ψ−1(σ(B)) be the period lattice. Since Ψ
is symplectic and σ(B) is Lagrangian, Λ is Lagrangian. Moreover, Λ is a
union of sheets, each traced out by a single lattice point. For example,
{(b, τi(b)) : b ∈ B} traces out a Lagrangian sheet for each i. In coordinates,
this is {(b1, . . . , bn, Ai1(b), . . . , Ain(b)) : b ∈ B}, which is Lagrangian if and
only if Equation (1.2) holds (Exercise 1.51).

Definition 1.43. The Liouville coordinates associated to the new, periodic
Hamiltonian system are called action-angle coordinates. More precisely, the
new Hamiltonians α1 ◦H , . . . , αn ◦H are called action coordinates and the
new 2π-periodic conjugate coordinates t1, . . . , tn are called angle coordinates.

Corollary 1.44 (Big Arnold-Liouville theorem). If H : M → Rn is an in-
tegrable Hamiltonian system then any regular fibre is a torus and admits a
neighbourhood symplectomorphic to B × T n, where B ⊆ Rn is an open ball
and the symplectic form is given by

∑n
i=1 dbi∧dti. Under this symplectomor-

phism, the orbits of the original system are sent to the tori {b} × T n.

1.7 Solutions to inline exercises

Exercise 1.45 (Remark 1.15). Recall that the flows along two vector fields
commute if and only if the Lie bracket of the vector fields vanishes. Show
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that two Hamiltonian flows φFt and φGt commute if and only if the Poisson
bracket {F,G} is locally constant.

Solution. We have [VF , VG] = V{F,G} by Lemma 1.13. Since ιV{F,G}ω =
−d{F,G}, we see that the Lie bracket vanishes if and only if d{F,G} = 0
so that all partial derivatives of {F,G} vanish. This happens if and only if
{F,G} is locally constant.

Exercise 1.46 (Lemma 1.16). Let F and G be smooth functions. Define
Ft(x) := F (φGt (x)). Then dFt

dt
= {G,Ft}.

Proof. We have dFt
dt

= dF (VG) = −ω(VF , VG) = {G,F}.

Exercise 1.47 (Lemma 1.22). If L is an isotropic submanifold of the sym-
plectic manifold (X,ω) then 2 dim(L) ≤ dim(X).

Proof. For any point x ∈ L, the tangent space TxL is an isotropic subspace
of the symplectic vector space TxX. The claim now follows from Lemma A.7
in the appendix on symplectic linear algebra.

Exercise 1.48 (Lemma 1.37). LetH : X → Rn be an integrable Hamiltonian
system. There exists a local Lagrangian section through any regular point x.

Proof. It is a theorem of Darboux (see [3, Section 43.B], [5, Corollary I.1.11],
[77, Theorem 3.15]) that any point x in a symplectic manifold is the cen-
tre of a coordinate chart (p1, . . . , pn, q1, . . . , qn) where the symplectic form is∑

i dpi ∧ dqi. Let us work locally in these coordinates. We treat this local
chart as a symplectic vector space and use some notions from the appendix
on symplectic linear algebra. If we define J : R2n → R2n to be the linear
map J(p, q) = (−q,p) then J is an ω-compatible complex structure (see
Definition A.9). Thus if L is a Lagrangian subspace in R2n, the subspace
JL is a complementary Lagrangian subspace (Lemma A.13). Since TxΩ(x)
is the tangent space to the orbit Ω(x), its image JTxΩ(x) is a Lagrangian
complement. The subspace JTxΩ(x) is the tangent space of a linear La-
grangian submanifold L of the Darboux ball, which is transverse to Ω(x) at
x. The differentials dH1, . . . , dHn are linearly independent at x but vanish
on TxΩ(x) because H is constant on Ω(x). Therefore these differentials re-
strict to linearly independent forms on L near x. This implies that the map
H|L : L→ Rn is a local diffeomorphism in a neighbourhood of x, so that its
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local inverse is a local section of H near x whose image is contained in L
and hence Lagrangian.

Exercise 1.49 (Lemma 1.34). LetH : X → Rn be an integrable Hamiltonian
system, let B ⊆ Rn be an open set of regular values and let σ : B → X be
a local Lagrangian section; write Λ for the period lattice. For each b ∈ B,
the intersection Λb = Λ ∩ ({b} × Rn) is a lattice in Rn, that is a discrete
subgroup of Rn. The rank of the lattice is lower semicontinuous as a function
of b, that is, b has a neighbourhood V such that rank(Λb′) ≥ rank(Λb) for
all b′ ∈ V .

Proof. Let σ : B → X be a local Lagrangian section of H such that σ(b) is
a regular point ofH for all b ∈ B. We will first show that, for all b ∈ B, the
period lattice Λb is a discrete subgroup of Rn.

The subset Λb is the stabiliser of b under the action of Rn, so it is a subgroup
of Rn. To prove discreteness, we need to show that there is an open set
W ⊆ Rn such that W ∩ Λb = {0}. Since Ψ: B × Rn → X is a local
diffeomorphism, there is an open set W ′ ⊆ B × Rn (containing (b, 0)) such
that Ψ: W ′ → Ψ(W ′) is a diffeomorphism. There exist open sets b ∈ W1 ⊆ B
and 0 ∈ W2 ⊆ Rn such that W1 ×W2 ⊆ W ′ as these product sets form a
basis for the product topology. In particular, 0 is the only point t in W2 such
that Ψ(b, t) = b. We may therefore take W = W2 to see that Λb is discrete.

To see that the rank of the lattice is lower semicontinuous, we need to show,
for each b ∈ B, there is a neighbourhood V of b such that rank(Λb′) ≥
rank(Λb) for b′ ∈ V .

Let λ1(b), . . . ,λk(b) be a Z-basis for Λb = {t ∈ Rn : φHt (b) = b}. Then,
since Ψ is an immersion (Theorem 1.38), there is an open neighbourhood of
b ∈ B such that, for b′ in this open neighbourhood, there are solutions t =
λ1(b′), . . . , t = λk(b

′) to the equation φHt (b′) = b′ which vary continuously
in b′. Since the condition of being linearly independent is an open condition,
the points λ1(b′), . . . ,λk(b

′) are linearly independent for b′ in a, possibly
smaller, neighbourhood of b, so the rank of the lattice Λb′ is at least k for b′
in a neighbourhood of b.

Exercise 1.50 (Lemma 1.41). LetH : X → B ⊆ Rn be an integrable Hamil-
tonian system over a disc with only regular fibres, let α : B → C ⊆ Rn be a
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diffeomorphism, and let G := α ◦H. Let A(b) be the matrix with ijth entry7

Aij(b) = ∂αi
∂bj

(b) (the Jacobian of α). Then:

(i) the Hamiltonian vector fields ofG andH are related by VGi =
∑

j AijVHj ,

(ii) the Hamiltonian flows of G and H are related by φGt = φHAT t, and

(iii) the period lattices ΛG and ΛH are related by ATΛGα(b) = ΛHb .

Solution. Let us write Aij = ∂αi
∂bj

. We have

ι∑
j AijVHj

ω =
∑
j

∂αi
∂bj

ιVHjω

= −
∑
j

∂αi
∂bj

dHj

= −d(αi ◦H) = −dGi.

This proves (i): VGi =
∑

j AijVHj . Thus, if t is the row vector (t1, . . . , tn),
then ∑

i

tiVGi =
∑
i,j

tiAijVHj ,

where the matrix Aij is constant on each orbit. Therefore we obtain (ii):
φGt = φHAT t.

The lattice ΛGα(b) of G on the consists of tuples t = (t1, . . . , tn) such that
φGt = id on G−1(α(b)). By (ii), this is equivalent to φHAT t = id on the orbit
H−1(b), so t ∈ ΛGα(b) if and only if AT t ∈ ΛHb , which gives (iii):

ATΛGα(b) = ΛHb .

Exercise 1.51 (From proof of Theorem 1.42). Show that a section σ(b) =
(b, t(b)) is Lagrangian with respect to the symplectic form ω =

∑
dbi ∧ dti if

and only if ∂ti/∂bj = ∂tj/∂bi for all i, j.

Solution. The tangent space to the section σ is spanned by the vectors
σ∗(∂bi) so it suffices to check that ω(σ∗(∂bi), σ∗(∂bj)) = 0 for all i, j. We
have σ∗(∂bi) = ∂bi +

∑
k(∂ti/∂bk)∂bk , which gives

ω(σ∗(∂bi), σ∗(∂bj)) = ∂ti/∂bj − ∂tj/∂bi.

7i.e. ith row, jth column.
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Chapter 2

Lagrangian fibrations

We have seen that an integrable Hamiltonian system is a map X → Rn

whose regular fibres are Lagrangian submanifolds. This structure, called a
Lagrangian fibration1 turns out to be very useful for studying the geometry
and topology of symplectic manifolds.

In this chapter, we introduce a general definition of Lagrangian fibration. We
then discuss the regular Lagrangian fibrations: those with no critical points,
i.e. proper submersionsX → B with connected Lagrangian fibres. We will see
that these are locally the same as integrable Hamiltonian systems (Remark
2.7). In particular, the fibres are tori (Corollary 2.8). For this reason, we
often use the name Lagrangian torus fibration instead of Lagrangian fibration.
Next, we will see that local action coordinates equip the image B with a
geometric structure called an integral affine structure, which can also be
understood in terms of the symplectic areas of cylinders connecting fibres.
Finally, we will show that under certain assumptions (existence of a global
Lagrangian section), the integral affine manifold B is enough information to
reconstruct the Lagrangian fibration X → B completely.

As the book progresses, we will allow our fibrations to have progressively
worse critical points.

1The word fibration also appears in algebraic topology (e.g. Serre fibrations) where
it describes maps with a homotopy lifting property. Lagrangian torus fibrations are not
fibrations in that sense: though they are fibre-bundles over the regular locus, homotopy
lifting fails near the critical points. This is an unfortunate accident of history.

This material has been/will be published by Cambridge University Press as Lectures on
Lagrangian Torus Fibrations by Jonny Evans. This pre-publication version is free to
view and download for personal use only. Not for re-distribution, re-sale, or use in
derivative works.
c© Jonny Evans 2018–2023.
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2.1 Lagrangian fibrations

Definition 2.1. Recall that a stratification of a topological space B is a
filtration

∅ =: B−1 ⊆ B0 ⊆ · · · ⊆ Bd ⊆ Bd+1 ⊆ · · · ⊆ B,

where each Bd is a closed subset such that, for each d, the d-stratum Sd(B) :=
Bd \ Bd−1 is a smooth d-dimensional manifold (possibly empty) and B =⋃
d≥0Bd. We say that B is finite-dimensional if the d-stratum is empty

for sufficiently large d, and we say that B is n-dimensional if B is finite-
dimensional and n is maximal such that Sn(B) is nonempty (in this case we
call Sn(B) the top stratum).

We adopt the following working definition of a Lagrangian torus fibration,
given in [35, Definition 2.5]. It is extremely weak because it places no re-
strictions on the critical points of the fibration.

Definition 2.2. Let (X,ω) be a 2n-dimensional symplectic manifold and B
be an n-dimensional stratified space. A Lagrangian torus fibration f : X → B
is a proper continuous map such that f is a smooth submersion over the top
stratum with connected Lagrangian fibres and the other fibres are themselves
connected stratified spaces with isotropic strata. We call Breg := Sn(B) the
regular locus of H and Bsing := B \ Sn(B) the discriminant locus.

Remark 2.3. Throughout Chapter 1, B denoted an open subset of Rn. This
is no longer the case. However, it is still the target (“base”) of the fibration,
hence the choice of letter.

2.2 Regular Lagrangian fibrations

We first study Lagrangian fibrations with no critical points. It turns out
(Lemma 2.6) that these are locally equivalent to integrable Hamiltonian sys-
tems.

Definition 2.4. We say that a Lagrangian fibration f : X → B is regular
if B = Breg, that is if f is a smooth proper submersion with connected
Lagrangian fibres.
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Lemma 2.5. Let (X,ω) be a symplectic manifold. Suppose that H : X → R
is a Hamiltonian function and L ⊆ X is a Lagrangian submanifold such that
L ⊆ H−1(c) for some c ∈ R. Then φHt (x) ∈ L for all x ∈ L, t ∈ R, i.e. L is
invariant under the Hamiltonian flow of H.

Proof. Since L ⊆ H−1(c), the function H is constant on L, so the directional
derivative v(H) = dH(v) vanishes whenever v ∈ TL. We have ιVHω = −dH.
If v ∈ TL then

ω(VH , v) = −dH(v) = 0.

This means that VH is in the symplectic orthogonal complement2 (TL)ω.
Since L is Lagrangian, TL = (TL)ω, so this shows that VH ∈ TL. Since VH
is tangent to L, the flow of VH preserves L.

Lemma 2.6. Let (X,ω) be a symplectic 2n-manifold, B be an n-manifold
and let f : X → B be a regular Lagrangian fibration. Let (b1, . . . , bn) be local
coordinates on B. The functions b1 ◦ f, . . . , bn ◦ f Poisson commute.

Proof. Fix a point c ∈ B with bi(c) = ci. The Lagrangian fibre f−1(c) is
contained in all the level sets {bi ◦ f = ci}, i = 1, . . . , n. By Lemma 2.5, the
Hamiltonian vector field Vbi◦f is tangent to L (for all i). Therefore

{bi ◦ f, bj ◦ f} = ω(Vbi◦f , Vbj◦f ) = 0

because Vbi◦f , Vbj◦f ∈ TL and L is Lagrangian.

Remark 2.7. In particular, f is locally modelled on an integrable Hamiltonian
system.

Corollary 2.8 (Exercise 2.35). If f : X → B is a proper submersion with
connected Lagrangian fibres then the fibres are Lagrangian tori.

2.3 Integral affine structures

The big Arnold-Liouville theorem (Corollary 1.44) gives us more information
than Corollary 2.8: we will be able to show that the base of the Lagrangian
fibration has an integral affine structure.

2See Definition A.3 for the definition of the symplectic orthogonal complement.
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Definition 2.9. An integral affine transformation is a map T : Rn → Rn of
the form3 T (b) = bA + C where A ∈ GL(n,Z) and C ∈ Rn. An integral
affine structure on a manifold B is an atlas for B whose transition functions
are integral affine transformations.

Lemma 2.10. Suppose G : X → Rn and H : X → Rn are submersions
defining integrable Hamiltonian systems such that the period lattices are both
standard. Suppose that ψ : H(X) → G(X) is a diffeomorphism such that
G = ψ ◦ H. Then ψ is (the restriction to H(X) of) an integral affine
transformation.

Proof. Let φGt = φG1
t1 · · ·φ

Gn
tn and φHt = φH1

t1 · · ·φ
Hn
tn be the Hamiltonian Rn-

actions. Since G = ψ ◦H , Lemma 1.41(iii) implies A(b)ΛGψ(b) = ΛHb where
A(b) = dbψ. Since both period lattices are assumed to be standard, this
means A(b) ∈ GL(n,Z) for all b ∈ G(X). Since GL(n,Z) is discrete, this is
only possible if dψ is constant. Thus ψ(b) = bA+C for some A ∈ GL(n,Z)
and C ∈ Rn.

Remark 2.11. This proof contains the first instance of a useful trick we will
use repeatedly in what follows. Namely, by showing that the derivative of ψ
belongs to some discrete set, we were able to severely constrain ψ. For further
examples of this trick in action, see Proposition 3.3 (the boundary of the
moment polytope is piecewise linear) and Theorem 5.1 (“visible Lagrangians”
live over straight lines).

Theorem 2.12. If f : X → B is a regular Lagrangian fibration then B
inherits an integral affine structure.

Proof. Suppose we are given a coordinate chart4 ϕ : B 99K Rn. By Lemma
2.6, ϕ ◦ f is an integrable Hamiltonian system. Let α : Rn 99K Rn be the
map constructed in the proof of Theorem 1.42 so that α ◦ ϕ ◦ f are action
coordinates. This gives us a modified chart α ◦ ϕ : B 99K Rn. If we modify
a whole atlas in this way, we obtain a new atlas; we will check that the
resulting transition functions are integral affine transformations. Suppose
we have charts ϕ1 : B 99K Rn and ϕ2 : B 99K Rn which we modify using
α1 : Rn 99K Rn, α2 : Rn 99K Rn. The transition map for the modified atlas is

3We think of Rn as consisting of row vectors and matrices acting on the right.
4We write partially-defined maps with 99K to save overburdening the notation with

domains and targets.
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ψ12 := α2◦ϕ2◦ϕ−1
1 ◦α−1

1 . We know thatH := α1◦ϕ1◦f and G := α2◦ϕ2◦f
are integrable systems with standard period lattice, and ψ12 ◦H = G, so by
Lemma 2.10, ψ12 is an integral affine transformation.

Remark 2.13. In the construction of this integral affine structure, we modified
the atlas and, hence, the smooth structure of B. In other words, we don’t
get to pick the smooth structure on B: it is dictated to us by the geometry
of the fibration.

2.4 Flux map

There is a more geometric way to characterise the action coordinates. Let
f : X → B be a regular Lagrangian fibration. We assume for simplicity5 that
ω = dλ for some 1-form λ.

Consider the local system ξ → B whose fibre over b is the abelian group
H1(f−1(b);Z) ∼= Zn. Let p : B̃ → B be the universal cover and let ξ̃ =
p∗ξ. Since B̃ is simply-connected, ξ̃ is trivial. Let c1, . . . , cn be a Z-basis of
continuous sections of ξ̃ → B̃.

Definition 2.14 (Flux map). The flux map is defined to be the map I : B̃ →
Rn given by

I(b̃) = (I1(b̃), . . . , In(b̃)) :=

(
1

2π

∫
c1(b̃)

λ, . . . ,
1

2π

∫
cn(b̃)

λ

)
.

Lemma 2.15 (Flux map = action coordinates). Suppose that Ũ ⊆ B̃ and
U ⊆ B are open subsets such that p|Ũ : Ũ → U is a diffeomorphism. Then
I ◦ (p|Ũ)−1 : U → Rn gives action coordinates on U .

Proof. By Corollary 1.44, it is sufficient to prove this for the local model
(U × T n, ω0) =

∑
dbi ∧ dti). In that case, we can pick λ =

∑
bidti and take

c1, . . . , cn to be the standard basis of H1(T n;Z). Then we get Ii(b) = bi,
which recovers the action coordinates.

5Exercise 2.36: Explain how to modify the construction to get an integral affine struc-
ture on B even if ω is not exact. Disclaimer: This is one of the exercises that requires a
lot of work.
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Definition 2.16 (Fundamental action domain). We call I(Ũ) a fundamental
action domain for the Lagrangian fibration.

Remark 2.17. If we pick a different λ′ such that dλ′ = dλ then λ−λ′ is closed,
so
∫
ci(b)

(λ−λ′) is constant (by Stokes’s theorem) and the flux map changes by
an additive constant. If we pick a different Z-basis (c′1, . . . , c

′
n) then we can

express the new integrals as a Z-linear combination of I1, . . . , In. This means
that the flux map is determined up to an integral affine transformation.

The integral affine structure from Theorem 2.12 can now be understood in
the following way. We pull back the integral affine structure from Rn along
I to get an integral affine structure on B̃; this integral affine structure on B̃
descends to one on B (it is invariant under the action6 of deck transforma-
tions). We will prove this because it introduces an important new idea: the
affine monodromy.

Corollary 2.18. If we equip B̃ with the integral affine structure pulled back
from Rn along I then it is invariant under the action of the deck group of the
cover p : B̃ → B.

Proof. If g : B̃ → B̃ is a deck transformation of the cover p then c1(b̃), . . . , cn(b̃)
and c1(b̃g), . . . , cn(b̃g) are both Z-bases for the Z-module H1(f−1(p(b̃));Z)
and therefore they are related by some change-of-basis matrixM(g) ∈ GL(n,Z).
This implies that I(b̃g) = I(b̃)M(g). SinceM(g) is an integral affine transfor-
mation, this shows that the integral affine structure descends to the quotient
B.

Note that, with our conventions,M(g1g2) = M(g1)M(g2). Indeed,M : π1(B)→
GL(n,Z) is the monodromy of the local system ξ → A.

Definition 2.19. We call M : π1(B) → GL(n,Z) the affine monodromy in
what follows. The first example we will encounter where the affine mon-
odromy is nontrivial will be the fibrations with focus-focus critical points in
Chapter 6.

Remark 2.20. The manifold B can be reconstructed in the usual way as a
quotient of a closed fundamental domain for the universal cover B̃ → B
where the identifications are made using deck transformations. If we wish

6Conventions: We think of I(b) as a row vector, write concatenation of loops as α · β
meaning “follow α then β”, and write the deck group acting on the right.
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to reconstruct the integral affine structure on B then we use a fundamen-
tal action domain and the identifications are made using the integral affine
transformations M(g) corresponding to deck transformations g.

Remark 2.21. Given any integral affine manifold B, there is a developing
map, that is a (globally-defined) local diffeomorphism I : B̃ → Rn from the
universal cover into Euclidean space such that the integral affine structure
inherited by B̃ from the covering map agrees with the pullback of the integral
affine structure along the developing map. In our context, the flux map is
the developing map.

Remark 2.22. Suppose that f : X → B is an integrable system with B ⊆ Rn,
so that B already has an integral affine structure as open subset of Rn. This
does not agree with the integral affine structure constructed in Corollary 2.18
unless the period lattice is standard.

2.5 Uniqueness

Definition 2.23. Let f : X → B and g : Y → C be regular Lagrangian
fibrations. If φ : B → C is a diffeomorphism then a symplectomorphism
fibred over φ is a symplectomorphism Φ: X → Y such that g ◦ Φ = φ ◦ f .

X Y

B C

f g

Φ

φ

If φ = id, we will simply call Φ a fibred symplectomorphism and if moreover
f = g then we call Φ a fibred automorphism of f .

An argument similar to the one which proved Lemma 2.10 shows that the
map φ is an isomorphism of integral affine manifolds B → C. We now tackle
the converse question: if there is an integral affine isomorphism φ : B → C,
is there a symplectomorphism X → Y fibred over φ? We first prove some
preliminary lemmas.
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Lemma 2.24. Let Φ: X → X be a fibred automorphism of f : X → B and
suppose there is a Lagrangian section σ : B → X such that Φ ◦ σ = σ. Then
Φ = id.

Proof. The property that Φ = id can be checked locally, so we lose nothing by
passing to a small affine coordinate chart in B. Without loss of generality,
therefore, we will assume that f = H : X → B ⊆ Rn is an integrable
Hamiltonian system with Lagrangian section σ. By Corollary 1.44, X ∼=
B×T n with symplectic form ω =

∑
dbi∧dti. Since we have used the section

σ to define the Liouville coordinates, the section is given in these coordinates
by σ(b) = (b, 0). The fact that Φ is fibred means that Φ(b, t) = (b, q(b, t)) for
some function q(b, t). The condition that Φ is symplectic means in particular
that ω(Φ∗∂bi ,Φ∗∂tj) = δij, which becomes ∂qi/∂tj = δij. Upon integrating,
this means q(b, t) = q(b, 0) + t, so the condition q(b, 0) = 0 tells us that
q(b, t) = t, and hence Φ is the identity.

Lemma 2.25. Assume that F : X → Rn and G : Y → Rn are integrable
Hamiltonian systems with no critical points. Assume that the period lattices
ΛF and ΛG are both standard, and that we are given global Lagrangian sec-
tions σ of F and τ of G. Suppose there is an integral affine transformation
φ : Rn → Rn such that φ(F (X)) = G(X). Then there is a unique symplec-
tomorphism Φ: X → Y fibred over φ satisfying Φ ◦ σ = τ ◦ φ.

Proof. Write F = (F1, . . . , Fn) and G = (G1, . . . , Gn). Let (s1, . . . , sn) and
(t1, . . . , tn) be the 2π-periodic Liouville (angle) coordinates associated to the
Lagrangian sections. Write φ(b) = bA + C for some A ∈ GL(n,Z) and
C ∈ Rn. As usual, we think of F and G as row vectors and write A acting
on the right.

By Corollary 1.44, X is symplectomorphic to F (X) × T n with symplectic
form

∑
i dFi∧dsi and Y is symplectomorphic to G(X)×T n with symplectic

form
∑

i dGi ∧ dti. Under these identifications, we have σ(b) = (b, 0) and
τ(c) = (c, 0).

Define a map F (X)× Rn → G(X)× Rn by

(c, t) =
(
bA+C, A−1s

)
.

Because A ∈ GL(n,Z), and because both period lattices ΛF and ΛG are
standard, the matrix A−1 sends ΛF isomorphically to ΛG, and descends to a
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well-defined diffeomorphism Φ: F (X)×T n → G(X)×T n. We need to show
Φ is symplectic. We have dGj =

∑
i dFiAij and dtj =

∑
k A
−1
jk dsk, so∑

j

dGj ∧ dtj =
∑
i,j,k

AijA
−1
jk dFi ∧ dsk =

∑
i,k

δikdFi ∧ dsk =
∑
i

dFi ∧ dsi,

which shows that Φ is a symplectic map.

Note that, by construction,

Φ(σ(b)) = Φ(b, 0) = (bA+C, 0) = τ(φ(b)).

If Φ′ were another symplectomorphism fibred over φ with this property then
Φ−1 ◦ Φ′ would be a fibred automorphism of F fixing σ, and hence equal to
the identity by Lemma 2.24.

From now on, we will suppose for convenience that φ = id, so that we have
two regular Lagrangian fibrations f : X → B and g : Y → B which equip
B with the same integral affine structure and we ask if there is a fibred
symplectomorphism Φ: X → Y .

Theorem 2.26. Suppose that we have regular Lagrangian fibrations f : X →
B and g : Y → B over the same integral affine base. Suppose moreover that
both fibrations admit global Lagrangian sections σ and τ . Then there is a
unique fibred symplectomorphism Φ: X → Y such that Φ ◦ σ = τ .

Proof. Given a sufficiently small U ⊆ B, Lemma 2.25 produces a unique
fibred symplectomorphism ΦU : f−1(U)→ g−1(U) satisfying ΦU ◦ σ = τ . We
would like to define Φ by Φ(x) = ΦU(x) if f(x) ∈ U . The only thing to check
is that this prescription is well-defined independently of the choice of U . In
other words, given subsets U, V ⊆ B and x ∈ X such that f(x) ∈ U ∩ V , we
want to show that ΦU(x) = ΦV (x). Since ΦU ◦ σ = τ and ΦV ◦ σ = τ , we
see that the restrictions of these fibred symplectomorphisms to f−1(U ∩ V )
must agree by the uniqueness part of Lemma 2.25, so ΦU(x) = ΦV (x), as
required.

The assumption that there is a global Lagrangian section is necessary, as the
following example illustrates.
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Example 2.27. Consider the quotient K of the product R × T 3 by the
equivalence relation (t, x, y, z) ∼ (t + 1, x, y, y + z). The symplectic form
ω = dt∧ dx+ dy ∧ dz descends to K because d(t+ 1)∧ dx+ dy ∧ d(y+ z) =
dt ∧ dx + dy ∧ dz. The symplectic manifold (K,ω) is called the Kodaira-
Thurston manifold and was the first known example of a symplectic manifold
which does not admit a compatible Kähler structure7; see [107].

The projection (t, x, y, z) 7→ (t, y) is a well-defined regular Lagrangian fibra-
tion K → T 2. The action of (θ1, θ2) ∈ T 2 by (t, x, y, z) 7→ (t, x+ θ1, y, z+ θ2)
has the fibres of f as its orbits. If there were a section8 T 2 → K, say
(t, y) 7→ (t, x(t, y), y, z(t, y)), then one would get a diffeomorphism T 4 →
K, (t, y, θ1, θ2) 7→ (t, x(t, y)+θ1, y, z(t, y)+θ2). There is no such diffeomor-
phism because K 6∼= T 4 (for example, b1(K) = 3 6= 4 = b1(T 4)). Therefore
there is no section.

The base of this fibration is the torus T 2 with its product integral affine
structure. This same integral affine manifold arises as the base of a different
Lagrangian fibration: the standard torus fibration T 4 → T 2 where we equip
T 4 with the symplectic form dθ1 ∧ dθ2 + dθ3 ∧ dθ4 and the torus fibration
is θ 7→ (θ1, θ3). This shows that it is possible to have two inequivalent
Lagrangian fibrations over the same integral affine base provided one of them
does not admit a global Lagrangian section.

Remark 2.28. In fact, one can also compare two Lagrangian fibrations f : X →
B and g : Y → B without assuming the existence of a global Lagrangian
section. Given a subset U ⊆ B, consider the set S(U) of fibred symplec-
tomorphisms Φ: f−1(U) → g−1(U). This assignment U 7→ S(U) is a sheaf
over B. Using the language of sheaf theory, one can formulate an analogue
of Theorem 2.26 without mentioning Lagrangian sections. There is an ele-
ment Φ ∈ S(B) (i.e. a fibred symplectomorphism) if and only if a certain
characteristic class vanishes. See [26, Section 2] for a full discussion.

When we do have global Lagrangian sections, Theorem 2.26 is a wonderful
compression of information: to reconstruct our 2n-dimensional space X, all
we need is an n-dimensional integral affine manifold. For example, if n = 2, 3,
this brings 4- and 6-dimensional spaces into the range of visualisation.

7You can see this because, for example, the first Betti number of a Kähler manifold
must be even, but b1(K) = 3.

8Lagrangian or not.
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2.6 Lagrangian and non-Lagrangian sections

We now turn to the question of when a Lagrangian fibration admits a La-
grangian section. First we see what happens to the symplectic form in Liou-
ville coordinates when we pick a non-Lagrangian section.

Lemma 2.29. Let H : X → Rn be an integrable Hamiltonian system, let
B ⊆ H(X) ⊆ Rn be an open set, and let σ : B → X be a (not necessarily
Lagrangian) section. Define

Ψ: B × Rn → X, Ψ(b, t) = φHt (σ(b)).

Let β denote the pullback of the 2-form σ∗ω on B to B×Rn. Then Ψ is both
an immersion and a submersion and Ψ∗ω =

∑
dbi∧dti+β, where (b1, . . . , bn)

are the standard coordinates on B ⊆ Rn.

Proof. The only difference with the proof of Theorem 1.38 is that ω(Ψ∗∂bi ,Ψ∗∂bj)
does not need to vanish. Instead,

ω(Ψ∗∂bi ,Ψ∗∂bi) = ω((φHt )∗σ∗∂bi , (φ
H
t )∗σ∗∂bj)

= ω(σ∗∂bi , σ∗∂bj)

= σ∗ω(∂bi , ∂bj),

which gives the term β in Ψ∗ω as claimed. This 2-form is still nondegen-
erate (each ∂bi pairs nontrivially with the corresponding ∂ti) so Ψ is still a
submersion and an immersion.

Lemma 2.30. In the situation of the previous lemma, if there is a 1-form η
on B with σ∗ω = dη then there is a Lagrangian section over B.

Proof. If τ(b) = (b, t(b)) is another section (written with respect to the
coordinate system Ψ) then we can compute τ ∗ω by following the calculation
in Exercise 1.51. We get

ω(τ∗∂bi , τ∗∂bj) =
∂ti
∂bj
− ∂tj
∂bi

+ β(∂bi , ∂bj).

By comparing with the formula for the exterior derivative of the 1-form∑
ti(b)dbi, we see that τ ∗ω = d(

∑
ti(b)dbi) + β. Now suppose that β = dη

for some 1-form η =
∑
ηi(b)dbi. Taking ti(b) = −ηi(b) we get a section for

which τ ∗ω = −β + β = 0, i.e. a Lagrangian section.
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Corollary 2.31. If H : X → Rn is an integrable Hamiltonian system with
H(X) = B and σ is a section over B with9 [σ∗ω] = 0 ∈ H2

dR(B) then H
admits a Lagrangian section over B. In fact, if σ is Lagrangian over a subset
B′ ⊆ B and10 [σ∗ω] = 0 ∈ H2

dR(B,B′) then H admits a Lagrangian section
which agrees with σ over B′.

Proof. Note that β := σ∗ω is closed, so defines a de Rham cohomology
class. If [β] = 0 in de Rham cohomology then there exists a 1-form such
that β = dη. If β = 0 on B′ then it defines a class in relative de Rham
cohomology H2

dR(B,B′), which vanishes if and only if β = dη for a 1-form η
which itself vanishes on B′. Inspecting the proof of Lemma 2.29, this means
that the Lagrangian section built using η coincides with σ on B′.

Remark 2.32. We will use the condition on relative cohomology to find La-
grangian sections for non-regular Lagrangian fibrations: we will first con-
struct Lagrangian sections near the critical fibres, then extend them over the
regular locus using this result, providing the relevant relative cohomology
group vanishes.

Corollary 2.33. Let f : X → B be a regular Lagrangian fibration and sup-
pose σ is a section which is Lagrangian over a (possibly empty) subset B′ ⊆ B.
If [σ∗ω] = 0 ∈ H2

dR(B,B′) then f admits a Lagrangian section.

Proof. By the cohomological assumption, there exists a 1-form η on B such
that η = 0 on B′ and dη = σ∗ω. Cover B by integral affine coordinate charts;
the Lagrangian fibration is equivalent to an integrable Hamiltonian system
over each of these charts, and we can apply Lemma 2.30 (using η) to modify
σ and obtain a Lagrangian section. Since we are using the same 1-form on
different charts, we modify σ in the same way on overlaps between charts, so
we find a Lagrangian section over the whole of B.

Remark 2.34 (Exercise 2.37). We will later apply this when B is a punctured
surface and B′ is a neighbourhood of a strict subset of the punctures. This
satisfies H2(B,B′) = 0.

9H2
dR(B) denotes the De Rham cohomology group of closed 2-forms modulo exact

2-forms; H2
dR(B) = 0 is a fancy way of saying “if dβ = 0 then β = dη”.

10H2
dR(B,B′) denotes the relative De Rham cohomology. This is again closed forms

modulo exact forms, but where the forms β and η are required to vanish on B′. This is a
slightly different formulation to the standard setup in, say, the book by Bott and Tu [10,
p.78–79] but equivalent to it (as explained in the MathOverflow answer [27] by Ebert).
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2.7 Solutions to inline exercises

Exercise 2.35 (Corollary 2.8). If f : X → B is a proper submersion with
connected Lagrangian fibres then the fibres are Lagrangian tori.

Solution. By Lemma 2.6, if we pick local coordinates (b1, . . . , bn) on B then
the functions b1 ◦f, . . . , bn ◦f form an integrable Hamiltonian system, so this
follows from the little Arnold-Liouville theorem (Theorem 1.40).

Exercise 2.36. If ω is not an exact 2-form, how can we construct the integral
affine structure on B?

Solution. We need to define the flux map B̃ → Rn. As before, we fix the
universal cover p : B̃ → B and write ξ → B for the local system with fibre
H1(f−1(b);Z) over b ∈ B. We pick a Z-basis of global sections c1, . . . , cn of
ξ̃ = p∗ξ. Write f̃ : p∗X → B̃ for the pullback of f to the universal cover
(i.e. the Lagrangian fibration whose fibre over b̃ is f−1(p(b̃))). We continue
to write ω for the pullback of ω to p∗X.

Fix a basepoint b̃0 ∈ B̃. Given a point b̃ ∈ B̃, pick a path γ : [0, 1] →
B̃ from b̃0 to b̃. A family of loops over γ (see Figure 2.1) is a homotopy
C : S1 × [0, 1] → p∗X satisfying f̃(C(s, t)) = γ(t), i.e. if t is fixed, C(s, t) is
a loop in f̃−1(γ(t)).

For k = 1, . . . , n, pick a family of loops Ck over γ with Ck(·, t) ∈ ck(γ(t)) for
all t ∈ [0, 1]. Define

I(b̃) = (I1(b̃), . . . , In(b̃)), Ik(b̃) =

∫
Ck

ω.

It remains to understand how this flux map depends on the choices we made,
namely:

1. a basis c1, . . . , cn of p∗ξ,

2. a basepoint b̃0,

3. a path γ from b̃0 to b̃,

4. a family of loops Ck over γ for each k ∈ {1, . . . , n}.
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f̃

γb̃0 b̃

C

Figure 2.1: A family of loops over γ.

We deal first with the choice of γ and Ck. Since B̃ is simply-connected,
a different choice of path γ′ from b̃0 to b̃ will be homotopic to γ via some
homotopy h : [0, 1] × [0, 1] → B̃. Choose Ck over γ and C ′k over γ′. We will
show that

∫
Ck
ω =

∫
C′k
ω.

The loops Ck(·, 0) and C ′k(·, 0) are homologous in f̃−1(γ(0)) by assumption,
and therefore freely homotopic because π1(T n) ∼= H1(T n;Z) ∼= Zn. Let
Dk : S1 × [0, 1] → f̃−1(γ(0)) be a free homotopy with Dk(·, 0) = Ck(·, 0)
and Dk(·, 1) = C ′k(·, 0). By the homotopy lifting property of the submersion
f̃ , we can find a map D : S1 × [0, 1] × [0, 1] → p∗X with f̃ ◦ D = h and
D(s, t, 0) = Dk(s, t). Define D′k(s, t) = D(s, t, 1); this defines a cylinder in
the Lagrangian torus f̃−1(γ(1)) (see Figure 2.2). Consider D as a 3-chain (in
the sense of singular homology). Because dω = 0, we have

0 =

∫
D

dω =

∫
∂D

ω

by Stokes’s theorem. But ∂D = Ck +D′k − C ′k −Dk, so

0 =

∫
Ck

ω +

∫
D′k

ω −
∫
C′k

ω −
∫
Dk

ω.
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f̃ f̃

h

γ′

γ

b̃0 b̃

C ′k

Ck

DDk D′k

Figure 2.2: Different choices of paths and homotopies for the solution of
Exercise 2.36.

Since Dk and D′k are contained in Lagrangian fibres, the integrals
∫
Dk
ω and∫

D′k
ω vanish, and we see that ∫

Ck

ω =

∫
C′k

ω

as required.

If we change basepoint to b̃′0, we can choose a path β from b̃′0 to b̃0 and
homotopies Γ1, . . . ,Γn over β. Given another point b̃, choose γ from b̃0 to
b̃ and homotopies C1, . . . , Cn over γ to define the flux map I(b̃). We can
then choose the concatenated path γ · β from b̃′0 to b̃ and the concatenated
homotopies Ck · Γk to define the flux map I ′(b̃). The resulting flux maps
differ by translation: I ′(b̃) = J + I(b̃) with

J = (J1, . . . , Jn), Jk =

∫
Γk

ω.
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Finally, if we change the basis of sections c1, . . . , cn by an element of GL(n,Z)
then the result is to apply a Z-linear transformation to the flux map. The
argument that proved Corollary 2.18 shows that the integral affine structure
on B̃ descends to B.

Exercise 2.37 (Remark 2.34). Suppose that B is a 2-dimensional surface
with a nonempty set of punctures and that B′ ⊆ B is a collar neighbourhood
of a strict subset of the punctures. Then H2(B,B′) = 0.

Proof. Note first that the second cohomology of a punctured surface is zero
(provided there is at least one puncture). We have H2(B,B′) ∼= H2(B/B′).
The quotient B/B′ is the result of filling in a strict subset of the punctures, so
is homeomorphic to a surface with fewer (but still some) punctures. Therefore
H2(B,B′) = H2(B/B′) = 0.



Chapter 3

Global action-angle coordinates
and torus actions

3.1 Hamiltonian torus actions

One way of stating the Arnold-Liouville theorem is that, after a suitable
change of coordinates in the target, the Rn-action generated by the Hamilto-
nian vector fields VH1 , . . . , VHn actually factors through a T n-action. In this
chapter, we work backwards, assuming that we have a globally-defined torus
action, even on the non-regular fibres, and see what kinds of critical points
can occur.

Definition 3.1. LetH : X → Rn be an integrable Hamiltonian system such
that the Hamiltonian Rn-action φHt factors through a Hamiltonian T n-action,
that is φHt = id for any t ∈ (2πZ)n. Then we call H the moment map for
the torus action. It is conventional to write µ rather than H for a moment
map, and we will do this wherever we want to emphasise the existence of the
torus action. We will call a symplectic 2n-manifold X a toric manifold if it
admits a Hamiltonian T n-action.

We saw in Lemma 2.25 that the image of a moment map determines the
Hamiltonian system completely up to fibred symplectomorphism, at least if
there are no critical points and there is a global Lagrangian section. We
therefore concentrate on the image µ(X) of the moment map, which we

This material has been/will be published by Cambridge University Press as Lectures on
Lagrangian Torus Fibrations by Jonny Evans. This pre-publication version is free to
view and download for personal use only. Not for re-distribution, re-sale, or use in
derivative works.
c© Jonny Evans 2018–2023.
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will call the moment image or moment polytope. The Atiyah-Guillemin-
Sternberg convexity theorem, discussed in Section 3.2 below, tells us that
µ(X) is indeed a rational convex polytope. We will not give a full proof
of this theorem, as there are many excellent expositions in the literature
(e.g. Atiyah [4, Theorem 1], Audin [5], Guillemin-Sternberg [49, Theorem
4], McDuff-Salamon [77, Theorem 5.47], amongst others). Instead, we will
prove the much easier Proposition 3.3 below: that under mild conditions, the
boundary of the moment image is piecewise linear. This has the advantage
of being a local result, which will apply in situations where we only have a
torus action on some parts of the manifold. In particular, it will apply in
situations where there is no sense in which the image of the Hamiltonian
system is convex, like the almost toric setting in Chapter 8.

We need the following preliminary lemma:

Lemma 3.2 (Exercise 3.24). Let µ : X → Rn be the moment map of a
Hamiltonian T n-action. If s : Rn → R is a linear map, s(b1, . . . , bn) =

∑
sibi

then s ◦ µ generates the Hamiltonian flow φµ(s1t1,...,sntn).

In this case, the R-action (flow) φs◦µt can be thought of as a subgroup of the
T n action, coming from the homomorphism

sT : R→ Rn/(2πZ)n, sT (t) = (s1t, . . . , snt).

Now suppose that X is a symplectic 2n-manifold, and that µ : X → Rn is the
moment map for a Hamiltonian T n-action. Write ∂µ(X) for the boundary
of the moment image. We will assume that ∂µ(X) is a piecewise smooth
hypersurface; we will show that, under mild assumptions, ∂µ(X) is piece-
wise linear. Pick local smooth embeddings δi : (0, 1)n−1 → ∂µ(X) ⊆ Rn

parametrising the smooth pieces of ∂µ(X) and assume that there are smooth
lifts γi : (0, 1)n−1 → X such that δi = µ ◦ γi.

Proposition 3.3 (Piecewise linearity of the toric boundary). The image of
each δi is contained in an affine hyperplane Πi with rational slopes, that is
Πi = {x ∈ Rn : α · x = c} for some integer vector α. If z ∈ µ−1(δi) then
the stabiliser of z is precisely the 1-dimensional subtorus sTi (R) ⊆ T n where
si(x) = α · x.

Proof. Let Πi(t) be the tangent hyperplane to δi at δi(t), with normal vector
α = (α1, . . . , αn). We say that δi has rational slopes at b if α is parallel to an
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integer vector. Otherwise, at least one of the ratios αk/α` is irrational. We
will show that the tangent hyperplane to Πi(t) has rational slopes for all t,
which is only possible if Πi(t) is independent of t (otherwise the slopes would
need to take irrational values by the intermediate value theorem). This will
imply that δi coincides with its tangent hyperplane. The statement about
stabilisers will come up naturally in the proof.

Suppose that δi has an irrational slope at b := δi(t). Pick a ballB centred at b
and a smooth function S : B → R such that µ(X)∩B = {p ∈ B : S(p) ≥ 0}
and ∂µ(X) ∩ B = S−1(0) is a regular level set. The function S ◦ µ has a
minimum along S−1(0), so if z ∈ µ−1(b) then dbS◦dzµ = 0. Let s := dbS and
consider the Hamiltonian function H := s ◦ µ; by Lemma 3.2, this generates
the R-action given by sT (R) ⊆ T n. But dzH = s ◦ dzµ = 0, so this R-action
fixes any point z ∈ µ−1(b). The stabiliser of z is a closed subgroup of T n
containing sT (R) ⊆ T n; if δi has an irrational slope at b then the closure of
this subgroup is at least 2-dimensional, so the stabiliser of z contains a 2-
torus. This means there are two linearly independent components of µ whose
Hamiltonian vector fields vanish at z; in particular, the rank of dγi(t)µ is at
most n − 2. Since δi = µ ◦ γi, we have dtδi = dγi(t)µ ◦ dtγi, and this means
that the rank of dtδi is at most n− 2. This contradicts the assumption that
δi is an embedding (δi fails to be an immersion at t).

If δi has rational slopes then we can take S(x) = α · x as the function
which is constant along δi and the same argument gives us the stabiliser as
claimed.

Remark 3.4. As this book progresses, we will allow our Lagrangian torus
fibrations f : X → B to have more and more different types of critical points.
If Breg ⊆ B denotes the set of regular values of f then we know Breg inherits
an integral affine structure. We can now allow f to have “toric critical points”,
where X admits a local Hamiltonian torus action having f as its moment
map. Proposition 3.3 tells us that B will have the structure of an integral
affine manifold with piecewise linear boundary and corners, extending the
integral affine structure on Breg.
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3.2 Delzant polytopes and toric manifolds

Definition 3.5. A rational convex polytope P is a subset of Rn defined as
the intersection of a finite collection of half-spaces Sα,b = {x ∈ Rn : α1x1 +
· · · + αnxn ≤ b} with α1, . . . , αn ∈ Z and b ∈ Rn. We say that P is a
Delzant1 polytope if it is a convex rational polytope such that every point on
a k-dimensional facet has a neighbourhood isomorphic (via an integral affine
transformation) to a neighbourhood of the origin in the polytope [0,∞)n−k×
Rk. A vertex of a polytope is called Delzant if the germ of the polytope at
that vertex is Delzant.

Example 3.6. The polygon in Figure 3.1 fails to be Delzant: there is no
integral affine transformation sending the marked vertex to the origin and
sending the two marked edges to the x- and y-axes. Indeed, the primitive
integer vectors (0, 1) and (2, 1) pointing along these edges span a strict sub-
lattice of the integer lattice Z2.

•

Figure 3.1: A non-Delzant polygon.

Theorem 3.7. Let X be a toric manifold, that is a symplectic 2n-manifold
equipped with a Hamiltonian T n-action with moment map µ : X → Rn.

1. (Atiyah-Guillemin-Sternberg convexity theorem [4, Theorem 1], [49,
Theorem 4]) The moment image ∆ := µ(X) is a Delzant polytope.
If X is compact, then ∆ is the convex hull of {µ(x) : x ∈ Fix(X)},
where Fix(X) is the set of fixed points of the torus action.

2. (Delzant existence theorem [24, Section 3]) For any compact Delzant
polytope ∆ ⊆ Rn there exists a symplectic 2n-manifold X∆ and a map
µ : X∆ → Rn with µ(X∆) = ∆ such that µ generates a Hamiltonian

1Audin [5] calls these primitive polytopes.
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T n-action. Moreover, X∆ is a projective variety. Such varieties are
often called projective toric varieties.

3. (Delzant uniqueness theorem [24, Theorem 2.1]) The moment polytope
determines the pair (X,µ) up to fibred symplectomorphism.

We will not prove (1) or (3). We will see two constructions of X∆ later,
proving (2). In the remainder of this chapter, we will focus instead on exam-
ples where we can extract geometric information about X from the moment
polytope.

3.3 Examples

Example 3.8. Consider the n-torus action on Cn given by

(z1, . . . , zn) 7→ (eit1z1, . . . , e
itnzn).

This is Hamiltonian, with moment map

µ(z1, . . . , zn) =

(
1

2
|z1|2, . . . ,

1

2
|zn|2

)
.

The image of the moment map is the nonnegative orthant. This is a man-
ifold with boundary and corners: the µ-preimage of a boundary stratum of
codimension k is an (n − k)-dimensional torus. For example, the preimage
of the vertex is a single fixed point (the origin), the preimage of a point on
the positive b1-axis is a circle with fixed radius in the z1-plane, the preimage
of a point on the interior of the b1b2-plane is a 2-torus, and so forth.

C2 C3

Remark 3.9. The critical values of µ are precisely the boundary points of the
moment polytope. The boundary is stratified into facets of dimension 0 (ver-
tices), 1 (edges), 2 (faces), etc, so we can classify the critical values according
to the dimension of the stratum to which they belong. By definition, any
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Delzant polytope is locally isomorphic to Rk× [0,∞)n−k in a neighbourhood
of a point in a k-dimensional facet. In Example 3.8, we have found a system
whose moment image is [0,∞)n−k, so by Theorem 3.7(3), this means that the
integrable Hamiltonian system in a neighbourhood of a critical point living
over a k-dimensional facet is fibred-symplectomorphic to the system

µ : Rk × (S1)k × Cn−k → Rn,

µ(p, q, zk+1, . . . , zn) =

(
p,

1

2
|zk+1|2, . . . ,

1

2
|zn|2

)
.

Such critical points are called toric2 and the set of all toric critical points is
often called the toric boundary of X. It is not a boundary in the usual sense:
it is a union of submanifolds of codimension 2. Instead, considering X as a
projective variety, it is the boundary in the sense of algebraic geometry: it
is a divisor, and is often called the toric divisor.

Here is a nice way to understand the genus 1 Heegaard decomposition of the
3-sphere using the moment map for C2.

S

S1

S2 •
T

•

•

s1

s2

core circle si

torus fibre T

solid torus Si

Figure 3.2: The unit sphere in C2 lives over the slanted line; the fibre T
separates it into two solid tori.

Example 3.10 (Heegaard decomposition of S3). Let µ : C2 → R2 be the
moment map from Example 3.8. The preimage of the line segment b1+b2 = 1

2
,

b1, b2 ≥ 0, is the subset S := {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1}, that is
the unit 3-sphere; this is the slanted line segment in Figure 3.2. The fibre
T := µ−1

(
1
4
, 1

4

)
is a torus with T ⊆ S. We can see from Figure 3.2 that T

separates S into two pieces S1, S2, and it is also easy to see that each piece
2In fact, it is a theorem of Eliasson [30] and Dufour–Molino [25] that toric critical

points can be characterised purely in terms of the Hessian of the Hamiltonian system at
the critical point. They call such critical points elliptic.



43

is homeomorphic to a solid torus S1 × D2: the “core circles” of these solid
tori are the fibres s1 = µ−1

(
1
2
, 0
)
, s2 = µ−1

(
0, 1

2

)
over the points where the

line segment intersects the b1- and b2-axes.

Example 3.11 (Exercise 3.25). Consider the unit 2-sphere (S2, ω) where ω is
the area form. By comparing infinitesimal area elements, one can show that
the projection map from S2 to a circumscribed cylinder is area-preserving3.
Let µ : S2 → R be the height function µ(x, y, z) = z (thinking of S2 embedded
in the standard way in R3). Then µ is a moment map for the circle action
which rotates around the z-axis. The moment image is [−1, 1] ⊆ R.

µ

Example 3.12. If we take S2 with the area form λω (where ω is the form
giving area 4π) then the rescaled height function λz is a moment map for the
circle action which rotates around the z-axis with period 2π. The moment
image is [−λ, λ].

Example 3.13. One can form more examples by taking products. If we
take S2 × · · · × S2 with the product symplectic form giving the ith factor
symplectic area 4πλi then we get a T n-action on (S2)n, whose moment map
is µ((x1, y1, z1), . . . , (xn, yn, zn)) = (z1, . . . , zn), with image the hypercuboid
[−λ1, λ1]×· · ·×[−λn, λn]. For example, if we use equal areas λ1 = · · · = λn =
1 then the moment image for S2×S2 is a square, whose vertices correspond to
the fixed points {(0, 0,±1)}×{(0, 0,±1)}, and whose edges correspond to the
spheres S2×{(0, 0,±1)} and {(0, 0,±1)}×S2. For S2×S2×S2 the moment
image is a cube whose horizontal faces correspond to the submanifolds S2 ×
S2 × {(0, 0,±1)}, etc.

3If Cicero is to be believed [20, XXIII–64,65], a diagram representing this theorem was
engraved on the tomb of Archimedes (who proved it).
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S2 × S2

S2 × S2 × S2

Definition 3.14 (Affine length). If ` : [0, L] → Rn is a line segment of the
form `(t) = at+ b with a ∈ Zn a primitive vector4 and b ∈ Rn then we say `
is a rational line segment and define the affine length of ` to be L.

Example 3.15. Consider the triangle in Figure 3.1. The horizontal edge
has affine length 2 and the other two edges both have affine length 1.

Lemma 3.16. If ` : [0, L] → Rn is a rational line segment whose image is
an edge of the moment polytope then µ−1(`([0, L])) is a symplectic sphere of
symplectic area 2πL.

Proof. By Theorem 3.7(3), the preimage of an edge is determined up to
fibred symplectomorphism by its moment image `([0, L]). By comparing with
Example 3.12, we see that the preimage of such an edge is symplectomorphic
to
(
S2, Lω

2

)
.

Example 3.17. Consider the complex projective n-space CPn, with homo-
geneous coordinates [z1 : · · · : zn+1] (see Appendix C). This has a torus
action [z1 : · · · : zn+1] 7→ [eit1z1 : · · · : eitnzn : zn+1] which is Hamiltonian, for
the Fubini-Study form5 ω, with moment map

µ([z1 : · · · : zn+1] =

(
|z1|2

|z|2
, . . . ,

|zn|2

|z|2

)
,

where |z|2 =
∑n+1

i=1 |zi|2. The moment image is the simplex

{(b1, . . . , bn) ∈ Rn : b1, . . . , bn ≥ 0, b1 + · · ·+ bn ≤ 1}.

For example, µ(CP2) and µ(CP3) are drawn in Figure 3.3. In each case,
the hyperplane at infinity {[z1 : · · · : zn : 0]} projects via µ to the facet
b1 + · · ·+ bn = 1 of the simplex.

4An integer vector a is called primitive if it is a shortest integer vector on the line it
spans, in other words if λa ∈ Zn implies |λ| ≥ 1.

5If you are not familiar with this symplectic form, we will construct it in Example 4.9.
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CP2 CP3

Figure 3.3: The moment polytopes for CP2 and CP3.

Example 3.18. The tautological bundle over CP1 is the variety

O(−1) := {(z1, z2, [z3 : z4]) ∈ C2 × CP1 : z1z4 = z2z3}.

This has a holomorphic projection π : O(−1) → CP1, π(z1, z2, [z3 : z4]) =
[z3 : z4], which exhibits it as the total space of a holomorphic line bundle
over CP1. This is a fancy way of saying that π−1([z3 : z4]) is a complex line
(specifically {(z1, z2) ∈ C2 : z1z4 = z2z3} ⊆ C2) for all [z3 : z4] ∈ CP1. The
symplectic form ωC2 ⊕ ωCP1 on C2 ×CP1 pulls back to a symplectic form on
O(−1), with respect to which the following T 2-action is Hamiltonian:

(z1, z2, [z3 : z4]) 7→ (eit1z1, e
it2z2, [e

it1z3 : eit2z4]).

The moment map is the sum of the moment maps for C2 and CP1:

µ(z1, z2, [z3 : z4]) =

(
1

2
|z1|2 +

|z3|2

|z3|2 + |z4|2
,

1

2
|z2|2 +

|z4|2

|z3|2 + |z4|2

)
.

The image of the moment map is the subset in Figure 3.4:

∆O(−1) :=
{

(b1, b2) ∈ R2 : b1, b2 ≥ 0, b1 + b2 ≥ 1
}
.

The zero-section CP1 = {z1 = z2 = 0} ⊆ O(−1) projects down to the edge
b1 + b2 = 1. An alternative moment map can be obtained by postcomposing
with the integral affine transformation6

(b1, b2) 7→ (b1, b2)

〈
1 1
0 1

)
+ (0,−1),

6This is the first instance of the notation mentioned in the preface: the angle bracket
reminds the reader that our matrix acts from the right. This will be more important when
the matrix appears in isolation.
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µ(CP1)

Figure 3.4: The moment polygon ∆O(−1).

µ(CP1)

edge parallel to (1, 1)

Figure 3.5: Alternative moment polygon for O(−1).

which sends the moment polygon to

{(b1, b2) ∈ R2 : b1, b2 ≥ 0, b1 − b2 ≥ 1}.

This is an important example because of the role played by O(−1) in bi-
rational geometry. The projection $ : O(−1) → C2 given by $(z1, z2, [z3 :
z4]) = (z1, z2) is a birational map called the blow-down or contraction of a
−1-curve. It is an isomorphism away from (0, 0) ∈ C2, but it contracts the
sphere {(0, 0, [z3 : z4]) : [z3 : z4] ∈ CP1} (known as the exceptional sphere)
to the origin.

When we introduce the symplectic cut operation in Section 4.3, we will see
that if we take a toric variety X∆ and blow-up a fixed point of the torus
action (living over a vertex v ∈ ∆), we get a new toric variety X∆′ whose
moment polytope ∆′ differs from the previous one by truncating at the vertex
v. More precisely, we use an integral affine transformation to put ∆ in such
a position that v sits at the origin and ∆ is locally isomorphic to [0,∞)n

near v, then we truncate ∆ using the hyperplane b1 + · · · + bn = c for some
positive c. Varying the constant c will give different symplectic structures
(in particular, for n = 2, the symplectic area of the exceptional sphere will
vary).
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Example 3.19. The bundle O(−n) over CP1 is the variety7

O(−n) := {(z1, z2, [z3 : z4]) ∈ C2 × CP1 : z1z
n
4 = z2z

n
3 }

The Hamiltonians

H1 =
1

2
|z1|2 +

|z3|2

|z3|2 + |z4|2
, H2 =

1

2
|z2|2 +

|z4|2

|z3|2 + |z4|2

still generate circle actions, but the period lattice for the R2-action generated
by (H1, H2), while constant, is no longer standard: the element φH1

2π/nφ
H2

2π/n

now acts as the identity. This means that the period lattice is spanned by

Z
(

2π/n
2π/n

)
⊕ Z

(
2π
0

)
. If we use the combination µ =

(
H1,

H1+H2

n

)
then

we get a standard period lattice, so this is a valid moment map. This has

the effect of applying the affine transformation
〈

1 1/n
0 1/n

)
to the moment

polygon in Figure 3.4; we also translate by (0,−1/n) so that the horizontal
edge µ(CP1) sits on the b1-axis).

µ(O(−n))

µ(CP1)

edge parallel to (n, 1)

Figure 3.6: The moment polygon for O(−n).

Similarly, one can define the bundles O(n) → CP1, n ≥ 0, and these admit
torus actions; the moment map now sends a neighbourhood of the zero-
section in O(n) to the region shown in Figure 3.7. For example, a complex
line in CP2 has normal bundle O(1), and in the moment image of CP2 we
see precisely the n = 1 neighbourhood surrounding the b1-axis.

The following lemma now follows immediately from these examples and The-
orem 3.7(3).

7The discerning reader will spot that this is the pullback of O(−1) along the degree n
holomorphic map CP1 → CP1, [z3 : z4] 7→ [zn3 : zn4 ].
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µ(O(n))

µ(CP1)

edge parallel to (−n, 1)

Figure 3.7: O(n) for n ≥ 0.

Lemma 3.20. Let ∆ ⊆ R2 be a moment polygon and e ⊆ ∆ an edge con-
necting two vertices P,Q. Assume that this edge is traversed from P to Q
as you move anticlockwise around the boundary of ∆. Let v, w be primitive
integer vectors pointing along the other edges emerging from P and Q re-
spectively. Then a neighbourhood of µ−1(e) in X∆ is symplectomorphic to a
neighbourhood of the zero-section in O(n) where n = detM where M is the
matrix with rows v, w (you may also see detM written as v ∧ w).

v w

e

∆

P Q

Proof. This is easily checked for the local models discussed above, and any
edge is integral affine equivalent to one of these local models. It is therefore
enough to check that v∧w is unchanged by an integral affine transformation.
The determinant is unchanged by orientation-preserving integral affine trans-
formations. An orientation-reversing transformation will switch the sign of
v∧w, but also switch the order to w∧ v because it switches anticlockwise to
clockwise, so these sign effects will cancel.

3.4 Non-Delzant polytopes

Example 3.21. Consider the group of nth roots of unity µn acting on C2 via
(z1, z2) 7→ (µz1, µ

az2) where gcd(a, n) = 1. Let X = C2/µn be the quotient
by this group action. This is a symplectic orbifold: the origin is a singular
point. We call this kind of singularity a cyclic quotient singularity of type
1
n
(1, a).
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Hamiltonian flows still make perfect sense on X provided they fix the origin.
Consider the Hamiltonians H1 = 1

2
|z1|2 and H2 = 1

2
|z2|2; these are invariant

under the action of µn and hence define functions on X. The flow is simply
(eit1z1, e

it2z2). However, the period lattice is no longer standard; we have
φ

2π/n
H1

φ
2πa/n
H2

= id. If instead we use the Hamiltonians(
H2,

1

n
(H1 + aH2)

)
then the lattice of periods becomes standard. The moment image is a convex
wedge in the plane bounded by the rays emanating from the origin in direc-
tions (0, 1) and (n, a); we will denote this noncompact polygon by π(n, a):

(0, 1) (n, a)

π(n, a)

`

This polygon is not Delzant at the origin, corresponding to the fact that X
is not smooth at the origin.

Remark 3.22. The link of a singularity is the boundary of a small Euclidean
neighbourhood of the singular point. In this example, the link of the 1

n
(1, a)-

singularity is the preimage of a horizontal line segment ` running across
π(n, a). As in Example 3.10, this has a decomposition as a union of two solid
tori; this means it is a lens space. By definition, this is the lens space L(n, a).

Lemma 3.23 (Exercise 3.26). The lens space L(n, a+kn) is diffeomorphic to
L(n, a) for all integers k. The lens space L(n, a) is diffeomorphic to L(n, ā)
where aā = 1 mod n.

3.5 Solutions to inline exercises

Exercise 3.24 (Lemma 3.2). Let µ : X → Rn be the moment map of a
Hamiltonian T n-action. If s : Rn → R is a linear map, s(b1, . . . , bn) =

∑
sibi

then s ◦ µ generates the Hamiltonian flow φµ(s1t1,...,sntn).



50 3.5. Solutions to inline exercises

Proof. We have ιV∑
i siµi

ω = −d (
∑

i siµi) = −
∑

i sidµi =
∑

i ιsiVµiω, and∑
siVµi generates the flow Φµ

(s1t,...,snt)
.

Exercise 3.25 (Example 3.11). Consider the unit 2-sphere (S2, ω) where ω
is the area form. By comparing infinitesimal area elements, show that the
projection map from S2 to a circumscribed cylinder is area-preserving. Let
H : S2 → R be the height function H(x, y, z) = z (thinking of S2 embedded
in the standard way in R3). Show that H is an action coordinate.

Solution. Let n̂ = (x, y, z) be the unit normal vector field to the unit sphere.
The area element on the unit sphere is given by σ = ιn̂(dx ∧ dy ∧ dz) =
xdy ∧ dz+ ydz ∧ dx+ zdx∧ dy. If we use cylindrical coordinates x = r cos θ,
y = r sin θ then dx = cos θdr−r sin θdθ and dy = sin θdr+r cos θdθ, so (after
some algebra):

σ = r2dθ ∧ dz + rzdr ∧ dθ.

The unit sphere is defined by the equation r2 + z2 = 1, which means that
rdr = −zdz on the sphere. Therefore

σ = (1− z2)dθ ∧ dz − z2dz ∧ dθ = dθ ∧ dz.

The unit cylinder has area element τ = dθ ∧ dz. The projection map from
the sphere to the cylinder is p(r, θ, z) = (1, θ, z), so p∗τ = dθ ∧ dz = σ.

Observe that the Hamiltonian H(x, y, z) = z gives the Hamiltonian vector
field ∂θ, which rotates the sphere with constant speed so that all orbits have
period 2π. ThereforeH is an action coordinate (with angle coordinate θ).

Exercise 3.26 (Lemma 3.23). The lens space L(n, a+kn) is diffeomorphic to
L(n, a) for all integers k. The lens space L(n, a) is diffeomorphic to L(n, ā)
where aā = −1 mod n.

Solution. Let X be the 1
n
(1, a) singularity and H : X → R2 be the moment

map from Example 3.21 with image π(n, a). Recall that the lens space L(n, a)
is the preimage under H of the horizontal line segment ` shown in Figure
3.8.

Let X ′ be the cyclic quotient singularity 1
n
(1, a+ kn), whose moment image

is π(n, a+ kn) shown in Figure 3.9. The integral affine transformation M =〈
1 k
0 1

)
relates these moment polygons: π(n, a)M = π(n, a+ kn).
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(0, 1) (n, a)

π(n, a)

`

Figure 3.8

(0, 1)

(n, a+ kn)

π(n, a+ kn)

`′

`M

Figure 3.9

Since the moment polygons are related by M , Lemma 2.25 gives us a fi-
bred symplectomorphism X ′ → X. The image of L(n, a) under this fibred
symplectomorphism lives over the (now slanted) line `M . We can isotope
`M until it is a horizontal segment `′. The preimages are isotopic, and
hence diffeomorphic. The preimage of `′ is L(n, a + kn) by definition. Thus
L(n, a) ∼= L(n, a+ kn).

If aā = 1 mod n then aā + tn = 1 for some t. Let N =

〈
−a t
n ā

)
. We

have π(n, a)N = π(n, ā), which in turn shows that the associated lens spaces
L(n, a) and L(n, ā) are diffeomorphic via the fibred symplectomorphism as-
sociated to the integral affine transformation N . If this seems like magic,
the trick to finding N is first to reflect π(n, a) in the y-axis to get the wedge
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π(−n, a), and then hunt for a matrix in SL(2,Z) which sends (−n, a) to
(0, 1). The composite is then N ∈ GL(2,Z).



Chapter 4

Symplectic reduction

We now introduce symplectic reduction, an operation which allows us to
construct many interesting symplectic manifolds. A special case of this is
symplectic cut, which you will use in Exercise 4.42 to construct all toric
manifolds.

4.1 Symplectic reduction

Definition 4.1. Let (X,ω) be a symplectic manifold and let H : X → R
be a Hamiltonian. Suppose that φH2π(x) = x for all x ∈ X. Then the flow
defines an action of the circle S1 = R/2πZ on X. We this a Hamiltonian
circle action. We will write Mc := H−1(c) for the level sets of c.

Remark 4.2. Recall that a group action is called effective if the only group
element which acts as the identity is the identity, and free if every point has
trivial stabiliser. The quotient of a manifold by a free circle action is again
a manifold. If all stabilisers are finite then the quotient is an orbifold.

Here are some of the key facts about Hamiltonian circle actions.

Lemma 4.3 (Exercise 4.35). Suppose H : X → R generates a circle action.

(a) The critical points of H are precisely the fixed points of the circle action.

(b) The level sets Mc are preserved by the circle action.

This material has been/will be published by Cambridge University Press as Lectures on
Lagrangian Torus Fibrations by Jonny Evans. This pre-publication version is free to
view and download for personal use only. Not for re-distribution, re-sale, or use in
derivative works.
c© Jonny Evans 2018–2023.
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(c) If x is a regular point then TxMc = ker(dH).

(d) If v ∈ TxMc satisfies ω(v, w) = 0 for all w ∈ TxMc then v ∈ span(VH).

By Lemma 4.3(a), the stabiliser of a Hamiltonian circle action at a critical
point of H is the whole circle. Since any smooth function on a compact
manifold has critical points, Hamiltonian circle actions on compact manifolds
are never free. For this reason, we restrict attention to a regular level set.

Lemma 4.4. If c is a regular value of H and Mc = H−1(c) is the regular
level set over c then the quotient Qc := Mc/S

1 is an orbifold.

Proof. By Lemma 4.3(b), the level set isMc is preserved by the circle action,
so the quotient makes sense. We need to show that the stabiliser of the circle
action at a point x ∈Mc is finite. Since x is regular, it is not a critical point
of H, so by Lemma 4.3(a), the stabiliser at x is a proper subgroup of S1.
The circle is compact, and stabilisers are closed subgroups, hence compact.
The only proper compact subgroups of S1 are finite.

Lemma 4.5 (Symplectic reduction). Suppose H : X → R generates a circle
action and c is a regular value of H. Suppose for simplicity that the action
on Mc is free. Write i : Mc → X and p : Mc → Qc := Mc/S

1 for the inclusion
and quotient maps respectively. There is a unique symplectic form σ on Qc

such that i∗ω = p∗σ. We call (Qc, σ) the symplectic quotient or symplectic
reduction of X by the Hamiltonian circle action at level c.

Remark 4.6. One can drop the assumption that the action is free at the cost
of allowing quotients which are orbifolds.

Proof. Suppose that v, w ∈ TxMc are tangent vectors to the level set. We
want to show that ω(v, w) depends only on p∗v and p∗w ∈ Tp(x)Qc, so that
ω(v, w) = σ(p∗v, p∗w) for some 2-form σ on Qc. In other words, we want to
show that if x′ ∈Mc is another point with p(x′) = p(x) and v′, w′ are vectors
in Tx′Mc with p∗v′ = p∗v and p∗w′ = p∗w then ω(v′, w′) = ω(v, w).

Since p(x′) = p(x), we have φHt (x) = x′ for some t ∈ S1. The vectors v′,
(φHt )∗v, w′ and (φHt )∗w all live in Tx′Mc so we can add/subtract them. Since
p ◦ φHt = p, we have p∗ ◦ (φHt )∗ = p∗, so

p∗(v
′ − (φHt )∗v) = p∗v

′ − p∗v = 0.
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Similarly p∗(w′ − (φHt )∗w) = 0. Since the kernel of p∗ is spanned by VH , we
have

v′ = (φHt )∗v + aVH , w′ = (φHt )∗w + bVH

for some a, b ∈ R. Thus

ω(v′, w′) = ω
(
(φHt )∗v + aVH , (φ

H
t )∗w + bVH

)
= ω(v, w) + a dH(v)− b dH(w) = ω(v, w),

where we have used the fact that v and w are tangent to a level set, so are
annihilated by dH. This shows the existence of σ.

We will now show that σ is nondegenerate. Given a nonzero vector u ∈
Tp(x)Qc, pick a vector v ∈ TxMc with p∗v = u. This is possible since p is
a submersion. Since the projection p∗v = u is nonzero, v is not a multiple
of VH . By Lemma 4.3(d), there exists w ∈ TxMc such that ω(v, w) 6= 0.
Therefore σ(u, p∗w) 6= 0, showing that σ is nondegenerate.

The fact that σ is closed follows from Lemma 4.7 below applied to dσ.

Lemma 4.7 (Exercise 4.36). If p : M → Q is a submersion and η is a k-form
on Q such that p∗η = 0 then η = 0.

We finish this section by proving a lemma that will help us to construct
Hamiltonian circle or torus actions on symplectic reductions.

Lemma 4.8. Suppose G : X → R Poisson-commutes with H then:

(a) G|H−1(c) descends to a function G : H−1(c)/S1 → R.

(b) The Hamiltonian vector field VG is equal to1 p∗VG.

(c) If G generates a Hamiltonian circle action on H−1(c) then G generates
a circle action on the symplectic quotient.

Proof. In this proof, we will write i : H−1(c) → X for the inclusion of the
c-level set.

(a) Since G Poisson-commutes with H, Lemma 1.16 implies it is constant
along H-orbits, and hence descends to a function G on the quotient, i.e.
i∗G = p∗G.

1Here, we are abusively identifying VG with its restriction to H−1(c).
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(b) Since G Poisson-commutes with H, the vector field VG is tangent to
H−1(c). This means that the restriction v := VG|H−1(c) makes sense as a
vector field on H−1(c) and VG = i∗v. We want to show that ιp∗vσ = −dG.

We know that ιVGω = −dG. Pulling back via i gives ιvi∗ω = −di∗G, or
ιvp
∗σ = −dp∗G. This implies that p∗ιp∗vσ = p∗(−dG). Since p is a submer-

sion, Lemma 4.7 implies that ιp∗vσ = −dG as required.

(c) Part (b) implies that φGt (p(x)) = p(φGt (x)), so if φG2π = id then φG2π =
id.

4.2 Examples

Example 4.9 (Complex projective spaces). Let X = R2n with coordinates
(x1, y1, . . . , xn, yn) and symplectic form

∑
i dxi ∧ dyi. Consider the Hamilto-

nianH = 1
2

∑
i(x

2
i+y

2
i ). The Hamiltonian vector field is (−y1, x1, . . . ,−yn, xn),

which generates a circle action rotating each xy-plane at constant angular
speed. The non-empty regular level sets are the spheres Mc of radius

√
2c. If

c > 0 we get a nonempty regular level set, whose symplectic quotient is called
complex projective space CPn−1. When c = 1, we call the reduced symplectic
form on CPn−1 the Fubini-Study form ωFS. This is normalised to that the
moment image is a simplex with edges of affine length 1, which means that
the complex lines in CPn−1 have symplectic area 2π. (Exercise 4.37: Check
directly from this definition of ωFS on CP1 that

∫
CP1 ωFS = 2π.)

Remark 4.10. If c < 0 then the symplectic quotient is empty. In general, it
is an interesting problem to understand how the topology of the symplectic
quotient varies when the parameter c crosses a critical value; this is the
subject of symplectic birational geometry [50, 67].

Remark 4.11. We can identify R2n with Cn by introducing complex coordi-
nates zk = xk + iyk. Then the circle action generated by H is precisely the
action z 7→ eitz. The orbits (other than the origin) are precisely the circles of
fixed radius in the complex lines of Cn, so our symplectic quotient coincides
with the usual definition2 of CPn−1 as the space of complex lines through the

2If you are unfamiliar with this description of complex projective space, and with the
role it plays in algebraic geometry, you can read more in Appendix C.
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origin in Cn. The advantage of defining it as a symplectic quotient is the
clean construction of ωFS; we did not need to write down an explicit Kähler
potential.

In fact, we also recover the standard torus action on CPn−1 using Lemma
4.8. Consider the Hamiltonian system G = (G1, . . . , Gn) : Cn → Rn where
Gk = 1

2
|zk|2. These all commute with the Hamiltonian H =

∑n
k=1Gk

from Example 4.9. Therefore they descend to give a Hamiltonian system
(G1, . . . , Gn) : CPn−1 → Rn. The image of this Hamiltonian system is simply
the image of G|H−1(c), which is the intersection of the hyperplane

∑
Gk = c

with the nonnegative orthant in Rn, that is an (n− 1)-simplex (Figure 4.1).

G3

G1

G2

Figure 4.1: The moment image of CP2 in R3 when considered as a symplectic
quotient of C3.

Example 4.12 (Weighted projective spaces). Let a1, . . . , an be positive in-
tegers and consider the Hamiltonian H : Cn → R given by

H(z1, . . . , zn) =
1

2

n∑
k=1

ak|zk|2.

This generates the circle action zk 7→ eiaktzk. The symplectic quotient is an
orbifold called the weighted projective space P(a1, . . . , an). If ak 6= 1 then the
points of the form (0, . . . , 0, zk, 0, . . . , 0) have nontrivial stabiliser {µ ∈ S1 :
µak = 1}. If gcd(ak, a`) = 1 then points with zk and z` both nonzero have
trivial stabiliser, so if we assume that the ak are pairwise coprime then the
only singularities are the isolated cyclic quotient singularities with all but one
of the zk equal to zero. As in the case of CPn−1, the functions 1

2
|zk|2 descend
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and generate a torus action on P(a1, . . . , an), whose moment polytope is the
simplex in Rn with vertices at

(c/a1, 0, . . . , 0), (0, c/a2, 0, . . . , 0), . . . , (0, . . . , 0, c/an).

In Figure 4.2(a), you can see the moment triangle for P(1, 2, 3). If you project
it onto the yz-plane, you get the triangle shown in Figure 4.2(b). This has a
smooth point over the Delzant vertex and two singularities modelled on the
1
2
(1, 1) and 1

3
(1, 2) singularities.

(a)

(0, 0, 2)
(0, 3, 0)

(6, 0, 0)

(b)

• • •

•

•

•

•

Figure 4.2: (a) The moment image of the weighted projective space P(1, 2, 3)
in R3 when considered as a symplectic quotient of C3. The coordinates of
the vertices of the triangle are given assuming the symplectic reduction is at
level c = 6. (b) The projection of this triangle to the yz-plane, with integer
lattice points marked.

Example 4.13. Consider the round metric on the n-dimensional unit sphere
Sn; in particular, geodesics are great circles, and if you traverse a great circle
with constant speed 1 then it returns to its starting point after time 2π. Let
H : T ∗Sn → R be the Hamiltonian 1

2
|η|2 generating the cogeodesic flow3. The

cogeodesic flow does not define a circle action on T ∗Sn, but the periodicity
of geodesics with speed 1 means that the flow does define a circle action on
the level set H−1(1/2) (on which geodesics move with speed 1). This allows
us to perform symplectic reduction at that level. The result is that the
space of (oriented) geodesics parametrised by arc-length on the round Sn is

3If you are unfamiliar with cotangent bundles and cogeodesic flow, you can read more
about them in Appendix D.
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naturally a symplectic manifold of dimension 2n−2. We can also identify this
manifold of oriented geodesics as a homogeneous space: the great circles are
intersections of Sn ⊆ Rn+1 with oriented 2-planes through the origin, so the
manifold of oriented geodesics coincides with the Grassmannian G̃r(2, n+ 1)
of oriented 2-planes in Rn+1.

Remark 4.14 (Exercise 4.38). One can identify the Grassmannian G̃r(2, n+1)
with the homogeneous space O(n + 1)/(SO(2) × O(n − 1)), or with the
quadric hypersurface

∑n+1
i=1 z

2
i = 0 in CPn with homogeneous coordinates4

[z1 : · · · : zn+1].

Remark 4.15 (Exercise 4.39). The zero-section Sn ⊆ T ∗Sn consists of fixed
points of the cogeodesic flow, but all the other orbits are circles. By a similar
argument to Theorem 1.4, one can modify H = 1

2
|η|2 away from the zero-

section to get a Hamiltonian for which all orbits have the same period (i.e.
giving a circle action away from the zero-section). What Hamiltonian should
you take instead?

4.3 Symplectic cut

The symplectic cut is a particularly useful case of symplectic reduction, intro-
duced by Lerman [65]. Here is a simple example to illustrate the operation.

Example 4.16. Consider the cylinder X = R × S1 with symplectic form
dp ∧ dq (where q is the angular coordinate on S1). The function H = p
generates the circle action which rotates the S1 factor, and the symplectic
reduction at any level c yields a single point. If we symplectically reduce at
level c but leave all the other levels alone then this has the effect of “pinching”
the cylinder along a circle. Although the result is singular, it is the union
of two smooth symplectic discs, which we will denote by XH≤c and XH≥c.
Each of these contains the point H−1(c)/S1 at its centre. We will adopt the
convention of calling XH≥c the symplectic cut of X at level c.

We can perform symplectic cuts in a completely systematic and general way.
Let (X,ω) be a symplectic manifold and suppose that H : X → R is a Hamil-
tonian generating a circle action φHt . Pick a regular value c for which the

4Homogeneous coordinates are introduced in Appendix C.
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•
c

H−1(c)

H

X

XH≤c XH≥c•

H−1(c)/S1

Figure 4.3: Symplectic cut. It is as if we have cut X along H−1(c) and sewn
up the wound by collapsing the circle-orbit to a point.

circle action on H−1(c) is free. Consider the product X × C with the sym-
plectic form ω + dp ∧ dq (where p + iq ∈ C) and define the Hamiltonian
H̃c(x, ξ) = H(x)− c− 1

2
|ξ|2.

Lemma 4.17 (Exercise 4.40). The Hamiltonian H̃c generates the circle ac-
tion

(x, ξ) 7→
(
φHt (x), e−itξ

)
on X × C.

Definition 4.18 (Symplectic cut at level c). The symplectic cut XH≥c of X
at level c is defined to be the symplectic reduction of X × R2 with respect
to the Hamiltonian H̃c at level zero. One can also define a symplectic cut
XH≤c by using the Hamiltonian H − c + 1

2
|ξ|2. We will write [x, ξ] for the

equivalence class of (x, ξ) ∈ H̃−1
c (0) in the symplectic cut.

We now try to understand what XH≥c looks like.

Lemma 4.19. Consider the function X × C → R, (x, ξ) 7→ H(x). This
Poisson-commutes with H̃c and hence (by Lemma 4.8) descends to a function
H : XH≥c → R which generates a circle action on XH≥c. Moreover:

(a) The image of H is contained in [c,∞).

(b) The preimage H−1
(c) is symplectomorphic to the symplectic reduction

H−1(c)/S1.



61

(c) There is a symplectomorphism Ψ: H−1((c,∞)) → H
−1

((c,∞)) which
intertwines the circle actions:

Ψ(φHt (x)) = φHt (Ψ(x)).

In other words,XH≥c contains an open set symplectomorphic toH−1((c,∞)) ⊆
X; where it has been cut (along H−1(c)) the circle-orbits are collapsed to
points, yielding a symplectic submanifold symplectomorphic to H−1(c)/S2.
Everything below level c is thrown away.

Proof. The function (x, ξ) 7→ H(x) generates the Hamiltonian vector field
(VH , 0) on X ×C. Recall that H̃c = H − c+ 1

2
|ξ|2. Since dH(VH , 0) = 0 and

d|ξ|2(VH , 0) = 0 we have {H, H̃c} = −dH̃c(VH , 0) = 0. By Lemma 4.8(a),
this function descends to give a function H on the symplectic quotient. Since
(VH , 0) generates a circle action on X × C, Lemma 4.8(c) implies that H
generates a circle action on XH≥c.

Property (a): If (x, ξ) ∈ H̃−1
c (0) then H(x)− c+ 1

2
|ξ|2 = 0, so

H(x) = c+
1

2
|ξ|2 ≥ c.

Therefore H([x, ξ]) = H(x) ≥ c.

Property (b): The map H−1(c)/S1 → H
−1

(c) ⊆ XH≥c defined by [x] 7→ [x, 0]
is the required symplectomorphism.

Property (c): The required symplectomorphism is

Ψ(x) =
[
x,
√

2(H(x)− c)
]
.

4.4 Further examples

Most of our examples will be based on the following special case.

Example 4.20. Suppose that X is a toric manifold and that µ : X → Rn

is the moment map with moment image ∆ = µ(X). Pick a Z-linear map
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cut

Figure 4.4: The moment polygon for symplectic blow-up of C2 at the origin.

s : Rn → R and take H = s ◦ µ. If we symplectically cut at level c then the
result is still toric by Lemma 4.8, and the moment image is given by

{x ∈ ∆ : s(x) ≥ c}.

In other words, this is the truncation of the moment image by the half-space
{s ≥ c}.

Remark 4.21 (Exercise 4.41). We need s to be Z-linear (or at least Q-linear)
for this construction to work. Can you explain why?

Theorem 4.22 (Exercise 4.42). Any convex rational polytope ∆ occurs as the
moment image of a toric Hamiltonian system (on a possibly singular space).

Example 4.23. TakeX = Cn andH(z) = 1
2

∑n
k=1 |zk|2. We saw in Example

4.9 that the symplectic reduction at level c > 0 is CPn−1. If instead we take
the symplectic cut at this level, we get a toric manifold whose moment image
is

{b ∈ Rn
≥0 :

∑
bk ≥ c}.

(See Figure 4.4 for the n = 2 case). This contains the complement of the
symplectic ball Bc := {z ∈ Cn : |z|2 ≤ 2c} and it also contains a copy
of CPn−1 living over the newly cut facet

∑
bk = c. This is known as the

symplectic blow-up of X in the ball Bc. More generally, you can perform this
operation on any Delzant vertex of a moment polytope (see Example 4.26
below). The symplectic area of the exceptional curve is 2πc.

Remark 4.24. Compare Figure 4.4 with Figure 3.4. This shows that sym-
plectically blowing up a ball is essentially the same as the complex blow-up
of a smooth point, though of course they happen in different categories, so
one must be careful when relating them in practice. A paper which very
carefully explains (and uses) the relationship is [75, Section 2].
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Example 4.25. More generally, if Y ⊆ X is a symplectic submanifold of
real codimension 2k then one can perform this symplectic blow-up along Y :
each fibre of the normal bundle to Y is replaced by its blow-up in a ball
centred at the origin. The result is a symplectic manifold which contains:

• the complement of a neighbourhood of Y

• a copy of the projectivisation of the normal bundle of Y in X (consid-
ered as a complex vector bundle).

For more details, see Usher’s MathOverflow answer [110].

Example 4.26 (Exercise 4.43). There is a blow-up of CP1 × CP1 in two
disjoint symplectic balls which is symplectomorphic to a blow-up of CP2 in
three disjoint balls.

Example 4.27 (Exercise 4.44). Show that the common blow-up from Ex-
ample 4.26 arises as a symplectic reduction of CP1 × CP1 × CP1.

Example 4.28. As in Example 4.23, we takeX = Cn andH(z) = 1
2

∑n
k=1 |zk|2,

but this time we use the symplectic cutXH≤c. The result is a symplectic toric
manifold whose moment image is the n-simplex {b ∈ Rn : bk ≥ 0,

∑
bk ≤ c}.

When c = 1, we saw this moment polytope arise in Example 3.17 as the
moment image of the standard torus action on CPn, so XH≤1 is symplecto-
morphic to CPn with the Fubini-Study form. More generally, if c > 0, the
only difference is that the symplectic form is rescaled by a factor of c.

The previous example illustrates how the standard operation of projective
compactification in algebraic geometry can be understood using symplectic
cut. We can do something similar starting with Example 4.13.

Example 4.29. Consider the Hamiltonian H : T ∗Sn → R from Example
4.13. The symplectic cut (T ∗Sn)H≤1/2 is a compact symplectic manifold con-
taining an open subset symplectomorphic to the open unit cotangent bundle
of Sn and a “compactifying divisor” H−1(1/2)/S1 symplectomorphic to the
Grassmannian G̃r(2, n + 1). In fact, (T ∗Sn)H≤1/2 is symplectomorphic to a
quadric hypersurface in CPn+1 and the compactifying divisor is a hyperplane
section. For an in-depth discussion of this and similar examples, see [6].
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4.5 Resolution of singularities

We have seen that symplectic cut can be used as a symplectic Ersatz for
blowing-up in algebraic geometry. Just as blowing up allows us to resolve
singularities in algebraic geometry, symplectic cut can be used to remove
singularities in symplectic geometry.

Example 4.30. Consider the cyclic quotient singularity 1
a0

(1, a1) with mo-
ment polygon π(a0, a1) from Example 3.21. We can symplectically cut using a
horizontal slice at a level above the singularity to obtain a polygon π̃(a0, a1)
which now has two vertices: a Delzant corner and a corner modelled on
π(a1, a2) where 0 < a2 ≤ a1 satisfies a2 = −a0 mod a1, i.e. a2 = y1a1 − a0

for some y1. Namely, the matrixM1 =

〈
0 −1
1 y1

)
satisfies (−1, 0)M1 = (0, 1),

(a0, a1)M1 = (a1, a2). See Figure 4.5.

If a2 = a1 then this second corner is Delzant, and the symplectic cut is
smooth. Otherwise, we can iterate this procedure by slicing the polygon
π(a1, a2) horizontally (i.e. slicing π̃(a0, a1) parallel to (1, 0)M−1

1 ). We get a
decreasing sequence of positive integers a0, a1, a2, . . . and a sequence of posi-
tive integers y1, y2, . . . with ak+1 = ykak−ak−1. At some point we necessarily
find am+1 = am+2 because the sequence cannot continue decreasing forever.
The result of all these cuts is a Delzant polygon. See Figures 4.5 and 4.6.

Unpacking the recursion formula for ak+1, we see that

a0/a1 = y1−a2/a1 = y1−
1

a1/a2

= y1−
1

y2 − a3/a2

= · · · = y1−
1

y2 − 1

...− 1
ym

.

Thus the numbers yi are the coefficients in the continued fraction expansion5

of a0/a1.

This process has introduced m compact edges into our polygon. There are
symplectic spheres living over these in the iterated symplectic cut. These
spheres have self-intersection numbers −y1,−y2, . . . ,−ym. To see this, it
suffices to check it for y1 because of the iterative nature of the process. There
are two cases to consider:

5This is the Hirzebruch-Jung convention for taking continued fractions with minus
signs.
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• If our process terminated after a single cut then a0/a1 = y1 is an
integer, so a1 = 1 and a0 = y1. In this case, the compact edge of
π̃(a0, a1) has rays emanating in the (0, 1) and (a0, a1) = (y1, 1) direc-
tions from its endpoints. By Lemma 3.20, the corresponding sphere
has self-intersection −y1.

• If our process takes two or more steps then the leftmost compact edge
has outgoing rays pointing in the (0, 1) and (1, 0)M−1

1 = (y1, 1) di-
rections. Again, by Lemma 3.20, the corresponding sphere has self-
intersection −y1.

π(a0, a1)

cut

π̃(a0, a1)

M1 =

〈
0 −1
1 y1

)

π(a1, a2) cut π̃(a1, a2)

Figure 4.5: The minimal resolution of cyclic quotient surface singularities
via symplectic cuts. In this specific example we have used a0 = 3, a1 = 2,
a2 = 1, y1 = y2 = 2 (so the process terminates after two cuts: the result is
shown in Figure 4.6).

This process allows us to replace a 1
a0

(1, a1) singularity by a chain of sym-
plectic spheres with self-intersections determined by the continued fraction
expansion of a0/a1. This is precisely what happens when we perform the
minimal resolution of this singularity in complex geometry, so we often refer
to this sequence of symplectic cuts as taking the minimal resolution. Figures
4.5 and 4.6 illustrate this process in the case a0 = 3, a1 = 2. Since 3

2
= 2− 1

2
,
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• •

•

(1, 0)
(2, 1)

(3, 2)

Figure 4.6: The combined result of performing both cuts in Figure 4.5; ver-
tices are marked with dots for emphasis. In this example (the 1

3
(1, 2) sin-

gularity) the vectors indicate the directions of the edges and using Lemma
3.20 you can check that we have introduced two −2-spheres in the minimal
resolution.

the minimal resolution replaces the 1
3
(1, 2) singularity by two −2-spheres.

Remark 4.31. Just as symplectic blow-up involves a choice of parameter (the
area of the exceptional sphere), forming the minimal resolution by sympplec-
tic cuts involves choices of edge-lengths for the symplectic cuts. This subtlety
is absent from the minimal resolution in complex geometry, but appears when
you try to equip the minimal resolution with an ample line bundle or Kähler
form.

In higher dimensions, resolution of singularities is more complicated. We
consider just one 6-dimensional example to give a flavour of what can happen.

Example 4.32 (The conifold). Consider the affine variety C := {z1z4 =
z2z3} ⊆ C4. This has a singularity at the origin which goes by many names
(A1 singularity, node, ordinary double point, conifold). It admits a Hamilto-
nian T 3-action: (

eit1z1, e
it2z2, e

it3z3, e
i(t2+t3−t1)z4

)
.

The moment map for this action is

µ(z1, . . . , z4) =

(
1

2
(|z1|2 − |z4|2),

1

2
(|z2|2 + |z4|2),

1

2
(|z3|2 + |z4|2)

)
.

If we write H1, H2, H3 for these three functions then we have

H2 ≥ 0, H3 ≥ 0, H1 +H2 ≥ 0, H1 +H3 ≥ 0.



67

Figure 4.7: The moment polytope for the nodal 3-fold in Example 4.32 is an
infinite cone extending this figure.

These four inequalities cut out a polyhedral cone ∆ in R3, spanned by the
four rays

(r, 0, 0), (0, r, 0), (0, 0, r), (−r, r, r), r > 0.

(See Figure 4.7). These rays are the moment images of the curves

(z, 0, 0, 0), (0, z, 0, 0), (0, 0, z, 0), (0, 0, 0, z)

all of which are contained in C, so µ(C) contains all four of these rays and
hence their convex hull, which is the whole of ∆. Thus µ(C) = ∆. Note that
∆ is not Delzant at the origin (corresponding to the nodal singularity of C).

One can find some resolutions of this nodal 3-fold by taking symplectic cuts.

Example 4.33 (The fully-resolved conifold). Take the symplectic cut of the
conifold C with respect to the Hamiltonian 1

2

∑4
k=1 |zk|2 at level c = 1. In

terms of our functions H1, H2, H3 this is just H1 +H2 +H3, so we obtain the
polytope shown in Figure 4.8. We have introduced a new quadrilateral facet
H1 +H2 +H3 = 1. This quadrilateral has vertices at (1, 0, 0), (0, 1, 0), (0, 0, 1)
and (−1, 1, 1). In fact, this is isomorphic to a square under the integral affine
transformation (x, y, z) 7→ (y, z), so the preimage of our new facet is the
toric manifold associated to a square. In Example 3.13, we saw that this is
symplectomorphic to CP1 × CP1. We have replaced the nodal point of C
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Figure 4.8: The moment polytope of the fully-resolved conifold in Example
4.33. This is obtained by intersecting the polytope from Figure 4.7 with the
half-space x+ y + z ≥ 1.

with an “exceptional divisor” CP1×CP1. Note that this is precisely what we
would get if we treated z1, . . . , z4 as homogeneous coordinates: z1z4 = z2z3 is
a smooth projective quadric surface, and hence biholomorphic to CP1×CP1

(see Example F.3). In the language of algebraic geometry, we have performed
a blow-up of C4 at the origin and taken the proper transform of C.

Example 4.34 (Small-resolved conifold). Take a linear map s which vanishes
along one of the facets of ∆, for example s(x, y, z) = z. Take the symplectic
cut Cs◦µ≥ε of the conifold for some small ε > 0. If ∆ were Delzant, this
truncation would have no effect on the combinatorics of the moment poly-
tope and would just change the lengths of some edges. Because ∆ is not
Delzant, the result is to introduce a new edge (see Figure 4.9). This is an
example of a small resolution: the symplectic cut is a smooth manifold, but
instead of replacing the singularity with a divisor, we have replaced it with
a curve. In algebro-geometric language, we have blown-up the Weil divisor
{z3 = z4 = 0} ⊆ C. Roughly speaking, a Weil divisor is a complex codi-
mension 1 submanifold; if a Weil divisor can be defined by the vanishing
of a single polynomial then it is called a Cartier divisor. Blowing up along
a Cartier divisor has no effect, but we have blown up along a non-Cartier
divisor (requiring both z3 and z4 to vanish).
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Figure 4.9: The moment polytope of the small-resolved conifold in Example
4.32. This is obtained by intersecting the polytope in Figure 4.7 with the
half-space z ≥ ε.

4.6 Solutions to inline exercises

Exercise 4.35 (Lemma 4.3). Suppose H : X → R generates a circle action.

(a) The critical points of H are precisely the fixed points of the circle action.

(b) The level sets Mc are preserved by the circle action.

(c) If x is a regular point then TxMc = ker(dH).

(d) If v ∈ TxMc satisfies ω(v, w) = 0 for all w ∈ TxMc then v ∈ span(VH).

Solution. (a) The vector field VH satisfies ιVHω = −dH. Since ω is nondegen-
erate, we see that VH = 0 if and only if dH = 0, so the zeros of VH coincide
with the critical points of H. A point is fixed under the circle action if and
only if the vector field vanishes there.

(b) This is immediate from Lemma 1.11.

(c) Suppose that γ is a path inMc = H−1(c). Then the directional derivative
of H along γ̇ vanishes because H ◦ γ = c, so dH(γ̇) = 0. Because TxMc

consists of tangent vectors to paths through x in Mc, we see that TxMc ⊆
ker(dH). Since x is regular, both TxMc and ker(dH) have codimension 1, so
the containment TxMc ⊆ ker(dH) implies they coincide.

(d) The symplectic orthogonal complement (TxMc)
ω is 1-dimensional and

contains the span of VH , therefore it equals the span of VH . This means that
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if ω(v, w) = 0 for all w ∈ TxMc then v ∈ span(VH).

Exercise 4.36 (Lemma 4.7). If p : M → Q is a submersion and η is a k-form
on Q such that p∗η = 0 then η = 0.

Solution. If η 6= 0 then there exist vectors ξ1, . . . , ξk ∈ TQ such that η(ξ1, . . . , ξk) 6=
0. Since p is a submersion, ξi = p∗vi for some vectors v1, . . . , vk ∈ TM . There-
fore 0 6= η(ξ1, . . . , ξk) = (p∗η)(v1, . . . , vk) = 0, which is a contradiction.

Exercise 4.37 (Example 4.9). Check directly from the definition of ωFS on
CP1 that

∫
CP1 ωFS = 2π.

Proof. Recall that ωFS comes from symplectically cutting C2 at radius r =√
2. Consider the affine coordinate patch {[x + iy : 1] : x + iy ∈ C}

on CP1. This covers all but a point of CP1, and we can pick a section of
the symplectic quotient p : S3(r) → CP1 living over this patch, for example
[x + iy : 1] 7→ ( r(x+iy)

1+x2+y2 ,
r

1+x2+y2 ) ∈ S3(r) ⊆ C2. The integral of ωFS over
this coordinate patch is given by the integral of ωC2 over the section (since
p∗ωFS = i∗ωC2 where i is the inclusion S3(r)→ C2). The form ωC2 is the sum
pr∗1ωC + pr∗2ωC where pr1 and pr2 are the projections to the first and second
factors. The projection of our section to the second factor is 1-dimensional,
pr∗2ωC integrates trivially over the section. The image of the section under
pr1 is the disc of radius r, so the integral of pr∗1ωC over the section is πr2.
Since r =

√
2, this gives area 2π, as required.

Exercise 4.38 (Remark 4.14). One can identify the Grassmannian G̃r(2, n+
1) with the homogeneous space O(n + 1)/(SO(2) × O(n − 1)), or with the
quadric hypersurface

∑n+1
i=1 z

2
i = 0 in CPn with homogeneous coordinates [z1 :

· · · : zn+1].

Solution. There is a transitive action of O(n + 1) on oriented 2-planes in
Rn+1. By the orbit-stabiliser theorem6, this means that G̃r(2, n+1) = O(n+
1)/Stab(R2), where Stab(R2) is the subgroup of O(n + 1) stabilising the
standard oriented 2-plane {(x1, x2, 0, . . . , 0) : x1, x2 ∈ R}. This stabiliser

consists of block-matrices
(
A 0
0 B

)
with A ∈ SO(2) and B ∈ O(n− 1).

6i.e. the theorem which identifies the G-orbit of x with G/Stab(x), in whatever category
you are working, e.g. differentiable manifolds and smooth actions.
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To identify this homogeneous space with the quadric hypersurface, observe
that the quadric also admits an action of O(n + 1) (inherited from Cn+1)
precisely because the quadratic form

∑n+1
k=1 z

2
k is preserved by orthogonal

matrices. This is (a) transitive and (b) the stabiliser of the point [1 : i : · · · : 0]
is isomorphic to SO(2)×O(n− 1).

(a) To see transitivity, let us prove that the orbit of [1 : i : 0 : · · · : 0] is the
whole quadric. Suppose that z = x+ iy ∈ Cn+1 is a nonzero complex vector
with

∑n+1
k=1 z

2
k = 0. The real and imaginary parts of this condition become

|x|2 = |y|2 and x·y = 0. Use the Gram-Schmidt process to extend x̂ = x/|x|,
ŷ = y/|y| to an orthonormal basis of Rn+1 use these basis vectors as the
columns of an orthogonal matrix A. By construction, A(1, i, 0, . . . , 0) =
x̂ + iŷ, so A[1 : i : 0 : · · · : 0] = [ẑ] = [z]. This shows that [z] lies in the
O(n+ 1)-orbit of [1 : i : 0 · · · : 0].

(b) To understand the stabiliser, suppose that A[1 : i : 0 : · · · : 0] = [1 : i :
0 : · · · : 0]. If the columns of A are a1, . . . ,an+1 then this condition becomes
a1 + ia2 = reiθ(1, i, 0, . . . , 0) for some reiθ ∈ C \ {0}. Since A is orthogonal,
we get r = 1 and

a1 =


cos θ
− sin θ

0
...
0

 , a2 =


sin θ
cos θ

0
...
0


The upper-right 2-by-2 block of A is therefore an element of SO(2). Or-
thogonality of A now implies that A is block-diagonal and the lower-left
(n− 1)-by-(n− 1) block is orthogonal. Thus A ∈ SO(2)×O(n− 1).

Exercise 4.39 (Remark 4.15). The zero-section Sn ⊆ T ∗Sn consists of fixed
points of the cogeodesic flow, but all the other orbits of the cogeodesic flow
on the round sphere are circles. By a similar argument to Theorem 1.4, one
can modify H = 1

2
|η|2 away from the zero-section to get a Hamiltonian for

which all orbits have the same period (i.e. giving a circle action away from
the zero-section). What Hamiltonian should you take instead?

Solution. The geodesics in the level set H−1(c) have speed |p| =
√

2c, so
have period T (c) = 2π/

√
2c. The proof of Theorem 1.4 tells us to use the
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Hamiltonian α ◦ H where α(b) = 1
2π

∫ b
0
T (c) dc = 1√

2

∫ b
0
dc√
c

=
√

2b. In other
words, use the Hamiltonian |p|. This Hamiltonian is not smooth at p = 0
(i.e. along the zero-section) so the new Hamiltonian flow only makes sense
away from the zero-section.

Exercise 4.40 (Lemma 4.17). The Hamiltonian H̃c generates the circle ac-
tion

(x, ξ) 7→
(
φHt (x), e−itξ

)
on X × C.

Solution. The Hamiltonian vector field is VH − ∂θ where θ is the angular
coordinate on C. The flowlines are therefore (φHt (x), e−itξ), which all have
period 2π.

Exercise 4.41 (Remark 4.21). Why do we need s to be Z-linear (or at least
Q-linear) for the construction in Example 4.20 to work?

Solution. If s is Z-linear then the Hamiltonian H := s ◦ µ generates a circle
action: the Hamiltonian vector field VH is a Z-linear combination of the
periodic vector fields generating the torus action. If s is only Q-linear, we
can rescale it to clear denominators and get a Z-linear map, so the symplectic
cut can still be made to work. If s is not Q-linear then the subgroup of T n
generated by the flow of VH is not closed. If we persist in taking the quotient,
the result will likely fail to be Hausdorff.

Exercise 4.42 (Theorem 4.22). Any convex rational polytope ∆ occurs as the
moment image of a toric Hamiltonian system (on a possibly singular space).

Proof. Start with the Hamiltonian system µ : T ∗T n → Rn given in canonical
coordinates by (p, q) → p. The moment image is the whole of Rn. The
polytope ∆ is an intersection of a collection of half-spaces sj(x) ≥ cj where
s1, . . . , sm are Q-linear maps and c1, . . . , cm are real numbers. Take the sym-
plectic cut of T ∗T n by s1 ◦ µ at level c1. Then take the symplectic cut of the
result by s2 ◦µ at level c2, and continue. Each time you cut, the moment im-
age is intersected with another half-space. The final result is a Hamiltonian
system whose moment image is ∆. The total space will have singularities if
∆ is not Delzant. This will happen when we quotient by a non-free circle
action.
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Exercise 4.43 (Example 4.26). There is a blow-up of CP1 × CP1 in two
disjoint symplectic balls which is symplectomorphic to a blow-up of CP2 in
three disjoint balls.

Proof. Blow up the shaded balls by symplectic cut. This has the effect of
truncating the moment polygons to obtain the moment hexagon of the com-
mon blow-up.

Exercise 4.44 (Example 4.27). Show that the common blow-up from Exam-
ple 4.26 arises as a symplectic reduction of CP1 × CP1 × CP1.

Proof. Make the cut as shown.

This gives a hexagonal moment polygon which is Z-affine equivalent to the
previous one (e.g. via projection to the xy-plane).
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Chapter 5

Visible Lagrangian submanifolds

We will now study Lagrangian submanifolds of toric manifolds. It will turn
out that if the moment image of Lagrangian submanifold has codimension k
then it is contained in a affine subspace of codimension k. This does not quite
determine the Lagrangian completely, but gives severe restrictions. Just as
we have been specifying a symplectic manifold by drawing a polytope, we will
be able to specify a Lagrangian submanifold by drawing an affine subspace
of the moment polytope; these are called visible Lagrangians. While most
Lagrangian submanifolds of toric varieties are not visible, the visible ones are
useful to know about, and we discuss the theory and numerous examples in
this chapter. In Appendix H, we will see a more versatile construction due
to Mikhalkin and Matessi, which assigns a tropical Lagrangian to a tropical
curve in the polytope.

5.1 Visible Lagrangian submanifolds

Theorem 5.1. Consider the integrable Hamiltonian system H : Rn × T n →
Rn, H(p, q) = p where q1, . . . , qn are taken modulo 2π and the symplectic
form is

∑
dpi ∧ dqi. Let L ⊆ Rn×T n be a Lagrangian submanifold. Suppose

that H|L : L → Rn factors as H|L = f ◦ g, where g : L → K is a bundle
over a k-dimensional manifold K, k < n, and f : K → Rn is an embedding.
Then K is an affine linear subspace of Rn which is rational with respect to
the lattice (2πZ)n.

This material has been/will be published by Cambridge University Press as Lectures on
Lagrangian Torus Fibrations by Jonny Evans. This pre-publication version is free to
view and download for personal use only. Not for re-distribution, re-sale, or use in
derivative works.
c© Jonny Evans 2018–2023.
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Definition 5.2. We call Lagrangian submanifolds which project in this way
visible.

Remark 5.3. Theorem 5.1 was first observed when n = 2 and dim(K) = 1
by Symington [106, Corollary 7.9].

Proof. Let s = (s1, . . . , sk) be local coordinates on K and t = (tk+1, . . . , tn)
be local coordinates on the fibre of g. By assumption, the inclusion of L
into Rn has the form (s, t) 7→ (p(s), q(s, t)) for some functions p, q. The
vectors ∂si and ∂tj pushforward to (∂sip, ∂siq) and (0, ∂tjq). The Lagrangian
condition on L is equivalent to ∂sip · ∂tjq = 0 and ∂sip · ∂sjq = ∂sjp · ∂siq
for all i, j. The first of these conditions implies that the tangent space of the
fibre of g is orthogonal1 to the k-dimensional subspace f∗(TK) spanned by
∂s1p, . . . , ∂skp. Since the tangent space of the fibre of g is (n−k)-dimensional,
it must be precisely f∗(TK)⊥; in other words, for each s ∈ K, the fibre
of g over s is an integral submanifold of the distribution on T n given by
f∗(TK)⊥. This distribution has an integral submanifold if and only if f∗(TK)
is a rational subspace with respect to the lattice (2πZ)n. Since f∗(TK)
varies smoothly in s, and must always be rational, it is necessarily constant.
Therefore f(K) is a rational affine subspace.

Remark 5.4. As a consequence of the proof, we see that if the visible La-
grangian projects to an affine subspace K in the p-plane then its fibre in the
q-torus above a point in K is a translate of the subtorus K⊥/(K⊥∩ (2πZ)n).

Example 5.5. Suppose n = 2 and K is the p1-axis. Then L ∩ {(p1, 0)} is a
circle {(q1, θ) : θ ∈ [0, 2π]} for some fixed q1. For example, L could be the
cylinder {p2 = 0, q1 = 0}.

Remark 5.6. Note that the dependence of qi on the coordinates sj can be
nontrivial.

Example 5.7. Let (p1, p2, q1, q2) be coordinates on X = R2 × T 2 with
symplectic form

∑
dpi ∧ dqi. The Lagrangian embedding i : R × S1 → X,

i(s, t) = (s, 0, 0, t) is visible for the projection (p, q) 7→ p. The Lagrangian
torus j : S1 × S1 → X, j(s, t) = (sin s, 0, s, t) is also visible2, and projects to

1with respect to the Euclidean metric on Rn.
2Technically, it is not visible itself because the projection map is not a bundle, rather it

is a union of two visible cylinders. We will tolerate this and related abuses of terminology.
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the line segment [−1, 1] × {0} (the preimage of each point in (−1, 1) × {0}
is a pair of circles).

Remark 5.8. Apart from giving a useful way to visualise and construct La-
grangian submanifolds, this theorem also gives us a way to figure out the
integral affine structure on the base of a Lagrangian torus fibration if we
don’t already know it. If we can find a Lagrangian submanifold whose image
under our Hamiltonian system is a submanifold K ⊆ Rn then we know that
the image of K under action coordinates is supposed to be affine linear. We
will use this observation in the proof of Lemma 7.2 later.

5.2 Hitting a vertex

Suppose now that we have a Hamiltonian torus action (and toric critical
points) with moment map µ : X → Rn and address the question of what
visible Lagrangian surfaces look like when the affine linear subspace µ(L)
intersects the boundary strata of the moment polytope. For simplicity, we
will focus on the case dimX = 4, dimµ(L) = 1.

Example 5.9. Consider the Lagrangian plane L := {(z, z̄) : z ∈ C} ⊆ C2.
The projection µ(L) is the diagonal ray {(t, t) : t ∈ [0,∞)} ⊆ R2, so L is a
visible Lagrangian surface. See Figure 5.1.

Example 5.10. Consider the Lagrangian antidiagonal sphere

∆̄ := {((x, y, z), (−x,−y,−z)) ∈ S2 × S2 : (x, y, z) ∈ S2}.

Here, we have equipped S2 × S2 with the equal-area symplectic form from
Example 3.13. The moment map is µ((x1, y1, z1), (x2, y2, z2)) = (z1, z2) so
the projection of the antidiagonal sphere along µ is the antidiagonal line
{(z,−z) ∈ [−1, 1]2 : z ∈ [−1, 1]} (see Figure 5.1). This is therefore a visible
Lagrangian whose projection hits two vertices, where it is locally modelled
on Example 5.9.

Example 5.11 (Exercise 5.18). Fixm,n ∈ Z>0 with gcd(m,n) = 1 Consider
the ray {(mt, nt) : t ∈ [0,∞)} in the nonnegative quadrant (Figure 5.2).
Above this ray is a visible Lagrangian which I will call a Schoen-Wolfson
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Figure 5.1: Left: A visible Lagrangian disc (Example 5.9). Right: The
antidiagonal sphere in S2 × S2 (Example 5.10) is a visible Lagrangian living
over the antidiagonal in the square.

(m,n)

Figure 5.2: Moment image of a Schoen-Wolfson cone.

cone3 given parametrically by:

(s, t) 7→ 1√
m+ n

(
t
√
meis
√
n/m, it

√
ne−is

√
m/n
)
, s ∈ [0, 2π

√
mn], t ∈ [0,∞)

This cone is singular at the origin unless m = n = 1.

Remark 5.12. Modulo the freedom discussed in Remark 5.6 and Example
5.7, this exhausts all possible local models for visible Lagrangians living over
a line which hits the corner of a Delzant moment polygon.

Example 5.13. If our moment polygon is a rectangle with sidelengths m
and n (positive integers) then we get a symplectic form on S2×S2 which gives
the factors symplectic area m and n respectively, so the symplectic form lives
in the class (m,n) ∈ H2(S2×S2). The diagonal line joining opposite corners
of the moment rectangle is the projection of a visible Lagrangian sphere
L with two Schoen-Wolfson singular points with parameters (m,n). The
homology class of this Lagrangian is (n,−m) (you can see this by intersecting
with spheres in the classes [S2 × {p}] and [{p} × S2]), which has symplectic

3Schoen and Wolfson [92, Theorem 7.1] showed that these are the only Lagrangian
cones in C2 which are Hamiltonian stationary (i.e. critical points of the volume functional
restricted to Hamiltonian deformations).
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area 0. Indeed, the homology class (n,−m) can only contain a Lagrangian
representative when [ω] is a multiple of (m,n) ∈ H2(S2 × S2).

5.3 Hitting an edge

Example 5.14. We now consider visible Lagrangians whose projection hits
an edge. For a local model, we take X = R × S1 × C, with coordinates
(p, q, z = x + iy) (q ∈ R/2πZ) and symplectic form dp ∧ dq + dx ∧ dy. The
image of the moment map µ : X → R2, µ(p, q, z) =

(
p, 1

2
|z|2
)
is the closed

upper half-plane {(x1, x2) ∈ R2 : x2 ≥ 0}. Consider the ray Rm,n =
{(ms, ns) : s ≥ 0}. The following map is a Lagrangian immersion of the
cylinder

i(s, t) =
(
ms,−nt,

√
2nseimt

)
, (s, t) ∈ [0,∞)× S1

whose projection along µ is the ray Rm,n. This immersion is an embedding
away from s = 0, but it is n-to-1 along the circle s = 0 (the points

(
0, t+ 2πk

n

)
,

k = 0, . . . , n− 1, all project to (0, t mod 2π, 0)).

Rm,n

The image of the immersion is a Lagrangian which looks like a collection of n
flanges meeting along a circle, twisting as they move around the circle so that
the link of the circle is an (m,n)-torus knot (see Figure 5.3). For example,
when m = 1, n = 2, this is a Möbius strip. For n ≥ 3 it is not a submanifold.
We call the image of the immersion a Lagrangian (n,m)-pinwheel core.

Any integral affine transformation preserving the upper half-plane and fixing
the origin acts on the set of rays Rm,n. These transformations are precisely

the affine shears
〈

1 0
k 1

)
, which allow us to change m by any multiple of n,

so we can always assume m ∈ {0, . . . , n− 1}.
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Again, modulo the freedom discussed in Remark 5.6 and Example 5.7, these
local models exhaust the visible Lagrangians intersecting an edge of a moment
polygon.

Figure 5.3: A pinwheel core with n = 3 flanges: lines with arrows should be
identified in pairs.

Example 5.15. Consider the Lagrangian RP2 which is the closure of the
visible disc {[z : z̄ : 1] : z ∈ C} ⊆ CP2. This projects to the diagonal
bisector in the moment triangle (see Figure 5.4(a)). If we use the integral

affine transformation
〈
−1 −1
0 −1

)
to make the slanted edge of the triangle

horizontal then the projection of the visible Lagrangian ends up pointing
in the ±(1, 2)-direction (Figure 5.4(b)), so comparison with Example 5.14
shows that the disc is capped off with a Möbius strip to give an RP2.

(a) (b)

C

A B

⊕

〈
−1 −1
0 −1

)

B C

A

⊗

Figure 5.4: (a) Visible Lagrangian RP2 in CP2. (b) The same picture after an
integral affine transformation shows the line pointing in the (1, 2)-direction,
so there is a (2, 1)-pinwheel core (Möbius strip) near the point marked ⊗.

Example 5.16 (Exercise 5.19). The square below has vertices at (−2,−2),
(−2, 2), (2,−2), (2, 2). There is a smooth, closed visible Lagrangian surface
L in the corresponding toric variety, living over the line segment connecting
(−1,−2) to (1, 2). To which topological surface is L homeomorphic?
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(−1,−2)

(1, 2)

Here is a higher dimensional example.

Example 5.17 (Exercise 5.20). Consider the symplectic manifold CP1×C2

with the symplectic form pr∗1ωCP1 + pr∗2ωC2 (here, prk denotes the projection
to the kth factor, ωCP1 is the Fubini-Study form on CP1 normalised so that
1

2π

∫
CP1 ωCP1 = 1 and ωC2 is the standard symplectic form). Sketch the mo-

ment image for the T 3-action coming from the standard torus actions on each
factor. Check that the 3-sphere {([−z̄2 : z̄1], z1, z2) : |z1|2 + |z2|2 = 2} ⊆
CP1 × C2 is Lagrangian and sketch its projection under the moment map.

5.4 Solutions to inline exercises

Exercise 5.18 (Example 5.11). Fix m,n ∈ Z>0 with gcd(m,n) = 1. Verify
that the Schoen-Wolfson cone

(s, t) 7→ 1√
m+ n

(
t
√
meis
√
n/m, it

√
ne−is

√
m/n
)
, s ∈ [0, 2π

√
mn], t ∈ [0,∞)

is Lagrangian where that makes sense (i.e. away from the cone point) and
that its projection under the moment map is the ray {(mt, nt) : t ∈ [0,∞)}.

Solution. The parametrisation here is chosen to agree with the one from
the Schoen-Wolfson paper, but we can make our life easier by using θ =
s/
√
mn ∈ [0, 2π] and r = t2/2(m+ n) to get the parametrisation

(r, θ) 7→ (
√

2mreinθ,
√

2nre−imθ).

Applying the moment map (|z1|2/2, |z2|2/2) gives us {(mr, nr) : r ≥ 0}, so
the Lagrangian projects to the correct ray. The fibre of the Lagrangian over
(mr, nr) is {(

√
2mreinθ,

√
2nre−imθ) : θ ∈ [0, 2π]}. In the (θ1, θ2)-torus, this

is a circle whose tangent line is (n,−m), which is orthogonal to the ray in
the base. Therefore this is Lagrangian by Remark 5.4.
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Exercise 5.19 (Example 5.16). The square below has vertices at (−2,−2),
(−2, 2), (2,−2), (2, 2). There is a smooth, closed visible Lagrangian surface
L in the corresponding toric variety, living over the line segment connecting
(−1,−2) to (1, 2). To which topological surface is L homeomorphic?

(−1,−2)

(1, 2)

Solution. There are two Möbius strips where the projection of the visible La-
grangian meets the edge of the square. These are joined along their common
boundary, which forms a Lagrangian Klein bottle.

Exercise 5.20 (Example 5.17). Consider the symplectic manifold CP1×C2

with the symplectic form pr∗1ωCP1 + pr∗2ωC2 (here, prk denotes the projection
to the kth factor, ωCP1 is the Fubini-Study form on CP1 normalised so that
1

2π

∫
CP1 ωCP1 = 1 and ωC2 is the standard symplectic form). Sketch the mo-

ment image for the T 3-action coming from the standard torus actions on each
factor. Check that the 3-sphere L := {([−z̄2 : z̄1], z1, z2) : |z1|2 + |z2|2 =
2} ⊆ CP1 × C2 is Lagrangian and sketch its projection under the moment
map.

Solution. The moment map is µ([a : b], z1, z2) =
(

|b|2
|a|2+|b|2 ,

1
2
|z1|2, 1

2
|z2|2

)
, so

its image is the noncompact polytope {(x, y, z) ∈ R3 : x ∈ [0, 1], y, z ≥ 0}.
To compute the moment image of L, we have

µ([−z̄2 : z̄1], z1, z2) =

(
1

2
|z1|2,

1

2
|z1|2,

1

2
(2− |z1|2)

)
,

where we used the fact that |z1|2 + |z2|2 = 2. As |z1|2 varies between 0 and 2
(again using the constraint |z1|2 + |z2|2 = 2) we get the straight line segment

t 7→ (t/2, t/2, (2− t)/2), t ∈ [0, 2]

in the y + z = 1 plane, connecting (0, 0, 1) to (1, 1, 0).
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z

y

x

1
1

1

Figure 5.5: The moment image (slanted line) of the Lagrangian sphere in
Exercise 5.20. The dotted rectangle is the plane y + z = 1 and numbers
indicate affine lengths of edge-segments.

We now check that L is Lagrangian for the symplectic form pr∗1ωCP1 +pr∗2ωC2 .
By definition of the Fubini-Study form, it suffices to lift the embedding L→
CP1×C2 to a map L→ S3(

√
2)×C2 where S3(

√
2) is the sphere of radius

√
2

in C2, since (CP1, ωCP1) is obtained by the symplectic reduction S3(
√

2)/S1.
We choose the lift ` : (z1, z2) 7→ (−z̄2, z̄1, z1, z2) restricted to |z1|2 + |z2|2 = 2.

To begin, we work on the solid torus |z1|2 ≤ 1 inside |z1|2 + |z2|2 = 2: a
similar argument holds on the complementary solid torus |z2|2 ≤ 1. Pick
coordinates r, θ, φ so that z1 = reiθ and z2 =

√
2− r2eiφ. We write out `

fully in these coordinates (separating real and imaginary parts):

`(r, θ, φ) =
(
−
√

2− r2 cosφ,
√

2− r2 sinφ, r cos θ, r sin θ,

r cos θ,−r sin θ,
√

2− r2 cosφ,
√

2− r2 sin θ
)

This gives:

`∗∂r =

(
r cosφ√
2− r2

,− r sinφ√
2− r2

, cos θ, sin θ,

cos θ,− sin θ,− r cosφ√
2− r2

,− r sinφ√
2− r2

)
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`∗∂θ = (0, 0,−r sin θ, r cos θ,

−r sin θ,−r cos θ, 0, 0)

`∗∂φ =
(√

2− r2 sinφ,
√

2− r2 cosφ, 0, 0,

0, 0,−
√

2− r2 sinφ,
√

2− r2 cosφ
)

from which one can check that all possible evaluations of ω vanish, for ex-
ample

ω(`∗∂r, `∗∂φ) = r cos2 φ+ r sin2 φ− r cos2 φ− r sin2 φ = 0.



Chapter 6

Focus-focus singularities

So far, we have studied Lagrangian torus fibrations which have either no
critical points or else toric critical points. In this chapter, we discuss an-
other kind of critical point: the focus-focus critical point. Lagrangian torus
fibrations whose critical points are either toric or focus-focus type are called
almost toric. Allowing these critical points will drastically expand our zoo
of examples, but also make our life more complicated. The main new fea-
tures are that (a) the integral affine structure on the base of the fibration has
nontrivial affine monodromy around the critical points, and (b) the integral
affine base no longer uniquely determines the torus fibration.

6.1 Focus-focus critical points

Example 6.1 (Standard focus-focus system). Consider the following pair of
Hamiltonians on (R4, dp1 ∧ dq1 + dp2 ∧ dq2):

F1 = −p1q1 − p2q2, F2 = p2q1 − p1q2.

If we introduce complex coordinates1 p = p1 + ip2, q = q1 + iq2 then F :=
F1 + iF2 = −p̄q.

1These complex coordinates are not supposed to be compatible with ω, indeed the
p-plane and q-plane are both Lagrangian.

This material has been/will be published by Cambridge University Press as Lectures on
Lagrangian Torus Fibrations by Jonny Evans. This pre-publication version is free to
view and download for personal use only. Not for re-distribution, re-sale, or use in
derivative works.
c© Jonny Evans 2018–2023.
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Lemma 6.2 (Exercise 6.18). The Hamiltonians F1 and F2 Poisson-commute.
The Hamiltonian F1 generates the R-action (p, q) 7→ (etp, e−tq). The Hamil-
tonian F2 generates the circle action (p, q) 7→ (eitp, eitq).

The orbits of the resulting R × S1-action are: the origin (fixed point); the
Lagrangian cylinders P := {(p, 0) : p 6= 0} and Q := {(0, q) : q 6= 0}; and
the Lagrangian cylinders {(p, q) : p̄q = c} for c ∈ C \ {0}.

The diagram below represents the projection of R4 to R2 via

(p1, p2, q1, q2) 7→ (|p|, |q|);

the projections of the φF1
t -flowlines are the hyperbolae; φF2

t -flowlines project
to points. The Lagrangian cylinders P and Q are shown living over the axes,
the fixed point is marked with a dot at the origin.

|p|

|q|

P

Q

•

Definition 6.3. A focus-focus chart for an integrable Hamiltonian system
H : X → R2 is a pair of embeddings E : U → X and e : V → R2 where:

• U ⊆ R4 is a neighbourhood of the origin and E∗ω =
∑
dpi ∧ dqi,

• V = F (U), where F is the Hamiltonian system in Example 6.1),

• H ◦ E = e ◦ F .

We say that H : X → R2 has a focus-focus critical point at x ∈ X if there is
a focus-focus chart (E, e) with E(0) = x.

Remark 6.4. This is not the standard definition of a focus-focus critical point:
usually one specifies that H has a critical point at x and that the subspace
of the space of quadratic forms spanned by the Hessians of the components
H at x agrees with the corresponding subspace for F at 0. The fact that
these two definitions are equivalent is a special case of Eliasson’s normal
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form theorem for non-degenerate critical points of Hamiltonian systems. For
a proof of this special case, see [15].

Lemma 6.5 ([112, Proposition 6.2]). Let H : X → R2 be an integrable
Hamiltonian system with a focus-focus critical point x over the origin and
no other critical points. The fibre H−1(0) is homeomorphic to a pinched
torus.

Proof. Recall that all our integrable systems are assumed to have compact,
connected fibres. The fibre H−1(0) is a union of orbits Ω0 = {x},Ω1, . . . ,Ωk

for the R2-action generated by H . Since H−1(0) \ {x} consists of regular
points, the orbits Ω1, . . . ,Ωk are 2-dimensional submanifolds. By Theorem
1.40, there are three possible topologies of orbit: R2, R×S1 and T 2. The third
type cannot occur because it would give a connected component of H−1(0)
not containing x, but we assume our fibres are connected. In particular, any
remaining orbits are noncompact.

Let ΩP be the orbit containing the Lagrangian plane E(P ) (in the focus-focus
chart) and ΩQ be the orbit containing E(Q). Note that it is possible that
ΩP = ΩQ. Since the action of R2 on P (and on Q) has stabiliser Z, these
orbits are of the form R×S1. Moreover, these are the only orbits containing
{x} in their closure (such an orbit must enter the focus-focus chart, where
we can see that only ΩP and ΩQ contain x in their closure). There are two
possibilities:

• ΩP 6= ΩQ. In this case, the union ΩP ∪{x}∪ΩQ would be noncompact.
It is impossible to makeH−1(0) compact by adding further noncompact
orbits, so because we assume H is proper, this possibility does not
occur.

• ΩP = ΩQ. In this case, the cylinder ΩP has both its ends attached
to the point x, yielding a (compact) pinched torus. Adding further
noncompact orbits contradicts compactness of H−1(0), so there are no
further orbits.

The figure below shows a pinched torus fibre containing a focus-focus crit-
ical point. The fixed point is shown with a dot, the φH2

t -flowlines are the
short loops going around the fibre; the φH1

t -flowlines are the longer orbits
connecting the fixed point to itself.
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•

Remark 6.6. The same argument generalises to show that ifH−1(0) contains
m > 1 focus-focus critical points then it will form a cycle of Lagrangian
spheres, each intersecting the next transversely at a single focus-focus point
(or, if m = 2, two spheres intersecting transversely at two points).

6.2 Action coordinates

Let H : X → R2 be an integrable Hamiltonian system with a focus-focus
critical point x over the origin and no other critical points. Let E : U → X,
e : V → R2 = C be a focus-focus chart centred at x. Recall that F =
F1 + iF2 : U → V denotes the model Hamiltonian from Example 6.1. Let
H1 = F1 ◦ E−1 : E(U) → R and H2 = F2 ◦ E−1 : E(U) → R. By shrinking
U and V if necessary, assume that V = {b ∈ R2 : |b| < ε} for some ε > 0;
write B := V \ {0} for the set of regular values of H. By Corollary 2.18, B
inherits an integral affine structure, coming from action coordinates on the
universal cover B̃. The next theorem identifies these action coordinates.

Theorem 6.7 (San Vu Ngo.c). The action map B̃ → R2 has the form(
1

2π
(S(b) + b2θ − b1(log r − 1)) , b2

)
,

where b = b1 + ib2 = reiθ is the local coordinate on B and S(b) is a smooth
function.

Proof. The map σ1 : V → R4 = C2, σ1(b) = (−1, b) is a Lagrangian section
of F which intersects Q at σ1(0). Similarly σ2(b) = (−b̄, 1) is a Lagrangian
section which intersects P . See Figure 6.1.

For b 6= 0, we can use the Hamiltonians F1 and F2 inside our focus-focus chart
to flow the point σ2(b) = (−b̄, 1) until it hits σ1(b) = (−1, b) (see Figure 6.1).
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P

Q

σ2(V )

σ1(V )

E−1 ◦ φHS(b) ◦ E

•

•

σ1(b)

σ2(b)

φFT (b)

Figure 6.1: A schematic for the proof of Theorem 6.7, projected down to the
(|p|, |q|)-plane. The shaded region is the domain of the focus-focus chart, and
we see the Lagrangian sections σ1 and σ2 intersecting the Lagrangian planes
P and Q respectively. The flow φFT sends σ2(b) to σ1(b) for b 6= 0. The flow
E−1 ◦ φHS(b) ◦ E sends σ1(b) to σ2(b) (exiting the focus-focus chart).

In other words, we can find functions T1(b) and T2(b) on V \ {0} with:

φF2

T2(b)φ
F2

T1(b)(−b̄, 1) = (−eT1(b)+iT2(b)b̄, e−T1(b)+iT2(b)) = (−1, b), (6.1)

namely
T1(b) = − ln |b|, T2(b) = arg(b).

Claim. After possibly shrinking V , there exist smooth functions S1(b) and
S2(b) defined on V such that

φH2

S2(b)φ
H1

S1(b)(E(σ1(b))) = E(σ2(b)) (6.2)

for all b ∈ V and such that

S1 =
∂S

∂b1

, S2 =
∂S

∂b2

(6.3)

for some smooth function S on V .
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Let us see how the claim implies the theorem. Since Hk = Fk ◦ E−1, we can
combine Equations (6.1) and (6.2) to get

φHS+T (E(σ2(b)) = E(σ2(b))

for all b ∈ V , so that S + T := (S1(b) + T1(b), S2(b) + T2(b)) is in the period
lattice (see Figure 6.1). The period lattice is then spanned by these vectors
and by (0, 2π) (since H2 already has period 2π). To find action coordinates
(G1, G2), it suffices to solve(∂G1

∂b1

∂G1

∂b2
∂G2

∂b1

∂G2

∂b2

)
=

(
1

2π
(S1(b)− ln |b|) 1

2π
(S2(b) + arg(b))

0 1

)
.

We can take G1(b) = 1
2π

(S + b2θ − b1(log r − 1)) and G2(b) = b2 where
θ = arg(b) and r = |b|. This proves the theorem.

We now prove the claim. In the proof of Lemma 6.5, we saw that the branch
E(P ) is part of the same R2-orbit as the branch E(Q). Therefore, if we flow
E(σ1(0) for using H1 for some duration s1, we will reach a point in E(Q) at
the same radius as σ2(0). Further flowing using H2 for some time s2, which
preserves the radius in the Q-plane, we can ensure that

φH2
s2
φH1
s1

(σ1(0)) = σ2(0).

After possibly shrinking V , we get local Liouville coordinates near σ2(0) using
the Lagrangian section σ1:

Ψ(b,u) := φH2
u2
φH1
u1

(σ1(b)).

The domain of Ψ is V × I where I is a neighbourhood of (s1, s2) in R2. The
preimage L := Ψ−1(σ2(V )) is the Lagrangian submanifold of V × I given by

L = {(b,u) ∈ V × I : φH2
u2
φH1
u1

(1,−b) = (−b̄, 1).

We pick the unique component of L containing (0, (s1, s2)). This can be
written as the graph of a function b 7→ (S1(b), S2(b)). All that remains is to
solve the following exercise.

Exercise 6.19: The graph {(b, (S1(b), S2(b))) : b ∈ V } is Lagrangian if and
only if ∂S1/∂b2 = ∂S2/∂b1, which holds if and only if S1 = ∂S/∂b1 and
S2 = ∂S/∂b2 for some function S.
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Remark 6.8. In fact, any such S arises as we will show in the next section.
Moreover, Ngo.c [111] showed2 that the germ of S near the origin is un-
changed by any fibred symplectomorphism of the system, and that this germ
determines the (germ of the) system up to fibred symplectomorphism in a
neighbourhood of the nodal fibre. We will write (S)∞ for the Ngo.c invariant
of a focus-focus critical point.

Remark 6.9. The action map has a well-defined limit point as r → 0. We
call this limit point the base-node of the focus-focus critical point.

6.3 Monodromy

We briefly recall the notion of affine monodromy introduced in Definition
2.19. Let f : X → B be a regular Lagrangian fibration, let B̃ → B be
the universal cover of the base of a Lagrangian fibration and I : B̃ → Rn

be the developing map for the integral affine structure. Given an element
g ∈ π1(B), we get a deck transformation b̃ 7→ b̃g of the universal cover, and
I(b̃g) = I(b̃)M(g) for some matrix M(g) ∈ SL(n,Z).

Example 6.10. Let H be an integrable Hamiltonian system with a single
focus-focus fibre, and let f be the restriction of H to the complement of
the focus-focus fibre. In this case, B = R2 \ {0} with polar coordinates r, θ.
The universal cover B̃ is obtained by treating θ as a real-valued (instead of
periodic angular) coordinate. As a corollary of 6.7, we get the developing
map for the integral affine structure:

I(r, θ) =

(
1

2π
(S(b) + b2θ − b1(log r − 1)) , b2

)
,

where (b1, b2) = (r cos θ, r sin θ). We have π1(B) = Z and n ∈ Z acts on B̃
by (r, θ) 7→ (r, θ + 2πn).

Lemma 6.11 (Exercise 6.20). The affine monodromy for n ∈ π1(B) is

M(n) =

〈
1 0
n 1

)
.

2There is a subtlety here: the germ of S can depend on the choice of focus-focus chart.
This is a finite ambiguity, and is discussed in [95, Section 4.3]: the actual Ngo.c invariant
is an equivalence class of germs under an action of the Klein 4-group.



92 6.3. Monodromy

This means that if you “go around the loop” in B, the action map changes by
this shear matrix. Figures 6.2 and 6.3 illustrate this by plotting the image
under I of some different choices of fundamental domain for the covering
map B̃ → B (for the choice S ≡ 0). We include the images under the action
map of contours of constant r (encircling the origin) and constant θ (pointing
roughly radially outward).

Figure 6.2: Left: The image of the fundamental domain {θ ∈ [−π, π)}. This
“closes up” in the sense that θ = −π and θ = π map to the same line. This is
because θ = π is an eigenline of the monodromy matrix. Right: The image of
the fundamental domain {θ ∈ [−5π/7, 9π/7)}. Although this plot does not
“close up”, the image of the radius θ = −5π/7 and the image of the radius
θ = 9π/7 are related by the monodromy matrix.

Figure 6.3: In the third figure, we see the image of two fundamental domains
{θ ∈ [−5π/2, 3π/2)}, related to one another by the action of the monodromy
matrix3.

Remark 6.12. We think of B as being obtained from B̃ as follows. Fix a

3Anyone who has compulsively traced out the spiral of a raffia mat cannot fail to be
moved by this image.
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number θ0 ∈ R, take the fundamental domain (0,∞)× [θ0, θ0 + 2π] ⊆ B̃ and
identify points (r, θ0) with (r, θ0 + 2π). In other words, we make a “branch
cut” at θ = θ0. We pull back the integral affine structure on R2 along the
developing map I to get an integral affine structure on B̃, and this descends to
B as in Corollary 2.18. When we make the identification (r, θ0) ∼ (r, θ0+2π),
we need to specify how to identify the integral affine structures. We use
I(r, θ0 + 2π) = I(r, θ0)M(1), that is I(r, θ0 + 2π)M(−1) = I(r, θ0). In other
words, when we cross the branch cut anticlockwise (direction of increasing
θ), we apply the transformation M(−1) to tangent vectors.

Observe from Figures 6.2 and 6.3 that if we use a branch cut θ = 0 or
θ = π (parallel to the eigenline of the affine monodromy) to cut out our
fundamental domain in B̃ then the image of this fundamental domain under
I “closes up”, that is it is surjective onto a punctured neighbourhood of the
origin. If we use a different branch cut then the image of the fundamental
domain under I will miss out a segment of this punctured neighbourhood.
For this reason, we usually work with branch cuts parallel to the eigenline of
the affine monodromy.

Note that the action map from Theorem 6.7 is only unique up to post-
composition by an integral affine transformation. That is, by Lemma 1.41, if
we post-compose I by an integral affine transformation4 α(b) = bA+C (for
some A ∈ GL(2,Z) and C ∈ Rn) then we do not change the period lattice,
so we get an alternative set of action coordinates.

Lemma 6.13 (Exercise 6.21). If we use the action coordinates IA for some
A ∈ SL(2,Z) then the clockwise affine monodromy is given by A−1M(1)A
and the line of eigenvectors points in the (1, 0)A-direction. More precisely, if
(1, 0)A = (p, q) for some pair of coprime integers p, q and det(A) = 1 then

A−1MA =

〈
1− pq −q2

p2 1 + pq

)
.

Remark 6.14. Remember that this matrix is acting on the right; if you want
to think of your action coordinates as column vectors, you need to take the
transpose matrix. Remember also that this is the clockwise monodromy: you
apply its inverse to tangent vectors when you cross the branch cut anticlock-
wise.

4Here b is a row vector and A is acting on the right.
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6.4 Visible Lagrangians

The following visible Lagrangian disc will play an important role in our future
analysis of focus-focus systems.

Lemma 6.15. Let H : X → R2 be an integrable Hamiltonian system with
a focus-focus critical point at x ∈ X, let B be the set of regular values
and B̃ its universal cover, and let I : B̃ → R2 be the developing map for the
integral affine structure on B coming from action coordinates. Let b ∈ R2

be the base-node associated to the focus-focus critical point at x. Suppose
that ` is a straight ray in R2 emanating from b pointing in an eigendirection
for the affine monodromy around the critical value. Then there is a visible
Lagrangian disc living over `.

Proof. In the focus-focus chart we can simply use the Lagrangian disc q = p,
which satisfies F (p, p) = −p̄p, so this lives over the negative b1-axis (b2 = 0).
By Theorem 6.7, the image of this under I is still the negative b1-axis, which
is an eigenray of the affine monodromy.

Definition 6.16. By analogy with a similar (but slightly different5) situation
in Picard-Lefschetz theory, this visible Lagrangian disc is called the vanishing
thimble for the focus-focus critical point, and its intersection with any fibre
over the ray ` is a loop in the fibre called the vanishing cycle.

6.5 Model neighbourhoods

We now present a construction due to Ngo.c which, given a function S : R2 →
R, produces a Hamiltonian system HS : XS → R2 with a focus-focus critical
point whose Ngo.c invariant is (S)∞. We will write Si = ∂S

∂bi
, i = 1, 2.

Take the subsetX := {(p, q) ∈ R4 : |p̄q| < ε} equipped with the Hamiltonian
system F from Example 6.1. We will construct two Liouville coordinate
systems on different regions of this space.

5In Picard-Lefschetz theory, we have a holomorphic fibration instead of a Lagrangian
fibration, but the thimble is still a Lagrangian disc.
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Recall the Lagrangian sections σ1(b) = (−1, b) and σ2(b) = (−b̄, 1). We
construct a third Lagrangian section σ3(b) = (−eS1(b)+iS2(b), e−S1(b)+iS2(b)b) =
φHS (σ1(b)). We can use these Lagrangian sections to construct Liouville co-
ordinates

Ψ2(b, t) = φFt (σ2(b))

and
Ψ3(b, t) = φFt (σ3(b))

with t1 ∈ [0, δ) and t2 ∈ [0, 2π).

image(Ψ2)

image(Ψ3)

P

Q

σ2(b) = (−b̄, 1)

σ3(b) = φHS(b)(−1, b)

Ψ2(b, t) ∼ Ψ3(b, t)

X ′

Figure 6.4: Construction of a Ngo.c model with invariant S. The subset X ′ is
the entire shaded region; the images of the Liouville coordinates Ψ2(b, t) =
φFt (σ2(b)) and Ψ3(b, t) = φFt (σ3(b)) are shaded darker. The quotient XS

identifies these two darkly shaded regions.

Let X ′ = {(p, q) ∈ R4 : |p̄q| < ε, |q| ≤ 1, |p| ≤ eS1(−p̄q)} and let XS

be the quotient XS := X ′/ ∼, where ∼ identifies Ψ2(b, t) ∼ Ψ3(b, t) (see
Figure 6.4). Since the domains of Ψ2 and Ψ3 are identical and since Ψ2

and Ψ3 are symplectomorphisms, the symplectic form on X descends to this
quotient. By construction, the map H : X → R2, H(p, q) = −p̄q descends
to the quotient and produces the Hamiltonian system HS we want. Also by
construction, the Ngo.c invariant is (S)∞.
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6.6 Symington’s theorem on Ngo.c models

We now present an argument of Symington [105, Lemma 3.6] which tells
us that, although the Ngo.c models HS0 : XS0 → R2, HS1 : XS1 → R2 with
(S0)∞ 6= (S1)∞ are not symplectomorphic via a fibred symplectomorphism,
there is nonetheless a symplectomorphism XS0 → XS1 which is fibred outside
a compact set. Because the fibred symplectomorphism type of the system
depends only on the germ of S near the origin, we may assume that S0 and
S1 coincide outside a small neighbourhood of the origin

Theorem 6.17 (Symington). Let S0 : R2 → R and S1 : R2 → R be smooth
functions which coincide on the complement of a small disc D centred at the
origin and let HS0 : XS0 → R2 and HS1 : XS1 → R2 be the corresponding
Ngo. c models. Then there is a symplectomorphism ϕ : XS0 → XS1 which
restricts to a fibred symplectomorphism H−1

S0
(R2 \D)→H−1

S1
(R2 \D).

Proof. Pick a family St interpolating between S0 and S1 such that St|R2\D =
S0|R2\D. Consider the family of symplectic manifolds Xt := XSt ; since the
construction depends only on St, which is independent of t on the complement
of D, the subsets Ut := H−1

St
(R2 \ D) are fibred-symplectomorphic (via the

identity map).

We extend this identification to a isotopy of diffeomorphisms ϕt : X0 → Xt

such that ϕt|U0 = id: U0 → Ut. For example, we could pick a connection on
the family Xt which is trivial on

⋃
t∈[0,1] Ut = U0 × [0, 1] and take ϕt to be

the parallel transport of fibres.

Consider the family of symplectic forms ωt = ϕ∗tωSt on X0. These satisfy
dωt
dt

= 0 on U0. The 2-form dωt
dt

therefore determines a class in H2
dR(X0, U0).

We will show that this class vanishes for all t; this will allow us to pick a
family of 1-forms βt such that dβt = dωt/dt and βt|U0 = 0. By Moser’s trick
(see Appendix E), we then get diffeomorphisms φt : XS0 → XS0 , equal to the
identity outside U0, such that φ∗tϕ∗tωSt = ωS0 . The symplectomorphism we
want is ϕ := ϕ1 ◦ φ1 : XS0 → XS1 .

It remains to show that d[ωt]
dt

= 0 ∈ H2
dR(X0, U0). Let V = X0 \ U0. We

have H2
dR(X0, U0) = H2

dR(V, ∂V ) by excision, and H2
dR(V, ∂V ) = H2(V ) by

Poincaré-Lefschetz duality. Since V deformation-retracts onto the nodal fi-
bre, we have H2

dR(V ) = R. The cohomology class of a closed 2-form on X0
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which vanishes on U0 can therefore be detected by its integral over a disc in V
with boundary on ∂V which intersects the nodal fibre once transversely, e.g.
a section ofHSt . The construction ofXSt furnishes it with an ωSt-Lagrangian
section (i.e. (−b̄, 1)); let us write σt for this section viewed via ϕt as a sub-
manifold of X0. Since ϕt is the identity outside U0, we have σt∩U0 = σ0∩U0.
Since σt is ωt-Lagrangian, we have 0 =

∫
σt
ωt. Fix T and let ΣT (b, t) := σt(b)

be the isotopy of sections restricted to t ∈ [0, T ]. Since dωT = 0, Stokes’s
theorem6 tells us that

0 =

∫
Σ∗dωT =

∫
σT

ωT −
∫
σ0

ωT .

Since σT is ωT -Lagrangian, we get
∫
σ0
ωT = 0. Therefore

∫
σ0

dωt
dt

= d
dt

∫
σ0
ωt =

0, so d[ωt]
dt

= 0 ∈ H2(X0, U0).

6.7 Solutions to inline exercises

Exercise 6.18 (Lemma 6.2). Verify that the Hamiltonians F1 = −p1q1 −
p2q2 and F2 = p2q1 − p1q2 Poisson-commute, that F1 generates the R-action
(p, q) 7→ (etp, e−tq) and that F2 generates the circle action (p, q) 7→ (eitp, eitq).

Solution. We have −dF1 = p1 dq1 + p2 dq2 + q1 dp1 + q2 dp2 which equals
ι(p1,−q1,p2,−q2)(dp1 ∧ dq1 + dp2 ∧ dq2). Thus VF1 = (p1,−q1, p2,−q2) and the
flow satisfies ṗ = p, q̇ = −q, which means p(t) = etp(0) and q(t) = etq(0).
Similarly, we find VF2 = (−p2,−q2, p1, q1), whose flow satisfies ṗ = ip and
q̇ = iq (recall that p = p1 + ip2 and q = q1 + iq2) and the flow is therefore
p(t) = eitp(0) and q(t) = eitq(0). To see that {F1, F2} = 0, we compute

{F1, F2} = ω(VF1 , VF2) = −p1q2 − q1p2 + p2q1 − q2p1 = 0.

Exercise 6.19 (From the proof of Theorem 6.7). Let V be a disc in R2. The
graph {(b, (S1(b), S2(b))) : b ∈ V } is Lagrangian if and only if ∂S1/∂b2 =
∂S2/∂b1, which holds if and only if S1 = ∂S/∂b1 and S2 = ∂S/∂b2 for some
function S.

6There should be further boundary terms corresponding to the boundary of the section,
but since the sections are all fixed over U0 these contributions vanish.
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Solution. The tangent space to the graph is spanned by the vectors

(1, 0, ∂S1/∂b1, ∂S2, ∂b2),

(0, 1, ∂S1/∂b2, ∂S2/∂b2),

on which the symplectic form evaluates to

∂S2/∂b1 − ∂S1/∂b2.

The graph is Lagrangian if and only if this quantity vanishes. This is equiv-
alent to the condition that the 1-form

S1db1 + S2db2

is closed. Since the disc V has zero de Rham cohomology in degree 1, this
1-form is closed if and only if it is exact, that is, if and only if there exists a
function S with ∂S/∂bk = Sk for k = 1, 2.

Exercise 6.20 (Lemma 6.11). The affine monodromy for n ∈ π1(B) in

Example 6.10 is M(n) =

〈
1 0
n 1

)
.

Solution. Since

I(r, θ) =

(
1

2π
(S(b) + b2θ − b1(log r − 1)) , b2

)
,

we have

I(r, θ + 2πn) =

(
1

2π
(S(b) + b2(θ + 2πn)− b1(log r − 1)) , b2

)
,

=

(
1

2π
(S(b) + b2θ − b1(log r − 1)) + nb2, b2

)
= I(r, θ)

〈
1 0
n 1

)
.

Exercise 6.21 (Lemma 6.13). Let I be the developing map from Theorem
6.7. If we use instead the developing map IA for some A ∈ SL(2,Z) then
the clockwise affine monodromy is given by A−1M(1)A and the line of eigen-
vectors points in the (1, 0)A-direction. More precisely, if (1, 0)A = (p, q)
for some pair of coprime integers p, q and det(A) = ±1 then A−1M(1)A =〈

1∓ pq ∓q2

±p2 1± pq

)
.
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Solution. More generally, if g ∈ π1(B) then we have I(b̃g)A = I(b̃)M(g)A =
I(b̃)A(A−1M(g)A), so the affine monodromy associated to the developing
map IA is A−1M(g)A. Since v = (1, 0) is an eigenvector of M(g), so that
vM(g) = v, then vAA−1M(g)A = vM(g)A = vA, so vA is an eigenvector of
A−1M(g)A.

If (1, 0)A = (p, q) then A =

〈
p q
k `

)
for some k, ` ∈ Z with p` − kq = ±1.

Therefore

A−1

〈
1 0
1 1

)
A = ±

〈
` −q
−k p

)〈
p q

p+ k q + `

)
=

〈
1∓ pq ∓q2

±p2 1± pq

)
.
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Chapter 7

Examples of focus-focus systems

We are now ready to introduce the notion of an almost toric manifold: a
symplectic 4-manifold with a Lagrangian torus fibration whose critical points
can be both toric and focus-focus type. Before developing the general theory
in Chapter 8, we explore some examples.

7.1 The Auroux system

Like many people, I first learned of the following example from the wonderful
expository article [7] on mirror symmetry for Fano varieties by Denis Auroux,
where it serves to illustrate the wall-crossing phenomenon for discs.

Example 7.1 (Auroux system). Fix a real number c > 0. Consider the
HamiltoniansH = (H1, H2) : C2 → R2 defined by H1(z1, z2) = |z1z2−c|2 and
H2(z1, z2) = 1

2
(|z1|2 − |z2|2). The flow of H2 is φH2

t (z1, z2) = (eitz1, e
−itz2).

This shows that {H1, H2} = 0, because H1 is constant along the flow of H2

(see Lemma 1.16). The flow of H1 is harder to compute. We can nonetheless
understand the orbits of this system geometrically.

Consider the holomorphic map π : C2 → C, π(z1, z2) = z1z2. This is a
conic fibration: the fibres π−1(p) are smooth conics except π−1(0) which is a
singular conic (union of the z1- and z2-axes).

This material has been/will be published by Cambridge University Press as Lectures on
Lagrangian Torus Fibrations by Jonny Evans. This pre-publication version is free to
view and download for personal use only. Not for re-distribution, re-sale, or use in
derivative works.
c© Jonny Evans 2018–2023.
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Cr

C

0 c •

The Hamiltonian H1 measures the squared distance in C from z1z2 to some
fixed point c. The level set H−1

1 (r2) is therefore the union of all conics living
over a circle Cr of radius r centred at c (the concentric circles in the base
of the figure). The restriction of H2 to each conic can be visualised as a
“height function” whose level sets are circles as shown below. The level set
H−1(b1, b2) is therefore the union of all circles of height b2 in conics living
over the circle C√b1 . These level sets are clearly tori, except for the level set
H−1 (c2, 0), which is a pinched torus.

C√b1

H−1(b1, b2)

b2

•

Cc

H−1(c2, 0)

•

This system has a focus-focus critical point at (0, 0). It also has toric critical
points along the conic z1z2 = c. Exercise 7.12: Given a Hamiltonian system
H and a critical point x ofH , let Q(H ,x) denote the subspace of the space
of quadratic forms spanned by the Hessians of the components of H . Check
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that, after a suitable symplectic change of coordinates, Q(H , 0) = Q(F , 0),
where H is the Auroux system and F is the standard focus-focus system
from Example 6.1. (This is enough to guarantee the existence of a focus-
focus chart; see Remark 6.4).

Lemma 7.2. Let B be the set of regular fibres of the Auroux system and B̃
its universal cover. There is a fundamental domain for the deck group action
on B̃ whose image under action coordinates has the form

{(b1, b2) : 0 ≤ b1 ≤ φ(b2)} \ {(b1, 0) : b1 ≥ m} ⊆ R2

for some function φ : R → (0,∞) and some number m > 0 (see Figure
7.1). The affine monodromy, on crossing the branch cut {(b1, 0) : b1 ≥ m}

clockwise, is
〈

1 0
1 1

)
.

×

Figure 7.1: The fundamental action domain from Lemma 7.2.

Remark 7.3. Finding φ and m precisely along with the actual map from the
fundamental domain to this subset of R2 is a nontrivial task.

Proof of Lemma 7.2. The image H(C2) is the closed right half-plane: H1 is
always non-negative and H2 can take on any value. The vertical boundary
of the half-plane is the image of the toric boundary (the conic z1z2 = c).
The point (c2, 0) is the image of the focus-focus critical point (0, 0) and
B = H(C2) \ {(c2, 0)}.

The Hamiltonian H2 gives a 2π-periodic flow, so the change of coordinates
of R2 which gives action coordinates has the form (b1, b2) 7→ (G1(b1, b2), b2)
for some (multiply-valued) function G1. In particular, the monodromy of the
integral affine structure around the focus-focus critical point simply shifts

amongst the branches of G1, so has the form
〈

1 0
1 1

)
. We may make a

branch cut along the line R = {(b1, 0) : b1 > c2} to get a simply-connected
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open set U = B \ R and pick a fundamental domain Ũ lying over U in the
universal cover p : B̃ → B.

We first compute the image {(G1(0, b2), b2) : b2 ∈ R} of the line 0×R under
the action coordinates. Since this is part of the toric boundary, Proposition
3.3 implies this image is a straight line S with rational slope. As observed
in Lemma 6.15, there is a visible Lagrangian disc emanating from the focus-
focus critical point and living over an eigenline of the affine monodromy.
Actually, we can write the disc explicitly for the Auroux system: it is the
Lagrangian disc {(z, z̄) : |z|2 ≤ c} with boundary on z1z2 = c. This visible
disc lives over the horizontal line segment {(b1, 0) : b1 ≤ c2} under the map
H and hence1 over a horizontal line segment {(G1(b1, 0), 0) : b1 ≤ c2} in the
image of action coordinates. This line segment connects S to the base-node
(G1(c2, 0), 0). Since this visible Lagrangian is a disc, not a pinwheel core,
comparison with the local models from Example 5.14 shows that the line S
must have slope 1/n for some integer n. In particular, post-composing action

coordinates with an integral affine shear
〈

1 0
−n 1

)
, we get that S is vertical

(we always have the freedom to post-compose our action coordinates with
an integral affine transformation, thanks to Lemma 1.41). Now it is clear
that the fundamental action domain has the required form, where φ(b2) =
supb1∈[0,∞) G1(b1, b2) and m = G1(c2, 0).

7.2 Different branch cuts

We can always pick a different simply-connected domain U ⊆ B to get well-
defined action coordinates I, as we illustrated in Figure 6.2 in the previous
chapter. The image of U will not in general “close-up”: unless we take a
branch cut along the eigendirection of the affine monodromy, the boundary
of I(U) will be two branch cuts related by the affine monodromy.

To illustrate this, we plot some of the associated pictures below for the Au-
roux system as the branch cut under goes a full rotation. It is important to
emphasise that all of these are integral affine bases for the same Hamiltonian
system on the same manifold; they differ only in the choice of a fundamental
domain for the covering space B̃ → B.

1See Remark 5.8.
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00:00

×

03:00

×

06:00

×

09:00

×

12:00

×

Figure 7.2: The Auroux system seen with different branch cuts; as we move
from left to right in the figure, we see the branch cut rotate (from the 12-
o’clock position) by 360 degrees. The final picture is related to the first by
the affine monodromy.

Remark 7.4. In some of these pictures, the toric boundary appears “broken”.
This is an artefact of the fact that it intersects the branch cut: the two
segments of the toric boundary are related by the affine monodromy and
therefore form one straight line in the integral affine structure. If you want to

check this, the anticlockwise affine monodromy is
〈

1 0
−1 1

)
, so, for example

in the 9:00 diagram, the tangent vector (0,−1) to the line above the branch

cut gets sent to (0,−1)

〈
1 0
−1 1

)
= (1,−1) below the branch cut, which is

tangent to the continuation of the boundary.

Remark 7.5. We can apply an integral affine transformation to any of these

diagrams. Applying the matrix
〈

1 1
0 1

)
to the 09:00 diagram in Figure 7.2

yields Figure 7.3 which will be important in the next chapter and which has

anticlockwise affine monodromy
〈

2 1
−1 0

)
by Lemma 6.13. The importance

of this example is that away from the branch cut, the integral affine manifold
looks like the standard Delzant corner. We will see that this means we can
always “implant” this local Hamiltonian system whenever we have a polygon
with a standard Delzant corner, an operation known as a nodal trade.

×

Figure 7.3: Another fundamental action domain for the Auroux system.
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7.3 Smoothing An singularities

Example 7.6. Let P (z) be a polynomial of degree n+ 1 with n+ 1 distinct
roots and P (0) 6= 0. Let MP = {(z1, z2, z3) ∈ C3 : z1z2 + P (z3) = 0}. If
you allow P to vary, you get a family of such varieties; as P approaches the
degenerate polynomial P (z) = zn+1, the variety MP develops a singularity
called an An-singularity. In other words, for generic P (with distinct roots)
the variety MP is the Milnor fibre (or smoothing2) of the An singularity (see
Milnor’s book [81] for more about Milnor fibres). Milnor fibres of singulari-
ties provide a rich class of symplectic manifolds which have been intensively
studied.

Let π : MP → C be the conic fibration π(z1, z2, z3) = z3. By analogy with
the Auroux system, we define

H(z1, z2, z3) =

(
|z3|2,

1

2

(
|z1|2 − |z2|2

))
.

Again, these Hamiltonians commute with one another, but only H2 generates
a circle action.

The subvariety z3 = 0, z1z2+P (0) = 0 is a conic along which the Hamiltonian
system has toric critical points; this projects to the line {(0, b2) : b2 ∈ R}
under H .

The level sets H−1(b1, b2) for b2 6= 0 are Lagrangian tori, and the level sets
H−1(b1, 0) are Lagrangian tori unless the circle |z3|2 = b1 contains a root of
P . If this circle contains k roots of P then the fibreH−1(b1, 0) is a Lagrangian
torus with k pinches.

• For example, if P (z) = zn+1 − 1 then the fibre H−1(1, 0) is the only
critical fibre; it has n+ 1 focus-focus critical points (see Figure 7.4).

• If 0 < a1 < a2 < . . . < an+1 are real numbers and P (z) = (z − a1)(z −
a2) · · · (z − an+1) then there are n + 1 focus-focus fibres which project
via H to the points {(a2

1, 0), (a2
2, 0), . . . , (a2

n+1, 0)} (see Figure 7.5).

2Algebraic geometers usually say “smoothing” to mean the total space of a family which
smooths a singularity; some other people say “smoothing” to mean the smooth fibre of such
a family.
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•

•

•

•

Figure 7.4: The Hamiltonian system from Example 7.6 with P = z4 + 1
(n = 3). There is a single fibre with 4 focus-focus critical points and a
smooth conic which consists of toric critical points.

• • •

Figure 7.5: The Hamiltonian system from Example 7.6 with P = (z−a1)(z−
a2)(z − a3). There is a smooth conic consisting of toric critical points, and
three focus-focus fibres which encircle it. We also show, horizontally across
the figure, the visible Lagrangian submanifolds described in Remark 7.7.
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In any case, the image of the developing map can be analysed as in the
Auroux system. We get the diagram shown in Figure 7.6.

×××

Figure 7.6: Almost toric diagram for A2 Milnor fibre.

The number of base-nodes here is the number of values of b1 for which P (z)
has a zero with |z|2 = b1. We see that the affine monodromy as we cross
the branch cut at position (t, 0) is the product of all the individual affine

monodromies for base-nodes with b1 < t, all of which are
〈

1 0
1 1

)
(just as in

the Auroux system). In particular, the “total monodromy” as we cross the

branch cut far to the right is
〈

1 0
n+ 1 1

)
. If we change the branch cut by

180 degrees clockwise then we get the diagram in Figure 7.7 (drawn in the
case n = 2):

(n+ 1,−1)

× × ×

Figure 7.7: Another view of Figure 7.6. Here n = 2 and there are n + 1
singularities.

If we apply the integral affine transformation
〈

1 1
0 1

)
to this diagram, we

get Figure 7.8.
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(n+ 1, n)

×

×

×

Figure 7.8: A third view of Figure 7.6.

Compare this with the moment polygon π(n + 1, n) from Example 3.21 for
the cyclic quotient singularity 1

n+1
(1, n). Indeed, this is precisely the An-

singularity mentioned above. As the polynomial P (z) degenerates to zn+1,
the base-nodes move in the diagram along the dotted line towards the non-
Delzant corner.

Remark 7.7. There are some visible Lagrangians in the Milnor fibreMP when
P (z) = (z − a1)(z − a2) · · · (z − an+1). Namely, consider the antisymplec-
tic involution (z1, z2, z3) 7→ (z̄2, z̄1, z̄3). The fixed locus consists of points
{(z1, z̄1, z3) : |z1|2 = −P (z3), z3 ∈ R}. The fixed locus of an antisymplectic
involution is always a Lagrangian submanifold; in this case, it consists of:

• Lagrangian spheres z3 ∈ [ak, ak+1], k even,

• the Lagrangian plane z3 ∈ (−∞, a1] if n is even.

The involution (z1, z2, z3) 7→ (−z̄2, z̄1, z̄3) gives more Lagrangians {(z1,−z̄1, z3) :
|z1|2 = P (z3), z3 ∈ R}, which consists of:

• Lagrangian spheres z3 ∈ [ak, ak+1], k odd,

• the Lagrangian plane z3 ∈ [an+1,∞),

• the Lagrangian plane z3 ∈ (−∞, a1] if n is odd.

These are all visible Lagrangians mapping to the line H2 = 0: the Lagrangian
spheres project to the compact segments connecting focus-focus fibres; the
plane z3 ∈ [an+1,∞) projects to the segment connecting the right-most focus-
focus fibre to infinity. The plane z3 ∈ (−∞, a1] has a more singular projec-
tion: the disc z3 ∈ [0, a1] projects to the segment connecting the left-most
focus-focus fibre to the toric boundary; the annulus z3 ∈ [−∞, 0] projects to
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the whole ray H2 = 0 emanating from the toric boundary. In other words,
this visible Lagrangian “folds over itself” at the toric boundary. See Figure
7.9 for the images of these visible Lagrangians under the action map, and
Figure 7.5 to see how they look in the total space of the conic fibration.
In what follows, the visible disc z3 ∈ [0, 1] will be more important; we will
denote it by ∆.

××× ×××

Figure 7.9: The visible Lagrangians described in Remark 7.7 in the case
n = 2. On the left, we see the components of the fixed locus of (z1, z2, z3) 7→
(z̄2, z̄1, z̄3): a Lagrangian sphere and a Lagrangian plane. On the right we see
the components of the fixed locus of (z1, z2, z3) 7→ (−z̄2, z̄1, z̄3): a Lagrangian
sphere and a Lagrangian plane whose projection “folds over itself”. In reality,
this projection is contained in a single horizontal line; we have separated it
for clarity.

7.4 Smoothing cyclic quotient T-singularities

Example 7.8. Let d ≥ 1 be an integer, p, q be coprime positive integers
with 1 ≤ q < p, and 0 < a1 < . . . < ad be real numbers. Let P be the
polynomial P (z) = (zp − a1)(zp − a2) · · · (zp − ad). Consider the action of
the group µp of pth roots of unity on the variety MP from Example 7.6
given by µ · (z1, z2, z3) = (µz1, µ

−1z2, µ
qz3), µ ∈ µp. This action is free and

π(µ · (z1, z2, z3)) = µπ(z1, z2, z3).

The Hamiltonian systemH on MP from Example 7.6 has a line of toric crit-
ical points along H1 = 0 and d isolated critical fibres with H1 = 1, 2, . . . , d,
each of which has p focus-focus critical points. The µp-action preserves the
critical fibres: the p focus-focus critical points in each fibre form a µp-orbit.
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The Hamiltonian system H descends to give a system G : Bd,p,q → R2 on
the quotient space Bd,p,q := MP/µp with d focus-focus critical points and
H(MP ) = G(Bp,q). However, the action coordinates are different: quotient-
ing by the µp-action changes the period lattice (compare with Example 3.21).
In fact, a fundamental action domain forG is the polygon π(dp2, dpq−1), and
there are d base-nodes. The branch cut is along a line pointing in the (p, q)-
direction, which is an eigenvector of the affine monodromy; the base-nodes
all lie on this branch cut. See Figure 7.10.

(dp2, dpq − 1)

×
×

×

Figure 7.10: The fundamental action domain for Bd,p,q, shown in the case
d = 2, p = 2, q = 1.

Remark 7.9 (Advertising). The manifold Bd,p,q is the Milnor fibre of the
cyclic quotient singularity 1

dp2 (1, dpq − 1). Cyclic quotient singularities of
this form are called cyclic quotient T-singularities, and are the most general
cyclic quotient surface singularities admitting a Q-Gorenstein smoothing3

see [69, Proposition 5.9] or [59, Proposition 3.10]. Perhaps the case that
has attracted the most attention is the case B1,p,q, often abbreviated to Bp,q,
because in that case the Milnor fibre has H∗(B1,p,q;Q) = H∗(B

4;Q), i.e.
it is a rational homology ball. We will show this below. This makes the
manifold B1,p,q a useful building block for constructing exotic 4-dimensional
manifolds with small homology groups, for example using the rational blow-
down construction [39].

The symplectic geometry of the manifolds B1,p,q has also been studied. Lek-
ili and Maydanskiy [64] showed that B1,p,q contains no compact exact La-

3This means that the total space of the smoothing is Q-Gorenstein; this condition
picks out a distinguished deformation class of smoothings [59, Theorem 3.9]. Other cyclic
quotient singularites can be smoothed, but the total space of the smoothing is not Q-
Gorenstein.
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grangian submanifolds despite having nonzero symplectic cohomology4. Karabas
[57] showed that the Kontsevich cosheaf conjecture holds for B1,p,1, i.e. that
the wrapped Fukaya category of B1,p,1 can be calculated using microlocal
sheaf theory on the Lagrangian skeleton discussed in Lemma 7.11 below.
Evans and Smith [36, 37], building on ideas of Khodorovskiy [58], used ob-
structions to symplectic embeddings of B1,p,q to obtain restrictions5 on which
cyclic quotient singularities can occur under stable degenerations of complex
surfaces.

Remark 7.10. As in Remark 7.7, the manifoldMP with P (z) = (zp−a1)(zp−
a2) · · · (zp − ad) contains p(d− 1) visible Lagrangian spheres

S1,1, S1,2, . . . , S1,p, S2,1, . . . , Sd−1,p.

These can be obtained by taking fixed loci as before and applying the µp
action to the result. When we quotient by µp, the spheres descend to give
d − 1 visible Lagrangian spheres S1, . . . , Sd−1 in Bd,p,q. We also obtain p
visible Lagrangian discs ∆1, . . . ,∆p with common boundary along the toric
boundary. These discs descend to a visible Lagrangian CW-complex ∆ ⊆
Bd,p,q which we can think of as a quotient of the unit disc by the equivalence
relation which identifies points z ∼ e2πiq/pz in its boundary. Where ∆ meets
the toric boundary, it does so along a visible Lagrangian (p, q)-pinwheel core.
We call such a Lagrangian CW-complex a Lagrangian (p, q)-pinwheel. See
Figure 7.11 for the projections of these visible Lagrangians.

(dp2, dpq − 1)

×
×

×

∆

S1

S2

Figure 7.11: The visible spheres and pinwheel in Bd,p,q, shown in the case
d = 2, p = 2, q = 1 (in this case, ∆ is an RP2).

4The “standard way” to rule out exact Lagrangian submanifolds is to show that the
symplectic cohomology vanishes.

5Compare with the algebro-geometric approaches to these problems in the work of
Hacking and Prokhorov [51] and the work of Rana and Urzúa [86].
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Lemma 7.11. This union of visible Lagrangians ∆ ∪
⋃d−1
i=1 Si is homotopy

equivalent to Bd,p,q. In particular, π1(Bd,p,q) = Z/p, H1(Bd,p,q;Z) = Z/p and
H2(Bd,p,q;Z) = Zd−1.

Proof. The manifold Bd,p,q deformation retracts onto the preimage of the line
segment ` shown in the fundamental action domain in Figure 7.12.

×
×

×
`

•

Figure 7.12: A fundamental action domain for Bd,p,q. The manifold Bd,p,q

deformation-retracts onto a Lagrangian CW-complex which projects to the
line `.

Let `− and `+ be the segments of ` to the left and right (respectively) of
the marked point • in the diagram. The preimage of `− is a solid torus T−;
our convention will be that the loop (1, 0) in ∂T− bounds a disc in T−. The
preimage of `+ can be understood as follows. If there were no base-nodes, it
would be T 2× [0, 1]. Each base-node means that we pinch the torus above it
along a loop in the homology class (−q, p). Up to homotopy equivalence, this
is the same as attaching a disc to T 2 × [0, 1] along a loop in this homology
class. We can further homotope these attaching maps so that they attach
to loops in the boundary of T−. Therefore the preimage of ` is homotopy
equivalent to a solid torus with d discs attached along its boundary along
d parallel copies of the loop (−q, p). Now by a homotopy equivalence we
can collapse T− to its core circle. The result is a CW-complex built up from
the core circle by adding d 2-cells using the attaching map which winds the
boundaries p times around the core circle. Let ∆ be the result of attaching
the first of these 2-cells to the core circle. Since all these attaching maps
are homotopic, we can homotope the remaining d − 1 to a point in ∆ and
we see that the resulting CW-complex is homotopy equivalent to ∆ wedged
with d− 1 spheres. The homology and fundamental group can be calculated
using this CW-decomposition.
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7.5 Solutions to inline exercises

Exercise 7.12. Given a Hamiltonian system H and a critical point x of H,
let Q(H ,x) denote the subspace of the space of quadratic forms spanned by
the Hessians of the components of H. Check that, after a suitable symplectic
change of coordinates, Q(H , 0) = Q(F , 0) where H is the Auroux system
and F is the standard focus-focus system from Example 6.1.

Solution. If we set zk = xk + iyk then H1(z1, z2) = |z1z2 − c|2 = 2c(y1y2 −
x1x2) + · · ·, where the dots stand for terms of higher order in the Taylor
expansion, and H2(z1, z2) = 1

2
(|z1|2 − |z2|2) = 1

2
(x2

1 + y2
1 − x2

2 − y2
2). Recall

that the standard focus-focus Hamiltonians are

F1 = −p1q1 − p2q2, F2 = p2q1 − p1q2.

If we make the symplectic change of coordinates:

p1 =
1√
2

(x2 − y1) p2 =
1√
2

(x1 − y2)

q1 =
1√
2

(x1 + y2) q2 =
1√
2

(x2 + y1)

then we get

−(p1q1 + p2q2) = y1y2 − x1x2, p2q1 − p1q2 =
1

2
(x2

1 − y2
1 − x2

2 + y2
2)

so that, to second order, H1(z1, z2) = 2cF1(p, q) and H2(z1, z2) = F2(p, q).
Therefore the Hessians of H1 and H2 span the same subspace of quadratic
forms as the Hessians of F1 and F2 after this coordinate change.



Chapter 8

Almost toric manifolds

We have now seen some examples of Hamiltonian systems with focus-focus
critical points; in particular, we have seen what their fundamental action
domains look like. We now introduce a definition (almost toric fibrations)
which covers all of these examples, and use it to develop some general theory
for manipulating and interpreting their fundamental action domains (almost
toric base diagrams).

8.1 Almost toric fibration

Definition 8.1. An almost toric fibration is a Lagrangian torus fibration
f : X → B on a 4-dimensional symplectic manifold such that the discriminant
locus comprises a collection of 0- and 1-dimensional strata such that the
smooth structure on B extends over these strata, f is smooth with respect
to this extended smooth structure and has either toric or focus-focus critical
points there.

Remark 8.2. We remark that the smooth structure mentioned in the defini-
tion plays a somewhat auxiliary role: as in Remark 2.13, the regular locus
of the base inherits a, possibly different, smooth structure from its canonical
integral affine structure, and this may not extend.

Let Breg ⊆ B be the set of regular values of an almost toric fibration f ,
let B̃reg be its universal cover, and let I : B̃reg → R2 be the flux map. Let

This material has been/will be published by Cambridge University Press as Lectures on
Lagrangian Torus Fibrations by Jonny Evans. This pre-publication version is free to
view and download for personal use only. Not for re-distribution, re-sale, or use in
derivative works.
c© Jonny Evans 2018–2023.
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D ⊆ B̃reg be a fundamental domain for the action of π1(Breg). Recall from
Remark 6.9 that if b1, b2, . . . ∈ Breg is a sequence tending to a focus-focus
critical point then limk→∞ I(bk) is a well-defined point in R2 called the base-
node of that critical point. There is also an affine monodromy associated
to loops in Breg that go around the base-node. Lemma 6.13 tells us that
this monodromy is completely determined by specifying, at each base-node,
a primitive integral eigenvector (p, q) with eigenvalue 1 for the monodromy.

Definition 8.3. The almost toric base diagram associated to these choices
is the fundamental action domain I(D) ⊆ R2 decorated with the positions
of the base-nodes and the eigenvector at each base node.

Remark 8.4. We will usually (though not always) choose our fundamental
domain D by making branch cuts connecting the base nodes to the boundary
along eigenlines.

Although the almost toric base diagram does not determine f : X → B
up to fibred symplectomorphism, the next theorem guarantees that it does
determine X up to symplectomorphism.

Theorem 8.5 (Symington [106, Corollary 5.4]). Suppose that f : X → B
and g : Y → B are almost toric fibrations whose almost toric base diagrams
are the same. If B is a punctured 2-dimensional surface then X and Y are
symplectomorphic.

Proof. Let N ⊆ B be the set of base-nodes. By Theorem 6.17, there is a
neighbourhood U of N together with a symplectomorphism Φ: f−1(U) →
g−1(U). Although this symplectomorphism is not fibred, it is fibred near the
boundary of U . Choose Lagrangian sections of f and g over U (for example,
we can use the section σ1(b) = (−b̄, 1) in each focus-focus chart, see the
proof of Theorem 6.7). If we can find global Lagrangian sections over B \N
which match with the chosen Lagrangian section over U along U \ N then
Theorem 2.26 gives us a fibred symplectomorphism f−1(B \U)→ g−1(B \U)
extending the symplectomorphism Φ: f−1(U) → g−1(U). Since B \ N has
the homotopy type of a punctured surface and N is a strict subset of the
punctures (by assumption), the relative cohomology group H2(B \N,U \N)
vanishes. Therefore Corollary 2.33 tells us we can extend the Lagrangian
section as required. (This was the strategy we alluded to in Remark 2.32.)
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8.2 Operation I: nodal trade

We now introduce some tools for manipulating and constructing almost toric
base diagrams which will give us a wealth of examples. The first of these
is Symington’s nodal trade. It allows us to “trade” a Delzant corner for a
base-node.

Recall from Figure 7.3 that there is an almost toric structure on C2 which
admits a fundamental action domain as drawn on the left in Figure 8.1(a)
below. The shaded region is integral affine equivalent to the shaded region
in Figure 8.1(b), which is a subset of the moment polygon for the standard
torus action on C2. This means that the preimages of these two regions are
fibred-symplectomorphic.

×

Figure 8.1: (a) A fundamental action domain for the Auroux system on C2.
(b) The moment image for the standard torus action on C2. The shaded
subsets in both diagrams are integral affine equivalent to one another.

In particular, whenever we see a Delzant corner, we can excise it and glue in
a copy of the Auroux system, using this fibred symplectomorphism to make
identifications. Since the identifications are fibred, this operation yields a
new Lagrangian torus fibration on the same manifold1. In fact, there are
many different operations, one for each Ngo.c model, but the results are all
(non-fibred) symplectomorphic to one another by Theorem 6.17. We call an
operation like this a nodal trade.

Remark 8.6. The toric boundary near a Delzant corner comprises two sym-
plectic discs meeting transversally at the vertex. When you perform a nodal
trade, the toric boundary becomes a symplectic annulus which is a smoothing

1To see that the manifold does not change, observe that we are excising a symplectic
ball and gluing in another symplectic ball with the same boundary (a contact 3-sphere).
The contactomorphism group of the 3-sphere is connected [29], so there is a unique way
to glue up to isotopy.
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of this pair of discs. For example, in the Auroux system this is the smoothing
from z1z2 = 0 to z1z2 = c.

Example 8.7. Here are some Lagrangian torus fibrations on CP2:

× ××

×

××

The nodal trade in the lower left corner should look familiar; we call this a
standard Delzant corner. To find the eigendirection for any Delzant corner
p, if A is the unique integral affine transformation which maps the standard
Delzant corner to p then then the eigendirection at p is (1, 1)A. For exam-
ple, the top left corner is the image of the standard Delzant corner under〈

0 −1
1 −1

)
, so the eigendirection is (1,−2), as shown.

As noted in Remark 7.4, although the toric boundary looks like three line
segments, every time it crosses a branch cut you have to apply the affine
monodromy to its tangent vector, so the apparent breaks in the line when it
crosses a branch cut are just an illusion: it is really an uninterrupted straight
line in the affine structure. In the three examples above, the toric boundary
comprises:

• a conic and a line (two spheres intersecting transversely at two points,
one having twice the symplectic area of the other),

• a nodal cubic curve (pinched torus having symplectic area three),

• a smooth cubic curve (torus having symplectic area three).

This should make sense: the toric boundary for the usual toric picture of CP2

comprises three lines and these configurations above are obtained by smooth-
ing one or more intersections between these lines. Although I have used the
terminology “line”, “conic”, and “cubic” from algebraic geometry, it is not clear
for these new integrable Hamiltonian systems whether the toric boundary is
actually a subvariety for the standard complex structure. It is, at least, a
symplectic submanifold (immersed, where there are double points), and it



119

is known that low-degree symplectic surfaces in CP2 are isotopic amongst
symplectic surfaces to subvarieties (see Gromov [44] for smooth surfaces of
degrees 1 and 2, Sikorav [102] for smooth surfaces of degree 3, Shevchishin
[99] for nodal surfaces of genus at most 4, and Siebert-Tian [100, 101] for
smooth surfaces in degrees less than or equal to 17), hence the abuse of
terminology.

The diagrams we have drawn rely on a specific choice of fundamental domain
D in the universal cover of the regular locus of the almost toric fibration. If
we simply plot the image of the developing map (flux map) on the whole
of B̃reg, we get some very beautiful pictures which are symmetric under the
action of π1(Breg) via affine monodromy. In Figures 8.2-8.4 you can see what
this looks like for the three examples in Example 8.7. These pictures are
closely related to the idea of mutation we will meet in Section 8.4, and the
Vianna triangles that we will see later (Theorem 8.21 and Appendix I).
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Figure 8.2: The image of the developing map for an almost toric structure
on CP2 obtained from the standard moment triangle by a single nodal trade
in the lower left corner.
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Figure 8.3: The image of the developing map for an almost toric structure
on CP2 obtained from the standard moment triangle by a nodal trade in the
lower left corner and a nodal trade in the lower right corner.
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Figure 8.4: The image of the developing map for an almost toric structure
on CP2 obtained from the standard moment triangle by nodal trades in all
three corners.
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Remark 8.8. A closely related operation takes an almost toric base diagram
with a (non-Delzant) corner modelled on the polygon π(dp2, dpq− 1) and re-
places it with the diagram in Figure 7.10. We will call this a generalised nodal
trade. One can think of this as smoothing the cyclic quotient T-singularity
in the original almost toric orbifold.

Example 8.9. Take the cubic surface in CP3 given in homogeneous coor-
dinates [z1 : z2 : z3 : z4] by z1z2z3 = z3

4 . This has three A2-singularities at
[1 : 0 : 0 : 0], [0 : 1 : 0 : 0] and [0 : 0 : 1 : 0]. It is toric, with the torus
action given by (z1, z2, z3, z4) 7→ (e3iθ1z1, e

3iθ2z2, z3, e
i(θ1+θ2)z4). The Hamilto-

nians H1 = 3|z1|2+|z4|2
|z|2 and H2 = 3|z2|2+|z4|2

|z|2 (with |z|2 =
∑4

i=1 |zi|2) generate
this action and their image is the triangle {(b1, b2) ∈ R2 : b1 ≥ 0, b2 ≥
0, b1 + b2 ≤ 3}. However, the period lattice is not standard, for example
the element θ1 = 2π/3 θ2 = 4π/3 acts trivially. If we use the Hamiltonians
H2 and (H1 + 2H2)/3, whose period lattice is standard, then the moment
polygon becomes the triangle with vertices at (0, 0), (0, 1) and (3, 2). This
has three corners each modelled on the polygon π(3, 2), corresponding to
the cyclic quotient singularity 1

3
(1, 2) (also known as A2). Performing three

generalised nodal trades gives the almost toric base diagram for the smooth
cubic surface shown in Figure 8.5.

×
×
×

× × ×

×
×

×

(3, 2)

(3, 1)

(0, 1)

Figure 8.5: An almost toric base diagram for a cubic surface; the edges are
labelled with primitive integer vectors pointing along them.
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8.3 Operation II: nodal slide

Note that there is a free parameter c > 0 in the Auroux system. As this
parameter varies, we obtain a family of Lagrangian torus fibrations in which
the focus-focus critical point moves in the direction of the eigenvector for its
affine monodromy (see Figure 8.6). Such a family of fibrations is called a
nodal slide.

×

×

Figure 8.6: A nodal slide.

Theorem 8.10 (Symington’s theorem on nodal slides [106, Theorem 6.5]).
Suppose that X and X ′ are almost toric manifolds whose almost toric base
diagrams B and B′ are related by a nodal slide. Suppose that the base dia-
grams have the homotopy type of a punctured 2-dimensional surface. Then
X and X ′ are symplectomorphic.

Proof. This argument is a Moser argument very similar to the one used to
prove Theorem 6.17.

Let b ∈ B be the base node which slides and let b′ denote the corresponding
base node in B′. For simplicity, we consider only the case where B and B′
are obtained by taking branch cuts along an eigenray for b. There is a family
of almost toric base diagrams Bt interpolating between B and B′. These
diagrams all coincide outside a contractible neighbourhood K of the sliding
line.
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K×

×

×

× ×

×

×

×

This gives a family of almost toric manifolds Xt together with almost toric
fibrations ft : Xt → Bt. Since the diagrams B0 and B (respectively B1 and
B′) are identical, X0 and X (respectively X1 and X ′) are symplectomorphic
by Theorem 8.5. (Here is the first place where we use the assumption on the
topology of the base).

It suffices to show that X0 and X1 are symplectomorphic. We use the fact
that the almost toric bases coincide outside K to identify the subsets Ut =
f−1
t (Bt \K), extend this to a family of diffeomorphisms ϕt : X0 → Xt, and
show that the symplectic forms ωt = ϕ∗tωXt on X0 satisfy d[ωt]/dt = 0. The
result will then follow from Moser’s argument (Appendix E). The subset on
which the symplectic forms differ is f−1

t (K), which is just a neighbourhood
of the nodal fibre. As we saw in the proof of Theorem 6.17, it suffices to
show that

∫
σt
dωt/dt = 0 for some family of submanifolds σt such that ϕt(σt)

intersects the nodal fibre of ft once transversely and σt = σ0 on ϕ−1
t (Ut).

As in that proof, we can use a chosen family of Lagrangian sections (here
again we use the topology of the base to guarantee the existence of these
sections).

As a result, nodal sliding does not change the symplectic manifold, but it
certainly changes the Lagrangian fibration. Here is an example.

Example 8.11. Start with the almost toric fibration on CP2 from Example
8.7 with three base nodes. Pick the bottom-right node (labelled B in Figure
8.7, and slide it towards the opposite edge, beyond the barycentre of the
triangle. We get two almost toric fibrations on CP2 which we can distinguish
as follows. Consider the Lagrangian vanishing thimble emanating from the
base-node labelled A: this is a visible Lagrangian disc with centre at the
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focus-focus critical point, and its projection is a ray in the base diagram
pointing in the eigendirection of this node, which is (1, 1).

Before the nodal slide, this ray hits the slanted edge. Exercise 8.34: The
visible Lagrangian meets this edge along a (2, 1)-pinwheel core, i.e. a Möbius
strip2. After the nodal slide, this ray crosses the sliding branch cut; when

it emerges its direction has changed by the affine monodromy
〈
−1 1
−4 3

)
so

that the ray now points in the (−5, 4)-direction. Exercise 8.34: This now
intersects the slanted edge of the base diagram in a (5, 4)-pinwheel core.
This difference in topology distinguishes the torus fibrations.

×

××A B

C
×

×

×

Figure 8.7: Left: Before the nodal slide, the vanishing thimble of base-node
A is part of a visible Lagrangian RP2. Right: After the nodal slide, it is part
of a visible Lagrangian (5, 4)-pinwheel.

Remark 8.12. Visible Lagrangians obtained by capping a (p, q)-pinwheel core
with a disc are quite common in this context, and we call them Lagrangian
(p, q)-pinwheels.

The curious reader may wonder what happens if we try and slide a node in
a direction which is not its eigenline. If we do so, we obtain a family of al-
most toric base diagrams, and so a family of symplectic manifolds. However,
the cohomology class of the symplectic form can vary, so they are not all
symplectomorphic. Here is an example.

Example 8.13. Take the toric diagram for O(−1) giving the compact edge
affine length 2 and make two nodal trades.

2Indeed, this visible Lagrangian is just RP2 ⊆ CP2



127

× ×

Now we attempt to slide the right-hand node to the left. As it moves, more
and more of what used to be the compact edge passes through the branch
cut and ends up as part of the slanted non-compact edge on the right.

× × ×

If we “undo” the nodal trades, we see that the compact edge has shrunk. In
other words, the symplectic area of the zero-section has decreased, and the
cohomology class of ω has changed.

Indeed, one can use this to “flip” the sign of the symplectic area of curves.
This is closely related to the theory of flips in algebraic geometry; see [38]
for a full discussion with examples.

8.4 Operation III: Mutation

In Example 8.11, we needed to keep track of a visible Lagrangian which
crossed a branch cut. This can get very tricky if there are several branch
cuts. Sometimes, it is more convenient to change the choice of fundamental
domain in B̃reg. We will do this by rotating the branch cut as we did in
Section 7.2 and Figure 7.2.

In fact, in most examples, we will start with a branch cut which emanates
from a base-node in the direction v of an eigenvector for the affine mon-
odromy, and rotate by 180 degrees anticlockwise (or clockwise) to get a
branch cut in the −v-direction.

The fundamental action domain (almost toric base diagram) transforms in
the following way. The eigenline bisects the diagram; call the two pieces D1

and D2 (we adopt the convention that D1 lies clockwise of the branch cut
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and D2 lies anticlockwise). LetM be the affine monodromy around the base-
node as we cross the branch cut in the anticlockwise direction. When the
branch cut rotates anticlockwise 180 degrees, we replace D2 with (D2)M−1

to get the new almost toric base diagram D1 ∪ (D2)M−1. When the branch
cut rotates clockwise 180 degrees, we get (D1)M ∪D2 instead.

Remark 8.14. Note that changing branch cut has no effect on the symplectic
manifold nor on the Lagrangian torus fibration. All that changes is the
picture: the picture is the image of a fundamental action domain under the
developing map, and the change of branch cut amounts to a different choice
of fundamental action domain.

Example 8.15. Take the almost toric base diagram shown below and let
x be the base-node marked B. The anticlockwise affine monodromy is

M =

〈
−1 1
−4 3

)
and the branch cut points in the (2,−1)-direction. We have

indicated the coordinates of the corners of the triangle. The affine lengths of
the three edges are 3; this choice corresponds to the pullback of the Fubini-
Study form along the anticanonical embedding of CP2 in CP9.

×B

(3, 0)

(0, 3)

(0, 0)

If we rotate the associated branch cut 180 degrees anticlockwise, then the
result is:

×
B

(6, 0)

(0, 3/2)

(0, 0)

We superimpose the two pictures for easier comparison.
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×

D1

D2

(D2)M−1

After performing this change of branch cut, the visible Lagrangian (5, 4)-
pinwheel from Example 8.11 is easier to see, as its projection does not cross
any branch cuts (see Figure 8.8).

×

×

×
A

B
C

(6, 0)

(0, 3/2)

(0, 0)

Figure 8.8: The visible (5, 4)-pinwheel is easier to see after applying a muta-
tion to Figure 8.7. Note that the direction of the branch cut at C is obtained
from the original cut by applying the clockwise B-monodromy. These cuts
are hard to see, as they are almost parallel to the edges. The vectors indicate
the coordinates of the vertices.

Definition 8.16. A (clockwise or anticlockwise) mutation at a base-node is
a combination of a nodal slide followed by a change of the same branch cut
by 180 degrees (clockwise or anticlockwise).

Remark 8.17. I have used the word “mutation” in earlier papers to mean just
a change of branch cut, e.g. [38]. I am changing my preference here to avoid
overusing the phrase “combination of nodal slide and mutation”.

Example 8.18. Let us continue by mutating anticlockwise at the base-node
labelled C in Figure 8.8. We now find a visible Lagrangian (13, 2)-pinwheel
living over the eigenray emanating from the base-node C.

Remark 8.19. One useful trick for figuring out the directions of the branch
cuts is the following. In the original CP2 triangle, the eigenlines all intersect
at the barycentre of the triangle (1, 1). This remains true after mutation. So
the directions of the branch cuts can be found by taking the vectors from
(1, 1) to the corners. For example, the B branch cut in Figure 8.9 points in
the (13,−2)-direction. This trick works when all the eigenlines intersect at
a common point. This is a cohomological condition; see Section 8.6.
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×
×

×
A

C

B

(15/2, 0)

(0, 6/5)

(0, 0)

Figure 8.9: After a further mutation, we see a visible (13, 2)-pinwheel. By
now, the B and C branch cuts are indistinguishably close to the edges.

One could continue in this fashion, mutating at B, then C, then B, etc. This
would give a sequence of Lagrangian (pk, qk)-pinwheels in CP2 where pk runs
over the odd-indexed Fibonacci numbers3. The general almost toric base
diagram in this sequence is shown in Figure 8.10; to declutter the diagram
we have “undone” the nodal trade at the vertex which remains unmutated.
The shaded region in this figure is a symplectically embedded copy of the
solid ellipsoid{

(z1, z2) ∈ C2 :
1

2

(
F2n−1

3F2n+1

|z1|2 +
F2n+1

3F2n−1

|z2|2
)
≤ λ

}
for λ < 1. We can get an embedding with λ arbitrarily close to 1 by nodally
sliding the two base-nodes very close to their vertices and pushing the slanted
edge of the shaded region towards the toric boundary. In other words, we can
fill up an arbitrarily large fraction of the volume of CP2 by a symplectically
embedded ellipsoid with this Fibonacci-ratio of radii. This is related to the
famous Fibonacci staircase pattern for full ellipsoid embeddings in CP2 ob-
served by McDuff and Schlenk [78]. For papers which discuss this and other
examples from an almost toric point of view, see [8, 11, 22, 70].

×
×

(3F2n+1/F2n−1, 0)

(0, 3F2n−1/F2n+1)

(0, 0)

Figure 8.10: The general almost toric base diagram in the Fibonacci stair-
case. The shaded region is a solid ellipsoid which can be rescaled to fill an
arbitrarily large fraction of the volume of CP2 provided we slide the base-
nodes closer to the corners.

3Our convention is that F1 = 1, F3 = 2, F5 = 5, etc.
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In fact, one could also allow sequences of mutations involving base-node A, to
obtain an infinite trivalent tree of almost toric base diagrams all representing
almost toric fibrations on CP2. This tree is closely related to another famous
infinite trivalent tree arising from the theory of Diophantine approximation:
the Markov tree. For the (p, q)-pinwheels which appear, p is a Markov num-
ber4.

Definition 8.20. A Markov triple is a positive integer solution p1, p2, p3 to
the Markov equation

p2
1 + p2

2 + p2
3 = 3p1p2p3.

A Markov number is a number which appears in a Markov triple.

Theorem 8.21 (Vianna [116]). For every Markov triple p1, p2, p3, there is
an almost toric diagram D(p1, p2, p3) (a Vianna triangle) with the following
properties.

• The diagram D(1, 1, 1) is obtained from the standard toric diagram of
CP2 by performing three nodal trades.

• The diagram D(p1, p2, p3) is a triangle with three base-nodes n1, n2, n3,
obtained by iterated mutation on D(1, 1, 1) (in particular, the associated
almost toric manifold is CP2).

• For k = 1, 2, 3, there is an integer qk and a Lagrangian pinwheel of type
(pk, qk) living over the branch cut which connects nk to a corner Pk.

• The affine length of the edge opposite the corner Pk is 3pk/(pk+1pk+2)
where indices are taken modulo 3.

Proof. We prove this in Appendix I, where we also remind the reader of the
basic properties of Markov triples.

Remark 8.22. The diagrams in Figures 8.8 and 8.9 areD(1, 1, 2) andD(1, 2, 5).

Remark 8.23. Superimposing all these almost toric base diagrams yields Fig-
ure 8.4, that is the image of the developing map of the integral affine structure
on the universal cover of the complement of the base-nodes.

Remark 8.24. For each diagram D(p1, p2, p3), let T (p1, p2, p3) denote5 the
Lagrangian torus fibre over the barycentre. Before the work of Vianna, the

4The odd-indexed Fibonacci numbers are a subset of the Markov numbers.
5Vianna [116] uses the notation T (p21, p

2
2, p

2
3).
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tori T (1, 1, 1) (the Clifford torus) and T (1, 1, 2) (the Chekanov torus) had
been constructed and Chekanov [16] had shown that they were not Hamilto-
nian isotopic. Vianna’s truly remarkable contribution, besides constructing
T (p1, p2, p3), was to show that if p1, p2, p3 and p′1, p

′
2, p
′
3 are distinct as un-

ordered Markov triples then T (p1, p2, p3) and T (p′1, p
′
2, p
′
3) are not Hamilto-

nian isotopic6.

Remark 8.25. Vianna [117] has also studied mutations of other triangular
almost toric base diagrams, and used this to construct exotic Lagrangian
tori in other symplectic 4-manifolds.

Remark 8.26. As far as I know, it is a completely open question to charac-
terise which quadrilaterals arise as mutations of a square or a rectangle.

8.5 More examples

Example 8.27. In Example 8.15, we constructed the almost toric base di-
agram for CP2 shown in Figure 8.11 by performing one nodal trade and a
mutation (we have nodally-slid the base node to make it clearer). The visible
Lagrangian pinwheel over the branch cut is RP2 and the symplectic sphere
living over the opposite edge is isotopic to a conic curve (its symplectic area
is twice that of a complex line in CP2, so it inhabits the homology class of a
conic, and symplectic curves in this class are known to be isotopic [44]). If
we excise the conic, what is left is a subset of the almost toric base diagram
for B1,2,1 from Example 7.8. This is actually the cotangent bundle of T ∗RP2.
Thus we see that the complement of a conic in CP2 is symplectomorphic to
a neighbourhood of RP2 in its cotangent bundle.

Remark 8.28 (Exercise 8.35). Using the same idea, we find that ifX = S2×S2

with its equal-area symplectic form and C ⊆ X is a symplectic sphere isotopic
to the diagonal then X \ C is a neighbourhood of a Lagrangian sphere in
its cotangent bundle. Of course these results can be proved directly and
explicitly, but almost toric diagrams give us a way to see them and generalise
them to less obvious examples.

6He had an earlier paper [115] which distinguished T (1, 2, 5) from T (1, 1, 1) and
T (1, 2, 5), which was already a major breakthrough. At the time it appeared, I was
convinced there should be only two Hamiltonian isotopy classes of monotone Lagrangian
tori in CP2.
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conic

RP2

×

(6, 0)

(0, 3/2)

(0, 0)

Figure 8.11

Example 8.29. The complement of a cubic curve in CP2 can be given the
almost toric diagram shown in Figure 8.12(a). This is a Weinstein domain
which retracts onto a visible Lagrangian cell complex, coloured in the figure:
we take the fibre over the barycentre, together with the three Lagrangian
vanishing thimbles coming from Lemma 6.15 living over the three lines con-
necting the base-nodes to the barycentre. The attaching maps for these
discs are loops in the barycentric torus living in the homology classes (1, 2),
(1, 2) and (1,−1). In Figure 8.12(b), we draw these three loops in a square-
picture of the barycentric torus. This Lagrangian cell complex is called the
Lagrangian skeleton of the complement of the cubic. The paper [1] explores
in more detail how to read Weinstein handlebody decompositions off from
almost toric base diagrams, and the paper [97] explains how a torus with
Lagrangian discs attached is all you need to recover the full complexity of
Vianna’s tori.

×

××
•

Figure 8.12: (a) An almost toric fibration on the complement of a cubic in
CP2. (b) The boundaries of the three visible discs on the barycentric torus
(thought of as a square with its sides identified in opposite pairs).
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8.6 Cohomology class of the symplectic form

We have seen that the symplectic area of a curve in the toric boundary of a
toric manifold is given by 2π times the affine length of the edge to which it
projects. Since the cohomology class of the symplectic form is determined by
its integrals over curves, this is enough to determine the cohomology class of
the symplectic form on a toric manifold. We now come up with a prescription
for finding the cohomology class of the symplectic form on an almost toric
manifold. We focus on a restricted class of base diagrams where the almost
toric base is R2 with some base-nodes; one can easily extend our analysis,
e.g. to the case where there are toric critical points.

Remark 8.30. The case where the base is a closed 2-manifold like the sphere
is trickier because it is impossible to “read off” the symplectic areas of sec-
tions. For example, one can change the symplectic area of a section without
changing the almost toric base diagram by pulling back a non-exact 2-form
from the base of the fibration and adding it to the symplectic form.

Here is the class of almost toric base diagrams on which we will focus. Sup-
pose f : X → B is an almost toric fibration where the almost toric base dia-
gram is R2 with a collection of base-nodes n1, . . . , nk and branch cuts. Since
we are only interested in the integral affine structure, we can choose which
point we consider to be the origin 0. We can ensure that 0 6∈ {n1, . . . , nk}
and that the straight line segments si connecting 0 to ni intersect only at
0. We write the positions of the base-nodes as (xi, yi) relative to this origin.
Suppose that the branch cut at ni points in the (ai, bi)-direction, and suppose
that this is a primitive integer eigenvector of the affine monodromy at ni. We
will suppose for simplicity that none of the line segments si cross the branch
cuts.

Theorem 8.31. The second cohomology (with R-coefficients) of X is the
cokernel of the map ∂ : R2 → Rk+1 defined by

∂(v, w) = (0, b1v − a1w, . . . , bkv − akw).

If we write [z0, z1, . . . , zk] for the equivalence class of (z0, z1, . . . , zk) in this
cokernel, then the symplectic form lives in the cohomology class [0, 2π(b1x1−
a1y1), . . . , 2π(bkxk − akyk)].
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×

(a1, b1)

(a2, b2) = (a3, b3)

×

×

×

(a4, b4)

•

n1

n2

n3

n4

(x1, y1)

(x2, y2)
(x3, y3)

(x4, y4)

Figure 8.13: A typical almost toric base diagram of the kind we consider.

Proof. The space X deformation retracts onto the following CW complex
W . Let F be the torus fibre over the origin and let si be the line segment
connecting 0 to ni. Inside f−1(si) there is a disc ∆i with boundary on F
and with centre at the focus-focus critical point over ni. The boundary of
this disc is a loop in F which inhabits the class (−bi, ai) ∈ H1(F ;Z). Let
W = F ∪

⋃k
i=1 ∆i.

The fact that X retracts onto W can be proved using Morse theory (though
we only sketch it here). The Morse-Bott function |f |2 has a global minimum
along F and index 2 critical points at the focus-focus points. The discs ∆i are
the downward manifolds emanating from these critical points, which gives a
handle-decomposition of X with W as the union of cores of handles.

We pick a CW structure on F with one 0-cell, two 1-cells, and one 2-cell ∆0.
To get a CW structure on W we need to homotope the attaching maps for
the 2-cells ∆i so that they attach to the 1-skeleton of F (which we can do
using cellular approximation). Now the cellular chain complex computing
H2(X;R) is

C2(X;R) = Rk+1 ∂→ C1(X;R) = R2 ∂→ C0(X;R) = R.

The map ∂ : C2 → C1 is given by looking at the boundaries of the 2-cells:
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∂∆0 = 0 and ∂∆i = (−bi, ai). We can think of this as a 2-by-(k + 1) matrix(
0 −b1 · · · −bk
0 a1 · · · ak

)
.

When we take the dual complex (to compute cohomology), the differential
∂ : C1 → C2 is given by the transpose of this matrix. The cohomology is the
cokernel of this map (by definition).

We can compute the integrals of the symplectic form over the 2-cells ∆i,
which then tells us its cohomology class. In action-angle coordinates away
from the focus-focus point, ∆i is the cylinder [0, 1)×S1 3 (s, t) 7→ (xis, yis,−bit, ait),
which has symplectic area∫ 1

0

∫
S1

(aiyi − bixi)ds ∧ dt = 2π(aiyi − bixi)

as required.

Corollary 8.32. The symplectic form on X is exact if there is a common
point of intersection of all the eigenlines from the base-nodes.

Proof. If we were to use this common point of intersection as our origin, it
would give all the discs ∆i area zero because each vector (xi, yi) would be
proportional to (ai, bi).

Remark 8.33. For readers who are interested in disc classes with boundary on
Lagrangian tori, this also tells us that if there is a common intersection point
of the eigenlines then the Lagrangian torus fibre over this point is exact.
More generally, if there is a toric boundary divisor, this Lagrangian torus
will be monotone provided the ambient manifold is monotone. In particular,
Vianna’s tori are all monotone.

8.7 Solutions to inline exercises

Exercise 8.34. Show that the visible Lagrangians in the pictures below have
respectively (2, 1)- and (5, 4)-pinwheel cores where they meet the edge. In
the first diagram, the direction of the line in the base is (1, 1). In the second
diagram, the line points in the (−5, 4)-direction after crossing the branch cut.
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×

××

×

×

×

Solution. In each case, let ` be the primitive integral vector pointing along
the line of the visible Lagrangian where it intersects the edge, and let e be
the primitive integral vector pointing along the edge. Make an integral affine
change of coordinates M so that eM = (1, 0). By comparison with Example
5.14, we see that if `M = ±(q, p) then we have a visible Lagrangian (p, q)-core
(here q is determined only up to adding a multiple of p).

In the first case, we have ` = (−1,−1) and e = (−1, 1), so we use M =〈
−1 −1
0 −1

)
which gives `M = (1, 2).

In the second case, we have ` = (5,−4) and e = (0,−1), so we use M =〈
0 1
−1 0

)
which gives `M = (4, 5).

Exercise 8.35 (Remark 8.28). Using the same idea as in Example 8.27,
show that if X = S2 × S2 with its equal-area symplectic form and C ⊆ X is
a symplectic sphere isotopic to the diagonal then X \ C is a neighbourhood
of a Lagrangian sphere in its cotangent bundle.

Solution. Figure 8.14 shows what you get when you start with the standard
square moment map picture of S2×S2, perform nodal trades at two opposite
corners, and then mutate one of them.

After the nodal trades, the toric boundary consists of two symplectic spheres
each isotopic to the diagonal. The complement of the one marked as “diagonal
sphere” in the picture is an open subset of B2,1,1, which is the Milnor fibre
of a Q-Gorenstein smoothing of a 1

2
(1, 1) (or A1) singularity. But B2,1,1

is symplectomorphic to the cotangent bundle T ∗S2 (Exercise 8.36) and the
visible Lagrangian sphere living over the dotted line connecting the base-
nodes (made up of two vanishing thimbles) is the zero-section.
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×
×

diagonal sphere

Figure 8.14: An almost toric picture of S2 × S2. The complement of the
diagonal sphere is a neighbourhood of the visible Lagrangian sphere living
over the dotted line connecting the two base-nodes.

Exercise 8.36 (From the solution to Exercise 8.35). Show that the Milnor
fibre of the A1 singularity is symplectomorphic to the cotangent bundle of S2.

Solution. The Milnor fibre is an affine quadric z1z2 + z2
3 = 1. We will write

an explicit symplectomorphism between the affine quadric and T ∗S2. First
we make a change of coordinates z1 = ξ1 + iξ2, z2 = ξ1 − iξ2, z3 = ξ3 to get
the quadric in the form

ξ2
1 + ξ2

2 + ξ2
3 = 1.

If we think of S2 as sitting inside R3 as the unit sphere q2
1 + q2

2 + q2
3 = 1 then

its cotangent bundle sits inside R3×R3 and consists of pairs (p, q) ∈ R3×S2

such that
∑3

k=1 pkqk = 0. Here, we give R3 × R3 the symplectic structure∑3
k=1 dpk ∧ dqk. Now the map sending ξ = x+ iy to (p, q) = (−|x|y,x/|x|)

is a symplectomorphism. To see this, write r = |x| and pullback the 2-form∑
dpk ∧ dqk:

dpk ∧ dqk = − (yk dr + r dyk) ∧
(
dxk
r
− xk dr

r2

)
= dxk ∧ dyk + (xk dyk + yk dxk) ∧

dr

r
,

and use the fact that 1 =
∑

(xk + iyk)
2 =

∑
(x2

k − y2
k) + 2i

∑
xkyk, so∑

d(xkyk) =
∑

(xk dyk + yk dxk) vanishes on the quadric. Overall, we get∑
dpk ∧ dqk = −

∑
dxk ∧ dyk.

Note that this shows more generally that T ∗Sn is symplectomorphic to a
smooth affine quadric in n+ 1 complex variables.
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Surgery

In this chapter, we describe almost toric pictures of some of the most impor-
tant surgery operations in 4-dimensional topology. We first revisit blow-up
but allow ourselves to blow-up at an edge point on the toric boundary rather
than a vertex. Then we discuss rational blow-up/blow-down. Finally, we use
these ideas to explore the symplectic fillings of lens spaces.

9.1 Non-toric blow-up

Let X be an almost toric manifold and let x ∈ X be a toric fixed point, i.e. a
point lying over a Delzant vertex b in the almost toric base diagram. We have
seen (Example 4.23) that performing the symplectic cut corresponding to
truncating the moment polygon at b has the result of symplectically blowing-
up X at x. This is often called toric blow-up because it can be understood
purely in terms of toric geometry. But what if we want to blow-up a point
x′ ∈ X which does not live over a Delzant vertex? In this section, we will
explain how to blow-up a point living in the toric boundary over an edge of
the base diagram. We begin by describing the local picture; we use a strategy
similar to what we used to analyse the Auroux system (Example 7.1).

Example 9.1. Consider the manifold O(−1) from Example 3.18. Recall
that this is the variety

{(z1, z2, [z3 : z4]) ∈ C2 × CP1 : z1z4 = z2z3}

This material has been/will be published by Cambridge University Press as Lectures on
Lagrangian Torus Fibrations by Jonny Evans. This pre-publication version is free to
view and download for personal use only. Not for re-distribution, re-sale, or use in
derivative works.
c© Jonny Evans 2018–2023.
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and that this is the blow-up of C2 at the origin. Pick a real number c > 0
and let X = O(−1) \ {z1 = c}. We will write down an almost toric fibration
on X whose toric boundary is the cylinder {(ξ, 0, [1 : 0]) : ξ 6= c} and which
has one focus-focus fibre. Namely, we take

H(z1, z2, [z3 : z4]) =

(
|z1 − c|2,

1

2
|z2|2 −

|z3|2

|z3|2 + |z4|2

)
.

The function H2 satisfies H2 ≥ −1 with equality if and only if z2 = z4 = 0.
The image of H is {(b1, b2) ∈ R2 : b1 > 0, b2 ≥ −1}. The toric boundary is
the cylinder {(z1, 0, [1 : 0]) z1 6= c} living over the bottom edge b2 = −1, and
the focus-focus fibre is H−1(c2, 0) (see Figure 9.1).

×b2 = 0

b2 = −1

Figure 9.1: The local model for nontoric blow-up at a point over an edge
in the toric boundary. The wiggly line indicates roughly where the excep-
tional sphere projects to (finding the precise image would require a nontrivial
calculation of action coordinates).

As with the Auroux system, the Hamiltonian H2 generates a circle action, so
the conversion to action coordinates has the form (b1, b2) 7→ (G1(b1, b2), b2).
This means that (a) the toric boundary in action coordinates is still given by
the horizontal line b2 = −1, (b) the affine monodromy around the base-node

is
〈

1 0
1 1

)
, so (c) both the toric boundary and the eigenline of the affine

monodromy are horizontal, and choosing a horizontal branch cut, we get an
almost toric base diagram of the form shown in Figure 9.1. The projection of
the exceptional sphere {(0, 0)} × CP1 under H is a vertical line connecting
the base-node to the toric boundary; I have not checked whether this remains
vertical in action coordinates, so have drawn it as a wiggly line in Figure 9.1.
Note that regardless of this projection, the symplectic area of the exceptional
sphere is the affine length between the edge and the base-node.
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Finally, we rotate the branch cut by 90◦ clockwise, to get the diagram shown
in Figure 9.2. This picture can now be implanted near to an edge point in
any almost toric base diagram, see example Figure 9.3 for an example of a
nine-point blow-up of CP2 (a rational elliptic surface).

×

Figure 9.2: A different picture of the same local model as in Figure 9.1,
obtained by rotating the branch cut 90◦ clockwise.

× × ×

×

×

× ×

×

×

Figure 9.3: A nontoric blow-up of CP2 in nine balls.

Example 9.2. Consider the product symplectic manifold X = T 2 × C. We
use 2π-periodic coordinates (θ1, θ2) on T 2 and Cartesian coordinates x+iy on
C, and equip X with the symplectic form dθ1 ∧ dθ2 + dx ∧ dy. The function
f : T 2 × C → R/2πZ × R defined by f(θ1, θ2, x + iy) = (θ1, (x

2 + y2)/2)
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is a Lagrangian torus fibration, which induces the product integral affine
structure on (R/2πZ) × R. The torus T := T 2 × {0} has self-intersection
zero. We draw the integral affine base in Figure 9.4(a); the dotted lines with
arrows indicate that the two sides of the picture should be identified.

(a)
T

(b)

× ×

(c)
T̃

Figure 9.4: (a) The base of a Lagrangian torus fibration on X = T 2×C. (b)
Non-toric blow-up of X. (c) Same diagram after a change of branch cut.

Now perform non-toric blow-up at a point on T ; we get the almost toric
manifold whose base diagram is shown in Figure 9.4(b). Write E for the
exceptional sphere and T̃ for the proper transform of T (which is the torus
living over the toric boundary in Figure 9.4(b) or (c)). Since T̃ + E is
homologous to a pushoff of T , we have 0 = (T̃+E)2 = T̃ 2 +2T̃ ·E+E2. Since
T̃ ·E = 1 and E2 = −1, we have T̃ 2 = −1. If we perform a change of branch
cut on Figure 9.4(b), we get the diagram in Figure 9.4(c). By focusing on
a neighbourhood of T̃ , we get a local (almost toric) model for a symplectic
manifold in a neighbourhood of a symplectic torus with self-intersection −1

(Figure 9.5(a)). Note that the matrix
〈

1 0
1 1

)
is now used to identify the

dotted edges with arrows. A similar argument gives a picture for tori with
self-intersection −n (Figure 9.5(b)).

(a)

(1, 1)

(b)

(n, 1)

Figure 9.5: (a) Torus with self-intersection −1. (b) Torus with self-
intersection −n.

Example 9.3. Consider the almost toric diagram of CP2 obtained from the
standard diagram by a single nodal trade and mutation:
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×

This has a visible Lagrangian RP2 over the branch cut and the preimage of
the top edge is a conic. We can perform five non-toric blow-ups at points on
the conic:

×××××
×

The “bites” we have taken from the edge look a bit different to the usual
picture in Figure 9.2, but are related to it by integral affine transformations.
To be a little more precise, we take the affine length of the top edge to
be 6 before the blow-up, and each bite takes out affine length 1 (so the
corresponding exceptional sphere has area 2π). The result is a monotone1

symplectic form on a Del Pezzo surface obtained by blowing-up CP2 at five
points. Changing branch cuts to make them parallel to their eigenlines, we
obtain:

×
×××××

1i.e. the cohomology class of ω is a positive multiple of the first Chern class.
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9.2 Rational blow-down/rational blow-up

Recall that the lens space L(n, a) is the quotient of the standard contact 3-
sphere in C2 by the action of the cyclic group µn of nth roots of unity where
µ acts by (z1, z2) 7→ (µz1, µ

az2). This lens space appears as the boundary of
the symplectic orbifold C2/µn, which is toric with moment polygon π(n, a)
(Example 3.21). We can make symplectic cuts to get the minimal resolution
of this orbifold singularity as in Example 4.30: we get a smooth symplectic
“filling” of L(n, a) which retracts onto a chain of symplectic spheres whose
self-intersection numbers b1, . . . , bk satisfy

n

a
= b1 −

1

b2 − 1
···− 1

bk

.

Suppose that n = p2 and a = pq− 1 for some coprime integers p, q. We have
seen another symplectic filling of the lens space L(p2, pq − 1), namely B1,p,q

from Example 7.8.

Definition 9.4. Suppose that U ⊆ X is a symplectically embedded copy
of (a neighbourhood of the chain of spheres in) the minimal resolution of
1
p2 (1, pq − 1) inside a symplectic manifold X. The rational blow-down2 of X
along U is the symplectic manifold obtained by replacing U with (an open
set in) B1,p,q. Rational blow-up is the inverse operation.

Example 9.5. The toric diagram in Figure 9.6 shows a Hirzebruch surface
containing a symplectic sphere (over the short edge) with self-intersection
−4. We can rationally blow-down along this sphere and we obtain an almost
toric manifold containing a symplectically embedded B1,2,1. In fact, this is
symplectomorphic to CP2 (you can get back to the standard picture of CP2

by mutating).

Remark 9.6. Rational blow-up/down was introduced by Fintushel and Stern
[39], who showed that certain elliptic surfaces (minimal complex surfaces with
Kodaira dimension 1) could be related by blow-ups and rational blow-downs,
and used this to calculate their Donaldson invariants. Symington [105] used

2Originally, rational blow-down was reserved for the case q = 1 and the more general
procedure was called generalised rational blow-down. One could generalise still further
using Bd,p,q for d ≥ 2, but the beauty of using B1,p,q is the drastic reduction in second
Betti number that can be achieved.
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(4, 1)
×

Figure 9.6: Rationally blow-down the Hirzebruch surface F4 along a neigh-
bourhood of the −4-sphere to get CP2 (the branch cut points in the −(2, 1)-
direction).

almost toric methods to show that these surgeries can be performed sym-
plectically. Rational blow-down has since been used extensively to construct
exotic 4-manifolds with small second Betti number. This technique was pi-
oneered by Park [84], who constructed a 4-manifold homeomorphic but not
diffeomorphic to CP2]7CP2 by perfoming rational blow-down on a certain
rational surface; the literature on “small exotic 4-manifolds” has grown sig-
nificantly since then.

Rather than focusing on exotica, we will content ourselves with constructing
a symplectic filling of a lens space.

• •

•

•

•

(1, 0)
(3, 1)

(14, 5)

(25, 9)

(36, 13)

−3
−5

−2

−2

Figure 9.7: The minimal resolution of 1
36

(1, 13). Delzant vertices are marked
with dots and self-intersections of the spheres in the toric boundary are in-
dicated.

Example 9.7. Consider the singularity 1
36

(1, 13) and its minimal resolution,
which contains a chain of spheres of self-intersections −3,−5,−2,−2; see
Figure 9.8. This is a symplectic filling of L(36, 13) whose second Betti number
is 4. One can rationally blow-down the sub-chain −5,−2, because

5− 1

2
=

9

2
,
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which corresponds to p2/(pq − 1) for p = 3, q = 1. This gives a different
symplectic filling of L(36, 13) whose second Betti number is 1; see Figure 9.7.

•

•

×

Figure 9.8: The result of rationally-blowing down Figure 9.7 along the −5,−2
sub-chain of spheres; this contains a copy of B1,3,1. The branch cut points in
the −(8, 3)-direction (very close to the edge). The second Betti number of
this filling is 1 (there is only one compact edge).

Here is a different symplectic filling of L(36, 13) which also has second Betti
number equal to 1. First blow-up the minimal resolution at the intersection
point between the −3 and −5-spheres. This yields a chain of spheres with
self-intersections −4,−1,−6,−2,−2. We can rationally blow-down along
both the −4-sphere and the −6,−2,−2-subchain, replacing them with B1,2,1

and B1,4,1 respectively (Figure 9.9).

Remark 9.8 (Exercise 9.19). These two fillings are non-diffeomorphic: the
first is simply-connected, while the second has fundamental group isomorphic
to Z/2.

9.3 Symplectic fillings of lens spaces

In Example 9.7, we constructed two non-diffeomorphic fillings of the lens
space L(36, 13) with second Betti number 1. In fact, symplectic fillings of
lens spaces3 are completely classified: Lisca [68] proved the classification up
to diffeomorphism, and this was later strengthened to give a classification up
to deformation/symplectomorphism by Bhupal and Ono [9].

3There are many contact structures on lens spaces. We always equip L(n, a) with its
“standard” contact structure descended from the tight contact structure on S3.
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(a)• • •

•

•

•

(1, 0) (4, 1)
(3, 1)

(14, 5)

(25, 9)

(36, 13)

−4 −1
−6

−2

−2

(b)
(4, 1)

(36, 13)

×
×

Figure 9.9: (a) Blow-up the minimal resolution of 1
36

(1, 13), (b) then ratio-
nally blow-down along the −4 and −6,−2,−2 subchains. The branch cuts
point in the (2, 1) and (8, 3)-directions.

There is an almost toric recipe for constructing all of Lisca’s fillings, which
we now explain. We first need to introduce some ingredients.

Definition 9.9. A continued fraction

[c1, . . . , cm] = c1 −
1

c2 − 1
···− 1

cm

is called a zero continued fraction (ZCF) if it evaluates to zero and its evalu-
ation does not involve dividing by zero at any stage. For example, [1, 1] is a
ZCF because 1− 1

1
= 0, while [1, 1, 1, 1, 1] = [1, 1, 1, 0] = [1, 1,∞] = [1, 1] = 0

is not.

Example 9.10 (Exercise 9.20). If [c1, . . . , cm] is a ZCF then so are

[1, c1 + 1, . . . , cm], [c1, . . . , cm + 1, 1] and [c1, . . . , ci + 1, 1, ci+1 + 1, . . . , cm]
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for any i ∈ {1, . . . ,m−1}. We call this blowing-up a ZCF because it captures
the combinatorics behind the following geometric procedure. Suppose we
have a chain of spheres with self-intersections −c1, . . . ,−cm:

• If we blow-up a (non-intersection) point on the first sphere then we get
a chain of spheres with self-intersections

−1,−c1 − 1,−c2, . . . ,−cm.

• If we blow-up a (non-intersection) point on the final sphere then we get
a chain of spheres with self-intersections

−c1,−c2, . . . ,−cm − 1,−1.

• If we blow-up the intersection between the ith and (i+1)st sphere then
we get a chain of spheres with self-intersections

−c1, . . . ,−ci − 1,−1,−ci+1 − 1, . . . ,−cm.

We call the obvious inverse procedure blowing-down.

Lemma 9.11. Any ZCF is obtained from [1, 1] by iterated blow-up.

Proof. Lemma 9.12 below implies that any ZCF of length at least 2 contains
an entry equal to 1, so can be blown-down to get a shorter continued fraction.
Therefore it is sufficient to prove that the only ZCF of length 2 is [1, 1]. If
[c1, c2] = 0 then (c1c2−1)/c2 = 0, so c1c2 are positive integers whose product
is 1, hence c1 = c2 = 1.

Lemma 9.12 (Exercise 9.21). If [c1, . . . , cm] is a continued fraction with
ci ≥ 2 for all i then it is not a ZCF. In fact, [c1, . . . , cm] > 1.

Corollary 9.13. If [c1, . . . , cm] is a ZCF then there is a toric manifold con-
taining a chain of spheres with self-intersections −c1, . . . ,−cm such that the
moment polygon is an iterated truncation of Figure 9.10(a).

Proof. Since [c1, . . . , cm] is obtained by blowing-up [1, 1], we simply follow the
geometric procedure outlined in Example 9.10 starting with Figure 9.10(a),
which contains a chain of spheres with self-intersections −1,−1. We can take
all the blow-ups to be toric (i.e. at vertices of the moment polygon).
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(a)• •

•

(b)• •

•

•

Figure 9.10: (a) Toric diagram corresponding to the ZCF [1, 1]. (b) Toric
diagram corresponding to a blow-up of [1, 1] (in this case, [2, 1, 2]).

We need one final ingredient.

Example 9.14. The polygon in Figure 9.11(a) defines a toric variety X with
two cyclic quotient singularities A and B. The singularity A is 1

n
(1, a); the

singularity B is isomorphic to 1
n
(1, n−a): we can use the matrix4

〈
−1 −1
0 1

)
to identify a neighbourhood of this vertex with a neighbourhood of the vertex
in π(n, n − a). Let X̃ be the toric variety obtained by taking the minimal
resolution of X at B; this has the moment polygon shown in Figure 9.11(b).
Note that if n

n−a = [b1, . . . , bm] then the self-intersections of the spheres in
the minimal resolution appear as −bm,−bm−1, . . . ,−b1 as we traverse the
boundary anticlockwise.

We define the symplectic manifold V (n, a) to be the complement of a neigh-
bourhood of A in X̃, shaded in Figure 9.11(b). This submanifold has concave
contact boundary5 L(n, a).

We will now give a recipe for constructing symplectic fillings of lens spaces.

Recipe 9.15. Let [b1, . . . , bm] be the continued fraction expansion of n/(n−
a). Suppose that6 [cm, . . . , c1] is a ZCF with ci ≤ bi for i = 1, . . . ,m. Let Y
be the corresponding toric variety from Corollary 9.13. If we perform bi − ci
non-toric blow-ups on the edge with self-intersection −ci then we obtain an

4This matrix has determinant −1, which is responsible for the reversed ordering of the
exceptional spheres later.

5See Definition G.2.
6The reverse ordering is not a typo!
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•

•

•

••

•

•

•

A

B

(n, a)

•

•
•

•
•
•

••

•
•

•
•
•

•

−bm

−b1

−1

0

A

V (n, a)

L(n, a)

···

Figure 9.11: (a) A toric variety X with two orbifold singularities: A of type
1
n
(1, a) and B of type 1

n
(1, n− a). (b) The variety X̃ obtained by taking the

minimal resolution of X at B. The self-intersections of curves in the toric
boundary are indicated. The shaded region is the submanifold V (n, a) whose
concave contact boundary is L(n, a).

almost toric manifold containing a chain of spheres with self-intersections
−bm, . . . ,−b1,−1, 0. A neighbourhood of this chain is symplectomorphic to
V (n, a), so the complement of a neighbourhood of this chain gives a sym-
plectic filling of L(n, a).

We illustrate this recipe with some simple examples.

Example 9.16. The fillings of L(4, 1) were classified earlier by McDuff [74,
Theorem 1.7]. Up to deformation, there are two: B1,2,1 and O(−4). We will
construct these using Recipe 9.15. We have 4

4−1
= [2, 2, 2]. There are two

possible ZCFs for use in Recipe 9.15: [2, 1, 2] and [1, 2, 1].

Case [2, 1, 2]: We start with the toric manifold shown in Figure 9.12(a) and
perform a non-toric blow-up on the middle edge, yielding Figure 9.13(a). The
red region is V (4, 1) and its complement is a symplectic filling of L(4, 1). If we
perform a change of branch cut (Figure 9.14(a)), we see that this is precisely
the almost toric diagram of B1,2,1 from Example 7.8.

Case [1, 2, 1]: We start with the toric manifold shown in Figure 9.12(b) and
perform a non-toric blow-up on the two outer edges, yielding Figure 9.13(b).
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The shaded region is V (4, 1) and its complement is a symplectic filling of
L(4, 1). If we perform changes of branch cut (Figure 9.14(b)), we see that
this is precisely the almost toric diagram of O(−4) from Example 3.19.

(a)

•

• •

•

•

••

• •

•

•

•

−2
−1

−2

(1, 0)
(2, 1)

(1, 1)

•

• •

•

•

••

• •

•

•

•

−1
−2

−1

(1, 0)
(1, 2)

(1, 1)

(b)

Figure 9.12: (a) The toric variety associated with the ZCF [2, 1, 2]. (b) The
toric variety associated with the ZCF [1, 2, 1].

(a)

•

•

••

• •
×

−2

−2

−2

−1

0 •

••

• •

•
×

×

(b)
−2
−2

−2

−1

0

Figure 9.13: (a) Non-toric blow-up of Figure 9.12(a). (b) Non-toric blow-
up of Figure 9.12(b). The submanifold V (4, 1) is shaded in both diagrams,
and the numbers along the edges indicate the self-intersections of spheres in
V (4, 1). The remaining grey regions are the fillings of L(4, 1). In all cases,
the eigenlines for the affine monodromy are parallel to the blown-up edges.
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(a)
×

×

×

(b)

Figure 9.14: (a) The filling from Figure 9.13(a) after a change of branch cut;
this is B1,2,1 from Example 7.8. (b) The filling from Figure 9.13(b) after a
change of branch cut; this is the standard toric picture of O(−4) after two
nodal trades and a shear. In both cases we have also made deformations of
the symplectic form to shift the base-nodes around.

Theorem 9.17 (Lisca [68], Bhupal-Ono [9]). Any symplectic filling of a lens
space is symplectomorphic to a deformation of a filling constructed using
Recipe 9.15.

We will not prove this theorem, as it uses the theory of holomorphic curves
in a nontrivial way. Roughly, the idea is to cap off a symplectic filling U of
L(n, a) using V (n, a); the result contains an embedded symplectic sphere of
self-intersection 1 because V (n, a) does (a smoothing of the 0 and −1-spheres
in the chain). By a result of McDuff [74, Theorem 1.1(i) + Theorem 1.4],
this implies that U ∪ V (n, a) is rational (an iterated symplectic blow-up of
CP2), so one reduces to studying different ways that V (n, a) can embed in a
rational 4-manifold.

Remark 9.18. If we remove all of the base-nodes from one of these almost
toric fillings by performing inverse generalised nodal trades, we obtain a
(possibly) singular toric variety with cyclic quotient T-singularities. This is
a partial resolution of 1

n
(1, a). Note that Kollár and Shepherd-Barron used

techniques from Mori theory in [59] to show that any smoothing of 1
n
(1, a)

can be obtained as a Q-Gorenstein smoothing of a P-resolution of 1
n
(1, a),

that is a partial resolution with at worst T-singularities and such that all
exceptional curves pair nonnegatively with the canonical class. Stevens [104]
and Christophersen [19] showed that P-resolutions of 1

n
(1, a) are in bijection

with ZCFs [c1, . . . , cm] with ci ≤ bi where n/(n − a) = [bm, . . . , b1]. The
aforementioned prescription gives us a way to go directly between the Lisca
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description of the filling and the Kollár-Shepherd-Barron P-resolution. It
also follows from [59, Lemma 3.14] that all symplectic fillings of L(n, a) are
obtained by a combination of blow-downs and rational blow-downs from a
certain maximal resolution which is a P-resolution dominating the minimal
resolution.

9.4 Solutions to inline exercises

Exercise 9.19 (Remark 9.8). The two fillings from Example 9.7 are non-
diffeomorphic: the first is simply-connected, while the second has fundamental
group isomorphic to Z/2.

Solution. We can deformation retract these almost toric manifolds onto the
union of the almost toric boundary and the vanishing thimbles living over
the branch cuts.

In the first case, the almost toric boundary is a sphere (over the compact
edge) with two planes (over the non-compact edges) attached. We can ig-
nore the planes as they are contractible. Thus the almost toric manifold
deformation retracts onto a CW complex obtained by attaching a 2-cell to a
sphere; the fundamental group is trivial by Van Kampen’s theorem.

In the second case, the almost toric boundary is a cylinder C (with π1(C) =
Z), and there are two vanishing thimbles. The boundaries of the vanishing
thimbles attach to the cylinder in homotopy classes which correspond to the
even numbers 2 and 4 in π1(C). You can see this because the vanishing
thimbles are part of visible Lagrangian (2, 1)- and (4, 1)-pinwheels, so the
thimble “caps off” a loop which wraps twice (respectively four times) around
the cylinder. By Van Kampen’s theorem again, this means that the fun-
damental group of this CW complex is the quotient of Z by the subgroup
generated by 2 and 4, that is Z/2.

Exercise 9.20 (Example 9.10). If [c1, . . . , cm] is a zero continued fraction
then so are [1, c1 + 1, . . . , cm], [c1, . . . , cm + 1, 1] and [c1, . . . , ci + 1, 1, ci+1 +
1, . . . , cm] for any i ∈ {1, . . . ,m− 1}.

Solution. We deal with these three cases in order. Let x = [c2, . . . , cm]. We
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have

[1, c1 + 1, c2, . . . , cm] = 1− 1

c1 + 1− 1/x
= (c1 − 1/x) / (c1 + 1− 1/x) .

Since c1 − 1/x = 0, this equals zero, proving the first case.

Blowing-up at the end of a continued fraction does not change its value:

cm = cm + 1− 1

1
,

proving the second case.

Finally, we blow-up in the middle of the chain. Let x = [ci+2, . . . , cm]. We
need to show that

ci + 1− 1

1− 1
ci+1+1−1/x

= ci −
1

ci+1 − 1/x
.

We have

ci + 1− 1

1− 1
ci+1+1− 1

x

= ci + 1− ci+1 + 1− 1/x

ci+1 − 1/x

= ci +
ci+1 − 1/x− (ci+1 + 1− 1/x)

ci+1 − 1/x

= ci −
1

ci+1 − 1/x
.

This shows that blowing up the zero continued fraction does not change its
value.

Exercise 9.21 (Lemma 9.12). If [c1, . . . , cm] is a continued fraction with
ci ≥ 2 for all i then it is not a ZCF. In fact, [c1, . . . , cm] > 1.

Proof. We prove this by induction on the length of the continued fraction.
It is clearly true if m = 1. Assume it is true for all continued fractions with
length m and all entries ≥ 2; let [c1, . . . , cm+1] be a continued fraction of
length m+ 1. Then [c2, . . . , cm] > 1 and c1 ≥ 2 by assumption, so

[c1, . . . , cm+1] = c1 − 1/[c2, . . . , cm+1] > 2− 1/1 = 1.



Chapter 10

Elliptic and cusp singularities

I first learned about the following pictures in conversation with Paul Hacking,
and then finally understood them by reading the paper [31] by Philip Engel.

10.1 Another picture of CP2

Recall that to obtain an almost toric diagram for an almost toric fibration
f : X → B, we picked a simply-connected fundamental domain for the deck
group action in the universal cover B̃reg. Since this fundamental domain is
simply-connected, we can find single-valued action coordinates on the whole
domain, and we took the almost toric diagram (fundamental action domain)
to be the image of the fundamental domain under the action coordinates.
In this section, we will allow ourselves something more exotic: we will take
a branch cut in B whose complement is not simply-connected, but rather
has fundamental group Z. The action coordinates will be multi-valued, but
related by a Z-action which will be given by iterated application of an integral
affine matrix. As a result, our pictures will have a high degree of redundancy
(we are superimposing infinitely many fundamental action domains) but this
can be fixed by quotienting them by the Z-action. The result will be a
“conical” almost toric diagram rather than a planar diagram.

Example 10.1. Consider the standard almost toric picture of CP2 where
we have made three nodal trades at the corners; there are three branch

This material has been/will be published by Cambridge University Press as Lectures on
Lagrangian Torus Fibrations by Jonny Evans. This pre-publication version is free to
view and download for personal use only. Not for re-distribution, re-sale, or use in
derivative works.
c© Jonny Evans 2018–2023.
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cuts extending from the nodes to the corners (Figure 10.1). The almost toric
boundary is a cubic curve with self-intersection 9. We will redraw this picture
as follows. Let A,B,C be the three nodes and let O be the barycentre of the
triangle; let T be the tripod of lines OA,OB,OC (shown dashed in Figure
10.1). Let α, β, γ be the three triangular regions labelled in Figure 10.1.

× ×

×

A
B

C

•O
γ

αβ

Figure 10.1: Changing branch cuts, reprise.

In Figure 10.2, we draw the image of the developing map on the complement
of T in such a way that the almost toric boundary unwraps as a horizontal
line. The image of the developing map is a strip (closed at the bottom, open
at the top). We have shaded some fundamental action domains alternately
light and dark. The fundamental group of the complement of T is Z, which

acts on the strip by powers of
〈

1 0
9 1

)
(treating O as the origin). In each

translate of the fundamental action domain, you can “see” the hole left by
excising T . For example, take the central light-coloured fundamental action
domain. This is obtained by taking the region labelled γ in Figure 10.1 and
appending the images of regions α and β under the monodromies around
the nodes B and A respectively so that the almost toric boundary becomes
straight.

Remark 10.2 (Exercise 10.21). The significance of the matrix
〈

1 0
9 1

)
is that

it is the total monodromy (anticlockwise) around the boundary loop in Fig-
ure 10.1, considered as starting in region γ. Note that 9 is also the self-
intersection of the almost toric boundary curve. This is not a coincidence:
compare with Example 9.2.

We will now be more explicit about monodromies. Let

MA =

〈
2 1
−1 0

)
, MB =

〈
−1 1
−4 3

)
, MC =

〈
−1 4
−1 3

)
.
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O

× ××
A BC

× ××
A BC

× ××
A BC

× ××
A BC

× ××
A BC

× ××
A BC

× ××
A BC

× ××
A BC

× ××
A BC

× ××
A BC

× ××
A BC

× ××
A BC

× ××
A BC

× ××
A BCγ αβ

Figure 10.2: The image of the complement of T under the developing map
for the integral affine structure; alternately shaded regions are fundamental
action domains, tiling the strip. The dashed lines show where T has been
excised.

be the anticlockwise monodromies around the nodes A,B,C in Figure 10.1
(we can calculate these using Lemma 6.13). Let T o := T \ {0} and call the
three components “branch cuts” (for now we ignore the interesting point 0).
A path which crosses a branch cut lifts to a path in the strip but, as usual,
the affine structure is twisted by a monodromy matrix when you cross the
branch cut. In Figure 10.3, we label the branch cuts by their monodromies;
these are obtained by conjugating the matrices MA,MB,MC . For example,
the nodes in the region γ are identical to A and B in Figure 10.1, so they have
monodromies MA and MB. The node just to the right of B in Figure 10.3 is
related to node C in Figure 10.1 by crossing the branch cut B anticlockwise,
so its monodromy is MBMCM

−1
B . The next node to the right is related

to node A by crossing the branch cuts B and then C anticlockwise, so its
monodromy is MBMCMAM

−1
C M−1

B .

• •• • •• • •• • •• • •• • •• • ••• •• • •• • •• • •• • •• • •• • ••
MA MBM−1

A
MCMA MBMCMAM

−1
C

M−1
B

MBMCMAMBM
−1
A

M−1
C

M−1
B

MBMCM
−1
B

· · ·· · ·
M−1

A
M−1

C
MBMCMA

	 	 		 	 		

Figure 10.3: Monodromies for Figure 10.2 (all acting from the right).
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We now try to understand what is happening near the point O. If we look
at Figure 10.1, the point O looks less intimidating: it is just a point in Breg

away from the branch cuts. The integral affine structure around O is easy
to understand: it is just an open ball in R2. The only reason it looks so
interesting in Figure 10.2 is that the three legs of T pass through O. It
becomes important to ask: if we have a diagram like Figure 10.2, how can
we tell if the point O is a perfectly innocuous point in disguise? To answer
this question, we first introduce the language of integral affine cones.

10.2 Integral affine cones

Definition 10.3. LetM ∈ SL(2,Z) and let 〈M〉 be the subgroup of SL(2,Z)
generated by M . Let ` ⊆ R2 be a ray emanating from the origin. Consider
the wedges WM,` ⊆ R2 (respectively W ′

M,` ⊆ R2) which are swept out1 as
`M 6= ` rotates anticlockwise (respectively clockwise) back to `. We can
equip the quotient space BM,` = WM,` \ {0}/〈M〉 (respectively B′M,`) with
the structure of an integral affine manifold, by identifying x ∈ `M with
xM−1 ∈ ` at the level of points and v ∈ TxR2 with vM−1 ∈ TxM−1R2 at the
level of tangent vectors. We call such an integral affine manifold a punctured
cone; we obtain a singular integral affine manifold called a cone by adding in
the cone point 0. The matrix M is the affine monodromy around the cone
point.

Remark 10.4. We can visualise BM,` as a cone obtained by wrapping WM,`

up so that ` and `M are identified by the map x 7→ xM ; see Figure 10.4.

Remark 10.5. Note that W ′
M,` = WM−1,`M and B′M,` = BM−1,`M .

Exercise 10.6. Make a paper model of the integral affine manifold BM,` for

M =

〈
0 1
−1 0

)
and ` the positive x-axis. Is it possible to make paper models for BM,` when
M is not conjugate to this matrix?

Lemma 10.7. The integral affine structure on the punctured cone extends
over the cone point when M = I.

1If `M = ` then both wedges are the whole of R2.
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`
`M

WM,`
M−1

Figure 10.4: The cone BM,` obtained by “wrapping up” WM,` usingM to glue
across the (dashed) branch cut.

Proof. In this case, WM,` = R2\` and we obtain the cone by identifying both
sides of the cut using the identity, so the cone is just R2.

10.3 Back to the example

Now take the horizontal line shown crossing the branch cuts in the top part
of Figure 10.5. The portion of the almost toric base lying above this line is
an integral affine cone: it is made up of infinitely many triangular segments
which are glued together using the affine monodromies. To check that the
integral affine structure extends over the cone point O, it suffices to check
that the total monodromy as we traverse the boundary of this cone is the
identity.

This horizontal line projects to a triangle in the lower part of Figure 10.5
(with corners where it hits the branch cuts). Since this triangle does not cross
any of the dotted branch cuts, the monodromy around it is the identity, but
we can perform the same calculation “upstairs” by multiplying the clockwise
monodromies of the three branch cuts crossed by the horizontal line, and

then multiplying by
〈

1 0
9 1

)
to send the lifted end-point back to the lifted
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start-point:

M−1
B ·MBM

−1
C M−1

B ·MBMCM
−1
A M−1

C M−1
B ·

〈
1 9
0 1

)
= ·M−1

A M−1
C M−1

B ·
〈

1 9
0 1

)
=

〈
1 0
0 1

)
.

• •

•

•

O

× ×× × ×× × ×× × ×× × ×× × ×× × ××× ×× × ×× × ×× × ×× × ×× × ×× × ××• •

Figure 10.5: Below: A triangular path with trivial monodromy. Above: Its
lift to the strip.

10.4 Developing map for cones

We now discuss the developing map for the integral affine structure, and the
dependence of BM,` on `. Let B̃M,` be the universal cover of BM,`. This can
be constructed as follows. Take infinitely many copiesWi, i ∈ Z, ofWM,` and
write ∂`Wi and ∂`MWi for the two boundary rays. Let B̃M,` be the quotient
of
∐

i∈ZWi by identifying x ∈ ∂`Wi with xM ∈ ∂`MWi−1 for all i ∈ Z. The
image of Wi under the developing map for the integral affine structure on
B̃M,` is then M iWM,`.
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Lemma 10.8. If `′ ⊆M iWM,` for some i then BM,` and BM,`′ are isomorphic
as integral affine manifolds.

Proof. If `′ = `M i then the map M i : WM,` → WM,`′ descends to give an
isomorphism BM,` → BM,`′ . Using this, we may assume that `′ ⊆ WM,`.

` `′ `M `′M

S T SM

WM,`

WM,`′

Figure 10.6: Constructing an isomorphism BM,` → BM,`′ . In this example,

M =

〈
1 0
2 1

)
.

Let S be the sector in WM,` swept out as `′ moves anticlockwise to ` and T
the other sector. We see that WM,`′ = T ∪ SM . The piecewise linear map

WM,` → WM,`′ , x 7→

{
xM if x ∈ S
x if x ∈ T,

descends to give the desired isomorphism BM,` → BM,`′ .

Lemma 10.9. If K ∈ GL(2,Z) then BK−1MK,`K is isomorphic to BM,` via
the map K. In particular, if K = −I then we see that BM,` = BM,−`.

Proof. If we consider K as a change of coordinates then, in the new coordi-
nates, M is represented by K−1MK and ` is sent to `K. In particular, WM,`

is sent to WK−1MK,`K , and the recipe for gluing together B̃M,` transforms
into the recipe for gluing together B̃K−1MK,`K .
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10.5 Examples

We will focus on examples where the ray ` is not an eigenray of M . We will
also focus on examples where the wedge WM,` or W ′

M,` subtends an angle less
then π radians.

Example 10.10. Consider M =

〈
1 0
n 1

)
for some integer n > 0. If we take

` to be a ray pointing vertically up, then WM,` is shown in Figure 10.7 for
n = 3. The image of B̃M,` is the strict upper half-plane, which is tiled by the
domains WM,`M

i.

WM,`WM,`M
−1 WM,`M

Figure 10.7: The image of B̃M,` under the developing map for M =

〈
1 0
2 1

)
,

tiled by domains WM,`M
i.

Any choice of ` in the strict upper half-plane will give the same BM,` by
Lemma 10.8. If we take ` in the lower half-plane then we get the same
integral affine manifold BM,` by Lemma 10.9.

Remark 10.11. The only other option is to take ` to be horizontal (an eigen-
ray). If n = 1, the resulting BM,` is the integral affine base for a single
focus-focus fibre.

Example 10.12. Consider2 M =

〈
2 1
1 1

)
. This has eigenvalues 3±

√
5

2
and

eigenvectors v± = (x, y) with y = −1
2
(1 ∓

√
5)x. The eigendirections divide

the plane into four open quadrants. Let us call the quadrants Q,Q′,−Q,−Q′
where Q and Q′ have the property that if ` ⊆ Q (respectively ` ⊆ Q′) then
WM,` ⊆ Q (respectively W ′

M,` ⊆ Q′).
2For 2-by-2 matrix connaisseurs, this is the Arnold cat map.
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If we pick ` ⊆ Q or ` ⊆ −Q (respectively ` ⊆ Q′ or ` ⊆ −Q′) then the
images WM,`M

i (respectively W ′
M,`M

i), i ∈ Z tile the chosen quadrant. By
Lemma 10.8, this means that, other than choosing an eigenray, the choice of
` amounts to a choice of quadrant. Moreover, rays from opposite quadrants
yield the same integral affine manifold by Lemma 10.9. Thus, there are two
essentially different choices of ray: `1 ⊆ Q or `2 ⊆ Q′; see Figure 10.8.
The same phenomenon occurs whenever M has two distinct positive real
eigenvalues (which is equivalent to Tr(M) ≥ 3).

`1 `1M

`2

`2M

WM,`1

W ′
M,`2

Q

Q′

−Q′

−Q

Figure 10.8: Some choices of rays `1 and `2 in Example 10.12 which give
different manifolds BM,`1 and B′M,`2

. The thick lines are the eigenlines.

10.6 Symplectic manifolds

Definition 10.13. We can associate to BM,` a symplectic manifold XM,`

together with a Lagrangian torus fibration XM,` → BM,` compatible with
the integral affine structure. To construct XM,`, we take WM,` × T 2 with
the symplectic form

∑
dpi ∧ dqi and identify (p, q) with3 (pM−1,Mq) for

p ∈ `M .

3Compare with the map Φ in the proof of Lemma 2.25.



164 10.7. Elliptic and cusp singularities

Lemma 10.14 (Exercise 10.23). There exists a smooth path γ : [0, 1]→ WM,`

which is transverse to all rays emanating from the origin such that γ(0) ∈ `,
γ(1) = γ(0)M , and dnγ

dtn
(1) = dnγ

dtn
(0)M for all n ≥ 1.

Lemma 10.15. Let YM,` be the quotient of [0, 1]× T 2 which identifies (0, q)
with (1,MTq). This is a torus bundle over the circle. The symplectic mani-
fold XM,` is diffeomorphic to (0,∞)× YM,`.

Proof. Let γ : [0, 1]→ WM,` be a path given by Lemma 10.14. This descends
to a closed smooth loop in BM,`. Moreover, because γ is transverse to all rays
through the origin, we can foliate BM,` by loops sγ for s ∈ (0,∞). Define a
map (0,∞)× [0, 1]×T 2 → WM,`×T 2 by (s, t, q) 7→ (sγ(t), q). This descends
to give a diffeomorphism (0,∞)× YM,` → XM,`.

In fact, we can be more precise.

Lemma 10.16. XM,` is symplectomorphic to (0,∞) × YM,` with the sym-
plectic form ω = d(sα), where s ∈ (0,∞) and α is a contact form on YM,`.
This is called the symplectisation of the contact manifold YM,`.

Proof. Consider the map (0,∞) × YM,` → XM,`, (s, t, q) 7→ (sγ(t), q) from
Lemma 10.15. The symplectic form on XM,` is

∑
dpi∧dqi with p = sγ(t), so

the pullback of this form to (0,∞)×YM,` is
∑

i d(sγi(t))∧dqi = d (
∑

i sγi(t) dqi).
The 1-form α on YM,` is

∑
i γi(t) dqi, so we see the pullback of ω along our

diffeomorphism is d(sα) on (0,∞)× YM,`.

10.7 Elliptic and cusp singularities

The integral affine manifold BM,` has a natural partial compactification,
BM,` := WM,`/〈M〉, which adds in the cone point b. If M is the identity
matrix, we observed in Lemma 10.7 that the integral affine structure on BM,`

extends over the cone point, and so XM,` naturally sits inside a larger sym-
plectic manifold XM,` which fibres over BM,` with a regular torus fibre over
b.

If M is not the identity, we simply take XM,` to be the partial compactifi-
cation of XM,` which adds in a single point x over b. We will think of this
as a “singular symplectic manifold”, i.e. a singular space with a symplectic
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form defined away from the singularity. In fact, this singular space can be
equipped with the structure of a complex algebraic variety, with a singularity
at x called an elliptic or cusp singularity depending on the matrix M ; see
Hirzebruch’s seminal paper [54, Section 2.2–3]. The contact manifold YM,`

from Lemma 10.16 is known as the link of the singularity.

The minimal resolution of this algebraic variety replaces x with either a
smooth elliptic curve (in the elliptic case), a nodal elliptic curve, or a cycle
of rational curves. We will discuss the symplectic version of this, where we
resolve the singularity by symplectic cuts.

Example 10.17 (Parabolic matrix). Let M =

〈
1 0
n 1

)
and take ` to point

in the (0, 1)-direction, as in Example 10.10. If we perform a symplectic cut
on XM,` at some positive height then we obtain the following integral affine
base:

` = (0, 1) (n, 1) = `M

where we are identifying the edges labelled with arrows using the matrix
M . The corresponding symplectic manifold is smooth, and lying over the
compact edge we have a symplectic torus with self-intersection −n (compare
with Example 9.2). This corresponds to the case of an elliptic singularity,
where the minimal resolution introduces a smooth elliptic curve.

Example 10.18 (Hyperbolic matrix). Let M =

〈
2 1
1 1

)
and take ` to point

in the (0, 1)-direction as in Example 10.12. If we make a symplectic cut at
some positive height then we obtain the following integral affine base:

` = (0, 1) (1, 1) = `M

• •

where the edges with arrows are identified using M . The point4 we have

4Because of the identifications, there is only one point!
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marked with a dot is actually a Delzant vertex. To see this, imagine how
the left- and right-pointing edges look from the point of view of the left-most
dot in the diagram. The right-pointing edge points in the (1, 0)-direction.
The left-pointing edge points in the (−1, 0)M−1 = (−1, 1)-direction. We can
make this clearer by shifting the branch cut ` to `′ parallel to (−1, 3):

`′ = (−1, 2)

(1, 2) = `′M

•

The toric boundary is therefore a nodal elliptic curve. This singularity is
therefore a cusp singularity.

If this first symplectic cut had not fully resolved our singularity (had the
corner not been Delzant), we could have continued in the manner of Example
4.30, making more cuts, until all vertices were Delzant. The result would be a
cycle of rational curves; this is the typical behaviour when M is hyperbolic5.

Lemma 10.19. If these rational curves have self-intersection s1, s2, . . . , sk
then the infinite periodic continued fraction

s1 −
1

s2 − 1
···− 1

sk−
1
···

converges to the slope of the dominant6 eigenline of M .

Proof. Suppose we make a sequence of cuts to the fundamental domainWM,`

to get a new Delzant polygonal domain W̃M,`. Using the action of 〈M〉, we
get infinitely many translates of this domain.

If necessary, change the branch cut ` to ensure that none of the vertices of
W̃M,` are on the branch cut. Let vk be the primitive integer vectors pointing
rightwards along the left-most edge of W̃M,`M

k By construction, we have
vkM = vk+1. The argument from Example 4.30 shows that vkS = vk+1 with

5i.e. has two distinct real eigenvalues.
6i.e. the eigenline corresponding to the largest positive eigenvalue.
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S =

〈
0 −1
1 sk

)
· · ·
〈

0 −1
1 s1

)
. Since vk = v0M

k, we know that the slope of vk

converges to the slope of the dominant eigenline of M as k →∞. But as in
Example 4.30, the recursion vkS = vk+1 tells us that if the slope of vk is αk
then the slope of vk+1 is

s1 −
1

s2 − 1
···sk− 1

αk

.

Therefore the infinite periodic continued fraction with coefficients

s1, . . . , sk, s1, . . . , sk, . . .

converges to the slope of the dominant eigenline of M .

Remark 10.20. Recall that for every hyperbolic matrix M there were two
possible integral affine manifolds BM,` up to isomorphism, depending on the
choice of `. The corresponding cusp singularities are said to be dual to one
another. Dual pairs of cusps were the subject of a long-standing conjecture
of Looijenga, which was resolved by Gross, Hacking and Keel [48] using ideas
from mirror symmetry. A different, more direct, proof of this conjecture,
which uses these almost toric pictures in an essential way was given by Engel
[31].

10.8 K3 surfaces from fibre sum

Take the almost toric picture of CP2 from Example 10.1; we redraw a single
fundamental action domain in Figure 10.9(a), with boundary identifications
indicated. The toric boundary is a symplectic torus with self-intersection 9,
as we can see by comparing with Example 10.17. If we make 9 non-toric blow-
ups along the boundary as in Figure 9.3 then our picture changes: see Figure
10.9(b). We can make a change of branch cuts to make all of these branch
cuts horizontal (Figure 10.9(c)); the opposite edges of the fundamental action

domain are identified using the identity matrix or
〈

1 0
9 1

)
depending on

whether they are below (respectively above) the horizontal branch cut. The
associated manifold CP2]9CP2 is called a rational elliptic surface and is often
written E(1) by low-dimensional topologists; its toric boundary is a torus
with self-intersection 0.
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The almost toric picture in Figure 10.10 is obtained by reflecting Figure
10.9(c) horizontally and ignoring the toric boundary. The associated almost
toric manifold is obtained from a pair of rational elliptic surfaces by per-
forming a Gompf sum [41] on the square-zero tori: in other words, we have
excised a neighbourhood of the toric boundary in each copy of E(1) and
glued the results together along their common boundary T 3. This construc-
tion yields the elliptic surface E(2), otherwise known as a K3 surface. The
integral affine base is a sphere with 24 base-nodes: we have drawn a cylinder
in Figure 10.10, and by Lemma 10.7, the integral affine structure extends
over the sphere we get by adding in the points O and O′ to the cylinder.

(a) •O

× ××

(b)

× × × × × × × × ×

•O

× ××

(c)

× × × × × × × × ×

•O

× ××

Figure 10.9: (a) The almost toric base diagram of CP2 from Example 10.1.

The dotted edges are identified using the matrix M =

〈
1 0
9 1

)
. (b) Perform

nine non-toric blow-ups along the toric boundary. (c) Make the branch cuts
horizontal. The opposite edges are identified using M above the horizontal
cut and using the identity below the cut.
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× × × × × × × × ×

•O

× ××

× × × × × × × × ×

•

× ××

O′

Figure 10.10: An almost toric fibration on a K3 surface. Edges are identified
in pairs as indicated by the arrows.

10.9 Solutions to inline exercises

Exercise 10.21 (Remark 10.2). Show that the matrix
〈

1 0
9 1

)
is the total

monodromy (anticlockwise) around the boundary loop in Figure 10.1 starting
at a point in the region γ.

Solution. By Lemma 6.13, if the branch cut at a base-node points in the
(p, q)-direction then the clockwise monodromy around that node is〈

1− pq −q2

p2 1 + pq

)
.

The branch cuts are in the directions (−1,−1), (2,−1), (−1, 2) at A, B,
and C respectively. This gives anticlockwise monodromy matrices

MA =

〈
2 1
−1 0

)
, MB =

〈
−1 1
−4 3

)
, MC =

〈
−1 4
−1 3

)
.

If we start with a vector v in the region γ then it crosses the branch cuts
emanating from B, C and A in that order, so the monodromy is

MBMCMA =

〈
1 0
9 1

)
.

Note that if you start with a vector in the region β then you end up with the
matrix MAMBMC , which is different (though conjugate by MA).
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Exercise 10.22. Make a paper model of the integral affine manifold BM,`

for

M =

〈
0 1
−1 0

)
and ` the positive x-axis. Is it possible to make paper models for BM,` when
M is not conjugate to this matrix?

Solution. You can only make a paper model of the cone if M is an or-
thogonal (distance-preserving) map as well as being Z-linear. The group

O(2) ∩ SL(2,Z) consists of the four matrices
(
±1 0
0 ±1

)
,

(
0 ∓1
±1 0

)
.

These four are all possible to make.

Exercise 10.23 (Lemma 10.14). There exists a smooth path γ : [0, 1]→ WM,`

which is transverse to all rays emanating from the origin such that γ(0) ∈ `,
γ(1) = γ(0)M , and dnγ

dtn
(1) = dnγ

dtn
(0)M for all n ≥ 1.

Solution. Let Θ be the angle between ` and `M subtended by WM,`. Pick
a segment of γ : (−ε, ε) → R2 in a neighbourhood of ` so that γ(0) ∈ ` and
so that γ is transverse to all rays emanating from the origin. In fact, we can
assume by reparametrising γ that the ray through γ(t) makes an angle Θt
with ` for all t ∈ (−ε, ε). Apply M to get a path-segment δ := γM passing
through `M . Again, by reparametrising, we can assume that δ(1) ∈ `M
and δ(1 + t) makes an angle Θt with `M for all t ∈ (−ε, ε). We write
these two segments in polar coordinates (r, θ) as (r(t), θ0 + Θt) where θ0 is
the argument of the ray `. We can now extend r in a completely arbitrary
(smooth) way to the interval [0, 1] and the graph will give a path with the
desired properties.
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Appendix A

Symplectic linear algebra

A.1 Symplectic vector spaces

Definition A.1. Let V be a finite-dimensional vector space over R and ω
be a bilinear map V × V → R. We say that ω is a linear symplectic 2-form
if ω(v, v) = 0 for all v ∈ V and for all nonzero v ∈ V there exists w ∈ V
such that ω(v, w) 6= 0 (nondegeneracy). We say that the pair (V, ω) is a
symplectic vector space.

Lemma A.2. The map1 v 7→ ιvω gives an isomorphism V → V ∗.

Proof. If ιvω = 0 then ω(v, w) = 0 for all w, so v = 0 by nondegeneracy.
Therefore this map is an injective map between vector spaces of the same
dimension, hence it is an isomorphism.

Definition A.3. If W ⊆ V then we define the symplectic orthogonal com-
plement W ω ⊆ V to be the subspace

W ω := {v ∈ V : ω(v, w) = 0 for all w ∈ W}.

Lemma A.4. dim(W ω) = dim(V )− dim(W ).

1Recall that ιvω denotes the 1-form ω(v,−).

This material has been/will be published by Cambridge University Press as Lectures on
Lagrangian Torus Fibrations by Jonny Evans. This pre-publication version is free to
view and download for personal use only. Not for re-distribution, re-sale, or use in
derivative works.
c© Jonny Evans 2018–2023.
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Proof. Under the isomorphism v 7→ ιvω, the subspace W ω is identified with
the annihilator W ◦ = {f ∈ W ∗ : f(w) = 0 for all w ∈ W} ⊆ W ∗. The
annihilator has dimension dim(V )− dim(W ) [53, §16, Theorem 1].

Lemma A.5. Any nonzero finite-dimensional symplectic vector space V ad-
mits a basis e1, . . . , en, f1, . . . , fn such that ω(ei, fj) = δij and ω(ei, ej) =
ω(fi, fj) = 0 for all i, j. Such a basis is called a symplectic basis for V . As
a corollary, dim(V ) is even.

Proof. Suppose that we have constructed a (possibly empty) partial sym-
plectic basis e1, . . . , ek, f1, . . . , fk of size 2k, i.e. a linearly independent set of
2k vectors satisfying the conditions in the statement of the lemma. Write
W ⊆ V for the span of this partial basis. Note that the restriction of ω to W
is nondegenerate, so W ω ∩W = 0 and W ω is a complement to W by Lemma
A.4.

If V 6= W , pick ek+1 ∈ W ω. By construction, ω(ek+1, ei) = ω(ek+1, fi) = 0
for i ≤ k. By nondegeneracy, we can find f ′k+1 ∈ W with ω(ek+1, f

′
k+1) = 1.

With respect to the splitting V = W ⊕ W ω we have f ′k+1 = g + fk+1 for
uniquely determined vectors g ∈ W and fk+1 ∈ W ω. Since ek+1 ∈ W ω,
we have ω(ek+1, g + fk+1) = ω(ek+1, fk+1). Now e1, . . . , ek+1, f1, . . . , fk+1 is
a partial symplectic basis of size 2(k + 1). At some point this construction
terminates because V is finite-dimensional.

Definition A.6. Let (V, ω) be a symplectic vector space and W ⊆ V a
subspace. We say

• W is isotropic if W ⊆ W ω,

• W is coisotropic if W ω ⊆ W ,

• W is Lagrangian if it is both isotropic and coisotropic,

• W is symplectic if W ∩W ω = 0.

Lemma A.7. IfW is isotropic then 2 dim(W ) ≤ dim(V ). IfW is coisotropic
then dim(V ) ≤ 2 dim(W ). In particular, we see that Lagrangian subspaces
satisfy 2 dim(W ) = dim(V ).

Proof. If W is isotropic then we have

dim(W ) ≤ dim(W ω) = dim(V )− dim(W ),
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so 2 dim(W ) ≤ dim(V ). If W is coisotropic then we have

dim(V )− dim(W ) = dim(W ω) ≤ dim(W ),

so dim(V ) ≤ 2 dim(W ).

A.2 Complex structures

Definition A.8. Let V be a vector space. A linear map J : V → V is called
a complex structure if J2 = −I.

Definition A.9. If (V, ω) is symplectic vector space then we say that:

• J tames ω if ω(v, Jv) > 0 for any v 6= 0,

• J is ω-compatible if it tames ω and ω(Jv, Jw) = ω(v, w) for all v, w ∈
V .

Lemma A.10. Let (V, ω) be a symplectic vector space. If J is a complex
structure on V taming ω andW ⊆ V is a J-complex subspace (i.e. JW = W )
then W is a symplectic subspace.

Proof. The subspaceW∩W ω consists of vectors v ∈ W such that ω(v, w) = 0
for all w ∈ W . However, if v ∈ W then Jv ∈ W , so ω(v, Jv) = 0 and
tameness implies v = 0. Thus W ∩W ω = 0 and W is symplectic.

Lemma A.11. If (V, ω) is a symplectic vector space and J is an ω-compatible
complex structure on V then gJ(v, w) = ω(v, Jw) defines a positive-definite
symmetric bilinear form on V .

Proof. Bilinearity follows from bilinearity of ω. Symmetry follows from

g(w, v) = ω(w, Jv) = ω(Jw, J2v) = ω(Jw,−v) = ω(v, Jw) = g(v, w).

Positive-definiteness follows from the fact that g(v, v) = ω(v, Jv) > 0 if
v 6= 0.

Lemma A.12. Let J be an ω-compatible complex structure on a symplectic
vector space (V, ω) and let W be a subspace. We have W ω = (JW )⊥, where
⊥ denotes the orthogonal complement with respect to gJ .
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Proof. Since gJ(v, Jw) = −ω(v, w) we have

W ω = {v ∈ V : ω(v, w) = 0 for all w ∈ W}
= {v ∈ V : gJ(v, Jw) = 0 for all w ∈ W}
= (JW )⊥.

Lemma A.13. Let J be an ω-compatible complex structure on a symplectic
vector space (V, ω) and let L ⊆ V be a subspace. The following are equivalent.

(a) L is Lagrangian;

(b) L ⊥ JL.

(c) JL is Lagrangian;

Proof. We have Lω = (JL)⊥, so L = Lω if and only if L ⊥ JL. Thus (a)
is equivalent to (b). Since J2 = −I, J2L = L, which means that (b) is
symmetric in L and JL. Thus (b) is equivalent to (c).



Appendix B

Lie derivatives

The background we assume on differential geometry can be found in many
places, for example Lee’s compendious book on smooth manifolds [63], Warner’s
terser book on manifolds and Lie theory [118], or Arnold’s wonderful intro-
duction to differential forms [3, Chapter 7]. However, the theory of Lie
derivatives can be difficult to swallow on a first encounter. The philosophy
behind this book has been to give a complementary perspective rather than
rehashing what can be found written better elsewhere. In this appendix we
give a quick and high-level conceptual overview of Lie derivatives from the
point of view of Lie groups and Lie algebras, in the hopes that the reader will
find this viewpoint helpful alongside a more traditional treatment. The final
goal is to give a proof of the “magic formulas” relating the Lie derivative,
interior product and exterior derivative.

B.1 Recap on Lie groups

We start by giving a lightning review of Lie groups (see [118] for a more thor-
ough introduction from the ground up). A Lie group G is a finite-dimensional
manifold which is also a group in such a way that the multiplication and in-
version maps are smooth. You will lose nothing by imagining that it is a
group of matrices with real entries. The Lie algebra g of G is the tangent
space of G at the identity; in other words, if φt is a smooth path in G with
φ0 = id then dφt

dt

∣∣
t=0

is an element of g. Going back the other way, each

This material has been/will be published by Cambridge University Press as Lectures on
Lagrangian Torus Fibrations by Jonny Evans. This pre-publication version is free to
view and download for personal use only. Not for re-distribution, re-sale, or use in
derivative works.
c© Jonny Evans 2018–2023.
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V ∈ g arises as the tangent vector dφt
dt

∣∣
t=0

of a unique 1-parameter subgroup
φt of G, i.e. a path satisfying φ0 = id and φs+t = φsφt for all s, t. This
1-parameter subgroup is usually written as exp(tV ).

The Lie algebra g is a much simpler object than G: it is a vector space instead
of a manifold, so it has no interesting topology. It retains some knowledge
of the group structure of G: it is equipped with an antisymmetric bilinear
operation [, ] called Lie bracket which is defined as follows. If V = dψs

ds

∣∣
s=0

and W = dφt
dt

∣∣
t=0

then

[V,W ] :=
d

ds

∣∣∣∣
s=0

d

dt

∣∣∣∣
t=0

ψsφtψ
−1
s .

If ψs and φt commute for all s, t then clearly [V,W ] = 0. Somewhat mirac-
ulously, a kind of converse holds: if [V,W ] = 0 then exp(sV ) and exp(tW )
commute. Indeed, the full multiplication structure of G in a neighbourhood
of the identity can be determined from the Lie bracket.

The easiest example of a Lie group is the group GL(n,R) of invertible n-by-
n real matrices; indeed its subgroups can be understood in the same way.
Its Lie algebra is the space gl(n,R) of all n-by-n real matrices, and the 1-
parameter subgroup associated to a matrix V is

exp(tV ) =
∞∑
n=0

1

n!
V n.

The Lie bracket is simply the commutator [V,W ] = VW −WV .

One good way to understand a given Lie group G is to map it (smoothly and
homomorphically) to a subgroup ofGL(n,R). Such a smooth homomorphism
R : G → GL(n,R) is called a representation of G. Its differential at the
identity matrix is a linear map

ρ := d1R : g→ gl(n,R)

which is a representation of the Lie algebra, in the sense that

[ρ(V ), ρ(W )] = ρ([V,W ]) for all V,W ∈ g.

For example, GL(n,R) acts on gl(n,R) by conjugation, which gives a repre-
sentation

Ad: GL(n,R)→ GL(gl(n,R)), Ad(g)(V ) = gV g−1
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and its differential is the representation

ad: gl(n,R)→ gl(gl(n,R)), ad(V )(W ) = [V,W ].

These are both called the adjoint representation.

B.2 Diffeomorphism groups

Let M be a smooth manifold and G = Diff(M) be the group of diffeomor-
phismsM →M . This is not a Lie group, because it is not finite-dimensional,
but many of the same ideas apply.

If we take a point p ∈ M and a 1-parameter family of diffeomorphisms φt
then we get a path φt(p). This gives a tangent vector dφt(p)

dt

∣∣∣
t=0

at p and
hence a vector field on M whose value at p is

V (p) =
dφt(p)

dt

∣∣∣∣
t=0

.

Conversely, given a vector field V on M we get a 1-parameter subgroup of
Diff(M) given by the flow1 φt of V , which is the family of diffeomorphisms
satisfying

d

dt
φt(p) = V (φt(p)) for all t ∈ R, p ∈M.

For this reason, we will think of the space vect(M) of vector fields on M as
the Lie algebra of Diff(M). We will figure out the Lie bracket in a moment.

The easiest way to study Diff(M) and its Lie algebra is via its representations.
It comes with a natural and plentiful supply. We will write Ωk(M) for the
space of smooth differential k-forms (so Ω0(M) means smooth functions).

Example B.1. Diff(M) acts on functions by pullback:

f 7→ φ∗f := f ◦ φ.
1It is of course possible that the flow is only locally defined, or defined for small t. For

example, if M = R and V (x) = −x2 then the flow is φt(x) = x/(xt+ 1), and we see that
limt→−1/x φt(x) =∞. We avoid this kind of behaviour if M is compact or if φt preserves
the (compact) level sets of some proper function, e.g. if φt is the Hamiltonian flow of a
proper Hamiltonian.
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This is a right action in the sense that (φ1 ◦ φ2)∗ = φ∗2 ◦ φ∗1 so it gives an
antirepresentation2

R : Diff(M)→ GL(Ω0(M)), φ 7→ φ∗.

This therefore gives an antirepresentation ρ : vect(M) → gl(Ω0(M)) of the
Lie algebra vect(M) by defining

ρ(V )(f) =
d

dt

∣∣∣∣
t=0

φ∗tf

where φt is the flow of V . This is better known as the directional derivative
of f in the V -direction, and written V (f). In fact, since pullback of functions
is multiplicative:

φ∗(fg) = (φ∗f)(φ∗g),

the representation R lands in the subgroup Aut(Ω0(M)) ⊆ GL(Ω0(M)) of
automorphisms of the ring of functions, and so ρ lands in the subalgebra
der(Ω0(M)) ⊆ gl(Ω0(M)) of derivations of the ring of functions. In fact, this
representation is injective: we can really think of vector fields as derivations
on functions without losing information, and many expositions define vectors
as derivations.

We can now identify the Lie bracket on Vect(M): because ρ is an antirepr-
esentation, it should be minus the commutator bracket on derivations. To
avoid sign-clashes with the rest of the literature, we actually write [, ] for the
commutator bracket

[V,W ](f) = V (W (f))−W (V (f)).

and call it “Lie bracket of vector fields”, even though it is out by a minus
sign.

Example B.2. Pullback of differential forms gives another natural antirep-
resentation

Diff(M)→ GL(Ω∗(M)), φ 7→ φ∗.

This preserves wedge product of differential forms:

φ∗(η1 ∧ η2) = φ∗η1 ∧ φ∗η2.

2If the notation GL(Ω0(M)) is giving you a headache, it just means “invertible linear
maps Ω0(M)→ Ω0(M)”. Similarly gl(Ω0(M)) will mean “linear maps Ω0(M)→ Ω0(M))”.
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We write V 7→ LV for the corresponding Lie algebra antirepresentation
vect(M)→ gl(Ω∗(M)):

LV η :=
d

dt

∣∣∣∣
t=0

φ∗tη.

By the Leibniz rule, LV acts as a derivation of the algebra Ω∗(M):

LV (η1 ∧ η2) = (LV η1) ∧ η2 + η1 ∧ LV η2, LV dη = dLV η.

Moreover, since this is an antirepresentation, and since we have grudgingly
accepted a historical minus sign in our bracket, we get

L[V,W ]η = LVLWη − LWLV η. (B.1)

B.3 Cartan’s magic formulas

The algebra of differential forms admit further natural operations which have
played a key role in this book. Our goal here is to prove the “magic formulas”
which govern the interplay between these operations and LV .

The operations in question are the exterior derivative3:

d : Ω∗(M)→ Ω∗+1(M),

and the interior product:

ιV : Ω∗(M)→ Ω∗−1(M), (ιV η)(V1, . . . , Vk−1) = η(V, V1, . . . , Vk−1),

where V is a choice of vector field. Both of these operations are antideriva-
tions, i.e.

d(η1 ∧ η2) = (dη1) ∧ η2 + (−1)|η1|dη2.

First, we prove some lemmas.

Lemma B.3.
dLV η = LV dη.

3The most conceptually well-motivated exposition of d that I know is due to Arnold:
[3, Chapter 7].
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Proof. Let φt be the flow along V . We have φ∗tdη = dφ∗tη. Differentiating
with respect to t at t = 0 gives the required identity.

Lemma B.4. If f is a function (0-form) then

LV f = ιV df.

Proof. Let φt be the flow of V . In local coordinates, for small t, we have4

φt(p) = p+ tV (p) + o(t) and therefore

(φ∗tf)(p) = f(φt(p)) = f(p) + t df(V (p)) + o(t).

This means that
d

dt

∣∣∣∣
t=0

(φ∗tf)(p) = df(V (p)),

or
LV f = ιV df.

Theorem B.5 (Cartan’s magic formulas). We have

ιV d+ dιV = LV (B.2)
LV ιW − ιWLV = ι[V,W ]. (B.3)

Proof. The operators d and ιV are antiderivations and LV is a derivation.
This implies that the operator ιV d + dιV is a derivation and that LV ιW −
ιWLV is an antiderivation. Derivations and antiderivations on Ωk(M) are
determined by their effect on functions and on exact 1-forms. This is easy
to see in local coordinates: if

η =
∑

ηi1···ikdxi1 ∧ · · · ∧ dxik

and D is a derivation, for example, then

Dη =
∑

(Dηi1···ik)dxi1 ∧ · · · ∧ dxik +
∑

ηi1···ik(D(dxi1)) ∧ · · · ∧ dxik+

+ · · ·+
∑

ηi1···ikdxi1 ∧ · · · ∧ (D(dxik)),

so D is determined completely by its action on functions (like the coefficients
ηi1···ik) and exact 1-forms (like the local coordinate 1-forms dxi).

4As usual, o(t) denotes a quantity such that limt→0 o(t)/t = 0.
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Therefore it suffices to check Equation (B.2) and (B.3) for functions and for
exact 1-forms.

Equation (B.2). For functions f , Equation (B.2) is simply the identity
LV f = df(V ) which we proved in Lemma B.4. Now suppose we have an
exact 1-form df . We have (dιV + ιV d)df = dιV df because d2 = 0 and

LV df = dLV f = dιV df,

using Lemmas B.3 and B.4, so both sides of Equation (B.2) agree when
applied to df . This proves Equation (B.2).

Equation (B.3). For functions f , Equation (B.3) reduces to 0 = 0. For
exact 1-forms df , using ιWdf = LWf , the left-hand side of the Equation
(B.3) becomes

LVLWf − ιWLV df.

Since ιWLV df = ιWdLV = LWLV f , this becomes (LV ιW − ιWLV ) df =
(LVLW − LWLV ) f , which becomes L[V,W ]f using Equation (B.1). There-
fore

(LV ιW − ιWLV ) df = L[V,W ]f = ι[V,W ]df.

This proves Equation (B.3) for exact 1-forms and hence in general.
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Appendix C

Complex projective spaces

C.1 CPn

Definition C.1. The complex projective space CPn is the space of complex
lines in Cn+1 passing through the origin.

Recall that a complex line passing through the origin is a subspace of the
form C · z := {(λz1, . . . , λzn+1) : λ ∈ C} ⊆ Cn+1 for some complex vector
z = (z1, . . . , zn+1) 6= 0.

Lemma C.2 (Exercise C.16). If z, z′ 6= 0 are complex vectors then C · z =
C · z′ if and only if z = µz′ for some complex number µ 6= 0.

Lemma C.3. The complex projective space CPn is the quotient of Cn+1\{0}
by the equivalence relation z ∼ z′ if and only if z′ = µz for some complex
number µ 6= 0.

Proof. Each z ∈ Cn+1 \ {0} gives us a line C · z and every complex line has
this form, so the map

Q : Cn+1 \ {0} → CPn, Q(z) = C · z

is a surjection. By Lemma C.2, the fibres of C · are the stated equivalence
classes.

This material has been/will be published by Cambridge University Press as Lectures on
Lagrangian Torus Fibrations by Jonny Evans. This pre-publication version is free to
view and download for personal use only. Not for re-distribution, re-sale, or use in
derivative works.
c© Jonny Evans 2018–2023.
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We equip CPn with the quotient topology induced by Q. We often write
[z] or [z1 : · · · : zn+1] for C · z, and call the zi homogeneous coordinates on
CPn. Homogeneous coordinates are not like Cartesian coordinates: Cartesian
coordinates have the property that if p and q have different coordinates then
p 6= q, but the homogeneous coordinates [1 : 1] and [2 : 2] specify the same
point in CP1. We remedy this redundancy, at the cost of missing some points,
by passing to affine charts.

Definition C.4. Let Ak = {(z1, . . . , zn+1) ∈ Cn+1 : zk = 1} ⊆ Cn+1.

Lemma C.5 (Exercise C.17). The restriction Q|Ak : Ak → CPn is an em-
bedding. We call its image an affine chart in CPn.

Lemma C.6. The topological space CPn is a complex manifold (in fact an
algebraic variety).

Proof. If z ∈ Cn+1 has zk 6= 0 then z/zk ∈ Ak and Q(z) = Q(z/zk), so
Q(z) ∈ Q(Ak). The space CPn is therefore covered by the n+ 1 affine charts
Q(A1), . . . , Q(An+1). The transition map

ϕk` := Q|−1
Ak
◦Q|A` : {z ∈ A` : zk 6= 0} → {z ∈ Ak : z` 6= 0}

is given by

ϕk`(z1, . . . , zk, . . . , z` = 1, . . . , zn+1) =

(
z1

zk
, . . . , 1, . . . ,

1

zk
, . . . ,

zn+1

zk

)
,

which is an algebraic isomorphism, so CPn is an algebraic variety1 locally
modelled on Cn and hence a complex manifold.

Example C.7. The complex projective 1-space CP1 is diffeomorphic to the
2-sphere. To see this, let (r, θ, h) be cylindrical polar coordinates on S2 and
define σ1 and σ2 by

σ1(r, θ, h) =
r

1− h
eiθ, σ2(r, θ, h) =

r

1 + h
eiθ

1Just as one can define a manifold as a collection of charts glued together by transition
maps, an algebraic variety can be defined as a collection of affine varieties glued together
by algebraic transition maps. Affine varieties are just subsets of affine space cut out by
polynomial equations. In this case, the affine charts are copies of Cn rather than something
more exotic.
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for h < 1 and h > −1 respectively. These are the stereographic projections
from the North and South poles respectively. Since h2 + r2 = 1, we have
σ1σ2 = 1, so if we use σ1 and σ2 as coordinate charts on S2 then the transition
map is σ1 7→ σ̄2 = 1/σ1. This is the same as the transition map ϕ1,2 for CP1

from the proof of Lemma C.6, so these manifolds are diffeomorphic.

•
σ2(r, h, θ)

•
(r, h, θ)

•σ1(r, h, θ)
θ

h

r

Figure C.1: Stereographic projections

Lemma C.8. The complex projective space CPn is the quotient of the unit
sphere S2n+1 ⊆ Cn+1 by the U(1)-action where u ∈ U(1) acts on Cn+1 by
z 7→ uz. Here, U(1) is the multiplicative group of unit complex numbers.

Proof. The restriction of Q to S2n+1 ⊆ Cn+1 \ {0} is still surjective because
every complex line contains a circle of vectors of unit length. The fibres of
Q|S2n+1 are precisely these unit circles in each complex line, which are also
the orbits of the U(1)-action in the statement of the lemma.

C.2 Projective varieties

A polynomial F (z1, . . . , zn+1) is called homogeneous of degree d if

F (λz1, . . . , λzn+1) = λdF (z1, . . . , zn+1)

for all λ ∈ C. For example, z1z2 + z3z4 is homogeneous of degree 2, whereas
z1 + z2

2 is not homogeneous of any degree. It is not hard to show that a
homogeneous polynomial of degree d is precisely a linear combination of
monomials each of which has degree precisely d.
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The advantage of working with homogeneous polynomials is that if F (z) = 0
and [z] = [z′] then F (z′) = 0. In other words, it makes sense to write
F ([z]) = 0: this condition doesn’t depend on the choice of the homogeneous
coordinate z.

Definition C.9. We define the projective subvariety cut out by F , to be
the subset V(F ) := {[z] ∈ CPn : F ([z]) = 0}. Similarly, we can define
subvarieties cut out by a (possibly empty) set of homogeneous polynomials
{F1, . . . , Fs}. Note that V(∅) = CPn.

Example C.10. Let F (z1, z2) = z1z2. Then V(F ) ⊆ CP1 consists of the
points [1 : 0] and [0 : 1].

Remark C.11. In affine algebraic geometry, an affine variety is the subset
cut out of an affine space by a collection of (not necessarily homogeneous)
polynomials. The intersection of the projective variety V(F ) with the affine
chart Q(Ak) is defined by F (z1, . . . , zk = 1, . . . , zn+1) = 0, which is a (not
necessarily homogeneous) polynomial, so V(F ) ∩ Q(Ak) is an affine variety
in the chart Q(Ak).

Remark C.12. Unless F is constant, the expression F ([z]) does not make
sense as a complex-valued function on CPn. For example, if F (z) 6= 0 and
d ≥ 1 then F (2z) = 2dF (z) 6= F (z), but [2z] = [z].

C.3 Zariski-closure

We will use the notion of Zariski-closure in Chapter F.

Definition C.13. The Zariski-closure of a subset S ⊆ CPn is the smallest
subvariety containing S. If V ⊆ CPn is a subvariety then a subset S ⊆ V is
called Zariski-dense in V if its Zariski-closure is V .

Example C.14. Consider the set of points S = {[n : 1] : n ∈ Z} ⊆ CP1.
The Zariski-closure of this set is CP1 = V(0). This is because if there is a
homogeneous polynomial F =

∑d
m=0 amz

m
1 z

d−m
2 with F ([n : 1]) = 0 for all

n ∈ Z then
∑d

m=0 amz
m has infinitely many zeros (every integer) and hence

vanishes identically.

Example C.15. Consider the set of points S = {[z : 1 : 0] ∈ CP2 : z ∈ C}.
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This is contained in the subvariety V(z3) defined by the vanishing of the
z3-coordinate. Moreover, it is Zariski-dense inside that subvariety. To see
this, suppose that F =

∑
m1+m2+m3=d am1,m2,m3z

m1
1 zm2

2 zm3
3 is a homogeneous

polynomial with F (z, 1, 0) = 0 for all z ∈ C. Then
∑

m1,m2
am1,m2,0z

m1 = 0
has infinitely many solutions (any z ∈ C), so am1,m2,0 = 0 for all m1,m2.
Thus F is divisible by z3. Therefore V(F ) contains V(z3). Thus V(z3) is the
smallest subvariety containing S.

C.4 Solutions to inline exercises

Exercise C.16 (Lemma C.2). If z, z′ 6= 0 are complex vectors then C · z =
C · z′ if and only if z = µz′ for some complex number µ 6= 0.

Solution. If z = µz′ then C · z = {λz λ ∈ C} = {λµz′ : λ ∈ C} and as λ
varies over C, so λµ varies over C, so C ·z = C ·z′. Conversely, if C ·z = C ·z′
then z′ ∈ C · z so z′ = µz for some µ ∈ C. Since z′ 6= 0, µ 6= 0.

Exercise C.17 (Lemma C.5). The restriction Q|Ak : Ak → CPn is an em-
bedding.

Proof. If z, z′ ∈ Ak then zk = z′k = 1. If Q(z) = Q(z′) then z′ = µz and so
1 = z′k = µzk = µ. Thus µ = 1 and z′ = z.
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Appendix D

Cotangent bundles

The simplest symplectic manifolds beyond (R2n,
∑n

i=1 dpi∧dqi) are the cotan-
gent bundles of manifolds. We start by defining the symplectic structure on
cotangent bundles, and use it to give a formulation of Noether’s famous
theorem relating symmetries and conserved quantities. Next, we introduce
a class of Hamiltonians on cotangent bundles which generate (co)geodesic
flows. This is all intended to illustrate the power and scope of the Hamil-
tonian formalism, but also serves as a source of examples in Chapter 4 (Ex-
amples 4.13 and 4.29). Finally, we give a geometric interpretation of the
Hamilton-Jacobi equation.

Note: In this appendix, we use up-indices for components of vectors, down-
indices for components of covectors. This is because of the appearance of
metric tensors and Christoffel symbols in the section on cogeodesic flow.

D.1 Cotangent bundles

Let Q be a manifold and q ∈ Q be a point. Recall that a covector1 η at q is
a linear map TqQ → R. We write T ∗qQ for the space of covectors at q and
π : T ∗Q → Q for the cotangent bundle of covectors over Q. Recall that a
1-form is a section of the cotangent bundle, that is a covector at each point.

1I like to use η (eta) because η eats a vector and outputs a number.
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view and download for personal use only. Not for re-distribution, re-sale, or use in
derivative works.
c© Jonny Evans 2018–2023.
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Definition D.1. The cotangent bundle T ∗Q carries a canonical 1-form λ,
defined as follows. Let q ∈ Q and η ∈ T ∗qQ. If v ∈ TηT ∗Q is a tangent vector
to the cotangent bundle at the point η then λ(v) := η(π∗(v)).

Remark D.2. If we pick local coordinates (q1, . . . , qn) on Q and use the co-
ordinates p =

∑
pi dq

i for p ∈ T ∗qQ then λ =
∑
pi dq

i.

Definition D.3. We call the 2-form ω = dλ the canonical symplectic struc-
ture on T ∗Q; in local coordinates this is

∑n
i=1 dpi∧dqi, which makes it clear

why it is symplectic.

The coordinates pi, qi are called canonical coordinates on T ∗Q. They are
canonical in the sense that, once the local coordinates q1, . . . , qn are chosen
on Q, we get a basis dq1, . . . , dqn for the fibres T ∗qQ, and so we get fibre
coordinates pi for free.

Remark D.4 (Exercise D.20). Pick local coordinates qi on a patch in Q and
consider the Hamiltonian system (q1 ◦ π, . . . , qn ◦ π) on the π-preimage of
this patch. Show that the canonical coordinates pi are minus the Liouville
coordinates associated with the global Lagrangian section given by the zero-
section. Does the zero-section inherit an integral affine structure?

The fact that the pi are canonical in the above sense has the consequence
that changing coordinates on Q induces a symplectic change of canonical
coordinates on T ∗Q. Namely:

Lemma D.5. If ψ : Q→ Q is a diffeomorphism then

ψ∗ = (ψ−1)∗ : T ∗Q→ T ∗Q, ψ∗(η) = η ◦ (dψ−1) ∈ T ∗ψ(q)Q for η ∈ T ∗qQ

is a symplectomorphism of the cotangent bundle.

Proof. This is immediate from the fact that the canonical 1-form (and hence
ω) are defined without reference to coordinates, but you can see it explicitly
as follows. Suppose ψ : Q→ Q is a diffeomorphism (change of coordinates);
we will write the new coordinates as ψ1(q), . . . , ψn(q). The basis dψi is given
by dψi =

∑ ∂ψi

∂qj
dqj. Let us write Ψ := dψ for the matrix ∂ψi

∂qj
. The new

fibre coordinates p′i are chosen so that
∑
p′i dψ

i =
∑
pi dq

i, so p′i = pj(Ψ
−1)ji

(here, we think of p as a row vector so the matrix Ψ−1 multiplies it on the
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right). The change of coordinates (pi, q
j) 7→ (p′i, ψ

j) is symplectic because∑
i

dp′i ∧ dψi =
∑
i,j,k

dpj(Ψ
−1)ji ∧Ψi

kdq
k =

∑
j

dpj ∧ dqj.

Remark D.6 (Exercise D.21). The observant reader will detect parallels, but
also notice subtle differences, between Lemma 2.25 and Lemma D.5. Con-
template these parallels and differences, and then turn to Exercise D.21 and
its solution to read more.

D.2 Cogeodesic flow

Suppose that g is a metric on Q. Write |η| for the length (with respect to g)
of a covector η ∈ T ∗qQ.

Definition D.7. Consider the function H : T ∗Q → R defined by H(η) =
1
2
|η|2. The Hamiltonian flow generated by H is called the cogeodesic flow.

Lemma D.8. If (p(t), q(t)) is a flowline of the cogeodesic flow then q(t) is
a geodesic on Q for the metric g and p(t) is g-dual to q̇(t), that is p(t)(w) =
g(q̇(t), w) for all w ∈ Tq(t)Q.

Proof. In local coordinates qi, let gij be the metric (symmetric in i and j)
and gij be its inverse (i.e.

∑
j g

ijgjk = δik), so that if η =
∑
pi dq

i then
H = 1

2
|η|2 = 1

2

∑
i,j g

ijpipj. Thus

q̇k =
∂H

∂pk
=
∑
j

gkjpj ṗk =
∂H

∂qk
=

1

2

∑
i,j

∂gij

∂qk
pipj.

The first equation tells us that pj =
∑

k gjkq̇
k as desired. It remains to show

that q(t) is a geodesic. Substituting pk =
∑

j gjkq̇
j into the second equation

gives

ṗk =
∑
k,`

∂gjk
∂q`

q̇j q̇` +
∑
j

gjkq̈
j = −1

2

∑
i,j,`,m

∂gij

∂qk
gi`gjmq̇

`q̇m. (D.1)
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By differentiating
∑

j g
ijgjm = δim we get

∑
i,j

∂gij

∂qk
gi`gjm = −∂g`m

∂qk
. Rearrang-

ing Equation (D.1) gives

q̈j =
∑
k,`,m

gjk
(

1

2

∂g`m
∂qk

− ∂gmk
∂q`

)
q̇`q̇m.

Because we are summing over `,m and q̇`q̇m is symmetric in `,m, we can
rewrite this as

q̈j =
1

2

∑
k,`,m

gjk
(
∂g`m
∂qk

− ∂gmk
∂q`

− ∂g`k
∂qm

)
q̇`q̇m = −

∑
`,m

Γj`mq̇
`q̇m,

where Γj`m are the Christoffel symbols. This is precisely the geodesic equation
for the path q(t).

Remark D.9. Note that q(t) moves with speed |q̇(t)| = |p(t)|. SinceH = 1
2
|p|2

is conserved along the Hamiltonian flow, this speed is constant. In other
words, the geodesic is parametrised proportionally to arc-length, where the
constant of proportionality depends on the level set of H.

D.3 Noether’s theorem

The Hamiltonian formalism assigns a Hamiltonian flow φHt to a function H
on a symplectic manifold; the function H is conserved along the flow in the
sense that H(φHt (x)) = H(x) for all t. This is responsible for Noether’s
famous correspondence between symmetries and conserved quantities. We
reiterate here that H does not need to correspond to “energy”: it can be any
function.

Example D.10 (Translation). Consider the symplectic manifold R2 with
coordinates (p, q) and symplectic form dp ∧ dq. This is the phase space of
a particle on a line, where q denotes the position of the particle and p its
momentum. The Hamiltonian vector field associated with the function p is

ṗ = 0, q̇ = 1,

which generates the flow φpt (p, q) = (p, q + t). This is a translation in the
q-direction.
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More generally, if ξ is a vector field on Q and ψt : Q→ Q is its flow, Noether’s
theorem gives an explicit Hamiltonian on T ∗Q generating the 1-parameter
family of symplectomorphisms (ψt)∗ : T

∗Q→ T ∗Q defined in Lemma D.5:

Theorem D.11 (Noether’s theorem). Let ξ be a vector field on Q and let
ψt be its flow. Define Hξ : T ∗Q→ R by Hξ(η) = η(ξ(q)) for η ∈ T ∗qQ. If φ

Hξ
t

is the Hamiltonian flow of Hξ then φ
Hξ
t = (ψt)∗, where (ψt)∗ is the action of

ψt on T ∗Q defined in Lemma D.5.

Remark D.12. Let diff(Q) denote the space of vector fields on Q (the Lie
algebra of Diff(Q)) and define the map µ : T ∗Q → (diff(Q))∗ by µ(η)(ξ) =
Hξ(η). In the language of Chapter 3, Theorem D.11 can be phrased by saying
that µ is a moment map for the Hamiltonian Diff(Q) action on T ∗Q.

Proof. Write η =
∑
pi dq

i. We have Hξ(p, q) = η(ξ(q)) =
∑
piξ

i. Both φHξt
and (ψt)∗ are generated by vector fields. It suffices to check that these vector
fields coincide.

By definition, φHξt is generated by the Hamiltonian vector field VHξ . We claim
that

VHξ := −
∑
i,j

pi
∂ξi

∂qj
∂

∂pj
+
∑
j

ξj
∂

∂qj
.

To see this, observe that

ιVHξ

∑
dpk ∧ dqk =

∑
dpk(VHξ) dq

k −
∑

dqk(VHξ) dpk

= −
∑

pi
∂ξi

∂qk
dqk −

∑
ξk dpk = −dHξ.

Now let us calculate the infinitesimal action of ξ on T ∗Q. Suppose that ψt
is the flow of ξ; in coordinates, (ψt)∗(pi, q

i) =
(∑

j pj
∂(ψ−1

t )j

∂qi
, ψit(q)

)
. The

infinitesimal action of ξ on T ∗Q is given by

d

dt

∣∣∣∣
t=0

(ψt)∗(pi, q
i) =

d

dt

∣∣∣∣
t=0

(∑
j

pj
∂(ψ−1

t )j

∂qi
, ψit(q)

)

=

(
−
∑

pj
∂ξj

∂qi
, ξi
)
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This is just another way of writing VHξ , so the theorem is proved. In getting
to the final line, we used the fact that d

dt

∣∣
t=0

ψ−1
t = −ξ, i.e. the inverse of ψt

is obtained by flowing backwards along ξ for time t.

Example D.13 (Angular momentum, Exercise D.22). Suppose Q = R3 with
coordinates q1, q2, q3, and consider the 1-parameter family of diffeomorphisms

ψt(q
1, q2, q3) = (q1 cos t− q2 sin t, q1 sin t+ q2 cos t, q3)

given by rotating around the q3-axis. Find the Hamiltonian on T ∗Q which
generates (ψt)∗.

Remark D.14. For those who have encountered Noether’s theorem in the
context of classical field theory, the field theory version is proved in the same
way, where we take Q to be the space of fields and T ∗Q to be the phase
space.

D.4 Lagrangian submanifolds and the Hamilton-
Jacobi equation

There are some easy examples of Lagrangian submanifolds in cotangent bun-
dles.

Example D.15. The zero-section is the submanifold which intersects every
cotangent fibre at the zero covector. This is Lagrangian: in local canonical
coordinates (p, q), with ω =

∑
i dpi ∧ dqi, it is given by p = 0. Dually, the

cotangent fibres q = const are also Lagrangian submanifolds.

Example D.16. Suppose H : T ∗Q→ R is the Hamiltonian from Definition
D.7 generating the cogeodesic flow on T ∗Q for some metric. What are the
geodesics connecting x ∈ Q to y ∈ Q in time t? They are in bijection
with the intersection points between the Lagrangian submanifolds φHt (T ∗xQ)
and T ∗yQ. In this way, Lagrangian submanifolds can be used to impose
initial/terminal conditions on geodesics or other Hamiltonian systems. The
utility of this stems from the fact there is a variational interpretation for
Hamilton’s equations with Lagrangian boundary conditions (the Hamiltonian
trajectories are critical points for the action functional). This is the point of
departure for applications of Floer theory to symplectic geometry.



197

Recall that a section of the cotangent bundle is a map η : Q→ T ∗Q such that
η(q) ∈ T ∗qQ. This is the same thing as a 1-form on Q. We define the graph of
a 1-form η to be the image of the corresponding section η(Q) = {(q, η(q) ∈
T ∗Q : q ∈ Q} ⊆ T ∗Q. This is a submanifold diffeomorphic to Q.

Lemma D.17. The graph of a 1-form η is Lagrangian if and only if dη = 0,
i.e. η is closed.

Proof. Let qi be local coordinates on Q. The tangent space to η(Q) at a
point living over this coordinate patch is spanned by the vectors

η∗(∂qi) =
∂ηj
∂qi

∂pj + ∂qi .

We have (∑
m

dpm ∧ dqm
)

(η∗∂qk , η∗∂q`) =
∂η`
∂qk
− ∂ηk
∂q`

.

This is the dqk ∧ dq`-component of dη. (Compare this with the proof of
Theorem 1.42.)

Note that if L ⊆ T ∗Q is transverse to the cotangent fibres near some point x ∈
L then, locally near x, L is the graph of some section (by the inverse function
theorem). Moreover, locally, any closed 1-form η admits an antiderivative,
that is a function S such that η = dS. We often call such a function S a
(local) generating function for η(Q). So to describe a Lagrangian submanifold
of T ∗Q, away from points where it is tangent to cotangent fibres, it is sufficient
to give a collection of local generating functions.

If a Lagrangian submanifold is allowed to evolve under a Hamiltonian flow,
then (up to a time-dependent constant shift) its local generating functions
evolve according to a differential equation called the Hamilton-Jacobi equa-
tion. We state this in its simplest form for Lagrangians that admit a global
generating function, i.e. Lagrangians which are the graph of an exact 1-form.

Theorem D.18 (Hamilton-Jacobi equation). Let L = graph(dS) ⊆ T ∗Q
be a Lagrangian submanifold which is the graph of an exact 1-form dS. Let
Ht : T

∗Q → R be a time-dependent Hamiltonian. If St is a solution to the
Hamilton-Jacobi equation

∂St
∂t

= −Ht

(
∂St
∂q

, q

)
, S0 = S, (D.2)
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then
graph(dSt) = φHtt (graph(dS)).

Conversely, if φHtt (graph(dS)) = graph(dFt) then Ft = St + c(t) where St
solves Equation (D.2) and c(t) is a time-dependent constant.

Proof. Let dS : Q → T ∗Q be the section corresponding to the 1-form dS
and let it : Q → T ∗Q be the Lagrangian inclusion of φHtt (dS(Q)) defined
by it(q) = φHtt (dS(q)). Pick local canonical coordinates (p, q) and write
it+ε(q) = it(q) + εvt(q) for some vector field vt along it(Q). To first order in
ε, vt = VHt , that is:

vt =

(
−∂H
∂q

+ o(ε),
∂H

∂p
+ o(ε)

)
where we write o(ε) for any terms such that limε→0 |o(ε)| = 0.

q q + ε∂H
∂p

+ εo(ε)

∂St
∂q

∂St+ε
∂q

(q + ε∂Ht
∂p

+ εo(ε))
−ε∂Ht

∂q
+ εo(ε) graph(dSt)

graph(dSt+ε)

εvt

Figure D.1: The graphs of dSt and dSt+ε differ by εvt = ε(VHt + o(ε)).

We have

∂St+ε
∂qi

(
q + ε

∂H

∂p
+ o(ε)

)
=
∂St
∂qi

(q)− ε∂Ht

∂qi

(
∂St
∂q

(q), q

)
+ o(ε)

and, by Taylor expanding, we also have

∂St+ε
∂qi

(
q + ε

∂H

∂p
+ o(ε)

)
=
∂St
∂qi

(q)+ε

(
∂2St
∂t∂qi

(q) +
∑
j

∂2St
∂qi∂qj

(q)
∂Ht

∂pj

)
+o(ε).
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Comparing terms of order ε, we get

∂2St
∂qi∂t

+
∂Ht

∂qi
+
∑
j

∂St
∂qj

∂Ht

∂pj
= 0,

where the derivatives of Ht are evaluated at (∂St/∂q, q). In particular, this
means that ∂Ht

∂qi
+
∑

j
∂St
∂qj

∂Ht
∂pj

= ∂
∂qi

((dSt)
∗Ht), so the equation is telling us

that
∂St
∂t

+ (dSt)
∗Ht

is constant on Q, say equal to C(t). This means that St satisfies the equation

∂St
∂t

= −Ht

(
∂St
∂q

, q

)
+ C(t),

which means that St − c(t) satisfies the Hamilton-Jacobi equation provided
ċ(t) = C(t).

Remark D.19. The proof is purely local, and therefore also works when the
generating function is local, but it is trickier to state in that case because
the domain of the local generating function changes.

D.5 Solutions to inline exercises

Exercise D.20 (Remark D.4). Pick local coordinates qi on a patch in Q
and consider the Hamiltonian system (q1 ◦ π, . . . , qn ◦ π) on the π-preimage
of this patch. Show that the canonical coordinates pi are minus the Liouville
coordinates associated with the global Lagrangian section given by the zero-
section. Does the zero-section inherit an integral affine structure?

Solution. In local coordinates (p, q), p = (p1, . . . , pn) and q = (q1, . . . , qn),
with ω =

∑
dpi ∧ dqi, the Hamiltonian flow of qi is translation in the

−pi direction, and the zero-section is given by σ(q) = (q, 0). We have
φqt (q, 0) = (q,−t), which shows that the −pi are Liouville coordinates. Since
the fibres of π are Rn, there are no periodic orbits, so the period lattice is
0 in each fibre. Therefore there is no natural integral affine structure: that
construction would need the period lattice to have full rank.
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Exercise D.21 (Remark D.6). Explain the parallels and differences between
Lemmas 2.25 and D.5.

Solution. By Exercise D.20, we can think of π : T ∗Q → Q as a Hamil-
tonian system. In both lemmas, we assume the existence of a diffeomor-
phism between the images of our Hamiltonian systems: for Lemma 2.25 we
have φ : F (X) → G(X) and for Lemma D.5 we have ψ : Q → Q. In both
cases, we obtain a symplectomorphism between the total spaces: respectively
Φ: X → Y and (ψ)∗ : T

∗Q → T ∗Q. Moreover, these symplectomorphisms
are given by the same formula in Liouville coordinates.

The difference is that φ is required to be an integral affine transformation,
whereas ψ can be any diffeomorphism. This is because the Hamiltonian
systems F and G have period lattices of rank n, and the derivative of φ is
required to preserve these period lattices, which tells us that φ is integral
affine. The period lattice for π is trivial, so there is no constraint on dψ.

Exercise D.22 (Angular momentum, Example D.13). Suppose Q = R3 with
coordinates q1, q2, q3, and consider the 1-parameter family of diffeomorphisms

ψt(q
1, q2, q3) = (q1 cos t− q2 sin t, q1 sin t+ q2 cos t, q3)

given by rotating around the q3-axis. Find the Hamiltonian on T ∗Q which
generates (ψt)∗.

Solution. The flow ψt is generated by the vector field ξ = (−q2, q1, 0), so by
Theorem D.11, the induced symplectomorphism on T ∗Q is generated by the
Hamiltonian

Hξ(p, q) = p2q1 − p1q2.

This is the usual formula for the component of angular momentum around
the q3-axis.



Appendix E

Moser’s argument

At various points in the book, we have appealed to the Moser argument .
This is a famous and extremely useful trick, first introduced by Moser [82].
We include a proof here for completeness. When we say a “family of k-forms”,
we mean a k-form whose coefficients (with respect to any local coordinate
system) depend continuously-differentiably on a parameter t.

Theorem E.1 (Moser’s argument). Suppose that X is a manifold and ωt is
a family of symplectic forms. If dωt/dt = dσt for some family of compactly-
supported 1-forms σt then there is a family of diffeomorphisms φt with φ0 = id
and φ∗tωt = ω0.

Proof. Let Vt be the vector field ωt-dual to −σt, that is ιVtωt = −σt. This is
a compactly-supported vector field, so we can define the flow along Vt. The
flow is a 1-parameter family of diffeomorphisms φt satisfying φ0 = id and
dφt(x)
dt

= Vt(φt(x)). We will differentiate φ∗tωt with respect to t and show that
the result is zero. This will imply that φ∗tωt is independent of t, and hence
equal to ω0.

d

dt
φ∗tωt = φ∗t (LVtωt) + φ∗t

dωt
dt

= φ∗t (dιVtωt)− φ∗tdσt
= φ∗t (dσt − dσt) = 0

where we used Cartan’s formula LVtωt = dιVtωt + ιVtdωt and the fact that
dωt = 0.

This material has been/will be published by Cambridge University Press as Lectures on
Lagrangian Torus Fibrations by Jonny Evans. This pre-publication version is free to
view and download for personal use only. Not for re-distribution, re-sale, or use in
derivative works.
c© Jonny Evans 2018–2023.
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Appendix F

Toric varieties revisited

In this appendix, we will construct the toric variety associated to a convex
rational polytope using only algebraic geometry (no symplectic cuts). Since
most expositions of toric geometry (for example, Danilov [23] or Fulton [40])
start from the dual (fan) picture, and we are aiming to give alternative view-
points wherever possible, we will confine ourselves to work only with the
moment polytope. Throughout this appendix we will make use of homoge-
neous coordinates; see Appendix C for a rapid overview.

F.1 Construction

Let ∆ ⊆ Rn be a compact Delzant polytope. We will focus on the special
case where the vertices of ∆ have integer coordinates and explain how to con-
struct the manifold X∆ whose existence is guaranteed by Delzant’s existence
theorem, Theorem 3.7(2).

Theorem F.1. Suppose that p1, . . . ,pN ∈ Zn are the integer lattice points
contained in a Delzant polytope ∆, and write pi = (pi1, . . . , pin). Let zpi be
the monomial zpi11 zpi22 · · · zpinn . Consider the map

F∆ : (C∗)n → CPN−1, F∆(z) = [zp1 : · · · : zpN ].

Let X∆ be the Zariski-closure of the image of F∆. Then X∆ is a smooth
projective variety. Let P : RN → Rn be the linear projection given by right-

This material has been/will be published by Cambridge University Press as Lectures on
Lagrangian Torus Fibrations by Jonny Evans. This pre-publication version is free to
view and download for personal use only. Not for re-distribution, re-sale, or use in
derivative works.
c© Jonny Evans 2018–2023.
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multiplication with the matrix

<p11 p21 · · · pn1

p12
. . . pn2

... . . . ...
p1N · · · · · · pNn

).
If µ : CPN → RN is the moment map for the standard TN -action then µ|X∆

·
P : X∆ → Rn is the moment map for a T n-action on X∆ whose moment
image is ∆.

Definition F.2. The projective variety X∆ is called the projective toric
variety associated to the polytope ∆.

Before proving this theorem, we will work out some examples.

F.2 Examples

Example F.3. Suppose ∆ is the square with vertices (0, 0), (1, 0), (0, 1),
and (1, 1). Since this is a square, Delzant’s uniqueness theorem tells us that
X∆ will be S2×S2. We will confirm that this is the output of Theorem F.1.

• •

• •

Theorem F.1 tells us to consider the map

F∆ : (C∗)2 → CP3, F∆(z1, z2) = [1 : z1 : z2 : z1z2].

If [x1 : x2 : x3 : x4] are our homogeneous coordinates on CP3 then we see
that the image of F∆ is contained (as a Zariski-dense subset) in the subvariety
V = {x1x4 = x2x3}. This subvariety is a smooth quadric surface and it is
the Zariski-closure of the image of F∆. Note that F∆ is the restriction of the
Segre embedding

CP1 × CP1 → CP3, ([a : b], [c : d]) 7→ [ac : bc : ad : bd]
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to the affine chart a = c = 1, and V is the image of the Segre embedding.
Since CP1 ∼= S2, this confirms that X∆ = S2 × S2.

The matrix P is

<0 0
1 0
0 1
1 1

)
and the moment map µ is(

1

2

|x1|2

|x|2
,

1

2

|x2|2

|x|2
,

1

2

|x3|2

|x|2
,

1

2

|x4|2

|x|2

)
,

so
µ(x) · P =

(
1

2

|x2|2 + |x4|2

|x|2
,

1

2

|x3|2 + |x4|2

|x|2

)
.

Precomposing with the Segre embedding to get a function on X∆ = CP1 ×
CP1, we get (

1

2

|b|2

|a|2 + |b|2
,

1

2

|d|2

|c|2 + |d|2

)
.

The first (respectively second) component is the Hamiltonian generating the
standard circle action on the first (respectively second) factor CP1 (see Ex-
ample 3.17).

The moment image is the convex hull of the moment images of the fixed
points. The fixed points are ([1 : 0], [1 : 0]), ([1 : 0], [0 : 1]), ([0 : 1], [1 :
0]), and ([0 : 1], [0 : 1]), whose images are (0, 0), (1, 0), (0, 1) and (1, 1)
respectively. Therefore the moment image of X∆ is ∆.

Example F.4. If ∆ is the triangle with vertices (0, 0), (1, 0) and (0, 1) then
F∆ : (C∗)2 → CP2 is the map F∆(z1, z2) = [1 : z1 : z2]. The image of F∆ is
dense in CP2, so X∆ = CP2. By Lemmas 3.16 and 3.20, the preimage of an
edge is a symplectic sphere with area 2π and self-intersection 1; this is a line
in CP2.

If we rescale both the Fubini-Study form on CP2 and the moment map for
the torus action by a factor of 2 then we get a moment map whose image
is the triangle 2∆ with vertices (0, 0), (2, 0) and (0, 2). Delzant’s uniqueness
theorem tells us thatX2∆

∼= (CP2, 2ωFS). But the isomorphism is not obvious
from the construction:
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• •

•

• • •

• •

•

Figure F.1: The polygons ∆ and 2∆ for Examples F.4 and F.5.

Example F.5. If 2∆ is the triangle with vertices (0, 0), (2, 0) and (0, 2) then
there are now 6 integer points in 2∆, and we get

F∆ : (C∗)2 → CP5, F∆(z1, z2) = [1 : z1 : z2
1 : z2 : z1z2 : z2

2 ].

The map F∆ factors through the quadratic Veronese embedding

V : CP2 → CP5, V([a : b : c]) = [a2 : ab : b2 : ac : bc : c2]

by taking a = 1, b = z1, c = z2, and the image of F∆ is dense inside V(CP2).
Thus X∆ = CP2. Again, the preimage of an edge is a line in CP2, but it
has symplectic area 4π because the pullback of the Fubini-Study form along
the quadratic Veronese embedding is symplectomorphic to twice the Fubini-
Study form on CP2 (a hyperplane of CP5 intersects V(CP2) in a conic, not a
line).

Rescaling the polytope by a factor of k always corresponds to reimbedding
via a Veronese map of degree k.

Finally, let us try to apply the construction from Theorem F.1 when ∆ is not
Delzant. The corresponding toric variety will have singularities living over
the non-Delzant points of ∆.

Example F.6. Let ∆ be the non-Delzant polygon with vertices (0, 0), (0, 1)
and (2, 1) from Figure 3.1. This additionally contains the integer point (1, 1).
We therefore get

F∆ : (C∗)2 → CP3, F∆(z1, z2) = [1 : z2 : z1z2 : z2
1z2].
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In homogeneous coordinates [x1 : x2 : x3 : x4] this satisfies the equation
x2x4 = x2

3. This is a singular quadric surface with an ordinary double point
at [1 : 0 : 0 : 0]. Under the moment map µ · P , this point projects to the
origin, which is precisely the point where ∆ fails to be Delzant.

By Lemma 3.20, the preimage of the horizontal edge is a symplectic sphere
with square 2. In homogeneous coordinates, this is the conic x2x4 = x2

3 in
the plane x1 = 0.

Remark F.7. The ordinary double point is the cyclic quotient singularity
1
2
(1, 1). The germ of our non-Delzant polygon near the origin agrees with

the germ of the non-Delzant polygon from Example 3.21 with n = 2, a = 1.
This is a general fact: one can read off the singularities of X∆ from the
non-Delzant points in ∆.

F.3 Proof of Theorem F.1

Consider the T n-actions

eitz = (eit1z1, . . . , e
itnzn)

eit ? [Z1 : . . . : ZN ] =
[
ei(p11t1+···+p1ntn)Z1 : · · · : ei(pN1t1+···+pNntn)ZN

]
on (C∗)n and CPN respectively. The action denoted by ? is generated by the
Hamiltonian µ · P . The map F∆ intertwines the actions in the sense that
F∆(eitz) = eit ? F∆(z); this means that eit? preserves the image of F∆, and
hence its Zariski-closure X∆.

It remains to show that X∆ is smooth and that the moment image agrees
with ∆. We will start by writing down equations for X∆. Let [Z1 : · · · :
ZN ] be homogeneous coordinates on CPN−1. Note that each coordinate Zi
corresponds to an integer lattice point pi ∈ ∆.

Lemma F.8. Let a1, . . . , aN be integers. If the relation
∑

i aipi = 0 holds
then the equation ∏

ai≥0

Zai
i =

∏
ai<0

Z−aii

holds on X∆.
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Proof. This holds on the image of F∆ because it translates to
∏

i z
∑
aipi =

z0 = 1. It therefore holds on the Zariski-closure of the image of F∆, which is
X∆ by definition.

Let V∆ be the subvariety cut out by the equations coming from Lemma
F.8. The lemma shows that X∆ ⊆ V∆. We will show that V∆ is a smooth
variety containing the image of F∆ as a Zariski-open set, which will show
that V∆ = X∆ (in particular, it will show that X∆ is smooth).

Let Γ = {v ∈ {1, . . . , N} : pv is a vertex of ∆}. Note that every integer
lattice point in ∆ can be written as a linear combination

∑
j∈Γ ajpj with

aj ∈ Q≥0 for all j ∈ Γ.

Corollary F.9. For each i ∈ {1, . . . , N}, write pi =
∑

j∈Γ(∆) ajpj with
aj ∈ Q≥0. Let Γi = {j ∈ Γ : aj 6= 0} ⊆ Γ. The open set V∆ ∩ {Zi 6= 0} is
contained in the intersection

V∆ ∩
⋂
j∈Γi

{Zj 6= 0}.

In particular, V∆ is covered by the open sets V∆ ∩ {Zj 6= 0}, j ∈ Γ.

Proof. Let b ∈ Z>0 be such that cj := baj ∈ Z≥0. The equation Zb
i =∏

j∈Γi
Z
cj
j holds on V∆ by Lemma F.8. If Zi 6= 0 then this means Zj 6= 0 for

all j ∈ Γi.

Lemma F.10 (Exercise F.14). Let A be an integer matrix with rows Ai.
Consider the morphism Ã : (C∗)n → (C∗)n defined by

Ã(z) = (zA1 , . . . ,zAn).

If we write w := Ã(z) then wq = zqA for any integer row vector q. The
morphism Ã is invertible if and only if A ∈ GL(n,Z).

Lemma F.11. Suppose T : Rn → Rn is a map of the form T (x) = xA+c for
some A ∈ GL(n,Z) and c ∈ Zn. Let Ã−1 : (C∗)n → (C∗)n be the morphism
given by the matrix A−1 as in Lemma F.10. Then FT (∆) ◦ Ã−1 = F∆.

Proof. First note that the constant term c has no effect on the image of F∆:
it introduces an overall scale factor zc into every homogeneous coordinate.
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We therefore assume without loss of generality that c = 0. Let qi = piA be
the vertices of T (∆). We have:

FT (∆)(w) = [wq1 : · · · : wqN ],so

FT (∆) ◦ Ã−1(z) = [zq1A−1

: · · · : zqNA−1

]

= [zp1 : · · · : zpN ] = F∆(z).

Remark F.12. Note that although the variety X∆ is unchanged by T , the
moment map is changed by T because the projection P from Theorem F.1
changes in such a way that the moment image is T (∆).

Lemma F.13. If i ∈ Γ then V∆∩{zi 6= 0} is T n-equivariantly biholomorphic
to Cn with its standard torus action.

Proof. Because our polytope is Delzant, we can apply a transformation as in
Lemma F.11 so that pi is at the origin. By making a further transformation,
we can assume that if pj1 , . . . ,pjn are the closest lattice points to pi along the
n edges meeting at pi then these sit at the points (1, 0, . . . , 0), . . . , (0, . . . , 0, 1).
Now any lattice point pk ∈ ∆ can be written as a nonnegative integer linear
combination of these basis vectors, so Zk =

∏n
s=1 Z

ajs
js

with ajs ∈ Z≥0. This
means that on Zi 6= 0 we can take Zi = 1 and use Zj1 , . . . , Zjn as global coor-
dinates on V∆ ∩ {Zi 6= 0}. Since pjs is the sth basis vector, the torus action
rotates Zjs by eits , which shows that the biholomorphism we have chosen is
equivariant with the standard torus action.

As a consequence, we see that V∆ is smooth because we have covered V∆ by
smooth coordinate charts. We also see that F∆((C∗)n) ⊆ V∆ is Zariski-dense
in V∆ because it intersects each chart V∆∩{Zi 6= 0} ∼= Cn in the Zariski-dense
subset (C∗)n. We deduce that X∆ = V∆ and that X∆ is smooth.

Finally, we need to check that the moment image of X∆ is ∆. Recall from
Theorem 3.7(1) that the moment image is the convex hull of the moment
images of the fixed points, so it suffices to show that the fixed points are sent
by the moment map to the vertices of ∆.

For each i ∈ Γ (i.e. pi is a vertex of ∆), let ei ∈ CPN−1 be the point whose
homogeneous coordinates are Zi = 1 and Zj = 0 if j 6= i. In the T n-
equivariant local chart Zi 6= 0 from Lemma F.13, ei is sent to the origin,
which is a T n-fixed point and the only T n-fixed point in that chart. This
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shows that the T n-fixed points in X∆ are precisely the points ei. We have
µ(ei) ·P = pi, so we deduce that the T n-fixed points map under the moment
map to the vertices of ∆, as required.

F.4 Solutions to inline exercises

Exercise F.14 (Lemma F.10). Let A be an integer matrix with rows Ai.
Consider the morphism Ã : (C∗)n → (C∗)n defined by

Ã(z) = (zA1 , . . . ,zAn).

If we write w := Ã(z) then show that wq = zqA for any integer row vector
q. Prove that the morphism Ã is invertible if and only if A ∈ GL(n,Z).

Solution. We have wi = zAi11 · · · zAinn , so

wq = (zA11q1
1 · · · zA1nq1

n ) · · · (zAn1qn
1 · · · zAnnqnn )

= zA11q1+···+An1qn
1 · · · zA1nq1+···+Annqn

n

= zqA.

In particular, this shows that ÃB = ÃB̃.

In particular, if A ∈ GL(n,Z) then Ã−1 gives an inverse for Ã.

More generally, let S, T be invertible integer matrices such that D := SAT
is in Smith normal form. Since D̃ = S̃ÃT̃ , we see that D̃ is invertible if
and only if Ã is invertible. But D̃(z1, . . . , zn) = (zD11

1 , . . . , zDnnn ) which is
invertible only if Dii = ±1 for all i, which holds only if D ∈ GL(n,Z), which
holds only if A ∈ GL(n,Z).



Appendix G

Visible contact hypersurfaces and
Reeb flows

We have focused a lot on visible Lagrangian submanifolds, but one can also
“see” other sorts of submanifolds using Lagrangian torus fibrations. In this
section, we discuss visible submanifolds of codimension 1 and contact geom-
etry.

G.1 Hypersurfaces

Suppose we have a Lagrangian fibration f : X → B. One easy way to pro-
duce real codimension 1 hypersurfaces in X is to take the preimage of a
codimension 1 submanifold of B.

Example G.1. Let X = C2, B = R2 and

f : X → R2, f(z1, z2) =

(
1

2
|z1|2,

1

2
|z2|2

)
be the moment map for the standard torus action. Let a, b, c > 0 be positive
constants and consider the line `a,b,c ⊆ B defined by the equation ax+by = c

This material has been/will be published by Cambridge University Press as Lectures on
Lagrangian Torus Fibrations by Jonny Evans. This pre-publication version is free to
view and download for personal use only. Not for re-distribution, re-sale, or use in
derivative works.
c© Jonny Evans 2018–2023.
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(see Figure G.1). The preimage in X is the ellipsoid1

Ya,b,c := {a|z1|2 + b|z2|2 = 2c}.

Figure G.1: The preimage of the line segment is an ellipsoid.

Definition G.2. A vector field Z on a symplectic manifold (X,ω) is a Li-
ouville or symplectically dilating vector field if LZω = ω. A hypersurface
Y ⊆ X is said to be of contact-type if there is a Liouville vector field defined
in a neighbourhood of Y which is everywhere transverse to Y . If Y = ∂X
then we say Y is convex or concave if Z points respectively out of or into X.

Example G.3. Continuing Example G.3, let (p1, p2, q1, q2) be action-angle
coordinates on C2 for the standard torus action (so pi = 1

2
|zi|2 and qi is the

argument of zi) and let Z be the vector field given in action-angle coordinates
by p1

∂
∂p1

+ p2
∂
∂p2

. This is a Liouville vector field:

LZω = dιZω = d(p1dq1 + p2dq2) =
∑

dpi ∧ dqi.

Moreover, f∗Z is the radial vector field in (the positive quadrant of) R2 (see
Figure G.2). Since a, b, c > 0, this is transverse to `a,b,c and hence Z is
transverse to Ya,b,c. Thus our ellipsoids are contact-type hypersurfaces.

Figure G.2: There is a Liouville vector field transverse to the ellipsoid which
projects to the radial vector field in action-coordinates.

1Note that ellipsoid is also used to mean the compact region bounded by this hyper-
surface (sometimes called a solid ellipsoid).
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More generally, this proves:

Lemma G.4. Let (X,ω) be a symplectic manifold and suppose that (p, q) are
local action-angle coordinates on a chart U ⊆ X. The vector field

∑
i pi

∂
∂pi

is a Liouville vector field on U . If H : U → R is a function which depends
only on p and c is a regular value then H−1(c) is a contact-type hypersurface
if and only if

∑
i pi

∂H
∂pi

is nowhere vanishing on H−1(c).

Proof. The calculation from Example G.3 shows that Z is Liouville. To un-
derstand when H−1(c) is contact-type, we see that Z is transverse to H−1(c)
if and only if dH(Z) 6= 0 everywhere along H−1(c). We compute:

dH(Z) =
∑
i

∂H

∂pi
dpi

(∑
j

pj
∂

∂pj

)
=
∑

pi
∂H

∂pi
,

which proves the result.

G.2 Contact forms and Reeb flows

Definition G.5. A 1-form α on a (2n− 1)-dimensional manifold Y is called
a contact form if α ∧ (dα)n−1 is nowhere zero.

Lemma G.6. Let i : Y → X be the inclusion map for a contact-type hyper-
surface with transverse Liouville field Z. The 1-form α := i∗ιZω is a contact
form on Y .

Proof. The 2n-form ωn is a nowhere-vanishing volume form onX, so i∗ιZ(ωn)
is a nowhere-vanishing volume form on Y , since Z is transverse to Y . We
have

ιZ(ωn) = (ιZω) ∧ (ωn−1) + · · ·+ (ωn−1) ∧ (ιZω) = n(ιZω) ∧ (ωn−1).

Therefore
i∗ιZω

n

n
= i∗

(
ιZω ∧ ωn−1

)
.

Set α = i∗ιZω. We have dα = i∗dιZω = i∗LZω = i∗ω, so α ∧ dαn−1 =
i∗ (ιZω ∧ ωn−1). As this is a nowhere-vanishing volume form on Y , this proves
the result.
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Definition G.7. If α is a contact form on Y , we define the Reeb vector field
Rα to be the unique vector field satisfying

ιRαdα = 0, ιRαα = 1.

Remark G.8. The equation ιRαdα = 0 says that the Reeb field points along
the line field2 (TY )ω ⊆ TY . The equation ιRαα = 1 is simply a normalisation
condition which picks out a specific vector (TY )ω.

Example G.9 (Exercise G.11). Let X be a symplectic manifold and U ⊆ X
be the domain of an action-angle chart with action-angle coordinates (p, q).
LetH : U → R be a function depending only on p and satisfying the condition∑

i pi
∂H
∂pi
6= 0 along a regular level set H−1(c). Let α = i∗(

∑
k pk dqk) be the

contact form guaranteed by Lemma G.4. The Reeb vector field is given by

Rα =

(∑
i

∂H

∂pi

∂

∂qi

)/(∑
j

pj
∂H

∂pj

)
.

Example G.10 (Exercise G.12). Continuing Example G.3, we take H =
ap1 + bp2, which gives the contact-type ellipsoid Ya,b,c ⊆ C2. By Example
G.9, the Reeb field is

c−1

(
a
∂

∂q1

+ b
∂

∂q2

)
.

The dynamics of the flow along the Reeb field now depend on the constants
a and b.

If the ratio b/a is irrational then the orbits of Rα are lines of irrational slope
in the (q1, q2)-torus. The exception is when p1 = 0 or p2 = 0: here the
action-angle coordinates are degenerate in the sense that the fibre is a circle
parametrised by q2 respectively q1. These two circles are closed orbits of the
Reeb field (see Figure G.3).

If the ratio b/a is rational then all the Reeb orbits are closed. More precisely,
if a = ρm and b = ρn for coprime integersm,n then the orbits away from p1 =
0 and p2 = 0 have period 2πc/ρ. There are still two exceptional orbits at p1 =
0 and p2 = 0, with periods 2πc/nρ and 2πc/mρ respectively. In this case, we
can take the symplectic quotient of C2 with respect to this Hamiltonian and

2This is called the characteristic line field. Recall that ω denotes the symplectic or-
thogonal complement; see Definition A.3.
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◦

◦

Figure G.3: If the slope is irrational then the only closed Reeb orbits are the
circles living over the points marked ◦.

obtain a symplectic sphere with two orbifold points (compare with Example
4.12, where we obtained weighted projective spaces in this way). The quotient
map Ya,b,c → Ya,b,c/S

1 is an example of a Seifert fibration; for more about the
topology of Seifert fibred manifolds, see [55, 83] or Seifert’s appendix to [94].

G.3 Solutions to inline exercises

Exercise G.11 (Example G.9). Show that the Reeb vector field in Example
G.9 is given by

Rα =

(∑
i

∂H

∂pi

∂

∂qi

)/(∑
j

pj
∂H

∂pj

)
.

Solution. We recall that our contact manifold is the level set Y := H−1(c) of a
function H(p, q) which is independent of q. Since Rα has no ∂pj components,
we have dH(Rα) = 0, so Rα is tangent to Y . Next, we have dα = i∗

∑
dpk ∧

dqk, where i is the inclusion of the level set Y . Therefore

ιRαdα =

(∑
k

∂H

∂pk
dpk

)/(∑
j

pj
∂H

∂pj

)
∝ dH,

and dH vanishes on Y . Finally, observe that

ιRαα =

(∑
k

pk dqk

)((∑
i

∂H

∂pi

∂

∂qi

)/(∑
j

pj
∂H

∂pj

))

=

(∑
i

pi
∂H

∂pi

)/(∑
j

pj
∂H

∂pj

)
= 1
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Exercise G.12 (Example G.10). Show that in Example G.10, the Reeb field
is

c−1

(
a
∂

∂q1

+ b
∂

∂q2

)
.

Solution. We have ∂H/∂p1 = a and ∂H/∂p2 = b, so the Reeb field from
Example G.9 becomes(

a
∂

∂q1

+ b
∂

∂q2

)/
(ap1 + bp2) .

SinceH(p, q) = ap1+bp2 = c along Ya,b,c, this is c−1
(
a ∂
∂q1

+ b ∂
∂q2

)
as required.
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Tropical Lagrangian submanifolds

While visible Lagrangians are associated with straight line segments or affine
subspaces in the base of a Lagrangian torus fibration, tropical Lagrangians are
associated with certain piecewise linear subsets (like trivalent graphs). More
precisely, a tropical Lagrangian is an immersed Lagrangian whose image
under the fibration is a small thickening of a tropical subvariety in the base
of the fibration. We will focus on the case of tropical curves.

Mikhalkin [80] and Matessi [72, 73] have given constructions of tropical La-
grangians associated with tropical curves and tropical hypersurfaces respec-
tively. We will focus on the 4-dimensional case where these constructions
coincide, and we will use Mikhalkin’s conventions.

H.1 A Lagrangian pair-of-pants

We consider C∗×C∗ equipped with complex coordinates (z1, z2). We identify
this with R2×T 2 with coordinates (p1, p2) ∈ R2 and (q1, q2) ∈ T 2 = (R/2πZ)2

using the identification
zk = exp(pk + iqk).

Theorem H.1 (Mikhalkin). Let R1, R2, R3 be three rays with rational slope
in the p-plane emanating from the origin, and let v1, v2, v3 be the primitive
integer vectors pointing along these rays. Suppose that the balancing condi-
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tion
v1 + v2 + v3 = 0 (H.1)

holds and that any two of these vectors form a Z-basis for the integer lattice1.
Let L1, L2, L3 be the visible Lagrangian half-cylinders living over R1, R2, R3

and fix ε > 0. Let U := {p : |p| > ε}. There is an embedded Lagrangian
submanifold L ⊆ R2 × T 2, diffeomorphic to the pair-of-pants, such that U ∩
L = U ∩ (L1 ∪ L2 ∪ L3).

Proof. We will focus on the case v1 = (−1, 0), v2 = (0,−1), v3 = (1, 1).
This implies the general case: if v1, v2 is obtained from this basis by an
element of GL(2,Z) then Lemma 2.25 gives us a fibred symplectomorphism
living over this integral affine transformation of the p-plane, and we can
apply this symplectomorphism to the Lagrangian obtained for v1 = (−1, 0),
v2 = (0,−1).

The starting point of the construction is the following exercise.

Lemma H.2 (Exercise H.11). Consider the hyperKähler twist

R2 × T 2 → R2 × T 2, (p1, p2, q1, q2) 7→ (p1, p2,−q2, q1)

If C ⊆ R2 × T 2 is a complex curve with respect to the complex coordinates
zk = epk+iqk then the image of C under the hyperKähler twist is Lagrangian
for the symplectic form

∑
dpi ∧ dqi.

We will apply this lemma to the complex curve C = {z2 = 1 + z1} ⊆
C∗ × C∗. This is diffeomorphic to a pair-of-pants (3-punctured sphere); we
can parameterise it as z 7→ (z, 1 + z) with z ∈ C \ {0,−1}. Let L ⊆ R2 × T 2

be the hyperKähler twist of C. In coordinates, this is given parametrically
by

p1(z) = ln |z| p2(z) = ln |1 + z|
q1(z) = − arg(1 + z) q2(z) = arg(z).

We now write z = reiθ and see what happens as r → 0. We have limr→0 p2(z) =
ln(1) = 0 and limr→0 q1(z) = − arg(1) = 0 mod 2π. This means that near
the puncture 0, our Lagrangian L is asymptotic to the cylinder

L1 := {(p1, 0, 0, q2) : p1 < 0, q2 ∈ [0, 2π]},
1These three vectors form what Conway [21] calls a superbase.
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which is a visible Lagrangian cylinder associated to the negative p1-axis (note
that limr→0 p1(z) = −∞). We write R1 for the negative p1-axis. A similar
analysis near the punctures z → −1 and z →∞ shows that L has asymptotes
along the visible Lagrangian cylinders

L2 := {(0, p2, q1, 0) : p2 < 0, q1 ∈ [0, 2π]},
L3 := {(p, p, q,−q) : p > 0, q ∈ [0, 2π]}

associated to the rays R2 and R3 shown in Figure H.1.

R3

R1

R2

K1

K2

Figure H.1: (a) The projection of L to the p-plane. (b) L is asymptotic to
the visible Lagrangians cylinders L1, L2, L3 which live over the three rays
shown. We modify it outside the region K1 so that it coincides with these
visible Lagrangians outside K2.

Given 0 < k1 < k2, define the compact regions Ki = {p2
1 + p2

2 ≤ ki}, i = 1, 2,
and let Ui = (C∗ × C∗) \ Ki be their complements. We will modify L to
obtain a Lagrangian pair-of-pants L′ with

K1 ∩ L′ = K1 ∩ L and U2 ∩ L′ = U2 ∩ (L1 ∪ L2 ∪ L3).

We will explain this modification for the puncture asymptotic to L1; the
other cases are similar. We can identify a neighbourhood of L1 with a neigh-
bourhood of the zero-section in T ∗L1. More precisely, we think of p1 = ln r
and q2 = θ as coordinates on the cylinder and −q1 and p2 as dual momenta2.

From Figure H.2, you can extract equations for our section:

q1 = − arctan

(
ep1 sin q2

1 + ep1 cos q2

)
p2 =

1

2
ln(1 + 2ep1 cos q2 + e2p1),

2The symplectic form is −dq1 ∧ dp1 + dp2 ∧ dq2. Because q1 is circle-valued, the iden-
tification of q1 with a coordinate on the fibre of T ∗L1 only makes sense if q1 ≈ 0.
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•
0

•
1

×z + 1

q2

ep1

−q1

ep2

Figure H.2: Geometric picture behind formulae for q1 and p2.

defined on the subset p1 < − ln 2. In other words, it is the graph of the
1-form

β :=
1

2
ln(1 + 2ep1 cos q2 + e2p1)dp1 + arctan

(
ep1 sin q2

1 + ep1 cos q2

)
dq2.

This 1-form is closed (this is equivalent to the Lagrangian condition, but
you can also check it directly by differentiating), but it is also exact: the
obstruction to exactness3 is the integral

∫
β around the loop p1 = 0, q2 ∈

[−π, π], i.e.4 ∫ π

−π
arctan

(
sin q2

1 + cos q2

)
dq2 = 0.

Exactness means there is a function ϕ(p1, q2) such that β = dϕ. Pick ε > 0
and let ρ(p1) be a cut-off function equal to 0 for p1 ≤ − ln 2 − ε and equal
to 1 for − ln 2 + ε ≤ p1. If we take k1 = (ln 2 − ε)2 and k2 = (ln 2 + ε)2 and
define K1, K2 as above, then the Lagrangian cylinder given by the graph of
d(ρϕ) coincides with the cylinder L1 outside K2 and coincides with L in the
compact region K1.

We perform a similar modification near each of the three punctures. The
result is a Lagrangian pair-of-pants which coincides with the three Lagrangian
cylinders L1, L2, and L3 outside the compact set K2. This does not quite
prove Theorem H.1, because we cannot take K2 arbitrarily small in this
construction. However, notice that the radial vector field in the p-plane is
a Liouville vector field, by Lemma G.4. Our visible Lagrangian cylinders
L1, L2, L3 are preserved by the flow of this Liouville field, and if we flow L
backwards along this Liouville field, we ensure that it agrees with L1, L2, L3

3on the cylindrical end p1 < − ln 2 whose de Rham cohomology has rank 1.
4This integral vanishes because the integrand is an odd function.
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on a larger and larger region (Figure H.3). This completes the proof of
Theorem H.1.

R3

R1

R2

Figure H.3: We can find a Lagrangian whose projection to the p-plane is
arbitrarily close to R1∪R2∪R3 by flowing backwards along a Liouville field.

H.2 Immersed Lagrangians

Now suppose that in the statement of Theorem H.1, the primitive vec-
tors v1, v2, v3 still satisfy the balancing condition v1 + v2 + v3, but that
each pair fails to form a Z-basis for Z2. If we write the matrix M whose
rows are v1 and v2 then applying this matrix (on the right) gives an in-
teger matrix sending (1, 0) and (0, 1) to v1 and v2 respectively. This map
is not induced by a symplectic map R2 × T 2 → R2 × T 2, but it is in-
duced by a holomorphic covering map h : C∗ × C∗ → C∗ × C∗ of degree
det(M), namely h(exp(p + iq)) = exp(pM + iqM). The hyperKähler twist
of h(C) is another Lagrangian submanifold with three punctures asymptotic
to Lagrangian cylinders living over the rays pointing in the v1-, v2-, and v3-
directions. As in Theorem H.1, we can modify this Lagrangian so that it
actually coincides with these Lagrangian cylinders outside a compact set.

The main difference is that the resulting Lagrangian pair-of-pants is not
embedded: it is only immersed.

Example H.3. Consider the case v1 = (2,−1), v2 = (−1, 2). We have

h(z1, z2) = (z2
1/z2, z

2
2/z1).
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A self-intersection of h(C) corresponds to a pair of points ξ, ξ′ ∈ C \ {0,−1}
with h(ξ, ξ+1) = h(ξ′, ξ′+1). In this case, we can show there is precisely one
self-intersection. Suppose that ξ and ξ′ are distinct solutions to h(z, z+ 1) =
(u, v) for some u, v ∈ C∗. Then the quadratic equations

z2 = u(z + 1), (z + 1)2 = vz

have ξ and ξ′ as roots. But then ξ + ξ′ = −u = v − 2 and ξξ′ = −u = 1. In
particular, u = −1 and v = 3 and ξ, ξ′ are roots of z2 + z+ 1, so ξ and ξ′ are
−1±i

√
3

2
. Thus there is precisely one self-intersection at (−1, 3).

Write |v ∧ w| for the absolute value of the determinant of the 2-by-2 matrix
whose rows are v and w. In Example H.3, we have |v1 ∧ v2| = 3.

Theorem H.4. Let ∆ be the absolute value of the determinant of the matrix
whose rows are v1 and v2. The number of self-intersections of the Lagrangian
pair-of-pants is δ = ∆−1

2
.

Remark H.5 (Exercise H.13). If v1, v2, v3 are primitive integer vectors with
v1 + v2 + v3 = 0 then |vk ∧ v`| is an odd number and is independent of k, `.

We will not prove Theorem H.4, and refer the interested reader to [80, Corol-
lary 4.3]. We leave the following related lemma as an exercise:

Lemma H.6 (Exercise H.14). Suppose we have several straight lines of ra-
tional slope in R2 incident on a point b ∈ B. Let v1, . . . , k be primitive integer
vectors pointing along these lines. Show that the visible Lagrangian cylinders
above these lines have a total of δ(b) transverse intersections, where

δ(b) =
∑
i<j

|vi ∧ vj|.

H.3 Lagrangians from tropical curves

We have already seen how to construct Lagrangian submanifolds living over
straight lines of rational slope. Provided we are willing to allow pinwheel
core and Schoen-Wolfson singularities, these straight lines are allowed to
terminate on the toric boundary. Thanks to Lemma 6.15, we also have
visible Lagrangian discs terminating on base-nodes of almost toric fibrations,
providing they live over eigenlines. Now, courtesy of Theorem H.1 we have
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immersed Lagrangian pairs-of-pants living over trivalent vertices satisfying
the balancing condition (H.1). Since this pair-of-pants coincides with the
three visible Lagrangian cylinders over the edges of the graph (except in a
small neighbourhood of the vertex), we can combine all of these constructions
to get a Lagrangian submanifold (possibly singular and immersed) living over
a trivalent graph whose edges have rational slope and whose vertices satisfy
the balancing condition (H.1). These graphs are called tropical curves and
the associated Lagrangians are called tropical Lagrangians. In summary, a
tropical Lagrangian is made up of:

• an immersed pair-of-pants over every trivalent vertex b of the graph
(with δ(b) self-intersections),

• a visible Lagrangian cylinder over every edge,

• a (p, q)-pinwheel core over every point where an edge terminates on an
edge of the almost toric base diagram,

• a disc or Schoen-Wolfson cone over every point where an edge termi-
nates at a vertex of the almost toric base diagram,

• a disc over every base-node at which an edge terminates, providing
the edge points in the eigendirection for the affine monodromy of the
base-node.

Rather than writing this carefully and formally, it is easier to explain in some
examples.

Example H.7. Consider the tropical curve shown in Figure H.4(a). The
three corners are all Z-affine equivalent; for example, if we think of the triva-

lent point as the origin then the matrix
〈
−1 1
−1 0

)
sends the top vertex to

the bottom left and preserves the tropical curve. The bottom left corner is
the local model from Example 5.9, so the three corners give us visible La-
grangian discs with which to cap off the Lagrangian pair-of-pants coming
from the 3-valent point. The outgoing vectors at the 3-valent point are:

v1 = (−1,−1), v2 = (2,−1), v3 = (−1, 2)

so |v1 ∧ v2| =

∣∣∣∣det

(
−1 −1
2 −1

)∣∣∣∣ = 3, so the δ-invariant is (3 − 1)/2 = 1.

This tropical Lagrangian is therefore an immersed sphere in CP2 with one
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(a)•

•

•

•

•

•

•

•

•

• (b) ••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Figure H.4: (a) A tropical Lagrangian immersed sphere in CP2. (b) An
embedded Lagrangian torus.

transverse double point.

Example H.8. Consider the tropical curve shown in Figure H.4(b). The
corners are all the same as in Example H.7. The trivalent vertices all have δ =
1, so the result is an embedded Lagrangian. By inspection, it is topologically
a torus.

Example H.9 (Exercise H.12). Nemirovski and Shevchishin proved, inde-
pendently and in very different ways, that there is no embedded Lagrangian
Klein bottle in CP2. Why is Figure H.5 not a counterexample to their theo-
rem?

Example H.10. The almost toric base diagrams in Figure H.6 represent
blow-ups of the standard symplectic ball in three smaller balls, where the
symplectic areas of the exceptional spheres after blowing up are a, b and c
(you can get these diagrams by performing one toric blow-up at the origin
and two non-toric blow-ups and changing branch cuts). In Figure H.6(a),
the tropical Lagrangian associated with the tropical curve is a Lagrangian
RP2 representing the Z/2-homology class E1 + E2 + E3, meeting the toric
boundary along a (2, 1)-pinwheel core (Möbius strip). In Figure H.6(b), the
tropical Lagrangian is a disc with boundary on the left-hand toric boundary.
Shevchishin and Smirnov [98] showed that the Z/2-homology class E1 +E2 +
E3 can be represented by a Lagrangian RP2 if and only if the symplectic
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Figure H.5: Another tropical Lagrangian in CP2.

triangle inequalities hold:

a < b+ c, b < c+ a, c < a+ b.

Whenever these inequalities hold (e.g. Figure H.6(a)), the tropical curve mod-
elled on this tripod furnishes us with a Lagrangian RP2, and whenever they
fail, it furnishes us with a disc. For more tropical discussions along these
lines, see [33].

H.4 Solutions to inline exercises

Exercise H.11 (Lemma H.2). Consider the hyperKähler twist

R2 × T 2 → R2 × T 2, (p1, p2, q1, q2) 7→ (p1, p2,−q2, q1)

If C ⊆ R2 × T 2 is a complex curve with respect to the complex coordinates
zk = epk+iqk then show that the image of C under this hyperKähler twist is
Lagrangian for the symplectic form

∑
dpi ∧ dqi.

Solution. Let z = x + iy be a local complex coordinate on C and suppose
(p1(z), p2(z), q1(z), q2(z)) is a local parametrisation of C, holomorphic with
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×

×

c

c

a

b

×
×

c

c

a

b

Figure H.6: Two almost toric blow-ups of a symplectic ball in three smaller
balls (Example H.10). (a) The symplectic triangle inequalities hold, and
we find a tropical Lagrangian RP2. (b) The symplectic triangle inequalities
fail and we find a tropical Lagrangian disc instead. (Figure taken from [33,
Figure 1]).

respect to the complex coordinates zk = epk+iqk Since (any branch of) the
logarithm is holomorphic, this is equivalent to the Cauchy-Riemann equations

∂pk
∂x

=
∂qk
∂y

,
∂pk
∂y

= −∂qk
∂x

, for k = 1, 2.

After applying the twist, we get a submanifold which satisfies

∂p1

∂x
=
∂q2

∂y
,

∂p1

∂y
= −∂q2

∂x
,

∂p2

∂x
= −∂q1

∂y
,

∂p2

∂y
=
∂q1

∂x
.

This means that if ∂x pushes forward along the twisted embedding to (a, b, c, d)
then ∂y pushes forward to (−d, c,−b, a), and

ω((a, b, c, d), (−d, c,−b, a)) = −ab+ cd+ ab− cd = 0,

so this twisted embedding is Lagrangian.

Exercise H.12 (Example H.9). What is the tropical Lagrangian in Figure
H.5?

Solution. Where the tropical curve meets the corner and edges, it gives us a
Lagrangian disc and two Lagrangian Möbius strips. These are used to cap
off the pair-of-pants coming from the trivalent vertex. Therefore this tropical
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Lagrangian is an immersed Klein bottle . The number of transverse double
points is given by the δ-invariant of the trivalent vertex. The outgoing vectors
at this point are:

v1 = (−2, 3), v2 = (3,−2), v3 = (−1,−1),

so |v1 ∧ v2| =

∣∣∣∣det

(
−2 3
3 −2

)∣∣∣∣ = 5 and δ = (5 − 1)/2 = 2. Therefore this

Klein bottle has two double points.

Exercise H.13 (Remark H.5). If v1, v2, v3 are primitive integer vectors with
v1 + v2 + v3 = 0 then |vk ∧ v`| is an odd number and is independent of k, `.

Solution. If we switch the rows v1 and v2 then we just change the sign of
the determinant. If we replace v2 by v3 then the balancing condition means
v3 = −v1 − v2, so

|v1 ∧ v3| = |v1 ∧ (v1 + v2)| = |v1 ∧ v2|.

Similarly the result is unchanged if we replace v1 by v3.

To see that it is odd, write v1 = (a, b) and v2 = (c, d). Suppose for contra-
diction that |v1 ∧ v2| = |ad− bc| is even. We claim that a, b, c, d are then all
odd. This will give a contradiction because it implies v3 = (−a− c,−b− d)
is divisible by 2 and so not primitive.

To prove that |ad − bc| even implies a, b, c, d are all odd, suppose that a is
even (a similar argument works for b, c, d). Then ad− bc = 0 mod 2 implies
that either b or c is even. But if a is even then b is odd by primitivity of v1,
so c is even. This means d is odd. But then v3 = (−a− c,−b− d) has both
components even, which contradicts primitivity.

Exercise H.14 (Lemma H.6). Suppose we have several straight lines of ra-
tional slope in R2 incident on a point b ∈ B. Let v1, . . . , k be primitive integer
vectors pointing along these lines. Show that the visible Lagrangian cylinders
above these lines have a total of δ(b) transverse intersections, where

δ(b) =
∑
i<j

|vi ∧ vj|.

Solution. If vj = (mj, nj) for j = 1, . . . , j then the visible Lagrangian cylin-
ders intersect the fibre over b in the circles (in R2/Z2) with slopes (−ni,mi).
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The number of intersections between two of these circles is |m2n1 −m1n2|.
Summing this over pairs of circles gives δ(b).

Figure H.7: Intersections between visible Lagrangian cylinders in the fibre
over a point where their projections meet.

For example, suppose the lines have slopes 1 and −1. Then the circles in
the fibre have slopes −1 and 1 respectively. If we draw these as lines in
the square with opposite sides identified (see Figure H.7), we see that these
intersect twice.



Appendix I

Markov triples

I.1 The Markov equation

The Diophantine equation

a2 + b2 + c2 = 3abc

is called the Markov equation. It occurs in the theory of Diophantine approx-
imation and continued fractions [12], the theory of quadratic forms [12], the
study of exceptional collections [90], the hyperbolic geometry of a punctured
torus [96], in governing the Q-Gorenstein degenerations of CP2 [71, 51], and
elsewhere; a wonderful exposition can be found in Aigner’s book [2]. A triple
of positive integers solving Markov’s equation is called a Markov triple.

Lemma I.1. If a, b, c is a Markov triple then so is a, b, 3ab− c.

Proof. Fix a and b and consider the quadratic function f(x) := x2 − 3abx+
a2 + b2. This quadratic has c as a root: f(c) = 0. A quadratic equation
x2 + βx+ γ = 0 has two roots (counted with multiplicity) which sum to −β.
In our case, β = −3ab, so this means that 3ab−c is another root. To see that
both roots are positive, note that f(0) = a2 + b2 > 0 and f ′(0) = −3ab < 0.
This means that f(x) > 0 for all x < 0 (see Figure I.1) so there are no
negative roots.

This material has been/will be published by Cambridge University Press as Lectures on
Lagrangian Torus Fibrations by Jonny Evans. This pre-publication version is free to
view and download for personal use only. Not for re-distribution, re-sale, or use in
derivative works.
c© Jonny Evans 2018–2023.
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•

Figure I.1: The graph of f when a = b = 1. Positive y-intercept and negative
gradient at x = 0 ensures both roots are positive.

Definition I.2. The operation of replacing the Markov triple (a, b, c) with
(a, b, 3ab−c) is called a mutation on c. The graph whose vertices are Markov
triples and whose edges connect triples related by a mutation is called the
Markov graph. In fact, this graph is a connected tree and we will usually
refer to it as the Markov tree.

Theorem I.3. The Markov graph is connected.

Proof. Suppose we are given a Markov triple (a, b, c) with c > a, b. Perform
a mutation on the largest element c. This decreases the value of the largest
element (Lemma I.4 below). If there is still a unique largest element, repeat
this procedure. Since the values in the triple are decreasing, but always
positive, this process terminates, and we find a Markov triple with a repeated
largest element. The only triple with a repeated largest element is (1, 1, 1)
(Lemma I.5 below). This shows that the graph is connected.

Lemma I.4. Let a, b, c be a Markov triple with a ≤ b ≤ c. Then b lies in the
closed interval between c and 3ab − c. If a < b then b lies in the interior of
this interval. In particular, if b < c then 3ab− c ≤ b.

Proof. If f(x) = x2 − 3abx + a2 + b2 then f(b) = b2 − 3ab2 + a2 + b2 =
(2− 3a)b2 + a2 ≤ a2 − b2 ≤ 0. This means that b lies in the region between
the two roots of f , and strictly between if a2− b2 < 0. These roots are c and
3ab− c.
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(1, 1, 1) (1, 1, 2)

(1, 5, 2)

(5, 1, 2)

(1, 2, 1)

(1, 2, 5)

(5, 2, 1)

(2, 1, 1)(2, 1, 5)

(2, 5, 1)

Figure I.2: A small part of the Markov tree (dashed lines indicate it contin-
ues). The arrows are explained in Lemma I.7.

Lemma I.5. The only Markov triple with no unique largest element is (1, 1, 1).

Proof. If (a, b, c) is a Markov triple with a ≤ b = c then substituting b = c in
the Markov equation gives a2 + 2b2 = 3ab2, or a2 = (3a− 2)b2. Since a ≥ 1,
3a − 2 ≥ 1 and hence a2 ≥ b2. Since a ≤ b, we get a = b = c. The Markov
equation now reduces to a2 = (3a−2)a2, so 3a−2 = 1 and a = b = c = 1.

Remark I.6. We briefly recall the definition of a tree. A path in a graph is a
sequence of oriented edges such that the endpoint of edge i is the start-point
of edge i+ 1 for all i. A path is non-simple if the sequence of edges contains
a subsequence of the form eē where e is an edge and ē is the same edge with
the opposite orientation. Otherwise, a path is called simple. A graph is a
tree if any pair of vertices can be connected by a unique simple path.

Lemma I.7. The following prescription defines a global choice of orienta-
tions on the edges of the Markov graph. If an edge connects two triples
(a, b, c) and (a, b, 3ab − c) then orient it so that it points towards the triple
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whose maximal element is smaller. For example (1, 1, 2)→ (1, 1, 1).

Proof. To show this is well-defined, we need to show that the maximal ele-
ments in (a, b, c) and (a, b, 3ab − c) are different (otherwise there is no way
to decide the orientation of the edge). Without loss of generality, suppose
a ≤ b and c < 3ab − c. Lemma I.4 tells us that c ≤ b ≤ 3ab − c. Therefore
max(a, b, c) = b and max(a, b, 3ab − c) = 3ab − c. The only problem is if
b = 3ab − c. This is only possible if b = a by Lemma I.4, but in this case
the triple (a, b, c) has a repeated maximum a = b, so (a, b, c) = (1, 1, 1) and
all the neighbouring triples are permutations of (1, 1, 2), so it is clear how to
orient the graph around this vertex.

Remark I.8. The vertex (1, 1, 1) has three incoming edges. The proof of
Lemma I.7 shows that every other vertex has two incoming edges (corre-
sponding to mutations on the smaller elements of the triple) and one outgoing
edge (corresponding to mutation on the largest element).

Theorem I.9. The Markov graph is a tree.

Proof. We have seen that the Markov graph is connected. It remains to
show that two triples can be connected by a unique simple path. Orient the
Markov graph according to Lemma I.7. We call a path downwards if it follows
the orientation. The proof of Theorem I.3 can be interpreted as saying that
there is a unique downwards path from every vertex to (1, 1, 1). Define the
height of a triple to be the length of this unique downwards path. Similarly,
we can define the height of an edge to be the height of its start-point.

Fix two Markov triples t1 and t2. Follow the paths down from t1 and from
t2. Eventually these paths meet up at a vertex (this could be at (1, 1, 1) or
somewhere higher up). Let m be the first vertex where these paths meet; we
get a simple path P by going down from t1 to m and then up from m to t2.

Suppose there is another simple path, Q. If P 6= Q then there is an edge in
Q which does not appear in P . Amongst the edges of Q which do not appear
in P , let ei be one which maximises height. There are three possible cases,
each leading to a contradiction:

• Suppose ei = e1 is the first edge in Q. Since it is not in P , it cannot
be the downward arrow from t1, so it must go up. Since it is a highest
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edge, the next edge e2 must return along ē1 as there is only one way
down. This contradicts the fact that Q is simple.

• A similar argument applies when ei is the final edge in Q.

• If ei is neither the first nor last edge in Q then there are edges ei−1

and ei+1 adjacent in the path. At least one of these must start at the
highest point of ei. Since it cannot go higher, it must be ēi, which
contradicts the assumption that Q is simple.

Therefore there is a unique simple path between two vertices and the Markov
graph is a tree.

I.2 Triangles

A Vianna triangle is an almost toric diagram whose edges are v1, v2, v3 with
affine lengths `1, `2, `3 and whose vertices P1, P2, P3 are modelled on the T -
singularities 1

dkp
2
k
(1, dkpkqk − 1) for k = 1, 2, 3. The relative orientations and

positions of the edges and vertices are shown below. We call the numbers
dk, pk, qk, `k, k = 1, 2, 3, the Vianna data of the triangle.

•

•

•

v1

v2

v3

P1

P2

P3

Our indices take values in the cyclic group Z/3.

Lemma I.10. If v̂k denotes the primitive integer vector along vk and `k
denotes the affine length of vk then we have the following relation1:

v̂k ∧ v̂k+1 = dk+2p
2
k+2.

Proof. Since the vertex Pk+2 is modelled on the moment polygon of the
1

dk+2p
2
k+2

(1, dk+2pk+2qk+2 − 1) singularity, there is an integral affine transfor-

1Recall that (a, b) ∧ (c, d) := ad− bc.
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mation making v̂k = (0,−1) and v̂k+1 = (dk+2p
2
k+2, dk+2pk+2qk+2 − 1). Thus

v̂k ∧ v̂k+1 = (0,−1) ∧ (dk+2p
2
k+2, dk+2pk+2qk+2 − 1) = dk+2p

2
k+2.

Corollary I.11. We have

`1`2d3p
2
3 = `2`3d1p

2
1 = `3`1d2p

2
2.

Proof. Since v1 + v2 + v3 = 0, we get

0 = (v1 + v2 + v3) ∧ vk = vk−1 ∧ vk + 0 + vk+1 ∧ vk = vk−1 ∧ vk − vk ∧ vk+1.

The quantity vk ∧ vk+1 is therefore independent of k. Since vk = `kv̂k and
vk+1 = `k+1v̂k+1, the previous lemma implies this is `k`k+1dk+2p

2
k+2.

Definition I.12. We write K for the common value `k`k+1dk+2p
2
k+2 and L

for the total affine length `1 + `2 + `3.

Corollary I.13. We have `k = pk
pk+1pk+2

√
Kdk

dk+1dk+2
.

Proof. For concreteness, take k = 3. By Corollary I.11, We have

`1 =
K

`3d2p2
2

, `2 =
K

`3d1p2
1

, `1`2d3p
2
3 = K,

so
K2d3p

2
3

`2
3d1d2p2

1p
2
2

= K,

which gives `2
3 = (Kd3/d1d2)(p2

3/p
2
1p

2
2) as required.

Corollary I.14. We have

d1p
2
1 + d2p

2
2 + d3p

2
3 =

L
√
d1d2d2√
K

p1p2p3.

Proof. This follows from Corollary I.13 and the fact that `1 +`2 +`3 = L.

We will now prove a sequence of lemmas to show that the constants K and
L are unchanged by mutation.

Lemma I.15. The eigenline at vertex Pk+2 points in the direction v̂k+1−v̂k
dk+2pk+2

.
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Proof. Again, making an integral affine transformation we can assume v̂k =
(0,−1) and v̂k+1 = (dk+2p

2
k+2, dk+2pk+2qk+2 − 1). In these coordinates, the

eigenline points in the (pk+2, qk+2)-direction. which is (v̂k+1 − v̂k)/dk+2pk+2.

Lemma I.16. If we perform a mutation on the vertex P3 then we obtain a
new Vianna triangle with data (omitting the qk’s):

d′1 = d1, d′2 = d2, d′3 = d3

p′1 = p1, p′2 = p2, p′3 = (dp2
1 + d2p

2
2)/d3p3

`′1 =
`3d2p

2
2

d1p2
1 + d2p2

2

, `′2 =
`3d1p

2
1

d1p2
1 + d2p2

2

, `′3 = `1 + `2.

Proof. When we mutate, a new vertex is introduced at the point P ′3 where
the edge v3 intersects the eigenline emanating out of P3 in the v̂2−v̂1

d3p3
direction.

We find the new p′3 by taking v̂2−v̂1

d3p3
∧ v̂3, which gives

p′3 =
1

d3p3

(v̂2 ∧ v̂3 − v̂1 ∧ v̂3) =
d1p

2
1 + d2p

2
2

d3p3

.

This intersection point P ′3 lives on the line joining P1 and P2. If we choose
coordinates where P3 is the origin, P1 and P2 are the vectors v2 and −v1

respectively. Let s ∈ [0, 1] be the number such that P3 = −sv1 + (1 − s)v2.
This lives on the eigenline, so can be written as t(v̂2− v̂1) for some t. Since v1

and v2 are linearly independent, we deduce that −sv1 = −tv̂1 and (1−s)v2 =
tv̂2. Eliminating t gives s/(1 − s) = `2/`1. We have `2/`1 = d2p

2
2/d1p

2
1 by

Corollary I.13, so we get s =
d2p2

2

d1p2
1+d2p2

2
. Thus P ′3 =

d1p2
1v2−d2p2

2v1

d1p2
1+d2p2

2
. The vector

from P1 = v2 to P ′3 is therefore − d2p2
2

d1p2
1+d2p2

2
(v1 + v2) =

d2p2
2

d1p2
1+d2p2

2
v3. Thus,

the edge v3 is subdivided so that its affine length `3 is split in the ratio
d1p

2
1 : d2p

2
2.

Corollary I.17. The common value `1`2d3p
2
3 = `2`3d1p

2
1 = `3`1d2p

2
2 is un-

changed by mutation at P3 (or, by symmetry, any other vertex). Similarly,
the sum `1 + `2 + `3 is unchanged by mutation.

Proof. We compute the value `′1`′2d′3(p′3)2 after mutation:

`′1`
′
2d
′
3(p′3)2 =

`3d2p
2
2 · `3d1p

2
1

(d1p2
1 + d2p2

2)2
d3

(
d1p

2
1 + d2p

2
2

d2p3

)2

=
`2

3d1p
2
1d2p

2
2

d3p2
3

.
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By Corollary I.11, `3d1p
2
1 = `1d3p

2
3 and `3d2p

2
2 = `2d3p

2
3, so this reduces to

`1`2d3p
2
3, which is the same as before mutation.

The sum of the affine lengths after mutation is

(`1 + `2) +
`3d2p

2
2

d1p2
1 + d2p2

2

+
`3d1p

2
1

d1p2
1 + d2p2

2

= `1 + `2 + `2.

Example I.18 (Proof of Theorem 8.21). The triangle D(1, 1, 1) in Figure
I.3 is a Vianna triangle with data d1 = d2 = d3 = 1, p1 = p2 = p3 = 1 and
`1 = `2 = `3 = 3. This has K = 9 and L = 9, so Corollaries I.14 and I.17 tell
us that if D is obtained from D(1, 1, 1) by iterated mutation and has Vianna
data dk, pk, `k then

p2
1 + p2

2 + p2
3 = 3p1p2p3

and `k = 3pk/(pk+1pk+2). Moreover, if we write D(p1, p2, p3) for the triangle
associated with the Markov triple p1, p2, p3, mutation at vertex 3 gives the
Markov triple p1, p2, p

′
3 = 3p1p2 − p3. One can check this from the formulas,

or simply observe that this mutation leaves p1 and p2 unchanged, and there
are only two Markov triples containing both p1 and p2.

×

××

3

21

Figure I.3: The almost toric diagram D(1, 1, 1). The edges all have affine
length 3.



Appendix J

Open problems

In the preface, I mentioned that this book is intended to give you the tools
to explore further in symplectic geometry. In this final appendix, you will
find a handful of open1 problems which you might like to explore. These
are some of my pet problems: not particularly venerable or widely known,
but they have intrigued and frustrated me over the years. The first few are
hopefully purely “combinatorial” or geometric in that they should not require
any Floer theory to solve. Some will probably require Floer theory, and I
have not hesitated to use terminology from beyond this book in discussing
these problems, because you will need to learn it to solve them.

J.1 Mutation of quadrilaterals

Problem J.1. Which quadrilaterals arise as mutations of a square? Or a
rectangle? For a rectangle, how does the ratio of the side-lengths affect the
answer?

It is easy to generate such quadrilaterals by iterated mutation, but I know
of no succinct description of this class of quadrilaterals analogous to the
Markov-triple description of mutants of the CP2 triangle.

1at the time of writing.

This material has been/will be published by Cambridge University Press as Lectures on
Lagrangian Torus Fibrations by Jonny Evans. This pre-publication version is free to
view and download for personal use only. Not for re-distribution, re-sale, or use in
derivative works.
c© Jonny Evans 2018–2023.
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J.2 Fillings of lens spaces

Equip the lens space L(n, a) with its standard contact structure. It is known
that L(n, a) has a filling with second Betti number zero if and only if n = p2

and a = pq − 1 for some coprime integers p, q; moreover, such a filling is
unique up to symplectomorphism. It is also known ([52, Theorem 4.3],
[109, Theorem 2.8]) that L(n, a) admits at most two fillings (up to defor-
mation/symplectomorphism) with b2 = 1. For example, in Remark 9.8 we
saw that L(36, 13) admits two non-diffeomorphic fillings.

Problem J.2. Characterise which (standard contact) lens spaces admit pre-
cisely two symplectic fillings with b2 = 1.

This is a purely combinatorial problem, thanks to Lisca’s classification. Again,
it is easy to generate examples (even infinite families of examples) and there
are many tantalising patterns, but I do not know a complete answer. These
examples arise very naturally in the context of algebraic geometry; the papers
[108] and [109] have many examples of surfaces of general type containing a
lens space hypersurface which are related (topologically) by the surgery which
interchanges the two fillings. Urzúa and Vilches [109] call these wormholes
in the moduli space of surfaces.

J.3 Minimal genus problem

Let (X,ωλ) be the symplectic manifold S2 × S2 with a product symplectic
form giving the factors areas 1 and λ. Let β ∈ H2(S2 × S2;Z/2) be the
homology class of S2 × {pt}.

Problem J.3. As a function of λ, what is the minimal genus of a (nonori-
entable) embedded Lagrangian submanifold inX inhabiting the Z/2-homology
class β? Is this genus uniformly bounded in λ?

Here, the genus of the nonorientable surface ]mRP2 is defined to be m. One
can find [33] explicit tropical Lagrangians in this homology class whose genus
goes to infinity withm, and it seems difficult (to me) to do significantly better
than this with tropical Lagrangians.

Proving a lower bound on the minimal genus will be difficult and most likely
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require techniques of Floer theory, but you can give an upper bound just by
constructing examples.

Obviously this problem admits many generalisations (just pick a different
manifold X) but this seems to be the simplest version which is open.

J.4 Nodal slides in higher dimensions

In this book, we focused on symplectic 4-manifolds fibring over 2-dimensional
integral affine bases. Almost toric fibrations make sense in higher dimensions
too, and the discriminant locus has codimension 2. For example, if the base
is 3-dimensional then the discriminant locus will be some kind of knotted
graph.

A nodal slide is a kind of isotopy of the discriminant locus. If the base is
2-dimensional, you can usually slide base-nodes out of the way of another
sliding node2 which gives great flexibility in constructing and modifying La-
grangian torus fibrations. But in dimension 3, this is no longer true: in a
generic 1-parameter family of Lagrangian torus fibrations, you expect a dis-
crete set of fibrations where the discriminant locus fails to be embedded. It
is not clear how to continue the nodal slide beyond this point.

Problem J.4. Is there a theory of nodal slides in dimension 3? If the
discriminant locus hits itself at some point along the slide, can we modify
the fibration to allow the discriminant locus to pass through itself?

See the work of Groman and Varolgunes [43] for a different and enlightening
perspective on nodal slides.

J.5 Lagrangian rational homology spheres

Lagrangian submanifolds L with H1(L;R) = 0 are “rigid” in the sense that
any family of Lagrangian submanifolds Lt with L0 = L come from a Hamilto-
nian isotopy in the sense that Lt = φHtt (L) for some time-dependent Hamil-

2unless their eigenlines are collinear, in which case they can harmlessly slide over one
another anyway because the vanishing cycles can be made disjoint.
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tonian Ht. If L is 3-dimensional then H1(L;R) = 0 if and only if L is a
rational homology sphere, that is H∗(L;Q) ∼= H∗(S3;Q).

In CP3, we have two well-known Lagrangian rational homology spheres: RP3

and the Chiang Lagrangian (see [18, 34, 103]).

Problem J.5. Are there any other Lagrangian rational homology 3-spheres
in CP3?

Konstantinov [60] used Floer theory to give strong restrictions on which
homology spheres could occur. Namely, in [60, Corollary 3.2.12], he showed
that the only possibility is that L is a quotient of S3 by a finite subgroup of
SO(4) which is either cyclic of order 4k for some k ≥ 1 or else isomorphic
to a product D2k(2n+1) × Cm where k ≥ 2, n ≥ 1, gcd(2k(2n + 1),m) = 1
and D` is the dihedral group of order `. The case D12 × C1 is the Chiang
Lagrangian.

Ruling the other cases out would probably require Floer theoretic machinery,
but maybe one can construct examples using tropical techniques: Mikhalkin’s
theory works for tropical curves in any dimension. In particular, Mikhalkin
has a construction of a Chiang-like Lagrangian [80, Example 6.20] and he
raises Problem J.5 as [80, Question 6.22].

J.6 Disjoint pinwheels

Evans and Smith [36] showed that one can find at most three pairwise-
disjointly embedded Lagrangian pinwheels in CP2. The argument is some-
what convoluted and mysterious; in particular, we first showed that any triple
of disjoint pinwheels satisfy Markov’s equation, and then deduced from this
that there can be at most three. Since we do not know what the analogue of
the Markov equation should be for other Del Pezzo surfaces like S2 × S2, it
is not clear how to generalise the result.

Our result was inspired by a theorem of Hacking and Prokhorov [51] which
bounded the number of cyclic quotient singularities on a singular degenera-
tion of CP2. Prokhorov has a more general bound for the number of cyclic
quotient singularities in a Q-Gorenstein degeneration of a Del Pezzo surface
in terms of the Picard rank ρ of the singular fibre (there should be at most
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ρ+2). This in turn is bounded above by the rank of the quantum cohomology
of the smooth fibre, which motivates the following question:

Problem J.6. Let X be a monotone symplectic 4-manifold with semisimple
quantum cohomology3 and let r be the rank of its quantum cohomology.
Is it true that there are at most r pairwise-disjointly embedded Lagrangian
pinwheels in X?

Upper bounds like this hold for pairwise-disjointly embedded Lagrangian
submanifolds whose Floer cohomology is non-vanishing over some field when
the quantum cohomology is semisimple over that field, see [32, Theorem 1.25],
[93, Theorem 1.3]. However, Lagrangian pinwheels do not have well-defined
Floer cohomology, and even if they did it would be likely that one must work
over fields of different characteristics to get well-defined Floer cohomology
(even to get a fundamental class). Perhaps one can make some headway
using recent developments in relative symplectic cohomology due to McLean
[79], Varolgunes [113], and Venkatesh [114]?

J.7 Pinwheel content and deformations of ω

Given a symplectic 4-manifold (X,ω), define its pinwheel content to be the
set of pairs (p, q) such that some neighbourhood of the Lagrangian pinwheel
in B1,p,q embeds symplectically in X. Combining Problems J.1, J.3 and J.6,
we can ask how the pinwheel content depends on the cohomology class of
ω. The simplest example is X = S2 × S2 with the symplectic form ωλ
giving the factors areas 1 and λ. For λ < 2, it is possible to construct a
symplectically embedded B1,3,1 ⊆ X: this becomes visible after mutating the
standard moment rectangle (see Figure J.1(a)). For λ ≥ 2, this construction
fails (Figure J.1(b)).

Problem J.7. Is there a symplectically embedded B1,3,1 ⊆ S2 × S2 when
λ ≥ 2?

A much harder open question along these lines (about symplectic embeddings
of B1,p,qs in surfaces of general type) was raised in [38, Remark 1.4].

3See [76] for an introduction to quantum cohomology, and the references below for what
it might have to do with disjoint Lagrangian embeddings. Technically we should specify
which ground field we are working over for this assumption to make sense.
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×

×

visible
(3, 1)-pinwheel

λ− 1

1 + λ

1

×

×

visible
disc

λ = 2

3

1

Figure J.1: (a) A (3, 1)-pinwheel in (S2 × S2, ωλ) for λ < 2. (b) What
becomes of this when λ ≥ 2.

J.8 Big balls

The final problem I want to state is motivated by a result of Ein, Küchle
and Lazarsfeld [28] which gives a lower bound on the Seshadri constants
of projective varieties. Rather than explaining this theorem, here is how
Lazarsfeld [62, Remark 5.2.7] reformulates their result in terms of symplectic
topology:

Theorem J.8. Let X ⊆ CPN be a smooth projective variety of complex
dimension n and let ω be the symplectic form on X pulled back from the
Fubini-Study form on CPN . Then X contains a symplectically embedded ball
of radius 1/

√
nπ.

All symplectic manifolds contain symplectic balls of some (possibly very
small) radius, but this result is saying you can always find a “big ball” (of
size at least 1/

√
nπ) if X is the symplectic manifold underlying a complex

n-dimensional projective variety.

The proof makes heavy use of techniques in algebraic geometry which are not
available in symplectic topology. However, one might hope to find a purely
symplectic construction of this big ball. More generally:
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Problem J.9 (Big Ball conjecture). Prove that there exists a universal con-
stant Rn depending only on n such that any integral4 symplectic manifold of
dimension 2n admits a symplectically embedded ball of radius Rn.

Almost toric fibrations provide a means of constructing balls, for example tak-
ing the preimage of a suitable neighbourhood of a Delzant vertex. Schlenk’s
book [91] provides a wealth of material on how to construct balls and packings
by balls.

4“Integral” here means [ω]/2π is an integral cohomology class. You might like to think
about why this condition is necessary.
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action and flux, 25
action domain, fundamental, 26, 116

for Auroux system, 103
action-angle coordinates, 15, 16

for Auroux system, 103–104
near focus-focus fibres, 88–90

affine chart, 186
affine length, 44

Vianna triangles, 131, 233–236
affine monodromy, 26

and mutation, 127–128
around boundary of CP2, 156–157
around cone point, 158
for An Milnor fibre, 108
for Bd,p,q, 111
for focus-focus singularity, 91–93
non-toric blow-up, 140
of Auroux system, 103–104
relating branch cuts, 104

almost toric base diagram, 116
5-point blow-up of CP2, 142
Bd,p,q, 111–113
complement of cubic curve, 133
conical, 155
CP2, 118, 125–132
Fibonacci staircase, 130
filling of lens space, 150–153
K3 surface, 167–168
Milnor fibre ofAn singularity, 108–

110

neighbourhood of symplectic torus,
142

non-toric blow-up, 139–142
rational elliptic surface, 141
S2 × S2, 132
smooth cubic surface, 123
symplectic triangle inequality, 224–

225
angular momentum, 196, 200
antidiagonal sphere, 77
antirepresentation, 180
antisymplectic involution, 109
Archimedes’s theorem on areas, 43
Arnold-Liouville theorem

big, 16
little, 15

Atiyah-Guillemin-Sternberg theorem,
see convexity theorem

Auroux system, 101–105

base-node, 91, 116
Bd,p,q, 111–113, 144
blow-up, 46

along symplectic submanifold, 63
non-toric, 139–142
resolving singularities, 64–68
symplectic, 62–63
zero continued fraction, 148

boundary
concave, 212
convex, 212
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branch cut, 93
Auroux system, 103
Bd,p,q, 111
changing, 104–105
for K3 surface, 167
for non-toric blow-up, 140
integral affine cone, 166
more exotic, 155–160
mutation, 127–132
nodal slide, 124

canonical 1-form, 192
canonical coordinates, 192
canonical symplectic form, see sym-

plectic form, canonical
Cartan’s formula, 182, 201
Chekanov torus, 132
Clifford torus, 132
cogeodesic flow, see flow, cogeodesic
complex structure, 175–176

compatible, 175
tame, 175

conic, 118, 207
complement of, 132
fibration, 101–103, 106

conservation of energy, 3, 7
contact

-type hypersurface, 117, 212–214
form, 213–214
structure on lens space, 144, 146

continued fraction, 149
Hirzebruch-Jung, 64
infinite periodic, 166–167
minimal resolution, 64–66
zero (ZCF), 147–149, 153–154

convexity theorem, 38, 40
cotangent bundle, 63, 191–200

of RP2, 132

of sphere, 132, 137–138
cotangent fibre, 196
covector, 191
CPn, see projective, space, complex
critical point

focus-focus, 85–99
toric, 42

cubic curve
complement, 133
nodal, 118
smooth, 118

cubic surface, 123
cycle of rational curves, 165

Delzant
existence theorem, 40, 203
polytope, see polytope, Delzant
uniqueness theorem, 41
vertex, 40, 117–118

developing map, 27
for cones, 160
for focus-focus singularities, 91
image, 92, 119

diffeomorphism group
action on cotangent bundle, 195
Lie algebra, 179
representations, 179

discriminant locus, 22, 239
divisor

Cartier, 68
compactifying, 63
exceptional, 68
toric, see toric, boundary
Weil, 68

effective, 53
eigendirection, see eigenline
eigenline, 116, 127
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branch cut, 93, 104, 116
for Bd,p,q, 111
for Vianna triangle, 234–235
irrational slope, 166–167
meeting at common point, 129,

136
monodromy when crossing, 93
sliding along, see nodal, slide
visible Lagrangian over, 94, 104,

223
eigenray, see eigenline
Eliasson normal form theorem, 42, 87
ellipsoid

contact-type, 212, 214
embedding problems, 130
Fibonacci staircase, 130
solid, 130

elliptic critical point, see critical point,
toric

elliptic singularity, see singularity, el-
liptic

elliptic surface, 144
rational, 141, 167

E(n), see elliptic surface

Fibonacci, see ellipsoid, Fibonacci stair-
case

fibration
almost toric, 115
Lagrangian torus, general defini-

tion, 22
regular Lagrangian, 22–23

fibred automorphism, 27–29
fibred symplectomorphism, 27–30
Floer theory, 196, 237, 239–241
flow

cogeodesic, 58, 193
Hamiltonian, 4, 7

flux, 25–27, 33–36
focus-focus

chart, 86
point, see critical point, focus-focus
system, standard, 85

free group action, 53
Fubini-Study form, see symplectic form,

Fubini-Study

generating function, 197
graph of a closed 1-form, 197
graph of an exact 1-form, 197
Grassmannian, 59, 63, 70

Hamilton’s equations, 3, 7
Hamilton-Jacobi equation, 197
Hamiltonian, 3–4

circle action, 53–61
G-action, 9
Rn-action, 9
system
complete commuting, 10
integrable, 10

torus action, 15, 37, 204
Hamiltonian flow, see flow, Hamilto-

nian
Heegaard decomposition, 42–43
Hessian, 42, 86, 102, 114
homogeneous coordinates, 186–189
homogeneous polynomial, 187–189
hyperKähler twist, 218, 225
hypersurface, contact-type, see con-

tact, -type hypersurface

integral affine
cone, 158, 159
structure, 23–27, 33
extend over cone, 158
extend over cone point, 158
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transformation, 24
isotropic

submanifold, 9, 17

K3 surface, 168
Kodaira-Thurston manifold, 30

Lagrangian
Chiang, 240
fibration, see fibration, Lagrangian
immersed, 221, 223, 227
Klein bottle, 82, 224, 227
pair-of-pants, 218–220, 222
pinwheel, 112, 126, 129–132, 240–

241
pinwheel core, 79, 112, 126, 223
rational homology sphere, 239–240
RP2, 80, 126, 144, 224
RP3, 240
section, 13, 31
sphere, 78, 109, 132
submanifold, 9, 196–198, 238
exact, 136
tropical, 217–228, 238, 240
visible, 75–83, 94, 109, 136, 217

torus, 15, 23, 136, 224
Lagrangian skeleton, see skeleton
lattice, 13
lattice, period, see period lattice
lens space, 49, 144, 238

diffeomorphism between, 49
symplectic fillings, 144–153, 238

Lie algebra, 177
representation of, 178

Lie bracket
of Hamiltonian vector fields, 8
on Lie algebra, 178
on vector fields, 180

Lie group, 177
representation of, 178

Liouville coordinates, 14, 192
Lisca classification, 146, 149, 152
L(n, a), see lens space
Looijenga conjecture, 167

Markov number, 131
Markov tree, 131, 230–233
Markov triple, 131, 229–233, 236, 237,

240
maximal resolution, see singularity, res-

olution, maximal
Milnor fibre

of A1 singularity, 137–138
of An singularity, 106
of cyclic quotient T-singularity, 111

moment image, 38
has piecewise linear boundary, 38

moment map, 37, 204
for diffeomorphism group action

on cotangent bundle, 195
moment polytope, 38, 203

conifold, 67
corresponding to zero continued

fraction, 148
CP1 × C2, 81
CP2, 80
CPn, 44, 63
cyclic quotient singularity, 48, 109
fully-resolved conifold, 67
hexagon, 73
nodal quadric surface, 207
O(−1), 45
O(n), 47
product of spheres, 43
rescaling, 205
S2, 43
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singular cubic surface, 123
small-resolution, 68
standard torus action on Cn, 41
truncation, 62, 139
weighted projective space, 58

momentum, 194
monotone

Lagrangian torus, 132, 136
symplectic manifold, 136, 241

Moser argument, 96, 124, 201
Moser trick, see Moser argument
mutation

CP2 example, 128–132
definition, 129
of Markov triple, 230
of Vianna triangle, 234–236
quadrilateral, 132, 237

Ngo.c
invariant, 91, 94–95
model, 94–96
theorem, 88

nodal slide, 124–126, 239
transverse to eigenline, 126

nodal trade, 105, 117–118
generalised, 123, 152

Noether’s theorem, 4, 194–196
non-Delzant, see polytope, non-Delzant
non-toric blow-up, see blow-up, non-

toric
nondegenerate 2-form, 7

O(−1), 45–46, 139–140
O(n), 47–48
orbifold, 48, 53–54, 57, 123, 144, 215

period lattice, 11
for focus-focus singularity, 90
standard, 11, 24, 49

phase space, 194
π(n, a), 49
pinched torus, 87, 102, 118
pinwheel, see Lagrangian, pinwheel
pinwheel core, see Lagrangian, pin-

wheel, core
Poisson

bracket, 8, 17
commute, 8, 23

polytope
convex rational, 38, 40, 62, 203
Delzant, 40, 203
non-Delzant, 49, 64, 67, 109, 123,

206–207
projective compactification, 63
projective space

complex, 44, 56, 185–187
weighted, 57, 215

projective variety
toric, 204

Q-Gorenstein degeneration, 229, 240
quadric hypersurface

affine, 138
and Grassmannian, 59
as symplectic cut, 63
nodal, 207
Segre, 204

rational blow-down, 111, 144–146
regular

fibre, 10
point, 10
value, 10

relative cohomology, 32
representation

adjoint, 179

Schoen-Wolfson cone, 77, 223
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Segre embedding, 205
Seifert fibration, 215
self-intersection

of curve, 64
from moment polygon, 48

of immersed Lagrangian, 222
of torus, 142

singularity
1
n
(1, a), see singularity, cyclic quo-

tient
A1, see singularity, conifold
An, 106, 109, 123
conifold, 66–68
cusp, 165–167
cyclic quotient, 48, 64, 111–112,

123, 240
elliptic, 165
link, 49, 165
nodal, see singularity, conifold
ordinary double point, see singu-

larity, conifold
resolution, 64–68
elliptic, 165
maximal, 153
minimal, 64–66, 144–145, 165
P-, 152
partial, 152
small, 68

T-, 123, 152
skeleton

Bd,p,q, 112–113
complement of plane cubic, 133

small exotic 4-manifolds, 111, 145
smoothing, 106, 152

and generalised nodal trades, 123
and nodal trades, 117–118
Q-Gorenstein, 111, 152

standard period lattice, see period lat-
tice, standard

stereographic projection, 187
stratification, 22
subspace

coisotropic, 174
complex, 175, 185
isotropic, 174
Lagrangian, 174–176
symplectic, 174–175

subvariety, 188–189, 204
Symington’s theorem

on almost toric base diagrams, 116
on Ngo.c models, 96
on nodal slides, 124
on rational blow-down, 144

symplectic area, 44, 127, 224
symplectic basis, 174
symplectic birational geometry, 56
symplectic chain of spheres, 64–65, 144
symplectic cut, 59–73, 203
symplectic embedding of ellipsoid, 130
symplectic embeddings of rational ho-

mology balls, 112
symplectic form, 7

canonical, 192
cohomology class, 126–127, 134–

136
deformation of, 126
exact, 136
Fubini-Study, 56
linear, 173
on cotangent bundle, see symplec-

tic form, canonical
on O(−1), 45
on product of spheres, 43
on symplectic reduction, 54
on symplectisation, 164
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symplectic orthogonal complement, 173
symplectic quotient, see symplectic re-

duction
symplectic reduction, 53–73

CPn as a, 56
weighted projective space as, 57

symplectic submanifold
of CP2, 118

symplectic torus
neighbourhood of, 142

symplectic triangle inequalities, 225
symplectic vector space, 173–176
symplectisation, 164

T-singularity, see singularity, T-
tautological bundle, 45–46
toric blow-up, 139
toric boundary, 42

after nodal trade, 117
appears broken, 105, 118
Auroux system, 103
blowing up a point on, 139–142
CP2 with nodal trades, 118–119
of An Milnor fibre, 109
of Bd,p,q, 112
resolution of cusp singularity, 166
resolution of elliptic singularity,

165
toric critical point, see critical point,

toric
toric manifold, 37, 61

corresponding to zero continued
fraction, 148, 149

CPn, 62, 63
toric variety, 41, 203–210

from symplectic cut, 62
translation, 194
tropical curve, 223

tropical Lagrangian, see Lagrangian,
submanifold, tropical

truncation, see moment polytope, trun-
cation

vanishing
cycle, 94
thimble, 94, 125, 133

vector field
Hamiltonian, 7
Lie bracket, 8

Liouville, 212–213
Reeb, 214–216
symplectically dilating, see vec-

tor field, Liouville
Veronese embedding, 206
Vianna

data, 233
tori, 131, 133, 136
triangle, 131, 233–236

visible Lagrangian, see Lagrangian, sub-
manifold, visible

wormhole, 238

Zariski-closure, 188–189, 203
Zariski-dense, 188–189
zero-section, 196


