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Abstract

This thesis focuses on two statistical challenges in time-series modelling. The first is

when variables’ observations are available at different frequencies. The second is when

the coefficients of a model are time-varying with stochastic volatility. The impact of

these challenges and the value of the suggested remedies are assessed in empirical

financial-economic applications.

In addressing the first statistical challenge, disaggregation from the low- to the high-

frequency domain is one of the methods that has long been used in several pieces

of literature. The first chapter evaluates the existing disaggregation methods with

thorough comparisons to provide comprehensive guidance for an empirical user. The

second chapter builds on these results to examine the value-added in forecasting

the volatility of financial stock prices by incorporating information from variables

with mixed frequencies such as market sentiment indicators, economic variables,

and activity measures. A representative factor(s) of all potential predictors from

both frequencies results in significant forecast gains in predicting long-term financial

volatility even during the 2007-08 financial crisis.
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The third chapter proposes a state-space model to incorporate features of time-

varying coefficients to reflect the dynamic relationship between the dependent and the

explanatory variables. Mainly, the model consists of two hierarchical states. First, the

time-varying coefficients follow an autoregressive (AR) process with heteroskedastic

innovations. Second, the log-transformation of the conditional variance of these

innovations is also modelled as an AR process. In an empirical study, we utilize

the proposed methodology to forecast the volatility of financial stock prices. We

find that the proposed features consistently and significantly enhance the forecasting

accuracy compared to a benchmark model and its existing variants.
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Chapter 1

Evaluation of interpolation and

extrapolation methods of

low-frequency series to the

high-frequency domain

Abstract

We revisit the temporal disaggregation methods in the Chow-Lin (CL) framework.

First, we extend the dynamic Chow-Lin model of Poissonnier (2018) to estimate

high-frequency extrapolated and interpolated data points. Second, we show that

CL methods can be expressed as a linear transformation function in a matrix form.

Specifically, the estimated high-frequency series is the sum of two signals. The

underlying assumptions drive the first signal. In contrast, the second signal combines
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1.1. Introduction

the latter and the chosen indicator variable(s). Such decomposition reveals which

factors influence the accuracy of both interpolated and extrapolated estimates. Lastly,

we perform a Global Monte Carlo study to compare the models under different

statistical scenarios. The study guides practitioners in choosing the most appropriate

temporal disaggregation method for their application.

Keywords: Chow-Lin interpolation Extrapolation Mixed Frequency Temporal

Disaggregation

1.1 Introduction

It is often the case that the financial and macroeconomic series are observed at

different frequencies. Researchers use the mixed data sampling (MIDAS) model

by Ghysels, Santa-Clara, and Valkanov (2004) to incorporate high-frequency (HF)

variables to estimate a low-frequency (LF) variable. In contrast, Ghysels (2016) and

Foroni, Guérin, and Marcellino (2018) propose the mixed-frequency VAR and Reverse

Unrestricted MIDAS model, respectively, to incorporate LF information to predict a

HF variable.

This paper’s interest lies in the frequency conversion from low to high, including

monthly to daily, which permits the study of models at a HF level. It is particularly

interesting to practitioners who believe that HF forecasting accuracy is enhanced

when LF variables are available on a HF level. Interpolation refers to generating

HF estimates of a specific LF variable between two of its LF observations. Whereas

generating HF values beyond a LF observation is expressed as extrapolation (Chow

and Lin, 1971). By definition, extrapolation estimates future HF values of a LF
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1.1. Introduction

variable by assuming that its unobserved HF values will continue to follow a particular

hypothesised model.

The most prominent interpolation-extrapolation method in the literature is the one

proposed by Chow and Lin (1971). More recently, a number of researchers extended

the Chow-Lin (CL) methodology to dynamic models. However, their primary interest

lay in temporal disaggregation (interpolation) rather than inter-and extrapolation.

For example, Poissonnier (2018) mention that extrapolation can be obtained in a

similar approach to the interpolation method but do not illustrate the extrapolation

adaption to their proposed models. Furthermore, CL methodology is popular in

applications with constant frequency ratios such as quarterly to monthly or yearly

to quarterly. Researchers suggest that it can also be implemented, in a similar

fashion, for non-constant frequency ratios such as monthly to daily. However, such

implementation in the case of non-constant and large frequency ratio was neither

demonstrated nor assessed.

There are multiple methods introduced in the literature. While all have common

grounds, the difference is in the proposed relationship between the unobserved HF

values of the LF variable and the HF indicator variable(s). In particular, Chow

and Lin (1971), Fernández (1981), and Litterman (1983) assume a static model with

a first-order auto-regression, unit root, and ARIMA(1,1,0) stochastic disturbance

terms, respectively. Poissonnier (2018) presents a dynamic model with a general data

generating process (DGP), such that the stochastic disturbance terms may follow

either an AR, unit root or ARIMA process.

According to the authors above, each of these models is deemed helpful depending

on the setting of the application. For example, the traditional CL method is more
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1.1. Introduction

suited when the data are generated from a static model. On the other hand, it

is more sensible to apply dynamic models when it is assumed that the observations

possess some stagnant characteristics. Although the intuition behind these arguments

is sound, to the best of our knowledge, there is a lack of theoretical justification and

thorough empirical comparison of these models in the literature. Hence, the purpose

of this paper is to address the following points. i) The algebraic difference between the

methods. ii) The consequences of using a misspecified model to obtain in-sample and

out-of-sample estimates of unobserved HF values under the CL framework. iii) The

recommendation for practitioners interested in estimating unobserved HF in-sample

and out-of-sample values of a LF variable.

In Section 1.2, we summarize the main models and their estimation procedures within

the CL framework. Then, we present the theoretical properties of the hypothetical

estimates in Section 1.3. We show that all the HF estimates obtained by the temporal

disaggregation methods in the CL framework can be decomposed into the sum of two

series: 1) one that relies on the assumptions underlying the model and 2) another

that depends on the assumptions as well as the observed HF indicator variable(s).

Exploring the properties of each signal unveils the consequence of each input on

the estimation. Section 1.4 illustrates the feasible estimates of the unobserved HF

estimates for each method. Section 1.5 provides an extensive simulation study

based on multiple pre-assigned DGP, then obtains the feasible HF estimates of each

simulated series using all the mentioned models in the Chow-Lin framework. The

estimated series are compared with the true simulated ones to evaluate the models

under various specifications. Section 1.6 concludes.

4



1.2. Chow-Lin Framework: a Linear Transformation Function

1.2 Chow-Lin Framework: a Linear Transforma-

tion Function

To apply the timescale switching techniques from low to high, the practitioner needs

to consider the following ingredients: the first, second, third, and fourth, respectively,

as below.

Ingredients for time scale switching techniques

1. Observe the LF observations, xlf
(N×1)

, of the variable of interest.

2. Design the temporal aggregation method that defines the relationship between

HF values, x
(c×1)

, and its LF counterparts, xlf
(N×1)

. Where c represents the number

of HF data points in the sample period where the LF observations, xlf , occurred.

Note that c > N since there are more HF than the LF data points in a given

period.

3. Specify the indicator variables, S
(m×k)

, where k is the number of indicator

variables used, m is the number of HF observations in the period of interest

such that m ≥ c and m− c is the number of extrapolated HF data points.

4. Specify a hypothesized relationship model between z
(m×1)

and S
(m×k)

, where

{zi}ci=1 := x are the interpolated data points and {zi}mi=c+1 are the extrapolated

data points.

The first and third ingredients are self-explanatory. The second ingredient is not

usually specified for series when the frequency ratio of low- and high-frequency

variables (periodicity of the flows) is not constant. There are various aggregation set-

up schemes based on the assumed relationship between the HF and LF observations of
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1.2. Chow-Lin Framework: a Linear Transformation Function

the variable of interest. LetC be the aggregation matrix that transforms the unknown

interpolated HF vector x to the LF observed vector xlf such that xlf := Cx. For

example, if the observed LF vector, xlf , and the unknown interpolated HF vector, x,

are defined as:

xlf := (Xf0 , Xf1 , · · · , XfN−1
)′ , where fj = fj−1 + κj = 1 +

j∑
i=1

κi, (1.1)

where {κi}Ni=1 is the number of HF periods in each LF period i (i.e. the number of

days in a month1) and f0 := 1.

x := (X1, X2, · · · , Xc)
′ , where c := fN−1

then, in this case, the aggregation matrix, C1, is:

C1
(N×c)

:=



1(1) 0(2) · · · 0 · · · 0(fN−1)

0(1) · · · 1(f1) · · · 0 · · · 0

0(1) 0(2) · · · 1(f2) · · · 0 · · · 0

...
. . . . . . . . .

...

0(1) · · · 0 · · · 1(fN−1)


(1.2)

Whereas, if the observed LF variable, xlf , is assumed as follows:

{xlf}i :=
1

κi

fi−1∑
j=fi−1

Xj , where i = 1, · · · , N (1.3)

1For example, if i = 1 represents January 1999 this means that there are κ1 = 20 working days
in this month.
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1.2. Chow-Lin Framework: a Linear Transformation Function

then, the aggregation matrix, C2, is:

{C2}i,j := κ−1
i 1(fi−1≤j≤fi−1); i = 1, · · · , N and j = 1, · · · , c. (1.4)

where 1(.) is the indicator function.

The fourth ingredient depends on the practitioner’s statistical understanding and

assumptions of the series. CL presents the best linear unbiased estimate (BLUE) for

interpolated as well as extrapolated HF observations of the LF variable based on the

LF observations, the HF indicator variable(s), and the static relation model proposed

(eq. 1.5). Poissonnier (2018) points out that high autocorrelation of the residuals

limits the impact of the unexplained component on the HF profile. Therefore, they

introduce a dynamic relationship model (eq. 1.6) in the CL framework and is assumed

to be superior, in some circumstances2, to the traditional static relationship model of

Chow and Lin (1971).

The static model is defined as:

Xt =
k∑

j=1

φjst,j + et (1.5)

The dynamic model is defined as:

Xt =

p∑
i=1

ρiXt−i +
k∑

j=1

φjst,j + et (1.6)

where Xt is the HF observation at time t, st,j is the indicator variable, j, at time t,

and k is the number of indicator variables. The stochastic disturbance terms in either

2For example, when the HF observations exhibit a temporal time dependency feature.
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1.2. Chow-Lin Framework: a Linear Transformation Function

models3 may follow:

• An AR(1) process et = µCLet−1 + ωt (Chow and Lin, 1971).

• A Random walk (RW) process et = et−1 + ωt (Fernández, 1981).

• An ARIMA(1,1,0) process ∆et = µlitt∆et−1 + ωt (Litterman, 1983).

where ωt}∞t=1 is a series of white noise with mean zero and variance σ2.

Hence, we denote the six combination of models studied in this paper as follows:

1. CLCL model (Chow and Lin, 1971):

Xt =
k∑

j=1

φjst,j + et

et = µet−1 + ωt ; ωt ∼ i.i.d. N(0, σ2)

2. CLL model (Chow and Lin, 1971; Litterman, 1983)

Xt =
k∑

j=1

φjst,j + et

∆et = µ∆et−1 + ωt ; ωt ∼ i.i.d. N(0, σ2)

3. CLF model (Chow and Lin, 1971; Fernández, 1981)

Xt =
k∑

j=1

φjst,j + et

3We intentionally do not refer to these terms as error terms of the model in order to distinguish
between them and the error that we will define later in the sequel.
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1.2. Chow-Lin Framework: a Linear Transformation Function

et = et−1 + ωt ; ωt ∼ i.i.d. N(0, σ2)

4. PCL model (Chow and Lin, 1971; Poissonnier, 2018)

Xt = ρXt−i +
k∑

j=1

φjst,j + et

et = µet−1 + ωt ; ωt ∼ i.i.d. N(0, σ2)

5. PL model (Litterman, 1983; Poissonnier, 2018)

Xt = ρXt−i +
k∑

j=1

φjst,j + et

∆et = µ∆et−1 + ωt ; ωt ∼ i.i.d. N(0, σ2)

6. PF model (Fernández, 1981; Poissonnier, 2018)

Xt = ρXt−i +
k∑

j=1

φjst,j + et

et = et−1 + ωt ; ωt ∼ i.i.d. N(0, σ2)

where |µ| < 1 and |ρ| < 1.

In what follows, we demonstrate how the HF estimates produced by the above models

can be expressed as a linear transformation of the LF observations and the HF

indicator series. In particular, Proposition 1.2.1 shows that the BLUE estimates

of the unknown HF observations for models CLCL, CLL, and CF can be written in
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1.2. Chow-Lin Framework: a Linear Transformation Function

the form of a slope matrix pre-multiplied by the column vector of the observed LF

data points.

Proposition 1.2.1 Given the LF vector xlf , the BLUE (interpolated and extrapo-

lated) estimates of the unobserved HF vector, z
(m×1)

, of the static model (1.5) defined

in matrix form, z := Sφ+ e, can be found using the following linear transformation

ẑ = f(xlf ) = A
(m×N)

xlf
(N×1)

(1.7)

• In the case of the CLCL model, A := ACL

ACL
(m×N)

= ACL,1
(m×N)

+ACL,2
(m×N)

where

ACL,1 := ΩϕTCL

ACL,2 := (Im −ACL,1Cz)SδTCL

δTCL
(k×N)

:=
(
S

′
ϕTCLCzS

)−1

S
′
ϕTCL

ϕTCL
(m×N)

:= C
′

z

(
CzΩC

′

z

)−1

Cz
(N×m)

:= C
(N×c)

F
(C×m)

Where F is an identity matrix, C is the aggregation matrix (see eq. 1.2 and

1.4), and Ω
(m×m)

is the variance-covariance matrix of the stochastic disturbance

10



1.2. Chow-Lin Framework: a Linear Transformation Function

terms e
(m×1)

:

Ω
(m×m)

:=
σ2

1− µ2



1 µ · · · µm−1

µ 1 · · · µm−2

...
...

. . .
...

µm−1 µm−2 · · · 1


• In the case of the CLL model, A := Alitt

Alitt
(m×N)

= Alitt,1
(m×N)

+Alitt,2
(m×N)

where

Alitt,1 := D−1Ωϕlitt

Alitt,2 := (Im −Alitt,1Cz)Sδlitt

ϕlitt
(m×N)

:= D
′−1C

′

z

(
Cz

(
D

′
Ω−1D

)−1

C
′

z

)−1

δlitt
(k×N)

:=
(
S

′
D

′
ϕlittCzS

)−1

S
′
D

′
ϕlitt

Where C is the aggregation matrix (see eq. 1.2 and 1.4), Ω is the variance-

covariance matrix of ∆et defined as above, and D is difference matrix:

D
(m×m)

:=



1 0 · · · 0

−1 1 · · · 0

0 −1
. . . 0

0 · · · . . . 1



• In the case of the CLF model:
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1.2. Chow-Lin Framework: a Linear Transformation Function

A := AFer which is a special case of Alitt where Ω = σ2Im.

Observe that the slope matrix, A, defined in equation (1.7) for each of the proposed

methods, is invariant to the variance of stochastic disturbance terms, σ2. Furthermore,

equation (1.7) presents a direct way of computing ẑ using the CL framework.

For the dynamic models, Poissonnier (2018) use partial recursive substitutions to

obtain the last recorded LF observation and then, under some assumptions, formulate

a constrained optimization problem to find these estimates in a closed-form expression.

In particular, as illustrated in Lemma 1.2.1.1 below, the slope matrix, Apois, and the

transition vector, bpois, of this linear temporal disaggregation defined in equation (1.8)

are a function of Model (1.6) parameters, the underlying structure of the stochastic

disturbance terms, and the HF indicator series.

Lemma 1.2.1.1 Given the LF vector, xlf , to generate interpolated estimates of the

unobserved HF vector, x
(C×1)

, from Model (1.6), Poissonnier (2018) suggests the

following linear transformation

x̂ = f(xlf ) = Apoisxlf + bpois (1.8)

• In the case of the PCL model:

Apois,1
(C×N)

= ΩxC
′
(CΩxC

′
)−1

bpois,1
(C×1)

= (Ic −ApoisC)(Ic −M1)
−1(M2x

init + Sinterφ)

12



1.2. Chow-Lin Framework: a Linear Transformation Function

where

Ωx := (Ic −M1)
−1FΩF

′
(Ic −M

′

1)
−1

M1
(C×c)

:=



0 0 · · · · · · · · · 0

ρ1 0
. . . . . . . . .

...

ρ2 ρ1
. . . . . . . . .

...

ρ3 ρ2
. . . . . . . . .

...

...
. . . . . . . . . . . .

...

0 · · · ρp · · · ρ1 0


and M2

(C×p)
:=



ρ1 ρ2 · · · ρp

0 ρ1 · · · ρp−1

...
. . . . . .

...

...
. . . . . . ρ1

...
. . . . . . 0

...
. . . . . .

...

0 · · · · · · 0


Ω

(m×m)
is the variance-covariance matrix of e

(m×1)
as defined in Proposition 1.2.1,

F is an identity matrix, C is the aggregation matrix (see (1.2)), Sinter := {Si}ci=1

where inter stands for interpolation, and xinit is the initial value of x

• In the case of the PL model:

Apois,2 := Ωx,2C
′
Ωx,1

−1 and bpois,2 = λpois

(
M2x

init + FSinterφ
)

where

λpois := (Ic −M1)
−1 −Ωx,2C

′
Ω−1

x,1C(Ic −M1)
−1

Ωx,1
(c×c)

= CΩx,2C
′
, Ωx,2

(c×c)

:= (Ic −M1)
−1

(
D

′

1

(
FΩF

′
)−1

D1

)−1

(Ic −M
′

1)
−1

D1 is the (c× c) difference matrix and Ω is the variance covariance matrix ∆e

as defined in Proposition 1.2.1,. M1 and M2 are defined as in the PCL case.

• In the case of the PF model:

13



1.2. Chow-Lin Framework: a Linear Transformation Function

The (c × N) matrix Apois,3 and the c vector bpois,3 are exactly as Apois,2 and

bpois,2, respectively. The only difference is that, in this case, Ω = σ2Im.

Unlike the static model, the dynamic models were proposed and demonstrated for

interpolation only and not extrapolation. Hence, the application of the linear

transformation stated in Lemma 1.2.1.1 generates only interpolated HF data estimates

of the LF variable. Proposition 1.2.2 generalizes this Lemma to produce extrapolated

and interpolated HF data estimates of the LF variable.

Proposition 1.2.2 Given the LF vector, xlf , to generate the best linear unbiased

interpolated as well as extrapolated HF estimates from Model (1.6), the linear

transformation becomes:

ẑ = f(xlf ) = Aepoisxlf + bepois (1.9)

where the subscript epois stands for extended Poissonnier (2018).

• In the case of the PCL model:

Aepois,1
(m×N)

= Ωx,2C
′
zΩx,1

−1

bepois,1
(m×1)

= (Im −Aepois,1Cz) (Im −M1,z)
−1(M2,zz

init + Sφ)

where

Ωx,1 = CzΩx,2C
′
z , Ωx,2 := (Im −M1,z)

−1Ω(Im −M
′

1,z)
−1

Cz is the N×m matrix, defined exactly in the same manner as the N×c matrix

14



1.3. Theoretical Properties of the Linear Transformations

C defined in either set-ups. Ω
(m×m)

is the variance-covariance matrix of e
(m×1)

.

M1,z
(m×m)

and M2,z
(m×p)

are defined in a similar structure to M1 and M2 respectively.

• In the case of the PL model:

Aepois,2 and bepois,2 have the same structure as Aepois,1 and bepois,1, respectively,

with variance-covariance matrix D−1ΩD
′−1 instead of Ω in Ωx,2.

• In the case of the PF model:

Aepois,3 and bepois,3 are exactly as Aepois,2 and bepois,2 respectively, with Ω =

σ2Im.

1.3 Theoretical Properties of the Linear Transfor-

mations

Firstly, observe that both linear transformations depicted in equations (1.7) and (1.9)

generate interpolated as well as extrapolated estimates, ẑ, of the unobserved HF

variable, z. Note that the slope coefficient or/and the transition vector in these

transformations depend on unknown coefficients to be estimated. For example, ACL

is a function of the unknown autoregressive parameter µ. We denote by z̃ the

feasible estimate of the unobserved HF vector z. One needs to distinguish between

hypothetical errors, feasible errors, and residuals. In this framework, a hypothetical

error term is a difference between the unobserved HF variable z and its theoretical

estimate ẑ, i.e. uz := z− ẑ. A feasible error term is the difference between the

unobserved HF variable z and its feasible estimate z̃ i.e. uz̃ := z− z̃. Residuals, by

definition, are the difference between an actual and estimated value. In this context,

15



1.3. Theoretical Properties of the Linear Transformations

actual values (observed values) only exist at a LF (i.e. xlf ). Hence, to avoid confusion,

we restrict the definition of residuals, in this framework, to the LF timescale.4

Secondly, the slope matrix A and Aepois in equations (1.7) and (1.9) are independent

of the variance scale of the stochastic disturbance terms, σ2. Although this seems

like an encouraging feature in an econometric method – i.e. no need to estimate

the variance scale parameter–, this has a detrimental effect on the mean squared

hypothetical error. The theoretical estimate ẑ may not capture (and hence mimic)

the variation of the actual unobserved variable z. For a given two sets of HF data

points, z, generated from the same pre-determined model with different variance scales

each, the theoretical estimates of the data with a larger variance scale have a higher

average squared hypothetical error. Hence, the CL method is less accurate for data

with high variances, such as disaggregating monthly historical stock returns to a

higher frequency.

Thirdly, the estimated HF data points using the models discussed earlier are the

sum of two signals. Precisely, the estimation represented by equation (1.7) of the

static models, can be rewritten as ẑ = Aπ,1xlf + Aπ,2xlf where π refers to the

disaggregation method: CLCL, CLL, or CLF. Aπ,1xlf and Aπ,2xlf represent the

trajectory and perturbation signal, respectively. Model parameters and the LF

observations determine the trajectory signal. It passes through the LF data points

similar to the naive interpolation of connecting LF observations. Because of the

model parameters involved, these segments are bent. In the out-of-sample period,

where there are no observed LF data points, the path of the trajectory signal will

rely solely on the model’s parameters. Hence, the estimation accuracy of the in-

4In Poissonnier (2018)’s paper, the residual is similar to the feasible error term in this paper.
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1.4. Estimation

sample dataset outperforms the relative out-of-sample estimation accuracy. The

perturbation signal, independent of the trajectory, represents the fluctuations driven

by the model’s parameters and the observed series of the LF variable and the HF

indicator variable(s). Therefore, if the indicator variable(s) variance is high, the

perturbation signal fluctuations tend to be substantial.

The above discussions provide an insightful understanding of the disaggregation

characteristics. However, in reality, a practitioner is often unaware of the defined

model and parameters of the data generating process (DGP). Therefore, it is

reasonable to ask whether assuming a different model from the DGP might lead

to a substantial difference and if there is a particular model that out-stands its peers

regardless of the DGP. To answer these questions, we first outline the estimation

process in each of the mentioned models. Second, we generate artificial series from

each of the discussed models with various parameters’ values as DGPs to evaluate

the in- and out-of-sample mean squared feasible errors (MSFE) in each case for each

model.

1.4 Estimation

Once the DGP model is hypothesised, unknown parameters need to be estimated to

find a feasible estimate of the HF points. Hence, one needs to distinguish between

parameters: Parameters Estimated using data available (PEDA) and Parameters that

require estimation (PRE). For example, using the CLCL model, Chow and Lin (1971)

considered both φj’s in equation (1.5) and the AR(1) coefficient, µ, to be unknown

parameters that need to be estimated. However, based on Proposition 1.2.1, only
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1.4. Estimation

µ needs to be estimated using a likelihood function. In such a setting, the φj’s are

PEDA, and µ is a PRE.

In the six mentioned models, most of the literature assumes that the error term,

ω, in the model of the stochastic disturbance term, ehf or ∆ehf , is white noise.

However, many authors assume normality with zero mean and unknown variance, σ2,

to formulate a likelihood function. In particular, ehf ∼ N (0,Ω) where ehf represents

the vector of HF error terms in the CLCL or PCL models, or Dehf ∼ N (0,Ω) in the

other models. Therefore, the LF vector of error terms, elf , has a similar structure.

Having said this, Bournay and Laroque (1979) and Sax and Steiner (2013), defined

the log-likelihood function as:

L (PRE) := −N

2
ln(2π)− 1

2
ln
∣∣∣CzΩ

∗C
′

z

∣∣∣− 1

2
ê

′

lf (CzΩ
∗C

′

z)
−1êlf (1.10)

where Ω∗ := Ω in the case of CLCL and PCL, or Ω∗ :=
(
D

′
(Ω)−1D

)−1
in the other

cases.

However, Poissonnier (2018), instead, maximizes the log-likelihood function of the HF

error terms directly for their proposed dynamic model:

L (PRE) := −m

2
ln(2π)− 1

2
ln |Ω∗| − 1

2
ê

′

hf (Ω
∗)−1êhf (1.11)

This likelihood function, in fact, can be used for all the models in this paper including

the static ones and it can be rewritten as:

L (PRE) := −m

2
ln(2π)− 1

2
ln |Ω∗| − 1

2
ê

′

lf (CzΩ
∗C

′

z)
−1êlf (1.12)
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1.5. Simulation Study

Hint: êhf = Ω∗C
′

z(CzΩ
∗C

′

z)
−1êlf and equivalently êlf = Cêhf .

Note that Ω and êhf are a function of the unknown parameters. In particular, for

the static models, êhf = (A − Sδ)xlf where the expressions of A and δ depend on

the model as outlined in Proposition 1.2.1 (see Appendix 1.A.1). Similarly, for the

dynamic models, êhf = (Im − M1,z)(Axlf + b) − M2,zz
init − Sφ where M1,z and

M2,z are defined in Lemma 1.2.1.1, while the expressions of A and b depend on the

specified model as outlined in Proposition 1.2.2 (see Appendix 1.A.3).

The log-likelihood can be used to estimate the PREs in the hypothesised model using

maximum likelihood estimation. However, not all the PREs are required to find

feasible HF estimates, z̃. For example, in the CLCL model, there are two PREs, the

autoregressive parameter, µ, and the variance σ2. The only parameter that needs to be

estimated using the likelihood function is µ since the matrix ACL in equation (1.5) is

a function of it, ACL = ACL(µ). Thus, the feasible HF estimate z̃ is computed by pre-

multiplying the LF vector xlf by the estimated transformation matrix ÂCL = ACL(µ̂)

as suggested by Proposition 1.2.1. However, in the case of the CLF model, the slope

transformation matrix does not depend on the PREs, so there is no need to estimate

the likelihood function.

1.5 Simulation Study

We implement a Monte Carlo simulation to examine the performance of the models

covered in this paper. The simulation compares the models’ estimation of the

”unobserved” HF daily series using the observed LF monthly series. To this end,

firstly, we choose two consecutive calendar years to determine the number of working
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1.5. Simulation Study

days in each calendar month; this leads to around 500 HF observations. Secondly,

in every simulation, we use the same simulated daily indicator series from an AR(1)

process for all the DGPs, for comparison purposes. Thirdly, we generate the error

term, ωt, from a standard normal distribution with zero mean and variance of σ2.

Fourthly, the stochastic disturbance term, et, and the HF series, x, are generated

according to the specified model and parameters (µ, ρ, φ) as illustrated in Table

(1.1). Fifthly, the LF series, xlf := Cx, are computed using the specified aggregation

matrix (eq. 1.2 or 1.4). Finally, using the LF series and the indicator series, we

estimate the HF series using each of the six models as illustrated in sections 1.2 and

1.4. We repeat the process 1000 times to obtain 1000 artificial samples for each DGP.

We use the six models for each simulated sample to estimate the HF series given the

simulated LF series and the HF indicator. We estimate the models with the following

constraints on the parameters: 0 < µ < 1, 0 < ρ < 1, and 0 < φ < 1.

Table 1.1: DGP Parameters

σ2 µ φ ρ Total # DGPs

CLCL 0.1, 1, 5, or 10 0.2 or 0.8 0.2 or 0.8 16
CLL 0.1, 1, 5, or 10 0.2 or 0.8 0.2 or 0.8 16
CLF 0.1, 1, 5, or 10 0.2 or 0.8 8
PCL 0.1, 1, 5, or 10 0.2 or 0.8 0.2 or 0.8 0.2 or 0.8 32
PL 0.1, 1, 5, or 10 0.2 or 0.8 0.2 or 0.8 0.2 or 0.8 32
PF 0.1, 1, 5, or 10 0.2 or 0.8 0.2 or 0.8 16

Many studies are focused on evaluating and comparing models in estimation and

forecasting; see, for example, Poon and Granger (2003) for an extensive review.

Most apply a loss function, where model-based predictions of the series of interest

are compared to its estimates. We compare the estimated HF series with the true

simulated one to evaluate the models. We use the Mean Squared Error (MSE) as a
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1.5. Simulation Study

model evaluation method (Andersen, Bollerslev, and Lange, 1999):

MSE =
1

N
ΣN

t=1[Xt− X̂t]
2

where N is the total number of observations in a given series.

After computing the MSE for each simulation, we report for every model of estimation

the average of the MSEs using the 1000 simulations of each DGP. As illustrated in

figure 1.1, we compute the MSEi,j,sim for simulations sim = 1, .., 1000, then we get

the average mean squared error (AMSE) over the simulations:

AMSEi,j =
1

1000
Σ1000

sim=1MSEi,j,sim

where i and j refer to the DGP and model of estimation respectively. We also consider

the mean absolute error as a robustness check and found no significant differences in

the findings. Hence, we only report the results using the MSE as a loss function for

conciseness.

Table 1.1 summarises the DGPs (models and parameters) analysed in the simulation

study. We include a range of magnitudes for each parameter to unveil their

consequences on the estimated data points, ceteris paribus. In particular, it helps

the practitioners understand what features they need to check before choosing the

”right” model for a particular exercise. For the AR parameters, µ and ρ, we consider

low (0.2) and high (0.8) values. The range of ρ allows us to study whether the dynamic

models are better than their static counterparts if an autoregressive relationship exists

in the HF series. At the same time, the range of µ helps us examine the influence
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1.5. Simulation Study

of its magnitude on the overall AMSE and the choice of the ”best” model. We also

consider a high correlation, φ = 0.8, as well as a low correlation, φ = 0.2, between

the ”unobserved” HF series and the indicator variable. We can thus examine the

importance of choosing the ”right” indicator variable. Finally, we consider different

magnitudes of the variance, σ2, to determine if different models are preferred based

on the magnitude of variation of the series of interest. Finally, we repeat the study

twice, once using the aggregation matrix C1 (eq. 1.2) and another using C2 (eq. 1.4).

Figure 1.1: Descriptive Diagram of the Monte Carlo Study

Artificial Sample 1:

HF series 1 of DGP i

Artificial Sample 2:

HF series 2 of DGP i

Artificial Sample 3:

HF series 3 of DGP i

Specified DGP i

LF series 2 of DGP iLF series 1 of DGP i LF series 3 of DGP i

Estimated HF series 1

of DGP i using model j

Estimated HF series 2

of DGP i using model j

Estimated HF series 3

of DGP i using model j

MSEi,j,3MSEi,j,2MSEi,j,1

For each DGP, i, we generate 1000 artificial samples. Each artificial sample consists
of a HF and its associated LF series. We use the LF series along with the indicator
variable to estimate the HF series using each of the six models.

The Monte Carlo study reveals essential features in the performance of the models.

We divide the analysis of the findings into two. In the first part of the analysis, we
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1.5. Simulation Study

comment on the influence of the chosen DGP model and parameters on the AMSE.

The second part examines the best-performing model under various DGPs.

We report the AMSE and its standard deviation using the 1000 simulations from each

model, j, in each DGP, i, in Appendix 1.B for the interpolation as well as extrapolation

sample. Our findings can be summarized as follows. Firstly, while the AMSE of

extrapolation is higher than that of interpolation, there is no significant difference in

the ranking of models between interpolation and extrapolation. Secondly, we note that

the performance of the models is sensitive to some parameters of the underlying DGP

and the relationship between the HF observations and its corresponding LF series

(i.e. the aggregation matrix). Thirdly, the AMSE is overall lower when the DGP is

CLCL or PCL. In other words, temporal disaggregation is generally more accurate for

series where the et is an AR(1) rather than ARIMA(1,1,0) or RW. Fourthly, better

estimates can be found for series with a defined aggregation matrix as in eq. (1.4) (i.e.

when the LF observation represents the average of the HF values within the period)

than eq. (1.2) (i.e. when the LF observation is one particular observed datapoint of

the HF values). Fifthly, temporal disaggregation is more accurate when the defined

DGP is static compared to dynamic. Finally, we do not find a significant impact of

the relevancy of the indicator variable on the AMSE.
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Figure 1.2: Best Estimating Model in each DGP of the Global Monte Carlo Study

The tables represent the best estimating model in each DGP of the GMC. The upper table represents the results for aggregation matrix one, and the
lower represents the results for aggregation matrix two. The colour of the cells in the True model row represents the model used to generate the true
HF series. The model and parameters determine the DGP is. Hence, each cell in the inner triangle represents one case of the 120 DGPs considered
in the MC. The colour of the cell represents the estimating model with the lowest average MSE over the 1000 simulations for a particular DGP.
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1.5. Simulation Study

Figure 1.2 presents the results of the best model with the lowest AMSE for each DGP

considered. In the case of the first aggregation matrix (eq. 1.2), the findings are

consistent regardless of the magnitudes of σ2 and φ. In particular, the CLCL model

is always dominant when the DGP is CLCL or PCL with low ρ. In contrast, the PCL

model is only dominant (by a small margin) when the DGP is PCL with high ρ. In

other words, the CLCL model is preferred when the stochastic disturbance terms, et,

follow an AR(1) process, except when the model is dynamic with a high autoregressive

parameter, ρ. The PF model is dominant in all cases where the stochastic disturbance

terms, et, follow an ARIMA(1,1,0) or RW. In particular, the RW specification for the

et is superior to the ARIMA(1,1,0) in static and dynamic estimated models under all

DGPs.

There are a couple of instances where the results are different when the aggregation

matrix is C2 instead of C1. For example, the PCL model moderately dominates, with

few exceptions, when the DGP is CLCL or PCL with high variance, σ2. It means

that under the second aggregation matrix, the PCL model performs better when the

stochastic disturbance terms follow an AR process with high variance. Further, the

CLF ranks moderately better in a few instances, especially when the DGP is CLL,

CLF, or PL (with low ρ) with high φ and low variance, σ2. That is to say, using

the second aggregation matrix, the CLF may outperform under three conditions: a

relevant indicator is added, the stochastic disturbance terms follow an ARIMA(1,1,0)

or RW process with low variance, and the autoregressive parameter is low under the

dynamic model.

Therefore, based on the findings of the Monte Carlo, our recommendation is as

follows. When the stochastic disturbance terms are assumed to follow an AR(1)
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1.6. Conclusion

process, the static model (CLCL) is the best model to use unless the AR parameter

of the unobserved HF values is assumed to be high. If the AR parameter is

low, the relationship seems to be captured by the AR(1) process of the stochastic

disturbance terms. On the other hand, when the stochastic disturbance terms

follow an ARIMA(1,1,0) or RW, the dynamic model by Poissonnier (2018) would

be more suitable since it depicts the autocorrelation component in the HF series.

Specifically, the RW assumption is recommended in this case because although it

yields only moderate improvement over its counterparts, it also has fewer parameters

to estimate. Further, as noted by Poissonnier (2018), using the RW specification

minimizes the residual variations from period to period and hence reduces the impact

of the unexplained component of the model on the HF estimates.

1.6 Conclusion

This essay revisits temporal disaggregation models under the Chow-Lin framework:

the static (Chow and Lin, 1971) and dynamic (Poissonnier, 2018) models, each with

three different variants of the stochastic disturbance terms process. We show that the

HF estimates found by these models are a linear transformation of their corresponding

LF series. We also illustrate the necessary modification for a non-constant frequency

ratio such as monthly to daily series. Further, we present the extended model of

Poissonnier (2018) to estimate extrapolated and interpolated HF series.

We discuss the theoretical features of the temporal disaggregation methods. Specifi-

cally, we show that the HF estimates consist of a trajectory and a perturbation signal.

We examine the assumptions and parameters that influence each signal. It gives a
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closer look to the practitioner on how and which assumptions and parameters drive

the estimated values. We also illustrate the log-likelihood estimation and clarify which

parameters need to be estimated.

Finally, we perform a global Monte Carlo study whereby we analyse the performance

of the models under various combinations of different representative magnitudes of

the parameters. The study examines which model provides the highest accuracy in

the HF estimates under various data generating processes. We find that the preferred

model generally depends on the process of the stochastic disturbance terms in the

DGP rather than whether the true model is static or dynamic. The traditional static

model by Chow and Lin (1971) dominates when the DGP error term follows an

AR(1) process. In contrast, the dynamic model of Poissonnier (2018) with RW error

term process (Fernández, 1981) is preferred when the DGP error terms follow an

ARIMA(1,1,0) or RW process.

Appendices

1.A Proofs

1.A.1 Proof of Proposition 1.2.1

Observe that, in matrix form, the static model is defined by: xlf= Cx, and the true

high-frequency observation z is given by the model: z = Sφ + e. S is the (m× k)

indicator matrix that includes both interpolated data-points and extrapolated data-

points (if m > c). C is the (N × c) aggregation matrix defined in either (1.2) or

(1.4). e is a m × 1 vector of stochastic disturbances terms (both interpolated and
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extrapolated) and is defined by e :=

(
e1 · · · em

)
.

Note: z = x if m = c, hence, when m ̸= c, xlf= Cx = CFz where F is a c × m

non-square identity matrix defined as F =Ic×m.

The proof consists of three parts for: CLCL, CLL, and CLF.

• Let the estimated high-frequency observation of z be denoted by ẑ where ẑ =

Axlf = ACFx = ACFSφ + ACFe. Define the error of the high-frequency

estimation by

uz = z− ẑ

= Sφ−ACFSφ+ e−ACFe

For ẑ to be an unbiased estimator of z in the case of Chow and Lin (1971),

E(uz) = 0. Hence, S = ACFS and var (uz) = (Im−ACF)Ω (Im−ACF)
′

where Ωe is the m×m variance covariance matrix of e.

Our objective is to minimize the var (uz) s.t. S = ACFS hence, the Lagrangian

expression is given by

L =
1

2
tr(var(uz))− tr(M

′
(ACFS− S))

where M is a m× k matrix of Lagrange multipliers.

∂L

∂A
= (ACF− Im)ΩF

′
C

′ −MS
′
F

′
C

′
= 0
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Hence,

A = ΩF
′
C

′
(CFΩF

′
C

′
)−1 +MS

′
F

′
C

′
(CFΩF

′
C

′
)−1 (1.13)

since S = ACFS, then

M =

(
S−ΩF

′
C

′
(
CFΩF

′
C

′
)−1

CFS

)(
S

′
F

′
C

′
(
CFΩF

′
C

′
)−1

CFS

)−1

Replace the matrixM in equation (1.13), then denote ϕTCL = C
′ (
CFΩF

′
C

′)−1

and δTCL :=
(
S

′
F

′
ϕTCLCFS

)−1
S

′
F

′
ϕTCL then one can show that

A = ΩF
′
ϕTCL + (Im−ΩF

′
ϕTCLCF)SδTCL

= ΩF
′
ϕTCL(IN −CFSδTCL) + SδTCL

Note that the GLS estimator of φ:

φ̂ = (S′C′(CΩC′)−1CS)−1S′C(CΩC′)−1Cx

= (S′ϕTCLCS)−1S′ϕTCLxlf

= δTCLxlf

Hint: Cx = (CS)φ+Ce.

Hence,

êlf = xlf −CSδTCLxlf

Hint: êhf = ẑ− Sφ̂

• Using similar notation, it is assume that the stochastic disturbances terms follow

an AR(1) process or an ARIMA(1,1,0) process. Let ∆ be the N ×N difference
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matrix, defined by

∆ :=



1 0 · · · 0

−1 1 · · · 0

0 −1
. . . 0

0 · · · . . . 1


(1.14)

Furthermore, let D be also a m×m difference matrix similar in structure to ∆.

Let Q be N × c matrix such that QFD := ∆CF, then

∆xlf= ∆Cx = ∆CFz = QFDz

The difference series Dẑ and Dz can be presented by

Dẑ = R∆xlf = RQFDz = RQF(DSφ+De) and Dz = DSφ+De

the error in estimation is given by

uz = Dz−Dẑ =(Im −RQF)DSφ+(Im −RQF)De

imposing E (uz) = 0 for unbiasedness of estimator, we get RQFDS = DS.

Furthermore,

var (uz) = (Im −RQF)Ω
(
Im − F

′
Q

′
R

′
)

where here Ω := E
(
Dee

′
D
)
, hence almost the variance covariance matrix of

the (m− 1)×1 vector of white noise Ω. However, this is not the case, this is due

to the fact that D is square matrix with an element 1 in the upper left corner.
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It is assumed that e0 = 0, if the sample size is not too small, this assumption

should not constitute a serious problem. Hence, in case of Fernández (1981),

Ω = σ2Im. In case of Litterman (1983),

Ω :=
σ2

1− µ2



1 µ · · · µm−1

µ 1 · · · µm−2

...
...

. . .
...

µm−1 µm−2 · · · 1



Our objective is to minimize the var (uz) s.t. RQFDS = DS hence, the

Lagrangian expression is given by

L =
1

2
tr(var(uz))− tr(M

′
(RQFDS−DS))

where M is a m× k matrix of Lagrange multipliers

∂L

∂R
= (RQF− Im)ΩF

′
Q

′ −MS
′
D

′
F

′
Q

′
= 0

Hence,

R = ΩF
′
Q

′
(QFΩF

′
Q

′
)−1 +MS

′
D

′
F

′
Q

′
(QFΩF

′
Q

′
)−1 (1.15)

replacing R in RQFDS = DS, we get the Lagrange matrix as

M =(Im−ΩF
′
Q

′
(QFΩF

′
Q

′
)−1QF)DS(S

′
D

′
F

′
Q

′
(QFΩF

′
Q

′
)−1QFDS)−1
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1.A. Proofs

Replacing M in equation (1.15), we get

R = ΩF
′
Q

′
(
QFΩF

′
Q

′
)−1

+

(
Im−ΩF

′
Q

′
(
QFΩF

′
Q

′
)−1

QF

)
DS(

S
′
D

′
F

′
Q

′
(
QFΩF

′
Q

′
)−1

QFDS

)−1

S
′
D

′
F

′
Q

′
(
QFΩF

′
Q

′
)−1

Let

ϕ1 := F
′
Q

′
(QFΩωF

′
Q

′
)−1

= D
′−1F

′
C

′
∆

′
(∆CFD−1ΩωD

′−1F′C
′
∆′)−1

= D
′−1F′C′(CF(D′(Ωω)−1D)−1F′C′)−1∆−1

Observe the fact that QF := ∆CFD−1 and define the m×N matrix

ϕ := D
′−1F

′
C

′
(
CF

(
D

′
(Ωω)−1D

)−1

F
′
C

′
)−1

Observe that ϕ1QF =ϕ∆−1∆CFD−1 = ϕCFD−1. Furthermore, define

δ1 := (S
′
D

′
ϕ1QFDS)−1S

′
D

′
ϕ1

= (S
′
D

′
ϕCFD−1DS)−1S

′
D

′
ϕ∆−1

Let δ :=
(
S

′
D

′
ϕCFD−1DS

)−1
S

′
D

′
ϕ. Then,

R = Ωϕ1 + (Im−Ωϕ1QF)DS(S
′
D

′
ϕ1QFDS)−1S

′
D

′
ϕ1

= Ωϕ1 + (Im−Ωϕ1QF)DSδ1

= Ωϕ+ (Im−ΩϕCFD−1)DSδ∆−1
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1.A. Proofs

Recall that Dẑ = R∆xlf , hence

ẑ = D−1R∆xlf

= Alittxlf

where

Alitt := D−1R∆

= D−1(Ωωϕ+ (Im−ΩωϕCFD−1)DSδ)

= D−1(Ωωϕ(IN −CFSδ) +DSδ)

= D−1Ωωϕ(IN −CFSδ) + Sδ

Also, êlf = xlf −CS′δxlf

1.A.2 Proof of Lemma 1.2.1.1

The proof consists of three parts for: PCL, PL, and PF. The proof provided here is

different than the one stated in Poissonnier (2018)—however, the same result.

• The matrix representation of the proposed equation (1.6) is given by

x = M1x+M2x
init + FSφ+ Fe

where the C× c and the C× p matrices M1 and M2 are defined in the lemma.

With some matrix algebra, one can reach

x = (Ic −M1)
−1(M2x

init + FSφ+ Fe) (1.16)
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1.A. Proofs

Observe that its interpolated estimate of x, x̂, is given by the suggested linear

transformation5

x̂ = f(xlf ) = Axlf + b = ACx+ b

the residual is given by

ûx = x− x̂ = (Ic −AC)x− b

Observe that the matrix A and the vector b should satisfy the following three

properties: 1) When you pre-multiply the interpolated estimate vector x̂, by

the conversion matrix C, you get the recorded observation vector xlf , that

is: Cx̂ = xlf , 2) The estimate, x̂, needs to be unbiased E (ûx) = 0. 3) The

estimate, x̂, needs to be efficient subject to the other initial two constraints i.e.

min
A,b

cov(ûx) s.t. Cx̂ = xlf and E(ûx) = 0

1. Solving the first constraint, we get

Cx̂inter= CAxlf +Cb = xlf

hence

CA = IN and Cb = 0N

5We chose to write it here as x̂ rather than ẑ purposely to distinguish between interpolated and
extrapolated estimates.
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1.A. Proofs

2. Solving the second constraint, we get

b =(Ic −AC)E(x)

3. Define the variance covariance matrix of the vector x, by the (m×m)

matrix Ωx := V ar(x) = (Ic −M1)
−1FΩeF

′ (
Ic −M

′
1

)−1
. Furthermore,

Observe that

cov(ûx) = (Ic −AC)cov(x)(Ic −AC)
′

= (Ic −AC)(Ic −M1)
−1FΩeF

′
(Ic −M

′

1)
−1(Ic −AC)

′

We wish to minimize a scalar function f1 (A)

f1(A) : =
1

2
tr(cov(ûx))

=
1

2
tr(Ωx −ACΩx −ΩxC

′
A

′
+ACΩxC

′
A

′
)

hence

∂f1
∂A

= (AC− Im)ΩxC
′
= 0

This results

A = ΩxC
′
(CΩxC

′
)−1

It is trivial to prove that the matrix A satisfies the other two constraints.

• Using the matrix representation of equation (1.6), i.e. (1.16). Let R and b1 be

the C×N matrix and the C×1 vector to be determined respectively, such that
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1.A. Proofs

the following equation holds:

D1x̂ = R∆xlf+b1 = R∆Cx+b1 = R∆C(Ic−M1)
−1(M2x

init+FSφ+Fe)+b1

where ∆ is N × N matrix defined in 1.14, D is the m × m matrix defined in

1.2.1. D1 is the C × c difference matrix of similar structure to D and ∆ such

that FD = D1F where F is the C×m identity matrix.

D1x =(Ic −M1)
−1Λ + (Ic −M1)

−1FDe

where Λ is a C × 1 vector defined as Λ := D1M2x
init + FDSφ. Let Q be an

N × c matrix defined by QD1 := ∆C(Ic −M1)
−1, hence

D1x̂ =RQD1(M2x
init + FSφ+ Fe) + b1

= RQ(D1M2x
init +D1FSφ) +RQD1Fe+ b1

= RQΛ +RQFDe+ b1

The residual is given by

ûx = D1x−D1x̂

= λ1(Λ + FDe)− b1

where λ1 := (Ic −M1)
−1 − RQ. Observe that 1) When you pre-multiply the

interpolated estimate vector x̂, by the conversion matrixC, you get the recorded
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1.A. Proofs

observation vector xlf , that is: Cx̂ = xlf , hence

Cx̂= CD−1
1 R∆xlf +CD−1

1 b1 = xlf

hence CD−1
1 R∆ = IN and CD−1

1 b1 = 0N×1. Furthermore, 2) The estimate,

D1x̂, needs to be unbiased E (ûx) = 0. Hence, b1 = λ1Λ. Using simple algebra

CD−1
1 RQΛ = CD−1

1 (Ic −M1)
−1Λ

the variance covariance matrix of ûx is

E(ûxû
′

x) = λ1FE(Dee
′
D

′

)F
′
λ

′

1

= λ1FΩ
ωF

′
λ

′

1

where Ωω is the m × m variance matrix of the error terms in the stochastic

disturbance equation. Our objective is to minimize the variance matrix of ûx

such that CD−1
1 R∆ = IN holds

L =
1

2
tr(E(ûxû

′

x))− tr(℘
′
(CD−1

1 R∆− IN))

∂L

∂R
= −λ1FΩ

ωF
′
Q

′ −D
′−1
1 C

′
℘∆

′
= 0

since Q
′
= D

′−1
1 (Ic −M

′
1)

−1C
′
∆

′
and

(
QFΩωF

′
Q

′)−1
= ∆

′−1Ω−1
x,1∆

−1 where

Ωx,1 = CΩx,2C
′
and Ωx,2 := (Ic −M1)

−1
(
D

′
1

(
FΩωF

′)−1
D1

)−1

(Ic −M1)
−1.

One can show that,

R = D
′−1
1 C

′
℘Ω−1

x,1∆
−1 + (Ic −M1)

−1FΩωF
′
D

′−1
1 (Ic −M

′

1)
−1C

′
Ω−1

x,1∆
−1
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1.A. Proofs

since CD−1
1 R∆ = IN

CD−1
1 D

′−1

1 C
′
℘ = Ωx,1 −C(Ic −M1)

−1D−1
1 FΩωF

′
D

′−1
1 (Ic −M

′

1)
−1C

′

= 0

Hence,

R = D1Ωx,2C
′
Ω−1

x,1∆
−1

and

λ1 = (Ic −M1)
−1 −D1Ωx,2C

′
Ω−1

x,1C(Ic −M1)
−1D−1

1

Observe thatD−1
1 λ1 = λpois,1D

−1
1 , where λpois,1 := (Ic −M1)

−1−Ωx,2C
′
Ω−1

x,1C(Ic−

M1)
−1. Hence,

x̂= D−1
1 R∆xlf +D−1

1 λ1Λ

b = D−1
1 λ1Λ

= λpois,1D
−1
1 Λ

= λpois,1(M2x
init + FSφ)

and
Apois,2 : = D−1

1 R∆

= Ωx,2C
′
Ω−1

x,1

1.A.3 Proof of Proposition 1.2.2

The proof consists of three parts for: PCL, PL, and PF.

1. The matrix representation of the proposed equation (1.6) is given by

z := M1,zz+M2,zz
init + Sφ+ e

where the m×m and the m× p matrices M1,z and M2,z are defined of similar

structure to the M1 and M2 in the Lemma. In particular, FM2,z = M2 and
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1.A. Proofs

FM1,zF
′
= M1. With some matrix algebra, one can reach

z = (Im −M1,z)
−1(M2,zz

init + Sφ+ e)

Observe that x = Fz = FM1,zz+FM2,zz
init +FSφ+Fe = M1Fz+M2z

init +

FSφ + Fe. Hence, x = (Ic −M1)
−1 (M2z

init + FSφ+ Fe). Furthermore, its

estimate, ẑ, is given by the suggested linear transformation

ẑ= Axlf + b

where A is a m×N matrix and b is a m× 1 vector to be determined. Observe

that

z = (Im −M1,z)
−1(M2,zz

init + Sφ+ e) = Λ2 + (Im −M1,z)
−1e

Where Λ is a C×1 vector defined as Λ := (Ic −M1)
−1 (M2x

init + FSφ) = FΛ2,

Λ2 := (Im −M1,z)
−1(M2,zz

init + Sφ).

ẑ = Axlf + b = ACFΛ2 +ACF(Im −M1,z)
−1e+b

The residuals is defined by

ûz = z− ẑ = (Im −ACF)Λ2 + (Im−ACF)(Im −M1,z)
−1e− b

Let Cz be the N × m matrix, defined exactly in the same manner as the

N × c matrix C defined in either set-ups. In particular, when post-multiplied
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1.A. Proofs

by the vector ẑ one should get the vector xlf , that is: Czẑ = xlf . Hence,

Czẑ = CzAxlf +Czb = xlf . This implies that CzA = IN and Czb = 0N .

Furthermore, 2) The estimate, ẑ, needs to be unbiased estimate of z, E (ûz) = 0.

Hence, b = (Im −ACz) Λ2.

Observe that if CzA = IN , then b satisfies Czb = 0N . So the only constraint

that needs to be guaranteed is CzA = IN . Let λ1 := (Im−ACz) (Im −M1,z)
−1,

then the variance covariance matrix of ûx is

E(ûxû
′

x) = λ1E(ee
′
)λ

′

1 = λ1Ωλ
′

1

where Ωe is the m × m variance matrix of the error terms in the stochastic

disturbance equation. Our target is to minimize this matrix such that the

CzA = IN holds. The Lagrangian expression is

L =
1

2
tr(E(ûxû

′

x))

The partial derivative is given by

∂L

∂A
= −λ1Ω

e(Im −M
′

1,z)
−1C′

z = 0

LetΩx,1 = CzΩx,2C
′
z andΩx,2 := (Im−M1,z)

−1Ωe
(
Im −M

′
1,z

)−1
, hence solving

for A, we get

A = Ωx,2C
′
zΩ

−1
x,1 and b = (Im −ACz) (Im −M1,z)

−1(M2,zz
init + Sφ)
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1.A. Proofs

It is easy to see that the constraint CzA = IN holds for this choice of A.

2. Under the assumptions of ARIMA(1,1,0) stochastic disturbance terms, we will

consider the following linear transformation equation

Dẑ = R∆xlf + b1 = R∆Cx+ b1 = R∆Czz+ b1

where D and ∆ is the m×m and the N ×N difference matrix. R is a m×N

matrix and b1 is a m× 1 vector to be determined. Observe that

Dz = D(Im −M1,z)
−1(M2,zz

init + Sφ+ e) = Λ2 + (Im −M1,z)
−1De

where Λ2 := D(Im −M1,z)
−1(M2,zz

init + Sφ).

Hence, Dẑ= R∆CzD
−1Λ2+R∆Cz(Im −M1,z)

−1e+ b1.

The differenced residuals is given by

ûz = Dz−Dẑ = (Im −R∆CzD
−1)Λ2 + λ1De− b1

where λ1 := (Im −M1,z)
−1−R∆Cz (Im −M1,z)

−1D
−1
. When pre-multiplying

the vector ẑ by Cz one should get the vector xlf . In particular,

Czẑ = CzD
−1R∆xlf +CzD

−1b1 = xlf

Hence, CzD
−1R∆ = IN and CzD

−1b1 = 0N should be satisfied. Furthermore,

the differenced estimate, Dẑ, needs to be unbiased estimate of Dz, E (ûz) = 0.

Hence, b1 = (Im − R∆CzD
−1)Λ2. Observe that if CzD

−1R∆ = IN , then b1
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1.A. Proofs

satisfies CzD
−1b1 = 0. So the only constraint that need to be guaranteed is

CzD
−1R∆ = IN . The variance covariance matrix of ûx is

E(ûxû
′

x) = λ1E(Dee
′
D

′
)λ

′

1 = λ1Ω
ωλ

′

1

where Ωω is the m × m variance matrix of the error terms in the stochastic

disturbance equation. Our target is to minimize this matrix such that the

constraint holds. The Lagrangian expression is

L =
1

2
tr(E(ûxû

′

x))

The partial derivative is given by

∂L

∂R
= −λ1Ω

ωD
′−1(Im −M′

1,z)
−1F

′
C

′
∆

′

= (R∆Cz(Im −M1,z)
−1D

−1 − (Im −M1,z)
−1)ΩωD

′−1(Im −M
′

1,z)
−1F

′
C′∆′

= 0

Let Ωx,1 = CzΩx,2C
′
z and Ωx,2 := (Im − M1,z)

−1D−1ΩωD′−1
(
Im −M

′
1,z

)−1
,

hence solving for R, we get

R = (Im −M1,z)
−1ΩωD

′−1(Im −M
′

1,z)
−1C′

z(Ωx,1)
−1∆−1

It is easy to see that the constraint CzD
−1R∆ = IN holds for this choice of R.

Recall that

ẑ= D−1R∆xlf +D−1b1
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1.A. Proofs

Hence,

Apois,2 = D−1R∆ = Ωx,2C
′
(Ωx,1)

−1

and

bpois,2:= D−1b1 = (Im −Apois,2Cz)(Im −M1,z)
−1(M2,zz

init + Sφ)
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1.B Monte Carlo Study - Tables

Table 1.2: DGP Reference Key

DGP reference # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Model CLCL CLCL CLL CLL CLF PCL PCL PCL PCL PL PL PL PL PF PF
µ 0.2 0.8 0.2 0.8 0.2 0.2 0.8 0.8 0.2 0.2 0.8 0.8
ρ 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8
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Table 1.3: The average MSEs of the Monte Carlo HF estimates by the six models under various DGPs with σ2 = 0.1 with
aggregation matrix C1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 2.024 2.694 11.288 42.992 9.319 2.282 8.971 3.718 26.608 17.858 262.318 68.127 1028.365 14.232 14.106
(0.111) (0.193) (5.619) (22.671) (4.611) (0.134) (1.041) (0.296) (3.538) (9.136) (143.080) (36.514) (536.710) (7.044) (7.083)

CLL 2.529 3.435 5.155 14.279 4.313 2.886 11.785 4.823 33.178 7.663 71.198 22.210 233.326 6.266 7.052
(0.362) (0.589) (1.120) (4.466) (0.961) (0.427) (2.653) (0.824) (8.755) (1.857) (25.460) (7.082) (95.650) (1.497) (1.997)

CLF 2.307 3.016 4.205 11.016 3.528 2.607 9.475 4.134 26.034 6.127 52.620 16.956 174.798 5.061 5.464
(0.207) (0.301) (0.500) (1.853) (0.419) (0.244) (1.274) (0.426) (3.853) (0.808) (9.775) (2.890) (36.496) (0.660) (0.877)

PCL 2.257 2.949 4.509 12.190 3.778 2.560 8.893 4.034 23.403 6.638 60.666 18.814 213.441 5.452 5.517
(0.164) (0.237) (0.710) (2.868) (0.601) (0.202) (0.984) (0.348) (2.956) (1.139) (18.943) (4.671) (74.874) (0.931) (0.914)

PL 2.342 3.048 4.101 9.887 3.447 2.644 9.380 4.182 24.930 5.927 42.875 15.008 130.640 4.902 4.973
(0.172) (0.258) (0.424) (1.296) (0.359) (0.217) (1.096) (0.381) (3.330) (0.665) (7.152) (2.048) (23.620) (0.524) (0.538)

PF 2.340 3.043 4.057 9.650 3.418 2.642 9.217 4.169 24.208 5.832 41.941 14.641 128.912 4.837 4.910
(0.172) (0.256) (0.409) (1.242) (0.348) (0.216) (1.059) (0.378) (3.122) (0.644) (6.737) (1.955) (23.237) (0.506) (0.520)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 2.022 2.709 11.400 43.769 9.228 2.287 9.108 3.739 26.532 17.710 270.441 67.247 1041.455 19.097 19.624
(0.114) (0.196) (5.811) (23.902) (4.593) (0.136) (1.000) (0.302) (3.689) (9.082) (142.413) (36.870) (588.701) (9.302) (9.657)

CLL 3.507 4.287 5.793 14.700 5.006 4.140 13.091 5.779 34.092 8.342 71.785 22.797 234.955 8.838 9.273
(0.708) (1.015) (1.596) (4.519) (1.318) (0.849) (3.468) (1.380) (9.352) (2.346) (26.265) (7.094) (91.480) (2.047) (2.308)

CLF 2.905 3.508 4.553 11.210 3.922 3.333 10.227 4.663 26.327 6.496 53.200 17.193 173.333 7.161 7.380
(0.370) (0.505) (0.713) (1.843) (0.590) (0.438) (1.624) (0.671) (4.182) (1.042) (10.171) (2.880) (34.899) (0.900) (1.024)

PCL 2.396 3.072 4.617 12.312 3.865 2.703 8.922 4.151 23.370 6.660 62.317 18.736 214.648 7.602 7.696
(0.179) (0.241) (0.748) (2.998) (0.578) (0.201) (0.954) (0.353) (3.097) (1.132) (19.290) (4.774) (81.083) (1.261) (1.210)

PL 2.475 3.170 4.195 9.998 3.529 2.781 9.400 4.302 25.007 5.985 43.245 15.085 129.433 6.952 7.017
(0.188) (0.264) (0.433) (1.342) (0.334) (0.215) (1.062) (0.387) (3.334) (0.645) (7.088) (2.059) (23.916) (0.766) (0.725)

PF 2.474 3.165 4.155 9.765 3.501 2.779 9.246 4.288 24.242 5.890 42.310 14.701 127.417 6.835 6.896
(0.187) (0.262) (0.421) (1.265) (0.326) (0.214) (1.021) (0.383) (3.194) (0.621) (6.693) (1.970) (23.437) (0.735) (0.690)

The upper and lower tables present the results for DGPs with φ = 0.2 and 0.8, respectively. Each column represents a DGP
according to table 1.2. The row represents the average and (standard deviation) of the MSEs of HF estimates by a particular
model (row-wise) for 1000 artificial samples of a DGP (column-wise).
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Table 1.4: The average MSEs of the Monte Carlo HF estimates by the six models under various DGPs with σ2 = 1 with
aggregation matrix C1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 2.870 3.821 16.362 63.419 12.808 3.225 12.606 5.257 37.596 24.771 370.621 95.229 1522.353 19.097 296.528
(0.162) (0.274) (8.435) (33.590) (6.253) (0.184) (1.388) (0.440) (5.012) (12.297) (206.809) (49.425) (851.675) (9.302) (154.906)

CLL 3.621 4.922 7.416 20.537 6.174 4.092 16.599 6.824 47.161 10.892 100.482 30.959 333.804 8.838 77.948
(0.522) (0.822) (1.714) (6.168) (1.337) (0.548) (3.837) (1.179) (12.145) (2.631) (36.510) (9.628) (132.133) (2.047) (27.929)

CLF 3.246 4.255 5.991 15.677 5.000 3.651 13.347 5.820 36.819 8.682 74.243 23.826 247.499 7.161 59.456
(0.284) (0.431) (0.743) (2.497) (0.579) (0.304) (1.744) (0.612) (5.584) (1.112) (13.982) (3.773) (48.612) (0.900) (10.813)

PCL 3.220 4.176 6.420 17.562 5.329 3.628 12.496 5.703 32.947 9.335 86.076 26.419 309.639 7.602 69.630
(0.235) (0.342) (1.053) (4.284) (0.826) (0.259) (1.330) (0.503) (4.286) (1.551) (27.639) (6.566) (117.513) (1.261) (20.836)

PL 3.313 4.320 5.851 14.024 4.896 3.738 13.266 5.921 35.144 8.400 60.315 21.208 183.631 6.952 48.890
(0.255) (0.378) (0.640) (1.860) (0.495) (0.283) (1.524) (0.552) (4.770) (0.904) (9.555) (2.858) (33.494) (0.766) (7.939)

PF 3.309 4.307 5.762 13.667 4.837 3.732 12.951 5.889 34.092 8.229 59.064 20.704 181.261 6.835 47.884
(0.254) (0.374) (0.609) (1.776) (0.478) (0.281) (1.426) (0.544) (4.508) (0.871) (9.108) (2.734) (32.427) (0.735) (7.642)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 2.865 3.814 16.091 59.530 12.765 3.222 12.741 5.243 37.336 24.469 375.206 94.898 1482.696 19.624 304.011
(0.154) (0.285) (7.839) (31.016) (6.228) (0.198) (1.362) (0.438) (5.097) (12.186) (210.825) (51.295) (781.425) (9.657) (162.312)

CLL 4.378 5.461 7.809 20.595 6.585 5.060 17.562 7.422 47.176 11.299 100.570 31.620 335.536 9.273 81.110
(0.837) (1.105) (2.079) (6.431) (1.705) (1.028) (4.323) (1.581) (12.823) (2.889) (35.550) (10.019) (130.849) (2.308) (28.582)

CLF 3.686 4.559 6.172 15.765 5.264 4.183 13.876 6.137 36.795 8.906 74.440 23.934 247.097 7.380 59.996
(0.429) (0.558) (0.933) (2.564) (0.772) (0.518) (2.022) (0.771) (5.850) (1.247) (13.577) (3.961) (49.183) (1.024) (11.196)

PCL 3.317 4.245 6.408 17.119 5.392 3.719 12.534 5.728 32.882 9.331 87.071 26.487 306.880 7.696 69.908
(0.227) (0.346) (1.051) (3.960) (0.794) (0.281) (1.331) (0.515) (4.196) (1.572) (28.228) (6.791) (109.301) (1.210) (21.598)

PL 3.411 4.393 5.825 14.027 4.961 3.824 13.299 5.946 35.082 8.428 60.479 20.906 183.361 7.017 48.860
(0.248) (0.380) (0.603) (1.823) (0.481) (0.305) (1.525) (0.561) (4.777) (0.897) (10.069) (2.832) (32.677) (0.725) (7.994)

PF 3.407 4.380 5.742 13.661 4.904 3.818 12.989 5.913 34.031 8.266 59.268 20.409 180.951 6.896 47.747
(0.246) (0.376) (0.584) (1.729) (0.465) (0.303) (1.440) (0.553) (4.463) (0.853) (9.709) (2.674) (31.611) (0.690) (7.743)

The upper and lower tables present the results for DGPs with φ = 0.2 and 0.8, respectively. Each column represents a DGP
according to table 1.2. The row represents the average and (standard deviation) of the MSEs of HF estimates by a particular
model (row-wise) for 1000 artificial samples of a DGP (column-wise).
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Table 1.5: The average MSEs of the Monte Carlo HF estimates by the six models under various DGPs with σ2 = 5 with
aggregation matrix C1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 2.024 2.694 11.288 42.992 9.319 2.282 8.971 3.718 26.608 17.858 262.318 68.127 1028.365 14.232 14.106
(0.111) (0.193) (5.619) (22.671) (4.611) (0.134) (1.041) (0.296) (3.538) (9.136) (143.080) (36.514) (536.710) (7.044) (7.083)

CLL 2.529 3.435 5.155 14.279 4.313 2.886 11.785 4.823 33.178 7.663 71.198 22.210 233.326 6.266 7.052
(0.362) (0.589) (1.120) (4.466) (0.961) (0.427) (2.653) (0.824) (8.755) (1.857) (25.460) (7.082) (95.650) (1.497) (1.997)

CLF 2.307 3.016 4.205 11.016 3.528 2.607 9.475 4.134 26.034 6.127 52.620 16.956 174.798 5.061 5.464
(0.207) (0.301) (0.500) (1.853) (0.419) (0.244) (1.274) (0.426) (3.853) (0.808) (9.775) (2.890) (36.496) (0.660) (0.877)

PCL 2.257 2.949 4.509 12.190 3.778 2.560 8.893 4.034 23.403 6.638 60.666 18.814 213.441 5.452 5.517
(0.164) (0.237) (0.710) (2.868) (0.601) (0.202) (0.984) (0.348) (2.956) (1.139) (18.943) (4.671) (74.874) (0.931) (0.914)

PL 2.342 3.048 4.101 9.887 3.447 2.644 9.380 4.182 24.930 5.927 42.875 15.008 130.640 4.902 4.973
(0.172) (0.258) (0.424) (1.296) (0.359) (0.217) (1.096) (0.381) (3.330) (0.665) (7.152) (2.048) (23.620) (0.524) (0.538)

PF 2.340 3.043 4.057 9.650 3.418 2.642 9.217 4.169 24.208 5.832 41.941 14.641 128.912 4.837 4.910
(0.172) (0.256) (0.409) (1.242) (0.348) (0.216) (1.059) (0.378) (3.122) (0.644) (6.737) (1.955) (23.237) (0.506) (0.520)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 2.022 2.709 11.400 43.769 9.228 2.287 9.108 3.739 26.532 17.710 270.441 67.247 1041.455 19.097 19.624
(0.114) (0.196) (5.811) (23.902) (4.593) (0.136) (1.000) (0.302) (3.689) (9.082) (142.413) (36.870) (588.701) (9.302) (9.657)

CLL 3.507 4.287 5.793 14.700 5.006 4.140 13.091 5.779 34.092 8.342 71.785 22.797 234.955 8.838 9.273
(0.708) (1.015) (1.596) (4.519) (1.318) (0.849) (3.468) (1.380) (9.352) (2.346) (26.265) (7.094) (91.480) (2.047) (2.308)

CLF 2.905 3.508 4.553 11.210 3.922 3.333 10.227 4.663 26.327 6.496 53.200 17.193 173.333 7.161 7.380
(0.370) (0.505) (0.713) (1.843) (0.590) (0.438) (1.624) (0.671) (4.182) (1.042) (10.171) (2.880) (34.899) (0.900) (1.024)

PCL 2.396 3.072 4.617 12.312 3.865 2.703 8.922 4.151 23.370 6.660 62.317 18.736 214.648 7.602 7.696
(0.179) (0.241) (0.748) (2.998) (0.578) (0.201) (0.954) (0.353) (3.097) (1.132) (19.290) (4.774) (81.083) (1.261) (1.210)

PL 2.475 3.170 4.195 9.998 3.529 2.781 9.400 4.302 25.007 5.985 43.245 15.085 129.433 6.952 7.017
(0.188) (0.264) (0.433) (1.342) (0.334) (0.215) (1.062) (0.387) (3.334) (0.645) (7.088) (2.059) (23.916) (0.766) (0.725)

PF 2.474 3.165 4.155 9.765 3.501 2.779 9.246 4.288 24.242 5.890 42.310 14.701 127.417 6.835 6.896
(0.187) (0.262) (0.421) (1.265) (0.326) (0.214) (1.021) (0.383) (3.194) (0.621) (6.693) (1.970) (23.437) (0.735) (0.690)

The upper and lower tables present the results for DGPs with φ = 0.2 and 0.8, respectively. Each column represents a DGP
according to table 1.2. The row represents the average and (standard deviation) of the MSEs of HF estimates by a particular
model (row-wise) for 1000 artificial samples of a DGP (column-wise).
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Table 1.6: The average MSEs of the Monte Carlo HF estimates by the six models under various DGPs with σ2 = 10 with
aggregation matrix C1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 2.870 3.821 16.362 63.419 12.808 3.225 12.606 5.257 37.596 24.771 370.621 95.229 1522.353 19.097 296.528
(0.162) (0.274) (8.435) (33.590) (6.253) (0.184) (1.388) (0.440) (5.012) (12.297) (206.809) (49.425) (851.675) (9.302) (154.906)

CLL 3.621 4.922 7.416 20.537 6.174 4.092 16.599 6.824 47.161 10.892 100.482 30.959 333.804 8.838 77.948
(0.522) (0.822) (1.714) (6.168) (1.337) (0.548) (3.837) (1.179) (12.145) (2.631) (36.510) (9.628) (132.133) (2.047) (27.929)

CLF 3.246 4.255 5.991 15.677 5.000 3.651 13.347 5.820 36.819 8.682 74.243 23.826 247.499 7.161 59.456
(0.284) (0.431) (0.743) (2.497) (0.579) (0.304) (1.744) (0.612) (5.584) (1.112) (13.982) (3.773) (48.612) (0.900) (10.813)

PCL 3.220 4.176 6.420 17.562 5.329 3.628 12.496 5.703 32.947 9.335 86.076 26.419 309.639 7.602 69.630
(0.235) (0.342) (1.053) (4.284) (0.826) (0.259) (1.330) (0.503) (4.286) (1.551) (27.639) (6.566) (117.513) (1.261) (20.836)

PL 3.313 4.320 5.851 14.024 4.896 3.738 13.266 5.921 35.144 8.400 60.315 21.208 183.631 6.952 48.890
(0.255) (0.378) (0.640) (1.860) (0.495) (0.283) (1.524) (0.552) (4.770) (0.904) (9.555) (2.858) (33.494) (0.766) (7.939)

PF 3.309 4.307 5.762 13.667 4.837 3.732 12.951 5.889 34.092 8.229 59.064 20.704 181.261 6.835 47.884
(0.254) (0.374) (0.609) (1.776) (0.478) (0.281) (1.426) (0.544) (4.508) (0.871) (9.108) (2.734) (32.427) (0.735) (7.642)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 2.865 3.814 16.091 59.530 12.765 3.222 12.741 5.243 37.336 24.469 375.206 94.898 1482.696 19.624 304.011
(0.154) (0.285) (7.839) (31.016) (6.228) (0.198) (1.362) (0.438) (5.097) (12.186) (210.825) (51.295) (781.425) (9.657) (162.312)

CLL 4.378 5.461 7.809 20.595 6.585 5.060 17.562 7.422 47.176 11.299 100.570 31.620 335.536 9.273 81.110
(0.837) (1.105) (2.079) (6.431) (1.705) (1.028) (4.323) (1.581) (12.823) (2.889) (35.550) (10.019) (130.849) (2.308) (28.582)

CLF 3.686 4.559 6.172 15.765 5.264 4.183 13.876 6.137 36.795 8.906 74.440 23.934 247.097 7.380 59.996
(0.429) (0.558) (0.933) (2.564) (0.772) (0.518) (2.022) (0.771) (5.850) (1.247) (13.577) (3.961) (49.183) (1.024) (11.196)

PCL 3.317 4.245 6.408 17.119 5.392 3.719 12.534 5.728 32.882 9.331 87.071 26.487 306.880 7.696 69.908
(0.227) (0.346) (1.051) (3.960) (0.794) (0.281) (1.331) (0.515) (4.196) (1.572) (28.228) (6.791) (109.301) (1.210) (21.598)

PL 3.411 4.393 5.825 14.027 4.961 3.824 13.299 5.946 35.082 8.428 60.479 20.906 183.361 7.017 48.860
(0.248) (0.380) (0.603) (1.823) (0.481) (0.305) (1.525) (0.561) (4.777) (0.897) (10.069) (2.832) (32.677) (0.725) (7.994)

PF 3.407 4.380 5.742 13.661 4.904 3.818 12.989 5.913 34.031 8.266 59.268 20.409 180.951 6.896 47.747
(0.246) (0.376) (0.584) (1.729) (0.465) (0.303) (1.440) (0.553) (4.463) (0.853) (9.709) (2.674) (31.611) (0.690) (7.743)

The upper and lower tables present the results for DGPs with φ = 0.2 and 0.8, respectively. Each column represents a DGP
according to table 1.2. The row represents the average and (standard deviation) of the MSEs of HF estimates by a particular
model (row-wise) for 1000 artificial samples of a DGP (column-wise).
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Table 1.7: The average MSEs of the Monte Carlo HF estimates by the six models under various DGPs with σ2 = 0.1 with
aggregation matrix C2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 0.250 0.352 0.779 2.525 0.641 0.289 1.355 0.496 3.647 1.196 14.446 4.043 53.490 0.961 0.982
(0.009) (0.028) (0.235) (0.915) (0.186) (0.013) (0.243) (0.048) (0.781) (0.359) (5.968) (1.558) (24.565) (0.295) (0.292)

CLL 0.273 0.364 0.520 1.456 0.437 0.309 1.244 0.499 3.449 0.770 6.958 2.235 22.434 0.630 0.779
(0.012) (0.028) (0.064) (0.273) (0.055) (0.016) (0.143) (0.042) (0.550) (0.101) (1.674) (0.445) (6.049) (0.083) (0.127)

CLF 0.273 0.363 0.516 1.385 0.434 0.309 1.228 0.498 3.283 0.760 6.605 2.114 21.333 0.624 0.773
(0.012) (0.028) (0.062) (0.229) (0.054) (0.016) (0.137) (0.042) (0.475) (0.096) (1.393) (0.367) (4.972) (0.079) (0.123)

PCL 0.315 0.393 0.693 1.926 0.583 0.360 1.202 0.522 3.085 1.016 8.936 2.828 30.924 0.833 1.259
(0.011) (0.023) (0.175) (0.590) (0.134) (0.015) (0.129) (0.037) (0.423) (0.260) (3.364) (0.853) (13.670) (0.212) (0.198)

PL 0.318 0.400 0.530 1.319 0.457 0.363 1.248 0.535 3.210 0.759 5.989 1.979 18.888 0.636 1.078
(0.011) (0.025) (0.054) (0.196) (0.042) (0.016) (0.141) (0.041) (0.461) (0.087) (1.147) (0.307) (4.137) (0.068) (0.068)

PF 0.319 0.400 0.530 1.319 0.457 0.364 1.248 0.535 3.210 0.759 5.975 1.978 18.599 0.636 1.078
(0.011) (0.025) (0.054) (0.196) (0.042) (0.016) (0.141) (0.041) (0.461) (0.087) (1.142) (0.306) (3.989) (0.068) (0.068)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 0.251 0.352 0.773 2.583 0.629 0.330 2.552 0.523 4.215 1.215 15.256 4.045 55.606 3.059 3.040
(0.009) (0.029) (0.232) (0.992) (0.178) (0.016) (0.394) (0.050) (1.021) (0.368) (6.423) (1.538) (26.120) (0.919) (0.908)

CLL 0.500 0.557 0.671 1.512 0.602 0.558 1.861 0.676 3.765 0.892 7.210 2.268 22.684 2.031 2.061
(0.018) (0.047) (0.108) (0.332) (0.092) (0.027) (0.158) (0.066) (0.570) (0.151) (1.699) (0.477) (6.172) (0.289) (0.312)

CLF 0.497 0.553 0.666 1.450 0.596 0.554 1.831 0.671 3.575 0.886 6.807 2.168 21.652 1.954 2.002
(0.018) (0.047) (0.106) (0.280) (0.090) (0.027) (0.146) (0.067) (0.476) (0.144) (1.378) (0.395) (5.177) (0.238) (0.269)

PCL 0.808 0.841 1.065 2.121 0.994 0.924 2.121 0.995 3.542 1.403 9.569 3.043 31.978 2.494 2.670
(0.014) (0.027) (0.165) (0.601) (0.128) (0.020) (0.153) (0.041) (0.435) (0.258) (3.441) (0.855) (13.961) (0.610) (0.602)

PL 0.820 0.855 0.927 1.532 0.883 0.938 2.109 1.015 3.671 1.157 6.287 2.188 19.100 1.899 2.098
(0.015) (0.030) (0.054) (0.192) (0.045) (0.021) (0.154) (0.046) (0.474) (0.086) (1.127) (0.307) (4.073) (0.212) (0.218)

PF 0.820 0.855 0.927 1.532 0.883 0.938 2.109 1.015 3.671 1.157 6.272 2.188 18.804 1.899 2.098
(0.015) (0.030) (0.054) (0.192) (0.045) (0.021) (0.154) (0.046) (0.474) (0.086) (1.121) (0.307) (3.935) (0.212) (0.218)

The upper and lower tables present the results for DGPs with φ = 0.2 and 0.8, respectively. Each column represents a DGP
according to table 1.2. The row represents the average and (standard deviation) of the MSEs of HF estimates by a particular
model (row-wise) for 1000 artificial samples of a DGP (column-wise).
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Table 1.8: The average MSEs of the Monte Carlo HF estimates by the six models under various DGPs with σ2 = 1 with
aggregation matrix C2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 0.794 1.112 2.481 8.157 2.031 0.908 3.913 1.559 11.366 3.760 47.377 12.584 172.990 3.059 37.805
(0.030) (0.092) (0.740) (3.119) (0.572) (0.041) (0.622) (0.155) (2.349) (1.169) (20.002) (4.800) (76.639) (0.919) (15.962)

CLL 0.801 1.104 1.661 4.611 1.368 0.914 3.877 1.545 10.924 2.466 21.908 7.058 71.039 2.031 17.720
(0.030) (0.076) (0.223) (0.894) (0.176) (0.039) (0.498) (0.129) (1.823) (0.346) (5.184) (1.353) (19.098) (0.289) (4.246)

CLF 0.800 1.100 1.605 4.362 1.333 0.913 3.712 1.535 10.385 2.368 20.838 6.681 67.981 1.954 16.829
(0.030) (0.075) (0.187) (0.745) (0.149) (0.039) (0.431) (0.126) (1.533) (0.290) (4.332) (1.091) (16.251) (0.238) (3.579)

PCL 0.810 1.087 2.056 5.645 1.717 0.923 3.535 1.505 9.683 3.038 29.145 8.600 98.808 2.494 23.153
(0.030) (0.067) (0.504) (1.772) (0.412) (0.039) (0.380) (0.116) (1.323) (0.762) (11.442) (2.722) (41.937) (0.610) (8.695)

PL 0.817 1.116 1.571 4.080 1.305 0.935 3.689 1.549 10.175 2.313 19.051 6.249 60.808 1.899 15.278
(0.030) (0.075) (0.172) (0.614) (0.134) (0.041) (0.431) (0.127) (1.501) (0.270) (3.820) (0.949) (13.538) (0.212) (2.944)

PF 0.818 1.116 1.571 4.078 1.305 0.935 3.689 1.549 10.173 2.313 18.836 6.240 58.780 1.899 15.142
(0.030) (0.075) (0.172) (0.613) (0.134) (0.041) (0.431) (0.127) (1.500) (0.270) (3.740) (0.945) (12.559) (0.212) (2.890)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 0.795 1.118 2.445 8.320 2.018 0.923 4.475 1.580 11.780 3.769 47.182 12.899 171.951 3.040 36.896
(0.028) (0.090) (0.743) (3.158) (0.563) (0.042) (0.858) (0.155) (2.682) (1.140) (19.593) (5.017) (76.603) (0.908) (14.953)

CLL 0.905 1.185 1.691 4.639 1.418 1.024 4.116 1.613 11.118 2.516 22.259 7.155 71.403 2.061 17.990
(0.038) (0.098) (0.246) (0.930) (0.212) (0.054) (0.508) (0.146) (1.809) (0.399) (5.209) (1.413) (19.441) (0.312) (4.084)

CLF 0.903 1.180 1.648 4.399 1.399 1.021 3.949 1.604 10.502 2.429 21.026 6.773 68.259 2.002 16.985
(0.038) (0.097) (0.209) (0.751) (0.188) (0.054) (0.436) (0.142) (1.535) (0.330) (4.357) (1.151) (16.641) (0.269) (3.371)

PCL 1.103 1.323 2.194 5.806 1.895 1.255 3.943 1.731 9.770 3.164 28.594 8.705 98.241 2.670 23.062
(0.036) (0.076) (0.481) (1.749) (0.393) (0.050) (0.394) (0.117) (1.356) (0.712) (10.854) (2.782) (41.673) (0.602) (8.425)

PL 1.116 1.353 1.735 4.176 1.519 1.274 4.061 1.776 10.205 2.479 19.134 6.373 60.974 2.098 15.509
(0.037) (0.084) (0.168) (0.634) (0.140) (0.053) (0.435) (0.129) (1.454) (0.268) (3.549) (1.010) (13.885) (0.218) (2.763)

PF 1.116 1.353 1.735 4.173 1.519 1.274 4.061 1.776 10.203 2.479 18.934 6.363 59.007 2.098 15.382
(0.037) (0.084) (0.168) (0.632) (0.140) (0.053) (0.435) (0.129) (1.454) (0.268) (3.495) (1.006) (12.882) (0.218) (2.719)

The upper and lower tables present the results for DGPs with φ = 0.2 and 0.8, respectively. Each column represents a DGP
according to table 1.2. The row represents the average and (standard deviation) of the MSEs of HF estimates by a particular
model (row-wise) for 1000 artificial samples of a DGP (column-wise).
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Table 1.9: The average MSEs of the Monte Carlo HF estimates by the six models under various DGPs with σ2 = 5 with
aggregation matrix C2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 1.772 2.499 5.449 18.449 4.525 2.032 8.704 3.516 25.825 8.299 104.273 28.350 383.173 6.769 6.795
(0.064) (0.208) (1.593) (6.985) (1.288) (0.094) (1.320) (0.343) (5.581) (2.549) (44.026) (10.424) (167.648) (2.054) (2.052)

CLL 1.773 2.488 3.740 10.320 3.088 2.032 8.594 3.533 24.771 5.498 49.146 15.863 161.116 4.527 4.532
(0.063) (0.180) (0.500) (2.039) (0.402) (0.089) (1.091) (0.304) (3.951) (0.812) (11.585) (3.185) (44.060) (0.629) (0.656)

CLF 1.773 2.458 3.596 9.766 2.981 2.029 8.246 3.446 23.419 5.279 46.432 14.989 152.345 4.347 4.367
(0.063) (0.168) (0.416) (1.675) (0.340) (0.089) (0.943) (0.268) (3.359) (0.664) (9.569) (2.576) (36.380) (0.520) (0.542)

PCL 1.770 2.402 4.359 12.531 3.675 2.020 7.847 3.347 21.816 6.430 63.748 19.359 221.670 5.258 5.364
(0.062) (0.151) (0.945) (4.006) (0.819) (0.086) (0.862) (0.240) (3.006) (1.505) (24.598) (6.083) (93.908) (1.206) (1.225)

PL 1.783 2.468 3.500 9.168 2.915 2.044 8.190 3.459 22.803 5.121 42.994 14.076 138.351 4.210 4.302
(0.064) (0.170) (0.388) (1.437) (0.314) (0.090) (0.959) (0.272) (3.337) (0.621) (8.397) (2.292) (31.881) (0.465) (0.470)

PF 1.783 2.468 3.500 9.146 2.915 2.044 8.189 3.459 22.785 5.119 41.986 14.008 132.771 4.209 4.301
(0.064) (0.170) (0.387) (1.429) (0.313) (0.090) (0.959) (0.272) (3.331) (0.620) (7.997) (2.263) (28.832) (0.464) (0.470)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 1.776 2.487 5.522 18.232 4.496 2.040 9.027 3.481 25.603 8.424 102.861 28.329 384.419 9.575 9.557
(0.062) (0.197) (1.705) (6.883) (1.235) (0.095) (1.563) (0.341) (5.547) (2.654) (45.064) (10.586) (175.072) (2.851) (2.806)

CLL 1.828 2.514 3.721 10.304 3.092 2.087 8.730 3.514 24.713 5.569 48.838 15.979 160.465 6.434 6.399
(0.067) (0.190) (0.498) (2.033) (0.400) (0.102) (1.131) (0.311) (4.094) (0.825) (11.661) (3.089) (44.769) (0.897) (0.899)

CLF 1.826 2.487 3.583 9.762 2.993 2.083 8.366 3.441 23.328 5.332 46.212 15.082 151.584 6.163 6.152
(0.067) (0.178) (0.416) (1.658) (0.338) (0.102) (0.971) (0.280) (3.441) (0.662) (9.638) (2.498) (36.610) (0.730) (0.760)

PCL 1.927 2.513 4.467 12.520 3.746 2.195 8.033 3.420 21.732 6.516 63.392 19.297 220.483 7.409 7.464
(0.066) (0.157) (1.002) (4.025) (0.759) (0.098) (0.873) (0.253) (2.984) (1.515) (24.063) (5.997) (98.903) (1.670) (1.576)

PL 1.944 2.581 3.548 9.230 2.996 2.223 8.352 3.525 22.792 5.215 42.959 14.179 137.539 5.974 6.025
(0.070) (0.175) (0.372) (1.469) (0.296) (0.102) (0.971) (0.282) (3.291) (0.592) (8.589) (2.213) (30.962) (0.692) (0.676)

PF 1.944 2.581 3.547 9.207 2.996 2.223 8.352 3.525 22.774 5.213 41.965 14.117 131.469 5.971 6.023
(0.070) (0.175) (0.371) (1.459) (0.296) (0.102) (0.971) (0.282) (3.286) (0.591) (8.085) (2.196) (27.894) (0.691) (0.675)

The upper and lower tables present the results for DGPs with φ = 0.2 and 0.8, respectively. Each column represents a DGP
according to table 1.2. The row represents the average and (standard deviation) of the MSEs of HF estimates by a particular
model (row-wise) for 1000 artificial samples of a DGP (column-wise).
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Table 1.10: The average MSEs of the Monte Carlo HF estimates by the six models under various DGPs with σ2 = 10 with
aggregation matrix C2

5 6 13 14 19 29 30 31 32 45 46 47 48 57 58

CLCL 2.507 3.539 7.824 25.542 6.338 2.882 12.307 4.924 36.608 11.841 144.492 39.876 535.446 9.575 116.858
(0.092) (0.296) (2.286) (9.421) (1.775) (0.131) (1.994) (0.452) (7.680) (3.489) (61.102) (15.351) (248.153) (2.851) (48.113)

CLL 2.507 3.537 5.239 14.554 4.367 2.884 12.141 4.974 34.861 7.752 69.085 22.497 225.402 6.434 55.569
(0.091) (0.263) (0.698) (2.850) (0.543) (0.126) (1.531) (0.428) (5.702) (1.122) (15.859) (4.563) (58.453) (0.897) (13.358)

CLF 2.505 3.475 5.053 13.805 4.206 2.877 11.649 4.851 33.069 7.432 65.384 21.183 214.439 6.163 52.655
(0.090) (0.236) (0.589) (2.386) (0.458) (0.124) (1.309) (0.384) (4.800) (0.922) (13.146) (3.620) (50.318) (0.730) (11.170)

PCL 2.497 3.397 6.084 17.498 5.096 2.857 11.093 4.723 30.786 9.027 89.593 26.792 302.393 7.409 72.545
(0.089) (0.214) (1.330) (5.353) (1.102) (0.120) (1.176) (0.352) (4.325) (2.111) (33.468) (8.648) (133.069) (1.670) (26.654)

PL 2.514 3.484 4.919 13.008 4.114 2.891 11.564 4.881 32.160 7.218 61.113 19.943 194.459 5.974 48.765
(0.091) (0.240) (0.563) (2.029) (0.427) (0.127) (1.295) (0.395) (4.823) (0.875) (11.786) (3.138) (42.523) (0.692) (10.173)

PF 2.514 3.484 4.917 12.955 4.113 2.891 11.563 4.881 32.115 7.213 59.276 19.801 186.184 5.971 47.516
(0.091) (0.240) (0.563) (2.009) (0.426) (0.127) (1.294) (0.395) (4.804) (0.873) (11.059) (3.065) (39.389) (0.691) (9.584)

7 8 15 16 20 33 34 35 36 49 50 51 52 59 60

CLCL 2.515 3.516 7.787 25.714 6.398 2.879 12.549 4.936 36.293 11.995 146.923 40.520 547.736 9.557 117.372
(0.089) (0.282) (2.321) (9.640) (1.877) (0.132) (1.969) (0.481) (8.057) (3.862) (63.184) (14.891) (246.160) (2.806) (47.245)

CLL 2.551 3.551 5.281 14.766 4.408 2.911 12.353 4.978 34.633 7.899 69.750 22.365 225.422 6.399 55.847
(0.094) (0.263) (0.758) (3.078) (0.610) (0.134) (1.614) (0.439) (5.651) (1.202) (16.038) (4.622) (59.690) (0.899) (12.825)

CLF 2.548 3.492 5.068 13.940 4.240 2.904 11.819 4.855 32.805 7.574 66.111 21.119 214.261 6.152 53.115
(0.094) (0.236) (0.616) (2.483) (0.494) (0.132) (1.393) (0.398) (4.782) (0.990) (13.531) (3.676) (50.795) (0.760) (10.746)

PCL 2.614 3.469 6.165 17.680 5.146 2.973 11.279 4.780 30.460 9.168 90.537 27.176 314.050 7.464 72.625
(0.093) (0.211) (1.349) (5.424) (1.079) (0.129) (1.285) (0.369) (4.375) (2.170) (34.972) (8.697) (131.633) (1.576) (27.447)

PL 2.635 3.564 4.982 13.130 4.176 3.009 11.740 4.927 31.860 7.376 61.281 19.961 196.006 6.025 48.781
(0.097) (0.232) (0.554) (2.134) (0.425) (0.134) (1.398) (0.408) (4.730) (0.859) (11.732) (3.288) (44.860) (0.676) (9.301)

PF 2.635 3.564 4.981 13.076 4.175 3.009 11.739 4.927 31.817 7.371 59.529 19.814 187.120 6.023 47.656
(0.097) (0.232) (0.553) (2.112) (0.425) (0.134) (1.397) (0.408) (4.717) (0.857) (11.008) (3.234) (40.557) (0.675) (8.851)

The upper and lower tables present the results for DGPs with φ = 0.2 and 0.8, respectively. Each column represents a DGP
according to table 1.2. The row represents the average and (standard deviation) of the MSEs of HF estimates by a particular
model (row-wise) for 1000 artificial samples of a DGP (column-wise).

52



Table 1.11: The average MSEs of the Monte Carlo HF estimates by the six models under various DGPs with σ2 = 1 and
φ = 0.2 with aggregation matrix C1

INTERPOLATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 2.871 3.813 15.351 59.098 12.013 3.225 12.506 5.237 37.121 23.164 345.239 89.005 1415.381 17.921 275.293
(0.163) (0.278) (7.787) (31.036) (5.774) (0.189) (1.416) (0.444) (5.053) (11.378) (191.233) (45.782) (789.588) (8.590) (144.075)

CLL 3.592 4.863 7.254 19.964 6.058 4.054 16.266 6.723 46.035 10.658 97.441 30.070 321.774 8.650 75.220
(0.517) (0.815) (1.692) (6.071) (1.324) (0.543) (3.799) (1.158) (12.040) (2.606) (36.498) (9.576) (132.287) (2.030) (27.846)

CLF 3.226 4.215 5.849 15.121 4.899 3.625 13.110 5.752 35.981 8.471 70.939 22.961 233.947 6.985 56.653
(0.280) (0.430) (0.728) (2.402) (0.574) (0.303) (1.744) (0.601) (5.537) (1.094) (13.767) (3.695) (46.761) (0.889) (10.516)

PCL 3.220 4.165 5.680 14.254 4.761 3.627 12.354 5.678 32.348 8.148 66.320 21.604 225.117 6.740 53.232
(0.237) (0.349) (0.622) (2.257) (0.499) (0.264) (1.351) (0.510) (4.265) (0.927) (14.359) (3.617) (61.881) (0.769) (11.097)

PL 3.287 4.268 5.671 13.329 4.774 3.705 12.882 5.836 33.675 8.127 56.609 20.183 169.271 6.731 45.609
(0.249) (0.375) (0.603) (1.719) (0.482) (0.280) (1.489) (0.547) (4.543) (0.860) (8.760) (2.565) (29.936) (0.733) (7.348)

PF 3.284 4.257 5.598 13.052 4.722 3.700 12.639 5.806 32.950 7.987 55.641 19.792 167.448 6.636 44.907
(0.248) (0.372) (0.581) (1.658) (0.467) (0.279) (1.414) (0.539) (4.375) (0.829) (8.443) (2.489) (28.785) (0.710) (7.140)

EXTRAPOLATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 2.873 4.152 43.004 177.361 33.774 3.230 15.241 5.772 50.112 67.149 1039.918 259.334 4343.040 50.097 856.448
(0.627) (1.411) (32.948) (132.081) (25.033) (0.803) (7.412) (2.114) (29.164) (48.820) (798.639) (196.385) (3263.325) (38.261) (603.817)

CLL 5.494 7.332 11.703 35.624 9.228 5.089 25.371 9.482 76.871 17.051 180.655 54.397 651.026 13.802 149.875
(2.544) (3.789) (6.916) (22.937) (5.267) (2.433) (14.801) (5.181) (48.446) (9.886) (117.088) (34.777) (432.520) (8.214) (100.089)

CLF 4.359 5.837 9.733 30.359 7.664 4.327 19.584 7.616 58.934 14.259 161.351 46.632 604.840 11.813 133.352
(1.797) (2.770) (5.530) (19.125) (4.260) (1.838) (10.870) (3.811) (36.437) (8.234) (108.983) (29.988) (438.496) (6.829) (90.227)

PCL 3.324 4.683 25.942 104.806 20.321 3.668 16.245 6.356 48.747 40.626 606.996 153.383 2538.333 30.341 502.018
(1.059) (1.926) (19.319) (76.734) (14.714) (1.249) (8.425) (2.721) (30.587) (28.721) (468.732) (114.807) (1912.935) (22.632) (355.710)

PL 4.111 5.965 10.597 32.349 8.117 4.608 23.378 8.177 73.891 15.622 158.057 48.218 562.277 12.778 135.384
(1.892) (3.154) (6.380) (21.710) (4.786) (2.187) (14.347) (4.369) (51.431) (9.505) (111.802) (32.991) (410.817) (7.803) (95.265)

PF 4.102 5.923 10.069 29.898 7.861 4.593 21.173 8.056 64.225 14.619 149.310 44.763 545.485 12.097 126.373
(1.884) (3.116) (5.932) (19.414) (4.558) (2.172) (12.466) (4.267) (43.417) (8.707) (105.094) (30.210) (403.948) (7.196) (87.215)

The row represents the average and (standard deviation) of the MSEs of HF estimates by a particular model (row-wise) for
1000 artificial samples of a DGP (column-wise).
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Table 1.12: The average MSEs of the Monte Carlo HF estimates by the six models under various DGPs with σ2 = 1 and
φ = 0.8 with aggregation matrix C1

INTERPOLATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 2.865 3.802 15.031 55.591 11.973 3.222 12.619 5.222 36.893 22.964 349.056 88.084 1374.329 18.413 283.380
(0.157) (0.289) (7.222) (28.800) (5.745) (0.202) (1.388) (0.442) (5.167) (11.247) (194.668) (47.089) (720.737) (8.974) (150.564)

CLL 4.336 5.390 7.655 20.083 6.466 5.007 17.192 7.320 46.098 11.067 97.550 30.750 323.553 9.078 78.484
(0.827) (1.095) (2.075) (6.414) (1.689) (1.014) (4.262) (1.563) (12.733) (2.881) (35.577) (9.908) (130.653) (2.290) (28.620)

CLF 3.660 4.510 6.038 15.298 5.161 4.153 13.611 6.068 36.004 8.707 71.257 23.075 233.560 7.206 57.229
(0.427) (0.553) (0.930) (2.536) (0.766) (0.513) (2.004) (0.765) (5.842) (1.234) (13.389) (3.834) (47.173) (1.015) (10.875)

PCL 3.317 4.228 5.645 14.118 4.820 3.720 12.373 5.701 32.303 8.218 66.639 21.343 222.136 6.800 53.690
(0.232) (0.346) (0.630) (2.166) (0.471) (0.287) (1.347) (0.521) (4.255) (0.944) (15.008) (3.493) (55.579) (0.730) (11.174)

PL 3.384 4.334 5.659 13.386 4.833 3.800 12.908 5.857 33.675 8.170 56.803 19.854 169.276 6.798 45.700
(0.246) (0.369) (0.583) (1.727) (0.462) (0.305) (1.488) (0.554) (4.582) (0.856) (9.357) (2.651) (30.195) (0.696) (7.245)

PF 3.381 4.322 5.587 13.118 4.784 3.795 12.661 5.827 32.928 8.037 55.835 19.474 167.314 6.699 44.843
(0.245) (0.366) (0.567) (1.643) (0.450) (0.303) (1.420) (0.547) (4.384) (0.828) (9.064) (2.526) (29.163) (0.672) (7.009)

EXTRAPOLATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 2.873 4.152 44.040 163.380 33.643 3.223 15.963 5.813 49.012 64.160 1064.734 274.578 4340.173 51.557 848.033
(0.627) (1.411) (31.894) (123.237) (25.297) (0.764) (7.724) (2.306) (28.825) (48.986) (826.948) (206.547) (3182.063) (37.962) (645.398)

CLL 5.494 7.332 11.864 34.102 9.711 6.477 27.327 10.119 75.611 17.407 180.207 54.549 651.528 14.414 150.338
(2.544) (3.789) (6.821) (21.350) (5.848) (2.949) (15.762) (5.411) (47.960) (10.115) (115.821) (35.259) (421.007) (8.622) (98.363)

CLF 4.359 5.837 9.699 28.091 7.991 4.985 20.866 7.933 57.657 14.147 158.379 46.597 604.041 11.978 132.953
(1.797) (2.770) (5.589) (18.230) (4.615) (2.037) (11.575) (3.866) (36.783) (8.061) (106.720) (30.262) (404.411) (7.074) (91.123)

PCL 3.324 4.683 26.530 96.247 20.478 3.681 16.784 6.448 48.160 38.686 625.834 162.124 2541.434 31.332 497.564
(1.059) (1.926) (18.587) (72.313) (14.813) (1.170) (8.879) (2.812) (29.877) (28.683) (478.240) (120.487) (1860.550) (22.390) (378.037)

PL 4.111 5.965 10.201 30.934 8.322 4.458 23.624 8.291 72.165 15.222 157.410 48.641 554.770 12.774 132.170
(1.892) (3.154) (6.131) (20.224) (4.872) (1.923) (14.639) (4.386) (49.940) (9.481) (109.686) (32.428) (385.011) (7.946) (92.187)

PF 4.102 5.923 9.817 27.996 8.065 4.447 21.635 8.174 63.113 14.306 149.766 45.074 540.537 12.102 124.324
(1.884) (3.116) (5.803) (18.350) (4.656) (1.914) (12.876) (4.272) (42.316) (8.662) (101.894) (29.774) (365.648) (7.366) (87.941)

The row represents the average and (standard deviation) of the MSEs of HF estimates by a particular model (row-wise) for
1000 artificial samples of a DGP (column-wise).
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Table 1.13: The average MSEs of the Monte Carlo HF estimates by the six models under various DGPs with σ2 = 5 and
φ = 0.2 with aggregation matrix C1

INTERPOLATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 2.024 2.687 10.559 40.112 8.735 2.281 8.889 3.701 26.290 16.703 245.106 63.568 955.957 13.310 13.194
(0.113) (0.197) (5.196) (21.094) (4.258) (0.136) (1.053) (0.299) (3.577) (8.435) (133.125) (33.754) (497.320) (6.513) (6.521)

CLL 2.508 3.393 5.055 13.892 4.226 2.859 11.551 4.756 32.414 7.485 69.204 21.631 224.445 6.135 6.909
(0.358) (0.590) (1.116) (4.455) (0.960) (0.420) (2.627) (0.814) (8.706) (1.837) (25.322) (7.020) (95.410) (1.495) (1.981)

CLF 2.292 2.986 4.114 10.621 3.451 2.588 9.311 4.085 25.454 5.970 50.417 16.368 165.000 4.938 5.346
(0.206) (0.306) (0.491) (1.809) (0.419) (0.241) (1.267) (0.419) (3.865) (0.793) (9.654) (2.806) (35.410) (0.652) (0.870)

PCL 2.258 2.940 3.980 9.972 3.353 2.558 8.790 4.013 22.984 5.792 47.086 15.298 156.277 4.775 4.858
(0.166) (0.243) (0.424) (1.522) (0.354) (0.204) (0.992) (0.349) (3.005) (0.689) (10.254) (2.508) (39.454) (0.547) (0.538)

PL 2.321 3.009 3.988 9.396 3.350 2.620 9.130 4.118 23.908 5.745 40.359 14.292 120.119 4.753 4.828
(0.170) (0.259) (0.407) (1.212) (0.348) (0.212) (1.062) (0.370) (3.219) (0.643) (6.712) (1.914) (21.262) (0.502) (0.512)

PF 2.320 3.005 3.949 9.215 3.324 2.618 8.997 4.106 23.406 5.664 39.667 13.999 118.871 4.697 4.774
(0.170) (0.258) (0.395) (1.166) (0.338) (0.211) (1.034) (0.368) (3.091) (0.626) (6.428) (1.852) (21.025) (0.488) (0.496)

EXTRAPOLATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 2.025 2.882 30.516 118.915 24.713 2.311 11.122 4.163 35.006 48.322 716.182 188.333 2937.658 38.524 38.161
(0.423) (0.931) (22.275) (87.785) (18.447) (0.564) (5.443) (1.603) (20.236) (36.230) (553.026) (141.838) (2162.243) (28.311) (28.539)

CLL 3.066 4.531 7.775 24.487 6.632 3.582 17.945 6.609 53.311 12.365 123.772 37.469 467.518 9.716 10.803
(1.365) (2.274) (4.428) (16.315) (3.820) (1.669) (10.885) (3.585) (33.043) (7.695) (82.565) (24.293) (314.950) (5.886) (6.649)

CLF 2.715 3.793 6.618 21.440 5.557 3.104 13.797 5.442 41.331 10.244 110.705 32.465 433.140 8.302 8.572
(1.040) (1.749) (3.749) (14.009) (3.103) (1.267) (8.071) (2.703) (23.820) (6.052) (74.589) (21.373) (304.558) (5.046) (5.208)

PCL 2.253 3.200 18.467 70.660 14.973 2.595 11.622 4.578 34.450 28.965 418.764 111.536 1720.759 23.300 22.881
(0.642) (1.280) (12.951) (51.647) (10.730) (0.841) (6.264) (2.036) (19.939) (20.999) (319.821) (83.314) (1260.260) (16.925) (16.560)

PL 2.877 4.068 7.094 22.831 6.001 3.274 15.980 5.874 51.871 10.732 109.209 33.888 408.065 8.811 8.794
(1.223) (2.101) (4.150) (15.069) (3.456) (1.518) (10.132) (3.168) (34.147) (6.631) (74.445) (22.530) (287.379) (5.449) (5.443)

PF 2.874 4.054 6.920 21.101 5.886 3.269 15.005 5.832 45.368 10.267 101.898 31.571 393.679 8.538 8.490
(1.220) (2.088) (3.992) (13.948) (3.371) (1.512) (9.324) (3.128) (28.347) (6.156) (69.877) (20.679) (278.570) (5.222) (5.183)

The row represents the average and (standard deviation) of the MSEs of HF estimates by a particular model (row-wise) for
1000 artificial samples of a DGP (column-wise).
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Table 1.14: The average MSEs of the Monte Carlo HF estimates by the six models under various DGPs with σ2 = 5 and
φ = 0.8 with aggregation matrix C1

INTERPOLATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 2.023 2.700 10.675 40.893 8.657 2.286 9.037 3.721 26.179 16.584 251.364 62.744 968.297 17.921 18.413
(0.116) (0.198) (5.371) (22.242) (4.250) (0.138) (1.007) (0.309) (3.771) (8.403) (131.466) (33.946) (546.187) (8.590) (8.974)

CLL 3.476 4.239 5.683 14.301 4.921 4.097 12.823 5.696 33.253 8.179 69.476 22.155 227.207 8.650 9.078
(0.697) (1.004) (1.581) (4.528) (1.307) (0.835) (3.414) (1.361) (9.271) (2.323) (26.143) (7.054) (91.872) (2.030) (2.290)

CLF 2.886 3.477 4.455 10.811 3.849 3.307 10.047 4.610 25.680 6.351 50.750 16.593 164.510 6.985 7.206
(0.366) (0.501) (0.706) (1.831) (0.592) (0.433) (1.601) (0.666) (4.182) (1.032) (9.963) (2.820) (33.718) (0.889) (1.015)

PCL 2.398 3.063 4.094 10.089 3.455 2.703 8.820 4.130 22.908 5.837 47.505 15.270 156.970 6.740 6.800
(0.182) (0.243) (0.446) (1.634) (0.338) (0.205) (0.946) (0.357) (3.150) (0.652) (9.840) (2.514) (43.441) (0.769) (0.730)

PL 2.460 3.134 4.086 9.521 3.450 2.763 9.140 4.237 23.929 5.812 40.450 14.347 119.650 6.731 6.798
(0.186) (0.259) (0.420) (1.269) (0.329) (0.214) (1.012) (0.381) (3.304) (0.619) (6.532) (1.926) (21.495) (0.733) (0.696)

PF 2.458 3.130 4.050 9.328 3.425 2.760 9.016 4.225 23.381 5.730 39.743 14.055 118.183 6.636 6.699
(0.186) (0.257) (0.410) (1.215) (0.322) (0.213) (0.983) (0.378) (3.207) (0.600) (6.282) (1.855) (21.064) (0.710) (0.672)

EXTRAPOLATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 2.005 2.926 30.521 119.607 24.279 2.327 10.975 4.197 35.837 47.421 773.489 185.978 2970.516 50.097 51.557
(0.438) (1.007) (23.411) (91.239) (18.290) (0.534) (5.807) (1.576) (21.702) (35.953) (569.122) (144.973) (2236.619) (38.261) (37.962)

CLL 4.337 5.549 8.682 25.221 7.243 5.294 20.159 7.970 56.215 12.635 132.675 39.719 439.259 13.802 14.414
(1.934) (2.846) (4.943) (15.833) (4.113) (2.307) (12.008) (4.334) (35.000) (7.602) (87.015) (25.384) (292.107) (8.214) (8.622)

CLF 3.406 4.321 7.125 21.729 5.825 4.019 14.992 6.075 43.395 10.329 117.797 32.996 405.983 11.813 11.978
(1.334) (1.983) (3.997) (13.930) (3.194) (1.576) (8.558) (3.006) (26.288) (6.089) (76.995) (22.582) (287.697) (6.829) (7.074)

PCL 2.341 3.292 18.421 70.912 14.691 2.699 11.623 4.703 35.563 28.374 452.904 110.130 1735.528 30.341 31.332
(0.716) (1.296) (13.777) (53.460) (10.697) (0.826) (6.507) (2.003) (22.222) (21.025) (335.187) (84.803) (1304.200) (22.632) (22.390)

PL 2.890 4.120 7.066 22.595 5.614 3.270 16.254 5.996 53.442 10.541 116.967 34.552 387.402 12.778 12.774
(1.309) (2.057) (4.096) (15.099) (3.346) (1.407) (9.873) (3.188) (34.926) (6.494) (79.684) (24.500) (277.571) (7.803) (7.946)

PF 2.887 4.106 6.918 21.307 5.522 3.266 15.297 5.952 46.965 10.088 110.008 31.726 370.893 12.097 12.102
(1.305) (2.043) (3.952) (13.818) (3.279) (1.402) (9.153) (3.145) (29.746) (6.059) (73.121) (22.607) (268.563) (7.196) (7.366)

The row represents the average and (standard deviation) of the MSEs of HF estimates by a particular model (row-wise) for
1000 artificial samples of a DGP (column-wise).
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Table 1.15: The average MSEs of the Monte Carlo HF estimates by the six models under various DGPs with σ2 = 10 and
φ = 0.2 with aggregation matrix C1

INTERPOLATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 2.871 3.813 15.351 59.098 12.013 3.225 12.506 5.237 37.121 23.164 345.239 89.005 1415.381 17.921 275.293
(0.163) (0.278) (7.787) (31.036) (5.774) (0.189) (1.416) (0.444) (5.053) (11.378) (191.233) (45.782) (789.588) (8.590) (144.075)

CLL 3.592 4.863 7.254 19.964 6.058 4.054 16.266 6.723 46.035 10.658 97.441 30.070 321.774 8.650 75.220
(0.517) (0.815) (1.692) (6.071) (1.324) (0.543) (3.799) (1.158) (12.040) (2.606) (36.498) (9.576) (132.287) (2.030) (27.846)

CLF 3.226 4.215 5.849 15.121 4.899 3.625 13.110 5.752 35.981 8.471 70.939 22.961 233.947 6.985 56.653
(0.280) (0.430) (0.728) (2.402) (0.574) (0.303) (1.744) (0.601) (5.537) (1.094) (13.767) (3.695) (46.761) (0.889) (10.516)

PCL 3.220 4.165 5.680 14.254 4.761 3.627 12.354 5.678 32.348 8.148 66.320 21.604 225.117 6.740 53.232
(0.237) (0.349) (0.622) (2.257) (0.499) (0.264) (1.351) (0.510) (4.265) (0.927) (14.359) (3.617) (61.881) (0.769) (11.097)

PL 3.287 4.268 5.671 13.329 4.774 3.705 12.882 5.836 33.675 8.127 56.609 20.183 169.271 6.731 45.609
(0.249) (0.375) (0.603) (1.719) (0.482) (0.280) (1.489) (0.547) (4.543) (0.860) (8.760) (2.565) (29.936) (0.733) (7.348)

PF 3.284 4.257 5.598 13.052 4.722 3.700 12.639 5.806 32.950 7.987 55.641 19.792 167.448 6.636 44.907
(0.248) (0.372) (0.581) (1.658) (0.467) (0.279) (1.414) (0.539) (4.375) (0.829) (8.443) (2.489) (28.785) (0.710) (7.140)

EXTRAPOLATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 2.853 4.033 43.004 177.361 33.774 3.230 15.241 5.772 50.112 67.149 1039.918 259.334 4343.040 50.097 856.448
0.629 1.295 (32.948) (132.081) (25.033) (0.803) (7.412) (2.114) (29.164) (48.820) (798.639) (196.385) (3263.325) (38.261) (603.817)

CLL 4.366 6.468 11.703 35.624 9.228 5.089 25.371 9.482 76.871 17.051 180.655 54.397 651.026 13.802 149.875
2.058 3.296 (6.916) (22.937) (5.267) (2.433) (14.801) (5.181) (48.446) (9.886) (117.088) (34.777) (432.520) (8.214) (100.089)

CLF 3.775 5.300 9.733 30.359 7.664 4.327 19.584 7.616 58.934 14.259 161.351 46.632 604.840 11.813 133.352
1.533 2.376 (5.530) (19.125) (4.260) (1.838) (10.870) (3.811) (36.437) (8.234) (108.983) (29.988) (438.496) (6.829) (90.227)

PCL 3.205 4.448 25.942 104.806 20.321 3.668 16.245 6.356 48.747 40.626 606.996 153.383 2538.333 30.341 502.018
1.007 1.663 (19.319) (76.734) (14.714) (1.249) (8.425) (2.721) (30.587) (28.721) (468.732) (114.807) (1912.935) (22.632) (355.710)

PL 3.981 5.679 10.597 32.349 8.117 4.608 23.378 8.177 73.891 15.622 158.057 48.218 562.277 12.778 135.384
1.801 2.775 (6.380) (21.710) (4.786) (2.187) (14.347) (4.369) (51.431) (9.505) (111.802) (32.991) (410.817) (7.803) (95.265)

PF 3.973 5.643 10.069 29.898 7.861 4.593 21.173 8.056 64.225 14.619 149.310 44.763 545.485 12.097 126.373
1.792 2.734 (5.932) (19.414) (4.558) (2.172) (12.466) (4.267) (43.417) (8.707) (105.094) (30.210) (403.948) (7.196) (87.215)

The row represents the average and (standard deviation) of the MSEs of HF estimates by a particular model (row-wise) for
1000 artificial samples of a DGP (column-wise).
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Table 1.16: The average MSEs of the Monte Carlo HF estimates by the six models under various DGPs with σ2 = 10 and
φ = 0.8 with aggregation matrix C1

INTERPOLATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 2.865 3.802 15.031 55.591 11.973 3.222 12.619 5.222 36.893 22.964 349.056 88.084 1374.329 18.413 283.380
(0.157) (0.289) (7.222) (28.800) (5.745) (0.202) (1.388) (0.442) (5.167) (11.247) (194.668) (47.089) (720.737) (8.974) (150.564)

CLL 4.336 5.390 7.655 20.083 6.466 5.007 17.192 7.320 46.098 11.067 97.550 30.750 323.553 9.078 78.484
(0.827) (1.095) (2.075) (6.414) (1.689) (1.014) (4.262) (1.563) (12.733) (2.881) (35.577) (9.908) (130.653) (2.290) (28.620)

CLF 3.660 4.510 6.038 15.298 5.161 4.153 13.611 6.068 36.004 8.707 71.257 23.075 233.560 7.206 57.229
(0.427) (0.553) (0.930) (2.536) (0.766) (0.513) (2.004) (0.765) (5.842) (1.234) (13.389) (3.834) (47.173) (1.015) (10.875)

PCL 3.317 4.228 5.645 14.118 4.820 3.720 12.373 5.701 32.303 8.218 66.639 21.343 222.136 6.800 53.690
(0.232) (0.346) (0.630) (2.166) (0.471) (0.287) (1.347) (0.521) (4.255) (0.944) (15.008) (3.493) (55.579) (0.730) (11.174)

PL 3.384 4.334 5.659 13.386 4.833 3.800 12.908 5.857 33.675 8.170 56.803 19.854 169.276 6.798 45.700
(0.246) (0.369) (0.583) (1.727) (0.462) (0.305) (1.488) (0.554) (4.582) (0.856) (9.357) (2.651) (30.195) (0.696) (7.245)

PF 3.381 4.322 5.587 13.118 4.784 3.795 12.661 5.827 32.928 8.037 55.835 19.474 167.314 6.699 44.843
(0.245) (0.366) (0.567) (1.643) (0.450) (0.303) (1.420) (0.547) (4.384) (0.828) (9.064) (2.526) (29.163) (0.672) (7.009)

EXTRAPOLATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 2.873 4.152 44.040 163.380 33.643 3.223 15.963 5.813 49.012 64.160 1064.734 274.578 4340.173 51.557 848.033
(0.627) (1.411) (31.894) (123.237) (25.297) (0.764) (7.724) (2.306) (28.825) (48.986) (826.948) (206.547) (3182.063) (37.962) (645.398)

CLL 5.494 7.332 11.864 34.102 9.711 6.477 27.327 10.119 75.611 17.407 180.207 54.549 651.528 14.414 150.338
(2.544) (3.789) (6.821) (21.350) (5.848) (2.949) (15.762) (5.411) (47.960) (10.115) (115.821) (35.259) (421.007) (8.622) (98.363)

CLF 4.359 5.837 9.699 28.091 7.991 4.985 20.866 7.933 57.657 14.147 158.379 46.597 604.041 11.978 132.953
(1.797) (2.770) (5.589) (18.230) (4.615) (2.037) (11.575) (3.866) (36.783) (8.061) (106.720) (30.262) (404.411) (7.074) (91.123)

PCL 3.324 4.683 26.530 96.247 20.478 3.681 16.784 6.448 48.160 38.686 625.834 162.124 2541.434 31.332 497.564
(1.059) (1.926) (18.587) (72.313) (14.813) (1.170) (8.879) (2.812) (29.877) (28.683) (478.240) (120.487) (1860.550) (22.390) (378.037)

PL 4.111 5.965 10.201 30.934 8.322 4.458 23.624 8.291 72.165 15.222 157.410 48.641 554.770 12.774 132.170
(1.892) (3.154) (6.131) (20.224) (4.872) (1.923) (14.639) (4.386) (49.940) (9.481) (109.686) (32.428) (385.011) (7.946) (92.187)

PF 4.102 5.923 9.817 27.996 8.065 4.447 21.635 8.174 63.113 14.306 149.766 45.074 540.537 12.102 124.324
(1.884) (3.116) (5.803) (18.350) (4.656) (1.914) (12.876) (4.272) (42.316) (8.662) (101.894) (29.774) (365.648) (7.366) (87.941)

The row represents the average and (standard deviation) of the MSEs of HF estimates by a particular model (row-wise) for
1000 artificial samples of a DGP (column-wise).
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Table 1.17: The average MSEs of the Monte Carlo HF estimates by the six models under various DGPs with σ2 = 0.1 and
φ = 0.2 with aggregation matrix C2

INTERPOLATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 0.250 0.350 0.604 1.828 0.504 0.288 1.334 0.491 3.545 0.919 10.256 2.989 36.466 0.748 0.772
(0.009) (0.028) (0.159) (0.686) (0.134) (0.013) (0.245) (0.049) (0.783) (0.254) (4.567) (1.202) (18.292) (0.210) (0.218)

CLL 0.272 0.358 0.494 1.337 0.415 0.308 1.199 0.489 3.258 0.727 6.284 2.055 19.812 0.596 0.747
(0.012) (0.027) (0.060) (0.257) (0.051) (0.016) (0.136) (0.042) (0.524) (0.091) (1.546) (0.414) (5.649) (0.076) (0.124)

CLF 0.272 0.358 0.490 1.268 0.413 0.308 1.186 0.489 3.119 0.717 5.888 1.933 18.575 0.589 0.742
(0.012) (0.027) (0.057) (0.201) (0.050) (0.016) (0.131) (0.042) (0.452) (0.086) (1.203) (0.324) (4.377) (0.072) (0.120)

PCL 0.315 0.391 0.515 1.262 0.443 0.360 1.178 0.518 2.970 0.736 5.570 1.876 17.277 0.615 1.060
(0.011) (0.023) (0.049) (0.179) (0.039) (0.016) (0.129) (0.037) (0.413) (0.081) (1.029) (0.270) (3.890) (0.064) (0.063)

PL 0.315 0.392 0.503 1.198 0.434 0.359 1.195 0.522 3.008 0.714 5.286 1.790 16.191 0.600 1.042
(0.011) (0.023) (0.046) (0.167) (0.036) (0.015) (0.133) (0.038) (0.421) (0.074) (0.913) (0.247) (3.407) (0.059) (0.056)

PF 0.315 0.392 0.503 1.197 0.434 0.359 1.195 0.522 3.008 0.714 5.272 1.790 15.889 0.600 1.042
(0.011) (0.023) (0.046) (0.166) (0.036) (0.015) (0.133) (0.038) (0.421) (0.074) (0.906) (0.247) (3.223) (0.059) (0.056)

EXTRAPOLATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 0.260 0.427 5.405 20.907 4.257 0.305 1.913 0.625 6.327 8.485 124.914 31.829 502.386 6.594 6.515
(0.048) (0.140) (4.045) (15.081) (3.100) (0.066) (0.913) (0.224) (3.406) (5.950) (95.170) (23.560) (383.878) (4.897) (4.674)

CLL 0.300 0.509 1.203 4.585 0.996 0.350 2.427 0.749 8.479 1.887 24.727 6.996 91.584 1.531 1.616
(0.061) (0.201) (0.756) (2.968) (0.594) (0.090) (1.442) (0.357) (5.312) (1.216) (17.341) (4.727) (63.519) (0.913) (0.984)

CLF 0.300 0.509 1.201 4.467 0.995 0.350 2.339 0.746 7.598 1.879 25.528 6.888 94.064 1.532 1.603
(0.061) (0.200) (0.756) (2.992) (0.594) (0.090) (1.372) (0.354) (4.598) (1.208) (17.690) (4.695) (65.629) (0.911) (0.971)

PCL 0.311 0.452 5.398 19.438 4.258 0.360 1.836 0.639 6.111 8.397 97.695 27.937 390.757 6.574 6.521
(0.056) (0.143) (4.030) (13.242) (3.094) (0.078) (0.908) (0.229) (3.401) (5.850) (73.974) (19.109) (300.747) (4.859) (4.614)

PL 0.383 0.607 1.252 4.530 1.055 0.460 2.650 0.879 8.522 1.949 24.525 6.945 90.007 1.592 2.039
(0.095) (0.270) (0.797) (2.978) (0.627) (0.144) (1.587) (0.459) (5.476) (1.268) (17.447) (4.750) (62.471) (0.972) (1.152)

PF 0.405 0.614 1.252 4.530 1.055 0.474 2.650 0.882 8.522 1.949 24.521 6.945 90.072 1.592 2.039
(0.102) (0.274) (0.797) (2.978) (0.627) (0.148) (1.587) (0.459) (5.476) (1.268) (17.446) (4.750) (62.477) (0.972) (1.152)

The row represents the average and (standard deviation) of the MSEs of HF estimates by a particular model (row-wise) for
1000 artificial samples of a DGP (column-wise).
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Table 1.18: The average MSEs of the Monte Carlo HF estimates by the six models under various DGPs with σ2 = 0.1 and
φ = 0.8 with aggregation matrix C2

INTERPOLATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 0.250 0.349 0.611 1.895 0.495 0.329 2.540 0.518 4.129 0.940 10.711 2.978 37.608 2.351 2.358
(0.009) (0.029) (0.167) (0.746) (0.126) (0.016) (0.398) (0.051) (1.031) (0.269) (4.908) (1.169) (19.691) (0.639) (0.639)

CLL 0.498 0.551 0.646 1.401 0.585 0.555 1.818 0.666 3.573 0.852 6.552 2.098 19.970 1.922 1.949
(0.019) (0.047) (0.105) (0.314) (0.091) (0.028) (0.150) (0.067) (0.536) (0.146) (1.602) (0.453) (5.721) (0.269) (0.292)

CLF 0.495 0.548 0.641 1.340 0.579 0.551 1.788 0.662 3.411 0.848 6.128 1.995 18.742 1.845 1.895
(0.019) (0.048) (0.103) (0.256) (0.090) (0.028) (0.139) (0.067) (0.451) (0.139) (1.225) (0.359) (4.431) (0.213) (0.247)

PCL 0.810 0.842 0.913 1.473 0.872 0.927 2.096 0.995 3.439 1.137 5.912 2.092 17.588 1.828 2.030
(0.014) (0.027) (0.050) (0.171) (0.040) (0.020) (0.153) (0.042) (0.426) (0.079) (1.031) (0.269) (3.736) (0.192) (0.199)

PL 0.805 0.839 0.900 1.419 0.861 0.920 2.065 0.993 3.469 1.116 5.602 2.014 16.288 1.785 1.985
(0.014) (0.027) (0.044) (0.154) (0.036) (0.020) (0.152) (0.041) (0.432) (0.072) (0.918) (0.253) (3.214) (0.182) (0.185)

PF 0.805 0.839 0.900 1.419 0.861 0.920 2.065 0.993 3.468 1.116 5.586 2.014 15.990 1.785 1.985
(0.014) (0.027) (0.044) (0.154) (0.036) (0.020) (0.152) (0.041) (0.432) (0.072) (0.909) (0.252) (3.043) (0.182) (0.185)

EXTRAPOLATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 0.257 0.441 5.051 20.728 4.152 0.343 2.873 0.661 6.500 8.464 135.110 32.188 530.159 21.746 21.020
(0.045) (0.150) (3.910) (15.732) (3.083) (0.064) (1.024) (0.222) (3.218) (6.057) (97.330) (23.749) (395.349) (16.260) (15.590)

CLL 0.564 0.708 1.327 4.440 1.058 0.646 2.996 0.942 8.823 1.925 24.550 6.755 94.269 4.907 5.007
(0.085) (0.254) (0.744) (2.927) (0.597) (0.131) (1.432) (0.398) (5.598) (1.211) (16.787) (4.496) (64.439) (3.020) (3.255)

CLF 0.560 0.702 1.320 4.357 1.051 0.638 2.942 0.930 7.888 1.910 24.726 6.727 98.390 4.841 4.835
(0.084) (0.251) (0.739) (2.904) (0.593) (0.130) (1.365) (0.390) (4.796) (1.195) (17.079) (4.430) (67.024) (2.876) (3.065)

PCL 0.736 0.814 5.064 19.218 4.196 0.851 2.770 0.990 6.254 8.419 105.985 28.131 411.429 20.062 19.565
(0.070) (0.163) (3.844) (13.700) (3.039) (0.098) (0.988) (0.261) (3.226) (5.943) (76.030) (19.135) (309.178) (13.953) (13.558)

PL 1.203 1.268 1.659 4.519 1.469 1.419 3.293 1.609 9.016 2.243 24.365 6.786 93.240 4.917 5.070
(0.138) (0.416) (0.886) (3.014) (0.761) (0.208) (1.377) (0.639) (5.648) (1.355) (16.706) (4.483) (64.907) (3.048) (3.308)

PF 1.203 1.268 1.659 4.519 1.469 1.419 3.293 1.609 9.016 2.243 24.357 6.786 93.018 4.917 5.070
(0.138) (0.416) (0.886) (3.014) (0.761) (0.208) (1.377) (0.639) (5.648) (1.355) (16.703) (4.483) (64.481) (3.048) (3.308)

The row represents the average and (standard deviation) of the MSEs of HF estimates by a particular model (row-wise) for
1000 artificial samples of a DGP (column-wise).
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Table 1.19: The average MSEs of the Monte Carlo HF estimates by the six models under various DGPs with σ2 = 1 and
φ = 0.2 with aggregation matrix C2

INTERPOLATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 0.793 1.103 1.926 5.948 1.577 0.906 3.839 1.542 11.046 2.878 32.954 9.152 118.497 2.351 26.583
(0.030) (0.093) (0.533) (2.318) (0.394) (0.042) (0.628) (0.156) (2.403) (0.801) (14.787) (3.541) (58.811) (0.639) (12.721)

CLL 0.798 1.085 1.573 4.253 1.299 0.908 3.719 1.512 10.286 2.333 19.649 6.507 62.766 1.922 15.948
(0.030) (0.074) (0.206) (0.836) (0.163) (0.040) (0.467) (0.124) (1.710) (0.325) (4.839) (1.274) (17.716) (0.269) (3.951)

CLF 0.798 1.082 1.519 4.002 1.266 0.908 3.582 1.504 9.838 2.238 18.519 6.117 59.151 1.845 14.990
(0.030) (0.073) (0.163) (0.655) (0.134) (0.040) (0.405) (0.122) (1.455) (0.261) (3.827) (0.978) (14.018) (0.213) (3.157)

PCL 0.810 1.077 1.517 3.842 1.268 0.921 3.454 1.488 9.329 2.232 17.624 5.855 54.863 1.828 14.152
(0.030) (0.068) (0.155) (0.581) (0.123) (0.039) (0.379) (0.115) (1.310) (0.255) (3.428) (0.843) (11.715) (0.192) (2.599)

PL 0.814 1.092 1.478 3.708 1.235 0.927 3.519 1.509 9.503 2.174 16.713 5.673 52.221 1.785 13.443
(0.030) (0.071) (0.143) (0.516) (0.113) (0.040) (0.389) (0.119) (1.351) (0.233) (3.087) (0.787) (10.927) (0.182) (2.383)

PF 0.814 1.092 1.478 3.705 1.235 0.927 3.519 1.509 9.501 2.174 16.498 5.664 50.271 1.785 13.305
(0.030) (0.071) (0.143) (0.515) (0.113) (0.040) (0.389) (0.119) (1.350) (0.233) (2.979) (0.782) (9.702) (0.182) (2.313)

EXTRAPOLATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 0.829 1.364 17.130 66.392 14.005 0.965 5.844 1.992 19.827 27.013 427.684 103.075 1609.887 21.746 333.716
(0.149) (0.470) (12.550) (50.394) (9.943) (0.217) (2.724) (0.744) (10.567) (20.408) (322.850) (77.606) (1185.941) (16.260) (247.584)

CLL 0.999 1.686 3.986 14.051 3.165 1.057 8.052 2.406 27.759 5.978 81.464 21.578 289.203 4.907 64.447
(0.205) (0.722) (2.456) (9.057) (1.932) (0.282) (4.948) (1.140) (17.598) (3.809) (55.980) (14.479) (202.098) (3.020) (43.366)

CLF 0.994 1.661 3.894 13.857 3.122 1.055 7.134 2.345 24.810 5.778 81.983 21.568 300.801 4.841 65.326
(0.204) (0.698) (2.424) (8.911) (1.900) (0.280) (4.213) (1.081) (14.864) (3.671) (56.485) (14.204) (213.837) (2.876) (43.813)

PCL 1.081 1.512 16.272 53.208 13.563 0.974 5.669 1.963 19.024 24.295 332.927 80.989 1257.589 20.062 260.499
(0.182) (0.481) (11.345) (38.871) (9.379) (0.218) (2.779) (0.742) (10.810) (16.848) (252.104) (60.487) (924.251) (13.953) (193.253)

PL 1.460 2.084 4.018 13.903 3.165 1.160 8.168 2.604 27.900 5.966 80.679 21.437 287.237 4.917 63.659
(0.342) (0.974) (2.464) (8.983) (1.967) (0.367) (5.093) (1.341) (17.936) (3.821) (56.421) (14.489) (204.999) (3.048) (42.576)

PF 1.460 2.084 4.018 13.902 3.165 1.163 8.168 2.604 27.896 5.966 80.473 21.435 283.165 4.917 63.580
(0.342) (0.974) (2.464) (8.982) (1.967) (0.368) (5.093) (1.341) (17.932) (3.821) (56.229) (14.485) (202.675) (3.048) (42.511)

The row represents the average and (standard deviation) of the MSEs of HF estimates by a particular model (row-wise) for
1000 artificial samples of a DGP (column-wise).
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Table 1.20: The average MSEs of the Monte Carlo HF estimates by the six models under various DGPs with σ2 = 1 and
φ = 0.8 with aggregation matrix C2

INTERPOLATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 0.794 1.109 1.916 6.016 1.591 0.920 4.403 1.565 11.456 2.913 33.493 9.474 118.053 2.358 25.956
(0.029) (0.091) (0.533) (2.317) (0.404) (0.043) (0.867) (0.157) (2.718) (0.834) (15.059) (3.754) (58.079) (0.639) (11.331)

CLL 0.901 1.166 1.610 4.277 1.352 1.018 3.959 1.583 10.477 2.375 19.978 6.608 62.928 1.949 16.220
(0.039) (0.098) (0.234) (0.868) (0.195) (0.055) (0.488) (0.145) (1.733) (0.374) (4.874) (1.328) (18.207) (0.292) (3.811)

CLF 0.899 1.162 1.569 4.038 1.332 1.015 3.818 1.576 9.958 2.290 18.685 6.218 59.180 1.895 15.157
(0.039) (0.097) (0.198) (0.669) (0.171) (0.055) (0.416) (0.141) (1.462) (0.303) (3.816) (1.033) (14.345) (0.247) (2.932)

PCL 1.103 1.316 1.684 3.934 1.477 1.256 3.861 1.718 9.403 2.384 17.553 5.964 54.764 2.030 14.333
(0.036) (0.076) (0.157) (0.549) (0.122) (0.051) (0.388) (0.118) (1.323) (0.246) (3.192) (0.906) (11.801) (0.199) (2.579)

PL 1.103 1.325 1.652 3.802 1.449 1.256 3.899 1.736 9.536 2.335 16.760 5.796 52.181 1.985 13.661
(0.036) (0.078) (0.144) (0.508) (0.113) (0.051) (0.403) (0.122) (1.313) (0.232) (2.832) (0.821) (11.296) (0.185) (2.301)

PF 1.103 1.325 1.652 3.799 1.449 1.256 3.899 1.736 9.534 2.335 16.562 5.786 50.225 1.985 13.531
(0.036) (0.078) (0.144) (0.506) (0.113) (0.051) (0.403) (0.122) (1.312) (0.232) (2.751) (0.816) (10.071) (0.185) (2.238)

EXTRAPOLATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 0.829 1.364 16.404 69.083 13.290 0.982 6.374 1.976 20.339 26.344 408.146 103.234 1593.150 21.020 325.353
(0.149) (0.470) (12.046) (50.844) (9.574) (0.216) (2.887) (0.734) (10.780) (19.131) (310.140) (79.066) (1180.896) (15.590) (239.316)

CLL 0.999 1.686 3.830 14.203 3.174 1.188 8.239 2.415 28.012 6.247 82.398 21.575 294.880 5.007 64.672
(0.205) (0.722) (2.343) (9.489) (2.037) (0.319) (4.851) (1.139) (17.623) (3.853) (55.741) (14.478) (202.833) (3.255) (43.454)

CLF 0.994 1.661 3.744 13.904 3.171 1.179 7.396 2.342 24.852 6.100 82.739 21.421 307.673 4.835 65.173
(0.204) (0.698) (2.273) (9.236) (1.992) (0.313) (4.167) (1.070) (15.381) (3.734) (56.732) (14.226) (215.500) (3.065) (44.017)

PCL 1.081 1.512 15.664 55.149 12.902 1.244 6.102 2.071 19.431 23.728 319.748 80.978 1244.666 19.565 253.241
(0.182) (0.481) (10.863) (39.277) (8.987) (0.259) (2.894) (0.741) (11.004) (16.002) (242.227) (61.561) (921.245) (13.558) (186.697)

PL 1.460 2.084 3.910 14.037 3.342 1.767 8.340 2.833 27.852 6.289 81.712 21.579 292.838 5.070 64.246
(0.342) (0.974) (2.412) (9.580) (2.137) (0.535) (4.917) (1.422) (18.027) (3.877) (55.287) (14.582) (203.555) (3.308) (43.093)

PF 1.460 2.084 3.910 14.036 3.342 1.767 8.340 2.833 27.848 6.288 81.489 21.575 290.589 5.070 64.203
(0.342) (0.974) (2.412) (9.579) (2.137) (0.535) (4.916) (1.422) (18.024) (3.877) (55.252) (14.577) (200.105) (3.308) (43.027)

The row represents the average and (standard deviation) of the MSEs of HF estimates by a particular model (row-wise) for
1000 artificial samples of a DGP (column-wise).
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Table 1.21: The average MSEs of the Monte Carlo HF estimates by the six models under various DGPs with σ2 = 5 and
φ = 0.2 with aggregation matrix C2

INTERPOLATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 1.769 2.478 4.292 13.505 3.552 2.027 8.520 3.483 25.087 6.379 73.372 20.513 260.702 5.305 5.278
(0.066) (0.208) (1.163) (5.207) (0.932) (0.095) (1.318) (0.348) (5.654) (1.826) (33.018) (7.749) (127.482) (1.498) (1.529)

CLL 1.767 2.441 3.540 9.517 2.924 2.021 8.218 3.446 23.368 5.188 44.177 14.606 141.630 4.274 4.280
(0.064) (0.170) (0.451) (1.899) (0.354) (0.090) (1.024) (0.290) (3.820) (0.755) (10.892) (2.959) (40.020) (0.581) (0.625)

CLF 1.766 2.417 3.402 8.976 2.822 2.018 7.932 3.377 22.227 4.973 41.352 13.698 131.896 4.099 4.118
(0.064) (0.160) (0.364) (1.470) (0.290) (0.090) (0.895) (0.260) (3.234) (0.601) (8.424) (2.254) (30.686) (0.462) (0.497)

PCL 1.767 2.381 3.348 8.593 2.804 2.015 7.645 3.312 20.962 4.868 38.943 13.140 123.358 4.017 4.097
(0.064) (0.151) (0.339) (1.279) (0.275) (0.088) (0.854) (0.242) (2.996) (0.540) (7.282) (2.014) (25.951) (0.416) (0.432)

PL 1.774 2.413 3.294 8.341 2.748 2.028 7.794 3.366 21.326 4.797 37.850 12.771 117.919 3.950 4.038
(0.065) (0.157) (0.322) (1.185) (0.253) (0.090) (0.882) (0.253) (3.080) (0.536) (7.091) (1.905) (25.312) (0.393) (0.405)

PF 1.774 2.413 3.294 8.319 2.748 2.028 7.793 3.366 21.308 4.795 36.875 12.702 112.781 3.949 4.037
(0.065) (0.157) (0.322) (1.175) (0.253) (0.090) (0.882) (0.253) (3.075) (0.535) (6.603) (1.869) (22.027) (0.392) (0.404)

EXTRAPOLATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 1.848 3.045 35.944 148.805 30.192 2.167 13.555 4.383 45.282 58.940 919.082 235.003 3612.535 45.365 46.796
(0.322) (0.979) (26.610) (114.005) (22.615) (0.472) (6.584) (1.672) (24.396) (43.831) (704.500) (172.903) (2675.236) (34.747) (34.884)

CLL 1.942 3.726 9.023 31.507 7.404 2.338 18.492 5.823 61.757 13.688 180.169 49.012 674.923 11.197 11.189
(0.376) (1.664) (5.564) (20.973) (4.659) (0.587) (11.513) (2.954) (38.643) (8.984) (121.745) (32.524) (472.268) (7.040) (6.716)

CLF 1.938 3.537 8.707 30.594 7.192 2.323 16.536 5.252 54.845 13.338 180.388 49.006 691.573 10.878 10.921
(0.374) (1.475) (5.317) (20.751) (4.482) (0.574) (9.721) (2.447) (33.475) (8.602) (122.964) (32.620) (482.595) (6.756) (6.458)

PCL 1.844 2.965 31.022 116.371 26.632 2.147 13.169 4.278 44.334 47.617 717.827 183.343 2813.991 37.984 38.758
(0.323) (0.967) (21.338) (88.846) (18.372) (0.471) (6.690) (1.677) (25.068) (33.669) (549.734) (134.894) (2095.935) (27.149) (26.992)

PL 2.024 3.923 8.935 30.980 7.315 2.469 18.639 5.927 61.766 13.653 178.632 48.500 677.095 11.081 11.267
(0.445) (1.889) (5.583) (20.987) (4.699) (0.719) (11.677) (3.053) (39.213) (9.077) (120.079) (32.633) (486.180) (7.127) (6.886)

PF 2.024 3.923 8.935 30.966 7.315 2.469 18.638 5.927 61.713 13.652 176.767 48.439 659.881 11.080 11.266
(0.446) (1.889) (5.583) (20.972) (4.699) (0.719) (11.676) (3.053) (39.170) (9.076) (118.942) (32.578) (466.937) (7.126) (6.886)

The row represents the average and (standard deviation) of the MSEs of HF estimates by a particular model (row-wise) for
1000 artificial samples of a DGP (column-wise).
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Table 1.22: The average MSEs of the Monte Carlo HF estimates by the six models under various DGPs with σ2 = 5 and
φ = 0.8 with aggregation matrix C2

INTERPOLATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 1.774 2.466 4.307 13.364 3.536 2.035 8.854 3.448 24.859 6.511 72.416 20.712 262.635 7.405 7.429
(0.063) (0.200) (1.183) (5.175) (0.906) (0.096) (1.569) (0.345) (5.605) (1.989) (33.468) (7.966) (131.470) (2.025) (2.133)

CLL 1.821 2.467 3.537 9.505 2.942 2.075 8.365 3.432 23.236 5.245 44.056 14.768 142.824 6.068 6.046
(0.068) (0.185) (0.465) (1.927) (0.367) (0.102) (1.073) (0.298) (3.866) (0.771) (10.767) (2.941) (41.951) (0.831) (0.840)

CLF 1.819 2.446 3.407 8.967 2.848 2.072 8.066 3.375 22.075 5.017 41.298 13.858 133.016 5.808 5.805
(0.068) (0.175) (0.373) (1.487) (0.299) (0.102) (0.925) (0.272) (3.213) (0.596) (8.407) (2.238) (31.830) (0.654) (0.678)

PCL 1.925 2.492 3.421 8.641 2.889 2.192 7.839 3.386 20.868 4.954 39.035 13.238 122.931 5.667 5.740
(0.068) (0.158) (0.339) (1.341) (0.261) (0.100) (0.864) (0.254) (2.839) (0.537) (7.382) (1.986) (26.771) (0.592) (0.596)

PL 1.930 2.523 3.359 8.398 2.839 2.202 7.962 3.437 21.235 4.878 37.935 12.917 118.439 5.599 5.664
(0.068) (0.163) (0.319) (1.225) (0.242) (0.100) (0.890) (0.262) (2.908) (0.505) (7.065) (1.846) (25.471) (0.592) (0.586)

PF 1.930 2.523 3.359 8.375 2.839 2.202 7.962 3.437 21.218 4.877 37.025 12.855 113.050 5.597 5.661
(0.068) (0.163) (0.319) (1.213) (0.242) (0.100) (0.890) (0.262) (2.903) (0.504) (6.548) (1.822) (22.116) (0.590) (0.585)

EXTRAPOLATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 1.835 3.033 37.549 146.575 29.795 2.166 13.609 4.339 45.222 58.846 905.648 229.177 3595.683 66.791 65.690
(0.345) (1.018) (28.539) (113.943) (20.966) (0.466) (6.779) (1.603) (25.164) (43.585) (678.628) (169.597) (2811.117) (49.508) (46.032)

CLL 1.998 3.770 8.562 31.379 7.045 2.407 18.364 5.681 63.674 14.115 174.928 47.902 625.629 16.068 15.708
(0.409) (1.730) (5.244) (21.193) (4.186) (0.618) (10.979) (2.873) (40.071) (9.047) (123.466) (32.451) (440.881) (9.778) (9.739)

CLF 1.990 3.575 8.221 30.735 6.828 2.383 16.293 5.175 56.370 13.648 175.787 47.372 641.208 15.529 15.321
(0.404) (1.550) (5.116) (20.900) (4.062) (0.599) (9.427) (2.392) (35.036) (8.690) (121.813) (31.957) (457.433) (9.432) (9.657)

PCL 1.961 3.057 32.045 114.812 26.331 2.276 13.144 4.295 44.491 47.703 705.650 179.060 2792.766 53.340 52.926
(0.365) (1.006) (22.383) (88.791) (17.054) (0.482) (6.812) (1.594) (26.159) (33.576) (530.671) (132.061) (2196.379) (38.326) (35.561)

PL 2.311 4.097 8.512 31.172 7.140 2.792 18.638 5.853 63.851 14.094 175.437 47.453 641.179 15.849 15.561
(0.582) (2.000) (5.124) (21.237) (4.329) (0.866) (11.181) (3.025) (40.379) (9.007) (123.522) (32.686) (452.840) (9.932) (9.817)

PF 2.311 4.097 8.512 31.162 7.140 2.792 18.637 5.853 63.796 14.093 172.226 47.411 617.150 15.848 15.559
(0.582) (2.000) (5.124) (21.223) (4.328) (0.866) (11.180) (3.025) (40.333) (9.005) (120.942) (32.652) (437.837) (9.930) (9.815)

The row represents the average and (standard deviation) of the MSEs of HF estimates by a particular model (row-wise) for
1000 artificial samples of a DGP (column-wise).
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Table 1.23: The average MSEs of the Monte Carlo HF estimates by the six models under various DGPs with σ2 = 10 and
φ = 0.2 with aggregation matrix C2

INTERPOLATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 2.505 3.512 6.138 18.783 4.969 2.873 12.068 4.872 35.508 9.125 101.463 29.324 372.292 7.405 81.599
(0.095) (0.299) (1.673) (7.091) (1.218) (0.133) (2.008) (0.458) (7.695) (2.517) (45.710) (11.228) (192.278) (2.025) (35.959)

CLL 2.499 3.469 4.953 13.404 4.146 2.865 11.623 4.839 32.815 7.312 62.343 20.634 197.971 6.068 50.070
(0.093) (0.255) (0.626) (2.645) (0.505) (0.126) (1.462) (0.408) (5.345) (1.039) (14.722) (4.245) (54.610) (0.831) (12.158)

CLF 2.498 3.420 4.779 12.661 3.992 2.859 11.225 4.744 31.312 6.998 58.447 19.357 185.285 5.808 46.953
(0.093) (0.232) (0.509) (2.099) (0.407) (0.125) (1.267) (0.373) (4.503) (0.826) (11.356) (3.164) (43.961) (0.654) (9.594)

PCL 2.494 3.368 4.699 12.127 3.937 2.848 10.834 4.667 29.516 6.867 55.227 18.420 171.362 5.667 44.378
(0.092) (0.217) (0.478) (1.783) (0.385) (0.122) (1.168) (0.354) (4.126) (0.788) (10.112) (2.735) (37.493) (0.592) (7.957)

PL 2.503 3.410 4.624 11.837 3.882 2.866 11.023 4.739 30.001 6.759 54.022 18.013 165.368 5.599 43.000
(0.093) (0.228) (0.462) (1.749) (0.362) (0.125) (1.223) (0.368) (4.261) (0.747) (9.640) (2.637) (35.247) (0.592) (8.116)

PF 2.503 3.410 4.623 11.783 3.882 2.866 11.022 4.739 29.961 6.754 52.335 17.874 157.888 5.597 41.824
(0.093) (0.228) (0.462) (1.722) (0.362) (0.125) (1.222) (0.368) (4.247) (0.745) (8.824) (2.558) (31.369) (0.590) (7.426)

EXTRAPOLATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 2.582 4.260 52.273 203.764 42.436 3.101 18.607 6.281 65.614 83.436 1279.115 318.096 4837.577 66.791 1046.570
(0.464) (1.367) (38.453) (153.774) (31.632) (0.664) (8.933) (2.298) (36.113) (60.603) (951.729) (248.804) (3747.381) (49.508) (767.398)

CLL 2.704 5.342 12.780 44.867 10.207 3.392 25.807 8.543 88.799 19.340 246.877 71.646 948.718 16.068 200.569
(0.527) (2.359) (8.043) (28.583) (6.105) (0.889) (15.006) (4.163) (58.452) (12.018) (169.517) (47.101) (631.369) (9.778) (143.451)

CLF 2.694 4.932 12.281 43.959 9.828 3.347 22.835 7.659 79.414 18.878 248.313 69.334 983.171 15.529 203.011
(0.519) (1.981) (7.774) (28.421) (5.861) (0.846) (12.692) (3.423) (50.904) (11.738) (173.137) (46.484) (667.006) (9.432) (142.890)

PCL 2.573 4.172 42.623 159.113 35.659 3.079 17.921 6.184 64.283 65.996 995.771 247.550 3757.481 53.340 815.243
(0.456) (1.347) (29.788) (120.223) (24.760) (0.656) (9.110) (2.289) (38.351) (46.774) (743.189) (193.020) (2936.218) (38.326) (598.037)

PL 2.803 5.432 12.688 43.885 10.222 3.556 25.840 8.625 89.073 19.312 248.082 70.834 961.526 15.849 200.794
(0.606) (2.467) (8.115) (28.077) (6.208) (1.045) (15.335) (4.306) (59.952) (11.938) (174.318) (47.020) (634.799) (9.932) (145.311)

PF 2.803 5.432 12.687 43.850 10.221 3.556 25.837 8.625 88.905 19.308 242.292 70.617 932.282 15.848 197.595
(0.606) (2.467) (8.114) (28.046) (6.208) (1.045) (15.332) (4.306) (59.797) (11.936) (168.838) (46.814) (627.754) (9.930) (141.963)

The row represents the average and (standard deviation) of the MSEs of HF estimates by a particular model (row-wise) for
1000 artificial samples of a DGP (column-wise).
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Table 1.24: The average MSEs of the Monte Carlo HF estimates by the six models under various DGPs with σ2 = 10 and
φ = 0.8 with aggregation matrix C2

INTERPOLATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 2.512 3.486 6.064 18.807 5.052 2.873 12.296 4.889 35.234 9.272 103.285 29.753 373.114 7.429 82.111
(0.090) (0.287) (1.632) (7.206) (1.317) (0.133) (1.978) (0.487) (8.063) (2.857) (48.731) (11.382) (186.366) (2.133) (36.247)

CLL 2.542 3.477 4.992 13.591 4.198 2.895 11.825 4.859 32.624 7.456 62.854 20.681 199.215 6.046 50.243
(0.095) (0.256) (0.681) (2.869) (0.559) (0.135) (1.542) (0.422) (5.494) (1.134) (14.744) (4.347) (54.317) (0.840) (12.197)

CLF 2.540 3.432 4.791 12.774 4.040 2.889 11.378 4.762 31.070 7.142 58.977 19.436 186.796 5.805 47.236
(0.095) (0.233) (0.528) (2.172) (0.437) (0.133) (1.342) (0.388) (4.617) (0.893) (11.821) (3.321) (43.032) (0.678) (9.481)

PCL 2.611 3.440 4.747 12.191 4.012 2.968 11.005 4.731 29.218 7.000 55.571 18.632 174.215 5.740 44.389
(0.095) (0.215) (0.458) (1.838) (0.369) (0.131) (1.276) (0.372) (4.244) (0.769) (10.121) (2.864) (37.053) (0.596) (8.145)

PL 2.619 3.484 4.678 11.906 3.959 2.983 11.196 4.802 29.704 6.913 54.042 18.192 167.440 5.664 42.989
(0.096) (0.221) (0.451) (1.742) (0.359) (0.133) (1.315) (0.386) (4.346) (0.738) (9.606) (2.751) (34.834) (0.586) (7.670)

PF 2.619 3.484 4.677 11.852 3.958 2.983 11.195 4.802 29.664 6.908 52.397 18.048 159.844 5.661 41.884
(0.096) (0.221) (0.450) (1.716) (0.359) (0.133) (1.314) (0.386) (4.336) (0.736) (8.857) (2.692) (30.388) (0.585) (7.071)

EXTRAPOLATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CLCL 2.594 4.299 53.208 207.847 41.883 3.042 19.206 6.193 64.232 83.814 1297.589 324.432 5152.244 65.690 1047.137
(0.454) (1.468) (39.396) (153.094) (31.614) (0.653) (9.402) (2.332) (36.409) (62.020) (1002.559) (246.730) (3732.258) (46.032) (773.592)

CLL 2.779 5.503 12.914 45.764 9.929 3.353 26.266 8.101 87.585 19.585 251.588 66.777 916.470 15.708 203.613
(0.574) (2.593) (8.290) (31.502) (6.029) (0.867) (16.176) (4.001) (55.822) (12.320) (172.127) (46.305) (657.075) (9.739) (143.113)

CLF 2.764 5.073 12.379 44.701 9.507 3.299 23.454 7.316 78.565 18.961 254.223 65.500 938.457 15.321 208.128
(0.561) (2.165) (7.935) (30.667) (5.853) (0.823) (13.730) (3.325) (47.998) (11.756) (176.022) (45.414) (681.952) (9.657) (148.044)

PCL 2.679 4.244 43.543 162.411 35.036 3.101 18.487 6.064 63.218 66.323 1012.519 252.470 4001.301 52.926 817.163
(0.482) (1.470) (30.357) (119.525) (24.594) (0.660) (9.433) (2.332) (37.501) (48.142) (782.869) (193.301) (2917.998) (35.561) (606.422)

PL 3.045 5.675 12.989 45.399 9.891 3.692 26.082 8.208 88.727 19.575 252.155 66.611 949.225 15.561 201.520
(0.754) (2.737) (8.365) (31.198) (6.058) (1.125) (16.394) (4.183) (57.309) (12.358) (175.987) (46.254) (681.914) (9.817) (145.461)

PF 3.045 5.675 12.988 45.336 9.891 3.692 26.079 8.208 88.564 19.571 247.584 66.357 906.342 15.559 199.847
(0.754) (2.737) (8.364) (31.160) (6.057) (1.125) (16.392) (4.182) (57.159) (12.355) (171.467) (46.064) (662.608) (9.815) (143.432)

The row represents the average and (standard deviation) of the MSEs of HF estimates by a particular model (row-wise) for
1000 artificial samples of a DGP (column-wise).
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Chapter 2

The role of economic and financial

indicators in forecasting stock

volatility

Abstract

This paper examines the value-added in forecasting volatility by utilising mixed

frequency information from market sentiment indicators, economic variables, and

activity measures. We consider high-frequency data to generate the volatility

measures and low frequency to capture the economic indicators using a mixed

sampling frequency approach. The data cover SPY and 100 representative stocks from

ten business sectors from 2000 to 2016. Findings are presented on a multi-dimensional

scale with three forecasting horizons (daily, weekly, and monthly) and three regimes,

including the 2007-08 financial crisis. We find that (extrapolated) macroeconomic
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2.1. Introduction

and market sentiment indicators exhibit forecasting information for future volatility

beyond its lagged values. Further, we find that utilising a representative factor(s)

of all potential predictors results in significant forecast gains in predicting long-term

financial volatility even during the financial crisis.

Keywords: Realised Volatility; Chow-Lin interpolation; Financial volatility predic-

tors; HARX; Mixed Frequency

2.1 Introduction

Since accurate forecasts can inform action to mitigate financial risk, market traders

and regulators take great interest in stock market price volatility. In a seminal

approach by Engle (1982), the ARCH model captures the time-varying conditional

volatility of financial returns. In an extension to that work, Bollerslev (1986)

proposed to use the GARCH model. In a further development by Corsi (2009),

the Heterogeneous Autoregressive Realised Volatility (HAR-RV) model presents

daily volatility as a sequence of autoregressive components, as realised over daily,

weekly and monthly horizons. The general hypothesis is that different categories of

market participants have diverse horizons and trading activities, such that they react

differently to similar news (Müller et al., 1997). Hence, different market indicators

carry distinctive signals. This paper aims to combine financial and economic signals

from high and low-frequency variables and test the value-added from each piece of

information in forecasting financial volatility.

Considering that stock price volatility, unlike stock returns, is persistent, research

papers tend to construct volatility models based on time series information; for
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2.1. Introduction

example, see Corsi and Reno (2009), Ghysels, Santa-Clara, and Valkanov (2006), and

Wang et al. (2016). Researchers explore other factors that can help predict financial

volatility; see, for example, Hamilton and Lin (1996), Christiansen, Schmeling, and

Schrimpf (2012), and Caporin, Rossi, and Magistris (2015), among others. The overall

impact of the business cycle upon financial activity has motivated Officer (1973)

followed by Schwert (1989), Hamilton and Susmel (1994), Hamilton and Lin (1996),

and So, Lam, and Li (1998). More recently, Bollerslev and Zhou (2006) and Bollerslev

and Todorov (2011) finds an association between risk-premium volatility and a number

of macroeconomic variables. The general finding is one of increased volatility during

recessions. All studies mentioned above have considered economic variables observed

on a low-frequency (LF), i.e. monthly or annual. This paper investigates the role of

a diverse set of economic and financial indicators in predicting high-frequency (HF),

i.e. daily, financial volatility.

Where the record of financial volatility is typically available on (at least) a daily

basis, less frequent weekly and monthly values are available for macroeconomic and

other relevant variables. Most studies overcome the statistical challenge of modelling

mixed frequency data by aggregating the HF variable to match the low-frequency

(LF) variables or disaggregating from LF to HF, such as the Chow and Lin (1971)

method. Ghysels, Santa-Clara, and Valkanov (2004) suggest a mixed data sampling

model, MIDAS, to include HF explanatory variables to predict a LF one. Ghysels

(2016) introduced and developed the mixed frequency vector autoregressive, MFVAR,

to allow the study of bi-directional causality between LF and HF variables. However,

when the frequency ratio of the variables is high, the MFVAR suffers from the curse

of dimensionality. For example, if the model includes daily and monthly variables, the
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vector in the MFVAR consists of the daily and monthly observations within a month.

Further, the announcement day of the economic data changes from one calendar month

to another, posing a challenge in ordering the variables (according to their occurrence

within the calendar month) in the VAR model.

To identify the impact of selected indicators on financial market volatility, we use

the HARX framework (i.e., the HAR model with additional variable(s)). The HARX

model can be applied directly using explanatory variables that are recorded on HF

occurrences (e.g. daily). However, we consider two approaches for variables observed

at a lower frequency. The first is the reverse MIDAS by Foroni, Guérin, and Marcellino

(2018) where the LF explanatory variables are added to the HARX model without

any frequency conversion; the second approach is to use the temporal-extrapolation

method of Chow and Lin (1971) to disaggregate the LF series into a HF series. The

disaggregated series can then be added as daily explanatory variables in the HARX

model. We find the latter approach to generally yield better forecasting results.

A growing body of literature suggests that a subset selection and the derived

components of variables from a feasible set improve forecast competence (see Fuentes,

Poncela, and Rodŕıguez (2015) and references therein). Therefore, in addition to

studying each indicator’s added value, we also examine the benefits of combining all

the predictors and adding them to the HARX model. Chun and Keleş (2010) propose

the Sparse Partial Least Square (SPLS) approach, which imposes a sparsity constraint,

similar to that of LASSO, on the Partial Least Square (PLS) method of Wold (1966).

The constraint leads to sparse linear combinations of the original predictors. Since

this paper is concerned with forecasting, we employ the SPLS to derive orthogonal

unobserved components based on the covariance between the set of predictors and the
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dependent variable. The derived SPLS factors enter the HARX model as explanatory

variables. Overall, we find that all indicators’ combined information produces the

best forecasts. Information about the economic and market conditions, in addition to

the lagged volatility, provide further gains in predicting future stock volatility.

In this paper, we contribute to the literature by empirically investigating which

economic and financial indicators exhibit essential data in forecasting HF financial

volatility of the market and 100 individual stocks in ten business sectors. We also

examine when unique and combined factors are most significant in providing pertinent

information to predicting future volatility. We do so by studying the forecasting

performance over three regimes: before, during, and post the 2007-08 financial crisis.

We find that market sentiments hold valuable information in predicting financial

volatility before the financial crisis. The value-added of macroeconomic variables,

such as new housing projects and industrial production indices, in forecasting stock

volatility increased since the financial crisis.

This paper is organized as follows. Section 2.2 provides background on the various

predictors of financial volatility investigated in the literature. Section 2.3 presents the

volatility measures and HARX models employed in this paper. Section 2.4 describes

the data used in this study. Section 2.5 presents the findings and analysis using

forecast evaluation methods. Section 2.6 concludes.

2.2 Predictors of the financial volatility

Due to stocks’ persistent financial volatility, various papers often construct volatility

models with distributed lags. Hence, the forecasting accuracy can often be improved
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2.2. Predictors of the financial volatility

by incorporating information beyond those included in the volatility’s distributed

lag. Therefore, exploring factors that contain significant information in forecasting

volatility has occupied a number of researchers, see for example Ghysels, Santa-Clara,

and Valkanov (2006), Hamilton and Lin (1996), and Christiansen, Schmeling, and

Schrimpf (2012) among others. We categorise indicators as macroeconomic, market

sentiment and stock-specific activity.

Macroeconomic Indicators. Green (2004) and Andersen et al. (2003b) observe

significant intraday effects of macroeconomic announcements. Corradi, Distaso, and

Mele (2012) find that macroeconomic factors can explain most of the long-term

variation in overall stock volatility. Beltratti and Morana (2006) found that the

causality from macroeconomics to financial volatility is stronger than vice versa. In

general, any strong contemporaneous relationship between financial volatility and

economic conditions would suggest that the use of lagged economic variables might

improve volatility forecasts.

We consider macroeconomic indicators with different classifications relative to the

business cycle. In particular, the term spread, which is the difference between

the three-month LIBOR rate and T-Bill rate, is a forward-looking indicator as it

reflects the investors’ expectations for future economic activity, demand for credit and

monetary policy (see Conrad and Loch (2015) and the references therein). Similarly,

the federal fund rates variable is shown to be predictive of volatility jumps (Caporin,

Rossi, and Magistris, 2015). Another leading indicator is the housing starts index

(HOUST), defined as the total new privately-owned housing units started. It signals

the residential investments, so it leads GDP as shown by Kydland, Rupert, and Šustek

(2016), among others. The industrial production index (INDPRO) is a coincident
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2.2. Predictors of the financial volatility

indicator, where an increase in the total industrial output yields a decrease in financial

volatility (Officer, 1973; Schwert, 1989).

Another coincident indicator we consider is the Auroba-Diebold-Scotti index (ADS)

by Aruoba, Diebold, and Scotti (2009). It reflects the prevailing economic condi-

tions combining jobless claims, growth of payroll enrollment, industrial production

growth, real manufacturing, trade sales, real personal income, and real GDP. The

unemployment rate is a lagging indicator of the business cycle. For example, due to a

recession, people have a more challenging time landing jobs (Conrad and Loch, 2015).

Similarly, inflation and inflation uncertainty, Producer Price Index (PPI), are both

lagging indicators representing the change in prices (Engle, Ghysels, and Sohn, 2013).

Market Sentiments. Market sentiments signal current and expected business condi-

tions. Andersen, Bollerslev, and Cai (2000) show that indices for consumer confidence

(CCI) and business confidence (BCI) can be used to predict financial volatility in the

Japanese market. Further, option prices, as reflected in implied volatility, possess

information about future stock market volatility (Andersen and Bondarenko, 2007;

Chernov, 2007). Becker, Clements, and McClelland (2009) show that the Chicago

Board Options Exchange (CBOE) volatility index (VIX) delivers information relevant

to future jump activity. Estimated from options prices, squared VIX is interpreted

as the conditional return variance using a risk-neutral probability measure. Hence,

it is an unbiased predictor of future financial volatility because it incorporates a risk

premium (Bekaert and Hoerova, 2014).

Activity Measures. Researchers examined the empirical relationship between stock

volatility and trading volume. On the one hand, the mixture of distribution hypothesis

(MDH) explains that the volatility-volume relation is a correlation one because any
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new information yields contemporaneous changes in volume and volatility (Clark,

1973; Harris, 1987). On the other hand, the sequential information arrival hypothesis

(SIAH) illustrates that lagged values of volatility may predict current trading volume

and vice versa due to the time gap between news and investors’ different reactions

(Copeland, 1976; Smirlock and Starks, 1988). A positive lead-lag relationship between

financial volatility and volume or number of trades has been demonstrated in several

empirical studies (Darrat, Zhong, and Cheng, 2007; Girard and Biswas, 2007).

2.3 Measures and Models

Volatility measures

Advances in computing and data technology make it possible to observe HF

transaction data. This has led to the so-called realised volatility, RV, which is a

non-parametric ex-post estimate of the return variation. The daily RV measure is the

sum of intraday squared returns of sub-intervals of the day. Andersen et al. (2003b)

show that in the absence of microstructure noise, RV, calculated using HF data, is a

consistent estimator of the quadratic variation. Sub-intervals of length 300 sec (e.g. 5

min), which is 78 sub-intervals a day1, resemble a balance between information gains

from high-frequency data and micro-structure effects (Andersen et al., 2001).

Owing to its stylised facts and other desirable statistical properties, RV is preferable

over the parametric volatility measures generated from GARCH and Stochastic

Volatility (SV) models (Andersen et al., 2003a; Barndorff-Nielsen and Shephard,

1See Zhang, Mykland, and Aı̈t-Sahalia (2005) for a discussion on optimising the sampling
frequency for the estimation of RV.
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2002; Liu, Patton, and Sheppard, 2015). The superiority of RV arises from utilising

information available at small intervals, which is lost at the lower frequencies of

GARCH and SV models.

The price at the start of the jth interval is computed as the average of the closing and

opening prices of intervals j − 1 and j, respectively. The jth return over an interval

of length h is:

rj = log(Pjh)− log(P(j−1)h)

Then, dividing the day into M sub-intervals, the intra-day return of the jth sub-

interval within the ith day is:

rj,i = log(P(i−1)M+j)− log(P(i−1)M+(j−1)), j = 1, 2, ...,M

where M = 78 which is the length of the day with a 5 min sampling frequency.

As a result the daily return is

rt = ΣM
j=1rj,t

Hence, the daily realised volatility is

RV
(d)
t := ΣM

j=1r
2
j,t

RV
(w)
t and RV

(m)
t are the weekly and monthly average of RV calculated as follow:

RV
(w)
t =

1

5
Σ5

i=1RV
(d)
t−i ; RV

(m)
t =

1

22
Σ22

i=1RV
(d)
t−i
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HAR-X models

The Heterogeneous Autoregressive Realised Volatility (HAR) model introduced by

Corsi (2009) represents daily volatility as a sequence of autoregressive volatility

components realised over daily, weekly and monthly time horizons:

RV
(d)
t = β0 + βdRV

(d)
t−1 + βwRV

(w)
t−1 + βmRV

(m)
t−1 + ϵ

(d)
t (2.1)

Consider the HARX model:

RV
(d)
t = β

(d)
0 + β

(d)
d RV

(d)
t−1 + β(d)

w RV
(w)
t−1 + β(d)

m RV
(m)
t−1 + β(d)

x Xt−1 + ϵt (2.2)

Similarly, for weekly or monthly realised volatility:

RV
(w)
t = β

(w)
0 + β

(w)
d RV

(d)
t−5 + β(w)

w RV
(w)
t−5 + β(w)

m RV
(m)
t−5 + β(w)

x Xt−5 + ϵ
(w)
t (2.3)

RV
(m)
t = β

(m)
0 + β

(m)
d RV

(d)
t−22 + β(m)

w RV
(w)
t−22 + β(m)

m RV
(m)
t−22 + β(m)

x Xt−22 + ϵ
(m)
t (2.4)

where X is an exogenous variable sampled at a daily level. Some variables sampled

at a LF can be incorporated in the model using one of two approaches.

The first approach is the reverse MIDAS suggested by Foroni, Guérin, and Marcellino

(2018) to use LF data in predicting HF variables:

RV
(d)
t = β

(d)
0 + β1B(L, θ)RV

(d)
t−1 + β(d)

x Xt−1 + ϵt (2.5)

where B(L, θ) is a weighting function. Note that the HAR model can be thought of as
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a particular weighting scheme. While it is interesting to study the optimal restricted

AR in modelling RV, it is beyond the scope of this paper. Our approach is to apply

Foroni, Guérin, and Marcellino (2018)’s reverse approach to the HARX model. Where

this approach holds the LF observation constant within each LF period (month) it

allows its coefficient to vary according to the day of the month:

βxXt := Σk
i=1γiDiX

LF
τ

where k is the maximum frequency ratio (i.e number of days in a month). γi is the

coefficient to be estimated, Di is a dummy variable that takes the value one when

t falls on the ith day of the month and zero otherwise. XLF
τ is the low-frequency

observation of variable X in month τ such that t falls in month τ .

The second approach to incorporating a LF (monthly) variable into the HARX model

is to disaggregate the LF variable to daily values before adding these as a HF series.

Among the numerous extrapolation methods, the Chow and Lin (1971) (CL) is

selected because macroeconomic variables’ statistical characteristics align with the

method’s assumptions. Particularly, macroeconomic variables are thought to have low

variance within the month. In a nutshell, the CL method uses a statistical relationship

between LF data and HF indicator variable(s) to create a HF time series that is

consistent with the LF data. By our choice of the Aruoba-Diebold-Scotti Business

Conditions Index (ADS) and the daily Term Spread (TS) as daily indicators, we

obtain signals of the current state of the business cycle (Berge and Jordà, 2011).

Note that, unlike interpolation, no future observation is used in extrapolation, an

important feature of the estimated HF series in the out-of-sample window to be used
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in real-time forecasting. For a more elaborate technical explanation see Dagum and

Cholette (2006) and Chow and Lin (1971).

Finally, we add all the explanatory variables to the HARX model. We use the Spare

Partial Least Square (SPLS) method of Chun and Keleş (2010) to extract components

from the original set of predictors. The advantage of this method is that instead

of adding all the predictors to the HARX model, we replace them with a smaller

set of factors that capture their joint variation while also considering the in-sample

covariation with the dependent variable. The HARX model with SPLS factors is as

follows:

RV
(d)
t = β

(d)
0 + β

(d)
d RV

(d)
t−1 + β(d)

w RV
(w)
t−1 + β(d)

m RV
(m)
t−1 + β

′(d)
f ft−1 + ϵt

ft = Wzt

(2.6)

where zt is the (M × 1) vector of all M predictors listed in table (2.1) at time t. Note

that in this model the X = ft−1 where ft is a (k × 1) vector of latent unobserved

factors obtained using SPLS and βf is its (k × 1) coefficients vector. W is a (k ×M)

matrix of the weights assigned to each one of the predictor variables in each of the

SPLS component in ft.

Firstly, the direction matrix, W in equation (2.6), is found using SPLS. Secondly, once

the factor(s), f̂t, is estimated, it enters the HARX model, equation (2.6), to serve as a

reduced set of explanatory variables. We do not include RV lags in the zt and instead

keep the HAR framework.

Estimation is undertaken using OLS. While the error terms suffer from autocorrelation

and heteroskedasticity, the GLS estimation shows no significant difference in the
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2.4. Data

coefficients or the forecasting evaluation measures. Therefore, we use OLS for its

simplicity and computational convenience. Lastly, we follow Swanson and White

(1995) and use an ”insanity filter” to ensure that the volatility forecasts are not

negative in all the models. In particular, we replace negative forecasted values of any

model by the the lagged RV.

2.4 Data

We consider 17 years of high-frequency data for the period 2000 to 2016. The dataset

includes the SPY and 100 stocks representing ten sectors. The financial data comprises

4277 trading days observed at the tick level. The use of cleaned data from TickWrite2

makes our results easier to authenticate and replicate. The sample range and sector

coverage allow us to examine the sensitivity of the forecasting performance of our

models across different market regimes and individual stocks. Table (2.5) provides

descriptive statistics of the RV of each stock.

Table (2.1) provides a summary of the explanatory variables, X, in the HARX models

(eq. 2.2, 2.3, 2.4) and Table (2.6) presents their descriptive statistics. The variables

were downloaded from multiple sources namely: ALFRED, OECD, and QUANDL.

Data revisions can be substantial for macroeconomic variables. Thus, employing

revised instead of first-release real-time data can be misleading regarding forecasting

evaluation (see, for example, Stark (2010)). Hence, for variables that undergo revision,

we use ALFRED, which allows retrieving vintage versions of the economic data

2TickWrite is a database that provides data on a commercial basis for futures, Index and
equity markets. Tick Data is sourced from NYSE’s TAQ (Trade and Quote) database. Tick
adjusts the TAQ database for ticker mapping, code filtering, price splits, and dividend payments
https://www.tickdata.com/.
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recorded at the initial release date of each observation. In addition to macroeconomic

variables growth rates, we also considered business indices and squared VIX as market

sentiments variables and activity measures.

Table 2.1: List of Predictors

Macroeconomic Variables Frequency Functional Form Source
Aruoba-Diebold-Scotti Business Condi-
tions Index (ADS)

Daily Level QUANDL

Effective Federal Funds Rate (FED-
FUNDS)

Daily Logarithmic-square ALFRED

Housing Starts Index (HOUST) Monthly Growth ALFRED
Industrial Production Index (INDPRO) Monthly Growth ALFRED
Produce Price Index (PPIACO) Monthly Level ALFRED
Term Spread (TS) Daily Logarithmic-square ALFRED
Unemployment Rate (UNRATE) Monthly Growth ALFRED
Market Sentiments Frequency Functional Form Source
Economic Policy Uncertainty Index
(EPU)

Daily Level Policy Uncertainty

Business Confidence Index (BCI) Monthly Level OECD
Consumer Confidence Index (CCI) Monthly Level OECD
Composite Leading Indicator (CLI) Monthly Level OECD
CBOE Volatility Index (VIX) Daily Squared ALFRED
Activity Measures Frequency Functional Form Source
Number of Trades Daily Level/(104) TickWrite
Volume Daily Level/(108) TickWrite
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2.5. Empirical Results

2.5 Empirical Results

The explanatory variables under consideration are observed at either daily or monthly

frequency. Hence, given that RV’s frequency is daily, we have two scenarios based

on the frequency of the explanatory variable, X. For explanatory variables with

daily frequency, we employ the HARX models (eq. (2.2), (2.3), (2.4)) directly. For

explanatory variables with monthly frequency, we use its extrapolated daily data. We

also considered the reverse MIDAS approach and found no significant differences with

the former in the forecasting results of weekly and monthly horizons. However, for

the daily forecast horizon, the CL extrapolation approach, which accounts for daily

variations, yields better predictions. Therefore, we only report the results using the

CL approach for conciseness.

In what follows, we report the results using the full sample period and sub-samples.

Since the time frame of the data includes the 2007-08 financial crisis, we dissect the

full sample into three periods: before the financial crisis (Pre-Crisis) from 2000 to

2006, during the financial crisis (Crisis) from 2007 to 2010, and after the financial

crisis (Post-Crisis) from 2011 to 2016.

2.5.1 In-sample Estimation

Tables (2.7), (2.8), and (2.9) report the in-sample estimation results of the HAR and

HARX models (eq. 2.2, 2.3, & 2.4) with each of the exogenous variables listed in

table (2.1) for three sample periods (pre-crisis, crisis, and post-crisis), respectively.

The scale of the HAR model coefficients varies across forecast horizons. In particular,

β̂d is the highest for equation (2.2) than (2.3) and (2.4). That is to say, more recent
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daily information, lagged RV (d), is more relevant for the daily forecaster than the

longer-term forecaster. Similarly, β̂w and β̂m are higher in long-term predictions

models. Further, the magnitude and significance of the HAR and HARX coefficients

change over the three sample periods. During the crisis period, β̂w increases while β̂m

decreases, which suggests that recent information becomes more valuable during the

crisis than the historical average.

Few magnitude and sign changes in the exogenous variables’ coefficients are identified

across the three periods, but the pattern is consistent across the three forecast

horizons. Generally, the magnitude of most of the X variables’ coefficients increases

during the crisis. Regarding market sentiments, BCI and CLI reflect current

conditions and signals about the economy’s future, respectively. Hence, an increase

in their values yields a decline in the volatility forecasts. Also, CCI measures future

developments in households’ consumption and saving. Hence, there has been a

significant negative relationship between CCI and volatility forecasts since the crisis.

Further, the VIX’s coefficient is positive and significant in all three sample periods.

Lastly, the coefficients of volume and trades become positive and significant since the

crisis, which implies that high volume and trades signal high RV of the next day,

week, and month.

In terms of the macroeconomic variables, overall, the sign of their coefficients is in line

with the counter-cyclical property of long-term volatility observed by Engle, Ghysels,

and Sohn (2013) and Conrad and Loch (2015), among others, even at a daily level.

We find that the signs of the coefficients of leading indicators such as TS and HOUST

are consistently positive and negative, respectively, across the three sample periods.

As for lagging indicators, a rise in UE or PPI is linked with an increase in market
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volatility. Further, coincident indicators such as ADS and the INDPRO signal the

current business conditions. Their coefficients are negative before and during the

crisis, i.e. an improvement in economic conditions generally reduce market volatility.

However, the relationship is positive but insignificant after the crisis. The latter

observation suggests that an increase in these particular coincident indicators might

not have an instantaneous counter-cyclical effect on HF financial volatility.

The in-sample estimation results over the three periods suggest that the relationship

between some exogenous variables and RV has changed over the three periods.

Hence, looking at the overall out-of-sample (OOS) performance over the whole sample

could be misleading. Therefore, we are interested in examining the OOS forecasting

performance over the three subsample periods representing the: pre-crisis, crisis, and

post-crisis regimes.

2.5.2 Out-of-Sample Analysis

This paper examines the role of a set of economic and financial variables in predicting

financial volatility. To do so, we evaluate the OOS performance of the HARX

model against the HAR model as the benchmark. We estimate the models in

a rolling window of 1000 daily observations. Specifically, we estimate the model

using the first 1000 observations to produce the first out-of-sample forecast value

corresponding to the 1001st RV observation. Then, we estimate the model from 2nd

to the 1001st observation to have the second OOS forecast corresponding to the 1002nd

RV observation. We proceed this way to produce 3277 OOS forecasts corresponding

to RV’s 1001st to 4277th observation.

Many studies are focused on evaluating and comparing volatility models, see, for
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example, Poon and Granger (2003) for an extensive review on the matter. Most

apply a loss function, where model-based predictions of the conditional variance are

compared to estimates of the conditional variance (e.g. realised volatility). Many

researchers have considered the Mean Squared Forecast Error (MSFE) as a forecast

evaluation method in volatility models (Andersen, Bollerslev, and Lange, 1999; Corsi

and Reno, 2009):

MSFE =
1

N
ΣN

t=1[RVt+1 − R̂V t+1]
2

To ease the comparison between the models, we compute the relative loss function

(relative MSFE) defined as:

relative MSFEHARX =
MSFEHARX

MSFEHAR

(2.7)

where a value below 1 indicates that the HARX outperforms the HAR model.

Table (2.2) displays the relative MSFE of the various HARX models relative to

the HAR model. The combined information using SPLS results in the highest gains

over the entire sample for all forecasting horizons. We observe a distinct change in

variable predictability gains across the forecast horizons and periods per individual

variable. Overall, the variables yield higher forecast gains for the long-term RV, where

all variables, except TS and FEDFD, improve the forecast of monthly volatility. Some

information is more relevant during particular regimes than others.

For example, we note that market sentiments and macroeconomic variables are more

relevant for the weekly and monthly forecasts than daily forecasts. These variables

produce the most significant improvements in the RV forecasts during the crisis. These

variables flag valuable information beyond the lagged RV during unprecedented times.
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VIX and activity measures, on the other hand, were better predictors before the

financial crisis. Overall, as expected, combined information yields the best forecasts

during periods of uncertainty.

To investigate the findings by sectors, we report, for each business sector over each

regime using each set of X variables, the OOS median of the daily, weekly, and monthly

forecast gains in Tables (2.9) to (2.20). Overall, the financial sector has the highest

forecast gains from incorporating market and economic conditions information. There

are no significant differences among the other sectors. Hence, we look at the overall

impact on forecasting volatility for the 100 individual stocks.

In Table (2.3), we report the mean and the skewness of the relative MSFE. Consistent

with the SPY, the findings suggest that information beyond the lagged RV can be

more relevant for the long-term horizons of individual stocks’ volatility during the

financial crisis. We find that, on average, combined information (SPLS factors) yields

the highest forecast gains for full-sample, particularly during the crisis. The skewness

also enables us to know more about the distribution. If it is negatively skewed, it

means that while for some stocks, we get even lower relative MSFE than the average,

with the majority of the stocks, the relative MSFE is higher than the mean. We

mainly observe negative skewness during the financial crisis.
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Table 2.2: Relative MSFE of HAR-X in Forecasting Market Volatility

Daily Weekly Monthly
FS Pre Crisis Post FS Pre Crisis Post FS Pre Crisis Post

ADS 1.009 0.987 1.011 0.999 0.940 0.971 0.933 0.996 0.734 0.990 0.717 0.908
BCI 1.023 0.980 1.026 1.003 0.970 0.947 0.966 1.006 0.635 0.890 0.593 1.108
CCI 1.017 1.001 1.020 0.998 0.984 1.011 0.984 0.987 0.711 1.043 0.685 0.980
CLI 1.021 0.990 1.024 1.001 0.970 0.976 0.966 1.002 0.653 0.975 0.621 0.995
EPU 1.023 0.950 1.026 1.001 1.006 0.983 1.007 0.993 0.950 1.009 0.940 1.060
FEDFD 1.002 1.004 1.002 1.005 1.002 1.048 1.003 0.999 1.005 1.097 1.008 0.958
HOUST 1.006 1.182 1.006 1.002 1.003 1.125 1.003 0.998 0.983 1.075 0.986 0.929
INDPRO 1.008 1.018 1.007 1.012 0.966 1.093 0.955 1.039 0.810 1.232 0.775 1.170
PPI 1.003 0.945 1.000 1.026 0.945 0.935 0.922 1.114 0.728 0.931 0.681 1.268
TRD 1.024 0.989 1.052 0.815 0.986 0.646 0.998 0.913 0.925 0.379 0.929 0.977
TS 1.007 1.129 1.008 1.000 1.008 1.233 1.007 1.001 1.009 1.165 1.005 1.034
UE 1.013 1.013 1.015 1.002 0.989 1.036 0.984 1.022 0.779 1.051 0.737 1.245
VIX 0.859 0.757 0.859 0.861 0.904 0.461 0.908 0.892 0.987 0.471 0.998 0.948
VOL 1.024 1.138 1.043 0.874 1.007 0.893 1.019 0.924 0.972 0.648 0.977 0.961
SPLS 0.842 1.037 0.844 0.826 0.839 0.901 0.829 0.912 0.652 0.578 0.630 0.932

This table presents the MSE values of each HAR-X model relative to the MSFE of the HAR model in forecasting
the RV of SPY. The results are listed over the Full-sample period and the sub-samples defined as pre-crisis, crisis,
and post-crisis period. A value of less than one in bold indicates forecast gains over the HAR model. The lowest
value is underlined, showing the best model in the relevant period.
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Table 2.3: Mean and Skewness of Relative MSE of HAR-X in Forecasting Individual Stocks Volatility

Daily Weekly Monthly

FS Pre Crisis Post FS Pre Crisis Post FS Pre Crisis Post

ADS
0.991 0.994 0.991 0.998 0.930 0.989 0.920 0.980 0.762 0.988 0.734 0.823
-3.214 -6.739 -2.562 0.466 -3.667 -0.579 -3.963 -2.993 -0.524 1.804 -1.018 -1.250

BCI
1.002 1.003 1.002 1.043 0.957 0.999 0.946 1.099 0.718 0.973 0.657 1.291
-3.271 6.362 -2.906 5.855 -4.164 2.224 -4.028 4.536 -0.695 0.568 -0.125 2.254

CCI
1.002 1.015 1.003 1.029 0.972 1.042 0.964 1.050 0.765 1.074 0.712 1.157
-3.621 3.213 -3.115 6.023 -4.146 1.663 -4.098 4.796 -0.777 0.373 -0.418 2.635

CLI
1.000 1.005 1.000 1.018 0.953 1.014 0.943 1.041 0.711 1.031 0.655 1.075
-3.152 2.696 -2.812 6.341 -4.471 2.935 -4.244 3.679 -0.811 3.869 -0.576 2.108

EPU
1.001 0.979 1.001 1.044 0.986 0.964 0.985 1.049 0.953 0.995 0.940 1.138
-0.430 -2.552 -0.180 4.856 -2.676 -2.165 -2.664 3.212 -1.195 -0.339 -1.073 2.363

FEDFD
1.005 1.038 1.003 0.996 1.011 1.128 1.004 0.971 1.027 1.324 1.013 0.874
5.616 5.442 1.286 -6.047 5.835 2.620 0.625 -3.489 5.153 1.905 -0.056 -1.014

HOUST
1.003 1.048 1.001 0.997 1.001 1.080 0.995 0.976 0.985 1.116 0.976 0.887
3.360 5.149 -1.710 -4.517 4.856 3.720 -2.031 -3.474 3.755 3.021 -2.265 -1.764

INDPRO
0.998 1.015 0.997 1.042 0.969 1.045 0.956 1.116 0.864 1.132 0.813 1.278
-4.043 6.178 -3.612 5.160 -3.372 2.311 -4.060 3.553 0.095 2.252 -0.199 1.827

PPI
0.997 1.010 0.993 1.070 0.956 1.009 0.933 1.217 0.789 1.010 0.725 1.396
2.967 9.705 0.139 4.576 1.248 8.331 -0.195 4.198 -0.004 2.920 0.604 2.710

TRD
0.987 1.175 0.996 1.030 0.969 1.019 0.967 1.050 0.933 0.887 0.928 1.059
-3.531 4.615 -3.451 2.894 -3.993 2.855 -4.589 4.389 -3.001 1.752 -3.376 4.233

TS
1.005 1.062 1.003 1.005 1.011 1.155 1.003 1.042 1.033 1.243 1.016 1.162
5.272 8.101 -3.524 4.086 4.824 3.497 -2.288 6.206 2.118 1.068 -0.624 3.926

UE
1.004 1.009 1.004 1.054 0.983 1.028 0.975 1.153 0.834 1.068 0.770 1.535
-3.076 1.488 -2.626 5.195 -3.893 1.377 -3.266 4.687 -0.330 2.003 -0.117 2.398

VIX
0.935 0.940 0.929 1.076 0.892 0.802 0.887 1.095 0.913 0.748 0.926 1.051
-1.980 -2.685 -1.552 5.009 -2.126 -0.177 -1.773 5.633 -1.817 0.440 -1.980 7.019

VOL
1.006 1.174 1.008 1.036 1.009 1.073 1.002 1.023 1.002 1.008 0.991 1.023
-2.201 6.444 -2.148 5.844 -1.521 5.653 -3.512 2.914 1.395 3.080 -5.630 6.441

SPLS
0.933 1.062 0.923 1.077 0.898 0.830 0.888 1.087 0.674 0.824 0.629 1.071
-1.666 4.943 -1.152 5.091 -1.138 -0.185 -0.934 5.612 -0.345 0.907 -0.399 2.446

This table presents the mean and skewness of MSE values of each HAR-X model relative to the MSFE of the HAR model in forecasting
the RV of the 100 individual stocks. The results are listed over the Full-sample period, and the sub-samples are defined as pre-crisis,
crisis, and post-crisis periods. A mean of less than one in bold indicates forecast gains over the HAR model. The lowest value is
underlined, showing the best model in the relevant period.
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We note that macroeconomic variables, particularly the unemployment rate, became

more valuable during the crisis. Similarly, on average, economic conditions indicators

are more valuable during unprecedented times, except for a few individual stocks.

In the case of SPY, activity measures are more valuable during the financial crisis

than pre-and post-crisis regimes. Hence, we only find supporting evidence for the

volatility-volume and the trades-volatility lead-lag relationship among the individual

stocks during the crisis period. The finding suggests that, on average, the stock

activity measures do not necessarily add valuable information beyond those included

in the lagged volatility for all individual stocks.

2.5.3 Forecasting Significance

To test for forecasting significance, we consider the Clark and West (2007) (CW)

statistics on MSFE which has been widely adopted in the literature for comparing

nested models (see, for example, Audrino and Hu (2016) and Audrino, Sigrist, and

Ballinari (2019) for forecasting RV). The test adds an adjustment term to the OOS

difference in MSFE that accounts for parameter estimation noise. The null hypothesis

involves the population difference in MSFE between the two nested models for a given

forecasting horizon. The test statistic is defined as:

f̂t+1 = (RVt+1 − R̂V
HAR

t+1 )2 − [(RVt+1 − R̂V
HARX

t+1 )2 − (R̂V
HAR

t+1 − R̂V
HARX

t+1 )2] (2.8)

Using the resulting f̂t+1 (2.8), we estimate the regression f̂t+1 = µ + ϵt , then test

the null hypothesis: µ ≤ 0 which implies that the HARX model is not better than

the HAR model. We reject the null if the t-statistic is greater than +1.282 for 10%

significance or +1.645 for 5% significance. The results are reported in table (2.4) for
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all HARX models across the three forecasting horizons.

According to the CW test, lagging and coincident indicators such as UE and INDPRO

show significant gains during the crisis. In contrast, leading indicators such as HOUST

show significant gains after the crisis. HOUST’s long-term forecasting gains are also

significant during the crisis. Further, most market sentiments are significant for long-

term forecasting horizons during and after the crisis. However, VIX is the only variable

that yields significant gains during the crisis period for the daily forecasts. Volume

and number of trades variables are found to predict the market RV before and after

the crisis. Lastly, SPLS is the only one that significantly improves the prediction of

the market volatility consistently in all three regimes and three forecasting horizons.

The previously mentioned forecast evaluation methods examine the global forecasting

performance over a chosen interval. However, our entire sample period includes

unprecedented times, which caused instability in the economy. While dividing the

sample into three sub-samples relative to the financial crisis period, namely the pre-

crisis, crisis, and post-crisis period, mitigates part of the regime-change problem, it

still suffers from other challenges. For example, it is nearly impossible to depict the

exact day of the beginning and end of a regime.
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Table 2.4: Clark-West MSFE significance test of forecasting RV of SPY using HARX model compared to the HAR
model

Daily Weekly Monthly
FS Pre Crisis Post FS Pre Crisis Post FS Pre Crisis Post

ADS 0.016 0.001* 0.032 0.013** 0.218* 0.002 0.657* 0.034*** 0.994* 0.002 3.015* 0.132***
BCI -0.053 0.001*** -0.175 0.001 0.100** 0.004*** 0.308* 0.009 1.016* 0.019*** 3.236* 0.020
CCI -0.040 0.000 -0.140 0.007 0.059** 0.000 0.160 0.021 0.765* 0.001 2.368* 0.069**
CLI -0.049 0.001*** -0.162 0.002 0.091* 0.002*** 0.283* 0.008 0.948* 0.008*** 3.007* 0.034*
EPU -0.050 0.004*** -0.177 0.007 0.017 0.001*** 0.031 0.015 0.214 0.000 0.656 0.024
FEDFD 0.004 0.002 0.003 0.005 0.008 0.003 -0.002 0.017** 0.062 0.006 0.128 0.047*
HOUST -0.013 -0.004 -0.053 0.010*** 0.008 -0.003 -0.008 0.025*** 0.067*** -0.003 0.087* 0.089**
INDPRO -0.001 0.000 0.004 -0.006 0.121* 0.000 0.400* -0.006 0.549* -0.006 1.800* -0.015
PPI 0.012 0.003*** 0.032 0.002 0.149* 0.005*** 0.464* 0.010 0.694* 0.018*** 2.122* 0.071**
TRD 0.097 0.003*** -0.090 0.270* 0.140** 0.028*** 0.298* 0.091* 0.340 0.128*** 0.973 0.020*
TS -0.013 -0.004 -0.053 0.010 0.008 -0.003 -0.008 0.025 0.067 -0.003 0.087 0.089
UE -0.035 0.000 -0.115 0.002 0.040** -0.001 0.124** 0.004 0.563* -0.002 1.769* 0.034
VIX 1.513* 0.035*** 4.489** 0.269** 0.563** 0.043*** 1.645** 0.100** 0.165 0.070*** 0.452 0.020***
VOL 0.009 -0.003 -0.231 0.176** 0.056 0.010*** 0.040 0.089** 0.135* 0.069*** 0.326 0.039***
SPLS 1.467* 0.021*** 4.420** 0.220* 0.592** 0.043*** 1.641** 0.166* 1.063* 0.076*** 3.278* 0.067***

*** 1% significance, ** 5% significance, and * 10% significance.
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Therefore, we examine local superiority using the fluctuation test developed by

Giacomini and Rossi (2010) (GR). The methods are designed to examine the relative

forecasting performance of two competing models in the presence of instabilities.

Thus, we can more accurately detect any reversal in the relative forecasting ability

of HAR and HARX models. The general formula of the local relative performance

statistic is defined as:

FOOS
t,m = σ̂−1m−1Σ

t+m/2−1
j=t−m/2∆Lj(θ̂

HAR
j−h,R, θ̂

HARX
j−h,R ), t = R+h+m/2, .., T−m/2+1 (2.9)

Where m is the length of the of the moving window, set to 250 (i.e. approximately

one year of data). ∆Lj is the loss function difference between the two models, HAR

and HARX. With the CW statistic for nested models, the local relative performance

MSFE becomes:

FOOS
t,m = σ̂−1m−1Σ

t+m/2−1
j=t−m/2f̂t+τ , t = R + h+m/2, .., T −m/2 + 1 (2.10)

where f̂t+τ is defined in equation (2.8) and R = 1000 is the number of observations

in the in-sample. For every t, the parameters of the models are re-estimated over

the in-sample period in a rolling window scheme: t − h − R + 1, ..., t − h. The null

hypothesis for this test is that the two competing models, HAR and HARX, have

equal OOS performance at each point in time. Wherever the local relative MSFE,

FOOS
t,m , exceeds the critical value we reject the null hypothesis and conclude that the

HARX produced better forecasts than the HAR model over the period of length m

centered at t.
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Figure 2.1: GR statistic tests plot for HARX models with 5% confidence level for forecasting RV (d) of SPY
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Figure 2.2: GR statistic tests plot for HARX models with 5% confidence level for forecasting RV (w) of SPY

93



2004 2006 2008 2010 2012 2014 2016 2018

Time

-40

-30

-20

-10

0

10

20

30

40

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
c
e

a) Macroeconomic Variables

Fluctuation test Critical Value

HAR-TS Fluctuation test

HAR-FEDFD Fluctuation test

HAR-INDPRO Fluctuation test

HAR-HOUST Fluctuation test

HAR-UE Fluctuation test

2004 2006 2008 2010 2012 2014 2016 2018

Time

-15

-10

-5

0

5

10

15

20

25

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
c
e

b)  Market Sentiments

Fluctuation test Critical Value

HAR-EPU Fluctuation test

HAR-PPI Fluctuation test

HAR-BCI Fluctuation test

HAR-CCI Fluctuation test

HAR-CLI Fluctuation test

2004 2006 2008 2010 2012 2014 2016 2018

Time

-15

-10

-5

0

5

10

15

20

25

30

35

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
c
e

c) Volume & Trades

Fluctuation test Critical Value

HAR-VOL Fluctuation test

HAR-TRD Fluctuation test

2004 2006 2008 2010 2012 2014 2016 2018

Time

-20

-10

0

10

20

30

40

50

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
c
e

d) ADS, SPLS, & VIX

Fluctuation test Critical Value

HAR-ADS Fluctuation test

HAR-SPLS Fluctuation test

HAR-VIX Fluctuation test

Figure 2.3: GR statistic tests plot for HARX models with 5% confidence level for forecasting RV (m) of SPY
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2.5. Empirical Results

Figures (2.1), (2.2), and (2.3) show the significance of the forecast gains of HARX,

with each explanatory variable (X), for the daily, weekly, and monthly forecasts,

respectively. The figures reveal when the HARX models outperform the HAR model.

It is evident that the overall level of significance falls during the crisis period and

increases afterwards. It falls around 2014 but starts to rise again by the end of 2015.

The decline in significance around 2014 can be explained by economic trends not

reflected explicitly in any of the HARX models, such as the plunge in oil prices and

the dollar’s appreciation.

Most macroeconomic variables yield significant long-term forecast gains over the

covered years, although it generally falls during the crisis. The window over which the

HARX has significant outperformance increases with the forecast horizon, including

the crisis period for the monthly forecast. In particular, as leading indicators, both

TS and HOUST show predictability for market volatility, especially directly after the

crisis. Similarly, INDPRO, a coincident indicator, and UE, a lagging indicator, yield

significant forecast gains for market volatility even during the crisis for the weekly and

monthly forecast. Another lagging indicator, the PPI, shows significant forecast gains

before and towards the end of the crisis period. ADS, a daily indicator of the current

business environment, shows significant weekly and monthly forecast improvement

mainly after the crisis.

The significant-high gains observed in the weekly and monthly forecasts using

macroeconomic factors confirm that the latter can explain long-term variation in

the stock market. We have shown that this observation holds not only for calendar

months volatility, as used in previous literature, but also at a higher frequency level,

i.e. for one week, RV
(w)
t+5 , or one month, RV

(m)
t+22, ahead from any given day, t.
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2.6. Conclusion

Furthermore, market sentiments yield significant forecast gains for most of the sample

period, with lower gains during the crisis. BCI and CLI yield the highest significant

gains over the majority of the sample period for the weekly and monthly forecast, while

VIX shows higher significance for the daily forecast. Moreover, we find evidence of the

SIAH using SPY before and after the crisis period only and more significant for weekly

and monthly forecast horizons. The number of trades shows higher significant forecast

gains than the volume before the crisis, while the latter yields higher significant

gains after the crisis. Lastly, the forecast gains of using combined information (SPLS

factors) are significant for most of the sample period, particularly for the long-term

forecasting horizon.

2.6 Conclusion

This study examines the value-added from utilising information for various financial-

economic indicators observed at different frequencies. We do so by adding ”X”

variable(s) to the HAR model, hence, HARX. We consider macroeconomic indicators,

market sentiments, and activity measures that reflect the economic and market

conditions. The findings reveal that economic variables include essential information

beyond the lagged and historical average of volatility that significantly improves the

RV’s forecast. The market and economic conditions are particularly valuable for

individual stocks during the crisis. The forecast gains are higher when forecasting

long-term volatility than short-term ones.

One challenge of studying the relationship between financial markets and macroe-

conomy is the frequency of the variables. While the former’s data are available at a
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2.6. Conclusion

high-frequency level, the latter’s are recorded at a lower frequency. Hence, researchers

suggest different methods to handle the frequency mismatch. One approach that can

be used to study a LF variable’s effect on a HF variable is employing the long-known

Chow-Lin extrapolation method (Chow and Lin, 1971). A recent approach is the

reverse MIDAS by Foroni, Guérin, and Marcellino (2018). The former extrapolates

the LF into the HF series, allowing the monthly variable’s value to fluctuate within

the month while its coefficient in the HARX model is constant in a given estimation

window. However, the latter approach keeps the value of the LF variable constant

during the month but allows its coefficient to vary based on the day of the month.

There is no significant difference in forecasting gains in the long-term forecasts while

favouring the extrapolation method in the daily forecasts as it incorporates daily

variations.

The forecast gains of including macroeconomic variables in the HARX model are

more pronounced for long-term forecasting (weekly and monthly) than one day

ahead. While unemployment and industrial production growth rates yield significant

forecasting gains for most of the sample period, the housing starts growth rate,

a leading indicator, showed more persistent significance after the financial crisis.

Similarly, most market sentiments yield significant forecasting gains, particularly

leading indicators. The CLI (VIX) produces significant forecasting gains for most

of the OOS period for the weekly and monthly (daily) forecast. Also, the predictive

power of volume and number of trades for RV is significant at all forecast horizons

but not during a recession.

This study shows that incorporating financial and macroeconomic indicators in

forecasting the RV produces significant forecasting gains. We note that combining the
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2.A. Tables

information using SPLS components in the HARX framework has the lowest average

forecast errors over the sample period and is particularly beneficial for long-term

investors during an unprecedented time, such as the financial crisis. Hence, a study of

the economic gains from incorporating this information in portfolio risk management

would be interesting to examine for future research. Furthermore, speaking of blended

information, it is of interest to develop a resilient economic-financial conditions index

robust to periods of high uncertainty such as financial crises or pandemics. Ideally,

such an index would reflect the overall environment by including new information and

adjusting the measurements accordingly.

Appendix

2.A Tables
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2.A. Tables

Table 2.5: Descriptive Statistics of Stocks

Ticker Mean Median Minimum Maximum St. Dev.

Amazon.com Inc AMZN 8.284 3.344 0.225 229.244 14.846

Best Buy Co. Inc. BBY 5.760 3.110 0.244 1439.571 23.491

Gap (The) GPS 2.966 1.452 0.143 145.706 5.015

Interpublic Group IPG 2.974 1.478 0.060 170.100 6.221

Marriott International MAR 5.088 2.830 0.146 178.723 7.586

McDonald’s MCD 3.121 1.573 0.156 103.477 4.938

News Corporation NWS FOX 5.524 2.632 0.235 615.148 13.956

The Home Depot HD 3.537 1.782 0.154 104.578 5.364

Time Warner Inc. TWX 2.164 1.090 0.087 161.156 4.333

Walt Disney DIS 4.099 1.722 0.163 148.875 7.289

Consumer Discretionary Sector Avg. 4.352 2.101 0.161 329.658 9.304

Avon Products AVP 5.098 2.159 0.140 342.665 11.720

Brown-Forman Corp. BFb 1.920 1.152 0.074 240.414 4.861

Coca-Cola KO 3.087 1.497 0.126 83.955 4.728

Costco COST 2.679 1.505 0.158 62.689 3.863

Estee Lauder Cos. EL 1.566 0.856 0.061 100.855 2.745

Kimberly-Clark KMB 1.561 0.836 0.046 58.808 2.535

PepsiCo Inc. PEP 1.693 0.828 0.083 132.093 3.638

Procter & Gamble PG 1.492 0.766 0.101 79.549 2.907

Unilever UL 1.302 0.646 0.078 25.319 2.054

Wal-Mart WMT 2.045 0.976 0.090 71.485 3.277

Consumer Staples Sector Avg. 2.244 1.122 0.096 119.783 4.233

This table reports the descriptive statistics of daily Realised Variance (RV) for each stock over the
period 01/2000 to 12/2016.
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Table 2.5: Descriptive Statistics of Stocks (cont.)

Ticker Mean Median Minimum Maximum St. Dev.

Baker Huges BHI 4.312 2.699 0.318 155.091 6.361

Chesapeaks Energy CHK 5.609 3.584 0.321 218.401 7.742

Chevron Corporation CVX 13.008 4.537 0.418 2216.263 41.965

Devon Energy Corp DVN 2.113 1.263 0.112 137.535 4.181

Exxon Mobil XOM 4.595 2.747 0.274 136.649 7.012

Halliburton Co. HAL 6.305 3.579 0.229 265.432 10.443

Hess Corporation HES 4.474 2.570 0.211 271.511 8.675

Occidental Petroleum OXY 3.743 2.179 0.208 161.023 6.349

Sunoco Inc. APA 10.216 3.338 0.267 1633.848 42.946

Williams Cos. WMB 1.987 1.141 0.107 141.130 3.955

Energy Sector Avg. 5.636 2.764 0.246 533.688 13.963

Allstate Corp ALL 3.188 1.173 0.098 255.375 8.091

American Express AXP 4.020 1.465 0.088 299.968 9.195

Bank of America BAC 5.387 1.772 0.085 406.683 16.736

Citigroup Inc. C 5.086 1.771 0.156 1059.901 23.703

Goldman Sachs Group GS 6.742 2.110 0.137 975.858 27.240

JPMorgan Chase JPM 4.186 1.757 0.153 400.346 11.978

Morgan Stanley MS 4.615 1.770 0.114 252.877 10.848

The Bank of New York Mellon BK 8.191 2.797 0.236 1732.782 46.295

Travelers Group Inc TRV 2.968 1.186 0.102 263.929 7.866

Wells Fargo WFC 4.302 1.330 0.104 226.609 12.139

Financials Sector Avg. 4.869 1.713 0.127 587.433 17.409

This table reports the descriptive statistics of daily Realised Variance (RV) for each stock over the
period 01/2000 to 12/2016.
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Table 2.5: Descriptive Statistics of Stocks (cont.)

Stock Ticker Mean Median Minimum Maximum St. Deviation

Abbott Laboratories ABT 2.168 1.226 0.119 65.347 3.045

Amgen Inc AMGN 3.542 1.835 0.203 94.858 5.259

Boston Scientific BSX 5.010 2.908 0.200 151.610 7.026

Gilead Sciences GILD 6.308 2.839 0.198 187.286 10.469

Humana Inc. HUM 6.679 2.609 0.240 157.529 11.366

Johnson & Johnson JNJ 1.385 0.692 0.076 179.016 3.482

Medtronic Inc MDT 2.311 1.236 0.109 181.758 4.348

Merck MRK 2.431 1.359 0.135 223.255 5.227

Pzer PFE 2.332 1.382 0.150 62.697 3.224

United Health Group UNH 3.407 1.745 0.129 225.956 6.883

Health Care Sector Avg. 3.557 1.783 0.156 152.931 6.033

Boeing BA 2.812 1.602 0.086 55.570 3.900

Caterpillar CAT 3.239 1.873 0.185 105.908 4.889

Cummins Inc. CMI 4.905 2.566 0.157 199.866 9.070

General Dynamics GD 2.237 1.281 0.081 63.282 3.259

General Electric GE 3.020 1.303 0.108 180.389 6.982

Honeywell Int’l Inc. HON 3.253 1.609 0.104 268.331 6.513

Minnesota Mining & Mfg Co MMM 4.844 3.030 0.285 150.858 6.413

Southwest Airlines LUV 1.853 1.008 0.082 91.955 3.216

United Parcel Service UPS 1.649 0.851 0.081 216.939 4.140

United Technologies UTX 2.300 1.211 0.104 75.915 3.793

Industrials Sector Avg. 3.011 1.633 0.127 140.901 5.217

This table reports the descriptive statistics of daily Realised Variance (RV) for each stock over the
period 01/2000 to 12/2016.
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Table 2.5: Descriptive Statistics of Stocks (cont.)

Stock Ticker Mean Median Minimum Maximum St. Deviation

Apple Inc. AAPL 5.292 2.578 0.079 126.172 7.806

Cisco Systems CSCO 4.275 1.986 0.184 87.833 6.707

Dell Inc. EBAY 6.511 2.782 0.202 236.419 12.762

EMC Corp. YAHOO 4.302 2.267 0.122 156.740 7.066

Hewlett-Packard HPQ 2.026 0.986 0.102 71.293 3.527

IBM IBM 4.075 2.038 0.154 89.885 5.754

Intel Corp. INTC 2.679 1.416 0.083 62.386 3.854

Microsoft MSFT 5.021 2.174 0.129 123.804 8.381

Oracle Corp. ORCL 6.548 2.864 0.299 276.588 13.732

Xerox Corp. XRX 7.419 3.100 0.240 220.822 12.760

Information Technology Sector

Avg.

4.815 2.219 0.159 145.194 8.235

AK Steel Holding Corp AKS 16.137 10.585 0.872 559.612 21.802

Alcoa ARNC 5.288 3.070 0.339 291.089 9.601

Dow Chemical DOW 2.761 1.491 0.100 83.487 4.076

DuPont DD 3.976 2.039 0.146 216.937 7.353

Freeport-McMoran FCX 8.034 4.327 0.317 188.580 12.279

International Paper IP 4.290 2.103 0.162 171.959 7.500

Newmont Mining NEM 5.098 3.435 0.470 109.879 6.395

Nucor Corp. NUE 4.910 2.754 0.334 266.824 10.582

United States Steel Corp. X 3.699 2.043 0.252 131.603 5.916

Weyerhauser Co WY 8.696 5.557 0.736 344.652 12.579

Materials Sector Avg. 6.289 3.740 0.373 236.462 9.808

This table reports the descriptive statistics of daily Realised Variance (RV) for each stock over the
period 01/2000 to 12/2016.
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Table 2.5: Descriptive Statistics of Stocks (cont.)

Stock Ticker Mean Median Minimum Maximum St. Deviation

Ameren Corp AEE 1.828 1.061 0.109 113.488 3.453

American Electric Power AEP 2.444 1.208 0.151 207.378 6.592

Constellation Energy Group CEG 4.497 1.825 0.168 772.838 20.605

Duke Energy DUK 2.433 1.182 0.051 189.935 6.070

Entergy Corp. ETR 2.230 1.177 0.085 118.560 4.028

Exelon Corp. EXC 2.635 1.429 0.158 130.875 4.791

PG&E Corp. PCG 3.402 1.668 0.160 411.055 8.590

Progress Energy, Inc. CNP 4.162 1.265 0.149 1532.118 27.721

Public Serv. Enterprise Inc. PEG 2.461 1.376 0.148 122.428 4.827

The Southern Company SO 1.744 0.937 0.092 97.041 2.773

Utilities Sector Avg. 2.784 1.313 0.127 369.572 8.945

American Tower Corp A AMT 9.628 1.957 0.165 1048.656 32.874

AT&T T 2.311 1.162 0.100 59.568 3.228

BT Group plc (ADR) BT 2.052 1.063 0.082 65.965 3.608

CenturyTel Inc CTL 2.720 1.346 0.152 279.942 6.856

Frontier Communications FTR 5.426 2.933 0.232 1738.725 27.431

Qwest Communication Int CHL 20.499 10.917 0.242 1159.384 35.569

Sprint Nextel Corp LVLT 2.655 1.184 0.108 141.846 4.767

Telefonica S.A. (ADR) TEF 1.820 1.021 0.117 162.204 3.601

Verizon Communications VZ 1.986 0.926 0.110 70.936 3.063

Vodafone Group Plc (ADR) VOD 2.336 1.162 0.122 102.221 3.860

Telecom Sector Avg. 5.143 2.367 0.143 482.945 12.486

SPDR ETF SPY 1.037 0.485 0.013 59.863 3.453

This table reports the descriptive statistics of daily Realised Variance (RV) for each stock over the
period 01/2000 to 12/2016.
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Table 2.6: Descriptive Statistics

Variable Functional form Mean Median Minimum Maximum Std. dev Skewness Kurtosis

ADS Level -0.331 -0.192 -4.234 0.958 0.759 -2.418 10.907

BCI Level 99.807 99.852 96.022 101.997 1.069 -0.919 4.893

CCI Level 99.657 99.809 96.707 102.702 1.376 -0.221 2.671

CLI Level 99.751 100.005 94.614 101.892 1.409 -1.351 5.339

FEDFD Log of Squared -0.796 -0.020 -6.438 3.900 3.186 0.013 1.394

HOUST % Growth 0.199 0.109 -18.830 24.922 8.294 0.193 2.979

INDPRO % Growth 0.046 0.098 -4.337 1.459 0.676 -2.029 12.843

PPI Level 171.332 174.850 128.100 208.300 26.372 -0.251 1.644

TS Log of Squared 0.791 1.493 -9.210 2.696 1.998 -1.945 6.945

UE % Growth 0.116 0.000 -7.463 8.000 2.721 0.499 3.325

VIX Squared 491.688 335.989 97.812 6538.340 539.523 4.562 33.363

This table reports the descriptive statistics of the variables in the specified functional form over the
period 01/2000 to 12/2016.
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Table 2.7: a) In-sample estimation of HARX (eq. (2.2)) using SPY data for y = RV (d),
Pre-Crisis Period

β̂
(d)
0 β̂

(d)
d β̂(d)

w β̂(d)
m β̂(d)

x Adj. R2

HAR 0.131 *** 0.236 ** 0.241 ** 0.393 *** 36.598%
(0.042) (0.117) (0.119) (0.115)

HAR-ue 0.148 *** 0.236 ** 0.234 ** 0.379 *** 0.055 36.753%
(0.053) (0.116) (0.117) (0.106) (0.064)

HAR-ind 0.171 ** 0.235 ** 0.240 ** 0.375 *** -3.226 36.673%
(0.068) (0.117) (0.118) (0.109) (3.157)

HAR-hst 0.132 *** 0.236 ** 0.234 ** 0.401 *** -0.015 36.607%
(0.042) (0.116) (0.119) (0.115) (0.011)

HAR-ts 0.131 *** 0.236 ** 0.241 ** 0.393 *** 0.002 36.563%
(0.042) (0.116) (0.119) (0.117) (0.012)

HAR-cci -2.445 0.236 * 0.240 ** 0.391 *** 0.026 36.578%
(4.633) (0.121) (0.119) (0.097) (0.046)

HAR-cli 6.508 * 0.235 * 0.242 ** 0.360 *** -0.064 36.714%
(3.936) (0.121) (0.118) (0.099) (0.039)

HAR-bci 8.055 0.234 * 0.241 ** 0.352 *** -0.079 36.766%
(5.055) (0.122) (0.119) (0.089) (0.050)

HAR-ppi 1.524 *** 0.234 ** 0.239 ** 0.339 *** -0.009 *** 36.864%
(0.382) (0.118) (0.115) (0.102) (0.002)

HAR-ads 0.124 *** 0.236 ** 0.241 ** 0.379 *** -0.076 36.608%
(0.038) (0.117) (0.118) (0.116) (0.106)

HAR-fd 0.092 * 0.236 ** 0.240 ** 0.388 *** 0.023 36.596%
(0.051) (0.117) (0.119) (0.113) (0.026)

HAR-vol 0.185 * 0.238 ** 0.242 ** 0.380 *** -0.130 36.591%
(0.106) (0.112) (0.118) (0.131) (0.169)

HAR-trd 0.251 ** 0.237 ** 0.242 ** 0.354 *** -0.212 ** 36.727%
(0.099) (0.111) (0.116) (0.127) (0.097)

HAR-vix -0.120 ** 0.203 ** 0.172 * 0.143 0.503 *** 39.368%
(0.060) (0.103) (0.089) (0.096) (0.112)

*** 1% significance, ** 5% significance, and * 10% significance

This table reports the estimated coefficients with its (standard deviation) and level of significance and
the adjusted R2 for each equation.
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Table 2.7: b) In-sample estimation of HARX (eq. (2.2)) using SPY data for y = RV (d),
Crisis Period

β̂
(d)
0 β̂

(d)
d β̂(d)

w β̂(d)
m β̂(d)

x Adj. R2

HAR 0.165 * 0.221 0.493 ** 0.194 54.048%
(0.097) (0.138) (0.199) (0.135)

HAR-ue 0.121 0.218 0.499 ** 0.153 0.140 54.173%
(0.078) (0.138) (0.203) (0.151) (0.099)

HAR-ind 0.184 * 0.217 0.495 ** 0.157 -5.142 * 54.224%
(0.101) (0.137) (0.203) (0.146) (3.078)

HAR-hst 0.080 0.219 0.502 ** 0.161 -0.089 54.072%
(0.082) (0.138) (0.203) (0.159) (0.114)

HAR-ts 0.157 * 0.221 0.493 ** 0.193 0.012 54.006%
(0.091) (0.138) (0.199) (0.137) (0.019)

HAR-cci 11.414 0.219 0.498 *** 0.173 -0.114 54.079%
(7.998) (0.155) (0.188) (0.153) (0.080)

HAR-cli 5.195 0.220 0.499 *** 0.174 -0.050 54.053%
(4.711) (0.155) (0.188) (0.156) (0.046)

HAR-bci 20.314 * 0.216 0.506 *** 0.127 -0.202 * 54.246%
(11.836) (0.155) (0.189) (0.164) (0.118)

HAR-ppi -1.279 0.221 0.489 *** 0.201 0.008 54.039%
(1.146) (0.155) (0.188) (0.151) (0.006)

HAR-ads 0.086 0.218 0.498 ** 0.149 -0.177 54.212%
(0.074) (0.138) (0.203) (0.151) (0.114)

HAR-fd 0.184 * 0.220 0.486 ** 0.208 0.036 * 54.082%
(0.097) (0.138) (0.197) (0.136) (0.022)

HAR-vol -0.813 *** 0.122 0.476 ** 0.160 0.639 *** 55.274%
(0.265) (0.146) (0.190) (0.143) (0.203)

HAR-trd -0.376 ** 0.161 0.493 *** 0.131 0.168 ** 54.728%
(0.188) (0.147) (0.190) (0.147) (0.069)

HAR-vix -0.589 *** 0.093 0.443 ** -0.357 0.907 *** 58.407%
(0.227) (0.147) (0.210) (0.228) (0.257)

*** 1% significance, ** 5% siginificance, and * 10% significance

This table reports the estimated coefficients with its (standard deviation) and level of significance and
the adjusted R2 for each equation.
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Table 2.7: c) In-sample estimation of HARX (eq. (2.2)) using SPY data for y = RV (d),
Post-Crisis Period

β̂
(d)
0 β̂

(d)
d β̂(d)

w β̂(d)
m β̂(d)

x Adj. R2

HAR 0.103 *** 0.422 ** 0.169 0.204 ** 35.336%
(0.036) (0.197) (0.153) (0.092)

HAR-ue 0.127 *** 0.422 ** 0.168 0.202 ** 0.058 35.329%
(0.030) (0.196) (0.152) (0.092) (0.059)

HAR-ind 0.087 * 0.422 ** 0.168 0.202 ** 1.685 35.315%
(0.046) (0.196) (0.152) (0.092) (1.863)

HAR-hst 0.117 *** 0.422 ** 0.167 0.202 ** -0.030 35.338%
(0.031) (0.195) (0.152) (0.092) (0.029)

HAR-ts 0.083 0.422 ** 0.168 0.205 ** 0.014 35.298%
(0.055) (0.197) (0.153) (0.091) (0.022)

HAR-cci 5.128 * 0.420 ** 0.168 0.175 * -0.050 * 35.536%
(2.865) (0.193) (0.153) (0.096) (0.029)

HAR-cli 8.241 ** 0.420 ** 0.170 0.177 * -0.081 ** 35.465%
(3.290) (0.197) (0.156) (0.093) (0.033)

HAR-bci 4.557 0.422 ** 0.169 0.195 ** -0.045 35.336%
(3.819) *** (0.198) (0.157) (0.091) (0.038)

HAR-ppi 0.110 0.422 ** 0.169 0.204 ** 0.000 35.293%
(0.499) (0.198) (0.157) (0.090) (0.002)

HAR-ads 0.105 *** 0.422 ** 0.168 0.205 ** 0.015 35.295%
(0.033) (0.196) (0.153) (0.092) (0.042)

HAR-fd 0.062 0.422 ** 0.169 0.201 ** -0.011 35.307%
(0.056) (0.197) (0.154) (0.092) (0.010)

HAR-vol -0.382 ** 0.241 0.082 0.072 0.619 ** 40.999%
(0.188) (0.157) (0.087) (0.106) (0.250)

HAR-trd -0.458 * 0.181 0.050 0.097 0.223 * 40.556%
(0.277) (0.247) (0.084) (0.108) (0.119)

HAR-vix -0.138 ** 0.284 0.080 -0.333 0.690 *** 41.753%
(0.065) (0.184) (0.098) (0.204) (0.218)

*** 1% significance, ** 5% significance, and * 10% significance

This table reports the estimated coefficients with its (standard deviation) and level of significance and
the adjusted R2 for each equation.
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Table 2.8: a) In-sample estimation of HARX (eq. (2.3)) using SPY data for y = RV (w),
Pre-Crisis Period

β̂
(w)
0 β̂

(w)
d β̂(w)

w β̂(w)
m β̂(w)

x Adj. R2

HAR 0.189 *** 0.096 * 0.324 *** 0.392 *** 52.638%
(0.052) (0.050) (0.082) (0.111)

HAR-ue 0.207 *** 0.095 * 0.317 *** 0.378 *** 0.060 53.001%
(0.065) (0.050) (0.086) (0.104) (0.074)

HAR-ind 0.247 *** 0.094 * 0.323 *** 0.366 *** -4.726 53.027%
(0.076) (0.050) (0.081) (0.108) (3.305)

HAR-hst 0.190 *** 0.095 * 0.315 *** 0.403 *** -0.021 52.766%
(0.052) (0.050) (0.078) (0.104) (0.015)

HAR-ts 0.189 *** 0.096 * 0.324 *** 0.392 *** 0.000 52.611%
(0.052) (0.050) (0.082) (0.111) (0.017)

HAR-cci -3.623 0.096 * 0.324 *** 0.389 *** 0.038 52.676%
(6.415) (0.050) (0.081) (0.106) (0.064)

HAR-cli 9.287 0.094 * 0.326 *** 0.346 *** -0.091 53.152%
(5.749) (0.049) (0.079) (0.121) (0.057)

HAR-bci 11.388 ** 0.094 * 0.325 *** 0.334 *** -0.111 ** 53.323%
(5.214) (0.049) (0.080) (0.104) (0.052)

HAR-ppi 2.188 *** 0.093 * 0.322 *** 0.315 *** -0.013 *** 53.694%
(0.629) (0.048) (0.078) (0.108) (0.004)

HAR-ads 0.180 *** 0.095 * 0.325 *** 0.375 *** -0.100 52.750%
(0.048) (0.050) (0.081) (0.118) (0.125)

HAR-fd 0.133 ** 0.095 * 0.324 *** 0.386 *** 0.033 52.735%
(0.060) (0.051) (0.083) (0.107) (0.032)

HAR-vol 0.345 *** 0.102 ** 0.329 *** 0.355 *** -0.378 ** 53.038%
(0.105) (0.052) (0.082) (0.104) (0.175)

HAR-trd 0.390 *** 0.097 * 0.326 *** 0.328 *** -0.036 *** 53.429%
(0.104) *** (0.051) (0.080) (0.100) (0.011)

HAR-vix -0.040 0.066 * 0.262 *** 0.166 0.456 *** 56.641%
(0.065) (0.035) (0.081) (0.123) (0.135)

*** 1% significance, ** 5% significance, and * 10% significance

This table reports the estimated coefficients with its (standard deviation) and level of significance and
the adjusted R2 for each equation.
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Table 2.8: b) In-sample estimation of HARX (eq. (2.3)) using SPY data for y = RV (w),
Crisis Period

β̂
(w)
0 β̂

(w)
d β̂(w)

w β̂(w)
m β̂(w)

x Adj. R2

HAR 0.263 *** 0.212 *** 0.344 ** 0.298 ** 64.863%
(0.095) (0.048) (0.147) (0.118)

HAR-ue 0.192 ** 0.208 *** 0.353 ** 0.230 * 0.229 * 65.484%
(0.082) (0.047) (0.157) (0.136) (0.125)

HAR-ind 0.296 *** 0.206 *** 0.348 ** 0.233 * -9.017 ** 65.798%
(0.084) (0.047) (0.155) (0.134) (3.809)

HAR-hst 0.134 0.210 *** 0.357 ** 0.248 ** -0.135 65.057%
(0.129) (0.047) (0.152) (0.123) (0.127)

HAR-ts 0.253 *** 0.212 *** 0.344 ** 0.296 ** 0.015 64.837%
(0.087) (0.048) (0.147) (0.118) (0.028)

HAR-cci 18.453 * 0.210 *** 0.352 ** 0.263 ** -0.184 * 65.118%
(10.584) (0.043) (0.143) (0.115) (0.107)

HAR-cli 7.679 0.210 *** 0.353 ** 0.267 ** -0.074 64.985%
(5.381) (0.043) (0.143) (0.116) (0.053)

HAR-bci 31.012 * 0.205 *** 0.364 ** 0.196 -0.308 * 65.632%
(16.481) (0.042) (0.147) (0.127) (0.165)

HAR-ppi -2.596 0.212 *** 0.335 ** 0.311 *** 0.016 65.034%
(2.090) (0.044) (0.136) (0.106) (0.012)

HAR-ads 0.132 0.207 *** 0.352 ** 0.223 -0.292 ** 65.642%
(0.094) (0.047) (0.157) (0.137) (0.147)

HAR-fd 0.283 *** 0.211 *** 0.336 ** 0.314 *** 0.041 64.980%
(0.103) (0.048) (0.143) (0.113) (0.031)

HAR-vol -0.485 * 0.136 *** 0.331 ** 0.271 ** 0.489 ** 65.888%
(0.281) *** (0.044) (0.144) (0.120) (0.203)

HAR-trd -0.100 0.172 *** 0.344 ** 0.255 ** 0.011 * 65.295%
(0.165) (0.043) (0.148) (0.125) *** (0.006)

HAR-vix -0.138 0.144 *** 0.317 * 0.004 0.484 *** 66.615%
(0.115) (0.042) (0.167) (0.152) (0.128)

*** 1% significance, ** 5% significance, and * 10% significance

This table reports the estimated coefficients with its (standard deviation) and level of significance and
the adjusted R2 for each equation.
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Table 2.8: c) In-sample estimation of HARX (eq. (2.3)) using SPY data for y = RV (w),
Post-Crisis Period

β̂
(w)
0 β̂

(w)
d β̂(w)

w β̂(w)
m β̂(w)

x Adj. R2

HAR 0.167 *** 0.232 ** 0.133 * 0.302 *** 32.982%
(0.042) (0.112) (0.069) (0.076)

HAR-ue 0.206 *** 0.231 ** 0.133 * 0.299 *** 0.093 33.101%
(0.050) (0.111) (0.070) (0.076) (0.094)

HAR-ind 0.143 *** 0.232 ** 0.133 * 0.299 *** 2.521 33.024%
(0.052) (0.111) (0.070) (0.076) (3.212)

HAR-hst 0.190 *** 0.231 ** 0.131 * 0.298 *** -0.049 33.149%
(0.046) (0.110) (0.070) (0.076) (0.048)

HAR-ts 0.091 0.232 ** 0.132 ** 0.305 *** 0.051 33.060%
(0.075) (0.109) (0.053) (0.050) (0.048)

HAR-cci 8.105 0.228 ** 0.132 ** 0.256 *** -0.080 33.984%
(5.838) (0.104) (0.054) (0.065) (0.058)

HAR-cli 12.929 * 0.229 ** 0.135 *** 0.259 *** -0.127 33.667%
(7.834) (0.107) (0.051) (0.059) (0.078)

HAR-bci 7.409 0.231 ** 0.135 *** 0.287 *** -0.072 33.137%
(5.530) (0.109) (0.051) (0.052) (0.055)

HAR-ppi 0.119 0.232 ** 0.133 ** 0.302 *** 0.000 32.938%
(0.863) (0.109) (0.052) (0.050) (0.004)

HAR-ads 0.170 *** 0.232 ** 0.133 * 0.303 *** 0.022 32.945%
(0.042) (0.112) (0.070) (0.076) (0.064)

HAR-fd 0.124 0.232 ** 0.134 *** 0.299 *** -0.011 32.963%
(0.086) (0.109) (0.051) (0.051) (0.019)

HAR-vol -0.268 0.070 0.056 0.184 ** 0.554 ** 40.813%
(0.179) (0.051) (0.058) (0.078) (0.252)

HAR-trd -0.275 0.042 0.039 0.218 *** 0.018 ** 38.587%
(0.168) *** (0.095) (0.065) (0.073) (0.008)

HAR-vix -0.009 0.131 0.069 * -0.088 0.501 *** 38.839%
(0.037) (0.099) (0.040) (0.114) (0.129)

*** 1% significance, ** 5% significance, and * 10% significance

This table reports the estimated coefficients with its (standard deviation) and level of significance and
the adjusted R2 for each equation.

110



2.A. Tables

Table 2.9: a) In-sample estimation of HARX (eq. (2.4)) using SPY data for y = RV (m),
Pre-Crisis Period

β̂
(m)
0 β̂

(m)
d β̂(m)

w β̂(m)
m β̂(m)

x Adj. R2

HAR 0.313 *** 0.070 ** 0.253 *** 0.366 *** 50.834%
(0.083) (0.034) (0.064) (0.093)

HAR-ue 0.320 *** 0.070 ** 0.251 *** 0.361 *** 0.001 50.875%
(0.090) (0.034) (0.067) (0.092) (0.001)

HAR-ind 0.391 *** 0.069 ** 0.251 *** 0.331 *** -0.063 51.832%
(0.114) (0.033) (0.063) (0.100) (0.049)

HAR-hst 0.316 *** 0.070 ** 0.238 *** 0.385 *** -0.001 51.429%
(0.082) (0.033) (0.060) (0.082) (0.001)

HAR-ts 0.314 *** 0.070 ** 0.253 *** 0.366 *** -0.004 50.815%
(0.088) (0.034) (0.062) (0.093) (0.025)

HAR-cci -7.644 0.070 ** 0.252 *** 0.360 *** 0.079 51.191%
(8.838) (0.034) (0.058) (0.083) (0.088)

HAR-cli 14.266 0.068 ** 0.256 *** 0.295 ** -0.139 52.533%
(9.723) (0.033) (0.057) (0.129) (0.097)

HAR-bci 17.631 ** 0.067 ** 0.254 *** 0.275 *** -0.172 ** 53.125%
(6.883) (0.034) (0.058) (0.095) (0.068)

HAR-ppi 3.655 *** 0.066 ** 0.249 *** 0.238 ** -0.022 *** 54.870%
(1.150) (0.031) (0.054) (0.096) (0.007)

HAR-ads 0.302 *** 0.070 ** 0.254 *** 0.345 *** -0.122 51.085%
(0.077) (0.034) (0.063) (0.104) (0.169)

HAR-fd 0.217 ** 0.070 ** 0.253 *** 0.354 *** 0.058 51.329%
(0.100) (0.034) (0.063) (0.085) (0.047)

HAR-vol 0.666 *** 0.084 ** 0.263 *** 0.282 *** -0.857 *** 53.801%
(0.138) (0.039) (0.066) (0.080) (0.230)

HAR-trd 0.677 *** 0.073 ** 0.256 *** 0.249 *** -0.065 *** 54.472%
(0.144) (0.035) (0.064) (0.079) (0.016)

HAR-vix 0.104 0.043 ** 0.197 *** 0.162 0.414 *** 55.351%
(0.078) (0.021) (0.064) (0.142) (0.160)

*** 1% significance, ** 5% significance, and * 10% significance

This table reports the estimated coefficients with its (standard deviation) and level of significance and
the adjusted R2 for each equation.
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Table 2.9: b) In-sample estimation of HARX (eq. (2.4)) using SPY data for y = RV (m),
Crisis Period

β̂
(m)
0 β̂

(m)
d β̂(m)

w β̂(m)
m β̂(m)

x Adj. R2

HAR 0.509 *** 0.122 *** 0.348 * 0.249 57.038%
(0.173) (0.033) (0.180) (0.179) **

HAR-ue 0.353 *** 0.111 *** 0.369 ** 0.090 0.005 * 61.496%
(0.122) (0.028) (0.183) (0.247) *** (0.003)

HAR-ind 0.596 *** 0.104 *** 0.359 ** 0.070 -0.247 ** 66.151%
(0.155) (0.025) (0.155) (0.221) * (0.118)

HAR-hst 0.180 0.115 *** 0.383 * 0.117 -0.004 58.952%
(0.229) (0.031) (0.201) (0.261) (0.003)

HAR-ts 0.481 *** 0.122 *** 0.348 * 0.241 0.048 57.110%
(0.153) (0.032) (0.178) (0.180) (0.054)

HAR-cci 35.711 0.117 *** 0.363 *** 0.179 -0.357 58.464%
(23.154) ** (0.020) (0.124) (0.119) (0.233) **

HAR-cli 11.680 0.119 *** 0.361 *** 0.202 * -0.112 57.446%
(9.511) (0.020) (0.125) (0.117) (0.094)

HAR-bci 48.044 0.111 *** 0.380 *** 0.093 -0.476 59.347%
(29.977) (0.020) (0.128) (0.153) (0.299)

HAR-ppi -8.676 0.120 *** 0.318 *** 0.288 *** 0.051 59.753%
(6.545) (0.020) (0.107) (0.085) (0.037)

HAR-ads 0.218 0.110 *** 0.366 *** 0.080 -0.652 * 62.126%
(0.163) (0.022) (0.136) (0.175) (0.374)

HAR-fd 0.529 *** 0.121 *** 0.337 * 0.271 0.054 57.328%
(0.187) (0.033) (0.173) (0.169) (0.046)

HAR-vol -0.163 0.053 0.337 ** 0.224 0.442 58.112%
(0.365) (0.044) (0.162) (0.170) (0.310)

HAR-trd 0.232 0.091 *** 0.348 ** 0.215 0.009 57.356%
(0.192) (0.034) (0.160) (0.166) (0.008)

HAR-vix 0.481 ** 0.117 *** 0.346 * 0.228 0.034 57.006%
(0.236) (0.042) (0.179) (0.195) (0.142)

*** 1% significance, ** 5% siginificance, and * 10% significance

This table reports the estimated coefficients with its (standard deviation) and level of significance and
the adjusted R2 for each equation.
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Table 2.8: c) In-sample estimation of HARX (eq. (2.4)) using SPY data for y = RV (m),
Post-Crisis Period

β̂
(m)
0 β̂

(m)
d β̂(m)

w β̂(m)
m β̂(m)

x Adj. R2

HAR 0.235 *** 0.100 * 0.068 ** 0.360 *** 29.782%
(0.058) (0.052) (0.031) (0.073)

HAR-ue 0.295 *** 0.100 * 0.067 ** 0.355 *** 0.001 30.433%
(0.079) (0.051) (0.029) (0.065) (0.001)

HAR-ind 0.213 *** 0.100 * 0.068 ** 0.357 *** 0.024 29.872%
(0.064) (0.052) (0.031) (0.073) (0.053)

HAR-hst 0.269 *** 0.100 ** 0.066 ** 0.354 *** -0.001 30.579%
(0.071) (0.051) (0.030) (0.067) (0.001)

HAR-ts 0.052 0.101 * 0.067 ** 0.367 *** 0.123 31.014%
(0.115) (0.053) (0.030) (0.067) (0.087)

HAR-cci 10.471 0.096 ** 0.067 ** 0.302 *** -0.103 32.756%
(8.794) (0.046) (0.031) (0.046) (0.088)

HAR-cli 16.468 0.097 * 0.071 ** 0.305 *** -0.162 31.808%
(12.267) (0.050) (0.029) (0.070) (0.122)

HAR-bci 9.341 * 0.099 * 0.070 ** 0.342 *** -0.091 30.320%
(5.599) (0.053) (0.029) (0.077) (0.056)

HAR-ppi -0.197 0.101 * 0.067 ** 0.363 *** 0.002 29.800%
(1.294) (0.053) (0.031) (0.071) (0.007)

HAR-ads 0.241 *** 0.100 * 0.068 ** 0.361 *** 0.035 29.771%
(0.064) (0.052) (0.031) (0.072) (0.102)

HAR-fd 0.080 0.100 * 0.069 ** 0.350 *** -0.040 30.296%
(0.166) *** (0.052) *** (0.028) * (0.058) (0.046)

HAR-vol -0.061 -0.009 0.016 0.280 *** 0.376 ** 36.154%
(0.120) *** (0.034) *** (0.037) *** (0.065) (0.173)

HAR-trd -0.029 -0.013 0.012 0.310 *** 0.010 ** 33.297%
(0.092) (0.040) (0.044) * (0.073) (0.004)

HAR-vix 0.118 ** 0.034 0.026 0.102 0.332 *** 34.307%
(0.052) (0.040) (0.028) (0.084) (0.101)

*** 1% significance, ** 5% siginificance, and * 10% significance

This table reports the estimated coefficients with its (standard deviation) and level of significance and
the adjusted R2 for each equation.
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Table 2.9: OOS median MSE % gains of HARX relative to the HAR model in forecasting RV (d) of ten individual stocks in each
sector over the full-sample period

ADS BCI CCI CLI EPU FEDFD HOUST INDPRO PPI TRD TS UE VIX VOL SPLS

CD 1.001 1.005 0.997 0.937 0.992 1.005 1.001 1.003 0.998 1.003 1.006 1.003 1.004 0.994 0.950

CS 1.002 0.999 0.999 0.899 0.981 1.000 0.991 0.997 0.995 0.989 0.991 0.985 0.991 0.965 0.921

Energy 1.002 1.002 1.002 0.951 0.993 1.000 0.999 1.002 0.995 1.003 1.003 1.003 1.017 0.993 0.911

FIN 1.004 1.001 0.998 0.974 0.979 1.004 0.994 0.996 0.992 0.987 0.989 0.985 0.964 0.948 0.958

HC 1.007 1.002 0.999 0.912 0.992 1.002 0.996 1.002 0.998 1.001 1.002 0.998 0.998 0.895 0.917

IND 1.003 1.007 1.012 0.883 1.006 1.003 1.005 1.013 1.004 1.018 1.014 1.019 1.044 1.030 0.886

IT 1.007 1.008 1.001 0.965 0.992 1.006 0.999 1.002 0.994 0.998 0.999 0.997 1.008 1.003 0.974

MAT 1.003 1.006 1.003 0.960 0.996 1.003 1.000 1.007 0.998 1.007 1.007 1.006 1.014 1.015 0.953

TELE 1.008 1.006 1.001 0.927 0.997 1.003 1.003 1.007 0.997 1.008 1.008 1.006 1.014 1.009 0.919

UTI 1.010 1.017 0.996 0.943 0.982 1.005 0.996 1.008 1.002 1.004 1.005 1.000 1.008 1.022 0.943
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Table 2.10: OOS median MSE % gains of HARX relative to the HAR model in forecasting RV (w) of ten individual stocks in
each sector over the full-sample period

ADS BCI CCI CLI EPU FEDFD HOUST INDPRO PPI TRD TS UE VIX VOL SPLS

CD 1.004 1.011 0.978 0.888 0.940 1.004 0.981 0.990 0.966 0.970 0.989 0.968 1.009 0.976 0.889

CS 1.004 1.001 0.976 0.819 0.912 0.995 0.953 0.973 0.959 0.935 0.949 0.926 0.994 0.934 0.864

Energy 1.002 1.001 0.985 0.943 0.932 0.997 0.964 0.973 0.945 0.949 0.964 0.949 1.046 0.994 0.962

FIN 1.004 1.003 0.992 0.933 0.879 0.995 0.946 0.950 0.936 0.901 0.925 0.895 0.938 0.888 0.910

HC 1.011 1.003 0.991 0.880 0.947 1.000 0.973 0.993 0.970 0.976 0.985 0.970 1.045 0.929 0.893

IND 1.005 1.010 0.994 0.842 0.937 1.000 0.974 0.997 0.955 0.979 0.989 0.978 1.038 1.001 0.838

IT 1.029 1.026 0.991 0.953 0.941 1.009 0.977 0.981 0.955 0.950 0.967 0.949 1.014 1.002 0.956

MAT 1.003 1.010 0.992 0.957 0.940 1.000 0.973 0.987 0.952 0.967 0.981 0.964 1.011 1.006 0.950

TELE 1.029 1.015 0.985 0.845 0.950 1.000 0.985 0.994 0.962 0.971 0.990 0.970 1.001 0.963 0.859

UTI 1.017 1.033 0.975 0.863 0.918 1.012 0.963 0.995 0.962 0.972 0.981 0.962 0.997 0.992 0.855
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Table 2.11: OOS median MSE % gains of HARX relative to the HAR model in forecasting RV (m) of ten individual stocks in
each sector over the full-sample period

ADS BCI CCI CLI EPU FEDFD HOUST INDPRO PPI TRD TS UE VIX VOL SPLS

CD 1.022 1.050 0.954 0.903 0.809 0.985 0.906 0.875 0.835 0.781 0.824 0.767 1.000 0.931 0.660

CS 1.013 1.022 0.943 0.855 0.731 0.975 0.831 0.820 0.791 0.689 0.742 0.675 0.989 0.881 0.638

Energy 1.006 1.008 0.947 0.943 0.761 0.982 0.827 0.782 0.744 0.656 0.704 0.667 1.009 0.920 0.656

FIN 1.008 1.027 0.981 0.936 0.723 0.973 0.851 0.805 0.771 0.669 0.715 0.653 0.910 0.875 0.656

HC 1.021 1.019 0.957 0.923 0.766 0.973 0.873 0.870 0.811 0.770 0.805 0.758 1.087 0.959 0.698

IND 1.014 1.018 0.943 0.908 0.730 0.980 0.852 0.827 0.764 0.721 0.768 0.710 1.021 0.935 0.669

IT 1.092 1.079 0.972 0.983 0.794 1.016 0.901 0.838 0.800 0.713 0.768 0.709 1.016 0.981 0.757

MAT 1.009 1.032 0.961 0.981 0.756 0.981 0.857 0.817 0.769 0.701 0.752 0.690 0.998 0.968 0.700

TELE 1.064 1.021 0.948 0.839 0.813 0.984 0.908 0.876 0.826 0.765 0.820 0.769 0.992 0.906 0.672

UTI 1.023 1.049 0.921 0.858 0.734 0.999 0.831 0.830 0.775 0.720 0.751 0.709 0.998 0.971 0.633

Table 2.12: OOS median MSE % gains of HARX relative to the HAR model in forecasting RV (d) of ten individual stocks in
each sector during the Pre-Crisis period

Pre-Crisis ADS BCI CCI CLI EPU FEDFD HOUST INDPRO PPI TRD TS UE VIX VOL SPLS

CD 1.020 1.039 0.985 0.893 0.989 1.060 1.010 1.008 0.998 1.015 1.024 1.009 1.033 0.998 1.018
CS 1.011 1.028 0.987 0.927 0.999 1.028 1.006 1.005 1.000 0.995 1.009 1.001 1.017 1.000 0.972
Energy 1.022 1.002 0.977 1.008 1.007 1.010 1.021 1.001 1.002 0.994 1.004 1.005 1.401 1.225 1.151
FIN 1.046 1.132 0.951 0.881 0.980 1.089 1.051 1.015 0.995 1.001 1.025 1.005 1.998 1.557 1.210
HC 1.005 1.007 0.996 0.970 1.005 1.019 1.006 1.003 1.001 0.999 1.003 1.002 1.019 1.013 1.000
IND 1.006 1.034 0.987 0.917 0.991 1.028 1.007 1.006 0.994 1.003 1.010 1.003 1.030 1.035 0.969
IT 1.084 1.095 0.974 0.908 1.002 1.094 1.022 1.018 1.003 0.996 1.016 0.999 1.033 1.049 0.991
MAT 1.009 1.023 0.995 1.032 1.001 1.026 1.002 1.003 1.000 1.003 1.008 1.002 1.012 1.014 1.028
TELE 1.064 1.041 0.968 0.916 1.029 1.043 1.032 1.023 1.002 0.999 1.036 1.015 1.039 1.146 0.989
UTI 1.111 1.215 0.967 0.947 0.938 1.088 0.995 1.005 1.107 1.029 1.017 1.009 1.161 1.711 1.289
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Table 2.13: OOS median MSE % gains of HARX relative to the HAR model in forecasting RV (w) of ten individual stocks in
each sector during the Pre-Crisis period

ADS BCI CCI CLI EPU FEDFD HOUST INDPRO PPI TRD TS UE VIX VOL SPLS

CD 1.128 1.161 0.946 0.707 0.959 1.099 1.033 1.028 0.995 1.020 1.078 1.025 1.045 0.922 0.795
CS 1.066 1.108 0.977 0.780 0.994 1.051 1.028 1.018 0.999 0.979 1.026 1.004 1.023 0.901 0.811
Energy 1.050 0.998 0.963 0.962 0.995 1.017 1.045 0.993 1.007 0.995 1.001 1.010 1.186 1.153 1.016
FIN 1.192 1.350 0.937 0.655 0.944 1.120 1.033 1.032 0.992 0.997 1.054 1.015 1.325 1.010 0.690
HC 1.026 1.021 0.996 0.890 1.017 1.040 1.028 1.011 0.993 0.994 1.014 1.012 1.004 0.977 0.904
IND 1.061 1.143 0.973 0.732 0.958 1.030 1.019 1.026 0.983 1.011 1.033 1.011 1.009 0.919 0.770
IT 1.429 1.347 0.986 0.780 0.999 1.186 1.123 1.069 1.014 0.980 1.062 0.999 1.053 0.979 0.787
MAT 1.035 1.090 0.987 1.006 0.996 1.051 1.012 1.012 0.993 1.010 1.026 1.005 1.012 0.994 0.962
TELE 1.145 1.052 0.971 0.655 1.116 1.052 1.125 1.073 1.020 0.991 1.089 1.047 1.004 1.073 0.787
UTI 1.145 1.284 0.907 0.858 0.916 1.156 1.010 1.016 1.089 1.014 1.035 1.016 1.067 1.263 0.782

Table 2.14: OOS median MSE % gains of HARX relative to the HAR model in forecasting RV (m) of ten individual stocks in
each sector during the Pre-Crisis period

ADS BCI CCI CLI EPU FEDFD HOUST INDPRO PPI TRD TS UE VIX VOL SPLS

CD 1.435 1.323 0.970 0.632 0.916 1.107 1.111 1.072 0.986 0.968 1.102 1.024 1.027 0.785 0.805
CS 1.277 1.242 1.020 0.683 0.996 1.098 1.109 1.058 0.976 0.921 1.070 1.013 0.993 0.750 0.807
Energy 1.096 0.976 0.984 0.933 0.989 1.023 1.064 1.015 1.050 1.012 0.969 1.038 1.000 1.013 0.813
FIN 1.476 1.519 0.980 0.586 0.920 1.141 1.096 1.061 0.994 0.956 1.095 1.019 1.018 0.858 0.629
HC 1.172 1.060 1.027 0.849 1.051 1.071 1.139 1.047 0.999 0.975 1.064 1.038 0.999 0.882 0.863
IND 1.274 1.295 1.000 0.691 0.892 1.044 1.062 1.065 0.975 0.984 1.065 1.022 0.951 0.776 0.749
IT 1.920 1.495 1.039 0.965 0.953 1.306 1.318 1.108 1.053 0.937 1.122 0.997 1.090 0.864 1.050
MAT 1.175 1.242 1.005 0.924 0.995 1.118 1.054 1.070 0.961 1.006 1.075 1.019 1.026 0.973 1.052
TELE 1.214 0.955 1.014 0.581 1.243 1.066 1.276 1.126 1.057 0.982 1.134 1.102 0.926 0.887 0.825
UTI 1.199 1.319 0.911 0.632 0.922 1.185 1.093 1.062 1.044 0.989 1.046 1.033 1.046 1.084 0.647
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Table 2.15: OOS median MSE % gains of HARX relative to the HAR model in forecasting RV (d) of ten individual stocks in
each sector during the Crisis period

Crisis ADS BCI CCI CLI EPU FEDFD HOUST INDPRO PPI TRD TS UE VIX VOL SPLS

CD 1.001 1.005 0.997 0.940 0.992 1.000 0.998 1.003 0.995 1.002 1.005 1.002 1.005 1.003 0.943
CS 1.002 0.999 1.001 0.881 0.980 0.999 0.989 0.999 0.991 0.990 0.991 0.986 0.997 0.973 0.905
Energy 1.002 1.003 1.002 0.946 0.992 1.000 0.997 1.004 0.989 1.004 1.004 1.004 1.013 0.989 0.897
FIN 1.004 1.001 0.997 0.971 0.978 1.004 0.992 0.994 0.990 0.985 0.988 0.984 0.963 0.947 0.955
HC 1.004 1.004 1.000 0.920 0.996 1.000 0.998 1.009 0.996 1.006 1.006 1.003 1.023 0.997 0.926
IND 1.003 1.007 1.013 0.876 1.005 1.003 1.003 1.013 1.001 1.018 1.014 1.019 1.044 1.030 0.879
IT 1.004 1.005 1.001 0.961 0.990 1.002 0.995 1.001 0.989 0.997 0.998 0.996 1.009 1.003 0.969
MAT 1.003 1.006 1.002 0.948 0.995 1.002 0.998 1.007 0.992 1.007 1.007 1.006 1.015 1.017 0.937
TELE 1.002 1.003 1.002 0.911 0.996 1.001 1.000 1.006 0.994 1.008 1.006 1.006 1.013 1.007 0.904
UTI 1.001 0.999 0.996 0.934 0.986 0.998 0.995 1.009 0.988 1.000 1.005 1.000 0.999 0.990 0.918

Table 2.16: OOS median MSE % gains of HARX relative to the HAR model in forecasting RV (w) of ten individual stocks in
each sector during the Crisis period

ADS BCI CCI CLI EPU FEDFD HOUST INDPRO PPI TRD TS UE VIX VOL SPLS

CD 1.001 1.007 0.982 0.895 0.938 0.990 0.969 0.982 0.948 0.960 0.977 0.957 1.007 0.986 0.893
CS 1.003 0.998 0.975 0.801 0.899 0.992 0.940 0.966 0.937 0.925 0.943 0.915 0.991 0.931 0.844
Energy 1.003 1.001 0.984 0.948 0.916 0.996 0.949 0.963 0.911 0.937 0.955 0.937 1.031 0.974 0.962
FIN 1.005 0.999 0.989 0.929 0.876 0.996 0.938 0.940 0.927 0.894 0.921 0.890 0.938 0.888 0.906
HC 1.005 1.005 0.984 0.855 0.927 0.992 0.960 0.992 0.942 0.962 0.976 0.956 1.005 0.968 0.858
IND 1.005 1.008 0.993 0.834 0.930 1.000 0.965 0.990 0.939 0.972 0.986 0.971 1.037 0.998 0.827
IT 1.007 1.008 0.990 0.961 0.926 0.997 0.956 0.964 0.927 0.935 0.954 0.935 1.013 1.001 0.961
MAT 1.005 1.010 0.990 0.950 0.928 0.998 0.958 0.976 0.925 0.955 0.974 0.951 1.014 1.008 0.942
TELE 1.003 1.004 0.984 0.835 0.938 0.995 0.968 0.985 0.944 0.963 0.978 0.959 1.001 0.961 0.829
UTI 1.001 0.994 0.978 0.861 0.923 0.994 0.956 0.992 0.926 0.959 0.977 0.955 0.985 0.953 0.852
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Table 2.17: OOS median MSE % gains of HARX relative to the HAR model in forecasting RV (m) of ten individual stocks in
each sector during the Crisis period

ADS BCI CCI CLI EPU FEDFD HOUST INDPRO PPI TRD TS UE VIX VOL SPLS

CD 1.011 1.045 0.951 0.935 0.799 0.968 0.860 0.819 0.783 0.727 0.776 0.715 0.995 0.945 0.620
CS 1.010 1.010 0.930 0.864 0.706 0.970 0.783 0.763 0.735 0.636 0.697 0.626 0.986 0.882 0.592
Energy 1.009 1.007 0.938 0.957 0.703 0.981 0.768 0.702 0.654 0.574 0.628 0.591 1.010 0.909 0.614
FIN 1.012 1.007 0.974 0.935 0.724 0.980 0.827 0.766 0.749 0.640 0.694 0.635 0.910 0.874 0.644
HC 1.014 1.015 0.922 0.901 0.702 0.971 0.804 0.790 0.724 0.677 0.727 0.668 0.994 0.943 0.610
IND 1.012 1.008 0.930 0.917 0.715 0.982 0.818 0.778 0.720 0.678 0.735 0.674 1.022 0.933 0.640
IT 1.022 1.033 0.958 0.989 0.763 0.981 0.821 0.755 0.720 0.641 0.698 0.642 1.009 0.988 0.683
MAT 1.015 1.027 0.947 0.980 0.730 0.980 0.815 0.750 0.706 0.636 0.700 0.637 0.999 0.965 0.652
TELE 1.013 1.016 0.937 0.885 0.771 0.974 0.841 0.803 0.759 0.703 0.764 0.703 0.997 0.926 0.609
UTI 1.009 0.992 0.910 0.898 0.723 0.976 0.788 0.774 0.700 0.661 0.707 0.662 0.985 0.913 0.627

Table 2.18: OOS median MSE % gains of HARX relative to the HAR model in forecasting RV (d) of ten individual stocks in
each sector during the Post-Crisis period

ADS BCI CCI CLI EPU FEDFD HOUST INDPRO PPI TRD TS UE VIX VOL SPLS

CD 0.992 0.995 1.032 1.200 0.980 0.990 1.026 1.016 1.040 1.018 1.008 1.009 0.994 0.989 1.227
CS 0.981 0.996 1.017 0.985 0.975 0.982 1.044 1.104 1.051 1.069 1.048 1.018 0.966 0.982 0.974
Energy 1.001 1.002 1.007 1.004 0.999 1.003 1.011 1.005 1.038 1.004 1.000 1.002 0.996 0.996 1.009
FIN 0.989 1.056 1.279 1.249 1.073 0.980 1.240 1.370 1.308 1.286 1.219 1.123 1.331 1.213 1.379
HC 1.002 1.000 1.008 0.972 0.991 1.003 1.005 1.003 1.011 1.005 1.003 1.001 0.979 0.892 0.973
IND 1.000 1.001 1.020 1.026 0.999 1.006 1.027 1.009 1.068 1.013 1.004 1.008 0.989 1.015 0.988
IT 1.001 1.003 1.008 0.988 0.997 1.001 1.012 1.008 1.021 1.004 1.000 1.002 0.993 0.986 0.990
MAT 0.999 1.003 1.017 1.049 0.998 1.006 1.020 1.008 1.051 1.011 1.004 1.008 0.986 0.991 1.036
TELE 1.000 1.001 1.011 1.114 0.995 1.005 1.012 1.006 1.031 1.008 1.002 1.004 1.019 1.039 1.063
UTI 0.994 0.994 1.046 1.171 0.973 0.989 1.027 1.012 1.080 1.016 1.001 1.008 1.101 1.198 1.134
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Table 2.19: OOS median MSE % gains of HARX relative to the HAR model in forecasting RV (w) of ten individual stocks in
each sector during the POst-Crisis period

ADS BCI CCI CLI EPU FEDFD HOUST INDPRO PPI TRD TS UE VIX VOL SPLS

CD 0.971 0.991 1.071 1.303 0.940 0.966 1.071 1.067 1.125 1.048 1.012 1.022 1.039 1.044 1.292
CS 0.960 1.018 1.022 0.981 0.950 0.967 1.076 1.169 1.108 1.100 1.062 1.027 0.969 0.998 0.969
Energy 0.990 1.013 1.008 0.985 0.997 0.996 1.031 1.031 1.132 1.011 1.000 1.000 1.001 1.013 0.985
FIN 0.906 1.360 1.246 1.256 1.065 0.864 1.609 1.978 1.795 1.600 1.391 1.252 1.000 1.002 1.259
HC 0.995 1.000 1.013 1.029 0.973 1.001 1.020 1.017 1.063 1.021 1.007 1.008 1.074 0.955 0.980
IND 0.984 1.008 1.025 1.039 0.999 0.994 1.088 1.056 1.204 1.047 1.006 1.027 0.999 1.074 1.062
IT 0.987 1.013 1.002 0.985 0.979 0.993 1.040 1.044 1.083 1.012 0.993 1.001 0.998 1.006 0.998
MAT 0.976 1.016 1.028 1.053 0.998 1.004 1.079 1.071 1.203 1.050 1.020 1.031 0.986 0.990 1.050
TELE 0.983 1.004 1.012 1.160 0.977 1.009 1.055 1.044 1.153 1.040 1.008 1.021 1.033 1.097 1.124
UTI 0.959 0.993 1.064 1.160 0.926 0.963 1.093 1.056 1.305 1.056 1.003 1.023 1.127 1.319 1.150

Table 2.20: OOS median MSE % gains of HARX relative to the HAR model in forecasting RV (m) of ten individual stocks in
each sector during the POst-Crisis period

ADS BCI CCI CLI EPU FEDFD HOUST INDPRO PPI TRD TS UE VIX VOL SPLS

CD 0.886 1.035 1.159 1.250 0.795 0.929 1.216 1.388 1.255 1.211 1.099 1.048 1.062 1.101 1.014
CS 0.889 1.118 1.060 0.973 0.819 0.912 1.199 1.369 1.303 1.196 1.086 1.026 0.979 1.027 0.969
Energy 0.943 1.077 1.068 1.015 0.952 0.952 1.134 1.311 1.289 1.138 1.076 1.011 0.977 1.008 0.954
FIN 0.743 1.959 1.269 1.136 0.662 0.629 1.866 2.700 2.001 2.023 1.699 1.381 0.973 1.001 1.291
HC 0.944 1.029 1.085 1.040 0.888 0.937 1.131 1.217 1.155 1.127 1.051 1.040 1.219 1.031 0.987
IND 0.909 1.080 1.138 0.983 0.890 0.904 1.272 1.439 1.342 1.236 1.082 1.069 0.992 1.087 1.051
IT 0.919 1.093 1.051 0.989 0.853 0.944 1.188 1.340 1.273 1.148 1.051 1.005 0.998 1.015 1.084
MAT 0.887 1.094 1.150 1.052 0.898 0.942 1.258 1.504 1.378 1.265 1.161 1.079 0.964 0.973 1.086
TELE 0.870 1.057 1.108 1.051 0.807 0.939 1.216 1.398 1.346 1.237 1.101 1.056 1.011 1.104 1.088
UTI 0.747 1.074 1.296 1.020 0.665 0.781 1.299 1.690 1.613 1.334 1.162 1.032 1.058 1.244 1.181
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Chapter 3

SHARP: A State-Space HAR

model using Particle Gibbs

Sampling

Abstract

We propose a general state-space autoregressive (AR) model with time-varying

coefficients that follow an AR process with stochastic volatility. We implement

these new specifications in the HAR framework to capture the time-varying salient

feature of volatility using a two-state representation via a) allowing the time-varying

coefficients to follow an AR(1) specification. b) introducing stochastic volatility for

the innovations of the coefficients. Using high-frequency data of the SPY-ETF and

representative NYSE stocks from 2000 to 2016, we show that the proposed model

estimated using particle Gibbs sampling consistently outperforms different HAR
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model specifications in forecasting financial volatility.

Key words: Forecasting; Heterogeneous Autoregressive Realised Volatility model;

Particle GIBBS sampling; Sequential Monte Carlo; State Space models.

3.1 Introduction

There is considerable evidence of time-varying parameters and volatility in time series

macroeconomic and financial data. For out-of-sample analyses, models that fail to

anticipate changes in the data generating process produce inaccurate predictions.

Hence, analysing and accounting for parameters’ behaviour is essential in the

statistical modelling of such data. Much attention has been given to forecast

evaluation (Giacomini and Rossi, 2009), estimation approaches (Inoue, Jin, and Rossi,

2017; Pesaran and Timmermann, 2005), and dynamic models (Bekierman and Manner

(2018), Buccheri and Corsi (2021), Chen et al. (2018), Clark and Ravazzolo (2015),

and D’Agostino, Gambetti, and Giannone (2013), among others).

This work presents a novel state-space model where the coefficients are assumed to

be latent factors that follow an autoregressive (AR) process with Stochastic Volatility

(SV). Such features can be utilised for any model specification, including exogenous

regressors, trends, seasonal dummies, or autoregressive structures. We use Bayesian

inference to estimate the model with Particle Gibbs sampling (Andrieu, Doucet, and

Holenstein, 2010) following the Creal and Tsay (2015) procedure. This method

permits an efficient computation of the latent variables. We implement the new

specifications in modelling and forecasting the volatility of financial assets returns.
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3.1. Introduction

Financial volatility is a preeminent topic in theoretical and empirical finance due

to its significance in risk management, portfolio selection, and asset pricing. In a

seminal work, to capture the time-varying conditional volatility of financial returns,

Engle (1982) introduced the ARCH model. Extending that work, Bollerslev (1986)

proposed the GARCH model, which became widely accepted. In further development,

the non-parametric realised volatility (RV) - defined as the sum of intraday returns -

is preferred to parametric volatility measures generated by GARCH and SV models.

The improvement derives from the delivery of information over much smaller intervals

of time (Andersen and Bollerslev, 1998; Barndorff-Nielsen and Shephard, 2002; Liu,

Patton, and Sheppard, 2015).

Since then, significant work has been done on linear reduced-form modelling of the

RV series, where the heterogeneous autoregressive (HAR) model by Corsi (2009)

has become the preferred specification for that purpose. The model is distinctive

by its heterogeneous market hypothesis, i.e., that, with diverse horizons and trading

activities, market participants may react differently to identical news. It models daily

volatility as a sequence of RV’s daily, weekly, and monthly historical average. By

its design, it parsimoniously captures RV’s persistence. Further, Corsi (2009) notes

that modelling the RV’s log-transformation in the HAR model (henceforth, HARL)

ensures the partial volatilities’ positiveness, improves the dynamic specification for

the RV and delivers more promising forecasts.

Despite its empirical success, the linear HARL model does not account for measure-

ment errors and nonlinear dependencies, which may lead to biased OLS estimates,

autocorrelated and highly heteroskedastic residuals, and time-varying OLS coeffi-

cients. Several proposals have emerged to address these miss-specifications in the
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HARL model. Inspired by the work of Bollerslev, Patton, and Quaedvlieg (2016), but

instead of explicitly using the realise quarticity (RQ), a proxy of the measurement

error variance, Bekierman and Manner (2018) presents a state-space HARL model

that specifies the first-order AR coefficient as a latent Gaussian AR(1) process. This

specification also captures additional sources of temporal variations in the coefficient

of interest. In parallel work, Chen et al. (2018) propose, for the HARL model,

time-varying coefficients of an unknown functional form. Further, in an attempt

to model both time-varying coefficients and measurement errors, Buccheri and Corsi

(2021) propose score-driven coefficients and heteroskedastic innovations. Several other

papers address nonlinear dependency in different approaches, such as regime-changing

(McAleer and Medeiros, 2008) and dynamic model averaging (Wang et al., 2016),

among others.

Our work is mostly related to that of Bekierman and Manner (2018), Buccheri and

Corsi (2021), and Chen et al. (2018) in the HARL framework. We model all the

coefficients (including the intercept) as an AR(1) process either with or without

SV. Hence, we account for the model’s nonlinearity and relax the assumption of

homoskedastic errors in the coefficients’ process. We also account for autocorrelation

and heteroskedasticity of the residuals in the main equation. We estimate the state-

space model in the HARL framework by using Particle Gibbs sampling. We refer to

the proposed model i) without SV by SHARP and ii) with SV by SHARP-sv.

We compare the models’ forecasting performance with a recent (parallel) work within

the HARL framework. In an empirical study using daily RV of SPY-ETF, as

a tradable US market index, and twenty representative NYSE individual stocks

over seventeen years from 2000 to 2016, both the SHARP and SHARP-sv models
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significantly outperform the HARL model and its existing time-varying extensions in

predicting RV . While the SHARP-sv model offers a moderate forecasting advantage

over the SHARP model, both: (i) are consistently included in the model confidence set

of Hansen, Lunde, and Nason (2011); (ii) significantly outperform the HARL model

in forecasting RV according to the predictive ability test by Giacomini and White

(2006).

Our contribution to the literature can be summarised as follows: i) we introduce a

general state-space model with relaxed features (time-varying coefficients that follow

an AR(1) process with SV) and suggest a feasible estimation method. ii) We utilise

these new features in the HARL framework (SHARP and SHARP-sv) to improve the

forecast of RV . iii) We compare the proposed models against recent proposals in

modelling the logRV series with time-varying coefficients.

The remainder of this paper is organised as follows. Firstly, in Section 3.2, we

describe the realised volatility measure and provide an overview of existing dynamic

and time-varying parameters extensions to the HARL model. We introduce the

proposed models in Section 3.3 (refer to the Appendix for details on the estimation

method). Section 3.4 analyses and evaluates the proposed extensions under the HARL

framework in forecasting stock volatility using real data. Section 3.5 concludes.
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3.2 Volatility Measure and HARL Family of Mod-

els

Consider an asset whose log-price, log(Ps), process is given by the stochastic

differential equation:

d log(Ps) = µs + σsdWs (3.1)

where µs denotes the drift, σs is the instantaneous volatility and Wt a standard

Brownian motion. The latent integrated variance for day t is defined as:

IVt =

∫ t

t−1

σ2
sds. (3.2)

RV is a nonparametric ex-post estimate of the return variation, where the daily RV

measure is the sum of high-frequency squared returns of sub-intervals of the day.

Specifically, the daily RV is calculated by averaging intra-daily squared returns over

a one-day horizon, t, using M sub-intervals.

RV
(d)
t := ΣM

j=1r
2
j,t, (3.3)

where rj,t = log(P(t−1)M+j) − log(P(t−1)M+(j−1)) is the intra-day return of the jth

sub-interval within the tth day. P is the asset price at the start of the jth interval

computed as the average of the closing and opening prices of intervals j − 1 and

j, respectively. Zhang, Mykland, and Aı̈t-Sahalia (2005) provide a discussion on

optimising the sampling frequency for the estimation of RV . However, Buccheri and

Corsi (2021) show that the relative forecast performance of models with time-varying

coefficients, such as the ones discussed in this paper, is independent of the sampling
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frequency. Therefore, for conciseness, we use sub-intervals of length 300 seconds in

constructing the daily RV series. The latter defines 78 intraday sub-intervals and

combines balanced information from high-frequency data and microstructure effects

(Andersen et al., 2001).

In the aim of forecasting the daily RV , Corsi (2009) introduced the Heterogeneous

Autoregressive Realised Volatility (HARL) model defined as:

logRV
(d)
t = β1 + β2logRV

(d)
t−1 + β3logRV

(w)
t−1 + β4logRV

(m)
t−1 + vt ; vt ∼ N(0, σ2

v) (3.4)

where logRV (d) denotes the logarithmic transformation of daily RV . To account for

the bias generated by the logarithmic transformation, one-step-ahead forecasts of RV

are estimated using the moment generating function of the normal distribution.

Respectively, logRV (w) and logRV (m) are the weekly and monthly logRV realised at

time t. These are computed over a recursive rolling window of fixed length (week or

month) as follows:

logRV
(w)
t =

1

5
Σ5

i=1logRV
(d)
t−i ; logRV

(m)
t =

1

22
Σ22

i=1logRV
(d)
t−i

Henceforth, we refer to β1, β2, β3, and β4 as the intercept, daily, weekly, and monthly

coefficient, respectively.

Inspired by Barndorff-Nielsen and Shephard (2002) and Bollerslev, Patton, and

Quaedvlieg (2016), Bekierman and Manner (2018) explain that the measurement
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error, though less severe, also exists in logRV series, where:

logRVt = logIVt + ϵt, ϵt ∼ MN(0, 2∆
IQt

IV 2
t

). (3.5)

and Vt =
ΣM

j=1r
4
j,t

(ΣM
j=1r

2
j,t)

2 is a consistent estimate of the variance of ϵt (Buccheri and Corsi,

2021).

Hence, Bekierman and Manner (2018) propose the HARSL model, a state-space

HARL model for the logRV series that specifies the daily coefficient as a latent

Gaussian AR(1) process. The model is estimated using maximum likelihood with

a standard Kalman filter. Their model consistently outperforms the HAR model in

forecasting the RV . Its empirical success lies in the specification of capturing other

sources of temporal variation in addition to the variance of the measurement error.

However, they note that the model’s maximum likelihood estimator is inefficient.

Further, allowing all the coefficients to follow an AR process is computationally

challenging to perform using their employed estimation method.

In parallel work, Chen et al. (2018) suggest a HARL model with time-varying

coefficients of an unknown functional form (TVCHAR). They apply a local linear

smoothing method to estimate the model1. While their proposed model is flexible by

allowing all the coefficients to be time-varying, they show that it only outperforms the

HARL model for long forecasting horizons. Within the same line of research, Buccheri

and Corsi (2021) propose the SHARK model that features time-varying coefficients

and heteroskedastic error terms and handles measurement errors. They show that

their SHARK model yields moderate improvements in the forecasts for the one day

1We refer the reader to their paper for more details about model estimation and to Casas and
Fernandez-Casal (2019) for their R code.
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ahead but is more prominent for long-term forecasting.

The above studies are primarily concerned with estimation techniques with specific

underlying assumptions that better reflect the underlying process of logRV series.

They suggest remedies for particular miss-specifications and successfully improve long-

term forecasting of RV . In comparison, the employed estimation method presented

in the next section makes it feasible to relax some of the assumptions. Consequently,

our proposed model of time-varying coefficients with SV is general and, by nature,

accounts for all forms of the HARL miss-specifications. It captures the dynamic

statistical characteristics of logRV and its relationship with the lagged observations.

3.3 Methodology

In this section we describe the two variations of the introduced model. The general

framework is:

yt = x′
tβt + vt, vt ∼ N (0, σ2

v), t = 1, . . . , n, (3.6)

βt,j = αj + ρjβt−1,j + εtj, j = 1, . . . , k, t = 1, . . . , n, (3.7)

In the first specification, we assume:

εtj ∼ N
(
0, σ2

εj

)
, j = 1, . . . , k, t = 1, . . . , n, (3.8)

In the second one, we assume stochastic volatility (SV) :

εtj|htj ∼ N (0, htj) , j = 1, . . . , k, t = 1, . . . , n, (3.9)
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where

log htj = γj + δj log ht−1,j + utj, j = 1, . . . , k, t = 1, . . . , n, (3.10)

utj ∼ N (0, σ2
uj), j = 1, . . . , k, t = 1, . . . , n. (3.11)

We treat h0 and β0j as unknown parameters. Note that the model can be extended

to include autoregressive structure, deterministics such as a constant, (linear or

nonlinear) trends, or seasonal dummies. Also, other specifications for time-varying

heteroskedasticity are possible.

Utilising the introduced models in forecasting volatility, we set yt = log(RV
(d)
t ) and

xt = (log(RV
(d)
t−1), log(RV

(w)
t−1 ), log(RV

(m)
t−1 ))

′
. Hence, the first variation, denoted by

SHARP, is a state space HARL model where the coefficients are time-varying that

follow an AR(1) process. The second variation, denoted by SHARP-sv, is the same

as the SHARP model with the additional feature of SV in the AR process of the

coefficients.

The measurement equation (3.6) describes the vector of observations, log(RV
(d)
t ), in

terms of the independent variables, the state vector, βt, and the disturbances, vt. The

”coefficients” transition equation (3.7) describes the evolution of the coefficients over

time. Indeed, the AR process of the intercept also captures the autocorrelation of the

residuals in the measurement equation. Under stationarity, while the unconditional

first and second moments of βjt are constant, its conditional second moment,

var(βjt|hjt), can change over time. The ”variance” transition equation (3.10) describes

the change over time of the logarithmic transformation of the conditional variance of

the innovations, εtj, in the ”coefficients” transition equation. The latter feature allows
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not only for heteroskedasticity in the main equation (through the intercept) but for

heteroskedasticity in the coefficients’ process as well. Note that, under stationarity,

the first and second moments of hjt are constant (see Appendix 3.A).

To estimate the model, we use a modification of the sequential Monte Carlo method

known as the particle Gibbs (PG) sampler, see Andrieu, Doucet, and Holenstein

(2010). The latent variables in our model are λt = [β′
t, h

′
t]
′ where βt = [βt1, . . . , βtk] and

ht = [ht1, . . . , htk] whose prior can be described by p(λt|λt−1, θ). The joint posterior is

p(θ, λ1:T |y1:T ). In the PG sampler, we can draw the structural parameters as usual,

from their posterior conditional distributions θ|λ1:T ,y1:T (see Appendix 3.B). This is

important because, in this way, we can avoid mixture approximations or other Monte

Carlo procedures that need considerable tuning and may not have good convergence

properties. The latent variables can be integrated out of the joint posterior using the

Creal and Tsay (2015) procedure (see Appendix 3.C).

Our choice of conjugate prior for this particular empirical exercise is as follows:

αj, γj ∼ N (0, 1), j = 1, . . . , k,

ρj, δj ∼ N (0.5, 1)Iρj∈(0,1)Iδj∈(0,1), j = 1, . . . , k,

σ2
uj ∼ Γ(6.5, 0.005), j = 1, . . . , k

σ2
v ∼ Γ(6.5, 0.005)

Using the above prior, we restrict the estimation range of ρ and δ between

(0, 1) to guarantee stationarity and reflect the belief that coefficients are positively

autocorrelated. The prior of γ and δ can be left more flexible in this exercise with a

prior mean of 0. The conjugate prior specification of the variances, σ2
u and σ2

v , has a

low mean.
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Algorithm of Forecasting RV using SHARP or SHARP-sv

Let n be the total number of observations, is be the in-sample estimation window size

(approximately four years), nsim = 15000 be the total number of MCMC iterations,

and nburn = 5000 be the number burned iterations.

• For T = is, .., n− 1

A. For i = 1, .., nsim

i Draw λt for t = is− T + 1, .., T as illustrated in Appendix (3.C)

ii Sample the parameters of (3.7) and (3.10) using their posterior

distributions in Appendix (3.B)

iii Forecast ̂logRV T+1,i for i = nburn+ 1, ..., nsim

B. Estimate ̂logRV T+1 = Σisim
i=nburn+1

̂logRV T+1,i

isim−nburn

Forecasts of the realised volatility are then computed based on the expectation of a

log-normal distribution, as follows:

R̂V t+1 = exp( ̂log(RVt+1) +
ω̂2
t+1|t

2
) (3.12)

where:

ω̂2
t+1|t = σ̂2

v + V̂ ar(β1,t+1|t) + (log(RV d
t ))

2 × V̂ ar(β2,t+1|t)

+ (log(RV w
t ))2 × V̂ ar(β3,t+1|t) + (log(RV m

t ))2 × V̂ ar(β4,t+1|t)

Here, the first term in the expression of ω̂2
t+1|t is the variance of the measurement

equation whereas the subsequent terms represent the variance of each of the state
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equations entering through the coefficients in the measurement equation. In the

SHARP model, V̂ ar(βj,t+1|t) = σ̂2
ϵ,j whereas in the SHARP-sv model, V̂ ar(βj,t+1|t) =

exp( ̂log(hj,t+1) + σ̂2
uj
/2), for j = 1, ..., 4.

3.4 Empirical Study

3.4.1 Data

The data relates to 4277 trading days of SPY-ETF and twenty NYSE individual

stocks RV from 03/01/2000 to 31/12/2016 computed from tick level price observations

obtained from TickWrite2. The cleaned data makes our results easier to authenticate

and replicate. The selected assets allow examining the model performance to predict

the price volatility of the market and diverse individual stocks from multiple economic

sectors. Also, the sample range enables us to explore the forecasting performance of

the models across different market regimes, including the 2008 global financial crisis

(GFC). Table (3.1) presents the descriptive statistics of RV of SPY-ETF and the

twenty NYSE individual stocks.

2TickWrite is a database that provides data on a commercial basis for futures, Index, and
equity markets. Tick Data is sourced from NYSE’s TAQ (Trade and Quote) database. Tick
adjusts the TAQ database for ticker mapping, code filtering, price splits, and dividend payments
https://www.tickdata.com/.
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Table 3.1: Descriptive statistics for RV of SPY and selected twenty NYSE individual stocks.

Stock names Ticker Sector Mean Median St. Dev. Skewness Kurtosis Min Max

SPDR S&P 500 ETF Trust SPY 1.0372 0.4853 2.2589 10.3174 172.6643 0.0128 59.8630
Apple Inc. AAPL Information Technology 5.2923 2.5776 7.8061 4.4878 37.8812 0.0791 126.1716
Constellation Energy Group AEE Utilities 1.8275 1.0614 3.4532 14.5795 362.0346 0.1089 113.4878
Brown-Forman Corp. BFB Consumer Staples 1.9203 1.1517 4.8608 32.2490 1449.2850 0.0742 240.4141
BT Group plc (ADR) BT Communications Services 2.3113 1.1621 3.2277 4.7116 47.6503 0.1004 59.5677
Exelon Corp. EXC Utilities 2.6354 1.4288 4.7911 9.4223 161.6486 0.1585 130.8746
Freeport-McMoran FCX Materials 8.0344 4.3266 12.2786 5.6708 50.4463 0.3168 188.5795
General Dynamics GD Industrials 2.2370 1.2810 3.2592 6.2650 67.3871 0.0807 63.2822
General Electric GE Industrials 3.0201 1.3030 6.9818 10.3833 172.3605 0.1077 180.3886
The Home Depot HD Consumer Discretionary 3.1214 1.5733 4.9381 6.7444 83.0200 0.1557 103.4768
TECO Energy HES Energy 4.4738 2.5702 8.6746 12.7967 280.6983 0.2109 271.5113
Humana Inc. HUM Health Care 6.6787 2.6090 11.3665 4.4673 33.5169 0.2404 157.5287
IBM IBM Information Technology 2.0255 0.9862 3.5274 7.4383 92.6942 0.1019 71.2926
Coca-Cola KO Consumer Staples 1.5608 0.8355 2.5353 8.6219 138.4686 0.0456 58.8085
Marriott Int’l. MAR Consumer Discretionary 3.5370 1.7819 5.3635 5.4536 55.7000 0.1543 104.5781
Nucor Corp. NUE Materials 4.9098 2.7544 10.5817 13.8696 279.0002 0.3337 266.8244
Pfizer PFE Health Care 2.3324 1.3819 3.2242 6.4660 77.5016 0.1498 62.6970
AT&T T Communications Services 2.6549 1.1840 4.7673 9.4248 195.7955 0.1082 141.8456
Travelers -Travelers Group Inc TRV Financials 2.9683 1.1863 7.8664 15.2588 379.9201 0.1020 263.9287
Wells Fargo WFC Financials 4.3023 1.3299 12.1389 8.2667 94.9689 0.1036 226.6092
ExxonMobil XOM Energy 1.9866 1.1409 3.9555 15.8314 430.8596 0.1067 141.1297

134



3.4. Empirical Study

3.4.2 Empirical Estimation of the SHARP and SHARP-sv

models

This section reports the estimation results of the SHARP and SHARP-sv models.

While the flexible specification of the coefficients as an AR process (eq. 3.7) is

possible, we report results using ρ = 0.99, δ = 0.99, γ = 0, and δ = 0. The general

AR process does not yield significantly better out-of-sample results in this exercise.

The time-varying estimates of the coefficients using the SHARP and SHARP-sv

models are plotted in Figure (3.1) along with horizontal lines representing the full-

sample OLS estimates of the simple HARL model (eq. 3.4). Further, the correlation

matrix in Table (3.2) depicts the relationship between the estimated time-varying

coefficients. The SHARP and SHARP-sv models result in a comparative estimation

of the coefficients.

Firstly, the plot of the intercept coefficient, β̂1,t, has a wide range, implying that there

may be time-varying factors beyond the lagged logRV terms that explain the variation

of daily logRV . Also, β̂1,t is remarkably below the corresponding constant-coefficient

during the tranquil periods. Secondly, the daily and weekly coefficients are negatively

correlated. For example, the daily coefficient is more prominent during periods of

uncertainty, such as the GFC period, while the opposite effects emerge in the weekly

coefficient, which declines during such periods. On the other hand, the monthly

coefficient is (weekly) positively correlated with the daily coefficient, increasing during

the GFC period. During times of uncertainty in the financial market, the observed

phenomenon can be attributed to the primacy and recency effects. The current long-

term conditions, reflected in the monthly average of logRV d, can be regarded as

the primary information. The recent information is depicted in the daily logRV d.
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When predicting short-term (daily) volatility during times of uncertainty, primary

and recent information become more pertinent than information in the middle, such

as the weakly average volatility.

Figure 3.1: Smoothed posterior means of βtj parameters of SHARP and SHARP-sv models along
with the corresponding constant-coefficient by the HARL model estimated on SPY-ETF realised
variance in the period January 1st, 2000 to December 31st, 2016.
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Table 3.2: Correlation matrix of βtj parameters obtained by estimating the SHARP and SHARP-
sv models on SPY-ETF realised variance in the period January 1st, 2000 to December 31st, 2016.

SHARP SHARP-sv

β̂1 β̂2 β̂3 β̂4 β̂1 β̂2 β̂3 β̂4

β̂1 1 0.1924 -0.0780 0.5014 β̂1 1 0.2144 -0.0951 0.5088

β̂2 0.1924 1 -0.6284 0.2382 β̂2 0.2144 1 -0.6353 0.2563

β̂3 -0.0780 -0.6284 1 -0.2734 β̂3 -0.0951 -0.6353 1 -0.2909

β̂4 0.5014 0.2382 -0.2734 1 β̂4 0.5088 0.2563 -0.2909 1
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Figure 3.2: Marginal posterior densities of σ̂2
ϵj in SHARP as well as ĥt,j and σ̂2

uj
in SHARP-sv

obtained by estimating the models on SPY-ETF realised variance in the period January 1st, 2000
to December 31st, 2016.
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We also plot the marginal posterior densities of the variance of the residuals in each

state equation (3.7) and (3.10) in Figure (3.2). The density plots of ĥt,j have slightly

higher means and variances than that of the σ̂2
ϵj
. Also, it is evident from the plots

that the SHARP-sv model depicts the presence of heteroskedasticity in the variances

of the coefficients’ state equations. In both models, we observe that the mean of the

variance of the state equation of the intercept coefficient (β1) is higher than that of
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the other coefficients (β2, β3, β4).

Lastly, we use the Bayes factor to assess if sufficient evidence in the SPY-ETF logRV

data series supports the introduced features represented by the statistical models:

SHARP and SHARP-sv. Firstly, we compute the Bayes factor to compare the two

hypotheses ”H1 : model’s coefficients (β’s) are constant”, represented by the HARL

model, and ”H2 : model’s coefficients (β’s) are time-varying”, represented by the

SHARP model. Secondly, we compare the hypothesis ”H3 : model’s coefficients are

time-varying with SV”, represented by the SHARP-sv model, and ”H2”. Assigning

equal priors to the two models under consideration, the Bayes factor can then be

computed as BFi,j = P (Data|Hi)
P (Data|Hj)

, where P (Data|Hk) is the probability of observing

the data under the model representing hypothesis Hk. A higher value of the Bayes

factor means greater evidence for Hi against Hj. We follow Berger and Pericchi

(1996)’s interpretation of twice the natural logarithm of BFi,j in Table (3.3).

According to the reported results, we conclude that there is evidence favouring time-

varying parameters with SV. However, the evidence of H2 against H1 is stronger

than H3 against H2. Also, the evidence of each of the time-varying and SV features

is stronger in the second sub-sample period, which coincides with the GFC period.

Hence, all the preliminary findings are promising for both the SHARP and SHARP-sv

models, where, in line with Chen et al. (2018) and Buccheri and Corsi (2021), it shows

supporting evidence that the coefficients of the HARL model are time-varying with

SV.
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Table 3.3: Bayes Factor obtained by estimating the HARL, SHARP, and SHARP-sv models on
SPY-ETF realised variance in the period January 1st, 2000 to December 31st, 2016

2 log(B2,1) Decision 2 log(B3,2) Decision

January 2004 to December 2006

8.1258 > 6 Strong evidence for H2 against H1 2.1789 > 2 Positive evidence for H3 against H2

January 2007 to December 2010

12.7844 > 10 Very Strong evidence for H2 against H1 2.9059 > 2 Positive evidence for H3 against H2

January 2011 to December 2016

6.5801 > 6 Strong evidence for H2 against H1 2.7126 > 2 Positive evidence for H3 against H2

3.4.3 Out-of-sample Comparative analyses

This section presents an out-of-sample analysis of the introduced SHARP and

SHARP-sv models and a set of comparable models outlined below in forecasting

the daily RV of SPY-ETF and twenty NYSE individual stocks. We report the out-

of-sample forecasts using the rolling window approach with an estimation window

of 1000 daily observations (approximately four years). Hence, the in-sample period

is 1000 observations coinciding roughly from January 2000 to December 2003. The

out-of-sample period starts from January 2004 to December 2016. We perform the

out-of-sample (OOS) analyses over three sub-periods relative to the GFC period. The

first sub-sample spans from January 2004 to December 2006; the second sub-sample

covers the GFC period, the most volatile period in our data sample, starting from

January 2007 to December 2010; the last sub-sample is from January 2011 until

December 2016.

There is extensive evidence in the literature showing the HARL, i.e. modelling the

logRV , yields better RV forecasts than the HAR model estimated using the RV

series. The HARL and all the other models estimated on the log series are less
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affected by the huge peaks of RV . Therefore, we consider the HARL as our benchmark

model. This paper’s set of competing methods consists of 1) the HARL model (Corsi,

2009), eq. (3.4), is estimated by OLS. 2) HARLQ (inspired from Bollerslev, Patton,

and Quaedvlieg (2016) and Buccheri and Corsi (2021)) is a HARL model with time-

varying daily coefficient where β2,t = β2 + γ
√
RQt−1

RVt−1
, estimated by OLS. 3) HARSL

(Bekierman and Manner, 2018), which is a HARL model with a time-varying daily

coefficient that follows an AR(1) process, estimated by maximum likelihood using the

Kalman filter. 4) TVCHAR (Chen et al., 2018) is a HARL model with time-varying

coefficients of unspecified functional form, estimated by the local linear method. 5)

SHARK (Buccheri and Corsi, 2021), a HARL model with heteroskedastic disturbances

and score-driven parameters, estimated by maximum likelihood using the Kalman

filter. 6) SHARP model, proposed in this paper, is a HARL model with time-varying

coefficients that follow an AR(1) process, estimated by particle Gibbs sampling. 7)

SHARP-sv model is similar to the SHARP model with the additional feature of SV

in the process of the coefficients.

The selected competing set allows us to evaluate the proposed SHARP and SHARP-sv

models and their recent rivals to highlight new comparisons across these models. For

example, i) HARL vs HARLQ: knowing that the measurement error of logRV series

still exists, we explore whether accounting for this measurement error would improve

the forecasts by HARL as evident in the case of HARQ vs HAR in Bollerslev, Patton,

and Quaedvlieg (2016). ii) HARSL vs HARLQ: outlines whether modelling the daily

coefficient as an AR(1) process is better in forecasting than the more restrictive yet

straightforward approach of the HARLQ model. iii) TVCHAR vs SHARK vs SHARP:

demonstrates which coefficients’ time-varying specification yields better forecasts.
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Finally, iv) SHARP vs SHARP-sv: reveals whether the additional SV feature in the

AR process of the coefficients improves the forecasts.

In Table 3.4, we report the out-of-sample average of the estimated coefficients used at

each forecasting point by each model. The logRV series has lower measurement errors,

implying a minor impact on the magnitude of the coefficients than when modelling

the RV series. The average values of the coefficients across the models are within

a close range. The variances of the coefficients are the lowest for the HARL model

and the highest for the SHARK model. As we pointed out in the previous subsection

3.4.2, the daily and monthly coefficients’ estimates increase during the GFC period.

In contrast, the weekly coefficient estimate decreases. Also, the coefficients’ variances

increase during that period.

Next, we compare the models’ accuracy in forecasting the one-day-ahead RV . We use

two popular unit-free loss functions (see, Wang, Wu, and Xu (2015) and Zhang, Ma,

and Liao (2020), among others): (i) the heteroskedasticity-adjusted version of the

mean squared error, HMSE = 1
n−k

Σn
t=k+1(1 −

ŷt
yt
)2, (iii) heteroskedasticity-adjusted

version of the mean absolute error, HMAE = 1
n−k

Σn
t=k+1|1 −

ŷt
yt
|. Both HMSE and

HMAE quantify the relative forecast error with respect to the true objective value,

RV .
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Table 3.4: Average and (standard deviation) of coefficients’ out-of-sample estimates used at each
forecasting point obtained by estimating the HAR, HARL, HARQ, HARLQ, HARSL, TVCHAR,
SHARK, SHARP, and SHARP-sv models on SPY-ETF realised variance over a rolling window of
1000 observations.

January 2004 to December 2016

HARL HARLQ HARSL TVCHAR SHARK SHARP SHARP-sv

¯̂
β1 -0.0674 -0.0672 -0.0518 -0.0699 -0.0808 -0.0695 -0.0693

(0.0691) (0.0701) (0.0393) (0.0722) (0.0858) (0.0721) (0.0733)
¯̂
β2 0.4225 0.4257 0.4332 0.4225 0.5404 0.4222 0.4220

(0.1010) (0.0988) (0.1114) (0.1021) (0.1191) (0.1024) (0.1033)
¯̂
β3 0.3633 0.3579 0.3500 0.3632 0.3043 0.3724 0.3731

(0.0886) (0.0852) (0.0830) (0.0896) (0.0877) (0.0938) (0.0948)
¯̂
β4 0.1393 0.1410 0.1572 0.1377 0.0572 0.1308 0.1311

(0.0386) (0.0394) (0.0427) (0.0391) (0.0731) (0.0346) (0.0380)

January 2004 to December 2006

HARL HARLQ HARSL TVCHAR SHARK SHARP SHARP-sv

¯̂
β1 -0.0255 -0.0247 -0.0278 -0.0271 -0.1085 -0.0278 -0.0279

(0.0205) (0.0217) (0.0222) (0.0224) (0.0680) (0.0227) (0.0270)
¯̂
β2 0.2703 0.2849 0.2891 0.2678 0.4064 0.2668 0.2670

(0.0260) (0.0450) (0.0929) (0.0246) (0.0527) (0.0246) (0.0296)
¯̂
β3 0.4951 0.4794 0.4708 0.4978 0.3942 0.5171 0.5173

(0.0389) (0.0539) (0.0537) (0.0364) (0.0503) (0.0342) (0.0379)
¯̂
β4 0.1871 0.1887 0.1990 0.1858 0.1075 0.1678 0.1683

(0.0136) (0.0139) (0.0326) (0.0124) (0.0364) (0.0117) (0.0200)

January 2007 to December 2010

HARL HARLQ HARSL TVCHAR SHARK SHARP SHARP-sv

¯̂
β1 -0.0668 -0.0675 -0.0486 -0.0697 -0.0277 -0.0680 -0.0673

(0.0708) (0.0722) (0.0416) (0.0759) (0.0698) (0.0754) (0.0769)
¯̂
β2 0.4343 0.4354 0.4735 0.4367 0.5447 0.4370 0.4363

(0.0835) (0.0840) (0.0933) (0.0847) (0.1360) (0.0845) (0.0852)
¯̂
β3 0.3669 0.3641 0.3394 0.3650 0.3252 0.3697 0.3700

(0.0446) (0.0402) (0.0516) (0.0459) (0.0754) (0.0471) (0.0494)
¯̂
β4 0.1241 0.1238 0.1329 0.1211 0.0128 0.1194 0.1199

(0.0286) (0.0288) (0.0221) (0.0281) (0.0979) (0.0275) (0.0322)

January 2011 to December 2016

HARL HARLQ HARSL TVCHAR SHARK SHARP SHARP-sv

¯̂
β1 -0.0882 -0.0878 -0.0656 -0.0909 -0.1027 -0.0911 -0.0911

(0.0739) (0.0746) (0.0382) (0.0762) (0.0874) (0.0764) (0.0774)
¯̂
β2 0.4894 0.4882 0.4769 0.4888 0.6033 0.4888 0.4885

(0.0332) (0.0408) (0.0597) (0.0336) (0.0641) (0.0338) (0.0377)
¯̂
β3 0.2963 0.2942 0.2978 0.2961 0.2462 0.3030 0.3044

(0.0428) (0.0428) (0.0412) (0.0432) (0.0628) (0.0432) (0.0460)
¯̂
β4 0.1260 0.1292 0.1529 0.1251 0.0623 0.1202 0.1204

(0.0336) (0.0354) (0.0426) (0.0349) (0.0436) (0.0338) (0.0369)

142



3.4. Empirical Study

The relative loss measure of a model, M, over the benchmark model, HARL, using a

loss function, LF (i.e. HMSE or HMAE), is defined as:

RLM :=
LFM

LFHAR

(3.13)

RLM < 1 indicates that Model M outperforms the benchmark model. We report the

RLM for each model, M , using SPY-ETF data in Table (3.5) and their average over

the twenty NYSE individual stocks in Table (3.6). We also present the box plot of

the RLM of each model, M, using the twenty NYSE individual stocks data in Figure

(3.3).

To test the significance of the forecasting gains of a model, we employ the Model

Confidence Set (MCS) developed by Hansen, Lunde, and Nason (2011). We test

the null hypothesis that all the models are equally good against the alternative that

there is a smaller subset of superior models. We follow Hansen, Lunde, and Nason

(2011) and choose 0.1 as the critical p-value based on the range statistics. Hence,

models with p-values below the significance level, α = 0.1, are excluded from the

superior subset, denoted by M̂90%. Using the SPY-ETF RV data, in Table (3.5), an

asterisk indicates the model is included in the M̂90%. Table (3.6) reports the number

of individual financial stocks (out of 20) where a model is included in the M̂90%.
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Table 3.5: Out-of-sample relative loss measure (3.13) of HARL, HARLQ, HARSL, TVCHAR,
SHARK, SHARP, and SHARP-sv models obtained by estimating the models on SPY-ETF realised
variance over a rolling window of 1000 observations in the period January 1st, 2000 to December
31st, 2016.

January 2004 to December 2006

HARL HARLQ HARSL TVCHAR SHARK SHARP SHARP-sv

HMSE 1 1.0134 0.8994* 0.9547 0.8918* 0.8608* 0.8520*
HMAE 1 1.0044 0.9468* 0.9777 0.9399* 0.9403* 0.9349*

January 2007 to December 2010

HARL HARLQ HARSL TVCHAR SHARK SHARP SHARP-sv

HMSE 1 1.0060 0.9867 0.8832 1.1296 0.7454* 0.7062*
HMAE 1 1.0005 0.9905 0.9428 1.0444 0.8672* 0.8638*

January 2011 to December 2016

HARL HARLQ HARSL TVCHAR SHARK SHARP SHARP-sv

HMSE 1 1.0072 0.9525 0.9140 0.9176 0.8827 0.8236*
HMAE 1 1.0004 0.9768 0.9552 0.9636 0.9397 0.9187*

* indicates that the model is included in M̂90%.

Table 3.6: Average of the out-of-sample relative loss measure (3.13) of HARL, HARLQ, HARSL,
TVCHAR, SHARK, SHARP, and SHARP-sv models obtained by estimating the models on twenty
individual NYSE stocks’ realised variance over a rolling window of 1000 observations in the period
January 1st, 2000 to December 31st, 2016.

January 2004 to December 2006

HARL HARLQ HARSL TVCHAR SHARK SHARP SHARP-sv

HMSE 1(0) 0.9779(0) 0.9732(0) 0.9351(0) 0.9252(0) 0.5923(20) 0.5631(20)

HMAE 1(0) 0.9941(0) 0.9871(0) 0.9673(0) 0.9640(0) 0.7935(20) 0.7812(19)

January 2007 to December 2010

HARL HARLQ HARSL TVCHAR SHARK SHARP SHARP-sv

HMSE 1(0) 0.9648(0) 1.0167(1) 0.8873(5) 1.0832(0) 0.7302(18) 0.5622(20)

HMAE 1(0) 0.9877(0) 0.9952(0) 0.9459(3) 1.0356(0) 0.8478(19) 0.7915(20)

January 2011 to December 2016

HARL HARLQ HARSL TVCHAR SHARK SHARP SHARP-sv

HMSE 1(0) 0.9748(0) 0.9623(1) 0.9452(0) 0.9523(1) 0.6046(20) 0.5652(20)

HMAE 1(0) 0.9946(0) 0.9807(1) 0.9748(0) 0.9807(1) 0.7978(20) 0.7788(20)

We show in parenthesis the number of times each model is included in M̂90%
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3.4. Empirical Study

Generally, the results obtained using the RV of SPY-ETF and individual stocks

are consistent. Correcting for the measurement error in the HARL model relatively

improves the forecasts, on average, since the average RL of the HARLQ is less than

one. However, the HARLQ does not consistently outperform the HARL model across

the twenty individual stocks and the SPY-ETF. The HARSL model, on the other

hand, yields moderate forecast improvements compared to the HARLQ, meaning a

general time-varying specification such as the AR process for the daily coefficient is

better than the restrictive correction in the daily coefficient based on the measurement

error variance. It indicates that other factors beyond the measurement error lead to

changes in the daily coefficient. Hence, an AR process allows for such flexibility.

Further, the TVCHAR model is more promising than the HARSL model. The

former has all its coefficients time-varying, not just the daily coefficient. However,

as pointed out by their respective authors, both the TVCHAR and HARSL models

do not consistently outperform the HARL model for the one-day ahead forecasts. The

SHARK model is better than the TVCHAR model in the first and second subsample

periods. Still, the forecasting accuracy of the SHARK model deteriorates while that

of TVCHAR improves during the GFC period.
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3.4. Empirical Study

Figure 3.3: Box plot of the out-of-sample relative loss measure (3.13) of HARL, HARLQ, HARSL,
TVCHAR, SHARK, SHARP, and SHARP-sv models obtained by estimating the models on twenty
individual NYSE stocks’ realised variance over a rolling window of 1000 observations in the period
January 1st, 2000 to December 31st, 2016.
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For most individual stocks, some form of time-varying specification of the coefficients

generally improves the model’s forecasting. However, only the SHARP-sv model’s

forecasting performance is in all cases superior to the HARL model. The SHARP

and SHARP-sv models have the lowest RL using the SPY-ETF data and average RL

using the twenty individual stocks data. Adding the SV feature to the AR process of

the coefficients yields a further moderate improvement compared to the forecasts by

the SHARP model. Hence, we find that the general specification of the time-varying

coefficients leads to the most significant improvement in the forecasts of RV .

The findings based on the model confidence set reveal that our new extensions,

SHARP and SHARP-sv, are always included in the confidence set. It excludes the

remaining models with few exceptions. For example, between January 2004 and

December 2006, the HARSL and SHARK models are included in the confidence set

using the SPY-ETF data but not the individual stocks data. Also, the TVCHAR

model is in the superior set during the GFC period for a few individual stocks.

Lastly, we use the unconditional predictive ability (uCPA) test by Giacomini and

White (2006) to evaluate the out-of-sample predictions produced by the models.

It builds on Diebold and Mariano (1995) test and provides a framework for

an unconditional forecast evaluation criterion robust to misspecified forecasting

models. Our forecast evaluation involves seven models with various specifications and

estimation methods. Giacomini and White (2006) test does not impose restrictions

on the estimation methods used and allows the models to be nested or non-nested.

In Tables (3.7) and (3.9), we report the results for pairwise tests of uncodnitional

predictive ability over three OOS periods with significance level of α = 0.05. Based

on the results, we rank the models from best to worse in Tables (3.8) and (3.10).
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Table 3.7: Results of the uCPA test for out-of-sample forecasting performance between the models
with the selected loss function (HMSE) obtained by estimating the models on SPY-ETF realised
variance over a rolling window of 1000 observations in the period January 1st, 2000 to December
31st, 2016. The model that is significantly better than the other is stated inside the table unless
both models are equally good.

January 2004 to December 2006

vs HARLQ HARSL TVCHAR SHARK SHARP SHARP-sv

HARL Equally good HARSL TVCHAR SHARK SHARP SHARP-sv
HARLQ HARSL TVCHAR SHARK SHARP SHARP-sv
HARSL HARSL Equally good Equally good Equally good

TVCHAR SHARK SHARP SHARP-sv
SHARK Equally good Equally good
SHARP Equally good

January 2007 to December 2010

vs HARLQ HARSL TVCHAR SHARK SHARP SHARP-sv

HARL Equally good Equally good TVCHAR HARL SHARP SHARP-sv
HARLQ Equally good TVCHAR HARLQ SHARP SHARP-sv
HARSL TVCHAR HARSL SHARP SHARP-sv

TVCHAR TVCHAR SHARP SHARP-sv
SHARK SHARP SHARP-sv
SHARP SHARP-sv

January 2011 to December 2016

vs HARLQ HARSL TVCHAR SHARK SHARP SHARP-sv

HARL Equally good HARSL TVCHAR SHARK SHARP SHARP-sv
HARLQ HARSL TVCHAR SHARK SHARP SHARP-sv
HARSL TVCHAR Equally good SHARP SHARP-sv

TVCHAR Equally good Equally good SHARP-sv
SHARK Equally good SHARP-sv
SHARP SHARP-sv

Table 3.8: Ranking of models from best to worse in every subsample period according to the uCPA
results in Table (3.7). Models appearing on the same row in a given period of time are equally good.

January 2004 to December 2006 January 2007 to December 2010 January 2011 to December 2016

SHARP-sv, SHARP, SHARK, HARSL SHARP-sv SHARP-sv
TVCHAR SHARP SHARP, TVCHAR, SHARK

HARL, HARLQ TVCHAR SHARK, HARSL
HARL, HARLQ, HARSL HARL, HARLQ

SHARK
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Table 3.9: Results of the uCPA test for out-of-sample forecasting performance between the models
with the selected loss function (HMAE) obtained by estimating the models on SPY-ETF realised
variance over a rolling window of 1000 observations in the period January 1st, 2000 to December
31st, 2016. The model that is significantly better than the other is stated inside the table unless
both models are equally good.

January 2004 to December 2006

vs HARLQ HARSL TVCHAR SHARK SHARP SHARP-sv

HARL Equally good HARSL TVCHAR SHARK SHARP SHARP-sv
HARLQ HARSL TVCHAR SHARK SHARP SHARP-sv
HARSL HARSL Equally good Equally good Equally good

TVCHAR SHARK SHARP SHARP-sv
SHARK Equally good Equally good
SHARP Equally good

January 2007 to December 2010

vs HARLQ HARSL TVCHAR SHARK SHARP SHARP-sv

HARL Equally good Equally good TVCHAR HARL SHARP SHARP-sv
HARLQ Equally good TVCHAR HARLQ SHARP SHARP-sv
HARSL TVCHAR HARSL SHARP SHARP-sv

TVCHAR TVCHAR SHARP SHARP-sv
SHARK SHARP SHARP-sv
SHARP Equally good

January 2011 to December 2016

vs HARLQ HARSL TVCHAR SHARK SHARP SHARP-sv

HARL Equally good HARSL TVCHAR SHARK SHARP SHARP-sv
HARLQ HARSL TVCHAR SHARK SHARP SHARP-sv
HARSL TVCHAR SHARK SHARP SHARP-sv

TVCHAR Equally good SHARP SHARP-sv
SHARK SHARP SHARP-sv
SHARP SHARP-sv

Table 3.10: Ranking of models from best to worse in every subsample period according to the CPA
results in Table 3.9. Models appearing on the same row in a given period of time are equally good.

January 2004 to December 2006 January 2007 to December 2010 January 2011 to December 2016

SHARP-sv, SHARP, SHARK, HARSL SHARP-sv, SHARP SHARP-sv
TVCHAR TVCHAR SHARP

HARL, HARLQ HARSL,HARLQ TVCHAR, SHARK
HARLQ, HARL HARSL

SHARK HARLQ, HARL

The SHARP-sv consistently ranks among the best models. The SHARP model ranks

as good as the SHARP-sv or the second best. During the second and third subsample

periods, the SHARP-sv is first exclusively. While the SHARK model is among the top
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3.5. Conclusion

in the first and third sub-sample periods, its performance deteriorates during the GFC

period. The TVCHAR ranks better than the SHARK except for the first subsample

period and is always superior to the HARL and HARLQ models. Also, the HARSL

ranks better than the HARL and HARLQ models except during the GFC period.

Lastly, the HARLQ and HARL models are equally good.

3.5 Conclusion

We propose a dynamic state-space model that defines time-varying parameters as

an AR process with heteroskedastic innovations: the log-transformation of the

conditional variance of those innovations is an AR process. Thereby, we allow for

time-varying heteroscedasticity in the measurement equation and the state process

of coefficients. We follow Creal and Tsay (2015) in using particle filtering as a

computationally efficient approach (Andrieu, Doucet, and Holenstein, 2010). In

building upon three recent analyses of the dynamic features of the HARL (HAR with

the log of RV) model coefficients (Bekierman and Manner, 2018; Buccheri and Corsi,

2021; Chen et al., 2018), the SHARP and SHARP-sv models incorporate additional

innovations with a feasible estimation method.

With our empirical study, we apply the SHARP and SHARP-sv models to forecast the

volatility of financial stock returns. Comparisons are made between the out-of-sample

forecasting performance of the models, across three sub-sample periods, including the

financial crisis of 2008. For a robustness check, we evaluate forecasts using two loss

functions. We also use the Model Confidence Set by Hansen, Lunde, and Nason (2011)

and conditional predictive ability test by Giacomini and White (2006) to assess the
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significance of our results.

First: While the literature shows that accounting for the measurement error variance

improves the forecast by the HAR model, its failure to do likewise by the HARL

may be attributed to reduced measurement errors when using the logarithmic form.

Second: Permitting the coefficients to be time-varying, with time-varying conditional

variance, improves the forecasts of RV . By their overall improved performance, the

proposed SHARP and SHARP-sv models significantly outperform other extensions of

the HARL model in forecasting the realised volatility of financial stocks.

Appendices

3.A Derivations of the first and second moments

For conciseness we will assume for what follows that k = 1 so the transition equations

are defined as:

βt = α + ρβt−1 + εt, εt|ht ∼ N (0, ht) (3.14)

and

lnht = γ + δ lnht−1 + ut, ut ∼ N (0, σ2
u) (3.15)

With δ < 1, one can show that:

µ := E(lnht) =
γ

1− δ2
and ω2 := var(lnht) =

σ2
u

1− δ2
(3.16)

E(ht) = exp(µ) exp(ω2/2) and var(ht) = exp(2µ)
(
exp(2ω2)− exp(ω2)

)
(3.17)
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3.A. Derivations of the first and second moments

With ρ < 1, one can show that:

E(βt) =
α

1− ρ2
(3.18)

The conditional second moment (variance) of βt could change over time:

var(βt|ht) =
∞∑
i=0

ρ2iht−i

= exp(µ)
∞∑
i=0

ρ2i exp(St−i)

Where St =
∑∞

i=0 δ
iut−i ∼ N(0, ω2). Note that, since |δ| < 1, St converges in mean

square to some finite number as T −→ ∞ provided that
∑∞

i=0(δ
i)2 < ∞. Similarly,

since |ρ2| < 1,
∑T

i=0 ρ
2i exp(St−i) converges in mean square to some finite number as

T −→ ∞ provided that
∑∞

i=0(ρ
2i)2 < ∞.

Finally, one can show that the unconditional variance of βt is constant:

var(βt) = E(var(βt|ht)) + var(E(βt|ht))

=
exp(µ+ ω2/2)

1− ρ2
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3.B. Posterior Derivation

3.B Posterior Derivation

Model:

yt = x′
tβt + vt; vt ∼ N (0, σ2

v), t = 1, . . . , n

βtj = αj + ρjβt−1,j + εtj; εtj|htj ∼ N (0, htj) , j = 1, . . . , k, t = 1, . . . , n

log htj = γj + δj log ht−1,j + utj; utj ∼ N (0, σ2
uj), j = 1, . . . , k, t = 1, . . . , n

Let λt = [β′
t, logh

′
t]
′

where βt = [βt1, . . . , βtk] and loght = [loght1, . . . , loghtk]

Let θ = {θ1, ..., θk}, where θj = {αj, ρj, γj, δj, σuj}, j = 1, . . . , k,

Prior

αj, γj ∼ N (0, 1), j = 1, . . . , k,

ρj, δj ∼ N (0.5, 1)Iρj∈(0,1)Iδj∈(0,1), j = 1, . . . , k,

σ2
uj ∼ Γ(6.5, 0.005), j = 1, . . . , k

σ2
v ∼ Γ(6.5, 0.005)

Equivalently:

p(αj) ∝ exp(−n
2
α2
j ), j = 1, . . . , k

p(γj) ∝ exp(−n
2
γ2
j ), j = 1, . . . , k

p(ρj) ∝ exp(−n
2
(ρj − 0.5)2)Iρj∈(0,1), j = 1, . . . , k

p(δj) ∝ exp(−n
2
(δj − 0.5)2)Iδj∈(0,1), j = 1, . . . , k

p(σuj) ∝ σ
−(n+1)
uj exp

(
− q

2σ2
uj

)
, j = 1, . . . , k, n = 10 and q = 0.01

p(σv) ∝ σ
−(n+1)
uj exp

(
− q

2σ2
uj

)
, n = 10 and q = 0.01
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Posterior

P
(
θ, σv, {λ}Tt=1|Y

)
∝ (σ−n

v )exp(− 1

2σ2
v

n∑
t=1

(yt − x′
tβt)

2)

(
k∏

i=1

n∏
t=1

h−1
it )exp(−

k∑
i=1

n∑
t=1

1

2h2
it

(βit − αi − ρiβi,t−1)
2)

(
k∏

i=1

σ−n
ui

)exp(−
k∑

i=1

1

2σ2
ui

n∑
t=1

(loghit − γit − δitloghi,t−1)
2)

k∏
j=1

p(σui
)

k∏
i=1

p(αi)
k∏

i=1

p(γj)
k∏

i=1

p(ρi)
k∏

i=1

p(δi)

1. For P (θ|{λ}Tt=1, Y ), for i = 1, .., k :

2. For γi

∣∣∣∣∣{{θ\{γi}}, σv, {λ}Tt=1, Y
}
we use mixed estimator:

let Z =



loghi,2 − δiloghi,1

.

.

loghi,T − δiloghi,T−1


and ui =



ui,2

.

.

ui,T



then,

 Z

0

 =

 1(n×1)

1

 γi +

 ui

η

 ;

 ui

η

 ∼ N(0,

 σiIn

1

)
where n = T − 1

=⇒ γi

∣∣∣∣∣{{θ\{γi}}, {λ}Tt=1, Y
}
∼ N(

(loghi,T−loghi,1)

1+σ2
i

,
σ2
i

1+σ2
i
)

3. For δi

∣∣∣∣∣{{θ\{δi}}, σv, {λ}Tt=1, Y
}
, we use mixed estimator:
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let Z =



loghi,2 − γi

.

.

loghi,T − γi


, κ =



loghi,1

.

.

loghi,T−1


and ui =



ui,2

.

.

ui,T



then,

 Z

0.5

 =

 κ

1

 δi +

 ui

η

 ;

 ui

η

 ∼ N(0,

 σiIn

1

)
where n = T − 1

=⇒ δi

∣∣∣∣∣{{θ\{δi}}, {λ}Tt=1, Y
}
∼ N(

κ′Z+0.5σ2
i

κ′κ+σ2
i
,

σ2
i

κ′κ+σ2
i
)

4.

P
(
σui

∣∣∣{θ\{σui
}}, σv, {λ}Tt=1, Y

)
∝

σ−n
ui

exp(− 1
2σ2

ui

∑n
t=1(loghit − γi − δiloghi,t−1)

2) σ
−(n+1)
ui exp

(
− q

2σ2
ui

)
∝

σ
−(n+n+1)
ui exp(− 1

2σ2
ui

(∑n
t=1(loghit − γi − δiloghi,t−1)

2 + q
)
)

=⇒
∑n

t=1(loghit−γi−δiloghi,t−1)
2+q

σ2
ui

∣∣∣{{θ\{σi}}, {λ}Tt=1, Y
}
∼ χ2(n+ n+ 3)

5. For αi

∣∣∣∣∣{{θ\{αi}}, {λ}Tt=1, Y
}
we use mixed estimator:

let Z =



βi,2 − ρiβi,1

.

.

βi,T − ρiβi,T−1


, Hi =



hi,1

.

.

hi,T


, and ϵi =



ϵi,2

.

.

ϵi,T


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then,

 Z

0

 =

 1(n×1)

1

αi +

 ϵi

η

 ;

 ui

η

 ∼ N(0,

 Hi

1

)
where n = T − 1

=⇒ αi

∣∣∣∣∣{{θ\{αi}}, {λ}Tt=1, Y
}
∼ N(

ΣT
t=2

Zi,t
hi,t

ΣT
t=2

1
hi,t

+1
, 1
ΣT

t=2
1

hi,t
+1

)

6. For ρi

∣∣∣∣∣{{θ\{ρi}}, σv, {λ}Tt=1, Y
}
we use mixed estimator:

let Z =



βi,2 − αi

.

.

βi,T − αi


, κ =



βi,1

.

.

βi,T−1


, Hi =



hi,1

.

.

hi,T


,

and ϵi =



ϵi,2

.

.

ϵi,T



then,

 Z

0.5

 =

 κ

1

 ρi +

 ϵi

η

 ;

 ui

η

 ∼ N(0,

 Hi

1

)
where n = T − 1

=⇒ ρi

∣∣∣∣∣{{θ\{ρi}}, {λ}Tt=1, Y
}
∼ N(

ΣT
t=2

Zi,t
hi,t

+0.5

ΣT
t=2

1
hi,t

+1
, 1
ΣT

t=2
1

hi,t
+1

)
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7.

P
(
σv

∣∣∣{θ}, {λ}Tt=1, Y
)

∝

σ−n
v exp(− 1

2σ2
v

∑n
t=1(yt − x′

tβt)
2) σ

−(n+1)
v exp

(
− q

2σ2
v

)
∝

σ
−(n+n+1)
v exp(− 1

2σ2
i

(∑n
t=1(yt − x′

tβt)
2 + q

)
)

=⇒
∑n

t=1(yt−x′
tβt)2+q

σ2
v

∣∣∣{{θ}, {λ}Tt=1, Y
}
∼ χ2(n+ n+ 3)

3.C Particle filtering within MCMC

Particle filtering is a simulation-based algorithm that sequentially approximates

continuous marginal distributions using discrete distributions. This is performed by

using a set of support points called ”particles” and probability masses; see Creal (2012)

for a review. The PG sampler draws a single path of the latent or state variables from

this discrete approximation. As the number of particles M goes to infinity, the PG

sampler draws from the exact full conditional distribution. The advantage of the

algorithm is that it allows for drawing paths of the state variables in large blocks.

As mentioned in Creal and Tsay (2015), the PG sampler is a standard Gibbs sampler

but defined on an extended probability space where a particle filter generates all the

random variables. Chopin and Singh (2015) analysed the theoretical properties of the

PG sampler, and showed that the sampler is uniformly ergodic. Unlike the standard

particle filter, the PG sampler involves a ”conditional” resampling algorithm in the

last step. Namely, for draws from the particle filter to be a valid Markov transition

kernel on the extended probability space, the state variables drawn at the previous
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iteration must have a positive sampling probability (Andrieu, Doucet, and Holenstein,

2010). The conditional resampling step within the PG forces the pre-existing path

to survive the particle filter’s resampling steps. We use the conditional multinomial

resampling algorithm from Andrieu, Doucet, and Holenstein (2010), although other

resampling algorithms exist (see, for example, Fearnhead et al. (2010) and Chopin

and Singh (2015)).

Suppose the posterior is p(θ, λ1:T |y1:T ) where λ1:T denotes the latent variables whose

prior can be described by p(λt|λt−1, θ). In the PG sampler, we can draw the structural

parameters θ|λ1:T ,y1:T as usual, from their posterior conditional distributions. This is

important because, in this way, we can avoid mixture approximations or other Monte

Carlo procedures that need considerable tuning and may not have good convergence

properties. Suppose we have λ
(1)
1:T from the previous iteration. The particle filtering

procedure consists of two phases, forward and backward filtering.

Phase I: Forward filtering (Andrieu, Doucet, and Holenstein, 2010).

For t = 1, . . . , T

• Draw a proposal λ
(m)
t from an importance density q(λt|λ(m)

t−1, θ), m = 2, ...,M .

• Compute the importance weights:

w
(m)
t =

p(yt|λ(m)
t , θ)p(λ

(m)
t |λ(m)

t−1, θ)

q(λit|λ(m)
t−1, θ)

, m = 1, ...,M. (3.19)

• Normalise the weights: w̃
(m)
t =

w
(m)
t∑M

m=1 w
(m)
t

, m = 1, ...,M .

• Re-sample, conditionally, the particles {λ(m)
t , m = 1, ...,M} with probabilities
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{w̃(m)
t , m = 1, ...,M}.

In the original PG sampler, the particles are stored for t = 1, ..., T and a single

trajectory is sampled using the probabilities from the last iteration. An improvement

upon the original PG by drawing the path of the latent variables from the particle

approximation is using the backwards sampling algorithm of Godsill, Doucet, and

West (2004). In the forward pass, we store the normalised weights and particles then

we draw a path of the latent variables as we detail below (the draws are from a discrete

distribution).

Phase II: Backward filtering (Chopin and Singh, 2015; Godsill, Doucet, and West,

2004).

• At time t = T draw a particle λ∗
T = λ

(m)
T .

• Compute the backward weights: w
(m)
t|T ∝ w̃

(m)
t p(λ∗

t+1|λ
(m)
t , θ).

• Normalise the weights: w̃
(m)
t|T =

w
(m)
t|T∑M

m=1 w
(m)
t|T

,m = 1, ...,M .

• Draw a particle λ∗
it = λ

(m)
t with probability w̃

(m)
t|T .

Therefore, λ∗
1:T = {λ∗

1, ..., λ
∗
T} is a draw from the full conditional distribution. When

the state vector dimension is large, we can draw λi,1:T , conditional on all other

paths λ−i,1:T that are not path i. Therefore, we can draw from the full conditional

distribution p(λi,1:T |λ−i,1:T ,y1:T , θ). The backwards step often results in dramatic

improvements in computational efficiency and strictly dominates the original PG

(Chopin and Singh, 2015). For example, Creal and Tsay (2015) find that M = 100

particles is enough.

There remains the problem of selecting an importance density q(λt|λt−1, θ). We use
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an importance density implicitly defined by λit = ai +
∑P

p=1 bi,pλ
p
i,t−1 + Ωiξit where

ξit follows a standard (zero location and unit scale) Student-t distribution with ν = 5

degrees of freedom. That is, we use polynomials in λi,t−1 of order P . We select the

parameters ai, bi and Ωi during the burn-in phase (using P = 1 and P = 2) so that

the weights {w̃(m)
it ,m = 1, ...,M} and {w̃(m)

t|T ,m = 1, ...,M} are approximately not too

far from a uniform distribution.

3.D HARSL estimation using Kalman Filter

The HARSL equation is:

lnRVt = β1 + (β2 + λt)lnRV
(d)
t−1 + β3lnRV

(w)
t−1 + β4lnRV

(m)
t−1 + ϵt

λt+1 = ϕλt + ηt

(3.20)

It can be rewritten as:

lnRVt = β1 + β2lnRV
(d)
t−1 + β3lnRV

(w)
t−1 + β4lnRV

(m)
t−1 + λtlnRV

(d)
t−1 + ϵt

λt+1 = ϕλt + ηt

(3.21)

We use the fkf package on R to estimate the model. The above model can be rewritten

as the general form of the transition and measurement equation for Kalman filter is

given by:

yt = ct + Ztαt +Gt.ϵt

αt+1 = dt + Ttαt +Ht.ηt

(3.22)
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where:

yt = lnRVt

Zt = (1, lnRV
(d)
t−1, lnRV

(w)
t−1 , lnRV

(m)
t−1 , lnRV

(d)
t−1)

ct = 0

αt = (β1, β2, β3, β4, λt)
′

Gt = G = σ2
ϵ

dt = 0

Tt = (1, 1, 1, 1, ϕ)′

Ht =

 0(4×4)

σ2
ηt


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